
Rational Software Corporation®

support@rational.com
http://www.rational.com

Rational® PurifyPlus
Rational® Purify®

Rational® PureCoverage®

Rational® Quantify®

Getting Started

VERSION: 2002.05.20

PART NUMBER: 800-025734-000

WINDOWS

IMPORTANT NOTICE

COPYRIGHT

Copyright ©2001, 2002, Rational Software Corporation. All rights reserved.

Part Number: 800-025734-000

Version Number: 2002.05.20

PERMITTED USAGE

THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION WHICH IS THE
PROPERTY OF RATIONAL SOFTWARE CORPORATION (“RATIONAL”) AND IS
FURNISHED FOR THE SOLE PURPOSE OF THE OPERATION AND THE
MAINTENANCE OF PRODUCTS OF RATIONAL. NO PART OF THIS
PUBLICATION IS TO BE USED FOR ANY OTHER PURPOSE, AND IS NOT TO BE
REPRODUCED, COPIED, ADAPTED, DISCLOSED, DISTRIBUTED,
TRANSMITTED, STORED IN A RETRIEVAL SYSTEM OR TRANSLATED INTO
ANY HUMAN OR COMPUTER LANGUAGE, IN ANY FORM, BY ANY MEANS, IN
WHOLE OR IN PART, WITHOUT THE PRIOR EXPRESS WRITTEN CONSENT OF
RATIONAL.

TRADEMARKS

Rational, Rational Software Corporation, ClearQuest, PureCoverage, Purify, Purify'd,
Quantify, and Rational Visual Test, among others, are either trademarks or registered
trademarks of Rational Software Corporation in the United States and/or in other
countries. All other names are used for identification purposes only, and are
trademarks or registered trademarks of their respective companies.

Microsoft, Virtual Basic, Visual C++, Visual Studio, and Windows are trademarks or
registered trademarks of Microsoft Corporation in the United States and other
countries.

PATENT

U.S. Patent Nos. 5,193,180 and 5,335,344 and 5,535,329 and 5,835,701. Additional
patents pending.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

GOVERNMENT RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions set
forth in the applicable Rational Software Corporation license agreement and as
provided in DFARS 277.7202-1(a) and 277.7202-3(a) (1995), DFARS
252.227-7013(c)(1)(ii) (Oct. 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR 227-14,
as applicable.

WARRANTY DISCLAIMER

This document and its associated software may be used as stated in the underlying
license agreement. Rational Software Corporation expressly disclaims all other

warranties, express or implied, with respect to the media and software product and its
documentation, including without limitation, the warranties of merchantability or
fitness for a particular purpose or arising from a course of dealing, usage, or trade
practice.

v

Contents

Welcome to the Rational PurifyPlus Product Family 1
Rational PurifyPlus: What it is . 1

Tips for development engineers . 2
Tips for test engineers . 3

Other PurifyPlus resources . 4
Contacting Rational technical support . 5
Contacting Rational technical publications . 5

Getting Started: Rational Purify .7
Purify for Visual C/C++ developers and testers . 7

Purify for Visual C/C++: What it does . 7
Purify for Visual C/C++: The basic steps . 9
Purify for Visual C/C++: Advanced features . 20

Purify for Java developers and testers . 26
Purify for Java: What it does. 26
Purify for Java: The basic steps . 28
Purify for Java: Advanced features. 36

Purify for .NET managed code developers and testers . 40
Purify for .NET managed code: What it does . 40
Purify for .NET managed code: The basic steps . 41
Purify for .NET managed code: Advanced features . 50

Getting Started: Rational PureCoverage .55
PureCoverage: What it does. 55

PureCoverage: The basic steps . 57

PureCoverage: Advanced features. 64

Getting Started: Rational Quantify .73
Quantify: What it does. 73

Quantify: The basic steps . 74

Quantify: Advanced features. 85

Index .93

vi

1

Welcome to the
Rational PurifyPlus
Product Family

Rational PurifyPlus: What it is

Rational® PurifyPlus brings together three essential tools that help you
you develop high-quality applications more efficiently:

■ Rational Purify® An automatic error detection tool for finding
runtime errors and memory leaks in every component of your
program.

■ Rational Quantify® A performance analysis tool for resolving
performance bottlenecks so your program can run faster.

■ Rational PureCoverage® A code coverage tool for making sure your
code is thoroughly tested before you release it.

These tools are easy to use, yet provide invaluable information to help
your team develop faster and more reliable applications in Visual
C/C++, Visual Basic, Java, or managed code in any language that
Microsoft Visual Studio .NET supports.

If you’re developing code in Visual Studio, start the PurifyPlus tools
from the Visual Studio menus or toolbars. You can use Purify, for
example, along with your Visual Studio debugger and editor to save
time correcting a software defect. You can also use the tools as
standalone applications when you don’t need all the resources of Visual
Studio.

If you’re testing software, incorporate the PurifyPlus tools into existing
test scripts and harnesses to automate error detection, memory
profiling, code-coverage monitoring, and performance testing. Use the
tools from the beginning with your nightly tests so that you can easily
spot regressions as soon as they occur.

Do yourself a favor. Don’t waste days looking for problems that
PurifyPlus can pinpoint in seconds. And don’t release a product with
hidden bugs that these tools can detect easily. Consistent use of the
PurifyPlus tools, from the time you start development until you ship,
will provide solid benefits both to you and to your customers.

2 Welcome to the Rational PurifyPlus Product Family

Tips for development engineers

Here are some tips for using PurifyPlus to develop fast, reliable code.

Find memory errors early

Use Purify as you code to
pinpoint hard-to-find bugs.
Memory errors don’t always show
up right away, but they’re the
ones that will make your program
crash someday.

Improve code coverage

You haven’t Purify’d® code you
haven’t run.

Use PureCoverage to make sure
you're exercising all your code
during pre-checkin testing.

For C/C++ code, you can run
PureCoverage from within
Purify—just click Coverage, error,
and leak data in Purify’s Run
Program dialog.

Prevent performance
bottlenecks

Whenever you write new code or
modify existing code, use Quantify
to catch any incremental
performance losses before they
turn into bottlenecks.

Quantify gives you the information
you need to write more efficient
code. It can turn everyone on your
team into a performance engineer.

Analyze code structure

A common reason for writing new
code is to improve the performance
of a program. But how can you
effectively improve the
performance of code that might
have been developed over several
years by many different people?

Use Quantify not only to find
performance bottlenecks, but also
to learn more about how your code
is structured. It will help you to
make effective performance
improvements.

Purify

PureCoverage

Quantify

Rational PurifyPlus: What it is 3

Tips for test engineers

Here are some tips for using PurifyPlus to guarantee quality software.

Find the internal errors in
your code

For best results, run all your tests
on a Purify’d version of your
program. This will find the
internal memory problems that
your external functionality tests
can’t uncover.

If performance
improves . . .

An unexpected improvement in
performance can indicate that a
large part of your code is no
longer being exercised. Compare
the most recent PureCoverage
results with a previous run to see
if you’re still getting the same
level of coverage.

Test all your code daily

Use PureCoverage every day to
make sure you’re testing all your
code. With ongoing coverage
feedback, you can be sure your
tests are keeping pace with your
code development.

If coverage goes down . . .

If code coverage drops, your
existing tests may not be exercising
new code. Or the new code might
have introduced a defect that’s
causing a large section of code not
to be tested. Use an automated
testing tool like Rational Robot or
Rational Visual Test® to write test
cases that exercise the new code.

If performance drops . . .

A sudden drop in performance is
probably caused by the most recent
code checked in. Let Quantify
show you which parts of your
program became slower compared
to a previous run that had
acceptable performance.

Purify

Quantify

PureCoverage

4 Welcome to the Rational PurifyPlus Product Family

Other PurifyPlus resources

Additional information is available for all the PurifyPlus tools:

The online help systems for Purify, Quantify, and PureCoverage contain
detailed information about using the products and interpreting the data
they collect.

For information about Rational Software and other Rational products,
go to http://www.rational.com.

To learn how to highlight performance bottlenecks,
go to Getting Started: Rational Quantify on page 73

To learn how you can avoid shipping untested code, go
to Getting Started: Rational PureCoverage on page 55

To learn how to pinpoint hard-to-find bugs in C/C++, Java, and managed code, go
to Getting Started: Rational Purify on page 7

Other PurifyPlus resources 5

Contacting Rational technical support

You can contact Rational technical support by email at
support@rational.com.

You can also reach Rational technical support over the Internet or by
telephone. For contact information, as well as for answers to common
questions about Purify, Quantify, and PureCoverage, go to
http://www.rational.com/support.

Contacting Rational technical publications

To order copies of Rational publications, go to the Rational Press at
http://www.rational.com/support/documentation/index.jsp#press.

Please send any feedback about Rational documentation to the Rational
technical publications department at techpubs@rational.com.

6 Welcome to the Rational PurifyPlus Product Family

7

Getting Started:
Rational Purify

Whether you’re working in Visual C/C++ native code, Java, or .NET
managed code, Rational® Purify® can save you time and improve the
quality of your code.

Purify for Visual C/C++ developers and testers

Purify for Visual C/C++: What it does

Run-time memory errors and leaks are among the most difficult errors
to locate and the most important to correct. The symptoms of incorrect
memory use are unpredictable and typically appear far from the cause
of the error. The errors often remain undetected until triggered by some
random event, so that a program can seem to work correctly when in
fact it’s only working by accident.

That’s where Purify can help you get ahead. Purify provides:

■ Fast, comprehensive run-time error detection for Visual C/C++
programs

■ Error checking even when the source is not available

■ Code-coverage data that shows you code you haven’t tested

Purify automatically integrates into Microsoft Visual Studio and
requires no special builds. You can use Purify without changing the
way you work.

Find errors before they occur

Purify detects the following kinds of memory errors—and many
others—before they actually occur, so that you can resolve them before
they do any damage:

■ Array bounds errors

■ Accesses through dangling pointers

8 Getting Started: Rational Purify

■ Uninitialized memory reads

■ Memory allocation errors

■ Memory leaks

More information? For a complete list of the errors that Purify detects
in Visual C/C++, select Purify Messages from the Purify Help menu.

Check every component in your program

Software development today is component based. To deliver quality
applications on time, you not only need to make sure your own code is
error free, you also need a way to check the components your software
uses—even when you don’t have the source code. Errors that occur
within a component may be the result of your code supplying the
component with unexpected data; only Purify can detect such errors so
that you can correct your use of the component and improve the
reliability of your application.

Purify can check every component in your program, even in complex
multi-threaded, multi-process applications, including:

■ .dll’s, including Windows .dll’s and Microsoft Foundation Class
Library .dll’s

■ Visual C/C++ components embedded within Visual Basic
applications, Internet Explorer, Netscape Navigator, or any
Microsoft Office application

■ Microsoft Excel and Microsoft Word plug-ins

■ COM-enabled applications using OLE and ActiveX controls

Purify checks calls to Windows API functions, including GDI, Internet
services, system registry, and COM and OLE interface API functions. It
also validates parameters such as memory handles and pointers.

Look for errors in the right places

In addition to finding the critical errors that occur when you exercise
your program, Purify can also tell you how thoroughly you’ve covered
your program’s code. If you have Rational PureCoverage installed,
Purify can collect coverage data automatically for every run, report
exactly how much of your code you’ve checked, and identify untested
lines and functions. Using this information you can make sure you’re

Purify for Visual C/C++ developers and testers 9

finding the errors in all your code, and that you won’t be caught
off-guard by undiscovered problems in lines or functions that you
overlooked.

More information? Look up coverage data in the Purify online Help
index.

Use Purify from the start

For maximum benefit, start using Purify as soon as your code is ready
to run and continue using it regularly throughout your development
cycle, especially for:

■ Code check-in. Reduce the risk that bugs in your code might impact
other code modules.

■ Nightly tests. Incorporate Purify into your test harness to verify that
modules work together and to expose code dependencies and
collisions. Collect coverage data for every run to make sure that
your tests are exercising any code that has been added or modified.

■ Acceptance tests. Validate third-party code or code from other
development groups before incorporating it into your application.

By using Purify consistently from the time you start development,
you’ll release clean, reliable products on time.

Purify for Visual C/C++: The basic steps

With Purify, you can deliver more reliable C/C++ code in a few easy
steps:

1 Run your program with Purify to collect:

❑ Error data

❑ Code coverage data

2 Analyze the error data and correct your source code.

3 If you’ve collected coverage data, analyze it to find any parts of your
code that you have not Purify’d®.

4 Rerun your program with Purify.

10 Getting Started: Rational Purify

The following pages show you how to use Purify integrated with
Microsoft Visual Studio 6, but you can also use Purify in other ways.
Read the following:

■ Using Purify standalone on page 22

■ Testing C/C++ code with the command-line interface on page 23.

Running a C/C++ program with Purify

Open your project in Visual Studio, then engage Purify from the Purify
toolbar.

If you have installed Rational PureCoverage, set Purify to collect
coverage data in addition to checking for errors and memory leaks.

Build and execute your program using commands from the
Visual Studio Build menu. To get the maximum level of detail in Purify
error and coverage data, build your program with debug and relocation
data.

More information? For information about building programs with
debug and relocation data, look up debug data in the Purify online Help
index.

Purify copies the program and each library the program calls, then
instruments the copies using Object Code Insertion (OCI) technology.
The instrumentation process inserts instructions that validate every
read, write, and memory allocation and deallocation. If you’re
collecting coverage data, Purify also inserts instructions that increment
counters when you exercise specific lines and functions.

Purify reports its progress as it instruments each module.

Click to engage Purify

Click to collect
coverage data

Purify for Visual C/C++ developers and testers 11

Purify instruments each module at a default instrumentation level. If
you want to focus on a specific part of your program, you can override
the default and customize the instrumentation level.

More information? For an explanation of instrumentation levels and
how to use them, read Customizing instrumentation on page 20. For more
detail, look up instrumenting in the Purify online Help index.

Purify caches the instrumented copy of each module. When you rerun a
program, Purify saves time and resources by using the cached modules,
re-instrumenting only the ones that have changed since the previous
run.

As you exercise your program, Purify detects run-time errors and
memory leaks and displays them in an Error View tab in the Purify
Data Browser window.

The instrumentation
level for error checking

and coverage monitoring
for each module

The module that Purify is
currently instrumenting

Purify Error View tab,
Data Browser window

12 Getting Started: Rational Purify

More information? Look up error view in the Purify online Help index.

Note: If you’re debugging client/server and multi-process
applications, you can debug several processes and see the error reports
for each running application simultaneously. To do this, run each
process in a separate instance of Visual Studio with Purify engaged.
Alternatively, you can use the standalone Purify user interface. See
Using Purify standalone on page 22.

Seeing all your errors at a glance

Purify displays error and warning messages about run-time errors and
memory leaks, and informational messages about the progress of your
program’s execution.

When you exit the program, Purify reports memory leaks. In addition
to memory leaks, you can set Purify to report memory in use at exit and
handles in use at exit.

More information? Look up error and leak settings in the Purify online
Help index.

Color-coded icons show message severity:
informational warning error

Acronyms like ABW
identify message type

For a description of a
message, right-click

the message, then
select Describe

Purify for Visual C/C++ developers and testers 13

When identical errors repeat

An error often repeats many times in a program, particularly if it occurs
inside a loop. To provide a concise overview of a program’s errors,
Purify by default displays each error message only once, the first time
an error occurs, and then updates a counter whenever the error repeats.

More information? If you want Purify to display each occurrence of a
message individually, instead of reporting counts, you can change the
default setting. Look up error and leak settings in the Purify online Help
index.

Focusing on critical errors first

A large program can generate hundreds of messages. To focus on the
most critical error messages quickly, create filters to hide all other
messages from the display.

This uninitialized memory
read (UMR) occurred 17 times

14 Getting Started: Rational Purify

You can filter messages individually, or you can filter them based on
their type and source. Consider hiding all informational messages, for
example, or all messages originating from a specific file.

Once created, error filters apply to the current run and to all future runs
of the program until you disable them. Disabling a filter causes hidden
messages to be redisplayed in the error view.

An unfiltered error view displays all the
messages from the program

A filtered error view displays only
the messages you want to see

Right-click a message
and select QuickFilter

to hide the message
immediately

Or select Create Filter
to define a set

of filtering criteria

Purify for Visual C/C++ developers and testers 15

Working with error data filters

Purify filters are very flexible. Click the Filter Manager tool to create
individual filters or groups of filters, and to apply them to specific
programs or modules. You can also create global filters that apply to all
programs and modules. And you can share filters, which Purify saves
as .pft files, with other members of your team.

More information? Purify provides filters for coverage data as well as
for error data. Look up filtering data in the Purify online Help index.

In addition to filtering, you can also use Purify’s PowerCheck feature to
focus on specific modules and simultaneously minimize
instrumentation time. For information about the PowerCheck feature,
read Customizing instrumentation on page 20.

Analyzing Purify error data

You can expand Purify’s messages to pinpoint where errors occur and to
obtain diagnostic information for understanding why they occur.

Click to enable or
disable filters

The Filter Manager
creates a filter group for

each program you run

The checked filters apply to the selected
program until you disable or delete them

Drag and drop filters to
move or copy them

16 Getting Started: Rational Purify

Here’s an example of an expanded ABW (array bounds write) error
message:

The level of detail provided in call stacks depends on the availability of
debug and relocation data. Even if you build your program in release
mode, you can still get the highest possible level of detail. For more
information, look up debug data (C/C++), release version in the Purify
online Help index.

You can customize the format of Purify’s messages. For example, you
can increase the number of lines of source code that are displayed, or
include instruction pointers and offsets to make locating errors easier.

More information? Look up preferences, source code (C/C++) in the
Purify online Help index.

The location in memory
where the error occurs

Call stack showing
the function calls

leading to the error

Call stack showing the
function calls leading to

the allocation of the
memory block

associated with the error

Flag indicating the line
where the error occurs

Purify for Visual C/C++ developers and testers 17

Correcting errors

Purify makes it easy to correct errors.

More information? Look up source code, editing in the Purify online
Help index.

Checking code coverage with Purify

To make sure that you find errors in your code wherever they occur, use
Purify to monitor code coverage each time you run your program. With
Purify’s coverage feature, you can check that you’re exercising all your
code, especially those parts that have recently been added or modified.

Double-click
the line where

the error occurs

Purify opens the
source code in the

editor, positioned at
the exact location

of the error

18 Getting Started: Rational Purify

Purify displays coverage data in views that you can sort to find the
largest gaps in your testing.

Purify can also display line-by-line coverage information marked
directly on a copy of your code in an Annotated Source window. The
color of each line of code indicates whether it is tested, untested, or
partially tested, so that you can tell at a glance where you need to
tighten up your testing.

Click any column
header to sort the

coverage data

The Module View tab
groups functions
based on module

The Function List View tab lists
all functions in the program
across modules and files

The File View tab
groups functions
based on source file

Double-click a
function to display it

in an Annotated
Source window

This line was
exercised once

This line was not
exercised

Click to display information
about color codingThe Annotated Source

window displays
coverage information in

a copy of your code

Purify for Visual C/C++ developers and testers 19

Based on the coverage data, refine your approach to exercising your
code to make sure you are testing all the critical lines and functions. If
you are testing manually, try different menu commands, or enter new
values for variables. If you are testing automatically, revise or add test
scripts.

More information? Look up coverage data (C/C++) in the Purify online
Help index.

Comparing program runs

When you are satisfied that you’ve made good progress in eliminating
errors, and that you can exercise the parts of your program that most
need testing, rebuild. Then rerun the program under Purify.

After rerunning your corrected program, you can easily compare runs
to verify your corrections. Purify’s Navigator window, which you can
display from the Purify View menu, helps you keep track of multiple
runs and multiple programs.

More information? You can compare coverage data from different runs
using the Compare Runs tool . Look up comparing runs in the Purify
online Help index.

A color-coded icon
indicates the maximum

message severity
displayed in the

error view for the run

The Navigator window groups runs by program

20 Getting Started: Rational Purify

Saving Purify data

You can save Purify error data from a run and analyze it later, share it
with other members of your team, or include it in reports. Purify can
save data in the following formats:

■ Purify data files (.pfy, .pcy). The file extension Purify uses depends
on whether you are saving error data alone, or error and coverage
data. You can save merged coverage data to PureCoverage data files
(.cfy).

■ ASCII text files (.txt). You can process this data with scripts or use it
in spreadsheet and word-processing applications.

More information? Look up saving data in the Purify online Help
index.

Purify for Visual C/C++: Advanced features

Customizing instrumentation

Purify uses one of the following error-checking instrumentation levels
as the default for each module, depending on the module’s size and the
availability of debug and relocation data:

■ Precise instrumentation, which provides full run-time error
detection to pinpoint problems in any part of your program

■ Minimal instrumentation, which improves Purify’s performance
while providing a basic level of error detection

For coverage monitoring, Purify uses one of the following levels as the
default:

■ Line-level instrumentation, which reports line-by-line coverage data

■ Function-level instrumentation, which improves performance but
reports only function-by-function coverage data

Purify for Visual C/C++ developers and testers 21

You can override the default and specify the level for each module to
meet your own requirements.

Try using the Precise error level for the most critical modules in your
program and the Minimal level for the others. Later, you can change the
Minimal level to Precise for a thorough check of the other modules.

More information? Look up instrumentation levels (C/C++) and
powercheck settings (C/C++) in the Purify online Help index.

Click to override
the defaults for
individual
modules

Use the PowerCheck
tab in the settings
dialogs to modify
default levels for

error detection . . .

and for coverage
monitoring

Then specify the
instrumentation

level for the
selected modules

Select one or
more modules

in the list

22 Getting Started: Rational Purify

Using just-in-time debugging

Purify’s just-in-time debugging support provides instant access to your
debugger when you need to solve tough problems. Click to enable
Break on Error. Purify now stops your program just before an error
executes so that you can debug it. You can also run a Purify’d program
directly under the debugger.

To quickly debug only the most critical errors in your program, use
Break on Error together with Purify error filters. First, filter out all the
less critical messages, then enable Break on Error. Purify breaks only for
the unfiltered messages. When you’re ready to debug the remaining
errors, just disable the filters.

More information? Look up break on error tool (C/C++) in the Purify
online Help index.

Using Purify standalone

When you don’t need all of the Microsoft Visual Studio 6 resources, you
can use Purify standalone. Purify’s independent user interface provides
the same error-detection and coverage capabilities as when you use
Purify integrated with Visual Studio.

Note: You can also use Purify’s independent user interface while
continuing to work integrated with Visual Studio by deselecting
Embed Data Browsers in the Purify Settings menu.

To use Purify as a standalone application, launch Purify from the Start
menu. Then click Run in the Purify Welcome Screen to display the Run
Program dialog.

With just-in-time
debugging, Purify raises

a breakpoint exception
when it detects an

error or warning

Click Cancel to explore
the error in your

debugger

Purify for Visual C/C++ developers and testers 23

Purify instruments your code and displays the results in a Data
Browser window.

More information? For information about a tool, menu command, or
dialog, click and then click the item.

Testing C/C++ code with the command-line interface

Using the Purify command-line interface, you can use Purify with
existing makefiles, batch files, or Perl scripts. For example, if you have a
test script that runs a program, you can easily modify the script to
instrument and run the program. To do this, change the line that runs
Exename.exe to:

purify Exename.exe

Alternatively, to run the instrumented version of Exename.exe
consistently throughout your tests, add this line to the beginning of
your test script:

purify /Replace=yes /Run=no Exename.exe

This line instructs Purify to save the original Exename.exe to a .bak file,
and to instrument Exename.exe but not to run it at this time. Now,
whenever your test script runs Exename.exe, it runs the instrumented
version of the program, providing Purify’s detailed diagnostics.

To collect coverage data as well as error data when you run a program
from the command line, use the /Coverage option:

purify /Coverage=yes Exename.exe

You can run Purify without the graphical interface by using
the /SaveTextData option. This option saves Purify’s diagnostic

Then click
Run

Use the Browse button
to select the program

that you want to
check . . .

and select whether
you want to collect

Error and leak data,
or Coverage, error,

and leak data

24 Getting Started: Rational Purify

messages to a text output file. You can use the error and warning
messages in this file as additional criteria for your test results.

More information? Look up command line in the Purify online Help
index.

Extending error checking with Purify API functions

Purify includes a set of API functions that extend its error checking
capabilities and give you greater control over tracking errors.

Using Purify’s API functions, you can set memory state, test memory
state, and search for memory and handle leaks. For example, by default
Purify reports memory leaks only when you exit your program. But
you can use the API function PurifyNewLeaks to check for leaks more
frequently. Click the NewLeaks tool to call PurifyNewLeaks while
your program is running, or add calls to PurifyNewLeaks at key points
in your code. Purify reports any new memory leaks it has detected
since the last time you called the function. This periodic checking
enables you to track memory leaks more closely.

You can call Purify API functions from the Purify View menu as your
program runs. You can also call them from the QuickWatch dialog in
the Visual Studio 6 debugger, as well as by including them in your
code.

More information? For the complete listing of Purify API functions,
including functions related to coverage monitoring, look up api function
list. For instructions on using the functions, look up api functions, using
in the Purify online Help index.

Using Rational Software integrations

Rational Software tools integrate into your working environment to
help you do your job more effectively and efficiently. For example, you
can use Purify with Rational ClearQuest™, Rational’s change request
management tool, and with Rational Robot and Rational Visual Test®,
Rational’s functional testing tools.

Using Purify with ClearQuest

If you have ClearQuest installed, you can submit a defect as soon as
Purify detects an error or warning, or when you find a coverage
problem.

Purify for Visual C/C++ developers and testers 25

Purify automatically supplies entries for a number of fields in the
submission form and specifies the category of error. You can easily
attach Purify data files to further document the error.

Using Purify with Rational testing tools

If you have Robot installed, you can set a playback option in Robot to
collect Purify error and leak data when you run a Robot test script.
Purify detects memory errors as the code is executed. Robot also
includes a playback option that allows you to collect code coverage
information as well as error and leak data.

If you have Visual Test installed, you can run Purify on the program
that Visual Test is exercising within Visual Studio. If you are using a test
harness to run Visual Test scripts, you can easily modify it to run Purify
automatically as it exercises the program.

More information? Look up clearquest, robot, and visual test in the
Purify online Help index, and refer to the ClearQuest, Robot, and
Visual Test documentation.

Right-click on an error
message and select

Submit ClearQuest Defect

Now you’re ready to put Purify to work on your
C/C++ code. Remember that Purify’s online Help
contains detailed information to assist you.

26 Getting Started: Rational Purify

Purify for Java developers and testers

Purify for Java: What it does

Java memory leaks?

Yes, there are Java memory leaks, and they can be serious.

The Java virtual machine (JVM) garbage collector automatically
removes from memory objects that your program no longer needs, and
so avoids most of the memory leaks that occur in other programming
contexts. But Java applications can still consume more and more
memory over time. The causes for this can be extremely difficult to
track down. Purify makes it much easier to find and fix them.

There are two major categories of leaks in Java: object references that
are no longer needed, and system resources that are not freed.

Object references that are no longer needed

Very often, Java code retains references to memory that it no longer
needs, and this prevents the memory from being garbage collected.
Java objects typically include references to other objects, so a single
object can hold an entire tree of objects in memory. Problems can occur,
for example, when you do any of the following:

■ Add objects to arrays and forget about them.

■ Retain references to an object until the next time you use the object.
A menu command, for example, can create an object and not release
references to the object until the next time the command is called,
which may never happen.

■ Change an object’s state while some references still reflect the old
state. For example, when you store properties for a text file in an
array and then store properties for a binary file, some fields, such as
“number of characters,” continue to hold memory that is no longer
needed.

■ Allow a reference to be pinned by a long-running thread. Setting the
object reference to NULL does not help; the memory won’t be
garbage collected until the thread terminates or goes idle.

Purify for Java developers and testers 27

System resources that are not freed

Java methods can also allocate heap memory that exists outside of Java
instances, such as resources for windows and bitmaps. Java often
allocates these resources by calling C or C++ routines using Java Native
Interface (JNI) calls.

How Purify can help

Purify helps you find these Java memory leaks by reporting the
methods, classes, and objects that are responsible for monopolizing
large chunks of memory that the garbage collector does not free.

Using the data Purify gathers, you can zero in on memory problems.
Once you’ve located them, you can eliminate references to unneeded
objects, or force garbage collections in key areas of your code. To free
system resources, check your Java toolkit for help. For example, the
dispose() method in Sun Microsystem’s Abstract Windowing Toolkit
(AWT) frees the system resources used by the Frame, Dialog, and
Graphics classes.

You can gather memory profiling data any time your program runs. If
you want to test a new feature before you check in your code, run the
code from Purify’s graphical user interface; see Purify for Java: The basic
steps on page 28. To gather data automatically from your test harness,
use Purify’s command-line interface in your test scripts and insert
Purify API function calls in your code to control the data collection; see
Integrating Purify into your Java test environment on page 38.

More information? In addition to detecting excessive memory
consumption with Purify, you can also improve your application’s
performance and increase your confidence in your testing using the
other PurifyPlus tools, PureCoverage and Quantify. PureCoverage can
show you the areas in your code that your tests are not reaching, and
Quantify can help you find the bottlenecks that slow down your code.
For more information, read Getting Started: Rational PureCoverage on
page 55 and Getting Started: Rational Quantify on page 73.

28 Getting Started: Rational Purify

Purify for Java: The basic steps

Java applications can consume a lot of memory over time if a forgotten
reference to an object unintentionally prevents it from being garbage
collected. With Rational Purify, you can determine how much memory
your Java program is using, and detect exactly which objects are
responsible for these “memory leaks.” You can also identify places
where forcing a garbage collection would improve your code’s
performance.

To use Purify to profile Java memory usage:

1 Run your Java program with Purify.

2 Take a snapshot when memory usage stabilizes.

3 Execute code that may be leaking and take another snapshot.

4 Compare the two snapshots to identify methods that may be
causing memory problems.

5 Pinpoint the leaked objects allocated by these methods, and identify
the references that are preventing the objects from being garbage
collected.

Running your Java program with Purify

To Purify your Java program, start Purify and click Run in the Welcome
Screen to display the Run Program dialog.

More information? Look up specifying a JVM (Java) and running
programs in the Purify online Help index.

Then click
Run

Use the Browse
button to select a

Java program,
applet, class, or JAR

file that you want to
profile . . .

and select the button
for collecting Memory

profiling data

Purify for Java developers and testers 29

As your program runs, Purify intercepts and tabulates messages related
to memory usage from the JVM. Based on these messages, Purify keeps
track of how much memory your program has allocated to each
method and object at any given time.

Taking snapshots of memory use

To zero in on memory leaks in your Java program, wait until your
application’s memory usage has stabilized (typically after it completes
its initialization procedures), then click to take a snapshot of the
current memory usage status. This snapshot is your baseline for
investigating how your program uses memory as it runs.

Now exercise the program in a way that you suspect is leaking memory.
As your program runs, the Purify Data Browser’s Memory tab displays
a graph that indicates the amount of memory your program is using.

Watch the graph for fluctuations in memory usage. A large increase in
memory usage may indicate a problem, especially when you can’t
reduce it by clicking to force a garbage collection.

Now take another snapshot so that you have a “before” and “after”
record of what’s going on, and exit your program.

More information? Look up taking snapshots and garbage collection in
the Purify online Help index.

Take your first snapshot
when your program’s

baseline memory usage
has stabilized

Watch for increasing
memory usage, then

take a second snapshot

30 Getting Started: Rational Purify

Comparing snapshots to identify problem methods

Select your second snapshot in the Navigator and click to compare
the second snapshot with the first.

Purify now displays a call graph showing the methods that are
responsible for allocating the largest amounts of memory during the
interval between the first and second snapshots.

The call graph also shows you the calling relationship between
methods. This can give you clues about which methods are holding
references to unneeded objects and preventing the garbage collector
from doing its job.

The thickest lines
indicate the paths

where the difference
in memory between

the two snapshots
is greatest

The call graph overview
helps you orient yourself

within the call graph

Purify for Java developers and testers 31

Move your cursor over the method or path you want to investigate. A
tool tip pops up to give you memory-related statistics for that method.

This allows you to zero in on the method that is consuming memory, as
well as its descendants.

To view your code from within Purify, right-click a method for which
source is available, then select Source File.

More information? Look up diff’ing snapshots, call graph, and source
code, viewing in the Purify online Help index.

Diagnosing leaks with the Function List View tab

The Function List View tab in the Data Browser provides a textual,
non-hierarchical view of the same data. You can do full-program sorts
in the Function List View to find the biggest memory-consuming
methods in your entire program.

More information? Look up function list view tab in the Purify online
Help index.

Memory usage data is
available directly from

the call graph

Click a column header
to sort the memory

profiling data

32 Getting Started: Rational Purify

Focusing on a method with the Function Detail window

By double-clicking any method in the call graph or function list view,
you can open a Function Detail window. This window shows how the
method, its callers, and its descendants allocated memory.

More information? Look up function detail window in the Purify online
Help index.

If the amount of memory attributed to any method seems unexpectedly
high, it may be the case that another method, possibly a descendant,
has created a reference to an object that is preventing the memory from
being garbage collected. For example, a descendant method may have
created a static variable as part of a string array. This would keep the
memory for the entire array from going out of scope, which may slow
your program down, and even kill it.

When you’ve located a method that appears to be causing memory
problems, go on to look at the method’s objects. Purify provides
extensive information not only about methods, but also about all
objects in your program and their use of memory.

Double-click a method
in the Caller or

Descendant column to
see the memory data

for that method

Purify for Java developers and testers 33

Looking for unneeded objects

Objects that a program no longer needs often prevent memory from
being garbage collected and so, over time, slow down your program.
Purify displays comprehensive memory data for objects in several
formats, so that you can easily track down this sort of problem.

Note: To examine object data, use a snapshot or an aggregate data set.
Comparison data sets, which are generated by clicking , do not
contain object data.

Getting from a suspicious method to its objects

The Function Detail window, in addition to its information about a
method, also lists objects that have been allocated by the method. You
can sort the objects in the list by clicking on any column heading.

The objects that the
method currently has

allocated. Double-click
an object to display the

Object Detail window
with comprehensive

memory data for
the object

Note that Function
Detail windows for

snapshots include pie
charts showing

memory allocation

34 Getting Started: Rational Purify

Examining object details

When you double-click an object in the Function Detail window, the
Object Detail window opens. This window contains complete
memory-related information for the object so that you can identify
objects that are holding on to large chunks of memory, and determine
how long these objects have been in existence.

Looking at all allocated objects together

To review the top-level objects in a program, open the Data Browser
window for the snapshot that reveals potential memory problems, and
click the Object List View tab.

Choose a criterion for
highlighting objects in the
reference graph

The object reference
graph shows the objects

that reference, and are
referenced by, the

current object

Details about the
object currently
selected in the

reference graph,
including size and

creation time

Pause the mouse over an
object for detailed memory
information

Purify for Java developers and testers 35

The object list shows all top-level objects that were allocated at the time
the snapshot was taken. In addition to the size of the objects, the object
list provides information such as the time the object was created and
the number of garbage collections it has survived. You can sort the list
to find the objects that are holding on to the most memory, and the
oldest objects in the list.

You can open the Object Detail window for any object by
double-clicking the entry for the object.

When you locate an object that may no longer be needed, look at your
code. If you determine that the object is in fact no longer needed,
modify your code to release all references to the object so that the object
can be garbage collected.

More information? Look up function detail window, object detail window
and object list view tab in the Purify online Help index.

Memory data for all
the currently allocated

top-level objects in
the program

Click any column head to
sort the list

The status bar shows
the selected line

number and the total
number of objects

36 Getting Started: Rational Purify

Saving Purify memory profiling data

You can save Purify data and analyze it later, share it with other
members of your team, or include it in reports. Purify can save Java
data in the following formats:

■ Purify memory profiling files (.pmy). You can open these files and
view them in Purify, just as you would any run, snapshot, or other
dataset.

■ ASCII text files (.txt). You can process this data with scripts or use it
in spreadsheet and word-processing applications.

More information? Look up saving data in the Purify online Help
index.

Purify for Java: Advanced features

Highlighting methods that share key attributes

You can highlight methods in the call graph to display specific
memory-related characteristics or to show calling relationships.

More information? Look up highlighting in the Purify online Help
index.

Click to display the Highlight list

Select Maximum Path to
Root, for example,

to highlight all
methods between

the selected method
and .Root on the path

where the most
memory is allocated

26 of the 1498 functions in
the current dataset are
displayed in the call graph

All 3 of the 3 functions on the
maximum path to .Root are
displayed in the call graph

Purify for Java developers and testers 37

Focusing your data

Use Purify’s filter commands to remove a selected method, or all
methods in a class file, from the set of data that Purify has collected.
Alternatively, use subtree commands to focus on or remove a specific
method and all its descendants from the dataset. Right-click a method
in the call graph, function list view, or function detail to perform these
operations.

Purify has undo capabilities for all filter and subtree commands so that
you can easily return to any previous dataset configuration.

The call graph also provides a series of expand and collapse commands
that work with subtrees. Unlike the filter and subtree commands,
however, these commands affect only what is displayed in the call
graph; they do not change the dataset.

The Filter Manager offers additional
filtering options

You can hide or
delete individual

methods, all
methods in a

class, or entire
subtrees.

Hide methods or
subtrees to sum up

their memory and
attribute it to their

callers; delete them
to discard their

memory completely

Select Focus on Subtree
to delete all methods
except those in the subtree

38 Getting Started: Rational Purify

In addition to the menu commands, you can use the Filter Manager to
select the data you need.

More information? Look up filtering data and subtrees in the Purify
online Help index.

Integrating Purify into your Java test environment

The Purify command-line interface makes it possible for you to collect
memory profiling data in your automated testing environment. Modify
existing makefiles, batch files, or Perl scripts to run your program
under Purify. For example, if you have a test script that runs a Java class
file and are using Sun Microsystem’s Java viewer, change the line that
runs the class file to:

Purify /SaveData Java Java.exe Classname.class

This command runs your class file and collects memory profiling data,
then saves the data to a .pmy file that you can open and analyze in the
Purify interface or share with other members of your team.

Use the /SaveTextData option instead of the /SaveData option to save
your data in a .txt file. You can develop scripts to process this data and
generate reports about your program’s use of memory. For example,
you might want to compare the dataset from the current nightly test
with that from the previous nightly test to detect memory-related
regressions as soon as they occur.

You can filter data
based on class file

or on method

Click to enable or
disable filters

Purify for Java developers and testers 39

To control your automated data collection and ensure that you generate
comparable datasets from every test, use the Purify API. Read
Controlling Java memory profiling with the Purify API, immediately
following.

More information? Look up command line in the Purify online Help
index.

Controlling Java memory profiling with the Purify API

Purify includes a set of API functions that give you greater control over
its memory profiling capabilities.

The API is especially useful if you are doing automated testing. You can
programmatically determine the parts of your code that are profiled,
excluding your program’s initialization activities and focusing on
specific modules or routines. You can also clear your data after
initialization, then continue collecting data as your program runs, and
save it just before the program terminates; this is equivalent to
comparing two snapshots in the Purify user interface.

More information? For the complete listing of Purify API functions,
including functions related to coverage monitoring, look up api function
list. For instructions on using the functions, look up api functions, using
in the Purify online Help index.

Now you’re ready to put Purify to work on your
Java code. Remember that Purify’s online Help
contains detailed information to assist you.

40 Getting Started: Rational Purify

Purify for .NET managed code developers and testers

Purify for .NET managed code: What it does

Purify finds and reports memory leaks in .NET managed code
(assemblies, .exe’s, .dll’s, OLE/ActiveX controls, and COM objects) just
as it does in Java. If you’ve used Purify for Java, you’ll find the
information in the following sections familiar.

Memory leaks in managed code

Managed code can leak memory, which can cause problems for your
program.

The .NET garbage collector automatically removes from memory
objects that your program no longer needs, and so avoids most of the
memory leaks that occur in other programming contexts. But managed
code applications can still consume more and more memory over time.
The causes for this can be extremely difficult to track down. Purify
makes it much easier to find and fix them.

There are two major categories of leaks in managed code: object
references that are no longer needed, and system resources that are not
freed.

Object references that are no longer needed

Very often, managed code retains references to memory that it no
longer needs, and this prevents the memory from being garbage
collected. Managed code objects typically include references to other
objects, so a single object can hold an entire tree of objects in memory.
Problems can occur, for example, when you do any of the following:

■ Add objects to arrays and forget about them.

■ Retain references to an object until the next time you use the object.
A menu command, for example, can create an object and not release
references to the object until the next time the command is called,
which may never happen.

Purify for .NET managed code developers and testers 41

■ Change an object’s state while some references still reflect the old
state. For example, when you store properties for a text file in an
array and then store properties for a binary file, some fields, such as
“number of characters,” continue to hold memory that is no longer
needed.

■ Allow a reference to be pinned by a long-running thread. Setting the
object reference to NULL does not help; the memory won’t be
garbage collected until the thread terminates or goes idle.

System resources that are not freed

Managed code methods can also allocate heap memory that exists
outside of managed data instances, such as resources for windows and
bitmaps. Managed code allocates these resources by calling C or C++
routines.

How Purify can help

Purify helps you find these managed code memory leaks by reporting
the methods, classes, and objects that are responsible for monopolizing
large chunks of memory that the garbage collector does not free.

Using the data Purify gathers, you can zero in on memory problems.
Once you’ve located them, you can eliminate references to unneeded
objects, or force garbage collections in key areas of your code.

More information? In addition to detecting excessive memory
consumption with Purify, you can also improve your application’s
performance and increase your confidence in your testing using the
other PurifyPlus tools, PureCoverage and Quantify. PureCoverage can
show you the areas in your code that your tests are not reaching, and
Quantify can help you find the bottlenecks that slow down your code.
For more information, read Getting Started: Rational PureCoverage on
page 55, and Getting Started: Rational Quantify on page 73.

Purify for .NET managed code: The basic steps

Managed code applications can consume a lot of memory over time if a
forgotten reference to an object unintentionally prevents it from being
garbage collected. With Rational® Purify®, you can determine how
much memory your managed code program is using, and detect

42 Getting Started: Rational Purify

exactly which objects are responsible for these “memory leaks.” You
can also identify places where forcing a garbage collection would
improve your code’s performance.

To use Purify to profile managed code memory usage:

1 Run your managed code program with Purify.

2 Take a snapshot when memory usage stabilizes.

3 Execute code that may be leaking and take another snapshot.

4 Compare the two snapshots to identify methods that may be
causing memory problems.

5 Pinpoint the leaked objects allocated by these methods, and identify
the references that are preventing the objects from being garbage
collected.

The following pages show you how to use Purify integrated with
Microsoft Visual Studio .NET, but you can also use Purify in other
ways. Read the following:

■ Using Purify standalone on page 52

■ Integrating Purify into your managed code test environment on page 53.

Running your managed code program with Purify

The first time you use Purify in Visual Studio .NET, display the Purify
toolbar by selecting Toolbars > Purify from the Visual Studio View menu.
The instructions in this section refer to the Purify toolbar, but if you
prefer you can use the corresponding commands from the Purify menu
instead.

To Purify your managed code program in Visual Studio .NET, open
your project in Visual Studio, then engage Purify using the Purify
toolbar.

Build and execute your program as usual, using commands from the
Visual Studio menu. To get the maximum level of detail in Purify
memory profiling data, build your program with debug data.

Click to engage Purify

Purify for .NET managed code developers and testers 43

More information? Look up running programs in the Purify online Help
index.

As your program runs, Purify intercepts and tabulates messages related
to memory usage from the .NET runtime environment. Based on these
messages, Purify keeps track of how much memory your program has
allocated to each method and object at any given time.

Taking snapshots of memory use

To zero in on memory leaks in your managed code program, wait until
your application’s memory usage has stabilized (typically after it
completes initialization), then click in the Purify toolbar to take a
snapshot of the current memory usage status. This snapshot is your
baseline for investigating how your program uses memory as it runs.

Now exercise the program in a way that you suspect may be leaking
memory. As your program runs, the Purify Data Browser’s Memory tab
displays a graph that indicates the amount of memory your program is
using.

Watch the graph for fluctuations in memory usage. A large increase in
memory usage may indicate a problem, especially when you can’t
reduce it by clicking to force a garbage collection.

Take your first
snapshot when your
program’s baseline
memory usage has

stabilized

Watch for increasing
memory usage, then

take a second
snapshot

44 Getting Started: Rational Purify

Now take another snapshot so that you have a “before” and “after”
record of what’s going on, and exit your program.

More information? Look up taking snapshots and garbage collection in
the Purify online Help index.

Comparing snapshots to identify problem methods

Select your second snapshot in the Navigator and click in the Purify
toolbar to compare the second snapshot with the first.

Purify now displays a call graph showing the methods that are
responsible for allocating the largest amounts of memory during the
interval between the first and second snapshots.

The call graph also shows you the calling relationship between
methods. This can give you clues about which methods are holding
references to unneeded objects and preventing the garbage collector
from doing its job.

The thickest lines
indicate the paths

where the difference
in memory between

the two snapshots
is greatest

The call graph overview
helps you orient yourself

within the call graph

Purify for .NET managed code developers and testers 45

Move your cursor over the method or path you want to investigate. A
tool tip pops up to give you memory-related statistics for that method.

This allows you to zero in on the method that is consuming memory, as
well as its descendants.

To view your code from within Purify, right-click a method for which
source is available, then select Source File.

More information? Look up diff’ing snapshots, call graph, and source
code, viewing in the Purify online Help index.

Diagnosing leaks with the Function List View tab

The Function List View tab in the Data Browser provides a textual,
non-hierarchical view of the same data. You can do full-program sorts
in the Function List View to find the biggest memory-consuming
methods in your entire program.

Memory usage data is
available directly from

the call graph

Click a column header
to sort the memory

profiling data

46 Getting Started: Rational Purify

More information? Look up function list view tab in the Purify online
Help index.

Focusing on a method with the Function Detail window

By double-clicking any method in the call graph or function list view,
you can open a Function Detail window. This window shows how the
method, its callers, and its descendants allocated memory.

More information? Look up function detail window in the Purify online
Help index.

If the amount of memory attributed to any method seems unexpectedly
high, it may be the case that another method, possibly a descendant,
has created a reference to an object that is preventing the memory from
being garbage collected. For example, a descendant method may have
created a static variable as part of a string array. This would keep the
memory for the entire array from going out of scope, which may slow
your program down, and even kill it.

When you’ve located a method that appears to be causing memory
problems, go on to look at the method’s objects. Purify provides
extensive information not only about methods, but also about all
objects in your program and their use of memory.

Double-click a method
in the Caller or

Descendant column to
see the memory data

for that method

Purify for .NET managed code developers and testers 47

Looking for unneeded objects

Objects that a program no longer needs often prevent memory from
being garbage collected and so, over time, slow down your program.
Purify displays comprehensive memory data for objects in several
formats, so that you can easily track down this sort of problem.

Note: Use a snapshot data set to examine object data. Comparison data
sets, which are generated by clicking , do not contain object data.

Getting from a suspicious method to its objects

The Function Detail window, in addition to its information about a
method, also lists objects that have been allocated by the method. You
can sort the objects in the list by clicking on any column heading.

Examining object details

When you double-click an object in the Function Detail window, the
Object Detail window opens. This window contains complete
memory-related information for the object so that you can identify
objects that are holding on to large chunks of memory, and determine
how long these objects have been in existence.

The objects that the
method currently has

allocated. Double-click
an object to display the

Object Detail window
with comprehensive

memory data for
the object

Note that Function
Detail windows for

snapshots include pie
charts showing

memory allocation

48 Getting Started: Rational Purify

Looking at all allocated objects together

To review the top-level objects in a program, open the Data Browser
window for the snapshot that reveals potential memory problems, and
click the Object List View tab.

The object list shows all top-level objects that were allocated at the time
the snapshot was taken. In addition to the size of the objects, the object
list provides information such as the time the object was created and
the number of garbage collections it has survived. You can sort the list
to find the objects that are holding on to the most memory, and the
oldest objects in the list.

The object reference
graph shows the objects

that reference, and are
referenced by, the

current object

Details about the
object currently
selected in the

reference graph,
including size and

creation time

Memory data for all
the currently allocated

top-level objects in
the program

Click any column head to
sort the list

The status bar shows
the selected line

number and the total
number of objects

Purify for .NET managed code developers and testers 49

You can open the Object Detail window for any object by
double-clicking the entry for the object.

When you locate an object that may no longer be needed, look at your
code. If you determine that the object is in fact no longer needed,
modify your code to release all references to the object so that the object
can be garbage collected.

More information? Look up function detail window, object detail window,
and object list view tab in the Purify online Help index.

Saving Purify memory profiling data

You can save Purify data and analyze it later, share it with other
members of your team, or include it in reports. Purify can save
managed code data in the following formats:

■ Purify memory profiling files (.pmy). You can open these files and
view them in Purify, just as you would any run, snapshot, or other
dataset.

■ ASCII text files (.txt). You can process this data with scripts or use
it in spreadsheet and word-processing applications.

More information? Look up saving data in the Purify online Help
index.

50 Getting Started: Rational Purify

Purify for .NET managed code: Advanced features

Highlighting methods that share key attributes

You can highlight methods in the call graph to display specific
memory-related characteristics or to show calling relationships.

More information? Look up highlighting in the Purify online Help
index.

Focusing your data

Use Purify’s filter commands to remove a selected method, or all
methods in a class file, from the set of data that Purify has collected.
Alternatively, use subtree commands to focus on or remove a specific

Click to display the Highlight list

Select Maximum Path to
Root, for example,

to highlight all
methods between

the selected method
and .Root on the path

where the most
memory is allocated

35 of the 1484 methods in
the current dataset are
displayed in the call graph

All 21 of the 21 functions on
the maximum path to .Root are
displayed in the call graph

Purify for .NET managed code developers and testers 51

method and all its descendants from the dataset. Right-click a method
in the call graph, function list view, or function detail to perform these
operations.

Purify has undo capabilities for all filter and subtree commands so that
you can easily return to any previous dataset configuration.

The call graph also provides a series of expand and collapse commands
that work with subtrees. Unlike the filter and subtree commands,
however, these commands affect only what is displayed in the call
graph; they do not change the dataset.

The Filter Manager offers additional
filtering options

You can hide or
delete individual

methods, all
methods in a

class, or entire
subtrees.

Hide methods or
subtrees to sum up

their memory and
attribute it to their

callers; delete them
to discard their

memory completely

Select Focus on Subtree
to delete all methods
except those in the subtree

52 Getting Started: Rational Purify

In addition to the menu commands, you can use the Filter Manager to
select the data you need.

More information? Look up filtering data and subtrees in the Purify
online Help index.

Using Purify standalone

When you don’t need all of the Microsoft Visual Studio .NET resources,
you can use Purify standalone. Purify’s independent user interface
provides the same memory profiling capabilities as when you use
Purify integrated with Visual Studio.

To use Purify as a standalone application, launch Purify from the Start
menu. Then click Run in the Purify Welcome Screen to display the Run
Program dialog.

You can filter data
based on class file

or on method

Click to enable or
disable filters

Purify for .NET managed code developers and testers 53

Purify instruments your code and displays the results in a Data
Browser window.

More information? For information about a tool, menu command, or
dialog, click and then click the item.

Integrating Purify into your managed code test
environment

The Purify command-line interface makes it possible for you to collect
memory profiling data in your automated testing environment. Modify
existing makefiles, batch files, or Perl scripts to run your program
under Purify. For example, if you have a test script that runs a managed
code program, change the line that runs it to:

Purify /SaveData /Net Exename.exe

This command runs your managed code program and collects memory
profiling data, then saves the data to a .pmy file that you can open and
analyze in the Purify interface or share with other members of your
team.

Use the /SaveTextData option instead of the /SaveData option to save
your data in a .txt file. You can develop scripts to process this data and
generate reports about your program’s use of memory. For example,
you might want to compare the dataset from the current nightly test
with that from the previous nightly test to detect memory-related
regressions as soon as they occur.

To control your automated data collection and ensure that you generate
comparable datasets from every test, use the Purify API. Read
Controlling managed code memory profiling with the Purify API,
immediately following.

Then click Run

Use the Browse
button to select the

managed code
program that you

want to profile . . .

and select the button
for collecting Memory

profiling data

54 Getting Started: Rational Purify

More information? Look up command line in the Purify online Help
index.

Controlling managed code memory profiling with the
Purify API

Purify includes a set of API functions that give you greater control over
its memory profiling capabilities.

The API is especially useful if you are doing automated testing. You can
programmatically determine the parts of your code that are profiled,
excluding your program’s initialization activities and focusing on
specific modules or routines. You can also clear your data after
initialization, then continue collecting data as your program runs, and
save it just before the program terminates; this is equivalent to
comparing two snapshots in the Purify user interface.

More information? For the complete listing of Purify API functions,
including functions related to coverage monitoring, look up api function
list. For instructions on using the functions, look up api functions, using
in the Purify online Help index.

Now you’re ready to put Purify to work on your
managed code. Remember that Purify’s online
Help contains detailed information to assist you.

PureCoverage: What it does 55

Getting Started:
Rational PureCoverage

PureCoverage: What it does

Before you ship your products, you need the assurance that the code
you’re responsible for has been exercised thoroughly—every line, every
function, procedure, or method.

That’s where Rational® PureCoverage® can help you get ahead.
PureCoverage automatically evaluates the completeness of your testing
and pinpoints the parts of your code you’re failing to reach. As a Visual
C++, Visual Basic, Java, or .NET managed code programmer, you can
easily monitor testing coverage as you run your program. As a quality
engineer, you can include PureCoverage in your test harness to
generate comprehensive coverage reports automatically for every test
you run.

Using PureCoverage you can:

■ See immediately what percentage of your code has and has not been
exercised

■ Identify untested, or insufficiently tested, functions, procedures, or
methods

■ Locate individual untested lines in your source code

■ Customize data collection for maximum efficiency

■ Customize displays to focus on the details you need

■ Merge coverage data from multiple runs of a program

■ Save coverage data to share with other team members or to generate
reports

■ Monitor code coverage from within your development environment
by using the PureCoverage integration with Microsoft Visual Studio
and Microsoft Visual Basic

56 Getting Started: Rational PureCoverage

Check every component in your program

PureCoverage analyzes coverage for every component in:

■ Visual C/C++ code in .exe’s, .dll’s, OLE/ActiveX controls, and
COM objects

■ Visual Basic projects and p-code .exe’s, native-code .exe’s, .dll’s,
OLE/ActiveX controls, and COM objects

■ Java applets, class files, jar files, and code launched by container
programs

■ .NET managed code .exe’s generated in Microsoft Visual
Studio .NET.

■ Components launched from container programs such as Microsoft
Internet Explorer, the Microsoft Transaction Server, jexegen’d
executables, Jview.exe, Tstcon32.exe, Netscape Navigator, or any
Microsoft Office application

■ Microsoft Excel and Microsoft Word plug-ins

Note that any discussion that applies to functions and modules also
applies to Java methods and class files, and to Visual Basic procedures
and object libraries.

Use PureCoverage throughout the engineering cycle

Start using PureCoverage early in the development and testing cycles
to find and eliminate gaps in both your formal and informal tests.
You’ll know that you’re exercising all your code right from the
beginning and finding errors while there’s time to correct them.
Continue using PureCoverage whenever you exercise new or modified
code, up to the time of final product release.

Tips for development engineers

Let’s say you’ve just put together a new routine. You can use
PureCoverage to collect coverage data and easily focus on the
information for your new code. You’ll see immediately whether you’ve
tested everything before check-in. PureCoverage provides coverage
data with minimal effort on your part.

PureCoverage: The basic steps 57

If you’re exercising your code manually, use PureCoverage to monitor
and guide your testing as you work. PureCoverage shows you
interactively the percentage of your code’s functions, procedures, or
methods that you’ve exercised.

PureCoverage automatically integrates with Microsoft Visual Studio
and Microsoft Visual Basic, so you can use it without changing the way
you work if you’re developing code in these environments.

Tips for test engineers

As a test engineer, use PureCoverage to gauge how well your test suite
is keeping pace with the evolution of the program you’re testing. You
can add one or two lines of code to your test scripts to run
PureCoverage automatically in batch mode whenever you test. With
immediate and continuous feedback about the effectiveness of your test
suite, you can guarantee that you are exercising every modification in
the program you’re testing.

More information? PureCoverage’s online Help provides detailed
reference information and step-by-step instructions for using
PureCoverage. For a start, look up purecoverage, introduction in the
online Help index.

PureCoverage: The basic steps

With Rational® PureCoverage®, you can ensure that all of your code is
exercised in a few easy steps:

1 Run a program with PureCoverage.

2 Get the big picture with the Coverage Browser and Function List
windows. Use PureCoverage filters to focus on the areas that
concern you most.

3 Identify unexercised lines in the Annotated Source window.

4 Modify your test run to cover missed lines, conditions, functions,
procedures, or methods.

5 Rerun the program to verify that you’ve improved coverage. Save
coverage data to share information with other team members.

58 Getting Started: Rational PureCoverage

This chapter describes how to use PureCoverage as a standalone
desktop application. The same principles apply when you use
PureCoverage integrated with Microsoft Visual Studio or Microsoft
Visual Basic, or when you incorporate it into your test harness. For
more information, read Integrating PureCoverage with your development
desktop on page 65 and Integrating PureCoverage in your test environment
on page 70.

Note: PureCoverage monitors coverage of functions and, if debug line
information is available, of individual lines as well. If you want
line-level data for programs built in release mode, you must supply
debug line information. For specific instructions, look up debug data in
the PureCoverage online Help index.

Running a program

To monitor code coverage for an application, launch PureCoverage
from the Start menu. Then click Run in the PureCoverage Welcome
Screen to display the Run Program dialog.

Your program begins to execute. As it runs, PureCoverage collects
comprehensive information about what lines and functions have been
exercised.

Tthen click
Run to run the
program

You can click Settings to specify data-collection
instructions for special situations, such as
selective instrumentation of specific modules

Click the browse
button to select the
program you want

to test . . .

and select the
type of code

PureCoverage: The basic steps 59

PureCoverage displays a Run Summary window as the program runs,
showing the current status of program coverage.

.

Getting the big picture

The Coverage Browser and Function List windows show you the
overall coverage status of your program at a glance:

■ Every function that has not been called is reported as missed. Those
that have been called at least once are reported as hit.

■ The number of lines of code missed and hit is also reported, if debug
line information was available to PureCoverage.

With this information, you can easily identify testing hot spots—major
areas that your tests have not covered.

As the program runs, the
Run Summary window

shows the number of
functions, procedures,
or methods that have

and have not been
exercised

A color-coded indicator
shows how calls are

distributed among the
functions, procedures,

or methods

60 Getting Started: Rational PureCoverage

The Coverage Browser window provides coverage data organized
hierarchically according to source file.

The Function List window provides a textual, non-hierarchical view of
the same data. You can do full-program sorts in the Function List
window to find the least tested components in your entire program.

More information? To learn how to customize the data display, look
up coverage browser window and function list window in the PureCoverage
online Help index.

The Coverage Browser
window shows

hierarchical coverage
information for functions,

procedures, or
methods . . .

and for lines

The Module View tab groups
data by file within modules

The File View tab groups data by file
across all modules in your program

Click any column
heading for

full-program sorting

PureCoverage: The basic steps 61

Focusing coverage data with filters

PureCoverage collects coverage information for every module in your
program, but, by default, does not display all the data it collects. In
order to highlight the coverage information that you are most likely to
find interesting, PureCoverage applies a default filter set to hide the
data for certain system and third-party components of your program.

To see the data that PureCoverage has filtered out, or to change the
filtering to display other information that concerns you, click the Filter
Manager tool to open the Filter Manager dialog.

More information? Look up filters in the PureCoverage online Help
index.

Click to turn the
filter on and off

Type other patterns
to use as filters

Use the
Modules tab to
filter out data
by module

Use the Files tab to
filter out data by source file

Use the Functions/Procedures/Methods tab to
filter out data by function, procedure, or method

62 Getting Started: Rational PureCoverage

Identifying unexercised lines

PureCoverage displays line-by-line coverage data as annotations in a
copy of your source file. Double-click a function, procedure, or method
in the Coverage Browser or Function List window to display the code
in the Annotated Source window.

By default, PureCoverage displays untested lines in red, tested lines in
blue, and dead lines (typically in functions, procedures, or methods for
which no active call is present in the code) in black. PureCoverage
displays partially tested multi-block lines in pink. These lines often
occur in conditional expressions for which you haven’t tested the entire
range of possible values.

You can ensure that multi-block lines are fully tested by using the
QuickWatch dialog in Visual Studio or by using an Immediate window
in Visual Basic. With the program running, type in the name of the
partially tested function or procedure and supply the parameter values
you still need to test.

More information? Look up annotated source window and colors, using in
the PureCoverage online Help index. For help with the QuickWatch
dialog or the Immediate window, see your Visual Studio or Visual Basic
documentation.

The Annotated Source
window displays a copy

of your source with notes
about line coverage

Click to display or change the color coding for coverage annotations

This line was
not exercised

This line was
exercised twice

PureCoverage: The basic steps 63

Modifying your test run

Now you know what sections of code you missed when you exercised
the program. If you’re running the program informally, consider how
you can exercise the code that you missed previously. If you’re working
with a test suite, you can add or adjust test scripts to improve coverage.

In either case, with the information PureCoverage provides, you’re
working with your eyes open. You know what parts of your code need
to be covered—no guesswork.

Rerunning your program

Now test again, and check your results. Check not only the coverage
data for the new run, but also the Auto Merge data. The Auto Merge
data is a composite of the coverage data from the new run and any
available previous runs of the program.

You can also merge data for specific runs manually.

More information? Look up merging runs in the PureCoverage online
Help index. For information about merging data from a series of tests
automatically, read “Integrating PureCoverage in your test
environment” on page 70.

Saving coverage data

PureCoverage saves you time during testing by making it easy to share
information with other team members. To save data, and share
information, click the Save Copy As tool

The Navigator window
identifies merged

data sets

64 Getting Started: Rational PureCoverage

PureCoverage supports two data formats:

■ PureCoverage data files (.cfy), which you can open later in
PureCoverage to analyze or to compare to future program runs. Or
you can share .cfy files for use by other team members who are
using PureCoverage.

■ ASCII text files (.txt), for use in spreadsheet and word-processing
programs. You can also communicate testing status effectively by
including .txt files in email messages or bug reports.

You can also save data from the command line, which is essential if
you’re running PureCoverage without the interface for your nightly
tests.

More information? Look up saving data in the PureCoverage online
Help index.

PureCoverage: Advanced features

PureCoverage provides powerful features that can help you make
maximum use of the coverage data you’ve collected . For example, you
can:

■ Integrate PureCoverage with your development desktop

■ Fine tune data collection

■ Use selective instrumentation to collect data for a subset of your
program

■ Zero in on key program areas

■ Integrate PureCoverage in your test environment

This section gets you started using these features to monitor your code
more efficiently, and to focus on untested sections of code quickly and
easily.

PureCoverage: Advanced features 65

Integrating PureCoverage with your development
desktop

PureCoverage’s integrations put powerful coverage data within easy
reach while you develop and test your code using your favorite tools.
You can integrate PureCoverage with Microsoft Visual Studio 6,
Microsoft Visual Studio .NET, Microsoft Visual Basic, Rational Visual
Test®, Rational Robot, and Rational ClearQuest™.

During installation, a PureCoverage menu and toolbar are
automatically added to Visual Studio 6 and Visual Basic so you can
monitor your code at any time during development, without leaving
your development environment. In Visual Studio .NET, select
Toolbars > PureCoverage from the View menu to display the toolbar.

View and work with
coverage data directly
within Visual Studio 6
or Visual Studio .NET

Click the Engage PureCoverage Integration tool in the
PureCoverage toolbar, then run your program

66 Getting Started: Rational PureCoverage

If you have Visual Test or Robot installed, you can run a test script for a
program and monitor the program at the same time, without leaving
Visual Test or Robot. With ClearQuest, you can submit a coverage
defect, and attach a PureCoverage data file (.cfy), as soon as you find
untested code, without leaving PureCoverage.

More information? Look up integrating in the PureCoverage online
Help index.

Fine-tuning data collection

Using the PureCoverage PowerCov™ options, you can fine-tune the
level of code coverage reported for any module in your program at any
stage of development and testing. You can set default settings that
apply to all programs. You can also assign settings that apply only to
the current program.

To customize
coverage levels for

specific modules,
click Configure

Select Line or Function as
the default coverage level

Then select one or
more modules in the

Module Coverage
dialog . . .

and set a coverage
level for them

PureCoverage: Advanced features 67

To concentrate on specific modules in your code, use PowerCov options
to select Line as the coverage level for only those modules. You can
improve instrumentation and run-time performance by selecting
Function as the coverage level for the other modules. Or you can
exclude some modules from coverage.

More information? Look up settings, overview and coverage levels,
overview in the PureCoverage online Help index.

Using Selective instrumentation

If you are working in Visual C/C++ or Visual Basic native-compiled
code, PureCoverage offers you the option of selecting for
instrumentation one or more modules or .dll’s, rather than
instrumenting all modules. This has the advantage of automatically
focusing your coverage data on the code you’re most concerned with,
and it also saves time when you run your code under PureCoverage.

For example, assume you are working on a plug-in application that is to
be loaded by Microsoft Internet Information Server (IIS). You don’t
need to instrument and profile all of IIS. All you need to do is
instrument your plug-in, and then run it as usual under IIS.
PureCoverage collects performance data as your plug-in runs, and
presents this data to you when the plug-in exits.

To instrument your plug-in, select Settings > Default settings in
PureCoverage to display the Settings dialog, and then in the dialog
select Modules to Instrument: Selected Modules. Click on Configure to
open the Module Instrumentation dialog for specifying the name of
your plug-in.

68 Getting Started: Rational PureCoverage

Run your plug-in as usual. PureCoverage collects and displays
profiling data.

More information? Look up selective instrumentation in the
PureCoverage online Help index.

Zeroing in on key program areas

With PureCoverage, you can capture coverage data for your entire
program or for any section of it. You can capture coverage information
for specific sections using:

■ Interactive snapshots

■ PureCoverage API functions

Click to add a module
to the list

Selected modules must
have debug data

avaliable; an .exe
module also requires

relocation data

With transient
instrumentation, the
instrumented version
of the module is kept
only for the duration of
one program run, and
is then replaced by the
uninstrumented
original

PureCoverage: Advanced features 69

Taking interactive snapshots

Using PureCoverage, you can take snapshots of coverage data for
individual routines as you exercise your program.

More information? Look up snapshots and run summary window in the
PureCoverage online Help index.

Using PureCoverage API functions

PureCoverage includes a set of Application Programming Interface
(API) functions that give you additional control over the collection of
coverage data. You can use them to start and stop data collection or to
save data at any time during a run, collecting only the coverage data
you need to focus on a specific area of your program.

You can call PureCoverage API functions from your program, from the
QuickWatch dialog in Visual Studio, or from whatever debugger you’re
using.

More information? Look up api functions, using in the PureCoverage
online Help index.

Follow program
coverage in the Run

Summary window

Clear
data

Take a data
snapshot

Start and stop
recording

70 Getting Started: Rational PureCoverage

Integrating PureCoverage in your test environment

Integrating PureCoverage with your test environment gives you a
powerful tool for continuous coverage monitoring. For example, you
can easily run PureCoverage from an existing makefile, batch file, or
Perl script by adding the command:

Coverage /SaveTextData Exename.exe

to run your program under PureCoverage. The /SaveTextData option
generates coverage data in text-file format, without the graphical
interface. You can incorporate the information from this file into your
test results report.

PureCoverage can also merge coverage data from multiple runs. Say
you’re running a series of automated tests on a program, each time
using a different set of data. You can modify the script to merge the
coverage data into a single file. Add the following line to the beginning
of your test script:

del Exename_AutoMerge.cfy

to delete any existing Auto Merge files.

Then, each time you run your program, substitute the following for the
run command:

Coverage /SaveMergeData /SaveMergeTextData Exename.exe

This command merges the coverage data from all runs of the program
and saves it to a PureCoverage data file, Exename_AutoMerge.cfy, and
to an ASCII text file, Exename_AutoMerge.txt.

Java, .NET managed code, and Visual Basic programmers: For Java
code, the command line must include the /Java switch. For .NET
managed code and and Visual Basic p-code programs, the command
line must include the /Net switch. For example, if you have a test script
that runs a Java class file, change the line that runs it to:

Coverage /SaveData /Java Java.exe Classname.class

For managed code and p-code programs, the command is:

Coverage /SaveData /Net Exename.exe

More information? For details, and additional command-line options,
look up command line and scripts in the PureCoverage online Help
index.

PureCoverage: Advanced features 71

If you have Rational Visual Test or Rational Robot installed, you can
run a test script for a program and monitor the program at the same
time, without leaving Visual Test or Robot.

More information? Look up visual test and robot in the PureCoverage
online Help index.

Now you’re ready to put PureCoverage to work.
Remember that the online Help contains detailed
information to assist you.

72 Getting Started: Rational PureCoverage

73

Getting Started:
Rational Quantify

Quantify: What it does

Your customers want the fastest possible software. They want your
program to work instantaneously and make the most of their
computing resources. Inferior performance reduces their satisfaction
with the features you worked so hard to include.

So what can you do about it?

The practical solution is to identify bottlenecks, and then to reduce or
eliminate them, through systematic performance engineering. Begin
monitoring performance just as soon as you have a program that runs,
when it’s easiest and most economical to make structural changes.
Continue working on performance until you’re ready to ship. Weigh
the cost of implementing each improvement against the benefits you
expect from it.

How can you get the data you need for performance engineering?

Rational® Quantify® puts successful performance engineering within
your grasp. It collects complete, accurate performance data and
displays it in easy-to-understand graphs and tables, so that you can see
exactly where your code is least efficient. Using Quantify, you can make
virtually any program run faster, and you can measure the results.

Quantify profiles performance for code written in all commonly used
programming languages:

■ Visual C/C++ code in .exe’s, .dll’s, OLE/ActiveX controls, and
COM objects

■ Visual Basic projects and p-code .exe’s, native-code .exe’s, .dll’s,
OLE/ActiveX controls, and COM objects

■ Java applets, class files, .jar files, and code launched by container
programs

■ .NET managed code assemblies, .exe’s, .dll’s, OLE/ActiveX
controls, and COM objects .

74 Getting Started: Rational Quantify

■ Components launched from container programs such as Microsoft
Internet Explorer, the Microsoft Transaction Server, jexegen’d
executables, Jview.exe, Tstcon32.exe, Netscape Navigator, or any
Microsoft Office application

■ Microsoft Excel and Microsoft Word plug-ins

Quantify can profile all components of your code, whether you have
source code or not. For native-code applications written in Visual
C/C++ and Visual Basic, Quantify also allows you to select exactly
which modules you want to profile.

Quantify automatically integrates with Microsoft Visual Studio 6,
Microsoft Visual Studio .NET, and Microsoft Visual Basic, so you can
use Quantify without changing the way you work if you’re developing
code in these environments.

This chapter shows you how to use Quantify to find performance
bottlenecks, and introduces the features that make Quantify a
powerful, flexible performance engineering tool. As you read this
chapter, keep in mind that any discussion that applies to functions and
modules also applies to Java methods and class files, and to Visual
Basic procedures and object libraries.

Quantify: The basic steps

Quantify provides a complete, accurate set of performance data for
your program and its components, and shows you exactly where your
program spends most of its time.

To improve a program's performance:

1 Run the program with Quantify to collect performance data.

2 Use the Quantify data windows to analyze the performance data
and find bottlenecks.

3 Modify your code to reduce or eliminate bottlenecks.

4 Rerun the program and use the Compare Runs tool to verify
performance improvements

This chapter describes how to use Quantify as a standalone desktop
application. The same principles apply when you use Quantify
integrated with Microsoft Visual Studio or Microsoft Visual Basic, or

Quantify: The basic steps 75

when you incorporate Quantify into your test harness. For more
information, read Integrating Quantify with your development desktop on
page 85 and Integrating Quantify in your test environment on page 92.

Running a program

To collect performance data for a program, launch Quantify from the
Windows Start menu and click Run in the Quantify welcome screen to
open the Run program dialog.

Quantify profiles performance for functions and, if debug line
information is available, for individual lines as well. If you want
line-level data for programs built in release mode, you must supply
debug line information. For specific instructions, look up debug data in
the Quantify online Help index.

and then click
Run to run the
program

You can click Settings to specify data-collection
instructions for special situations, such as
selective instrumentation of specific modules

Click the browse
button to select the
program you want

to profile . . .

and select the
type of code

76 Getting Started: Rational Quantify

Quantify displays a Run Summary window as the program runs,
showing the current status of all program threads.

Quantify saves all instrumented components. When you rerun a
program, Quantify saves time by using these instrumented
components, reinstrumenting only the ones that have changed since the
previous run.

When you exit your program, Quantify has an accurate profile of its
performance.

More information? Look up profiling, selective instrumentation, run
summary and recording data in the Quantify online Help index.

Analyze the performance data

The second step in improving your program’s performance is to
analyze the performance data that Quantify has collected.

Using the Quantify Call Graph window

When you exit your program, Quantify displays the Call Graph
window. The window’s initial display focuses on the heavy-duty
components of your code, the areas where any performance
improvement would have the greatest impact.

Click to pause and resume profiling in
order to focus on specific routines

Quantify: The basic steps 77

The call graph initially highlights the most expensive path. You can
choose instead to highlight functions based on various criteria,
including performance, calling relationships, and possible causes for
bottlenecks. You can also show additional functions, hide functions,
and grab and move functions to see calling relationships more clearly.

Use the call graph to find
functions that are taking
more time than you think
they should. For example, the
programmer who wrote this
code knows that the ComputeMeter function should be so fast that it
wouldn’t show up in the initial call graph display at all.

Having located a suspicious function, you can isolate it to examine
where it spends its time

The Quantify Call
Graph initially

displays the 20
most expensive

functions in a
program

A root node,
representing the
total time for the

run, brings the
number of visible

nodes to 21

78 Getting Started: Rational Quantify

.

Quantify adjusts the dataset so it contains only ComputeMeter and its
descendants. You can now can expand the ComputeMeter subtree to see
what’s going on downstream.

The Subtree
commands

adjust the
focus of

the dataset

The Expand and
Collapse

commands
help you explore

a program’s
structure

Quantify: The basic steps 79

The most expensive paths in the ComputeMeter subtree lead to the
SetWindowTextA function.

The programmer who wrote this code intended this function to provide
feedback when he was developing his algorithm, and not to be part of
the released application. Removing the function will significantly
improve performance.

Using the Function List window to analyze numerical data

Quantify starts by orienting you in your
program with the call graph, and then
provides additional ways to zero in on
problems. You can use the Function List
window to display and sort numerical
performance data.

You can judge
the relative

expense of paths
by the thickness

of the lines

Click the Function List
tool to display
numerical data

80 Getting Started: Rational Quantify

In this example, the Function List window shows exactly how much
time the obsolete calls to SetWindowTextA are costing. The data
displayed is all the data for the SetWindowTextA subtree.

Consider the percentages: SetWindowTextA takes up almost 50% of the
subtree’s total time. Since this function serves no purpose in the current
version of the program, this is a clear example of unnecessary
processing, one of the most common causes of performance
bottlenecks.

Doing interactive ‘what-ifs’

In addition to analyzing your program’s current performance, you can
use Quantify to project performance improvements.

In this example, you could right-click SetWindowTextA in the Call
Graph and then delete the SetWindowTextA subtree. Quantify discards
the subtree’s time from the displayed dataset and recomputes the
remaining data so that you can see exactly how the program will
perform without the subtree.

This is one of
the most

expensive
functions in

terms of
F+D time

F+D time includes the time the program spends
in the function and in all its descendants

Quantify: The basic steps 81

Using the Function Detail window

The Function Detail window lets you
display performance data from the point
of view of an individual function

The strlen function in this example has
shown up both in the function list and
the call graph. The function list shows this run of the program called it
over 40,000 times. Referring to the call graph, you can see that all the
expensive functions in this part of the program call strlen.

The time for the
ComputeMeter

subtree, which
took over
600,000

microseconds
before the

change, is now
just over 311,000

microseconds

Click the Function Detail
tool for data about a
specific function

82 Getting Started: Rational Quantify

This part of the code manipulates lines of text as strings. These
functions apply a collection of complex rules in sequence to each line in
order to identify patterns. But calling strlen so many times suggests
that there is a performance issue.

By itself, strlen uses around 92% of the total subtree time, now that
SetWindowTextA has been discarded from the dataset.

Opening the Function Detail window gives you a different angle on the
data for strlen: specific information, in numerical and graphical
format, about calls to it from other functions.

As you examine this data, you might observe that most of the functions
make about the same number of calls to strlen. To see exactly what is
going on, you can look at your source code,

strlen is
the most

expensive
single function
in the subtree

Click a to sort the list

Double-click a slice
in the Callers or

Descendants pie chart
to display data for

that function

Detailed data for
a function

Data about the calls
made to a function
(by callers). . .

and by a function
(to descendants)

Quantify: The basic steps 83

Using the Annotated Source window

The Annotated Source window
shows your code, annotated with
line-by-line performance data. Here
is the code for mark_consonants,
one of the functions that call strlen.

Look at the data for the for statement. Its line + descendants time is
much greater than its line time alone, which means the line calls other
functions heavily. The only part of the line that could possibly represent
a function call is i<SPECIMEN_LENGTH(specimen), and
SPECIMEN_LENGTH is in fact defined in this program as a call to strlen.
In effect, the program is calling strlen every time it traverses one of
these loops. And it’s the same for all the other parallel functions.

This wastes computing time, since all the program needs to do is call
strlen once for each string, then cache the value. This is a case of
unnecessary recomputation, another common cause of a performance
bottleneck.

Compare the modified program’s performance

The final step in improving your program’s performance is to eliminate
the bottlenecks you’ve found with Quantify and to compare
performance data from two runs, to verify that your modifications have
helped.

Click the Annotated Source
tool to relate performance
data to the source code

L+D time shows
the time spent in
the line and the
functions it calls

(its descendants)

Line time shows
the time spent

in each line

This line spends
most of its time
in descendant

functions

84 Getting Started: Rational Quantify

Assume now that you’ve eliminated all
the strlen calls, and run the program
again. Compare the first run to the new
run, to see how the performance has
improved.

The Diff call graph highlights ComputeMeter, strlen, and
SetWindowTextA in green, meaning their performance is improved.

Open the Diff function list to get the numerical comparison.

Click the Compare Runs
tool to see
improvements

The Diff call
graph highlights

in green paths
and functions

whose
performance
is improved

The Diff function list shows
performance improvements as
negative values

The total time for
ComputeMeter is

now around 12,000
microseconds, an

improvement of more
than 595,000

microseconds

Quantify: Advanced features 85

You can save datasets as a Quantify data file (.qfy) to use for further
analysis or to share with other Quantify users. You can save data to a
tab-delimited ASCII text file (.txt) to use outside of Quantify, for
example, in test scripts or in Microsoft Excel. You can also copy data
directly from the Function List window to use in Excel.

Quantify: Advanced features

Quantify provides powerful features that help you make maximum use
of the performance data. For example, you can:

■ Integrate Quantify with your development desktop

■ Select specific modules for instrumentation and profiling

■ Control data recording interactively

■ Highlight functions that share key attributes

■ Focus on critical data

■ Fine tune data collection

■ Integrate Quantify in your test environment

This section gets you started using these features to profile the
important parts of your code more efficiently, and to zero in on
bottlenecks.

Integrating Quantify with your development desktop

Quantify’s integration—for example, with Microsoft Visual Studio,
Microsoft Visual Basic, Rational Visual Test®, Rational Robot, and
Rational ClearQuest™—puts powerful performance profiling within
easy reach while you develop your code using your favorite tools.

During installation, a Quantify menu and toolbar are automatically
added to Visual Studio 6 and Visual Basic so you can profile your code
at any time during development, without leaving your development
environment. The first time you use Quantify in Visual Studio .NET,
display the Quantify toolbar by selecting Toolbars > Quantify from the
Visual Studio View menu.

86 Getting Started: Rational Quantify

If you have Rational Visual Test or Rational Robot installed, you can
run a test script for a program and profile the program at the same time,
without leaving Visual Test or Robot. With Rational ClearQuest, you
can submit a performance defect, and attach a Quantify data file (.qfy),
as soon as you find slow code, without leaving Quantify.

More information? Look up integrating in the Quantify online Help
index.

View and work
with performance

data directly within
Visual Studio 6

and Visual Studio .NET

Click the Engage Quantify Integration tool in the
Quantify toolbar, then run your program

Quantify: Advanced features 87

Using selective instrumentation

If you are working in Visual C/C++ or Visual Basic native-compiled
code, Quantify offers you the option of selecting for instrumentation
one or more modules or .dll’s, rather than instrumenting all modules.
This has the advantage of automatically focusing your profiling data on
the code you’re most concerned with, and it also saves time when you
run your code under Quantify.

For example, assume you are working on a plug-in application that is to
be loaded by Microsoft Internet Information Server (IIS). You don’t
need to instrument and profile all of IIS. All you need to do is
instrument your plug-in, and then run it as usual under IIS. Quantify
collects performance data as your plug-in runs, and presents this data
to you when the plug-in exits.

To instrument your plug-in, select Settings > Default settings in
Quantify to display the Settings dialog, and then in the dialog select
Modules to Instrument: Selected Modules. Click on Configure to open the
Module Instrumentation dialog for specifying the name of your
plug-in.

Run your plug-in as usual. Quantify collects and displays profiling
data.

More information? Look up selective instrumentation in the Quantify
online Help index.

Click to add a module
to the list

Selected modules must
have debug data

avaliable; an .exe
module also requires

relocation data

With transient
instrumentation, the
instrumented version
of the module is kept
only for the duration of
one program run, and
is then replaced by the
uninstrumented
original

88 Getting Started: Rational Quantify

Controlling data recording interactively

As your program runs, you can monitor the performance of threads
and fibers and view general information about the run using the Run
Summary window.

You can use the data recording tools to collect data for the entire
program or for just a section of it, so you get exactly the performance
data you want. For example, at any time you can stop recording, clear
the data collected to that point, and then resume recording. You can
also take a snapshot of the current data, enabling you to examine
performance in stages.

You can also start and stop recording, clear data, and take snapshots
automatically from within your program by incorporating Quantify’s
data recording API functions in your code.

More information? Look up threads, recording data, and API functions in
the Quantify online Help index.

Current thread
status

Start and stop
recording

Thread status
summary for

the run

Real-time
monitoring for

all the threads in
your program

Clear
data

Take a data
snapshot

Quantify: Advanced features 89

Highlighting functions that share key attributes

You can highlight functions in the call graph to display specific
performance characteristics or to show calling relationships.

More information? Look up highlighting in the Quantify online Help
index.

Click to display the Highlight list

Select Functions with
Source, for

example, to
highlight functions

that have
annotated source

21 of the 484
functions in the
current dataset

are displayed in
the Call Graph

Functions with
source code
available are

enclosed in
rectangles

8 of the 86
functions with

source code
 are displayed in

the Call Graph

90 Getting Started: Rational Quantify

Focusing your data

Use Quantify’s filter commands to remove a selected function, or all
functions in a module, from the current dataset. Alternatively, use
subtree commands to focus on or remove a specific function and all its
descendants from the current dataset. Simply right-click a function in
the Call Graph, Function List, or Function Detail window.

Quantify has undo capabilities for all filter and subtree commands, to
easily return to any previous dataset configuration.

The Call Graph window also provides a series of expand and collapse
commands that work with subtrees. Unlike the filter and subtree
commands, however, these commands affect only the Call Graph
display; they do not change the current dataset.

More information? Look up filtering data and subtrees in the Quantify
online Help index.

Fine-tuning data collection

Using the Quantify PowerTune options, you can specify how you want
Quantify to measure your program’s performance. Quantify’s default
measurement levels are based on what is appropriate in most
situations, but with PowerTune you can control how specific modules
are measured.

The Filter Manager offers additional
filtering options

You can hide or
delete individual

functions, all
functions in a

module, or entire
subtrees. Hide

functions or subtrees
 to roll up their time to

their callers; delete
them to discard their

time completely
Select Focus on Subtree
to delete all functions
except the subtree

Quantify: Advanced features 91

Why is this useful? It allows you to significantly speed up the run-time
performance during profiling. You can, for example, select Time as your
default measurement level, and then select Line for the specific
modules that you’re currently investigating.

Quantify measures performance at several levels of detail:

■ Line. At this level, Quantify counts the number of times each line
executes during a run, then computes performance data based on
the number of cycles needed for one execution. Line level, which
requires debug line information, results in the most accurate and
detailed data possible, but does take the most time to collect.

■ Function. This level provides the same level of accuracy as line-level
measurement, but less detail. Function level is useful when you
don’t need to know how individual lines perform, but still want
precise, repeatable data for functions.

Select a default
measurement level

Click Configure to
display the Module
Instrumentation dialog
and specify
measurement levels
for specific modules

Select one or more modules. . .

then set their measurement level

92 Getting Started: Rational Quantify

■ Time. Quantify collects data for timed functions by starting and
stopping a timer when each function begins and ends. The data is
accurate for the current run, but is influenced by microprocessor
state and memory effects. The overhead for collecting timed data,
however, is very low.

More information? Look up measurement types in the Quantify online
Help index.

Integrating Quantify in your test environment

By integrating Quantify into your test environment, you have a tool
that detects changes in performance in your nightly tests, giving you an
immediate heads-up as soon as things start to go wrong.

You can easily run Quantify from an existing makefile, batch file, or
Perl script by adding the command:

Quantify /SaveData Exename.exe

to run your program under Quantify. The /SaveData option generates
performance data in a format for viewing and comparing with previous
runs of the program in the Quantify graphical interface.

Note that the /SelectModuleList option is also available to help
focus your testing. Refer to Using selective instrumentation on page 87.

Java, .NET managed code, and Visual Basic programmers: For Java
code, the command line must include the /Java switch. For managed
code and Visual Basic p-code programs, the command line must
include the /Net switch. For example, if you have a test script that runs
a Java class file, change the line that runs it to:

Quantify /SaveData /Java Java.exe Classname.class

For managed code and p-code programs, the command is:

Quantify /SaveData /Net Exename.exe

More information? For details, and additional command-line options,
look up command line and scripts in the Quantify online Help index.

Now try out Quantify on your own code.
Remember that Quantify’s online Help contains
detailed information to assist you.

93

Index

A
ABW error (Purify, C/C++) 15
Annotated Source window

PureCoverage 62
Purify (coverage data) 18
Quantify 83

API functions
PureCoverage 69
Purify, C/C++ 24
Purify, Java 39
Purify, managed code 54
Quantify 88

array bounds write error (Purify, C/C++) 15
ASCII text files (.txt)

PureCoverage 64, 70
Purify, C/C++ 20
Purify, Java 38
Purify, managed code 53
Quantify 85

Auto Merge (PureCoverage) 63

B
basic steps

improving code coverage 57
improving program performance 74
Purify’ing C/C++ code 9
Purify’ing Java code 28
Purify’ing managed code 42

batch files for automated testing
PureCoverage 70
Purify, C/C++ 23
Purify, Java 38
Purify, managed code 53
Quantify 92

Break on Error tool (Purify, C/C++) 22

C
cache files

Purify, C/C++ 11
call graph (Purify, Java)

filter commands 37
highlighting related methods 36
overview 30
subtree commands 37

call graph (Purify, managed code)
filter commands 50
highlighting related methods 50
overview 44
subtree commands 50, 51

call graph (Quantify)
filter commands 90
for comparing runs 84
highlighting related functions 89
initial display 76
line width 79
subtree commands 77, 90

call stack (Purify, C/C++) 15, 16
callers of a function, listed (Quantify) 82
calling paths, call graph (Quantify) 79
C/C++ code

monitoring coverage 58
profiling performance 73, 75
Purify’ing 9

.cfy files
PureCoverage 64
Purify, coverage data 20

ClearQuest integration
PureCoverage 66
Purify, C/C++ 24
Quantify 86

code
editing (Purify, C/C++) 17
editing (Purify, Java) 31
editing (Purify, managed code) 45

94 Index

collapsing call graph subtrees
Purify, Java 37
Purify, managed code 51
Quantify 90

colors
in annotated source (PureCoverage) 62
in annotated source (Purify, coverage

data) 18
in call graph (Quantify) 84

command-line interface
Purify, C/C++ 23
Purify, Java 38
Purify, managed code 53

commands (Purify, C/C++)
Embed Data Browsers 22

commands (Purify, Java)
Expand/Collapse 37
filter commands 37
subtree commands 37
undoing 37

commands (Purify, managed code)
Expand/Collapse 51
filter commands 50
subtree commands 51
undoing 51

commands (Quantify)
Expand/Collapse 78, 90
filter commands 90
subtree commands 78, 90
undoing 90

comparing
program runs (Purify, C/C++) 19
program runs (Purify, Java) 30
program runs (Purify, managed code) 44
program runs (Quantify) 84
snapshots (Purify, Java) 30
snapshots (Purify, managed code) 44

Coverage Browser window (PureCoverage) 59
coverage data (PureCoverage)

controlling with API functions 69
filtering 61
limiting collection 68
merged for multiple runs 63
saving from the command line 70

saving from the user interface 63
sharing 64

coverage data (Purify, C/C++)
collecting 10, 23
saving 20

coverage data files (.cfy)
PureCoverage 64
Purify 20

coverage levels
customizing (PureCoverage) 66
setting default levels (PureCoverage) 66

coverage monitoring (Purify, C/C++)
/Coverage option 23
description 8
saving coverage data 20
turning on 10
using coverage data 17– 19

Create Filter command (Purify, C/C++) 14
customizing

coverage levels (PureCoverage) 66
data collection level (Quantify) 90
data display (PureCoverage) 60

D
data, see coverage data, error data, memory profil-

ing data, and performance data
Data Browser window (Purify)

coverage data (C/C++) 18
error data (C/C++) 11– 19
memory profiling data (Java) 29– 31
memory profiling data (managed

code) 43– 46
object list (Java) 34
object list (managed code) 48

data recording
changing default level (Quantify) 90
controlling (Quantify) 88
controlling programatically (Purify, Java) 39
controlling programatically (Purify, managed

code) 54
debug data

and instrumentation (Purify, C/C++) 10,
20, 42

Index 95

and line-level coverage (PureCoverage) 58
and line-level profiling (Quantify) 75

debugging, just-in-time (Purify, C/C++) 22
default instrumentation levels, setting

PureCoverage 66
Purify, C/C++ 20
Quantify 90

deleting call graph subtrees
Purify, Java 37
Purify, managed code 51
Quantify 80, 90

descendants of a function, listed (Quantify) 82
diff call graph (Quantify) 84
diff function list (Quantify) 84
diff’ing snapshots

equivalent results with API (Purify, Java) 39
equivalent results with API (Purify, managed

code) 54
Purify, Java 30
Purify, managed code 44

displaying filtered messages (Purify, C/C++) 15
dispose() method (Purify, Java) 27

E
editing source code

Purify, C/C++ 17
Purify, Java 31
Purify, managed code 45

Embed Data Browsers command (Purify,
C/C++) 22

Error View tab, Data Browser window (Purify,
C/C++) 11

errors (Purify, C/C++)
analyzing 15
breaking on errors 22
correcting 17
saving error data 20
See also messages (Purify, C/C++)

excluding modules (PureCoverage) 67
exit messages (Purify, C/C++) 12

expanding call graph subtrees
Purify, Java 37
Purify, managed code 51
Quantify 78, 90

F
F+D (Function + Descendants) time

(Quantify) 80
File View tab (Purify, coverage data) 18
files

caching after instrumentation (Purify,
C/C++) 11

.cfy (PureCoverage) 64

.cfy (Purify, C/C++) 20

.pcy (Purify, C/C++) 20

.pft (Purify, C/C++) 15

.pfy (Purify, C/C++) 20

.pmy (Purify, Java) 36

.pmy (Purify, managed code) 49

.txt (PureCoverage) 64

.txt (Purify, C/C++) 20

.txt (Purify, Java) 36

.txt (Purify, managed code) 49
filters

filter groups (Purify, C/C++) 15
Filter Manager (PureCoverage} 61
Filter Manager (Purify, C/C++) 15
Filter Manager (Purify, Java) 38
Filter Manager (Purify, managed code) 52
Filter Manager (Quantify) 90
overview (Purify, C/C++) 36
overview (Purify, Java) 50
overview (Purify, managed code) 13
saved in .pft files (Purify, C/C++) 15
sharing (Purify, C/C++) 15
undoing filter commands (Purify, Java) 37
undoing filter commands (Purify, managed

code) 51
undoing filter commands (Quantify) 90

focusing on subtrees
Purify, Java 51
Purify, managed code 90

96 Index

Function Detail window
Purify, Java 32
Purify, managed code 46
Quantify 82

Function level profiling (Quantify) 91
function list view

Purify, coverage data 18
Purify, Java 31
Purify, managed code 45

Function List window
for a single run (Quantify) 80
for comparing runs (Quantify) 84
sorting data (Quantify) 80
using (PureCoverage) 60

function time (Quantify) 80
function-level coverage

described (PureCoverage) 59
setting (PureCoverage) 66

function-level instrumentation (Purify) 20
functions

PureCoverage API 69
Purify API (C/C++) 24
Purify API (Java) 39
Purify API (managed code) 54
Quantify API 88

G
garbage collector

Purify, Java 26, 29
Purify, managed code 40, 43

graphs
call graph (Purify, Java) 30
call graph (Purify, managed code) 44
call graph (Quantify) 76, 84, 89
memory usage graph (Purify, Java) 29
memory usage graph (Purify, managed

code) 43
object reference (Purify, Java) 34
object reference (Purify, managed code) 47

green highlighting in call graph (Quantify) 84
groups, filter (Purify, C/C++) 15

H
handles in use at exit (Purify, C/C++) 12
hiding call graph subtrees

Purify, Java 37
Purify, managed code 51
Quantify 90

hiding Purify C/C++ error messages
See filters

highlighting
green in call graphs (Quantify) 84
performance improvements (Quantify) 84
related functions (Quantify) 89
related methods (Purify, Java) 36
related methods (Purify, managed code) 50

I
instrumentation

customizing (PureCoverage) 66
customizing (Purify, C/C++) 21
default levels (Purify, C/C++) 20
described (PureCoverage) 58
described (Purify, C/C++) 10
selective (PureCoverage) 67
selective (Quantify) 87

integration
Microsoft Visual Basic (PureCoverage) 65
Microsoft Visual Basic (Quantify) 85
Microsoft Visual Studio 6 (PureCoverage) 65
Microsoft Visual Studio 6 (Purify,

C/C++) 9– 20
Microsoft Visual Studio 6 (Quantify) 85
Microsoft Visual Studio .NET

(PureCoverage) 65
Microsoft Visual Studio .NET (Purify) 42
Microsoft Visual Studio .NET (Quantify) 85
Rational ClearQuest (PureCoverage) 65
Rational ClearQuest (Purify, C/C++) 24
Rational ClearQuest (Quantify) 85
Rational Robot (PureCoverage) 65
Rational Robot (Purify, C/C++) 24– 25
Rational Robot (Quantify) 85
Rational Visual Test (PureCoverage) 65

Index 97

Rational Visual Test (Purify, C/C++) 24– 25
Rational Visual Test (Quantify) 85

interactive snapshots (PureCoverage) 69

J
Java (PureCoverage)

running from the command line 70
supported languages 55

Java (Purify)
examining objects 33– 35
filtering memory profiling data 37
memory leaks 26, 28
memory usage graph 29
Purify’ing Java code 28
saving memory profiling data 36

Java (Quantify)
running from the command line 92
supported languages 73

/Java option
PureCoverage 70
Purify 38
Quantify 92

just-in-time debugging (Purify, C/C++) 22

L
L+D (Line + Descendants) time (Quantify) 83
languages and applications supported

PureCoverage 56
Purify, C/C++ 8
Quantify 73

leaks (Purify)
Java 26
managed code 40
See also memory leaks (Purify)

levels of measurement (Quantify) 91
limiting coverage data collection

(PureCoverage) 68
line colors

in annotated source (PureCoverage) 62
in annotated source (Purify coverage

data) 18
Line level measurement (Quantify) 91

Line time (Quantify) 83
line width, in call graph (Quantify) 79
line-level coverage (PureCoverage)

annotated source 62
described 59
setting 66

line-level instrumentation (Purify, C/C++) 20

M
makefiles for automated testing

PureCoverage 70
Purify, C/C++ 23
Purify, Java 38
Purify, managed code 53
Quantify 92

managed code (PureCoverage)
running from the command line 70
supported languages 55

managed code (Purify)
examining objects 47– 49
filtering memory profiling data 50
memory leaks 40, 42
memory usage graph 43
Purify’ing managed code 42
saving memory profiling data 49

managed code (Quantify)
supported languages 73

measurement levels (Quantify) 91
memory leaks (Purify)

C/C++ leaks reported at exit 12
Java memory leaks 26, 28
managed code memory leaks 40, 42
PurifyNewLeaks API function (C/C++) 24

memory profiling data (Purify)
filtering (Java) 37
filtering (managed code) 50, 52
saving (Java) 36
saving (managed code) 49

memory usage graph
Purify, Java 29
Purify, managed code 43

menu, shortcut (Purify, C/C++) 12

98 Index

merging data from multiple runs
(PureCoverage) 63

messages (Purify, C/C++)
analyzing 15
expanding 15
filtering 13
redisplaying filtered 15
See also errors (Purify, C/C++)

method-level coverage (PureCoverage), see func-
tion-level coverage (PureCoverage)

methods, highlighting by category
Purify, Java 36
Purify, managed code 50

Microsoft Visual Studio 6 integration
PureCoverage 65
Purify 9
Quantify 85

Microsoft Visual Studio .NET integration
PureCoverage 65
Purify 42
Quantify 85

minimal instrumentation (Purify, C/C++) 20
Module View tab (Purify coverage data) 18
modules

controlling coverage levels
(PureCoverage) 66

controlling instrumentation (Purify,
C/C++) 21

controlling instrumentation level
(Quantify) 90

excluding from coverage (PureCoverage) 67
filtering by module (Purify, Java) 37
filtering by module (Purify, managed

code) 50
filtering by module (Quantify) 90

monitoring program performance (Quantify) 88
monitoring program runs (Quantify) 88

N
Navigator

PureCoverage 63
Purify, C/C++ 19
Purify, Java 30

Purify, managed code 44
negative values in function list (Quantify) 84
.NET managed code, see managed code
/Net option

PureCoverage 70
Purify 53
Quantify 92

O
Object Detail window

Purify, Java 34
Purify, managed code 47

Object List View tab
Purify, Java 34
Purify, managed code 48

object reference graph
Purify, Java 47
Purify, managed code 34

object references
and Java memory leaks 26
and managed code memory leaks 40

objects, examining
Purify, Java 33– 35
Purify, managed code 47– 49

P
.pcy files (Purify, C/C++) 20
performance data (Quantify)

comparing runs 84
controlling recording 88
filtering 90
for all dataset functions 80
for individual lines 83
for single functions 82
improvements highlighted 84
saving from the command line 92

Perl scripts for automated testing
PureCoverage 70
Purify, C/C++ 23
Purify, Java 38
Purify, managed code 53
Quantify 92

Index 99

.pft files (Purify, C/C++) 15

.pfy files (Purify, C/C++) 20
pie charts, Function Detail window

Purify, Java 33
Purify, managed code 47

.pmy files
Purify, Java 36
Purify, managed code 49

PowerCheck tab (Purify, C/C++) 20
PowerCov options (PureCoverage) 66
PowerTune (Quantify) 90
precise instrumentation (Purify, C/C++) 20
problems

Java code 26
managed code 40

procedure-level coverage (PureCoverage), see
function-level coverage (PureCover-
age)

profiling program performance (Quantify) 88
programming languages and components sup-

ported
PureCoverage 56
Purify 7
Purify, C/C++ 8
Quantify 73

programs
instrumenting (PureCoverage) 58
profiling performance (Quantify) 88
rerunning (Purify) 19
running from Microsoft Visual Studio 6

(PureCoverage) 65
running from Microsoft Visual Studio 6

(Purify, C/C++) 10
running from Microsoft Visual Studio 6

(Quantify) 85
running from Microsoft Visual Studio .NET

(PureCoverage) 65
running from Microsoft Visual Studio .NET

(Purify, managed code) 42
running from Microsoft Visual Studio .NET

(Quantify) 85
running Java programs (Purify) 28
running managed code programs (Purify) 42
running under debugger (Purify, C/C++) 22

PureCoverage
in PurifyPlus 1
tips for developers 2
tips for testers 3
using 57

Purify
in PurifyPlus 1
tips for developers 2
tips for testers 3
using (C/C++) 9
using (Java) 28
using (managed code) 42

Purify data files
C/C++ 20
Java 36
managed code 49

Purify’ing
C+C++ code 9
Java code 28
managed code 42

PurifyPlus, described 1

Q
Quantify

in PurifyPlus 1
tips for developers 2
tips for testers 3
using 74

QuickFilter command (Purify, C/C++) 14

R
Rational ClearQuest integration

PureCoverage 66
Purify 24
Quantify 86

Rational PureCoverage
in PurifyPlus 1
tips for developers 2
tips for testers 3
using 57

100 Index

Rational Purify
in PurifyPlus 1
tips for developers 2
tips for testers 3
using (C/C++) 9
using (Java) 28
using (managed code) 42

Rational PurifyPlus, described 1
Rational Quantify

in PurifyPlus 1
tips for developers 2
tips for testers 3
using 74

Rational Robot integration
PureCoverage 66, 71
Purify, C/C++ 24– 25
Quantify 86

Rational Software technical publications,
contacting 5

Rational Software technical support,
contacting 5

Rational Visual Test integration
PureCoverage 66, 71
Purify, C/C++ 24– 25
Quantify 86

recording data, controlling
PureCoverage 68
Quantify 88

relocation data, and instrumentation
Purify, C/C++ 10, 20, 42

Robot integration
PureCoverage 66, 71
Purify, C/C++ 24– 25
Quantify 86

Run Control toolbar (Quantify) 88
Run Summary window

PureCoverage 59
Quantify 88

running programs
from the command line (Purify) 53
from the command line (Purify, C/C++) 23
from the command line (Purify, Java) 38
from Visual Studio 6 (PureCoverage) 65
from Visual Studio 6 (Purify, C/C++) 10
from Visual Studio 6(Quantify) 85

from Visual Studio .NET (PureCoverage) 65
from Visual Studio .NET (Purify, managed

code) 42
from Visual Studio .NET (Quantify) 85
in the Purify standalone interface (Purify) 52
in the Purify standalone interface (Purify,

C/C++) 22
PureCoverage 58
Purify, Java 28
Purify, managed code 42
Quantify 75
rerunning (Purify, C/C++) 19

runs, comparing
Purify, C/C++ 19
Purify, Java 30
Purify, managed code 44
Quantify 84

S
/Save* options

PureCoverage 70
Purify, C/C++ 23
Purify, Java 38
Purify, managed code 53
Quantify 92

saving data
from the command line (PureCoverage) 70,

92
from the command line (Quantify) 92
from the command line(Purify, C/C++) 23,

38, 53
from the user interface (PureCoverage) 63
from the user interface (Purify, C/C++) 20
from the user interface(Purify, Java) 36
from the user interface(Purify, managed

code) 49
scaling of line widths, in Quantify call graph 79
scripts for automated testing

PureCoverage 70
Purify, C/C++ 23
Purify, Java 38
Purify, managed code 53
Quantify 92

Index 101

selective instrumentation
PureCoverage 67
Quantify 87

settings for data collection
PureCoverage 58
Quantify 75

sharing
data files (PureCoverage) 64
filters (Purify, C/C++) 15

shortcut menu
Purify, C/C++ 37
Purify, Java 12
Purify, managed code 51

snapshots
coverage dava (PureCoverage) 69
memory use (Purify, Java) 29
memory use (Purify, managed code) 43

sorting data
PureCoverage 60
Quantify 80

source code
displaying (PureCoverage) 62
displaying (Quantify) 83
editing (Purify, C/C++) 17
editing (Purify, Java) 31
editing (Purify, managed code) 45

stack, call (Purify, C/C++) 16
standalone Purify interface (C/C++) 22
standalone Purify interface (managed code) 52
starting

PureCoverage 58
Purify, C/C++ 10, 22, 52
Purify, Java 28
Purify, managed code 42
Quantify 75

status line, Quantify windows 89
strategies for using Rational PureCoverage 56
subtrees (Purify, Java)

deleting 37
expanding and collapsing 37
focusing on 37
undoing subtree commands 37

subtrees (Purify, managed code)
deleting 51
expanding and collapsing 51

focusing on 51
undoing subtree commands 51

subtrees (Quantify call graph)
deleting 80, 90
expanding and collapsing 90
focusing on 90
undoing subtree commands 90

supported languages and components
PureCoverage 56
Purify, C/C++ 8
Quantify 73

system resources and memory leaks
Purify, Java 27
Purify, managed code 41

T
technical publications, contacting 5
technical support, contacting 5
tests

using PureCoverage in automated tests 70
using PureCoverage in unit tests 3
using Purify in automated tests 23, 25
using Purify in automated tests (Java) 38
using Purify in unit tests 3
using Quantify in automated tests 92
using Quantify in unit tests 3

text files (.txt)
PureCoverage 64, 70
Purify, C/C++ 20
Purify, Java 36
Purify, managed code 49
Quantify 85

thread status, monitoring (Quantify) 88
Time measurement (Quantify) 92
tool tips, call graph

Purify, Java 31
Purify, managed code 45

.txt files
PureCoverage 64, 70
Purify. Java 36
Purify, C/C++ 20
Purify, managed code 49
Quantify 85

102 Index

U
undoing filter and subtree commands

Purify, Java 37
Purify, managed code 51
Quantify 90

unembedding Purify (C/C++) 22

V
Visual Basic

integration (PureCoverage) 65
integration (Quantify) 85

Visual C/C++, running programs
PureCoverage 58
Purify 9
Quantify 75

Visual Studio 6 integration
PureCoverage 65
Purify, C/C++ 9
Quantify 85

Visual Studio .NET integration
PureCoverage 65
Purify 42
Quantify 85

Visual Test integration
PureCoverage 66, 71
Purify, C/C++ 24– 25
Quantify 86

W
what-ifs, in Quantify call graph 80
windows and tabs

Annotated Source (PureCoverage) 62

Annotated Source (Quantify) 83
Call Graph (Purify, Java) 30, 36
Call Graph (Purify, managed code) 44, 50
Call Graph (Quantify) 76, 84, 89
Coverage Browser (PureCoverage) 59
Data Browser (Purify, C/C++) 11– 14,

15– 18
Data Browser (Purify, Java) 29– 31, 34
Data Browser (Purify, managed

code) 43– 46, 48
Diff Call Graph (Quantify) 84
Diff Function List (Quantify) 84
File View (Purify, coverage data) 18
Function Detail (Purify, Java) 32, 33
Function Detail (Purify, managed code) 46,

47
Function Detail (Quantify) 82
Function List (PureCoverage) 60
Function List (Quantify) 80, 84
Function List View (Purify Coverage

data) 18
Function List View (Purify, Java) 31
Function List View (Purify, managed

code) 45
Module View (Purify, coverage data) 18
Navigator (Purify, C/C++) 19
Navigator (Purify, Java) 30
Navigator (Purify, managed code) 44
Object Detail (Purify, Java) 34
Object Detail (Purify, managed code) 47
Object List View (Purify, Java) 34
Object List View (Purify, managed code) 48
Run Summary (PureCoverage) 59
Run Summary (Quantify) 88

	Title page
	Notice
	Welcome
	Rational PurifyPlus: What it is
	Tips for development engineers
	Tips for test engineers

	Other PurifyPlus resources
	Contacting Rational technical support
	Contacting Rational technical publications

	Rational Purify
	Purify for Visual C/C++ developers and testers
	Purify for Visual C/C++: What it does
	Purify for Visual C/C++: The basic steps
	Purify for Visual C/C++: Advanced features

	Purify for Java developers and testers
	Purify for Java: What it does
	Purify for Java: The basic steps
	Purify for Java: Advanced features

	Purify for .NET managed code developers and testers
	Purify for .NET managed code: What it does
	Purify for .NET managed code: The basic steps
	Purify for .NET managed code: Advanced features

	Rational PureCoverage
	PureCoverage: What it does
	PureCoverage: The basic steps
	PureCoverage: Advanced features

	Rational Quantify
	Quantify: What it does
	Quantify: The basic steps
	Quantify: Advanced features

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

