
Rational Software Corporation

support@rational.com
http://www.rational.com

Rational® PurifyPlus RealTime
USER GUIDE

VERSION: 2002 RELEASE 2 - SR1

mailto:support@rational.com
http://www.rational.com

IMPORTANT NOTICE

COPYRIGHT
Copyright ©2000-2002, Rational Software Corporation. All rights reserved.

Part Number: 800-025997-000

Version: 2002 Release 2 - SR1

PERMITTED USAGE
THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION WHICH IS THE PROPERTY OF RATIONAL
SOFTWARE CORPORATION (“RATIONAL”) AND IS FURNISHED FOR THE SOLE PURPOSE OF THE
OPERATION AND THE MAINTENANCE OF PRODUCTS OF RATIONAL. NO PART OF THIS PUBLICATION
IS TO BE USED FOR ANY OTHER PURPOSE, AND IS NOT TO BE REPRODUCED, COPIED, ADAPTED,
DISCLOSED, DISTRIBUTED, TRANSMITTED, STORED IN A RETRIEVAL SYSTEM OR TRANSLATED
INTO ANY HUMAN OR COMPUTER LANGUAGE, IN ANY FORM, BY ANY MEANS, IN WHOLE OR IN
PART, WITHOUT THE PRIOR EXPRESS WRITTEN CONSENT OF RATIONAL.

TRADEMARKS
Rational, Rational Software Corporation, Rational the software development company, ClearCase, ClearQuest, Object
Testing, Purify, Quantify, Rational Apex, Rational Rose, Rational Suite, among others, are either trademarks or
registered trademarks of Rational Software Corporation in the United States and/or in othercountries.All other names
are used for identification purposes only, and are trademarks or registered trademarks of their respective companies.

Microsoft, the Microsoft logo, Windows, Windows NT, Windows Me and Windows 2000 are trademarks or registered
trademarks of Microsoft Corporation in the United States and other countries.

FLEXlm and GLOBEtrotter are trademarks or registered trademarks of GLOBEtrotter Software, Inc. Licensee shall
not incorporate any GLOBEtrotter software (FLEXlm libraries and utilities) into any product or application the
primary purpose of which is software license management.

PATENT
U.S. Patent Nos.5,193,180 and 5,335,344 and 5,535,329 and 5,835,701. Additional patents pending.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

GOVERNMENT RIGHTS LEGEND
Use, duplication, or disclosure by the U.S. Government is subject to restrictions set forth in the applicable Rational
Software Corporation license agreement and as provided in DFARS 277.7202-1(a) and 277.7202-3(a) (1995), DFARS
252.227-7013(c)(1)(ii) (Oct. 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR 227-14, as applicable.

WARRANTY DISCLAIMER
This document and its associated software may be used as stated in the underlying license agreement. Rational
Software Corporation expressly disclaims all other warranties, express or implied, with respect to the media and
software product and its documentation, including without limitation, the warranties of merchantability or fitness for a
particular purpose or arising from a course of dealing, usage, or trade practice.

1

User Guide
Contents
Product Overview... 7

About Online Documentation ... 7
Documentation Updates and Feedback .. 8

Source Code Insertion ... 8
Estimating Instrumentation Overhead ... 9
Reducing Instrumentation Overhead... 12
Information Modes .. 13
Generating SCI Dumps... 14

Target Deployment Ports ... 16
Launching the TDP Editor ... 18
Reconfiguring a TDP for a Compiler or JDK.. 19

Unified Modeling Language ... 20
UML Sequence Diagrams... 20
Model Elements and Relationships in Sequence Diagrams 21
Activations .. 21
Classifier Roles... 22
Destruction Markers.. 24
Lifelines .. 25
Messages ... 27
Objects ... 29
Stimuli... 32
Actions.. 34
Exceptions .. 35
Actors ... 36
Loops.. 36
Synchronizations .. 37
Notes .. 39

Runtime Analysis ... 41

Using Runtime Analysis Features.. 41

2

Code Coverage .. 42
Coverage Types ... 43

Selecting Coverage Levels...43
Ada Coverage...44
C Coverage ..57
C++ Coverage ..68
Java Coverage ...74

Code Coverage Viewer... 80
About the Code Coverage Viewer..80
Source Report ..83
Rates Report ..85
Code Coverage Toolbar ...85
Code Coverage Viewer Preferences..86

Code Coverage Dump Driver.. 87
Static Metrics.. 87

Static Metric Viewer.. 87
Viewing Static Metrics ..87
Static Metrics ..88
Root Level File View...90
Root Level Object View ..91

Halstead Metrics... 93
V(g) or Cyclomatic Number... 95
Metrics Viewer Preferences .. 95

Memory Profiling for C and C++... 96
About Memory Profiling for C, C++ and Ada ... 96
Memory Profiling Results for C, C++ and Ada... 97
Memory Profiling Errors .. 98

Error Messages ..98
Freeing Freed Memory (FFM) ..98
Freeing Unallocated Memory (FUM)..99
Late Detect Array Bounds Write (ABWL) ...99
Late Detect Free Memory Write (FMWL) ...100
Memory Allocation Failure (MAF)...101
Core Dump (COR)..101

Memory Profiling Warnings... 101
Warning Messages...101
Memory in Use (MIU) ...102
Memory Leak (MLK)...102
Memory Potential Leak (MPK) ...103

3

File in Use (FIU)... 104
Signal Handled (SIG) ... 104

Memory Profiling User Heap in C and C++ ... 104
Using the Memory Profiling Viewer ... 109
Memory Profiling Viewer Preferences ... 110

Memory Profiling for Java .. 111
Memory Profiling for Java ... 111
Memory Profiling Results for Java... 112
JVMPI Technology.. 115

Performance Profiling .. 116
About Performance Profiling ... 116
Performance Profiling Results... 117
Performance Profiling SCI Dump Driver.. 119
Performance Profiling Viewer Preferences.. 119
Using the Performance Profiling Viewer.. 120

Runtime Tracing... 121
About Runtime Tracing ... 121
Understanding Runtime Tracing UML Sequence Diagrams 121
Advanced.. 123

Multi-Thread Support ... 123
Partial Trace Flush... 124
Trace Item Buffer ... 125
Splitting Trace Files ... 127

Graphical User Interface.. 129

Discovering the GUI... 129
Start Page... 130
Output Window ... 131
Project Explorer .. 132
Properties Window.. 134
Report Explorer... 135
Standard Toolbars .. 136
Using the GUI Components .. 138

Text Editor.. 141
Tools Menu .. 147
Test Process Monitor ... 149
UML/SD Viewer ... 155

4

Configurations and Settings ... 170
General Settings... 172

Build Settings..174
External Command Settings...177

Runtime Analysis Settings .. 177
General Runtime Analysis Settings..177
Memory Profiling Settings ..181
Performance Profiling Settings...184
Code Coverage Settings ..184
Runtime Tracing Control Settings ..187

Automated Testing Settings.. 189
Selecting Configurations ..189
Modifying Configurations..190

Working with Projects... 191
Creating a Group .. 192
Manually Creating a Test or Application Node .. 192
Creating an External Command Node .. 193
Importing a Makefile ... 194
Refreshing the Asset Browser .. 195
Deleting a Node.. 196
Renaming a Node... 196
Viewing File Properties ... 197
Excluding a Node from a Build.. 197
Adding Files to the Project .. 198
Selecting Build Options... 198
Building and Running a Node ... 199
Cleaning Up Generated Files.. 200
Creating a Source File Folder ... 200
Opening a Report ... 201
Debug Mode... 202
Editing Preferences .. 203
Project Preferences .. 203
Connection Preferences ... 203

Activity Wizards.. 204
New Project Wizard .. 204
Runtime Analysis Wizard.. 205

5

Command Line Interface ... 209

Running a Node from the Command Line.. 209

Command Line Runtime Analysis for C and C++ 210

Command Line Runtime Analysis for Java .. 212

Command Line Tasks .. 213
Setting Environment Variables.. 213
Instrumenting and Compiling the Source Code... 215
Compiling the TDP Library.. 216
Linking the Application .. 217
Running the Test Harness or Application .. 218
Splitting the Trace Dump File.. 219
Troubleshooting Command Line Usage.. 219

Working with Other Development Tools .. 223

Working with Configuration Management .. 223
Working with Rational ClearCase.. 223
Working with Rational ClearQuest .. 225

CMS Preferences... 226
ClearQuest Preferences .. 226

Customizing Configuration Management .. 227
Working with Rational Rose RealTime... 227

Installing Rose RealTime Integration .. 227
Using the Product with Rose RealTime... 228
Collecting Trace Dump Data ... 230
Viewing Results from Rose RealTime... 231
Advanced Rose RealTime Integration... 232

Working with Microsoft Visual Studio ... 236
Installing Microsoft Visual Studio Integration... 236
Configuring Microsoft Visual Studio Integration... 236

Technical Support .. 241

Glossary.. 245

6

 7

Product Overview 1
PurifyPlus RealTime is a complete solution for runtime analysis on
embedded and real-time platforms that allows you to detect memory leaks,
make your code faster, locate dead or unexecuted portions of code and
visually follow the execution of your code.

With one mouse click, your target-based application is equipped with the
robust functionality of these components:

• Memory Profiling: Providing memory leak detection for all of your C,
C++ and Java code

• Performance Profiling: Providing function-level performance profiling
for all of your C, C++ and Java code

• Code Coverage: Providing full code coverage and metrics for C, C++,

Java and Ada in a color-coded source-code GUI

• Runtime Tracing: Providing run-time-generated UML sequence
diagrams of interactions between C, C++ and Java modules, classes, and
instances

Discover the power of Rational PurifyPlus RealTime's run-time analysis
capabilities. Know your code inside and out without having to change the
way you work.

About Online Documentation

The entire documentation set for PurifyPlus RealTime is provided as a full-
featured online help system.

8

Depending on the operating system you are using, this documentation was
designed to be viewed with either:

• Microsoft's HTML Help browser for Windows.

• Netscape Navigator 4.7 or later on UNIX operating systems or any other
Java-enabled web browser.

Both environments provide contextual-help from within the application, a
full-text search facility, and direct navigation through the Table of Contents
and Index panes on the left-hand side of the Help window.

Documentation Updates and Feedback

For the most recent documentation updates please visit the Product Support
section of the following website:

http://www.rational.com/products/testrt/pplus_rt.jsp

Feedback

We do our best to provide you with the highest possible quality in our user
documentation, and your feedback is essential for us to improve the
standards of our products. If you have any comments or suggestions about
our online documentation, feel free to contact us at techpubs@rational.com.

Keep in mind that this e-mail address is only for documentation feedback.
For technical questions, please contact Technical Support.

Source Code Insertion

Rational's Source Code Insertion (SCI) technology uses instrumentation
techniques that automatically adds special code to the source files under
analysis. After compilation, execution of the code produces SCI dump data
for the selected runtime analysis or automated testing features.

http://www.rational.com/products/testrt/pplus_rt.jsp

 9

Rational PurifyPlus RealTime makes extensive use of SCI technology to
transparently produce test and analysis reports on both native and
embedded target platforms.

Estimating Instrumentation Overhead

Instrumentation overhead is the increase in the binary size or the execution
time of the instrumented application, which is due to Source Code Insertion
(SCI) generated by the Runtime Analysis features.

Rational's SCI technology is designed to reduce both types of overhead to a
bare minimum. However, this overhead may still impact your application.

The following table provides a quick estimate of the overhead generated by
the product.

Code Coverage Overhead

Overhead generated by the Code Coverage feature depends largely on the
coverage types selected for analysis.

A 48 byte structure is declared at the beginning of the instrumented file.

Depending on the information mode, each branch is referenced by a 1 byte
(pass mode), 1 bit (compact mode) or 4 byte (count mode) array.

The size of this array may be rounded up by the compiler (especially in
compact mode because of the 8 bit minimum integral type found in C/C++).

Other Specifics:

• loops, switch, case statements: a 1 byte local variable is declared for each
instance

• (not forced) modified/multiple conditions: a n byte local array is
declared at the beginning of the enclosing routine, where n is the

10

number of conditions belonging to a decision in the routine

I/O is either performed at the end of the execution or when the end-user
decides (please refer to Coverage Snapshots in the documentation).

In conclusion:

Count mode and modified/multiple conditions have the greatest data and
execution time overhead. In most cases, it is recommended that coverage
types be independently selected and pass mode be used as the default.
Source code can also be partially instrumented. Compact mode is helpful
when data space is lacking, but there is still an unavoidable increase in code
size (shift/bits masks) and execution time.

Memory and Performance Profiling and Runtime Tracing

Any source file containing an instrumented routine receives a declaration
for a 16 byte structure.

Within each instrumented routine, a n byte structure is locally declared,
where n is:

16 bytes

+4 bytes for Runtime Tracing

+4 bytes for Memory Profiling

+3*t bytes for Performance Profiling, where t is the size of the type
returned by the clock-retrieving function

For example, if t is 4 bytes, each instrumented routine is increased of:

• 20 bytes for Memory Profiling only

• 20 bytes for Runtime Tracing only

 11

• 28 bytes for Performance Profiling only

• 36 bytes for all Runtime Analysis features together

Memory Profiling Overhead

Note This applies to Memory Profiling for C, C++ and Ada. Memory
Profiling for Java does not use source code insertion.

Any call to an allocation function is replaced by a call to the Memory
Profiling Library. See the Target Deployment Guide for more information.

These calls aim to track allocated blocks of memory. For each memory
block, 16+12*n bytes are allocated to contain a reference to it, as well as to
contain link references and the call stack observed at allocation time. n
depends on the Call Stack Size Setting, which is 6 by default.

If ABWL errors are to be detected, the size of each tracked, allocated block is
increased by 2*s bytes where s is the Red Zone Size Setting (16 by default).

If FFM or FMWL errors are to be detected, a Free Queue is created whose
size depends on the Free Queue Length and Free Queue Size Settings.
Queue Length is the maximum number of tracked memory blocks in the
queue. Queue Size is the maximum number of bytes, which is the sum of
the sizes of all tracked blocks in the queue.

Performance Profiling Overhead

For any source file containing at least one observed routine, a 24 byte
structure is declared at the beginning of the file.

The size of the global data storing the profiling results of an instrumented
routine is 4+3*t bytes where t is the size of the type returned by the clock
retrieving function. See the Target Deployment Guide for more
information.

12

Runtime Tracing Overhead

Implicit default constructors, implicit copy constructors and implicit
destructors are explicitly declared in any instrumented classes that permits
it. Where C++ rules forbid such explicit declarations, a 4 byte class is
declared as an attribute at the end of the class.

Reducing Instrumentation Overhead

Rational's Source Code Insertion (SCI) technology is designed to reduce
both performance and memory overhead to a minimum. Nevertheless, for
certain cross-platform targets, it may need to be reduced still further. There
are three ways to do this.

Limiting Code Coverage Types

When using the Code Coverage feature, procedure input and simple and
implicit block code coverage are enabled by default. You can reduce
instrumentation overhead by limiting the number of coverage types.

Note The Code Coverage report can only display coverage types among
those selected for instrumentation.

Instrumenting Calls (C Language)

When calls are instrumented, any instruction that calls a C user function or
library function constitutes a branch and thus generates overhead. You can
disable call instrumentation on a set of C functions using the Selective Code
Coverage Instrumentation Settings.

For example, you can usually exclude calls to standard C library functions
such as printf or fopen.

Code Coverage Information

 13

In C++, use compact mode to decrease the data size overhead for targets
where the code size is less critical.

In Ada, you can use pass mode to reduce the data amount overhead in the
instrumented program. When using CLI mode, you can also use the -
instrumentation option of the Instrumentor command line.

Information Modes

The Information Mode is the method used by Code Coverage to code the
trace output. This has a direct impact of the size of the trace file as well as
on CPU overhead.

You can change the information mode used by Code Coverage in the
Coverage Type settings. There are three information modes:

• Default mode

• Compact mode

• Hit Count mode

Default Mode

When using Default or Pass mode, each branch generates one byte of
memory. Which offers the best compromise between code size and speed
overhead.

Compact Mode

The Compact mode is functionally equivalent to Pass mode, except that
each branch needs only one bit of storage instead of one byte. This implies a
smaller requirement for data storage in memory, but produces a noticeable
increase in code size (shift/bits masks) and execution time.

Hit Count Mode

14

In Hit Count mode, instead of storing a Boolean value indicating coverage
of the branch, a specific count is maintained of the number of times each
branch is executed.

This information is displayed in the Code Coverage report. Count totals are
given for each branch, for all trace files transferred to the report generator
as parameters.

In the Code Coverage report, branches that have never been executed are
highlighted with asterisk '*' characters.

The maximum count in the report generator depends on the machine on
which tests are executed. If this maximum count is reached, the report
signals it with a Maximum reached message.

Generating SCI Dumps

By default, the system call atexit() or on_exit() invokes the Target
Deployment Port (TDP) function that dumps the trace data. You can
therefore instrument either all or a portion of the application as required.

When instrumenting embedded or specialized applications that never
terminate, it is sometimes impractical to generate a dump on the atexit() or
on_exit() functions.If you exit such applications unexpectedly, traces may
not be generated. In this case, you must either:

• Specify one or several explicit dump points in your source code, or

• Use an external signal to call a dump routine, or

• Produce an snapshot when a specific function is encountered.

Explicit Dump

Code Coverage, Memory Profiling and Performance Profiling allow you to
explicitly invoke the TDP dump function by inserting a call to the

 15

_ATCPQ_DUMP(<int>) macro definition, where <int> is either 0 or 1.

• Use _ATCPQ_DUMP(1) to reset the internal trace table.

• Use _ATCPQ_DUMP(0) to preserve the internal trace table. This
produces redundant information.

Explicit dumps should not be placed in the main loop of the application.
The best location for an explicit dump call is in a secondary function, for
example called by the user when sending a specific event to the application.

The explicit dump method is sometimes incompatible with watchdog
constraints. If such incompatibilities occur, you must:

• Deactivate any hardware or software watchdog interruptions

• Acknowledge the watchdog during the dump process, by adding a
specific call to the Data Retrieval customization point of the TDP.

Dump on Signal

Code Coverage allows you to dump the traces at any point in the source
code by using the ATC_SIGNAL_DUMP environment variable.

When the signal specified by ATC_SIGNAL_DUMP is received, the Target
Deployment Port function dumps the trace data and resets the signal so that
the same signal can be used to perform several trace dumps.

Before starting your tests, set ATC_SIGNAL_DUMP to the following value:
<number>[:0|1]

where <number> is the number of the signal that is to trigger the trace dump.

The second parameter (0 or 1) after the separator character indicates
whether the internal tables should be reset, so as to generate separate traces
for successive independent tests (parameter 1) or cumulative traces
(parameter 0). For example:

16

 16:0
 17:1

The signal must be redirectable signal, such as SIGUSR1 or SIGINT for
example.

Instrumentor Snapshot

The Instrumentor snapshot option enables you to specify the functions of
your application that will dump the trace information on entry, return or
call.

In snapshot mode, the Runtime Tracing feature starts dumping messages
only if the Partial Message Dump setting is activated. Code Coverage,
Memory Profiling and Performance Profiling features all dump their
internal trace data.

Use the _ATCPQ_RESET macro definition to specify whether the internal
table reset must be done. By default, the _ATCPQ_RESET value is 1 (reset
will be done). If you do not want to reset the tables, you must insert the
compiler option to set this macro value to 0.

Target Deployment Ports

Rational's Target Deployment Technology is a versatile, low-overhead
technology enabling target-independent tests and run-time analysis despite
limitless target support. Used by all PurifyPlus RealTime features, the
Target Deployment Port (TDP) technology is constructed to accommodate
your compiler, linker, debugger, and target architecture. Tests are
independent of the TDP, so tests don't change when the environment does.
Test script deployment, execution and reporting remain easy to use.

Key Capabilities and Benefits

• Compiler dialect-aware and linker-aware, for transparent test building.

 17

• Easy download of the test harness environment onto the target via the
user's IDE, debugger, simulator or emulator.

• Painless test and run-time analysis results download from the target
environment using JTAG probes, emulators or any available
communication link, such as serial, Ethernet or file system.

• Powerful test execution monitoring to distribute, start, synchronize and
stop test harness components, as well as to implement communication
and exception handling.

• Versatile communication protocol adaptation to send and receive test
messages.

• XML-based TDP editor enabling simple, in-house TDP customization

Downloading Target Deployment Ports

Target Deployment technology was designed to adapt to any embedded or
native target platform. This means that you need a particular TDP to deploy
PurifyPlus RealTime to your target.

A wide array of TDPs has already been developed by Rational to suit most
target platforms. You can freely download available TDPs from the
following page:

http://www.rational.com/products/testrt/tdp.jsp

Alternatively, from the Help menu, select Download Target Deployment
Ports.

Downloaded TDPs can be freely used an modified with the TDP Editor.

Obtaining New Target Deployment Ports

If there is no existing TDP for your particular target platform, you have two
options:

http://www.rational.com/products/testrt/tdp.jsp

18

• You can choose to create, unassisted, a TDP tailored for your embedded
environment. This requires extensive knowledge of your development
environment and the product. This also requires some knowledge of the
scripting language Perl.

• Rational can provide Professional Services and create a tailored TDP for
you.

To create a TDP, see the Target Deployment Guide provided with the TDP
Editor. The Target Deployment Guide provides an overview and detailed
information on setting up a TDP, and using the TDP Editor.

For Rational's Professional Services, please contact Rational via one of these
methods:

• Contact your Rational Sales Representative directly.

• Submit a contact request via this link:
http://www.rational.com/products/testrt/forms/test_rt.jsp

• If you don't know your Sales Representative, contact Rational Customer
Support.

Launching the TDP Editor

The TDP Editor provides a user interface designed to help you customize
and create unified Target Deployment Ports (TDP).

Please refer to the Target Deployment Guide, accessible from the Help
menu of the Target Deployment Port Editor, for information about
customizing Target Deployment Ports and using the editor.

To run the TDP Editor from Windows:

• From the Windows Tools menu, select Target Deployment Port Editor
and Start.

Updating a Target Deployment Port

http://www.rational.com/products/testrt/forms/test_rt.jsp

 19

The Target Deployment Port (TDP) settings are read or loaded when a
PurifyPlus RealTime project is opened, or when a new TDP is used.

If you make any changes to a TDP with the TDP Editor, these will not be
taken into account until the TDP has been reloaded in the project.

To reload the TDP in PurifyPlus RealTime:

1. From the Project menu, select Configurations.

2. Select the TDP and click Remove.

3. Click New, select the TDP and click OK.

Reconfiguring a TDP for a Compiler or JDK

During installation of Rational PurifyPlus RealTime:

• on Windows: A local Microsoft Visual Studio compiler and JDK are
located, based on registry settings. Only the compiler and JDK located
during installation will be accessible within PurifyPlus RealTime.

• on Unix platforms: The user is confronted by two interactive dialogs.
These dialogs serve to clarify the location of the local GNU compiler and
(if present) local JDK. Only the GNU compiler and JDK specified within
these dialogs will be accessible within PurifyPlus RealTime.

To make a different compiler or JDK accessible in PurifyPlus
RealTime:

1. From the Tools menu, select the Target Deployment Port Editor and
Start.

2. In the TDP Editor, from the File menu, select Open.

3. Open the .xdp file corresponding to the new compiler or JDK for which
you would like to generate support

20

4. From the File menu, select Save.

5. Close the TDP Editor

To update an existing project to use the newly supported compiler or
JVM:

1. Open the existing project in PurifyPlus RealTime

2. From the Project menu, select Configuration.

3. In the Configurations window, click New.

4. In the New Configuration window, select the newly supported
compiler or JDK in the dropdown list and click OK.

5. In the Configurations window, click Close.

Unified Modeling Language

UML Sequence Diagrams

A sequence diagram is a Unified Modeling Language (UML) diagram that
provides a view of the chronological sequence of messages between
instances (objects or classifier roles) that work together in an interaction or
interaction instance. A sequence diagram consists of a group of instances
(represented by lifelines) and the messages that they exchange during the
interaction. You line up instances participating in the interaction in any
order from left to right, and then you position the messages that they
exchange in sequential order from top to bottom. Activations sometimes
appear on the lifelines.

A sequence diagram belongs to an interaction in a collaboration or an
interaction instance in a collaboration instance.

 21

Model Elements and Relationships in Sequence Diagrams

The UML sequence diagrams produced by the UML/SD Viewer illustrate
program interactions with an emphasis on the chronological order of
messages.

Activations

An activation (also known as a focus of control) is a notation that can
appear on a lifeline to indicate the time during which an instance (an actor
instance, object, or classifier role) is active. An active instance is performing
an action, such as executing an operation or a subordinate operation. The
top of the activation represents the time at which the activation begins, and
the bottom represents the time at which the activation ends.

For example, in a sequence diagram for a "Place Online Order" interaction,
there are lifelines for a ":Cart" object and ":Order" object. An "updateTotal"
message points from the ":Order" object to the ":Cart" object. Each lifeline
has an activation to indicate how long it is active because of the
"updateTotal" message.

Shape

An activation appears as a thin rectangle on a lifeline. You can stack
activations to indicate nested stack frames in a calling sequence.

Activation Nested Activations

22

Using Activations

Activations can appear on your sequence diagrams to represent the
following:

• On lifelines depicting instances (actors, classifier roles, or objects), an
activation typically appears as the result of a message to indicate the
time during which an instance is active.

• On lifelines involved in complex interactions, nested activations (also
known as stacked activations or nested focuses of control) are displayed
to indicate nested stack frames in a calling sequence, such as those that
happen during recursive calls.

• On lifelines depicting concurrent operations, the entire lifeline may
appear as an activation (thin rectangles) instead of dashed lines.

Naming Conventions

An activation is usually identified by the incoming message that initiates it.
However, you may add text labels that identify activations either next to the
activation or in the left margin of the diagram.

Classifier Roles

A classifier role is a model element that describes a specific role played by a
classifier participating in a collaboration without specifying an exact

 23

instance of a classifier. A classifier role is neither a class nor an object.
Instead, it is a model element that specifies the kind of object that must
ultimately fulfill the role in the collaboration. The classifier role limits the
kinds of classifier that can be used in the role by referencing a base
classifier. This reference identifies the operations and attributes that an
instance of a classifier will need in order to fulfill its responsibilities in the
collaboration.

Classifier roles are commonly used in collaborations that represent patterns.
For example, a subject-observer pattern may be used in a system. One
classifier role would represent the subject, and one would represent the
observer. Each role would reference a base class that identifies the attributes
and operations that are needed to participate in the subject-observer
collaboration. When you use the pattern in the system, any class that has the
specified operations and behaviors can fill the role.

Shape

A classifier role appears as a rectangle. Its name is prefixed with a slash and
is not underlined. In sequence diagrams, a lifeline (a dashed, vertical line) is
attached to the bottom of a classifier role to represent its life over a period of
time. For details about lifelines, see Lifelines.

Classifier Role Classifier Role with Lifeline

Using Classifier Roles

You can add classifier roles to your model to represent the following:

24

• In models depicting role-based interactions, a classifier role represents
an instance in an interaction. Using classifier roles instead of objects can
provide two advantages: First, a class can serve as the base classifier for
multiple classifier roles. Second, instances of a class can realize multiple
classifier roles in one or more collaborations.

• In models depicting patterns, a classifier role specifies the kind of object
that must ultimately fulfill a role in the pattern. The classifier role shows
how the object will participate in the pattern, and its reference to a base
class defines the attributes and operations that are required for
participation in the pattern. When the pattern is used in the model,
classes are bound to the collaboration to identify the type of objects that
realize the classifier roles.

The classifier roles in a model are usually contained in a collaboration and
usually appear in sequence diagrams.

Naming Conventions

The name of a classifier role consists of a role name and base class name.
You can omit one of the names. The following table identifies the variations
of the naming convention.

Convention Example Description

/rolename:baseclass /courseOffering:course The courseOffering role is based on the
course class.

/rolename /courseOffering Role name. The base class is hidden or
is not defined.

:baseclass :course Unnamed role based on the course
class.

Destruction Markers

A destruction marker (also known as a termination symbol) is a notation
that can appear on a lifeline to indicate that an instance (object or classifier

 25

role) has been destroyed. Usually, the destruction of an object results in the
memory occupied by the data members of the object being freed.

For example, when a customer exits the Web site for an e-commerce
application, the ":Cart" object that held information about the customer's
activities is destroyed, and the memory that it used is freed. The destruction
of the ":Cart" object can be shown in a sequence diagram by adding a
destruction marker on the ":Cart" object's lifeline.

Shape

A destruction marker appears as an X at the end of a lifeline.

Naming Conventions

Destruction markers do not have names.

Lifelines

A lifeline is a notation that represents the existence of an object or classifier
role over a period of time. Lifelines appear only in sequence diagrams,
where they show how each instance (object or classifier role) participates in
the interaction.

For example, a "Place Online Order" interaction in an e-commerce
application includes a number of lifelines in a sequence diagram, including
lifelines for a ":Cart" object, ":OnlineOrder" object, and ":CheckoutCart"

26

object. As the interaction is developed, stimuli are added between the
lifelines.

Shape

A lifeline appears as a vertical dashed line in a sequence diagram.

Lifeline for an Object Lifeline for a Classifier Role

Using Lifelines

When you add a classifier role or object to a sequence diagram, it will
automatically have a lifeline. You can use lifelines to indicate the following:

• Creation – If an instance is created during the interaction, its lifeline
starts at the level of the message or stimulus that creates it; otherwise, its
lifeline starts at the top of the diagram to indicate that it existed prior to
the interaction.

• Communication – Messages or stimuli between instances are illustrated
with arrows. A message or stimulus is drawn with its end on the lifeline
of the instance that sends it and its arrowhead on the lifeline of the
instance that receives it.

• Activity – The time during which an instance is active (either executing
an operation directly or through a subordinate operation) can be shown
with activations.

• Destruction – If an instance is destroyed during the interaction, its
lifeline ends at the level of the message or stimulus that destroys it, and

 27

a destruction marker appears; otherwise, its lifeline extends beyond the
final message or stimulus to indicate that it exists during the entire
interaction.

Naming Conventions

A lifeline has the name of an object or classifier role. For details, see Objects
or Classifier Roles.

Messages

A message is a model element that specifies a communication between
classifier roles and usually indicates that an activity will follow. The types
of communications that messages model include calls to operations, signals
to classifier roles, the creation of classifier roles, and the destruction of
classifier roles. The receipt of a message is an instance of an event.

For example, in the observer pattern, the instance that is the subject sends
an "Update" message to instances that are observing it. You can illustrate
this behavior by adding "Subject" and "Observer" classifier roles and then
adding an "Update" message between them.

Shape

A message appears as a line with an arrow. The direction of the arrow
indicates the direction in which the message is sent. In a sequence diagram,
messages usually connect two classifier role lifelines.

28

Message shapes can be adorned with names and sequence numbers.

Types of Messages

Different types of messages can be used to model different flows of control.

Type Shape Description

Procedure Call or
Nested Flow of
Control

 Models either a call to an operation or a call to a
nested flow of control. When calling a nested flow of
control, the system waits for the nested flow of control
to complete before continuing with the outer flow.

Asynchronous Flow
of Control

 Models an asynchronous message between two
objects. The source object sends the message and
immediately continues with the next step.

Return From a
Procedure Call

 Models a return from a call to a procedure. This type
of message can be omitted from diagrams because it is
assumed that every call has a return.

Using Messages

You can add messages to your model to represent the communications
exchanged between classifier roles during dynamic interactions.

Note Both messages and stimuli are supported. Stimuli are added to
collaboration instances, and messages are added to collaborations.
For details about stimuli, see Stimuli.

The messages in a model are usually contained in collaborations and
usually appear in sequence diagrams.

Naming Conventions

Messages can be identified by a name or operation signature.

Type Example Description

 29

Name // Get the Password A name identifies only the name of the message.
Simple names are often used in diagrams
developed during analysis because the messages
are identified by their responsibilities and not
operations. One convention uses double slashes
(//) to indicate that the stimulus name is not
associated with an operation.

Signature getPassword(String) When an operation is assigned to a message,
you can display the operation signature to
identify the name of the operation and its
parameters. Signatures are often used in
diagrams developed during design because the
provide the detail that developers need when
they code the design.

Objects

An object is a model element that represents an instance of a class. While a
class represents an abstraction of a concept or thing, an object represents an
actual entity. An object has a well-defined boundary and is meaningful in
the application. Objects have three characteristics: state, behavior, and
identity. State is a condition in which the object may exist, and it usually
changes over time. The state is implemented with a set of attributes.
Behavior determines how an object responds to requests from other objects.
Behavior is implemented by a set of operations. Identity makes every object
unique. The unique identity lets you differentiate between multiple
instances of a class if each has the same state.

The behaviors of objects can be modeled in sequence and activity diagrams.
In sequence diagrams, you can display how instances of different classes
interact with each other to accomplish a task. In activity diagrams, you can
show how one or more instances of an object changes states during an
activity. For example, an e-commerce application may include a "Cart" class.
An instance of this class that is created for a customer visit, such as

30

"cart100:Cart." In a sequence diagram, you can illustrate the stimuli, such as
"addItem()," that the "cart100:Cart" object exchanges with other objects. In
an activity diagram, you can illustrate the states of the "cart100:Cart" object,
such as empty or full, during an activity such as a user browsing the online
catalog.

Shape

In sequence and activity diagrams, an object appears as a rectangle with its
name underlined. In sequence diagrams, a lifeline (a dashed, vertical line) is
attached to the bottom of an object to represent the existence of the object
over a period of time. For details about lifelines, see Lifelines.

Object Object with Lifeline

There are two notable variations of the object shape. First, active objects
appear with thicker borders than other types of objects. Second,
multiobjects appear as two overlapped rectangles. (These types of objects
are defined later in this topic.)

Active Object Multiobject

In addition, the object shape may include adornments for properties, such
as persistence and concurrency. It may display a stereotype with an icon or
the display of the stereotype name in guillemets (« »). Finally, it may show

 31

an attribute compartment. In activity diagrams, an object shape can display
the state of the object under the name.

Types of Objects

The following table identifies three types of objects.

Types of Objects Description

Active Owns a thread of control and may initiate control activity. Processes
and tasks are kinds of active objects.

Passive Holds data, but does not initiate control.

Multiobject Is a collections of object or multiple instances of the same class. It is
commonly used to show that a set of objects interacts with a single
stimulus.

Using Objects

You can add objects to your model to represent concrete and prototypical
instances. A concrete instance represents an actual person or thing in the
real world. For example, a concrete instances of a "Customer" class would
represent an actual customer. A prototypical instance represents an
example person or thing. For example, a prototypical instance of a
"Customer" class would contain the data that a typical customer would
provide.

The objects in a model usually appear in activity and sequence diagrams.

Naming Conventions

Each object must have a unique name. A full object name includes an object
name, role name, and class name. You may use any combination of these
three parts of the object name. The following table identifies the variations
of object names.

Syntax Example Description

32

object/role:class cart100/storage:cart Named instance (cart100) of the cart class
that is playing the storage role during an
interaction.

object:class cart100:cart Named instance (cart100) of the cart
class.

/role:class /storage:cart Anonymous instance of the cart class
playing the storage role in an interaction.

object/role cart/storage An object named cart playing the storage
role. This object is either an object that is
hiding the name of the class or an
instance that is not associated with a
class.

object cart100 An object named cart100. This object is
either an instance that is hiding the name
of the class or an instance that is not
associated with a class.

/role /storage An anonymous instance playing the
storage role. This object is either an
instance that is hiding the name of the
object and class or an instance that is not
associated with an object or class.

:class :cart Anonymous instance of the customer
class.

Stimuli

A stimulus is a model element that represents a communication between
objects in a sequence diagram and usually indicates that an activity will
follow. The types of communications that stimuli model include calls to
operations, signals to objects, the creation of objects, and the destruction of
objects. The receipt of a stimulus is an instance of an event.

For example, in an e-commerce application, you can model how a customer

 33

logs in to the application. A "Customer" actor instance sends a stimulus
containing a name and password to a "LoginForm" object, and the
"LoginForm" object sends a stimulus to itself to verify the input.

Shape

A stimulus appears as a line with an arrow. The direction of the arrow
indicates the direction in which the stimulus is sent. In a sequence diagram,
a stimulus usually connects two object lifelines.

Stimulus shapes can be adorned with names and sequence numbers.

Types of Stimuli

Different types of stimuli can be used to model different flows of control.

Type Shape Description

Procedure Call or
Nested Flow of
Control

 Models either a call to an operation or a call to a
nested flow of control. When calling a nested flow of
control, the system waits for the nested flow of control
to complete before continuing with the outer flow.

Asynchronous Flow
of Control

 Models an asynchronous stimulus between two
objects. The source object sends the stimulus and
immediately continues with the next step.

Return from a
Procedure Call

 Models a return from a call to a procedure. This type
of stimulus can be omitted from diagrams because it

34

is assumed that every call has a return.

Using Stimuli

You can add stimuli to your model to represent the communications
exchanged between objects during dynamic interaction instances.

Note Both messages and stimuli are supported. Stimuli are added to
collaboration instances, and messages are added to collaborations.
For details about messages, see Messages.

The stimuli in a model are contained in collaboration instances and appear
in sequence diagrams.

Naming Conventions

Stimuli can have either names or signatures.

Type Example Description

Name // Get the Password A name identifies only the name of the stimulus.
Simple names are often used in diagrams
developed during analysis because the stimuli
are identified by their responsibilities and not by
their operations. One convention uses double
slashes (//) to indicate that the stimulus name is
not associated with an operation.

Signature getPassword(String) When an operation is assigned to a stimulus, you
can display the operation signature to identify
the name of the operation and its parameters.
Signatures are often used in diagrams developed
during design because the provide the detail that
developers need when they code the design.

Actions

An action is represented as shown below:

 35

The action box displays the name of the action.

The action is linked to its source file. In the UML/SD Viewer, click an action
to open the Text Editor at the corresponding line in the source code.

Exceptions

When tracing C++ exceptions, Runtime Tracing locates the throw point of
the exception (the throw keyword in C++) as well as its catch point.

Exceptions are displayed as a slanted red line, as shown in the example
below, generated by Runtime Tracing.

To jump to the corresponding portion of source code:

Click an instance to open the Text Editor at the line in the source code
where the exception is thrown.

Click the catch exception or end of catch exception notes to open the Text

36

Editor at the line where the exception is caught.

To filter an instance out of the UML sequence diagram:

Right-click an exception and select Filter instance in the pop-up menu.

Actors

An actor is a model element that describes a role that a user plays when
interacting with the system being modeled. Actors, by definition, are
external to the system. Although an actor typically represents a human user,
it can also represent an organization, system, or machine that interacts with
the system. An actor can correspond to multiple real users, and a single user
may play the role of multiple actors.

Shape

An actor usually appears as a "stick man" shape.

In models depicting software applications, actors represent the users of the
system. Examples include end users, external computer systems, and
system administrators.

Naming Conventions

Each actor has a unique name that describes the role the user plays when
interacting with the system.

Loops

Loop detection simplifies UML sequence diagrams by summarizing
repeating traces into a loop symbol.

 37

Note Loops are a Rational extension to UML Sequence Diagrams and are
not supported by the UML standard.

A loop is represented as shown below:

A tag displays the name of the loop and the number of executions.

The loop is linked to its source file. In the UML/SD Viewer, click a loop to
open the Text Editor at the corresponding line in the source code.

To configure Runtime Tracing to detect loops:

1. From the Project Explorer, select the highest level node to which you
want to apply the option, such as the Workspace.

2. Right-click the node, and select Settings... from the pop-up menu.

3. In the Configuration Settings dialog, select the Runtime Tracing node,
and Trace Control.

4. From the options box, set the Automatic Loop Detection to Yes.

5. Click OK.

Synchronizations

Synchronizations are an extension to the UML standard that only apply

38

when using the split trace file feature of Runtime Tracing. They are used to
show that all instance lifelines are synchronized at the beginning and end of
each split TDF file.

Shape

A synchronization is represented as shown below:

The synchronization box displays the name of the synchronization.

The synchronization is linked to its source file. In the UML/SD Viewer, click
a synchronization to open the Text Editor at the corresponding line in the
source code.

When the Split Trace capability is enabled, the UML/SD Viewer displays the
list of TDF files generated in the UML/SD Viewer toolbar.

 39

At the beginning of each diagram, before the Synchronization, the Viewer
displays the context of the previous file.

Another synchronization is displayed at the end of each file, to insure that
all instance lifelines are together before viewing the next file.

Notes

Notes appear as shown below and are centered on, and attached to, the
element to which they apply:

UML notes can be associated to messages and instances.

The note is linked to its source file. In the UML/SD Viewer, click a note to
open the Text Editor at the corresponding line in the source code.

40

 41

Runtime Analysis 2
The runtime analysis feature set allows you to closely monitor the behavior
of your application for debugging and validation purposes. Each feature
instruments the source code providing real-time analysis of the application
while it is running, either on a native or embedded target platform.

Using Runtime Analysis Features

The runtime analysis features of PurifyPlus RealTime allow you to closely
monitor the behavior of your application for debugging and validation
purposes.

These features use Rational's unique SCI technology to instrument the
source code providing real-time analysis of the application while it is
running, either on a native or embedded target platform.

• Memory Profiling analyzes memory usage and detects memory leaks

• Performance Profiling provides performance load monitoring

• Code Coverage performs code coverage analysis

• Runtime Tracing draws a real-time UML Sequence Diagram of your
application

Note SCI instrumentation of the source code generates a certain amount
of overhead, which can impact application size and performance.
See Source Code Insertion Technology for more information.

How to use the runtime analysis features:

Here is a basic rundown of the main steps to using the runtime analysis

42

feature set:

1. From the Start page, set up a new project. This can be done
automatically with the New Project Wizard.

2. Follow the Activity Wizard to add your application source files to the
workspace.

3. Select the source files under analysis in the wizard to create the
application node. The wizard guides you through the process of
selecting the right test feature for your needs.

4. Select the runtime analysis features to be applied to the application in
the Build options.

5. Use the Project Explorer to set up the test campaign and add any
additional runtime analysis or test nodes.

6. Run the application node to build and execute the instrumented
application.

7. View and analyze the generated test reports.

Code Coverage

Source-code coverage consists of identifying which portions of a program
are executed or not during a given test case. Source-code coverage is
recognized as one of the most effective ways of assessing the efficiency of
the test cases applied to a software application.

The Code Coverage feature brings efficient, easy-to-use robust coverage
technologies to real-time embedded systems. Code Coverage provides a
completely automated and proven solution for C, C++ and Ada software
coverage based on optimized source-code instrumentation.

 43

Coverage Types

Selecting Coverage Levels

The Code Coverage feature provides the capability of reporting of various
source code units and branches, depending on the coverage type selected.

By default, Code Coverage implements full coverage analysis, meaning that
all coverage types are instrumented by source code insertion (SCI).
However, in some cases, you might want to reduce the scope of the Code
Coverage report, such as to reduce the overhead generated by SCI for
example.

Branches

When referring to the Code Coverage feature, a branch denotes a generic
unit of enumeration. For each branch, you specify the coverage type. Code
Coverage instruments each branch when you compile the source under test.

Coverage Levels

The following table provides details of each coverage type as used in each
language supported by the product

Coverage Level Languages

Block Coverage C Ada C++
 Java

Call Coverage C Ada

Condition Coverage C Ada

Function, Unit or Method Coverage C Ada C++
 Java

44

Link Files Ada

Templates C++

Additional statements C Ada C++
 Java

To select a coverage level:

1. Right-click the application or test node concerned by the Code Coverage
report.

2. From the pop-up menu, select Settings.

3. In the Configuration list, expand Code Coverage and select
Instrumentation Control.

4. Select or clear the coverage levels as required.

5. Click OK.

Ada Coverage

Ada Block Coverage

When analyzing Ada source code, Code Coverage can provide the
following block coverage types:

• Statement Blocks

• Statement Blocks and Decisions

• Statement Blocks, Decisions, and Loops

Statement Blocks (or Simple Blocks)

Simple blocks are the main blocks within units as well as blocks introduced
by decisions, such as:

 45

• thenthenthenthen and elseelseelseelse (elsifelsifelsifelsif) of an ifififif

• loop...end looploop...end looploop...end looploop...end loop blocks of a for...whilefor...whilefor...whilefor...while

• exit when..exit when..exit when..exit when...end loop.end loop.end loop.end loop or exit whenexit whenexit whenexit when blocks at the end of an
instruction sequence

• whenwhenwhenwhen blocks of a casecasecasecase

• whenwhenwhenwhen blocks of exception processing blocks

• do...enddo...enddo...enddo...end block of the acceptacceptacceptaccept instruction

• orororor and elseelseelseelse blocks of the selectselectselectselect instruction

• begin...exceptionbegin...exceptionbegin...exceptionbegin...exception blocks of the decladecladecladeclarererere block that contain an
exceptions processing block.

• select...then abortselect...then abortselect...then abortselect...then abort blocks of an ATCATCATCATC statement

• sequence blocks: instructions found after a potentially
terminal statement.

A simple block constitutes one branch. Each unit contains at least one
simple block corresponding to its body, except packages that do not contain
an initialization block.

Decision Coverage (Implicit Blocks)

An if statement without an else statement introduces an implicit block.
-- Function power_10
-- -block=decision or -block=implicit
function power_10 (value, max : in integer) return integer
is
 ret, i : integer ;
begin
 if (value == 0) then
 return 0;
 -- implicit else block
 end if ;
 for i in 0..9
 loop
 if ((max /10) < ret) then

46

 ret := ret *10 ;
 else
 ret := max ;
 end if ;
 end loop ;
 return ret;
end ;

An implicit block constitutes one branch.

Implicit blocks refer to simple blocks to describe possible decisions. The
Code Coverage report presents the sum of these decisions as an absolute
value and a ratio.

Loop Coverage (Logical Blocks)

A for or while loop constitutes three branches:

• The simple block contained in the loop is never executed: the exit
condition is true immediately

• The simple block is run only once: the exit condition is false, and then
true on the next iteration

• The simple block run at least twice: the exit condition is false at least
twice, then finally true)

A loop...end loop block requires only two branches because the exit
condition, if it exists, is tested within the loop:

• The simple block is played only once: the exit condition is true on the
first iteration, if the condition exists

• The simple block is played at least twice: the exit condition false at least
once and then finally true, if the condition exists

In the following example, you need to execute the function try_five_times()
several times for 100 % coverage of the three logical blocks induced by this
while loop.

-- Function try_five_times

 47

function try_five_times return integer is
 result, i : integer := 0 ;
begin
 -- try is any function
 while (i < 5) and then (result <= 0) loop
 result := try ;
 i := integer'succ(i);
 end loop ;
 return result;
end ; -- 3 logical blocks

Logical blocks are attached to the loop introduction keyword.

Asynchronous Transfer of Control (ATC) Blocks

This coverage type is specific to the ADA 95 Asynchronous Transfer of
Control (ATC) block statement (see your ADA documentation).

The ATC block contains tree branches:

• Control immediately transferred: The sequence of control never passes
through the block then abort /end select, but is immediately transferred
to the block select/then abort.

• Control transferred: The sequence of control starts at the block then
abort/end select, but never reaches the end of this block. Because of
trigger event appearance, the sequence is transferred to the block
select/then abort.

• Control never transferred: Because the trigger event never appears, the
sequence of control starts and reaches the end of the block then
abort/end select, and was never transferred to the block select/then
abort.

In the following example, you need to execute the compute_done function
several times to obtain full coverage of the three ATC blocks induced by the
select statement:

function compute done return boolean is
 result : boolean := true ;
begin

48

 -- if computing is not done before 10s ...
 select
 delay 10.0;
 result := false ;
 then abort
 compute;
 end select;
 return result;
end ; -- 3 logical blocks

Code Coverage blocks are attached to the Select keyword of the ATC
statement.

Ada Call Coverage

When analyzing Ada source code, Code Coverage can provide coverage of
function, procedure, or entry calls.

Code Coverage defines as many branches as it encounters function,
procedure, or entry calls.

This type of coverage ensures that all the call interfaces can be shown to
have been exercised for each Ada unit (procedure, function, or entry). This
is sometimes a pass/fail criterion in the software integration test phase.

Ada Condition Coverage

Basic Conditions

Basic conditions are operands of logical operators (standard or derived, but
not overloaded) or, xor, and, not, or else, or and then, wherever they appear
in ADA units. They are also the conditions of if, while, exit when, when of
entry body, and when of select statement, even if these conditions do not
contain logical operators. For each of these basic conditions, two branches
are defined: the sub-condition is true and the sub-condition is false.

A basic condition is also defined for each when of a case statement, even
each sub-expression of a compound when, that is when A | B: two

 49

branches.
-- power_of_10 function
-- -cond
Function power_of_10(value, max : in integer)
is
 result : integer ;
Begin
 if value = 0 then
 return 0;
 end if ;
 result := value ;
 for i in 0..9 loop
 if (max > 0) and then ((max / value) < result)
then
 result := result * value;
 else
 result := max ;
 end if ;
 end loop;
 return result ;
end ; -- there are 3 basic conditions (and 6 branches).
-- Near_Color function
Function Near_Color (color : in ColorType) return
ColorType
is
Begin
 case color is
 when WHITE | LIGHT_GRAY => return WHITE ;
 when RED | LIGHT_RED .. PURPLE => return RED ;
 end case ;
End ; -- there are 4 basics conditions (and 4 branches).

Two branches are enumerated for each boolean basic condition, and one per
case basic condition.

Forced Conditions

A forced condition is a multiple condition in which any occurrence of the or
else operator is replaced with the or operator, and the and then operator is
replaced with the and operator. This modification forces the evaluation of
the second member of these operators. You can use this coverage type after
modified conditions have been reached to ensure that all the contained
basic conditions have been evaluated. With this coverage type, you can be
sure that only the considered basic condition value changes between both

50

condition vectors.
-- Original source :
-- -cond=forceevaluation
 if (a and then b) or else c then
-- Modified source :
 if (a and b) or c then

Note This replacement modifies the code semantics. You need to verify
that using this coverage type does not modify the behavior of the
software.

Example
procedure P (A : in tAccess) is
begin
 if A /= NULL and then A.value > 0 -- the evaluation of
A.value will raise an
 -- exception when
using forced conditions
 -- if the A pointer
is nul
 then
 A.value := A.value - 1;
 end if;
end P;

Modified Conditions

A modified condition is defined for each basic condition enclosed in a
composition of logical operators (standard or derived, but not overloaded).
It aims to prove that this condition affects the result of the enclosing
composition. To do that, find a subset of values affected by the other
conditions, for example, if the value of this condition changes, the result of
the entire expression changes.

Because compound conditions list all possible cases, you must find the two
cases that can result in changes to the entire expression. The modified
condition is covered only if the two compound conditions are covered.

-- State_Control state
-- -cond=modified
Function State_Condtol return integer

 51

is
Begin
 if ((flag_running and then (process_count > 10))
 or else flag_stopped)
 then
 return VALID_STATE ;
 else
 return INVALID_STATE ;
 end if ;
End ;
-- There are 3 basic conditions, 5 compound conditions
-- and 3 modified conditions :
-- flag_running : TTX=T and FXF=F
-- process_count > 10 : TTX=T and TFF=F
-- flag_stopped : TFT=T and TFF=F, or FXT=T and FXF=F
-- 4 test cases are enough to cover all the modified
conditions :
-- TTX=T
-- FXF=F
-- TFF=F
-- FTF=F or FXT=T

Note You can associate a modified condition with more than one case, as
shown in this example for flag_stopped. In this example, the
modified condition is covered if the two compound conditions of at
least one of these cases are covered.

Code Coverage calculates cases for each modified condition.

The same number of modified conditions as boolean basic conditions
appear in a composition of logical operators (standard or derived, but not
overloaded).

Multiple Conditions

A multiple condition is one of all the available cases of logical operators
(standard or derived, but not overloaded) wherever it appears in an ADA
unit. Multiple conditions are defined by the concurrent values of the
enclosed basic boolean conditions.

A multiple condition is noted with a set of T, F, or X letters, which means
that the corresponding basic condition evaluates to true or false, or it was

52

not evaluated, respectively. Such a set of letters is called a condition vector.
The right operand of or else or and then logical operators is not evaluated if
the evaluation of the left operand determines the result of the entire
expression.

-- State_Control Function
-- -cond=compound
Function State_Control return integer
is
Begin
 if ((flag_running and then (process_count > 10))
 or else flag_stopped
 then
 return VALID_STATE ;
 else
 return INVALIDE_STATE ;
 end if ;
End ;
-- There are 3 basic conditions
-- and 5 compound conditions :
-- TTX=T <=> ((T and then T) or else X) = T
-- TFT=T
-- TFF=F
-- FXT=T
-- FXF=F

Code Coverage calculates the computation of every available case for each
composition.

The number of enumerated branches is the number of distinct available
cases for each composition of logical operators (standard or derived, but not
overloaded).

Ada Unit Coverage

Unit Entries

Unit entries determine which units are executed and/or evaluated.
-- Function factorial
-- -proc
function factorial (a : in integer) return integer is
begin
 if (a > 0) then

 53

 return a * factorial (a - 1);
 else
 return 1;
 end if;
end factorial ;

One branch is defined for each defined and instrumented unit. In the case
of a package, the unit entry only exists if the package body contains the
begin/end instruction block.

For Protected units, no unit entry is defined because this kind of unit does
not have any statements blocks.

Unit Exits and Returns

These are the standard exit (if it is coverable), each return instruction (from
a procedure or function), and each exception-processing block in the unit.

-- Function factorial
-- -proc=ret
function factorial (a : in integer) return integer is
begin
 if (a > 0) then
 return a * factorial (a - 1);
 else
 return 1;
 end if ;
end factorial ; -- the standard exit is not coverable
-- Procedure divide
procedure divide (a,b : in integer; c : out integer) is
begin
 if (b == 0) then
 text_io.put_line("Division by zero");
 raise CONSTRAINT_ERROR;
 end if ;
 if (b == 1) then
 c := a;
 return;
 end if ;
 c := a / b;
exception
 when PROGRAM_ERROR => null ;
end divide ;

For Protected units, no exit is defined because this kind of unit does not

54

have any statements blocks.

In general, at least two branches per unit are defined; however, in some
cases the coding may be such that:

• There are no unit entries or exits (a package without an instruction block
(begin/end), protected units case).

• There is only a unit entry (an infinite loop in which the exit from the
task cannot be covered and therefore the exit from the unit is not
defined).

The entry is always numbered if it exists. The exit is also numbered if it is
coverable. If it is not coverable, it is preceded by a terminal instruction
containing return or raise instructions; otherwise, it is preceded by an
infinite loop.

A raise is considered to be terminal for a unit if no processing block for this
exception was found in the unit.

Ada Link Files

Link files are the library management system used for Ada Coverage. These
libraries contain the entire Ada compilation units contained by compiler
sources, the predefined Ada environment and the source files of your
projects. You must use link files when using Code Coverage in Ada for the
Ada Coverage analyzer to correctly analyze your source code.

You can include a link file within another link file, which is an easy way to
manage your source code.

Link File Syntax

Link files have a line-by-line syntax. Comments start with a double hyphen
(--), and end at the end of the line. Lines can be empty.

 55

There are two types of configuration lines:

• Link file inclusion: The link filename can be relative to the link file that
contains this line or absolute.

<link filename> LINK

• Compilation unit description: The source filename is the file containing
the described compilation unit (absolute or relative to the link filename).
The full unit name is the Ada full unit name (beware of separated units,
or child units).

<source filename> <full unit name> <type> [ada83]

The <type> is one of the following flags:

• SPEC for specification

• BODY for a body

• PROC for procedure or function

Use the optional ada83 flag if the source file cannot be compiled in Ada 95
mode, and must be analyzed in Ada 83 mode.

Generating a Link File

The link file can be generated either manually or automatically with the
Ada Link File Generator (attolalk) tool. See the PurifyPlus RealTime
Reference Manual for more information about command line tools.

Sending the Link File to the Instrumentor

The loading order of link files is important. If the same unit name is found
twice or more in one (or more) loaded link files, the Instrumentor issues a
warning and uses the last encountered unit.

Included link files are analyzed when the file including the link file is
loaded.

56

In Ada, Code Coverage loads the link files in the following order:

• By default, either adalib83.alk or adalib95.alk is loaded. These files are
part of the Target Deployment Port.

• If you use the -STDLINK command line option, the specified standard
link file is loaded first. See the PurifyPlus RealTime Reference Manual
for more information

• The link file specified by the ATTOLCOV_ADALINK environment
variable is loaded.

• The link files specified by the -Link option is loaded.

Now, you can start analyzing the file instrument.

Loading A Permanent Link File

You can ask Code Coverage to load the link file at each execution. To do
that, set the environment variable ATTOLCOV_ADALINK with the link
filename separated by ':' on a UNIX system, or ';' in Windows. For example:

ATTOLCOV_ADALINK="compiler.alk/projects/myproject/myproject.
alk"

A Link file specified on the command line is loaded after the link file
specified by this environment variable.

Ada Additional Statements

Terminal Statements

An ADA statement is terminal if it transfers control of the program
anywhere other than to a sequence (return, goto, raise, exit).

By extension, a decision statement (if, case) is also terminal if all its branches
are terminal (i.e., if, then and else blocks and non-empty when blocks
contain a terminal instruction). An if statement without an else statement is

 57

never terminal, since one of the blocks is empty and therefore transfers
control in sequence.

Potentially Terminal Statements

An Ada statement is potentially terminal if it contains a decision choice that
transfers control of the program anywhere other than after it (return, goto,
raise, exit).

Non-coverable Statements

An Ada statement is detected as being not coverable if it is not a goto label
and if it is in a terminal statement sequence. Statements that are not
coverable are detected by the feature during the instrumentation. A
warning is generated to signal each one, which specifies its location source
file and line. This is the only action Code Coverage takes for statements that
cannot be covered.

Note Ada units whose purpose is to terminate execution unconditionally
are not evaluated. This means that Code Coverage does not check
that procedures or functions terminate or return.

Similarly, exit conditions for loops are not analyzed statistically to
determine whether the loop is infinite. As a result, a for, while or loop/exit
when loop is always considered non-terminal (i.e., able to transfer control in
its sequence). This is not applicable to loop/end loop loops without an exit
statement (with or without condition), which are terminal.

C Coverage

C Block Coverage

When running the Code Coverage feature on Ada source code, PurifyPlus
RealTime can provide the following coverage types for code blocks:

58

• Statement Blocks

• Statement Blocks and Decisions

• Statement Blocks, Decisions, and Loops

Statement Blocks (or Simple Blocks)

Simple blocks are the C function main blocks, blocks introduced by decision
instructions:

• THEN and ELSE FOR IF

• FOR, WHILE and DO ... WHILE blocks

• non-empty blocks introduced by switch case or default statements

• true and false outcomes of ternary expressions (<expr> ? <expr> : <expr>)

• blocks following a potentially terminal statement.
/* Power_of_10 Function */
/* -block */
int power_of_10 (int value, int max)
{
 int retval = value, i;
 if (value == 0) return 0; /* potentially terminal
statement */
 for (i = 0; i < 10; i++) /* start of a sequence block
*/
 {
 retval = (max / 10) < retval ? retval * 10 : max;
 }
 return retval;
} /* The power_of_10 function has 6 blocks */
/* Near_color function */
ColorType near_color (ColorType color)
{
 switch (color)
 {
 case WHITE :
 case LIGHT_GRAY :
 return WHITE;
 case RED :
 case PINK :
 case BURGUNDY :
 return RED;

 59

 /* etc ... */
 }
} /* The near_color function has at least 3 simple blocks */

Each simple block is a branch. Every C function contains at least one simple
block corresponding to its main body.

Decisions (Implicit Blocks)

Implicit blocks are introduced by an IF statement without an ELSE or a
SWITCH statement without a DEFAULT.

/* Power_of_10 function */
/* -block=decision */
int power_of_10 (int value, int max)
{
int retval = value, i;
if (value == 0) return 0; else ;
for (i =0;i <10;i++)
{
retval = (max / 10) < retval ? retval * 10 : max;
}
return retval;
}
/* Near_color function */
ColorType near_color (ColorType color)
{
switch (color)
{
case WHITE :
case LIGHT_GRAY :
return WHITE;
case RED :
case PINK :
case BURGUNDY :
return RED;
/* etc ... with no default */
default : ;
}
}

Each implicit block represents a branch.

Because the sum of all possible decision paths includes implicit blocks as
well as statement blocks, reports provide the total number of simple and
implicit blocks as a figure and as a percentage. Code Coverage places this

60

information in the Decisions report.

Loops (Logical Blocks)

A typical FOR or WHILE loop can reach three different conditions:

• The statement block contained within the loop is executed zero times,
therefore the output condition is True from the start

• The statement block is executed exactly once, the output condition is
False, then True the next time

• The statement block is executed at least twice. (The output condition is
False at least twice, and becomes True at the end)

In a DO...WHILE loop, because the output condition is tested after the
block has been executed, two further branches are created:

• The statement block is executed exactly once. The output is condition
True the first time.

• The statement block is executed at least twice. (The output condition is
False at least once, then true at the end)

In this example, the function try_five_times () must run several times to
completely cover the three logical blocks included in the WHILE loop:

/* Try_five_times function */
/* -block=logical */
int try_five_times (void)
{
int result,i =0;
/*try ()is afunction whose return value depends
on the availability of a system resource, for example */
while (((result = try ())!=0)&&
(++i <5));
return result;
} /* 3 logical blocks */

C Call Coverage

When analyzing Ada source code, Code Coverage can provide coverage of

 61

function or procedure calls.

Code Coverage defines as many branches as it encounters function calls.

Procedure calls are made during program execution.

This type of coverage ensures that all the call interfaces can be shown to
have been exercised for each C function. This may be a pass or failure
criterion in software integration test phases.

You can use the -EXCALL option to select C functions whose calls you do
not want to instrument, such as C library functions for example.

Example
/* Evaluate function */
/* -call */
int evaluate (NodeTypeP node)
{
 if (node == (NodeTypeP)0) return 0;
 switch (node->Type)
 {
 int tmp;
 case NUMBER :
 return node->Value;
 case IDENTIFIER :
 return current value (node->Name);
 case ASSIGN :
 set (node->Child->Name,
 tmp = evaluate (node->Child->Sibling)
);
 return tmp;
 case ADD :
 return evaluate (node->Child) +
 evaluate (node->Child->Sibling);
 case SUBTRACT :
 return evaluate (node->Child) -
 evaluate (node->Child->Sibling);
 case MULTIPLY :
 return evaluate (node->Child) *
 evaluate (node->Child->Sibling);
 case DIVIDE :
 tmp = evaluate (node->Child->Sibling);
 if (tmp == 0) fatal error ("Division by zero");

62

 else return evaluate (node->Child) / tmp;
 }
} /* There are twelve calls in the evaluate function */

C Condition Coverage

When analyzing C source code, PurifyPlus RealTime can provide the
following condition coverage:

• Basic Coverage

• Forced Coverage

Basic Conditions

Conditions are operands of either || or && operators wherever they appear
in the body of a C function. They are also if and ternary expressions, tests
for for, while, and do/while statements even if these expressions do not
contain || or && operators. Two branches are involved in each condition:
the sub-condition being true and the sub-condition being false.

Basic conditions also enable different case or default (which could be
implicit) in a switch to be distinguished even when they invoke the same
simple block. A basic condition is associated with every case and default
(written or not).

/* Power_of_10 function */
/* -cond */
int power_of_10 (int value, int max)
{
 int result = value, i;
 if (value == 0) return 0;
 for (i = 0; i < 10; i++)
 {
 result = max > 0 && (max / value) < result ?
 result * value :
 max;
 }
 return result ;
} /* There are 4*2 basic conditions in this function */
/* Near_color function */
ColorType near_color (ColorType color)
{

 63

 switch (color)
 {
 case WHITE :
 case LIGHT_GRAY :
 return WHITE;
 case RED :
 case PINK :
 case BURGUNDY :
 return RED;
 /* etc ... */
 }
} /* There are at least 5 basic conditions here */

Two branches are enumerated for each condition, and one per case or
default.

Forced Conditions

Forced conditions are multiple conditions in which any occurrence of the |
| and && operators has been replaced in the code with | and & binary
operators. Such a replacement done by the Instrumentor enforces the
evaluation of the right operands. You can use this coverage type after
modified conditions have been reached to be sure that every basic condition
has been evaluated. With this coverage type, you can be sure that only the
considered basic condition changed between the two tests.

/* User source code */ /* -
cond=forceevaluation */
 if ((a && b) || c) ...
/* Replaced with the Code Coverage feature with : */
 if ((a & b) | c) ...
/* Note : Operands evaluation results are enforced to one if
different from 0 */

Note This replacement modifies the code semantics. You need to verify
that using this coverage type does not modify the behavior of the
software.

int f (MyStruct *A)
{
 if (A && A->value > 0) /* the evaluation of
A->value will cause a program error using
 forced conditions
if A pointer

64

 is null */
 {
 A->value -= 1;
 }
}

Modified Conditions

A modified condition is defined for each basic condition enclosed in a
composition of | | or && operators. It aims to prove that this condition
affects the result of the enclosing composition. To do that, find a subset of
values affected by the other conditions, for example, if the value of this
condition changes, the result of the entire expression changes.

Because compound conditions list all possible cases, you must find the two
cases that can result in changes to the entire expression. The modified
condition is covered only if the two compound conditions are covered.

/* state_control function */
int state_control (void)
{
 if (((flag & 0x01) &&
 (instances_number > 10)) ||
 (flag & 0x04))
 return VALID_STATE;
 else
 return INVALID_STATE;
} /* There are 3 basic conditions, 5 compound conditions
 and 3 modified conditions :
 flag & 0x01 : TTX=T and FXF=F
 nb_instances > 10 : TTX=T and TFF=F
 flag & 0x04 : TFT=T and TFF=F, or FXT=T and FXF=F
 4 test cases are enough to cover all those modified
 conditions :
 TTX=T
 FXF=F
 TFF=F
 TFT=T or FXT=T
 */

Note You can associate a modified condition with more than one case, as
shown in this example for flag & 0x04. In this example, the modified
condition is covered if the two compound conditions of at least one
of these cases are covered.

 65

Code Coverage calculates matching cases for each modified condition.

The same number of modified conditions as Boolean basic conditions
appears in a composition of | | and && operators.

Multiple Conditions

A multiple (or compound) condition is one of all the available cases for the
|| and && logical operator's composition, whenever it appears in a C
function. It is defined by the simultaneous values of the enclosed Boolean
basic conditions.

A multiple condition is noted with a set of T, F, or X letters. These mean that
the corresponding basic condition evaluated to true, false, or was not
evaluated, respectively. Remember that the right operand of a || or &&
logical operator is not evaluated if the evaluation of the left operand
determines the result of the entire expression.

/* state_control function */
/* -cond=compound */
int state_control (void)
{
 if (((flag & 0x01) &&
 (instances_number > 10)) ||
 (flag & 0x04))
 return VALID_STATE;
 else
 return INVALID_STATE;
} /* There are 3 basic conditions
 and 5 compound conditions :
 TTX=T <=> ((T && T) || X) = T
 TFT=T
 TFF=F
 FXT=T
 FXF=F
 */

Code Coverage calculates every available case for each composition.

The number of enumerated branches is the number of distinct available
cases for each composition of || or && operators.

66

C Function Coverage

When analyzing C source code, PurifyPlus RealTime can provide the
following function coverage:

• Procedure Entries

• Procedure Entries and Exits

Procedure Entries

Inputs identify the C functions that are executed.
/* Factorial function */
/* -proc */
int factorial (int a)
{
 if (a > 0) return a * factorial (a - 1);
 else return 1;
}

One branch is defined per C function.

Procedure Entries and Exits (Returns and Terminal Statements)

These include the standard output (if coverable), and all return instructions,
exits, and other terminal instructions that are instrumented, as well as the
input.

/* Factorial function */
/* -proc=ret */
int factorial (int a)
{
 if (a > 0) return a * factorial (a - 1);
 else return 1;
} /* standard output cannot be covered */
/* Divide function */
void divide (int a, int b, int *c)
{
 if (b == 0)
 {
 fprintf (stderr, "Division by zero\n");
 exit (1);
 };

 67

 if (b == 1)
 {
 *c = a;
 return;
 };
 *c = a / b;
}

At least two branches are defined per C function.

The input is always enumerated, as is the output if it can be covered. If it
cannot, it is preceded by a terminal instruction involving returns or an exit.

In addition to the terminal instructions provided in the standard definition
file, you can define other terminal instructions using the pragma attol
exit_instr.

C Additional Statements

Terminal Statements

A C statement is terminal if it transfers program control out of sequence
(RETURN, GOTO, BREAK, CONTINUE), or stops the execution (EXIT).

By extension, a decision statement (IF or SWITCH) is terminal if all
branches are terminal; that is if the non-empty THEN ... ELSE, CASE, and
DEFAULT blocks all contain terminal statements. An IF statement without
an ELSE and a SWITCH statement without a DEFAULT are never terminal,
because their empty blocks necessarily continue program control in
sequence.

Potentially Terminal Statements

The following decision statements are potentially terminal if they contain at
least one statement that transfers program control out of their sequence
(RETURN, GOTO, BREAK, CONTINUE), or that terminates the execution
(EXIT):

68

• IF without an ELSE

• SWITCH

• FOR

• WHILE or DO ... WHILE

Non-coverable Statements in C

Some C statements are considered non-coverable if they follow a terminal
instruction, a CONTINUE, or a BREAK, and are not a GOTO label. Code
Coverage detects non-coverable statements during instrumentation and
produces a warning message that specifies the source file and line location
of each non-coverable statement.

Note User functions whose purpose is to terminate execution
unconditionally are not evaluated. Furthermore, Code Coverage
does not statically analyze exit conditions for loops to check whether
they are infinite. As a result, FOR ... WHILE and DO ... WHILE
loops are always assumed to be non-terminal, able to resume
program control in sequence.

C++ Coverage

C++ Block Code Coverage

When analyzing C++ source code, Code Coverage can provide the following
block coverage types:

• Statement Blocks

• Statement Blocks and Decisions

• Statement Blocks, Decisions, and Loops

Statement Blocks

 69

Statement blocks are the C++ function or method main blocks, blocks
introduced by decision instructions:

• THEN and ELSE FOR IF, WHILE and DO ... WHILE blocks

• non-empty blocks introduced by SWITCH CASE or DEFAULT
statements

• true and false outcomes of ternary expressions (<expr> ? <expr> : <expr>)

• TRY blocks and any associated catch handler

• blocks following a potentially terminal statement.
int main () /*
-BLOCK */
{
 try {
 if (0)
 {
 func ("Hello");
 }
 else
 {
 throw UnLucky ();
 }
 }
 catch (Overflow & o) {
 cout << o.String << '\n';
 }
 catch (UnLucky & u) {
 throw u;
 } /* potentially terminal statement */
 return 0; /* sequence block */
}

Each simple block is a branch. Every C++ function and method contains at
least one simple block corresponding to its main body.

Decisions (Implicit Blocks)

Implicit blocks are introduced by IF statements without an ELSE statement,
and a SWITCH statements without a DEFAULT statement.

/* Power_of_10 function */
/* -BLOCK=DECISION or -BLOCK=IMPLICIT */

70

int power_of_10 (int value, int max)
{
 int retval = value, i;
 if (value == 0) return 0; else ;
 for (i = 0; i < 10; i++)
 {
 retval = (max / 10) < retval ? retval * 10 : max;
 }
 return retval;
}
/* Near_color function */
ColorType near_color (ColorType color)
{
 switch (color)
 {
 case WHITE :
 case LIGHT_GRAY :
 return WHITE;
 case RED :
 case PINK :
 case BURGUNDY :
 return RED;
 /* etc ... with no default */
 default : ;
 }
}

Each implicit block represents a branch.

Since the sum of all possible decision paths includes implicit blocks as well
as simple blocks, reports provide the total number of simple and implicit
blocks as a figure and a percentage after the term decisions.

Loops (Logical Blocks)

Three branches are created in a for or while loop:

• The first branch is the simple block contained within the loop, and that
is executed zero times (the entry condition is false from the start).

• The second branch is the simple block executed exactly once (entry
condition true, then false the next time).

• The third branch is the simple block executed at least twice (entry

 71

condition true at least twice, and false at the end).

Two branches are created in a DO/WHILE loop, as the output condition is
tested after the block has been executed:

• The first branch is the simple block executed exactly once (output
condition true the first time).

• The second branch is the simple block executed at least twice (output
condition false at least once, then true at the end).
/* myClass::tryFiveTimes method */ /* -
BLOCK=LOGICAL */
int myClass::tryFiveTimes ()
{
 int result, i = 0;
 /* letsgo () is a function whose return value depends
 on the availability of a system resource, for example
*/
 while (((result = letsgo ()) != 0) &&
 (++i < 5));
 return result;
} /* 3 logical blocks */

You need to execute the method tryFiveTimes () several times to
completely cover the three logical blocks included in the while loop.

C++ Method Code Coverage

Inputs to Procedures

Inputs identify the C++ methods executed.
/* Vector::getCoord() method */ /* -PROC
*/
int Vector::getCoord (int index)
{
if (index >= 0 && index < size) return Values[index];
else return -1;
}

One branch per C++ method is defined.

Procedure Inputs, Outputs and Returns, and Terminal Instructions

72

These include the standard output (if coverable), all return instructions, and
calls to exit(), abort(), or

terminate(), as well as the input.
/* Vector::getCoord() method */ /* -PROC=RET */
int Vector::getCoord (int index)
{
if (index >= 0 && index < size) return Values[index];
else return -1;
}
/* Divide function */
void divide (int a, int b, int *c)
{
if (b ==0)
{
fprintf (stderr, "Division by zero\n");
exit (1);
};
if (b ==1)
{
*c =a;
return;
};
*c =a /b;
}

At least two branches per C++ method are defined. The input is always
enumerated, as is the output if it can be covered. If it cannot, it is preceded
by a terminal instruction involving returns or by a call to exit(), abort(), or
terminate().

Potentially Terminal Statements

The following decision statements are potentially terminal if they contain at
least one statement that transfers program control out of its sequence
(RETURN, THROW, GOTO, BREAK, CONTINUE) or that terminates the
execution (EXIT).

• IF without an ELSE

• SWITCH, FOR

 73

• WHILE or DO...WHILE

C++ Template Instrumentation

Code Coverage performs the instrumentation of templates, functions, and
methods of template classes, considering that all instances share their
branches. The number of branches computed by the feature is independent
of the number of instances for this template. All instances will cover the
same once-defined branches in the template code.

Files containing template definitions implicitly included by the compiler (no
specific compilation command is required for such source files) are also
instrumented by the Code Coverage feature and present in the
instrumented files where they are needed.

For some compilers, you must specifically take care of certain templates (for
example, static or external linkage). You must verify if your Code Coverage
Runtime installation contains a file named templates.txt and, if it does, read
that file carefully.

• To instrument an application based upon Rogue Wave libraries , you
must use the -DRW_COMPILE_INSTANTIATE compilation flag that
suppresses the implicit include mechanism in the header files.
(Corresponding source files are so included by pre-processing.)

• To instrument an application based upon ObjectSpace C++ Component
Series , you must use the -DOS_NO_AUTO_INSTANTIATE
compilation flag that suppresses the implicit include mechanism in the
header files. (Corresponding source files are so included by pre-
processing.)

• Any method (even unused ones) of an instantiated template class is
analyzed and instrumented by the Instrumentor. Some compilers do not
try to analyze such unused methods. It is possible that some of these
methods are not fully compliant with C++ standards. For example, a
template class with a formal class template argument named T can

74

contain a compare method that uses the == operator of the T class. If the
C class used for T at instantiation time does not define an == operator,
and if the compare method is never used, compilation succeeds but
instrumentation fails. In such a situation, you can declare an == operator
for the C class or use the -instantiationmode=used Instrumentor option.

C++ Additional Statements

Non-coverable Statements in C++

A C++ statement is non-coverable if the statement can never possibly be
executed. Code Coverage detects non-coverable statements during
instrumentation and produces a warning message that specifies the source
file and line location of each non-coverable statement.

Java Coverage

Java Block Coverage

When analyzing Java source code, Code Coverage can provide the
following block coverage:

• Statement Blocks

• Statement Blocks and Decisions

• Statement Blocks, Decisions, and Loops

Statement Blocks

Statement blocks are the Java method blocks, blocks introduced by control
instructions:

• THEN for IF and ELSE for IF, WHILE and DO ... WHILE blocks

• non-empty blocks introduced by SWITCH CASE or DEFAULT
statements

 75

• true and false outcomes of ternary expressions (<expr> ? <expr> : <expr>)

• TRY blocks and any associated catch handler

• blocks following a potentially terminal statement.

Example
public class StatementBlocks
{
 public static void func(String _message)
 throws UnsupportedOperationException
 {
 throw new UnsupportedOperationException(_message);
 }
 public static void main(String[] args)
 throws Exception
 {
 try {
 if (false)
 {
 func("Hello");
 }
 else
 {
 throw new Exception("bad luck");
 }
 }
 catch (UnsupportedOperationException _E)
 {
 System.out.println(_E.toString());
 }
 catch (Exception _E)
 {
 System.out.println(_E.toString());
 throw _E ;
 } //potentially terminal statement
 return ; //sequence block
 }
}

Each simple block is a branch. Every Java method contains at least one
simple block corresponding to its main body.

Decisions (Implicit Blocks)

76

Implicit blocks are introduced by IF statements without an ELSE statement,
and a SWITCH statement without a DEFAULT statement.

Example
public class MathOp
{
 static final int WHITE=0;
 static final int LIGHTGRAY=1;
 static final int RED=2;
 static final int PINK=3;
 static final int BLUE=4;
 static final int GREEN=5;
 // power of 10
 public static int powerOf10(int _value, int _max)
 {
 int result = _value, i;
 if(_value==0) return 0; //implicit else
 for(i = 0; i < 10; i++)
 {
 result = (_max / 10) < result ? 10*result : _max ;
 }
 return result;
 }
 // Near color function
 int nearColor(int _color)
 {
 switch(_color)
 {
 case WHITE:
 case LIGHTGRAY:
 return WHITE ;
 case RED:
 case PINK:
 return RED;
 //implicit default:
 }
 return _color ;
 }
}

Each implicit block represents a branch.

Since the sum of all possible decision paths includes implicit blocks as well
as simple blocks, reports provide the total number of simple and implicit
blocks as a figure and a percentage after the term decisions.

 77

Loops (Logical Blocks)

Three branches are created in a FOR or WHILE loop:

• The first branch is the simple block contained within the loop, and that
is executed zero times (the entry condition is false from the start).

• The second branch is the simple block executed exactly once (entry
condition true, then false the next time).

• The third branch is the simple block executed at least twice (entry
condition true at least twice, and false at the end).

Two branches are created in a DO/WHILE loop, as the output condition is
tested after the block has been executed:

• The first branch is the simple block executed exactly once (output
condition false the first time).

• The second branch is the simple block executed at least twice (output
condition false at least once, then true at the end).

Example
public class LogicalBlocks
{
 public static int tryFiveTimes()
 {
 int result, i=0;
 while (((result=resourcesAvailable())<= 0)
 && (++i < 5));
 // while define 3 logical blocks
 return result;
 }
 public static int resourcesAvailable()
 {
 return (_free_resources_++);
 }

 public static int _free_resources_=0;
 public static void main(String[] argv)
 {
 //first call: '0 loop' block is reach
 _free_resources_=1;

78

 tryFiveTimes();
 //second call: '1 loop' blocks are reach
 _free_resources_=0;
 tryFiveTimes();
 //third call: '2 loops or more' blocks are reach
 _free_resources_=-10;
 tryFiveTimes();
 }
}

Java Method Coverage

Inputs to Procedures

Inputs identify the Java methods executed.

Example
public class Inputs
{
 public static int method()
 {
 return 5;
 }
 public static void main(String[] argv)
 {
 System.out.println("Value:"+method());
 }
}

One branch per Java method is defined.

Procedure Inputs, Outputs and Returns, and Terminal Instructions

These include the standard output (if coverable), all return instructions, and
calls to exit(), abort(), or terminate(), as well as the input.

Example
public class InputsOutputsAndReturn
{
 public static void method0(int _selector)
 {
 if (_selector < 0)

 79

 {
 return ;
 }
 }
 public static int method1(int _selector)
 {
 if(_selector < 0) return 0;
 switch(_selector)
 {
 case 1: return 0;
 case 2: break;
 case 3: case 4: case 5: return 1;
 }
 return (_selector/2);
 }
 public static void main(String[] argv)
 {
 method0(3);
 System.out.println("Value:"+method1(5));
 System.exit(0);
 }
}

At least two branches per Java method are defined. The input is always
enumerated, as is the output if it can be covered.

Potentially Terminal Statements

The following decision statements are potentially terminal if they contain at
least one statement that transfers program control out of its sequence
(RETURN, THROW, GOTO, BREAK, CONTINUE) or that terminates the
execution (EXIT).

• IF without an ELSE

• SWITCH, FOR

• WHILE or DO...WHILE

Java Additional Statements

Non-coverable Statements in Java

80

A Java statement is non-coverable if the statement can never possibly be
executed. Code Coverage detects non-coverable statements during
instrumentation and produces an error message that specifies the source file
and line location of each non-coverable statement.

Code Coverage Viewer

About the Code Coverage Viewer

The Code Coverage Viewer allows you to view code coverage reports
generated by the Code Coverage feature. Select a tab at the top of the Code
Coverage Viewer window to select the type of report:

• A Source Report, showing the source code under analysis, highlighted
with the actual coverage information.

• A Rates Report, providing detailed coverage rates for each activated
coverage type.

You can use the Report Explorer to navigate through the report. Click a
source code component in the Report Explorer to go to the corresponding
line in the Report Viewer.

You can jump directly to the next or previous Failed test in the report by
using the Next Failed Test or Previous Failed Test buttons from the Code
Coverage toolbar.

You can jump directly to the next or previous Uncovered line in the Source
report by using the Next Uncovered Line or Previous Uncovered Line
buttons in the Code Coverage feature bar.

When viewing a Source coverage report, the Code Coverage Viewer
provides several additional viewing features for refined code coverage
analysis.

 81

To open a Code Coverage report:

1. Right-click a previously executed test or application node

2. If a Code Coverage report was generated during execution of the node,
select View Report and then Code Coverage.

Coverage Types

For Ada, C, and C++ the Code Coverage feature offers:

• Function or Method code coverage: select between function Entries,
Entries and exits, or None. See the Function, Unit or Method Code
Coverage Ada, C, and C++ for more information.

• Call code coverage: select Yes or No to toggle call coverage for Ada and
C.

• Block code coverage: select the desired block coverage method. See the
Block Code Coverage for Ada, C, and C++ for details.

• Condition code coverage: select condition coverage for Ada, C.

Please refer to the related topics for details on using each coverage type
with each language.

Any of the Code Coverage types selected for instrumentation can be filtered
out in the Code Coverage report stage if necessary.

To filter coverage types from the report:

1. From the Code Coverage menu, select Coverage Type.

2. Toggle each coverage type in the menu.

Alternatively, you can filter out coverage types from the Code Coverage
toolbar by toggling the Code Coverage type filter buttons.

82

Test by Test Analysis ModeTest by Test Analysis ModeTest by Test Analysis ModeTest by Test Analysis Mode

The Test-by-Test analysis mode allows you to refine the coverage analysis by
individually selecting the various tests that were generated during
executions of the test or application node. In Test-by-Test mode, a Tests
node is available in the Report Explorer.

When Test-by-Test analysis is disabled, the Code Coverage Viewer displays
all traces as one global test.

To toggle Test-by-Test mode:

1. In the Code Coverage Viewer window, select the Source tab.

2. From the Code Coverage menu, select Test-by-Test.

To select the Tests to display in Test-by-Test mode:

1. Expand the Tests node at the top of the Report Explorer.

2. Select one or several tests. The Code Coverage Viewer provides code
coverage information for the selected tests.

Reloading a Report

If a Code Coverage report has been updated since the moment you have
opened it in the Code Coverage Viewer, you can use the Reload command
to refresh the display:

To reload a report:

From the Code Coverage menu, select Reload.

Resetting a Report

When you run a test or application node several times, the Code Coverage
results are appended to the existing report. The Reset command clears
previous Code Coverage results and starts a new report.

 83

To reset a report:

From the Code Coverage menu, select Reset.

Exporting a Report to HTML

Code Coverage results can be exported to an HTML file.

To export results to an HTML file:

From the File menu, select Export.

Source Report

You can use the standards keys (arrow keys, home, end, etc.) to move about
and to select the source code.

Hypertext Links

The Source report provides hypertext navigation throughout the source
code:

• Click a plain underlined function call to jump to the definition of the
function.

• Click a dashed underlined text to view additional coverage information
in a pop-up window.

• Right-click any line of code and select Edit Source to open the source
file in the Text Editor at the selected line of code.

Macro Expansion

Certain macro-calls are preceded with a magnifying glass icon.

Click the magnifying glass icon to expand the macro in a pop-up window
with the usual Code Coverage color codes.

84

Hit Count

The Hit Count tool-tip is a special capability that displays the number of
times that a selected branch was covered.

Hit Count is only available when Test-by-Test analysis is disabled and
when the Hit Count option has been enabled for the selected Configuration.

To activate the Hit Count tool-tip:

1. In the Code Coverage Viewer window, select the Source tab.

2. From the Code Coverage menu select Hit. The mouse cursor changes
shape.

3. In the Code Coverage Viewer window, click a portion of covered
source code to display the Hit Count tool-tip.

Cross Reference

The Cross Reference tool-tip displays the name of tests that executed a
selected branch.

Cross Reference is only available in Test-by-Test mode.

To activate the Cross Reference tool-tip:

1. In the Code Coverage Viewer window, select the Source tab.

2. From the Code Coverage menu select Cross Reference. The mouse
cursor changes shape.

3. In the Code Coverage Viewer window, click a portion of covered
source code to display the Cross Reference tool-tip.

Comment

 85

You can add a short comment to the generated Code Coverage report by
using the Comment option in the Misc. Options Settings for Code Coverage.
This can be useful to distinguish different reports generated with different
Configurations.

Comments are displayed as a magnifying glass symbol at the top of the
source code report. Click the magnifying glass icon to display the comment.

Rates Report

From the Code Coverage Viewer window, select the Rates tab to view the
coverage rate report.

Select a source code component in the Report Explorer to view the coverage
rate for that particular component and the selected coverage type. Select the
Root node to view coverage rates for all current files.

Code Coverage rates are updated dynamically as you navigate through the
Report Explorer and as you select various coverage types.

Code Coverage Toolbar

The Code Coverage toolbar is useful for navigating through code coverage
reports generated by the Code Coverage feature of PurifyPlus RealTime.

These buttons are available when the Code Coverage Viewer is active.

• The Previous Link and Next Link buttons allow you to quickly
navigate through the Failed items.

• The Previous Uncovered Line and Next Uncovered Line buttons allow
you to quickly navigate through the Failed items.

• The Failed Tests Only or All Tests button toggles between the two
display modes.

• The F button allows you to hide or show functions

86

• The E button allows you to hide or show function exits

• The B button allows you to hide or show statement blocks

• The I button allows you to hide or show implicit blocks

• The L button allows you to hide or show loops.

Code Coverage Viewer Preferences

The Preferences dialog box allows you to change the appearance of your
Code Coverage reports.

To choose Code Coverage report colors and attributes:

1. Select the Code Coverage Viewer node:

• Background color: This allows you to choose a background color for the
Code Coverage Viewer window.

• Stroud Number: This parameter modifies the results of Halstead
Metrics.

2. Expand the Code Coverage Viewer node, and select Styles:

• Styles: This list allows you to select one or several styles that you want
to change. To change several styles at the same time, you can perform
multiple selections in the style list.

• Font: This allows you to change the font type and size for the selected
style.

• Text Color: This allows you to change the foreground and background
colors for the selected style. This opens a standard color palette.

• Text Attributes: This allows you to set the selected style to Bold, Italic,
Underlined or Dashed.

3. Click OK to apply your changes.

 87

Code Coverage Dump Driver

In C and C++, you can dump coverage trace data without using standard
I/O functions by using the Code Coverage Dump Driver API contained in
the atcapi.h file, which is part of the Target Deployment Port

To customize the Code Coverage Dump Driver, open the Target
Deployment Port directory and edit the atcapi.h. Follow the instructions
and comments included in the source code.

Static Metrics

Source code profiling is an extremely important matter when you are
planning a test campaign or for project management purposes. The
graphical user interface (GUI) provides a Metrics Viewer, which provides
detailed source code complexity data and statistics for your project.

Static Metric Viewer

Viewing Static Metrics

Use the Metrics Viewer to view static testability measurements of the source
files of your project. Source code metrics are created each time a source file
is added to the project. Metrics are updated each time a file is modified.

The metrics are stored in .met metrics files alongside the actual source files.

To open the Metrics Viewer:

1. Right-click a node in the Asset Browser of the Project Explorer.

2. From the pop-up menu, select View Metrics.

To manually open a report file:

1. From the File menu, select Open... or click the Open icon in the main

88

toolbar.

2. In the Type box of the File Selector, select the .met Metrics File file type.

3. Locate and select the metrics files that you want to open.

4. Click OK.

Report Explorer

The Report Explorer displays the scope of the selected nodes, or selected
.met metrics files. Select a node to switch the Metrics Window scope to that
of the selected node.

Metrics Window

Depending on the language of the analyzed source code, different pages are
available:

• Root Page - File View: contains generic data for the entire scope

• Root Page - Object View: contains object related generic data for C++
and Java only

• Component View: displays detailed component-related metrics for each
file, class, method, function, unit, procedure, etc...

The metrics window offer hyperlinks to the actual source code. Click the
name of a source component to open the Text Editor at the corresponding
line.

Static Metrics

The Source Code Parsers provide static metrics for the analyzed C and C++
source code.

 89

File Level Metrics

The scope of the metrics report depends on the selection made in the Report
Explorer window. This can be a file, one or several classes or any other set
of source code components.

• Comment only lines: the number of comment lines that do not contain
any source code

• Comments: the total number of comment lines

• Empty lines: the number of lines with no content

• Source only lines: the number of lines of code that do not contain any
comments

• Source and comment lines: the number of lines containing both source
code and comments

• Lines: the number of lines in the source file

• Comment rate: percentage of comment lines against the total number
of lines

• Source lines: the total number of lines of source code and empty lines

File, Class or Package, and Root Level Metrics

These numbers are the sum of metrics measured for all the components of a
given file, class or package.

• Total statements: total number of statement in child nodes

• Maximum statements: the maximum number of statements

• Maximum level: the maximum nesting level

• Maximum V(g): the highest encountered cyclomatic number

• Mean V(g): the average cyclomatic number

• Standard deviation from V(g): deviation from the average V(g)

90

• Sum of V(g): total V(g) for the scope.

Root Level File View

At the top of the Root page, the Metrics Viewer displays a graph based on
Halstead data.

On the Root page, the scope of the Metrics Viewer is the entire set of nodes
below the Root node.

Halstead Graph

The following display modes are available for the Halstead graph:

• VocabularySize

• Volume

• Difficulty

• Testing Effort

• Testing Errors

• Testing Time

See the Halstead Metrics section for more information.

 91

Metrics Summary

The scope of the metrics report depends on the selection made in the Report
Explorer window. This can be a file, one or several classes or any other set
of source code components.

Below the Halstead graph, the Root page displays a metrics summary table,
which lists for for the source code component of the selected scope:

• V(g): provides a complexity estimate of the source code component

• Statements: shows the number of statements within the component

• Nested Levels: shows the highest nesting level reached in the
component

• Ext Comp Calls: measures the number of calls to methods defined
outside of the component class (C++ and Java only)

• Ext Var Use: measures the number of uses of attributes defined outside
of the component class (C++ and Java only)

To select the File View:

1. Select File View in the View box of the Report Explorer.

2. Select the Root node in the Report Explorer to open the Root page.

Note With C and Ada source code, File View is the only available view for
the Root page.

To change the Halstead Graph on the Root page:

1. From the Metrics menu, select Halstead Graph for Root Page.

2. Select another metric to display.

Root Level Object View

At the top of the Root page, the Metrics Viewer displays a graph based on

92

the sum ofdata.

On the Root page, the scope of the Metrics Viewer is the entire set of nodes
below the Root node.

File View is the only available view with C or Ada source code. When
viewing metrics for C++ and Java, an Object View is also available.

Two modes are available for the data graph:

• Vocabulary

• Size

• Volume

• Difficulty

• Testing Effort

• Testing Errors

• Testing Time

See the Halstead Metrics section for more information.

Metrics Summary

 93

Below the Halstead graph, the Root page displays a metrics summary table,
which lists for each source code component:

• V(g): provides a complexity estimate of the source code component

• Statements: shows the total number of statements within the object

• Nested Levels: shows the highest statement nesting level reached in the
object

• Ext Comp Calls: measures the number of calls to components defined
outside of the object

• Ext Var Use: measures the number of uses of variables defined outside
of the object

Note The result of the metrics for a given object is equal to the sum of the
metrics for the methods it contains.

To select the Object View:

1. Select the Root node in the Report Explorer to open the Root page.

2. Select Object View in the View box of the Report Explorer.

To switch the object graph mode:

1. From the Metrics menu, select Object Graph for Root Page.

2. Select ExtVarUse by ExtCompCall or Nested Level by Statement.

Halstead Metrics

Halstead complexity measurement was developed to measure a program
module's complexity directly from source code, with emphasis on
computational complexity. The measures were developed by the late
Maurice Halstead as a means of determining a quantitative measure of
complexity directly from the operators and operands in the module.

94

Halstead provides various indicators of the module's complexity

Halstead metrics allow you to evaluate the testing time of any C/C++ source
code. These only make sense at the source file level and vary with the
following parameters:

Parameter Meaning

n1 Number of distinct operators

n2 Number of distinct operands

N1 Number of operators instances

N2 Number of operands instances

When a source file node is selected in the Metrics Viewer, the following
results are displayed in the Metrics report:

Metric Meaning Formula

n Vocabulary n1 + n2

N Size N2 + N2

V Volume N * log2 n

D Difficulty n1/2 * N2/n2

E Effort V * D

B Errors V / 3000

T Testing time E / k

In the above formulas, k is the Stroud number, and has a default value of 18.
You can change the value of k in the Metrics Viewer Preferences.
Adjustment of the Stroud number allows you to adapt the calculation of T
to the testing conditions: team background, criticity level, and so on.

When the Root node is selected, the Metrics Viewer displays the total
testing time for all loaded source files.

 95

V(g) or Cyclomatic Number

The V(g) or cyclomatic number is a measure of the complexity of a function
which is correlated with difficulty in testing. The standard value is between
1 and 10.

A value of 1 means the code has no branching.

A function's cyclomatic complexity should not exceed 10.

The Metrics Viewer presents V(g) of a function in the Metrics tab when the
corresponding tree node is selected.

When the type of the selected node is a source file or a class, the sum of the
V(g) of the contained function, the mean, the maximum and the standard
deviation are calculated.

At the Root level, the same statistical treatment is provided for every
function in any source file.

Metrics Viewer Preferences

The Preferences dialog box allows you to change the appearance of your
Code Coverage reports.

To choose Metrics Viewer report colors and attributes:

1. Select the Metrics Viewer node:

• Background color: This allows you to choose a background color for the
Metrics Viewer window.

• Stroud number: This parameter modifies the results of Halstead
Metrics.

2. Expand the Metrics Viewer node, and select Styles:

96

• Styles: This list allows you to select one or several styles that you want
to change. To change several styles at the same time, you can perform
multiple selections in the style list.

• Font: This allows you to change the font type and size for the selected
style.

• Text Color: This allows you to change the foreground and background
colors for the selected style. This opens a standard color palette.

• Text Attributes: This allows you to set the selected style to Bold, Italic,
Underlined or Dashed.

3. Click OK to apply your changes.

Memory Profiling for C and C++

About Memory Profiling for C, C++ and Ada

Run-time memory errors and leaks are among the most difficult errors to
locate and the most important to correct. The symptoms of incorrect
memory use are unpredictable and typically appear far from the cause of
the error. The errors often remain undetected until triggered by a random
event, so that a program can seem to work correctly when in fact it's only
working by accident.

That's where the Memory Profiling feature can help you get ahead.

• You associate Memory Profiling with an existing test node or
application code.

• You compile and run your application.

• The application with the Memory Profiling feature, then directs output
to the Memory Profiling Viewer, which provides a detailed report of
memory issues.

 97

Memory Profiling uses Source Code Insertion Technology for C, C++ and
Ada.

Because of the different technologies involved, Memory Profiling for Java is
covered in a separate section.

Memory Profiling Results for C, C++ and Ada

After execution of an instrumented application, the Memory Profiling
report provides a list of the following sections:

Summary diagrams

The summary diagrams give you a quick overview of memory usage in
blocks and bytes.

Where:

98

• Allocated is the total memory allocated during the execution of the
application

• Unfreed is the memory that remains allocated after the application was
terminated

• Maximum is the highest memory usage encountered during execution

Detailed Report

The detailed section of the report lists memory usage events, including the
following errors and warnings:

• Error messages

• Warning messages

Memory Profiling Errors

Error Messages

Error messages indicate invalid program behavior. These are serious issues
you should address before you check in code.

List of Memory Profiling Error Messages

• Freeing Freed Memory (FFM)

• Freeing Unallocated Memory (FUM)

• Late Detect Array Bounds Write (ABWL)

• Late Detect Free Memory Write (FMWL)

• Memory Allocation Failure (MAF)

• Core Dump (COR)

Freeing Freed Memory (FFM)

 99

An FFM message indicates that the program is trying to free memory that
has previously been freed.

This message can occur when one function frees the memory, but a data
structure retains a pointer to that memory and later a different function tries
to free the same memory. This message can also occur if the heap is
corrupted.

Memory Profiling maintains a free queue, whose role is to actually delay
memory free calls in order to compare with upcoming free calls. The length
of the delay depends on the Free queue length and Free queue threshold
Memory Profiling Settings. A large deferred free queue length and
threshold increases the chances of catching FFM errors long after the block
has been freed. A smaller deferred free queue length and threshold limits
the amount of memory on the deferred free queue, taking up less memory
at run time but providing a lower level of error detection.

Freeing Unallocated Memory (FUM)

An FUM message indicates that the program is trying to free unallocated, or
invalid, memory.

This message can occur when the memory is not yours to free. In addition,
trying to free the following types of memory causes a FUM error:

• Memory on the stack

• Program code and data sections

Late Detect Array Bounds Write (ABWL)

An ABWL message indicates that the program wrote a value before the
beginning or after the end of an allocated block of memory. Because
Memory Profiling instrumented one or more components with minimal
instrumentation, it cannot determine the exact location of the error. Instead,
Memory Profiling performs a late detect scan after every 200 heap

100

operations or if 10 seconds have elapsed between the currently active heap
operation and the last heap operation, whichever comes first.

This message can occur when you:

• Make an array too small. For example, you fail to account for the
terminating NULL in a string.

• Forget to multiply by sizeof(type) when you allocate an array of objects.

• Use an array index that is too large or is negative.

• Fail to NULL terminate a string.

• Are off by one when you copy elements up or down an array.

Memory Profiling actually allocates a larger block by adding a Red Zone at
the beginning and end of each allocated block of memory in the program.
Memory Profiling monitors these Red Zones to detect ABWL errors.

Increasing the size of the Red Zone helps PurifyPlus RealTime catch bounds
errors before or beyond the block.

The ABWL error does not apply to local arrays allocated on the stack.

Note Unlike other editions of Rational PurifyPlus, the ABWL error in the
PurifyPlus RealTime Memory Profiling feature only applies to heap
memory zones and not to global or local tables.

Late Detect Free Memory Write (FMWL)

An FMWL message indicates that the program wrote to memory that was
freed.

This message can occur when you:

• Have a dangling pointer to a block of memory that has already been
freed (caused by retaining the pointer too long or freeing the memory

 101

too soon)

• Index far off the end of a valid block

• Use a completely random pointer which happens to fall within a freed
block of memory

Memory Profiling maintains a free queue, whose role is to actually delay
memory free calls in order to compare with upcoming free calls. The length
of the delay depends on the Free queue length and Free queue threshold
Memory Profiling Settings. A large deferred free queue length and
threshold increases the chances of catching FMWL errors. A smaller
deferred free queue length and threshold limits the amount of memory on
the deferred free queue, taking up less memory at run time but providing a
lower level of error detection.

Memory Allocation Failure (MAF)

An MAF message indicates that a memory allocation call failed. This
message typically indicates that the program ran out of paging file space for
a heap to grow. This message can also occur when a non-spreadable heap is
saturated.

After Memory Profiling displays the MAF message, a memory allocation
call returns NULL in the normal manner. Ideally, programs should handle
allocation failures.

Core Dump (COR)

A COR message indicates that the program generated a UNIX core dump.
This message can only occur when the program is running on a UNIX target
platform.

Memory Profiling Warnings

Warning Messages

102

Warning messages indicate a situation in which the program might not fail
immediately, but might later fail sporadically, often without any apparent
reason and with unexpected results. Warning messages often pinpoint
serious issues you should investigate before you check in code.

List of Memory Profiling Warning Messages

• Memory in Use (MIU)

• Memory Leak (MLK)

• Potential Memory Leak (MPK)

• File in Use (FIU)

• Signal Handled (SIG)

Memory in Use (MIU)

An MIU message indicates heap allocations to which the program has a
pointer.

Note At exit, small amounts of memory in use in programs that run for a
short time are not significant. However, you should fix large
amounts of memory in use in long running programs to avoid out-
of-memory problems.

Memory Profiling generates a list of memory blocks in use when you
activate the MIU Memory In Use option in the Memory Profiling Settings.

Memory Leak (MLK)

An MLK message describes leaked heap memory. There are no pointers to
this block, or to anywhere within this block.

Memory Profiling generates a list of leaked memory blocks when you
activate the MLK Memory Leak option in the Memory Profiling Settings.

 103

This message can occur when you allocate memory locally in some function
and exit the function without first freeing the memory. This message can
also occur when the last pointer referencing a block of memory is cleared,
changed, or goes out of scope. If the section of the program where the
memory is allocated and leaked is executed repeatedly, you might
eventually run out of swap space, causing slow downs and crashes. This is
a serious problem for long-running, interactive programs.

To track memory leaks, examine the allocation location call stack where the
memory was allocated and determine where it should have been freed.

Memory Potential Leak (MPK)

An MPK message describes heap memory that might have been leaked.
There are no pointers to the start of the block, but there appear to be
pointers pointing somewhere within the block. In order to free this
memory, the program must subtract an offset from the pointer to the
interior of the block. In general, you should consider a potential leak to be
an actual leak until you can prove that it is not by identifying the code that
performs this subtraction.

Memory in use can appear as an MPK if the pointer returned by some
allocation function is offset. This message can also occur when you
reference a substring within a large string. Another example occurs when a
pointer to a C++ object is cast to the second or later base class of a multiple-
inherited object and it is offset past the other base class objects.

Alternatively, leaked memory might appear as an MPK if some non-pointer
integer within the program space, when interpreted as a pointer, points
within an otherwise leaked block of memory. However, this condition is
rare.

Inspection of the code should easily differentiate between different causes
of MPK messages.

104

Memory Profiling generates a list of potentially leaked memory blocks
when you activate the MPK Memory Potential Leak option in the Memory
Profiling Settings.

File in Use (FIU)

An FIU message indicates a file that was opened, but never closed. An FIU
message can indicate that the program has a resource leak.

Memory Profiling generates a list of files in use when you activate the FIU
Files In Use option in the Memory Profiling Settings.

Signal Handled (SIG)

A SIG message indicates that a system signal has been received.

Memory Profiling generates a list of received signals when you activate the
SIG Signal Handled option in the Memory Profiling Settings.

Memory Profiling User Heap in C and C++

When using Memory Profiling on embedded or real-time target platforms,
you might encounter one of the following situations:

• Situation 1: There are no provisions for malloc, calloc, realloc or free
statements on the target platform.

Your application uses custom heap management routines that
may use a user API. Such routines could, for example, be based
on a static buffer that performs allocation and free actions.

In this case, you need to customize the memory heap parameters
RTRT_DO_MALLOC and RTRT_DO_FREE in the TDP to use
the custom malloc and free functions.

In this case, you can access the custom API functions.

• Situation 2: There are partial implementations of malloc, calloc, realloc

 105

or free on the target, but other functions provide methods of allocating
or freeing heap memory.

In this case, you do not have access to any custom API. This
requires customization of the Target Deployment Port. Please
refer to the Target Deployment Guide provided with the TDP
Editor.

In both of the above situations, Memory Profiling can use the heap
management routines to detect memory leaks, array bounds and other
memory-related defects.

Note Application pointers and block sizes can be modified by Memory
Profiling in order to detect ABWL errors (Late Detect Array Bounds
Write). Actual-pointer and actual-size refer to the memory data
handled by Memory Profiling, whereas user pointer and user-size
refer to the memory handled natively by the application-under-
analysis. This distinction is important for the Memory Profiling
ABWL and Red zone settings.

Target Deployment Port API

The Target Deployment Port library provides the following API for
Memory Profiling:

void * _PurifyLTHeapAction (_PurifyLT_API_ACTION, void *,
RTRT_U_INT32, RTRT_U_INT8);

In the function _PurifyLTHeapAction the first parameter is the type of
action that will be or has been performed on the memory block pointed by
the second parameter. The following actions can be used:

typedef enum {
 _PurifyLT_API_ALLOC,
 _PurifyLT_API_BEFORE_REALLOC,
 _PurifyLT_API_FREE
} _PurifyLT_API_ACTION;

The third parameter is the size of the block. The fourth parameter is either
of the following constants:

106

#define _PurifyLT_NO_DELAYED_FREE 0

#define _PurifyLT_DELAYED_FREE 1

If an allocation or free has a size of 0 this fourth parameter indicates a
delayed free in order to detect FWML (Late Detect Free Memory Write) and
FFM (Freeing Freed Memory) errors. See the section on Memory Profiling
Configuration Settings for Detect FFM, Detect FMWL, Free Queue Length
and Free Queue Size.

A freed delay can only be performed if the block can be freed with
RTRT_DO_FREE (situation 1) or ANSI free (situation 2). For example, if a
function requires more parameters than the pointer to de-allocate, then the
FMWL and FFM error detection cannot be supported and FFM errors will
be indicated by an FUM (Freeing Unallocated Memory) error instead.

The following function returns the size of an allocated block, or 0 if the
block was not declared to Memory Profiling. This allows you to implement
a library function similar to the msize from Microsoft Visual 6.0.

RTRT_SIZE_T _PurifyLTHeapPtrSize (void *);

The following function returns the actual-size of a memory block,
depending on the size requested. Call this function before the actual
allocation to find out the quantity of memory that is available for the block
and the contiguous red zones that are to be monitored by Memory
Profiling.

RTRT_SIZE_T _PurifyLTHeapActualSize (RTRT_SIZE_T);

Examples

In the following examples, my_malloc, my_realloc, my_free and my_msize
demonstrate the four supported memory heap behaviors.

The following routine declares an allocation:
void *my_malloc (int partId, size_t size)
{
 void *ret;

 107

 size_t actual_size = _PurifyLTHeapActualSize(size);
 /* Here is any user code making ret a pointer to a heap or
 simulated heap memory block of actual_size bytes */
 ...
 /* After comes Memory Profiling action */
 return _PurifyLTHeapAction (_PurifyLT_API_ALLOC, ret,
size, 0);
 /* The user-pointer is returned */
}

In situation 2, where you have access to a custom memory heap API,
replace the "..." with the actual malloc API function.

For a my_calloc(size_t nelem, size_t elsize), pass on nelem*elsize as the
third parameter of the _PurifyLTHeapAction function. In this case, you
might need to replace this operation with a function that takes into account
the alignments of elements.

To declare a reallocation, two operations are required:
void *my_realloc (int partId, void * ptr, size_t size)
{
 void *ret;
 size_t actual_size = _PurifyLTHeapActualSize(size);
 /* Before comes first Memory Profiling action */
 ret = _PurifyLTHeapAction (_PurifyLT_API_BEFORE_REALLOC,
ptr, size, 0);
 /* ret now contains the actual-pointer */
 /* Here is any user code making ret a reallocated pointer
to a heap or
 simulated heap memory block of actual_size bytes */
 ...
 /* After comes second Memory Profiling action */
 return _PurifyLTHeapAction (_PurifyLT_API_ALLOC, ret,
size, 0);
 /* The user-pointer is returned */
}

To free memory without using the delay:
void my_free (int partId, void * ptr)
{
 /* Memory Profiling action comes first */
 void *ret = _PurifyLTHeapAction (_PurifyLT_API_FREE, ptr,
0, 0);
 /* Any code insuring actual deallocation of ret */
}

108

To free memory using a delay:
void my_free (int partId, void * ptr)
{
 /* Memory Profiling action comes first */
 void *ret = _PurifyLTHeapAction (_PurifyLT_API_FREE, ptr,
0, 1);
 /* Nothing to do here */
}

To obtain the user size of a block:
size_t my_msize (int partId, void * ptr)
{
 return _PurifyLTHeapPtrSize (ptr);
}

Use the following macros to save customization time when dealing with
functions that have the same prototypes as the standard ANSI functions:

#define _PurifyLT_MALLOC_LIKE(func) \
void *RTRT_CONCAT_MACRO(usr_,func) (RTRT_SIZE_T size) \
{ \
 void *ret; \
 ret = func (_PurifyLTHeapActualSize (size)); \
 return _PurifyLTHeapAction (_PurifyLT_API_ALLOC, ret,
size, 0); \
}
#define _PurifyLT_CALLOC_LIKE(func) \
void *RTRT_CONCAT_MACRO(usr_,func) (RTRT_SIZE_T nelem,
RTRT_SIZE_T elsize) \
{ \
 void *ret; \
 ret = func (_PurifyLTHeapActualSize (nelem * elsize));
\
 return _PurifyLTHeapAction (_PurifyLT_API_ALLOC, ret,
nelem * elsize, 0); \
}
#define _PurifyLT_REALLOC_LIKE(func,delayed_free) \
void *RTRT_CONCAT_MACRO(usr_,func) (void *ptr, RTRT_SIZE_T
size) \
{ \
 void *ret; \
 ret = func (_PurifyLTHeapAction (
_PurifyLT_API_BEFORE_REALLOC, \
 ptr, size, delayed_free
), \
 _PurifyLTHeapActualSize (size)); \
 return _PurifyLTHeapAction (_PurifyLT_API_ALLOC, ret,
size, 0); \

 109

}
#define _PurifyLT_FREE_LIKE(func,delayed_free) \
void RTRT_CONCAT_MACRO(usr_,func) (void *ptr) \
{ \
 if (delayed_free) \
 { \
 _PurifyLTHeapAction (_PurifyLT_API_FREE, ptr, 0,
delayed_free); \
 } \
 else \
 { \
 func (_PurifyLTHeapAction (_PurifyLT_API_FREE, ptr, 0,
delayed_free)); \
 } \
}

Using the Memory Profiling Viewer

Memory Profiling results for C, C++ and Ada are displayed in the Memory
Profiling Viewer.

Memory Profiling for Java uses the Report Viewer

Error and Warning Filter

The Memory Profiling Viewer for C, C++ and Ada allows you to filter out
any particular type of Error or Warning message from the report.

To filter out error or warning messages:

1. Select an active Memory Profiling Viewer window.

2. From the Memory Profiling menu, select Errors and Warnings.

3. Select or clear the type of message that you want to show or hide.

Reloading a Report

If a Memory Profiling report has been updated since the moment you have
opened it in the Memory Profiling Viewer, you can use the Reload
command to refresh the display:

110

To reload a report:

1. From the View Toolbar, click the Reload button.

Resetting a Report

When you run a test or application node several times, the Memory
Profiling results are appended to the existing report. The Reset command
clears previous Memory Profiling results and starts a new report.

To reset a report:

1. From the View Toolbar, click the Reset button.

Exporting a Report to HTML

Memory Profiling results can be exported to an HTML file.

To export results to an HTML file:

1. From the File menu, select Export.

Memory Profiling Viewer Preferences

The Preferences dialog box allows you to change the appearance of your
Memory Profiling reports for C, C++ and Ada.

To choose Memory Profiling report colors and attributes:

1. Select the Memory Profiling Viewer node:

• Background color: This allows you to choose a background color for the
Memory Profiling Viewer window.

2. Expand the Memory Profiling Viewer node, and select Styles:

• Styles: This list allows you to select one or several styles that you want
to change. To change several styles at the same time, you can perform
multiple selections in the style list.

 111

• Font: This allows you to change the font type and size for the selected
style.

• Text Color: This allows you to change the foreground and background
colors for the selected style. This opens a standard color palette.

• Text Attributes: This allows you to set the selected style to Bold, Italic,
Underlined or Dashed.

3. Click OK to apply your changes.

Memory Profiling for Java

Memory Profiling for Java

Run-time memory problems are among the most difficult errors to locate
and the most important to correct. The symptoms of incorrect memory use
are unpredictable and typically appear far from the cause of the error. The
issue often remain undetected until triggered by a random event, so that a
program can seem to work correctly when in fact it's only working by
accident.

That's where the Memory Profiling feature can help you get ahead.

• You associate Memory Profiling with an existing test node or
Application code.

• You compile and run your application.

• The application with the Memory Profiling feature, then directs output
to the Memory Profiling Viewer, which provides a detailed report of
memory issues.

The Java language differs from other programming languages, among other
aspects, by the way memory is managed by the Java Virtual Machine (JVM).

112

The technique used is the JVMPI Agent technology for Java.

Memory Profiling Results for Java

After execution of an instrumented application, the Memory Profiling
report displays:

• In the Report Explorer window: a list of available snapshots

• In the Memory Profiling window: the contents of the selected Memory
Profiling snapshot

Report Explorer

The Report Explorer window displays a Test for each execution of the
application node. Inside each test, a Snapshot report is created for each
Memory Profiling snapshot.

Method Snapshots

The Memory Profiling report displays snapshot data for each method that
has performed an allocation. If the Java CLASSPATH is correctly set, you
can click blue method names to open the corresponding source code in the
Text Editor. System methods are displayed in black and cannot be clicked.

Method data is reset after each snapshot.

For each method, the report lists:

• Method: The method name. Blue method names are hyperlinks to the
source code under analysis

• Allocated Objects: The number of objects allocated since the previous
snapshot

• Allocated Bytes: The total number of bytes used by the objects allocated
by the method since the previous snapshot

 113

• Local + D Allocated Objects: The number of objects allocated by the
method since the previous snapshot as well as any descendants called
by the method

• Local + D Allocated Bytes: The total number of bytes used by the
objects allocated by the method since the previous snapshot and its
descendants

Referenced Objects

If you selected the With objects filter option in the JVMPI Settings dialog
box, the report can display, for each method, a list of objects created by the
method and object-related data.

From the Memory Profiling menu, select Hide/Show Referenced Objects.

For each object, the report lists:

• Reference Object Class: The name of the object class. Blue class names
are hyperlinks to the source code under analysis.

• Referenced Objects: The number of objects that exist at the moment the
snapshot was taken

• Referenced Bytes: The total number of bytes used by the referenced
objects

Differential Reports

The Memory Profile report can display differential data between two
snapshots within the same Test. This allows you to compare the referenced
objects. There are two diff modes:

• Automatic differential report with the previous snapshot

• User differential report

Differential reports add the following columns to the current Memory

114

Profiling snapshot report:

• Referenced Objects Diff AUTO: Shows the difference in the number of
referenced objects for the same method in the current snapshot as
compared to the previous snapshot

• Referenced Bytes Diff AUTO : Shows the difference in the memory
used by the referenced objects for the same method in the current
snapshot as compared to the previous snapshot

• Referenced Objects Diff USER: Shows the difference in the number of
referenced objects for the same method in the current snapshot as
compared to the user-selected snapshot

• Referenced Bytes Diff USER: Shows the difference in the memory used
by the referenced objects for the same method in the current snapshot as
compared to the user-selected snapshot

To add or remove data to the report:

1. From the Memory Profiling menu, select Hide/Show Data.

2. Toggle the data that you want to hide or display

To sort the report:

• In the Memory Profiling window, click a column label to sort the table
on that value.

To obtain a differential report:

• From the Memory Profiling menu, select Diff with Previous
Referenced Objects.

To obtain a user differential report:

1. In the Report Explorer, select the current snapshot

2. Right-click another snapshot in the same Test node and select Diff
Report.

 115

JVMPI Technology

Memory Profiling for Java uses a special dynamic library, known as the
Memory Profiling Agent, to provide advanced reports on Java Virtual
Machine (JVM) memory usage.

Garbage Collection

JVMs implement a heap that stores all objects created by the Java code.
Memory for new objects is dynamically allocated on the heap. The JVM
automatically frees objects that are no longer referenced by the program,
preventing many potential memory issues that exist in other languages.
This process is called garbage collection.

In addition to freeing unreferenced objects, a garbage collector may also
reduce heap fragmentation, which occurs through the course of normal
program execution. On a virtual memory system, the extra paging required
to service an ever growing heap can degrade the performance of the
executing program.

JVMPI Agent

Because of the memory handling features included in the JVM, Memory
Profiling for Java is quite different from the feature provided for other
languages. Instead of Source Code Insertion technology, the Java
implementation uses a JVM Profiler Interface (JVMPI) Agent whose task is
to monitor JVM memory usage and to provide a memory dump upon
request.

The JVMPI Agent analyzes the following internal events of the JVM:

• Method entries and exits

• Object and primitive type allocations

The JVMPI Agent is a dynamic library DLL or lib.so depending on the

116

platform used that is loaded as an option on the command line that
launches the Java program.

During execution, when the agent receives a snapshot trigger request, it can
either an instantaneous JVMPI dump of the JVM memory, or wait for the
next garbage collection to be performed.

Note Information provided by the instantaneous dump includes actual
memory use as well as intermediate and unreferenced objects that
are normally freed by the garbage collection. In some cases, such
information may be difficult to interpret correctly.

The actual trigger event can be implemented with any of the following
methods:

• A specified method entry or exit used in the Java code

• A message sent from the Snapshot button or menu item in the graphical
user interface

• Every garbage collection

The JVMPI Agent requires that the Java code is compiled in debug mode,
and cannot be used with Java in just-in-time (JIT) mode.

Performance Profiling

About Performance Profiling

The Performance Profiling feature puts successful performance engineering
within your grasp. It provides complete, accurate performance data—and
provides it in an understandable and usable format so that you can see
exactly where your code is least efficient. Using Performance Profiling, you
can make virtually any program run faster. And you can measure the
results.

 117

Performance Profiling measures performance for every component in C or
C++ source code, in real-time, and on both native or embedded target
platforms. Performance Profiling works by instrumenting the C and C++
source code of your application. After compilation, the instrumented code
reports back to PurifyPlus RealTime after the execution of the application.

• You associate Performance Profiling with an existing test or application
code.

• You build and execute your code in PurifyPlus RealTime.

• The application under test, instrumented with the Performance Profiling
feature, then directs output to the Performance Profiling Viewer, which
a provides a detailed report of memory issues.

Performance Profiling Results

The Performance Profiling report provides function profiling data for your
program and its components so that you can see exactly where your
program spends most of its time.

Top Functions Graph

This section of the report provides a high level view of the largest time
consumers detected by Performance Profiling in your application.

118

Performance Summary

This section of the report indicates, for each instrumented function,
procedure or method (collectively referred to as functions), the following
data:

• Calls: The number times the function was called

• Function (F) time: The time required to execute the code in a function
exclusive of any calls to its descendants

• Function+descendant (F+D) time: The total time required to execute the
code in a function and in any function it calls.

Note that since each of the descendants may have been called by
other functions, it is not sufficient to simply add the descendants'
F+D to the caller function's F. In fact, it is possible for the
descendants' F+D to be larger than the calling function's F+D. The
following example demonstrates three functions a, b and c, where
both a and b each call c once:

function F F+D

a 5 15

 119

b 5 15

c 20 20

The F+D value of a is less than the F+D of c. This is because the F+D of a (15)
equals the F of a (5) plus one half the F+D of c (20/2=10).

• F Time (% of root) and F+D Time (% of root): Same as above, expressed
in percentage of total execution time

• Average F Time: The average time spent executing the function each
time it was called

Performance Profiling SCI Dump Driver

In C and C++, you can dump profiling trace data without using standard
I/O functions by using the Performance Profiling Dump Driver API
contained in the atqapi.h file, which is part of the Target Deployment Port

To customize the Performance Profiling Dump Driver, open the Target
Deployment Port directory and edit the atqapi.h. Follow the instructions
and comments included in the source code.

Performance Profiling Viewer Preferences

The Preferences dialog box allows you to change the appearance of your
Performance Profiling reports.

To choose Performance Profiling report colors and attributes:

1. Select the Performance Profiling Viewer node:

• Background color: This allows you to choose a background color for the
Performance Profiling Viewer window.

2. Expand the Performance Profiling Viewer node, and select Styles:

120

• Styles: This list allows you to select one or several styles that you want
to change. To change several styles at the same time, you can perform
multiple selections in the style list.

• Font: This allows you to change the font type and size for the selected
style.

• Text Color: This allows you to change the foreground and background
colors for the selected style. This opens a standard color palette.

• Text Attributes: This allows you to set the selected style to Bold, Italic,
Underlined or Dashed.

3. Click OK to apply your changes.

Using the Performance Profiling Viewer

The product GUI displays Performance Profiling results in the Performance
Profiling Viewer.

Reloading a Report

If a Performance Profiling report has been updated since the moment you
have opened it in the Performance Profiling Viewer, you can use the Reload
command to refresh the display:

To reload a report:

1. From the View Toolbar, click the Reload button.

Resetting a Report

When you run a test or application node several times, the Performance
Profiling results are appended to the existing report. The Reset command
clears previous Performance Profiling results and starts a new report.

 121

To reset a report:

1. From the View Toolbar, click the Reset button.

Exporting a Report to HTML

Performance Profiling results can be exported to an HTML file.

To export results to an HTML file:

From the File menu, select Export

Runtime Tracing

About Runtime Tracing

Runtime Tracing is a feature for monitoring real-time dynamic interaction
analysis. Runtime Tracing uses exclusive source-code instrumentation
technology to generate trace data, which is turned into UML sequence
diagrams within the PurifyPlus RealTime GUI.

• You associate Performance Profiling with an existing test or application
code.

• You build and execute your code in PurifyPlus RealTime.

• The application under test, instrumented with the Runtime Tracing
feature, then directs output to the UML/SD Viewer, which a provides a
real-time UML Sequence Diagram of your application's behavior.

Understanding Runtime Tracing UML Sequence Diagrams

Below are a series of examples of Runtime Tracing UML Sequence Diagram
output:

• Object instances

122

• C++ exceptions

• File instances

• Loops

Object Instances and Routine I/O

The lifeline of an object is represented in the UML/SD Viewer as shown
below.

The instance creation box displays the name of the instance.

Example

Below is an example of object lifelines generated by Runtime Tracing from a
C++ application.

In this C++ example, functions and static methods are attached to the World
instance.

Objects are labelled with obj<number>:<classname>

The black cross represents the destruction of the instance.

Constructors are displayed in green.

Destructors are blue.

Return messages are dotted red lines.

Other functions and methods are black.

The main() is a function of the World instance called by the same World
instance.

 123

To jump to the corresponding portion of source code:

• Double-click an element of the object lifeline to open the Text Editor at
the corresponding line in the source code.

To jump to the beginning or to the end of an instance:

• Right-click an element of the object lifeline and select Go to Head or Go
to Destruction in the pop-up menu.

To filter an instance out of the UML sequence diagram:

• Right-click an element of the object lifeline and select Filter instance in
the pop-up menu.

Advanced

Multi-Thread Support

Runtime Tracing can be configured for use in a multi-threaded environment
such as Posix, Solaris and Windows.

Multi-thread mode protects Target Deployment Port global variables
against concurrent access. This causes a significant increase in Target
Deployment Port size as well as an impact on performance. Therefore, select
this option only when necessary.

Multi thread settings:

These settings are ignored if you are not using a multi-threaded
environment. To change these settings, use the Runtime Tracing Control
Settings dialog box.

• Maximum number of threads: This value sets the size of the thread
management table inside the Target Deployment Port. Lower values
save memory on the target platform. Higher values allow more
simultaneous threads.

• Dump note on thread creation: When selected, the UML Sequence

124

Diagram displays a note ("Thread Creation") each time a new thread is
created.

• Dump note on thread schedule: When selected, the UML Sequence
Diagram displays a note ("Thread Schedule") each time a thread's
schedule is changed.

Partial Trace Flush

When using this mode, the Target Deployment Port only sends messages
related to instance creation and destruction, or user notes. All other events
are ignored. This can be useful to reduce the output of trace.

When Partial Trace Flush mode is enabled, message dump can be toggled
on and off during trace execution.

The Partial Trace Flush settings are located in the Runtime Tracing Settings
dialog box.

To set Partial Trace Flush from the Node Settings:

1. In the Project Explorer, click the Open Settings... button.

2. Select one or several nodes in the Configuration pane.

3. Select the Runtime Analysis node and the Runtime Tracing node.

4. Select Runtime Tracing Control.

5. Set the Partial trace flush setting to Yes or No to activate or disable the
mode.

6. When you have finished, click OK to validate the changes.

To toggle message dump from within the source code:

To do this, you can use the Runtime Tracing pragma user directives:

 125

• _ATT_START_DUMP

• _ATT_STOP_DUMP

• _ATT_TOGGLE_DUMP

• _ATT_DUMP_STACK

See the Reference Manual for more information about pragma directives.

To control message dump through a user signal (native UNIX only):

This capability is available only when using a native UNIX target platform.

Under UNIX, the kill command allows you to send a user signal to a
process. Runtime Tracing can use this signal to toggle message dump on
and off.

1. In the Project Explorer, click the Open Settings... button.

2. Select one or several nodes in the Configuration pane.

3. Select the Runtime Analysis node and the Runtime Tracing node.

4. Select Runtime Tracing Control.

5. Set the Partial trace flush setting to Yes or No to activate or disable the
mode.

6. When you have finished, click OK to validate the changes.

Note By default, the expected signal is SIGUSR1, but you can change this
by setting the ATT_SIGNAL_DUMP environment variable to the
desired signal number. See the Reference Manual for more
information about environment variables.

Trace Item Buffer

Buffering allows you to reduce formatting and I/O processing at time-

126

critical steps by telling the Target Deployment Port to only output trace
information when its buffer is full or at user-controlled points.

This can prove useful when using Runtime Tracing on real-time
applications, as you can control buffer flush from within the source-under-
trace.

To activate or de-activate trace item buffering:

1. In the Project Explorer, click the Open Settings... button.

2. Select one or several nodes in the Configuration pane.

3. Select the Runtime Analysis node and the Runtime Tracing node.

4. Select Runtime Tracing Control.

5. Set the Buffer trace items setting to Yes or No to activate or disable the
mode.

6. Set the size of the buffer in the Items buffer size box.

7. When you have finished, click OK to validate the changes.

A smaller buffer optimizes memory usage on the target platform, whereas a
larger buffer improves performance of the real-time trace. The default value
is 64.

To flush the trace buffer through a user directive:

It can be useful to flush the buffer before entering a time-critical part of the
application-under-trace. You can do this by adding the
_ATT_FLUSH_ITEMS user directive to the source-under-trace.

Note See Runtime Tracing pragma directives in the Reference Manual to
control Target Deployment Port buffering from within the source
code.

 127

Splitting Trace Files

During execution, Runtime Tracing generates a .tdf dynamic file. When a
large application is instrumented, the size of the .tdf file can impact
performance of UML/SD Viewer.

Splitting trace files allows you to split the .tdf trace file into smaller files,
resulting in faster display of the UML Sequence Diagram and to optimize
memory usage. However, split trace files cannot be used simultaneously
with On-the-Fly tracing.

When displaying split .tdf files, Runtime Tracing adds Synchronization
elements to the UML sequence diagram to ensure that all instance lifelines
are synchronized.

To set Split Trace mode:

1. From the Project Explorer, select the highest level node from which you
want to activate split trace mode, the Workspace for instance.

2. Right-click the node, and select Settings... from the pop-up menu.

3. In the Configuration Settings dialog, select the Runtime Tracing tab

4. From the options box, select Miscellaneous options.

5. Select Override parent settings to allow modification of the node's
settings.

6. Select Split trace in the Split Runtime Tracing area.

7. Set the Size (Kb) of each split .tdf. The default size is 5000 Kb.

8. Specify a Prefix for the split .tdf filenames. The prefix is followed by a 4-
digit number that identifies each file.

9. Click OK.

128

Note The total size of split .tdf files is slightly larger than the size of a
single .tdf file, because each file contains additional context
information.

 129

Graphical User Interface 3
The graphical user interface (GUI) provides an integrated test environment
designed to act as a single, unified work space for all automated testing and
runtime analysis activities.

This section describes the features and capabilities included within the GUI
that are designed to make your testing effort a lot more manageable.

GUI Philosophy

In addition to acting as an interface with your usual development tools, the
GUI provides navigation facilities, allowing natural hypertext linkage
between test and analysis reports, UML sequence diagrams and source
code. For example:

• You can click any element of a test report to highlight the corresponding
test script line in the embedded text editor.

• You can click any element of an runtime analysis report to highlight and
edit the corresponding item in your application source code

• You can click a filename in the output window to open the file in the
Text Editor

In addition, the GUI provides easy-to-use Activity Wizards to guide you
through the creation of your project components.

Discovering the GUI

When you launch the Graphical User Interface (GUI), you are first greeted
with the Start Page and a series of windows. Click the elements below to

130

learn how to use them:

• The Start Page is a convenient starting point when you launch the GUI

• The Project Explorer is where you create, develop and execute your
project nodes

• The Properties Window provides information about node properties

• The Output Window displays the output of command line tools and
compilers

• The Standard Toolbars provide quick and convenient access to the most
commonly used features

• The Report Explorer allows you to navigate through analysis reports

GUI Components and Tools

In addition to these main windows, the product GUI provides a
comprehensive set of tools and components that make it an efficient and
customizable development environment.

• The Text Editor is a full-featured editor for source code

• The Tools menu is a convenient way of integrating any command-line
tool into the GUI

• The Test Process Monitor provides ongoing activity statistics and
metrics

• The Report Viewer displays runtime analysis reports

• The UML/SD Viewer displays UML sequence diagrams provided by
Runtime Tracing feature.

Start Page

When you launch the graphical user interface, the first element that appears
is the PurifyPlus RealTime Start Page.

 131

The Start Page is the central location of the application. From here, you can
create a new project, start a new activity and navigate through existing
project reports.

The Start Page contains the following sections:

• Get Started: this section lists your recent projects as well as a series of
example projects provided with the product.

• Activities: this section displays a series of new activities. Click a new
activity to launch the corresponding activity wizard.

Note A project must be open before selecting a new activity.

Output Window

The Output Window displays messages issued by product components or
custom features.

The first tab, labelled Build, is the standard output for messages and errors.
Other tabs are specific to the built-in features of the product or any user
defined tool that you may have added.

To switch from one console window to another, click the corresponding tab.
When any of the Output Window tabs receives a message, that tab is
automatically activated.

When a console message contains a filename, double-click the line to open
the file in the Text Editor. Similarly when a test report appears in the
Output Window, double-click the line to view the report.

Output Window Actions

Right-click the Output Window to bring up a pop-up menu with the
following options:

132

• Edit Selected File: Opens the editor with the currently selected
filename.

• Copy: Copies the selection to the clipboard.

• Clear Window: Clears the contents of the Output Window.

To hide or show the Output Window:

From the View menu, select Other Windows and Output Window.

Project Explorer

The Project Explorer allows you to navigate, construct and execute the
components of your project. The Project Explorer organizes your workspace
from two viewpoints:

• Project Browser: This tab displays your project as a tree view, as it is to
be executed.

• Asset Browser: Source code and test script components are displayed
on an object or elementary level.

To change views, select the corresponding tab in the lower section of the
Project Explorer window.

Project Browser

The Project Browser displays the following hierarchy of nodes:

• Project: the Project Explorer's root node.

• Test groups: provide a way to group and organize test nodes into one
or more test campaigns

• Application nodes: represent your application, to which you can apply
SCI instrumentation for Memory Profiling, Performance Profiling, Code
Coverage and Runtime Tracing.

• External Command nodes: these allow you to add shell command lines

 133

at any point in the Test Campaign.

After execution of a test or application node, double-click the node to open
all associated available reports.

When you run a Build command in the Project Browser, the product parses
and executes each node from the inside-out and from top to bottom. This
means that the contents of a parent node are executed in sequence before
the actual parent node.

Asset Browser

The Asset Browser displays all the files contained in your project. The
product parses the files and displays individual components of your source
files and test scripts, such as classes, methods, procedures, functions, units
and packages.

Use the Asset Browser to easily navigate through your source files and test
scripts.

In Asset Browser, you can select the type of Asset Browser in the Sort
Method box at the top of the Project Explorer window. Each view type can
be more or less relevant depending on the programming language used:

• By Files: This view displays a classic source file and dependency
structure

• By Objects: Primarily for C++ and Java, this view type presents objects
and methods independently from the file structure

• By Packages: This is mostly relevant for Java and displays packages and
components

Double-click a node in the Asset Browser to open the source file or test
script in the text editor at the corresponding line.

134

To switch Project Explorer views:

• Click the Project Browser or Asset Browser tab.

To hide or show the Project Explorer:

1. Right-click an empty area within the toolbar.

2. Select or clear the Project Window menu item.

or from the View menu, select Other Windows and Project Window.

Properties Window

The Properties Window box contains information about the node selected
in the Project Explorer. It also allows you to modify this information.

Project Browser

Depending on the node selected, any of the following relevant information
may be displayed:

• Name: is the name carried by the node in the Project Explorer.

• Exclude from Build: excludes the node from the Build process. When
this option is selected a cross is displayed next to the node in the Project
Explorer.

• Execute in background: enables the build and execution of more than
one test or application node at the same time.

• Relative path: indicates the relative path of the file.

• Full path: indicates the entire path of the file.

• Source type: You can select either Integrated or Tested.

Asset Browser

Select the type of Object View in the Sort Method box at the top of the

 135

Project Explorer window: By Object, By Files, or By Packages. Depending
on the sort method selected, and the type of object or file, any of the
following relevant information may be displayed:

• Name: is the name carried of the file, object or package.

• Filters (for folders): is the file extension filter for files in that folder. See
Creating a Source File Folder.

• Name: is the name carried of the file or package.

• Relative path: indicates the relative path of the file.

• Full path: indicates the entire path of the file.

To open the Properties window:

1. In the Project Explorer, right-click a node.

2. Select Properties... in the pop-up menu.

To hide or show the Properties window:

1. Right-click an empty area within the toolbar.

2. Select or clear the <object> Property menu item.

or from the View menu, select Other Windows and <object> Property.

Report Explorer

The Report Explorer allows you to navigate through all text and graphical
reports, including:

• Memory Profiling, Performance Profiling and Code Coverage reports

• UML Sequence Diagram reports from the Runtime Tracing feature

• Metrics produced by the Metrics Viewer

The actual appearance of the Report Explorer contents depends on the

136

nature of the report that is currently displayed, but generally the Report
Explorer offers a dynamic hierarchical view of the items encountered in the
report.

Click an item in the Report Explorer to locate and select it in the Report
Viewer or UML/SD Viewer window.

To hide or show the Report Explorer:

1. Right-click an empty area within the toolbar.

2. Select or clear the Report Explorer menu item.

Standard Toolbars

The toolbars provide shortcut buttons for the most common tasks.

The following toolbars are available

• Main toolbar

• View toolbar

• Build toolbar

• Status bar

Main Toolbar

The main toolbar is available at all times:

• The New File button creates a new blank text file in the Text Editor.

• The Open button allows you to load any project, source file, test script,
or report file supported by the product.

• The Save File button saves the contents of the current window.

• The Save All button saves the current workspace as well as all open
files.

 137

• The Cut, Copy and Paste buttons provide the standard clipboard
functionality.

• The Undo and Redo buttons allow you undo or redo the last command.

• The Find button allows you to locate a text string in the active Text
Editor or report window.

View Toolbar

The View toolbar provides shortcut buttons for the Text Editor and report
viewers.

• The Choose zoom Level box and the Zoom In and Zoom Out buttons
are classic Zoom controls.

• The Reload button refreshes the current report in a report viewer. This
is useful when a new report has been generated.

• The Reset Observation Traces button clears cumulative reports such as
those from Code Coverage, Memory Profiling or Performance Profiling.

Build Toolbar

The build toolbar provides shortcut buttons to build and run the test.

• The Configuration box allows you to select the target configuration on
which the test will be based.

• The Build button launches the build and executes the node selected in
the Project Explorer. You can configure the Build Options for the
workspace by selecting the Options button.

• The Stop button stops the build or execution.

• The Clean Parent Node button removes files created by previous tests.

• The Execute Node button executes the node selected in the Project
Explorer.

138

Status Bar

The Status bar is located at the bottom of the main GUI window. It includes
a Build Clock which displays execution time, and the Green LED which
flashes when work is in progress.

To hide or show a toolbar:

1. Right-click an empty area within the toolbar.

2. Select and clear those toolbars you want to display or hide.

or from the View menu, select Toolbars and the toolbar(s) you want to
display or hide.

Using the GUI Components

Using the Report Viewer

The Report Viewer allows you to view Test or Runtime Analysis reports
from Component Testing, System Testing and any of the Runtime Analysis
features

Most reports are produced as XML-based .xrd files, which are generated
during the execution of the test or application node.

To navigate through the report:

• You can use the Report Explorer to navigate through the report. Click
an element in the Report Explorer to go to the corresponding line in the
Report Viewer.

• You can also jump directly to the next or previous Failed test in the
report by using the Next Failed Test or Previous Failed Test buttons.

To filter out passed tests:

You can choose to only display the Failed tests in the report.

 139

• From the Report Viewer menu, select Failed Tests Only or click the
Failed Tests Only button in the Report Viewer toolbar.

• To switch back to a complete view of the report, from the Report
Viewer menu, select All Tests or click the All Tests button in the Report
Viewer toolbar.

To hide or show report nodes:

The Report Viewer can hide or show some types of elements of the test,
such as Test Cases, Services or Scenarios.

• From the Report Viewer menu, select the elements that you want to
hide or show.

Understanding Test and Runtime Analysis Reports

The product generates Test and Runtime Analysis reports for each test or
runtime analysis feature.

Runtime Analysis Reports

• Memory Profiling

• Performance Profiling

• Code Coverage

• Runtime Tracing

Test Verdict Reports

• Component Testing for C and Ada

• Component Testing for C++

• System Testing for C

Setting a Zoom Level

UML sequence diagrams and other reports can be viewed with different

140

zoom levels.

To set the zoom level:

You can directly change the zoom level in the View Toolbar by using the
Zoom In and Zoom Out buttons or by selecting one of the pre-defined or
custom levels from the Choose Zoom Level box.

Report Viewer Toolbar

The Report toolbar eases report navigation with the Report Viewer.

Report Viewer commands are available when a Report Viewer window is
open:

• The Previous Failed Test and Next Failed Test buttons allow you to
quickly navigate through the Failed items.

• The Failed Tests Only or All Tests button toggles between the two
display modes.

Report Viewer Style Preferences

The Preferences dialog box allows you to change the appearance of your
Test and Runtime Analysis reports.

To choose Report Editor colors and attributes

1. Select the Report Viewer node:

• Background color: This allows you to choose a background color for the
Report Viewer window.

2. Expand the Report Viewer node, and select Syntax Color:

• Styles: This list allows you to select one or several styles that you want
to change. To change several styles at the same time, you can perform
multiple selections in the style list.

• Font: This allows you to change the font type and size for the selected

 141

style.

• Text Color: This allows you to change the foreground and background
colors for the selected style. This opens a standard color palette.

• Text Attributes: This allows you to set the selected style to Bold, Italic,
Underlined or Dashed.

3. Click OK to apply your changes.

Text Editor

The product GUI provides its own Text Editor for editing and browsing
script files and source code.

The Text Editor is a fully-featured text editor with the following capabilities:

• Syntax Coloring

• Find and Replace functions

• Go to line or column

The main advantage of the Text Editor included in the GUI is its tight
integration with the rest of the test environment. You can click items within
the Project Explorer, Output Window, or any Test and Runtime Analysis
Report to immediately highlight and edit the corresponding line of code in
the Editor.

Creating a Text File

To create a new text file:

1. Click the New Text File toolbar button,

2. From the Editor menu, use the Syntax Color submenu to select the
language.

or

142

1. From the File menu, select New... and then open the Text File option

2. From the Editor menu, use the Syntax Color submenu to select the
language.

Opening a Text File

The Text Editor is tightly integrated with the PurifyPlus RealTime GUI.
Because of the links between the various views of the GUI, there are many
ways of opening a text file. The most common ones are described here.

Using the Open command:

1. From the File menu, select Open... or click the Open button from the
standard toolbar.

2. Use the file selector to select the file type and to locate the file.

3. Select the file you want to open.

4. Click OK.

Using the File Explorer:

1. Select a file in the Project Explorer. If there are recognized components
in the file, a '+' symbol appears next to it.

2. Click the '+' symbol to expand the list of references in the file.

3. Double-click a reference to open the Text Editor at the corresponding
line.

Tip: You can navigate through the source file by double-clicking other
reference points in the Project Explorer.

Using a Test or Report Viewer:

1. With the Report Viewer open, locate an element inside the report.

 143

2. Double-click the item to open the Text Editor at the corresponding line.

Finding Text in the Text Editor

To locate a particular text string within the Text Editor, use the Find
command.

Search options:

The Search box allows you to select the search mode:

• All searches for the first occurrence from the beginning of the file.

• Selected searches through selected text only.

• Forward and Backward specify the direction of the search, starting at
the current cursor position.

Match case restricts search criteria to the exact same case.

Match whole word only restricts the search to complete words.

Use regular expression allows you to specify UNIX-like regular expressions
as search criteria.

To find a text string in the Text Editor:

1. From the Edit menu, select Find...

2. The editor Find and Replace dialog appears with the Find tab selected.

3. Type the text that you want to find in the Find what: section. A history
of previously searched words is available by clicking the Find List
button.

4. Change search options if required.

5. Click Find.

144

Replacing Text in the Text Editor

To replace a text string with another string, you use the Find and Replace
command.

To replace a text string:

1. From the Edit menu, select Replace...

2. The editor Find and Replace dialog appears with the Replace tab
selected.

3. Type the text that you want to change in the Find what box. A history of
previously searched words is available by clicking the Find List button.

4. Type the text that you want to replace it with in the Replace with box. A
history of previously replaced words is available by clicking the
Replace List button.

5. Change search options (see below) if required.

6. Click Replace to replace the first occurrence of the searched text, or
Replace All to replace all occurrences.

Search options:

The Search box allows you to select the search mode:

• All searches for the first occurrence from the beginning of the file.

• Selected searches through selected text only.

• Forward and Backward specify the direction of the search, starting at
the current cursor position.

Match case restricts search criteria to the exact same case.

Match whole word only restricts the search to complete words.

 145

Use regular expression allows you to specify UNIX-like regular expressions
as search criteria.

Locating a Line and Column in the Text Editor

The Go To command allows you to move the cursor to a specified line and
column within the Text Editor.

To use the Go To feature:

1. From the Edit menu, select Go To...

2. The Text Editor's Find and Replace dialog appears with the Go To tab
selected.

3. Enter the number of the line or column or both.

4. Click Go to close the dialog box and to move the cursor to the specified
position.

Text Editor Syntax Coloring

The Text Editor provides automatic syntax coloring for C, C++, and Ada
source code as well for the C and Ada, C++ test script languages, and
System Testing Script Language. The Text Editor automatically detects the
language based on the filename extension.

However, if the filename does not have a standard extension, you must
select the language from the Syntax Color submenu.

To manually set the syntax coloring mode:

1. From the Editor menu, select the desired language through the Syntax
Color submenu.

Note To change the colors used by the Text Editor, see Text Editor
Preferences.

146

Text Editor Preferences

The Preferences dialog box allows you to change the appearance of the
source code and scripts in the Text Editor.

To choose Editor report colors and attributes:

1. Select the Editor node.

• Font: This allows you to change the general font type and size for
Editor. This parameter is overridden for defined styles by the Style font
setting. This parameter can be overridden for defined styles by the Style
font settings.

• Global Colors: This is where you select background colors for text
categorized as Normal, Information or Error as well as the general
background color. Click a color to open a standard color palette.

• Autodetect parenthesis and bracket mismatch - When this option is
selected, the Error color is used when the Editor detects a missing
bracket "[]" or parenthesis "()".

• Tabulation length: This specifies the tabulation length, which is
equivalent to a number of inserted spaces.

2. Expand the Editor Viewer node, and select Styles:

• Styles: This list allows you to select one or several styles that you want
to change. To change several styles at the same time, you can perform
multiple selections in the style list.

• Font: This allows you to change the font type and size for the selected
style.

• Text Color: This allows you to change the foreground and background
colors for the selected style. This opens a standard color palette.

• Text Attributes: This allows you to set the selected style to Bold, Italic,
Underlined or Dashed.

 147

3. Click OK to apply your changes.

Tools Menu

The Tools menu is a user-configurable menu that allows you to access
personal tools from the graphical user interface (GUI). You can customize
the Tools menu to meet your own requirements.

Custom tools can be applied to a selection of nodes in the Project Explorer.
Selected nodes can be sent as a parameter to a user-defined tool application.
A series of macro variables is available to pass parameters on to your tool's
command line.

See the section GUI Macro Variables in the Reference Manual for detailed
information about using the macro command language.

Using the Tools Menu

To use a user-defined tool:

1. Select an icon from the Project Explorer pane.

2. Click the Tools menu and select the tool you want to use.

To add a new tool to the Tools menu:

1. From the Tools menu, select Toolbox...

2. To create an entirely new tool, click Add... If you want to copy from an
existing tool, select the existing tool, click Copy and click Edit...

3. Edit the tool in the Tool Edit box.

4. Click OK and Close.

To edit a user-defined tool:

1. From the Tools menu, select Toolbox...

148

2. Select the tool that you want to modify and click Edit...

3. Edit the tool in the Tool Edit box.

4. Click OK and Close.

To remove a tool from the Tools menu:

1. From the Tools menu, select Toolbox...

2. Select an existing tool from the tool list.

3. Click Remove and Close.

Tool Configuration

The Tool Configuration dialog allows you to configure a new or existing
tool.

In the Tools menu, each tool appears as a submenu item, or Name, with one
or several associated actions or Captions.

Identification

In this tab, you describe how the tool will appear in the Tools menu.

• Enter the Name of the tool submenu as it will appear in the Tools menu
and a Comment that is displayed in the lower section of the Toolbox
dialog box.

• Select Change Management System if the tool is used to send and
retrieve from a change management system. When Change
Management System is selected, Check In and Check Out actions are
automatically added to the Action tab (see below) and a Change
Management System toolbar is activated.

• Clear the Add to Tools menu checkbox if you do not want the tool to be
added to the Tools menu.

 149

• Select Send messages to custom tab in the Output Window if you want
to view the tool's text output in the Output Window.

Use the Icon button to attach a custom icon to the tool that will appear in
the Tools menu. Icons must be either .xpm or .png graphic files and have a
size of 22x22 pixels.

Actions

This tab allows you to describe one or several actions for the tool.

• The Actions list displays the list of actions associated with the tool. If
Change Management System is selected on the Identification tab,
Check In and Check Out tool commands will listed here. These cannot
be renamed or removed.

• Menu text is the name of the action that will appear in the Tools
submenu.

• Command is a shell command line that will be executed when the tool
action is selected from Tools menu. Command lines can include toolbox
macro variables and functions.

Click OK to validate any changes made to the Tool Edit dialog box.

To add a new action:

• Enter a Caption and a Command, then click Add.

To remove an action from the list:

• Select an action in the Actions list and click Remove.

To modify an action:

• Select an action, make any changes in the Caption or Command lines,
and click Modify.

Test Process Monitor

150

About the Test Process Monitor

The Test Process Monitor provides an integrated monitoring feature that
helps project managers and test engineers obtain a statistical analysis of the
progress of their development effort.

Each generated metric is stored in its own file and consists of one or more
fields.

The Test Process Monitor works by gathering the statistical data from these
files and then generating a graphical chart based on each field.

The preexistence of a file is required before running the Test Process
Monitor. Files are created either by running a runtime analysis feature that
generates test process data, or by creating and updating your own file.

Note Currently only the Code Coverage feature provides data for the Test
Process Monitor. You can, however, build your own files with the
tpmadd command-line feature. See the Reference Manual for
further information.

Changing Curve Properties

The Curve Properties menu allows you to change the way a particular
graph is displayed.

To change the curve color:

1. Right-click a curve.

2. From the pop-up menu, select Change Curve Color.

3. Use the Color Palette to select a new color, and click OK.

To hide a curve:

1. Right-click a curve.

 151

2. From the pop-up menu, select Hide Curve.

To set a maximum value:

Changing the maximum displayed value for a curve actually changes the
scale at which it is displayed. For instance, when a curve only reaches 100,
there is no point in displaying it at on a scale of 1000, unless you want to
compare it with another curve that uses that scale.

1. Right-click a curve.

2. From the pop-up menu, select Set Max Value.

3. Enter the scale value, and click OK.

Note Setting a maximum value lower than the actual maximum value of a
curve can result in erratic results.

To display a scale:

For any curve, you can display a scale on the right or left-hand side of the
graph. When you display a new scale, it replaces any previously displayed
one.

1. Right-click a curve.

2. From the pop-up menu, select Right Scale or Left Scale.

Custom Curves

In some cases, you may want to remove certain figures from a chart to make
it more relevant. The custom curves capability allows you to alter the chart
by selecting the records that you want to include.

Note Using the custom curves capability does not impact the actual
database. If you remove a record from the chart by using the custom
curves function, the actual record remains in the database and may

152

impact other figures.

Custom curves create a new metric, using the name of the base metric, with
a Custom prefix.

To create a custom curve:

1. Make sure a user is selected in the Report Explorer pane. If not, select a
user.

2. From the Project menu, select Test Process Monitor and Custom Curves.

3. In the Custom Curves dialog box, select a metric and the start and end
date of your chart.

4. The record list displays all the records contained in the database of that
metric. Select the records that you want to use for your custom curve.
Clear the records that you do not want to use.

5. Click OK. A new metric is created.

To change a custom curve:

1. From the Project menu, select Test Process Monitor and Custom Curves.

2. In the Custom Curves dialog box, select the Custom metric that you
want to modify.

3. Select the records that you want to use for your custom curve. Clear the
records that you do not want to use.

4. Click OK.

Event Markers

Use event markers to identify milestones or special events within your Test
Process Monitor chart. An event marker is identified by the date of the
event and a marker label.

 153

Event markers appear as bold vertical lines in a Test Process Monitor chart.

To create an event marker:

1. Right-click the location where you want to put the chart

2. From the pop-up menu, select Event Properties and New Event.

3.Enter the date of the event, and a marker label, and click OK.

To remove an event marker:

1. Right-click the event marker that you want to hide.

2. From the pop-up menu, select Delete Event.

To hide a specific event marker:

Hiding a marker does not remove it. You can still make the marker
reappear.

1. Right-click the event marker that you want to hide.

2. From the pop-up menu, select Hide Event.

To hide or show all event markers:

1. In the Test Process Monitor toolbar, click the Events button to hide all
event markers.

2. Click again to show all hidden event markers.

Setting the Time Scale

The Scale capability defines the period that you want to view in the Test
Process Monitor window. This option allows you to select an annual,
monthly or daily view, as well as a user-definable time period.

To set the time scale:

1. Select a user in the Report Explorer pane.

154

2. From the Project menu, select Test Process Monitor, Scale and the
desired time scale.

3. If you chose Customize, enter the start and end date of the period that
you want to monitor, and click OK.

Test Process Monitor Toolbar

The Test Process Monitor (TPM) toolbar is useful for navigating through
TPM charts.

These buttons are available when a TPM window is open:

• The Clear button removes all curves from the chart.

• The Hide Event button hides the displayed event markers.

• The Floating Schedule button toggles the automatic location of new
curves.

To hide or show a toolbar:

1. Right-click an empty area within the toolbar.

2. Select and clear those toolbars you want to display or hide.

Adding a Metric

Metrics generated Code Coverage or other tools are directly available
through the Test Process Monitor. Each metric file contains one or several
fields.

To open a metric database a metric chart:

1. From the Project menu, select Test Process Monitor and either Project
or Current Workspace. Current Workspace applies to the user of the
current workspace. Project applies to all workspace users in the project.

2. If a new metric database is detected, you need to provide a name for the

 155

metric, as well as a label for each field of the database.

3. In the Report Explorer, select a user.

4. From the Project menu, select Test Process Monitor, the metric and the
field that you want to display.

You can add as many curves as you want to the chart.

To hide a curve:

1. Right-click a curve.

2. From the pop-up menu, select Hide Curve.

UML/SD Viewer

The UML/SD Viewer renders sequence diagram reports as specified by the
UML standard.

UML sequence diagram can be produced directly via the execution of the
SCI-instruction application when using the Runtime Tracing feature.

The UML/SD Viewer can also display UML sequence diagram results for
Component and System Testing features.

Navigating through UML Sequence Diagram

There are several ways of moving around the UML sequence diagrams
displayed by the UML/SD Viewer:

• Navigation Panel: Click and drag the Navigation button in the lower
right corner of the UML/SD Viewer window to scroll through a
miniature navigation pane representing the entire UML sequence
diagram.

• Free scroll: Press the Control key and the left mouse button

156

simultaneously. This displays a compass icon, allowing you to scroll the
UML sequence diagram in all direction by the moving the mouse.

• Report Explorer: The Report Explorer is automatically activated when
the UML/SD Viewer is activated. The Report Explorer offers a
hierarchical view of instances. Click an item in the Report Explorer to
locate and select the corresponding UML representation in the main
UML/SD Viewer window.

Time Stamping

The UML/SD Viewer displays time stamping information on the left of the
UML sequence diagram. Time stamps are based on the execution time of
the application on the target.

You can change the display format of time stamp information in the
UML/SD Viewer Preferences.

The following time format codes are available:

• %n - nanoseconds

• %u - microseconds

• %m - milliseconds

• %s - seconds

• %M - minutes

• %H - hours

These codes are replaced by the actual number. For example, if the time
elapsed is 12ms, then the format %mms would result in the printed value
12ms. If the number 0 follows the % symbol but precedes the format code,
then 0 values are printed to the viewer - otherwise, 0 values are not printed.
For example, if the time elapsed is 10ns, and the selected format code is
%0mms %nns, then the time stamp would read 0ms 10ns .

 157

Note To change the format code you must press the Enter key
immediately after selecting/entering the new code. Simply pressing
the OK button on the Preferences window will not update the time
stamp format code.

Coverage Bar

In C, C++ and Java, the coverage bar provides an estimation of code
coverage.

Note The coverage bar is unrelated to the Code Coverage feature. For
detailed code coverage reports, use the dedicated Code Coverage
feature.

When using the Runtime Tracing feature, the UML/SD Viewer can display
an extra column on the left of the UML/SD Viewer window to indicate code
coverage simultaneously with UML sequence diagram messages.

The UML/SD Viewer code coverage bar is merely an indication of the ratio
of encountered versus declared function or method entries and potential
exceptions since the beginning of the sequence diagram.

If new declarations occur during the execution the graph is recalculated,
therefore the coverage bar always displays a increasing coverage rate.

To activate or disable coverage tracing with a Java application:

1. Before building the node-under-analysis, open the Memory Profiling
settings box.

2. Set Coverage Tracing to Yes or No to respectively activate or disable
code coverage tracing for the selected node.

3. Click OK to override the default settings of the node

158

To hide the coverage bar:

1. Right-click inside the UML/SD Viewer window.

2. From the pop-up menu, select Hide Coverage.

To show the coverage bar:

1. Right-click inside the UML/SD Viewer window.

2. From the pop-up menu, select Show Coverage.

Memory Usage Bar

When using the Runtime Tracing feature on a Java application, the UML/SD
Viewer can display an extra bar on the left of the UML/SD Viewer window
to indicate total memory usage for each sequence diagram message event.

The memory usage bar indicates how much memory has been allocated by
the application and is still in use or not garbage collected.

In parallel to the UML sequence diagram, the graph bar represents the
allocated memory against the highest amount of memory allocated during
the execution of the application.

This ratio is calculated by subtracting the amount of free memory from the
total amount of memory used by the application. The total amount of
memory is subject to change during the execution and therefore the graph is
recalculated whenever the largest amount of allocated memory increases.

A tooltip displays the actual memory usage in bytes.

To activate or disable coverage tracing with a Java application:

1. Before building the node-under-analysis, open the Memory Profiling
settings box.

2. Set Coverage Tracing to Yes or No to respectively activate or disable

 159

coverage tracing for the selected node.

3. Click OK to override the default settings of the node

To hide the memory usage bar:

1. Right-click inside the UML/SD Viewer window.

2. From the pop-up menu, select Hide Memory Usage.

To show the memory usage bar:

1. Right-click inside the UML/SD Viewer window.

2. From the pop-up menu, select Show Memory Usage.

Thread Bar

When using the Runtime Tracing feature on C, C++ and Java code, the
UML/SD Viewer can display an extra column on the left of its window to
indicate the active thread during each UML sequence diagram event.

Each thread is displayed as a different colored zone. A tooltip displays the
name of the thread.

Thread List

click the thread bar to open the thread list. The thread list window displays
a list of all threads that are created during execution of the application.

You can change the sort order by clicking the column titles.

You can jump to the portion of source code that creates a thread by clicking
a thread name.

To hide the thread bar:

1. Right-click inside the UML/SD Viewer window.

160

2. From the pop-up menu, select Hide Thread Bar.

To show the thread bar:

1. Right-click inside the UML/SD Viewer window.

2. From the pop-up menu, select Show Thread Bar.

Applying Filters

Filters are used to detect particular events within a test trace. You use the
Viewer's Filter List dialog box to specify how events are to be detected and
filtered.

To access the Filter List:

• From the UML/SD Viewer menu, select Filters or click the Filter button
in the UML/SD Viewer toolbar.

To create a new filter:

1. Click the New button

2. Create the new filter with the Event Editor.

To modify an existing filter:

1. Select the filter that you want to change.

2. Click the Edit button.

3. Modify the filter with the Event Editor.

To import one or several filters:

The import facility is useful if you want to re-use filters created in another
Project.

1. Click the Import button.

2. Locate and select the .tft file(s) that you want to import.

 161

3. Click OK.

To export a filter event:

The export facility allows you to transfer filters.

1. Select the filter that you want to export.

2. Click the Export button.

3. Select the location and name of the exported .tft file.

4. Click OK.

Sequence Diagram Triggers

Sequence Diagram triggers allow you to predefine automatic start and stop
parameters for the UML/SD Viewer. The trigger capability is useful if you
only want to trace a specific portion of an instrumented application.

Triggers can be inactive, time-dependent, or event-dependent.

To access the Trigger dialog box:

• From the UML/SD Viewer menu, select Triggers or click the Trigger
button in the UML/SD Viewer toolbar.

Start and End of Runtime Tracing:

The Runtime Tracing start is defined on the Start tab:

• At the beginning: Runtime Tracing starts when the application starts.

• On time: Runtime Tracing starts after a specified number of
microseconds.

• On event: Runtime Tracing starts when a specified event is detected.
One or several events must be specified with the Event Editor.

The Runtime Tracing end is defined on the Stop tab:

162

• Never: Runtime Tracing ends when the application exits.

• On time: Runtime Tracing ends after a specified number of seconds.

• On event: Runtime Tracing ends when a specified event is detected.
One or several events must be specified with the Event Editor.

To create a new trigger event:

1. Click the New button

2. Create the new trigger event with the Event Editor.

To modify an existing trigger event:

1. Select the trigger event that you want to change.

2. Click the Edit button.

3. Modify the trigger event with the Event Editor.

To import one or several trigger events:

The import facility is useful if you want to reuse trigger events created in
another Project.

1. Click the Import button.

2. Locate and select the file(s) that you want to import.

3. Click OK.

To export a trigger event:

The export facility allows you to transfer trigger events.

1. Select the trigger event that you want to export.

2. Click the Export button.

3. Select the location and name of the exported .tft file.

 163

4. Click OK.

Editing Trigger or Filter Events

Use the Event Editor to create or modify event triggers or filters for UML
sequence diagrams:

• Filters: Specified events are hidden or shown in the UML sequence
diagram.

• Start triggers: The UML/SD Viewer starts displaying the sequence
diagram when a specified event is encountered. If no event matches the
output of the application, the diagram will appear blank.

• Stop triggers: The UML/SD Viewer stops displaying the sequence
diagram when a specified event is encountered.

Events can be related to messages, instances, notes, synchronizations,
actions or loops.

To define an event or filter:

1. Specify a name for the event.

2. Select the type of UML element you want to define for the event and
select Activate. Several types of elements can be activated for a single
filter or trigger event.

3. Click More or Fewer to add or remove line to the event criteria.

4. From the drop-down criteria box, select a criteria for the filter, and an
argument.

Arguments must reflect an exact match for the criteria. Pay particular
attention when referring to labels that appear in the sequence diagram
since they may be truncated.

You can use wildcards (*) or regular expressions by selecting the

164

corresponding option.

5. Click the button to enable or disable case sensitivity in the criteria.

6. You can add or remove a criteria by clicking the More or Fewer buttons.

7. Click Ok.

Message Criteria

• Name: Specifies a message name as the filter criteria.

• Internal message: Considers all messages other than constructor calls
coming from any internal source, as opposed to those messages coming
from the World instance.

• From Instance: Considers all messages other than constructor calls prior
to the first message sent from the specified object

• To Instance: Considers out all messages other than constructor calls if
any message is sent to the specified object

• From World: Considers all messages received from the World instance

• To World: Considers all messages sent to the World instance

Instance Criteria

• Name: Specifies an instance name as the filter criteria

• Instance child of: Specifies a child instance of the specified class.

Note Criteria

• All: Considers all notes

• Name: Specifies a note name

• All message notes: Considers any note attached to a message

• All instance notes: Considers any note attached to an instance

 165

• Instance child of: Specifies a note attached to an instance of the
specified class

• Note on message named: Considers a note attached to a specified
message

• With style named: Considers a note with the specified style attributes

Synchronization Criteria

• All: Considers all synchronization events

• Name: Specifies a synchronization name

Action Criteria

• All: Considers all actions

• Name: Specifies an action name

• From Instance: Considers an action performed by the specified object

• From World: Considers all actions performed by the World instance

• Instance child of: Specifies an action performed by an instance of the
specified class

• With style named: Considers an action with the specified style
attributes

Loop Criteria

• All: Considers all loops

• Name: Specifies a loop name

Boolean Operators

• All Except expresses a NOT operation on the criteria

• Match All performs an AND operation on the series of criteria

166

• Match Any performs an OR operation on the series of criteria

Finding Text in a UML Sequence Diagram

The UML/SD Viewer has an extensive search facility that allows users to
locate specific UML sequence diagram elements by searching for a text
string.

To search for a text string inside the UML/SD Viewer:

1. Click inside a UML/SD Viewer window to activate it.

2. Select the Edit -> Find... menu item. The Find dialog box opens.

3. Type your search criteria in the Find dialog box.

4. Click the Find Next button.

5. If a string corresponding to the search criteria is found in the UML/SD
Viewer, the string is highlighted and the following message is
displayed: Runtime Tracing has finished searching the document.

6. Click OK.

Search options

• Forward and Backward specifies the direction of the search.

• The Search into option allows you to specify type of object in which you
expect to find the search string.

• The Find dialog box accepts either UNIX regular expressions or DOS-
like wildcards ('?' or '*'). Select either wildcard or reg. exp. in the Find
dialog box to select the corresponding mode.

Step-by-Step mode

When tracing large applications, it may be useful to slow down the display

 167

of the UML sequence diagram. You can do this by using the Step-by-Step
mode.

To activate Step-by-Step mode:

• From the UML/SD Viewer menu, select Display Mode and Step-by-Step.

To select the type of graphical element to skip over:

1. In the UML/SD Viewer toolbar, click the button.

2. Select the graphical elements that will stop the Step command. Clear the
elements that are to be ignored.

To step to the next selected element:

• Click the Step button in the UML/SD Viewer toolbar.

To skip to the end of execution:

• Click the Continue button in the UML/SD Viewer toolbar. This will
immediately display the rest of the UML sequence diagram.

To restart the Step-by-Step display:

• Click the Restart button in the UML/SD toolbar.

To de-activate Step-by-Step mode

• From the UML/SD Viewer menu, select Display Mode and All.

UML/SD Viewer Toolbar

The UML/SD Viewer toolbar provides shortcut buttons to commands
related to viewing graphical test reports and UML sequence diagrams.

UML/SD Viewer commands are only available when a UML sequence
diagram is open.

• The Filter button allows you to define a sequence diagram filter.

• The Trigger button sets sequence diagram triggers.

The following buttons are only available when using the Step-by-Step

168

mode.

• The Step button moves the UML/SD Viewer to the next selected event.

• The Select button allows you to select the type of event to trace.

• The Continue button draws everything to the end of the trace diagram.

• The Restart button restarts Step-by Step mode.

• The Pause button pauses the On-the-Fly display mode. The application
continues to run.

The TDF file selector is only available when using the Split TDF File feature.

• Click the button to select a .tdf dynamic trace file from the list.

• Click the and buttons to select the previous or next file in the list.

To hide or show a toolbar:

1. Right-click an empty area within the toolbar.

2. Select and clear those toolbars you want to display or hide.

3. Click OK.

UML/SD Viewer Preferences

The Preferences dialog box allows you to change the appearance of the
UML Sequence Diagram reports.

To choose UML sequence diagram preferences:

1. Select the UML/SD Viewer node:

• Background: This allows you to choose a background color for the UML
sequence diagram.

• Panel: This allows you to choose a background color for panels in the
UML sequence diagram.

 169

• Panel Background: This allows you to choose a background color for
selected panels.

• Coverage Bar: This allows you to choose a background color for the
coverage bar.

• Memory Usage: This allows you to choose a background color for the
memory usage bar.

• Print Page header: Select this option to print a page header.

• Print Page footer: Select this option to print a page footer.

• Display Page Breaks: When this option is selected, the UML/SD Viewer
displays horizontal and vertical dash lines representing the page size for
printing.

• Show tooltip in UML/SD Viewer: Use this option to hide or show the
information tooltip in the UML/SD Viewer.

• Time Stamp Format: Use the editable box to select the format in which
time stamps are displayed in the UML/SD Viewer. See Time Stamping.

2. Expand the UML/SD Viewer node, and select Styles or Styles System
Test:

• Styles: This list allows you to select one or several styles that you want
to change. To change several styles at the same time, you can perform
multiple selections in the style list.

• Font: This allows you to change the font type and size for the selected
style.

• Text Color: This allows you to change the foreground and background
colors for the selected style. This opens a standard color palette.

• Text Attributes: This allows you to set the selected style to Bold, Italic,
Underlined or Dashed.

3. Click OK to apply your changes.

170

Configurations and Settings

Two major concepts of PurifyPlus RealTime are Configurations and
Configuration Settings:

• A Configuration is an instance of a Target Deployment Port (TDP) as
used in your project.

• Configuration Settings are the particular properties assigned to each
node in your project for a given Configuration.

A Configuration is not the actual Target Deployment Port. Configurations
are derived from the Target Deployment Port that you select when the
project is created, and contain a series of Settings for each individual node
of your project.

This provides extreme flexibility when you are using multiple platforms or
development environments. For example:

• You can create a Configuration for each programming language or
compiler involved in your project.

• If you are developing for an embedded platform, you can have one
Configuration for native development on your Unix or Windows
development platform and another Configuration for running and
testing the same code on the target platform.

• You can set up several Configurations based on the same TDP, but with
different libraries or compilers.

• If you are using multiple programming languages in your project, you
can even override the TDP on one or several nodes of a project.

The Configuration Settings allow you to customize test and runtime
analysis configuration parameters for each node or group of your project, as
well as for each Configuration. You reach the Configuration Settings for
each node by right-clicking any node in the Project Explorer window and

 171

selecting Settings.

The left-hand section of the Configuration Settings window allows you to
select the settings families related to the node, as well as the Configuration
itself, to which changes will be made. The right-hand pane lists the
individual setting properties.

The right-hand section contains the various settings available for the
selected node.

Propagation Behavior of Configuration Settings

The Project Explorer displays a hierarchical view of the nodes that
constitute your project.

Settings for each node are inherited by child nodes from parent nodes. For
instance, Settings of a project node will be cascaded down to all nodes in
that project.

Child settings can be set to override parent settings. In this case, the
overridden settings will, in turn, be cascaded down to lower nodes in the
hierarchy. Overridden settings are displayed in bold.

Settings are changed only for a particular Configuration. If you want your
changes to a node to be made throughout all Configurations, be sure to
select All Configurations in the Configuration box.

To change the settings for a node:

1. In the Project Explorer, click the Open Settings... button.

2. Use the Configuration box to change the Configuration for which the
changes will be made.

3. In the left pane, select the settings family that you want to edit.

172

4. In the right pane, select and change the setting properties that you want
to override.

5. When you have finished, click OK to validate the changes.

By default, the settings of each node are inherited from those of the parent
node. When you override the settings of a parent node, changes are
propagated to all child nodes within the same Configuration. Overridden
fields are displayed in bold.

Configuration Settings Structure

The Configuration Settings provides access to the following settings
families:

• General

• Build

• Runtime Analysis

• Component Testing

The actual settings available for each node depend on the type of node and
the language of the selected Configuration.

General Settings

Runtime Analysis

The Runtime Analysis setting family covers Configuration Settings for
Memory Profiling, Performance Profiling, Code Coverage and Runtime
Tracing.

General Settings

The General settings are part Configuration Settings dialog box, which

 173

allows you to configure settings for each node.

By default, the settings of each node are inherited from those of the parent
node. When you override the settings of a parent node, changes are
propagated to all child nodes within the same Configuration. Overridden
fields are displayed in bold.

Host Configuration

The Host Configuration area lets you override any information about the
machine on which the Target Deployment Port is to be compiled.

• Hostname: The hostname of the machine. By default this is the local
host.

• Address: The IP address of the host. For the local host, use 127.0.0.1.

• System Testing Agent TCP/IP Port: The port number used by System
Testing Agents. The default is 10000.

• Socket Uploader Port: The default value is 7777.

• Target Deployment Port: This allows you to change the Target
Deployment Port for the selected nodes. Child nodes will use the
default Configuration Settings from this Target Deployment Port, such
as compilation flags.

Directories

• Build: Specify an optional working directory for the Target Deployment
Port. This is where the generated test program will be executed on the
target host.

• Temporary: Enter the location for any temporary files created during
the Build process

• Report: Specify the directory where test results are created.

• Java Main Class (for Java only): Specifies the name of the main class for

174

Java programs.

Target Deployment Port

The Target Deployment Port (TDP) Settings allow you to override the TDP
used for a particular node in the current Configuration. By default, the TDP
used is that of the current Configuration.

• Directory: Specifies the TDP directory

• Name: Displays the name of the TDP.

• ini File: Indicates the default .ini file in the TDP directory.

• Language: Sets the current language of the TDP.

To edit the General settings for a node:To edit the General settings for a node:To edit the General settings for a node:To edit the General settings for a node:

1. In the Project Explorer, click the Open Settings... button.

2. Select a node in the Project Explorer pane.

3. In the Configuration Settings list, expand General.

4. Select Host Configuration, Directories or Target Deployment Port.

5. When you have finished, click OK to validate the changes.

Build Settings

The Compiler settings are part of the Build node of the Configuration
Settings dialog box, which allows you to configure settings for each node.

By default, the settings of each node are inherited from those of the parent
node. When you override the settings of a parent node, changes are
propagated to all child nodes within the same Configuration. Overridden
fields are displayed in bold.

 175

Compiler Settings

• Preprocessor options: Specific compilation flags to be sent to the Test
Compiler.

• Compiler flags: Extra flags to be sent to the compiler.

• Preprocessor macro definitions: Specify any macro definition that are
to be sent to both the compiler preprocessor (if used) and the Test
Compilers. Several generation conditions must be separated by a
comma ',' with no space, as in the following example:

WIN32,DEBUG=1

• Directories for Include Files: Click the ... button to create or modify a
list of directories for included files when the include statement is
encountered in source code and test scripts. In the directory selection
box, use the Up and Down buttons to indicate the order in which the
directories are searched.

• User Link File for Ada (for Ada only): When using the Ada
Instrumentor, you must provide a link file. See Ada Link Files for more
information.

• Boot Class Path (for Java only): Click the ... button to create or modify
the Boot Class Path parameter for the JVM.

• Class Path (for Java only): Click the ... button to create or modify the
Class Path parameter for the JVM.

Linker Settings

This area contains parameters to be sent to the linker during the build of the
current node.

• Link Flags: Flags to be sent to the linker.

• Additional objects or libraries: A list of object libraries to be linked to
the generated executable.

• Directories for Libraries: Click the ... button to create or modify a list of

176

directories for library link files. In the directory selection box, use the
Up and Down buttons to indicate the order in which the directories are
searched.

Target Deployment Port Settings

This area relates to the parameters of the Target Deployment Port on which
is based the Configuration:

• Measure time used by: Selects between a real-time Operating system
clock or a Process or task clock for time measurement, if both options
are available in the current Target Deployment Port. Otherwise, this
setting is ignored.

• Maximum on-target buffer size: This sets the size of the I/O buffer. A
smaller I/O buffer can save memory when resources are limited. A
larger buffer improves performance.
The default setting for the I/O buffer is 1024 bytes.

• Multi-threads: This box, when selected, protects Target Deployment
Port global variables against concurrent access when you are working in
a multi-threaded environment such as Posix, Solaris or Windows. This
can cause an increase in size of the Target Port as-well-as an impact on
performance, therefore select this option only when necessary.

• Maximum number of threads: When the multi-thread option is
enabled, this setting sets the maximum number threads that can be run
at the same time by the application.

• Run Garbage Collector at exit (for Java only): This setting runs the JVM
garbage collection when the application terminates.

To edit the Build settings for a node:

1. In the Project Explorer, click the Open Settings... button.

2. Select a node in the Project Explorer pane.

 177

3. In the Configuration Settings list, expand Build.

4. Select Compiler, Linker or Target Deployment Port.

5. When you have finished, click OK to validate the changes.

External Command Settings

The External Command settings are part of the Configuration Settings
dialog box, which allows you to configure settings for each node.

Use the External Command setting to set a command line for External
Command nodes. An External Command is a command line that can be
included at any point in your workspace. External Commands can contain
GUI macro variables, making them context-sensitive. See the GUI Macro
Variables chapter in the Reference Manual.

By default, the settings of each node are inherited from those of the parent
node. When you override the settings of a parent node, changes are
propagated to all child nodes within the same Configuration. Overridden
fields are displayed in bold.

To edit the External Command settings for one or several nodes:

1. In the Project Explorer, click the Open Settings... button.

2. Select one or several nodes in the Configuration pane.

3. Select the External Command node and enter a Command line.

4. When you have finished, click OK to validate the changes.

Runtime Analysis Settings

General Runtime Analysis Settings

178

The General Runtime Analysis settings are part of the Configuration
Settings dialog box, which allows you to configure settings for each node.

By default, the settings of each node are inherited from those of the parent
node. When you override the settings of a parent node, changes are
propagated to all child nodes within the same Configuration. Overridden
fields are displayed in bold.

Snapshot Settings

In some case, such as with applications that never terminate or when
working with timing or memory-sensitive targets, you might need to dump
traces at specifics points in your code.

• On Function Entry: Allows you to specify a list of function names, from
your source code, that will dump traces at the beginning of the function.

• On Function Return: Allows you to specify a list of function names,
from your source code, that will dump traces at the end of the function.

• On Function Call: Allows you to specify a list of function names, from
your source code, that will dump traces before the function is called.

For each tab, click the ... button to open the function name selection box.
Use the Add and Remove buttons to create a list of function names.

See Generating SCI Dumps for more information.

Selective Instrumentation

By default, runtime analysis features instrument all components of source
code under analysis.

The Selective Instrumentation settings allow you to more finely define
which units (classes and functions) you want to instrument and trace.

• Units excluded from instrumentation: Click the ... button to access a list

 179

of units (classes and functions) that can be excluded from the
instrumentation process. Click a unit to select or clear a unit. Use the
Select File and Clear File buttons to select and clear all units from a
source file.

• Files excluded from instrumentation: Click the ... button and use the
Add and Remove buttons to select the files to be excluded.

• Instrument inline methods: Extends instrumentation to inline methods.

• Instrument included methods or functions: Extends instrumentation to
included methods or functions.

• Directories excluded from instrumentation: Click the ... button and use
the Add, Remove buttons to select the files to be excluded.

Static File Storage

Depending on the runtime analysis feature, the product generates .tsf or
.fdc temporary static data files during source code instrumentation of the
application under analysis.

• Code Coverage Static File Storage (.fdc): These settings apply to Code
Coverage .fdc static trace files:

Build directory: Select this option to use the current directory for
all generated files.

Other directory: Select this option to define a specific directory.

Source directory: Select this option to use the same directory as
the source under analysis.

Use single temporary file (.fdc): By default, Code Coverage
produces one .fdc file for each instrumented source file. Select
this option to use a single .fdc file for all instrumented source
files, and specify its location.

180

• FDC Directory: When using the Use single temporary file (.fdc) option
in the previous setting, specify a location for the .fdc file.

• Memory Profiling, Performance Profiling, and Runtime Tracing
Storage: This setting applies to Memory Profiling, Performance
Profiling and Runtime Tracing .tsf static trace files.

Build directory: Select this option to use the current directory for
all generated files.

Other directory: Select this option to define a specific directory.

Source directory: Select this option to use the same directory as
the source under analysis.

Use single temporary file (.tsf): By default, Memory Profiling,
Performance Profiling and Runtime Tracing produces one .tsf
file for each instrumented source file. Select this option to use a
single .tsf file for all instrumented source files, and specify its
location.

• TSF Directory: When using the Use single temporary file (.tsf) option
in the previous setting, specify a location for the .tsf file.

Miscellaneous Options

• Label Instrumented Files: Select this option to add an identification
header to files generated by the Instrumentor, including the command
line used to generate the file, the version of the product, date and
operating system information.

• Full template instantiation: By default unused methods are ignored by
the Instrumentor. Set this option to Yes to analyze all template methods,
even if they are not used.

• Additional Instrumentor Options: This setting allows you to add
command line options for the Instrumentor. Normally, this line should

 181

be left blank.

To edit the General Runtime Analysis settings for a node:

1. In the Project Explorer, click the Open Settings... button.

2. Select a node in the Project Explorer pane.

3. In the Configuration Settings list, expand Runtime Analysis and
General.

4. Select Snapshot, Selective Instrumentation, Static File Storage or
Miscellaneous.

5. When you have finished, click OK to validate the changes.

Memory Profiling Settings

The Memory Profiling Instrumentation Control and Memory Profiling
Misc. Options settings are part of the Runtime Analysis node of the
Configuration Settings dialog box, which allows you to configure settings
for each node.

By default, the settings of each node are inherited from those of the parent
node. When you override the settings of a parent node, changes are
propagated to all child nodes within the same Configuration. Overridden
fields are displayed in bold.

Instrumentation Control

• File in use (FIU): When the application exits, this option reports any
files left open.

• Memory in use (MIU): When the application exits, this option reports
allocated memory that is still referenced.

• Signal (SIG): This option indicates the signal number received by the

182

application forcing it to exit.

• Freeing Freed Memory (FFM) and Late Detect Free Memory Write
(FMWL): Select Display Message to activate detection of these errors.

• Free queue length (blocks) specifies the number of memory blocks that
are kept free.

• Free queue size (Kbytes) specifies the total buffer size for free queue
blocks. See Freeing Freed Memory (FFM) and Late Detect Free Memory
Write (FMWL).

• Display Detect Array Bounds Write (ABWL): Select Yes to activate
detection of this error.

• Red zone length (bytes) specifies the number of bytes added by
Memory Profiling around the memory range for bounds detection.

• Number of functions: specifies the maximum number of functions
reported from the end of the CPU call stack. The default value is 6.

Misc. Options

• Trace File Name (.tpf): This box allows you to specify a filename for the
generated .tpf trace file.

• Global variables to exclude from observation (for Java only): This box
specifies a list of global variables that are not to be inspected for
memory leaks. This option can be useful to save time and
instrumentation overhead on trusted code. Use the Add and Remove
buttons to add and remove global variables.

JVMPI

• Object hashtable size: Specifies the size of hashtables for objects where
<size> must be 64, 256, 1024 or 4096 values.

• Class hashtable size: Specifies the size of hashtables for classes where
<size> must be 64, 256, 1024 or 4096 values.

 183

• Take a Snapshot: You can select one of the following options:

• On method entry or return or dump snapshot button: Uses a
specified method to perform snapshot or the GUI snapshot
button as specified in the Enable dump Snapshot button
setting.

• After each Garbage Collection: Takes a snapshot each time the
JVM garbage collector runs.

• Enable dump snapshot button and Delay Snapshot until next Garbage
Collection: Specify the trigger method.

• Host name used by dump Snapshot button: Use this option to specify a
hostname for the JVMPI Agent to communicate with the GUI.

• Port Number used by dump Snapshot button: Use this option to
specify a port number for the JVMPI Agent to communicate with the
GUI.

• TPF file name (.tpf): Specifies the name of the Memory Profiling trace
dump file produced by the JVMPI Agent.

• TSF file name (.tsf): Specifies the name of the static trace dump file.

• Display only listed methods: Use the Add and Remove buttons to add
and remove methods to be listed by the Java Memory Profiling report.

• Collect referenced objects: Sets the filter to be used with the Java
Memory Profiling Report.

• Display only listed packages: Use this setting to filter out of the report
the packages that do not match the specified full package name
(package and class).

• Display only listed classes: Use this setting to filter out of the report the
classes that do not match the specified full classes.

• Display call stack for listed methods: Use this setting to list the
methods for which the call stack is to be displayed in the Java Memory
Profiling report.

184

To edit the Memory Profiling settings for one or several nodes:

1. In the Project Explorer, click the Open Settings... button.

2. Select one or several nodes in the Configuration pane.

3. Select the Runtime Analysis node and the Memory Profiling node.

4. Select either Instrumentation Control, Misc. Options or JVMPI.

5. When you have finished, click OK to validate the changes.

Performance Profiling Settings

The Performance Profiling settings are part of the Runtime Analysis node
of the Configuration Settings dialog box, which allows you to configure
settings for each node.

By default, the settings of each node are inherited from those of the parent
node. When you override the settings of a parent node, changes are
propagated to all child nodes within the same Configuration. Overridden
fields are displayed in bold.

Trace File Name (.tqf): This box allows you to specify a filename for the
generated .tqf trace file for Performance Profiling.

To edit the Performance Profiling settings for one or several nodes:

1. In the Project Explorer, click the Open Settings... button.

2. Select one or several nodes in the Configuration pane.

3. Select the Runtime Analysis node and the Performance Profiling node.

4. When you have finished, click OK to validate the changes.

Code Coverage Settings

 185

The Code Coverage Instrumentation Control settings are part of the
Runtime Analysis node of the Configuration Settings dialog box, which
allows you to configure settings for each node.

By default, the settings of each node are inherited from those of the parent
node. When you override the settings of a parent node, changes are
propagated to all child nodes within the same Configuration. Overridden
fields are displayed in bold.

Instrumentation Control Settings

You can use the Coverage Type settings to declare various types of
coverage.

• Coverage Level Functions or Methods: select between function Entries,
With exits, or None. See the Function or Method Code Coverage Ada,
C, and C++ for more information.

• Coverage Level Calls: select Yes or No to toggle call code coverage for
Ada and C.

• Coverage Level Blocks: select the desired block code coverage method.
See the Block Code Coverage for Ada, C, and C++ for details.

• Coverage Level Conditions: select condition code coverage for Ada, C.

Please refer to Selecting Coverage Types for details on using each coverage
type with each language.

You can combine, enable, or disable any of these coverage types before
running the application node. All coverage types selected for
instrumentation can be filtered out in the Code Coverage Viewer.

• Mode: This setting specifies the Instrumentation Modes to be used by
Code Coverage.

• Default (Optimized for Code Size and Speed): This setting uses one

186

byte per branch to indicate branch coverage.

• Compact (Optimized for Memory): This setting uses one bit per branch.
This method saves target memory but uses more CPU time.

• Report Hit Count: This adds information about the number of times
each branch was executed. This method uses one integer per branch.

• Prefix (for Ada only): Add a new prefix to Ada packages if the default
Code Coverage prefix (atc_) generates conflicts.

• Suffix (for Ada only): Specifies how Code Coverage names the
instrumented Ada packages:

Select Standard to use the your package name as a suffix

Select Short to reduce the size of the generated package name for
compilers that have a package name length limit.

Selective Code Coverage Instrumentation

• C/C++ Ternary coverage: For C and C++, when this option is selected,
Code Coverage is extended to ternary expressions as statement blocks.

• Ada specification: For Ada, selecting this option extends
instrumentation to Ada package specifications. Specifications can
contain calls and conditions. In this case, the specification file must be
included in the application node.

• Functions to Exclude from Calls Code Coverage: Specifies a list of
functions to be excluded from the call coverage instrumentation type,
such as printf or fopen. Use the Add, Remove buttons to tell Code
Coverage the functions to be excluded.

Miscellaneous Options

• Trace File Name (.tio): this allows you to specify a path and filename
for the .tio dynamic coverage trace file.

 187

• Compute Deprecated Metrics:

• User comment: This adds a comment to the Code Coverage Report. This
can be useful for identifying reports produced under different
Configurations. To view the comment, click the a magnifying glass
symbol that is displayed at the top of your source code in the Code
Coverage Viewer.

To change the Code Coverage Instrumentation Control setting for an
application or test node.

1. In the Project Explorer, click the Open Settings... button.

2. Select one or several nodes in the Configuration pane.

3. Select the Runtime Observation node, and the Coverage node.

4. Select Instrumentation Control.

5. When you have finished, click OK to validate the changes.

Runtime Tracing Control Settings

The Runtime Tracing Control settings are part of the Runtime Analysis
node of the Configuration Settings dialog box, which allows you to
configure settings for each node.

By default, the settings of each node are inherited from those of the parent
node. When you override the settings of a parent node, changes are
propagated to all child nodes within the same Configuration. Overridden
fields are displayed in bold.

Instrumentation Control

• Trace File Name (.tdf): This allows you to force a filename and path for
the dynamic .tdf file. By default, the .tdf carries the name of the
application node.

188

• Functions called within a return expression are sequenced: For C only.
With this option, the UML/SD Viewer displays calls located in return
expressions as if they were executed sequentially and not in a nested
manner.

• Collapse unnamed classes and structures: For C++ only. With this
option, unnamed structs and unions are not instrumented.

• Display class template instantiation in a note: For C++ only. With this
option, the UML/SD Viewer will not display notes for template
instances for each template class instance.

Trace Control

• Split Trace File Enable: See Splitting trace files for more information on
this setting.

• Maximum Size (Kbytes):

• File name prefix:

• Automatic Loop Detection Enable: Loop detection simplifies UML
sequence diagrams by summarizing repeating traces into a loop symbol.
Loops are an extension to the UML sequence diagram standard and are
not supported by UML.

• Options (Reserved for future use):

• Display largest call stack length: When selected, the Target
Deployment Port records the highest level attained by the call stack
during the trace. This information is displayed at the end of the UML
Sequence Diagram in the UML/SD Viewer as Maximum Calling Level
Reached.

Target Deployment Port Settings

These settings allow you to set compilation flags that define how the
Runtime Tracing feature interacts with the Target Deployment Port. These

 189

are general settings for the Target Deployment Port.

• Disable on-the-fly mode: When selected, this setting stops on-the-fly
updating of the dynamic .tdf file. This option is primarily for Target
Deployment Ports that use printf output.

• Trace Buffer Enable and Partial Trace Flush Enable: Please see Trace
Item Buffer and Partial Trace Flush for more information about these
settings.

• Maximum number of recorded Trace elements before buffer flush

• When receiving user signal: No Action, Flush Call Stack, Trace
On/Off

• Record and display Time Stamp: This setting adds time stamp
information to each element in the UML sequence diagram generated by
Runtime Tracing.

• Record and display Heap Size:

• Record and display Thread Info:

To edit the Runtime Tracing Control settings for one or several nodes:

1. In the Project Explorer, click the Open Settings... button.

2. Select one or several nodes in the Configuration pane.

3. Select the Runtime Analysis node and the Runtime Tracing node.

4. Select Runtime Tracing Control.

5. When you have finished, click OK to validate the changes.

Automated Testing Settings

Selecting Configurations

Although a project can use multiple Configurations, as well as multiple

190

TDPs, there must always be at least one active Configuration.

The active Configuration affects build options, individual node settings and
even wizard behavior. You can switch from one Configuration to another at
any time, except during build activity, when the green LED flashes in the
Build toolbar.

To switch Configurations:

• From the Build toolbar, select the Configuration you wish to use in the
Configuration box.

Modifying Configurations

Configurations are based on the Target Deployment Ports (TDP) that are
specified when you create a new project. In fact, a Configuration contains
basic Configuration Settings for a given TDP applied to a project, plus any
node-specific overridden settings.

Remember that although a project can use multiple Configurations, as well
as multiple TDPs, there must always be at least one active Configuration.

Configuration Settings are a main characteristic of the project and can be
individually customized for any single node in the Project Explorer.

To open the Configurations dialog box:

1. From the Project menu, select Configurations. This opens the
Configurations dialog.

To create a new Configuration for a Project:

1. In the Configurations dialog box, click the New... button.

2. Enter a Name for the Configuration.

3. Select the Target Deployment Port to be used to create the
Configuration.

 191

4. Enter the Hostname, Address and Port of the machine on which the
Target Deployment Port is to be compiled.

5. Click OK.

6. Click Close.

To remove a Configuration from a Project:

If you choose to remove a Configuration, all custom settings for that
Configuration will be lost.

1. In the Configurations dialog box, select the Configuration to be
removed.

2. Click the Remove button.

3. Click Yes to confirm the removal of the Configuration

To copy an existing Configuration:

This can be useful if you want several Configurations, with different custom
settings, based on a unique Target Deployment Port.

1. In the Configurations dialog box, select an existing Configuration.

2. Click the Copy To... button

3. Enter a Name for the new Configuration.

4. Click OK.

Working with Projects

The project is your main work area in the GUI, as displayed in the Project
Explorer window.

192

A project is a tree representation that contains nodes. Each node has its own
individual Configuration Settings inherited from its parent node and can be
individually executed.

Creating a Group

The Group node is designed to contain several application nodes. This
allows you to organize workspace by grouping applications together.

This also allows you to build and run a specific group of application nodes
without running the entire workspace.

To create a group node:

1. In the Project Explorer, right-click the workspace node or right-click any
application node.

2. From the pop-up menu, select Add Child and Group.

3. In the New Group box, enter the name of the group.

4. Click OK.

Manually Creating a Test or Application Node

Application nodes are the main building blocks of your workspace. An
application node typically contains the source files required to build the
application.

Test nodes contain the source under test, test scripts and any dependency
filed requires for the test.

The preferred method to create an application node is to use the Activity
Wizard, which guides you through the entire creation process.

However, if you are re-using existing components, you might want to create

 193

an empty application node and manually add its components to the
workspace.

To manually add components to the application node.

1. In the Project Explorer, right-click the Workspace node or a Group
node.

2. From the pop-up menu, select Add Child and Files.

3. In the File Selector, select the files that you want to add to the
application node.

4. Click Ok.

Note Before running an application node created with this method, please
ensure that all necessary files are present in the application node and
that all Configuration Settings have been correctly set.

Creating an External Command Node

External Command nodes are custom nodes that allow you to add a user-
defined command line at any point in the project tree.

This is particularly useful when you need to run a custom command line
during test execution.

To add an external command to a workspace:

1. In the Project Explorer, right-click the node inside which you want to
create the test, application or external command node

2. From the pop-up menu, select Add Child and External Command.

3. To move the node up or down in the workspace, right-click the external
command node and select Move Up or Move Down.

194

To specify a command line for the external node:

Once the External Command node has been created, you can specify the
command line that it will be carrying in the Configuration Settings dialog
box:

1. In the Project Explorer, click the Open Settings... button.

2. Click the External Command node.

3. Enter the command in the Command box.

4. Click OK.

Note External Commands support the GUI Macro Language so that you
can send variables from the GUI environment to your command
line. See the GUI Macro Language section in the Reference Manual
for further details.

Importing a Makefile

The GUI offers the ability to create a project from an existing makefile.

The makefile import feature creates a new project, reads the makefile and
adds the source files found in the makefile to the project. The project is
creating with the default Configuration Settings of the current Target
Deployment Port (TDP).

Any other information contained in the makefile, such as compilation
options must be entered manually in the Configuration Settings dialog box.

Any environment variables used within the makefile must be valid.

To import files from a makefile:

1 Close any open projects.

 195

2 From the File menu, select Import and Import Makefile.

3 Use the file selector to locate a valid makefile and click Open.

4 Enter a name for the new project and click OK.

5 Select the correct Configuration in the Configuration toolbar.

6 In the Project Explorer, click Settings.

7 Enter any specific compilation options in the Build settings.

8 Click OK.

Refreshing the Asset Browser

The Asset Browser view of the Project Explorer window analyzes source
files and extracts information about file contents (classes, methods,
functions, etc...) as well as any dependency files. This capability allows you
to navigate through your source files more easily and provides direct access
to the components through the Text Editor.

When the automatic file tagging option is selected, the GUI refreshes the file
information whenever a change is detected. However, you can use the
Refresh Information command to update a single file or the entire project.

Note When many files are involved in the tagging process, the Refresh
Information command may take several minutes.

To manually refresh a single file in the Asset Browser:

1. In the Project Explorer, select the Asset Browser tab.

2. Right-click the file or object that you want to refresh.

3. From the pop-up menu, select Refresh Information.

196

To refresh all project files:

• From the Build menu, select Refresh Asset Browser, or press the F9
key.

To activate or de-activate the automatic refresh:

With the automatic file tagging option, files are automatically refreshed
whenever a file is loaded into the workspace or selected in the Project
Explorer.

1. From the Edit menu, select Preferences.

2. Select the Project preferences node.

3. Select or clear the Activate file tagging option, and then click OK.

Deleting a Node

Removing nodes from a project does not actually delete the files, but merely
removes them from the Project Explorer's representation.

To delete a node from the Project Explorer:

1. Select one or several nodes that you want to delete.

2. From the Edit menu, select Delete or press the Delete key.

Renaming a Node

Renaming a node in the Project Explorer involves modifying the properties
of the node.

To change the name of a node:

1. In the Project Explorer, right-click the node that you want to modify.

2. Select Properties in the pop-up menu.

 197

3. Change the Name of the node.

4. Click OK.

Viewing File Properties

You can obtain and change file or node properties by opening the
Properties window.

To view file properties:

1. Right-click a file in the Project Explorer.

2. Select Properties... from the pop-up menu.

Excluding a Node from a Build

In some cases, you might want to temporarily exclude one or several nodes
from the build process. This can be done directly in the Project Explorer, as
described below, or through the Properties window.

Note If you exclude a node that contains child nodes, such as an
application node, a group or even a project, none of the contents of
the node are executed.

In the Project Explorer, excluded nodes are displayed with a 'x' symbol.

To exclude a node from the build:

1. In the Project Explorer, select the node that you want to exclude from
the build.

2. In the Properties window set the Build property to No.

To cancel the exclusion of a node:

1. In the Project Explorer, select the node that you want to exclude from
the build.

198

2. In the Properties window set the Build property to No.

Adding Files to the Project

The Project Explorer centralizes all Project files in a unique location. For
PurifyPlus for Linux to access and analyze source files, they must be
accessible from the Project Explorer.

Files are automatically added when you use the Activity Wizard.

To add files to the Project Explorer:

1. In the Project Explorer, select the Object Browser tab

2. In the Sort Method box, select By Files.

3. From the Project menu, select Add to Current Project and New File...

4. This opens the file selector. In the file Type box, select the type of files
that are to be added.

5. Locate and select one or several files to be added, and click Open.

The selected files will appear under the Source sections of the Project
Explorer.

If you have the Automatic source browsing option enabled, your source
files will be analyzed, making their components directly accessible in the
Project Explorer.

Selecting Build Options

The GUI allows you to specify the items that will be performed during a
build.

The Stages section contains the compilation options. In most cases, you will

 199

need to select the All option to ensure the test is up to date.

The Runtime Analysis section allows you to enable debugging and
Runtime Analysis features.

To select build options:

1. From the Build toolbar, click the black arrow located next to the
Build button to display the Build Options box.

2. Select the Runtime Analysis features (Memory Profiling, Performance
Profiling, Code Coverage and Runtime Tracing) and build options to
use them on the current node.

Building and Running a Node

You build and execute workspace nodes by using the Build button on the
Build toolbar. The build process compiles, links, deploys, executes, and then
retrieves results. However, you first have to specify the various build
options.

You can use the Build command to execute any application node, as well as
a single specific source file, a group node or even the whole project.

Note When you run the Build command, all open files are saved. This
means that any unsaved changes will actually be taken into account
for the build.

Before building a node:

1. Select the correct Configuration for your target in the build toolbar.

2. Exclude any temporarily unwanted nodes from the build.

3. Select the build options for the test.

4. If necessary, clean up files left by any previous executions by clicking

200

the Clean button.

To build and execute the node:

1. From the Build toolbar, click the Build button.

2. During run-time, the Build Clock indicates the execution time and the
green LED flashes. The Project Explorer displays a check mark next to
each item to mark progression of the build process.

3. When the build process is finished, you can view the related test reports.

To stop the execution:

• If you want to stop the execution of a node before it finishes, or if the
application does not stop by itself, click the Stop Build/Execution
button.

Cleaning Up Generated Files

In some cases, you might want to delete any files created by a build
execution, such as to perform the build process in a clean environment or
when you are running short of disk space.

Use the Clean All Generated Files command to do this.

To clean your workspace:

1. From the Build toolbar, click the Clean All Generated Files button.

Creating a Source File Folder

The Project Explorer Asset Browser provides a convenient way of viewing
the source files in your project.

To make this even more convenient, you can create custom folders to
accommodate any file types. This makes navigation through your source
files even easier.

 201

Note The Asset Browser provides a virtual navigation interface. The actual
files do not change location. Use the Properties Window to view the actual
file locations.

To create a custom folder:

1. In the Asset Browser, select the By Files sort method.

2. Right-click on an existing folder.

3. From the popup menu, select New Folder...

4. Enter a name for the new folder and a file filter for the desired file type.

Opening a Report

Because of the links between the various views of the GUI, there are many
ways of opening a test or runtime analysis report in PurifyPlus RealTime.
The most common ones are described here.

To open a report from the Project Explorer:

1. Execute your test with the Build command.

2. Right-click the test node.

3. From the pop-up menu, select View Report and then the appropriate
report.

Note Reports cannot be viewed before the test has been executed.

To manually open a report file:

1. From the File menu, select Open... or click the Open icon in the
Standard toolbar.

2. In the Type box of the File Selector, select the appropriate file type.

202

3. Locate and select the report files that you want to open.

4. Click OK.

Note Some reports require opening several files. For instance, when
manually opening a UML sequence diagram, you must select at the
complete set of .tsf files as well as the .tdf file generated at the same
time. A mismatch in .tsf and .tdf files would result in erroneous
tracing of the UML sequence diagram.

Report Viewers

The GUI opens the report viewer adapted to the type of report:

• The UML/SD Viewer displays UML sequence diagram reports.

• The Report Viewer displays Memory Profiling reports for Java.

• The Code Coverage Viewer displays code coverage reports.

• The Memory Profiling Viewer and Performance Profiling Viewer
display Memory Profiling for C, Ada and C++ and Performance
Profiling results.

Debug Mode

The Debug option allows you to build and execute your application under a
debugger.

The debugger must be configured in the Target Deployment Port.

Note Before running in Debug mode you must change the Compilation
and Link Configuration Settings to support Debug mode. For
example set the -g option with most Linux compilers.

 203

Editing Preferences

Rational TestRealTime and PurifyPlus RealTime have many Preference
settings that allow you to configure various components of the graphical
user interface.

To edit product preferences:

1. From the Edit menu, select Preferences.

2. In the tree-view, select the component that you want to configure.

3. Make any changes to the preferences.

4. Click OK.

Project Preferences

The Project Preferences dialog box lets you set parameters for the
PurifyPlus RealTime project.

In the Preferences dialog box, select Project to change the project
preferences.

• Automatic file tagging: Select this option to activate the Project
Explorer's automatic parsing mode, in which all source code and script
components are automatically listed. If disabled, you will have to
manually refresh the File View each time you modify the structure of a
file.

• Calculate static metrics: Select this option to ensure that static metrics
are recalculated whenever a file is added, modified or refreshed in the
Project Explorer window.

Connection Preferences

The Preferences dialog box allows you to customize the PurifyPlus

204

RealTime GUI.

The Connections node of the Preferences dialog box lets you set the
network parameters for the graphical user interface.

1. In the Preferences dialog box, select the General node and
Connections.

• Allow remote connections: This allows external commands and tools
to send messages to the GUI over a network. For example, this enables
the Runtime Tracing on-the-fly capability on remote hosts.

• For information only, the Current TCP/IP port is automatically selected
by GUI.

2. Click OK to apply your changes.

Activity Wizards

The Start Page provides with a full set of activity wizards to help you get
started with a new project or activity.

To start a new activity wizard:

1. From the Start Page, click New Activities

2. Select the activity of your choice.

New Project Wizard

When PurifyPlus RealTime start, the Start page offers to either open an
existing project or create a new project. The New Project wizard creates a
brand new project.

To create a new project:

1. From the Start Page, select New Project.

 205

2. In the Project Name, enter a name for the project.

3. In the Location box, change the default directory if necessary and click
Next to continue.

4. Select one or several Target Deployment Ports for the new project.

The Wizard creates a Configuration based on each selected Target
Deployment Port. Later, when working with the project, any changes are
made to the Configuration Settings, not to the Target Deployment Port
itself.

5. Click the Set as Active button to set the current TDP. The active port is
the default Configuration to be used in your project.

6. Click Finish

Once your project has been created, the wizard opens the Activities page.

Runtime Analysis Wizard

The Runtime Analysis Wizard helps you create a new application node in
the Project Explorer. Basically, an application node represents the build of
your C, C++, Ada or Java source code, which is very similar to most other
integrated development environments (IDE). You can actually use this
graphical user interface as your primary IDE.

With PurifyPlus RealTime, you simply add to this application node the
options required to run any of the following runtime analysis features:

• Memory Profiling

• Performance Profile

• Code Coverage

• Runtime Tracing

206

To create an application node with the Runtime Analysis Wizard:

1. Use the Start Page or the File menu to open or create a project.

2. Ensure that the correct Configuration is selected in the Configuration
box.

3. On the Start Page, select Activities and choose the Runtime Analysis
activity.

4. On the Application Files page, click Add to add your source code files
to the list. This opens a file sector.

Use the Move Up and Move Down buttons to change the order in which
files appear in the application node, and subsequently are compiled. Use
the Remove button to remove files from the selection.

Click Next to continue.

5. Select the C procedures and functions, C++ or Java classes or Ada units
that you want to analyze.

Use the Select File and Deselect File buttons to specify the files that
contain the components that you want to analyze. The Select All and
Deselect All buttons to select or clear all components.

Click Next to continue.

6. If you are creating a Java application node, set the basic settings that are
required for the program to compile:

• Class path: Click the ... button to create or modify the Class Path
parameter for the JVM

• Java main class: Select the name of the main class

• Jar creation: Specifies whether to build an optional .jar file, as well as

 207

the basic .jar related options

Click Next to continue.

7. Enter a name for the application node.

By default, the new application node inherits Configuration Settings
from the current project. If necessary, click Settings... to access the
Configuration Settings dialog box. This allows you to change any
particular settings for the new application node as well as its contents.

Click Next to continue.

8. In the Summary page, check that all the parameters are correct, and
click Finish.

The wizard creates an application node that includes all of the associated
source files.
You can now select your build options to apply any of the runtime analysis
features to the application under analysis.

208

 209

Command Line Interface 4
Rational PurifyPlus RealTime was designed ground-up to provide seamless
integration with your development process. To achieve this versatility, the
entire set of features are available as command line tools.

In most cases when a CLI is necessary, the easiest method is to develop, set
up and configure your project in the graphical user interface and to use the
command line to launch the GUI and run the corresponding project node.

The complete syntax and command line reference for each tool is covered in
the Reference Manual.

Running a Node from the Command Line

Although the product contains a full series of command line tools, it is
usually much easier to create and configure your runtime analysis
specifications inside the graphical user interface (GUI). The CLI would then
be used to simply launch the GUI with a project or project node as a
parameter.

By doing this, you combine the ease and simplicity of the GUI with the
ability to execute project nodes from a CLI.

Note This functionality can be used to execute any node in a project,
including group nodes, application nodes, test nodes or the entire
project.

To run a specific node from a command line:

1. Set up and configure your project in the GUI.

210

2. Save your project and close the GUI.

3. Type the following command

studio -r <node>.{[.<node>]} <project_file>

where <node> is the node to be executed and <project> is the .rtp project
file.

The <node> hierarchy must be specified from the highest node in the project
(excluding the actual project node) to the target node to be executed, with
periods ('.') separating each item:

<node>{[.<node>]}

Example

The following command opens the project.rtp project in the GUI, and runs
the app2 application node, located in group1 of the sub-project subproject1:

studio -r subproject1.group1.app2 project.rtp

Command Line Runtime Analysis for C and C++

The runtime analysis features for C and C++ include:

• Memory Profiling

• Performance Profiling

• Code Coverage

• Runtime Tracing

These features use Source Code Insertion (SCI) technology. When analyzing
C and C++ code, the easiest way to implement SCI features from the
command line is to use the C and C++ Instrumentation Launcher.

 211

The Instrumentation Launcher is designed to fit directly into your
compilation sequence; simply add the attolcc command in front of your
usual compilation or link command line.

Note The attolcc binary is located in the /cmd directory of the applicable
Target Deployment Port.

To perform runtime analysis on C or C++ source code:

1. First, set up the necessary environment variables. See Setting
Environment Variables.

2. Edit your usual makefile with the following command line:
attolcc [-options] [--settings] -- <compiler command line>

Where <compiler command line> is the command that you usually invoke
to build your application.

For example:
 attolcc -- cc -I../include -o appli appli.c bibli.c -lm
 attolcc -TRACE -- cc -I../include -o appli appli.c bibli.c
-lm

Please refer to the Instrumentation Launcher section of the Reference
Manual for information on attolcc options and settings, or type attolcc --
help on the command line.

3. After execution of your application, in order to process SCI dump
information (i.e. the runtime analysis results), you need to separate the
single output file into separate, feature-specific, result files. See Splitting
the SCI Dump File.

4. Finally, run the graphical user interface to view the reports.

212

Command Line Runtime Analysis for Java

The runtime analysis features for Java covered in this section include:

• Performance Profiling

• Code Coverage

• Runtime Tracing

These features use Source Code Insertion (SCI) technology. Memory
Profiling for Java relies on JVMPI instead of SCI technology. Please refer to
the JVMPI Agent section of the Reference Manual.

The easiest way to implement SCI from the command line is to use the Java
Instrumentation Launcher: javic. The product provides two methods for use
of javic:

• Java Instrumentation Launcher: designed to fit directly into your
compilation sequence; simply add the javic command in front of your
usual compilation or link command line

• Java Instrumentation Launcher for Ant: this integrates javic with the
Apache Jakarta Ant utility

For details of command line usage and option syntax, see the Reference
Manual.

To perform runtime analysis on Java source code:

1. First, set up the necessary environment variables. See Setting
Environment Variables.

2. Edit your usual makefile by adding the Java Instrumentation Launcher
to the command line:
javic [-options] -- <compiler command line>

Where <compiler command line> is the command that you usually invoke
to build your application.

 213

Please refer to the Instrumentation Launcher section of the Reference
Manual for information on the options and settings.

3. After execution, to obtain the final test results, as well as any SCI dump
information, you need to separate the output file into separate result
files. See Splitting the SCI Dump File.

4. Finally, run the graphical user interface to view the test reports.

Command Line Tasks

Setting Environment Variables

The command line interface (CLI) tools require several environment
variables to be set.

These variables determine, for example, the Target Deployment Port (TDP)
that you are going to use. The available TDPs are located in the product
installation directory, under targets. Each TDP is contained in its own sub-
directory.

Prior to running any of the CLI tools, the following environment variables
must be set:

• TESTRTDIR indicates the installation directory of the product

• ATLTGT and ATUTGT specify the location of the current TDP:
$TESTRTDIR/targets/<tdp>, where <tdp> is the name of the TDP.

• PATH must include an entry to $TESTRTDIR/bin/<platform>/<os>,
where <platform> is the hardware platform and <os> is the current
operating system.

You must also add the product installation bin directory to your PATH.

214

Note Some command-line tools may require additional environment
variables. See the chapters dedicated to each command in the
Reference Manual section.

Library Paths

UNIX platforms require the following additional environment variable:

• On Solaris and Linux platforms: LD_LIBRARY_PATH points to
$TESTRTDIR/lib/<platform>/<os>

• On HP-UX platforms: SH_LIB points to $TESTRTDIR/lib/<platform>/<os>

• On AIX platforms: LIB_PATH points to $TESTRTDIR/lib/<platform>/<os>

where <platform> is the hardware platform and <os> is the current operating
system.

Example

The following example shows how to set these variables for PurifyPlus
RealTime with a sh shell on a Suse Linux system. The selected Target
Deployment Port is clinuxgnu.

TESTRTDIR=/opt/Rational/ PurifyPlusRealTime.v2002R2
ATCDIR=$TESTRTDIR/bin/intel/linux_suse
ATUDIR=$TESTRTDIR/lib
ATS_DIR=$TESTRTDIR/bin/intel/linux_suse
ATLTGT=$TESTRTDIR/targets/clinuxgnu
ATUTGT=$TESTRTDIR/targets/clinuxgnu
LD_LIBRARY_PATH=$TESTRTDIR/lib/intel/linux_suse
PATH=$TESTRTDIR/bin/intel/linux_suse:$PATH
export TESTRTDIR
export ATCDIR
export ATUDIR
export ATS_DIR
export ATLTGT
export ATUTGT
export LD_LIBRARY_PATH
export PATH

 215

Instrumenting and Compiling the Source Code

The runtime analysis features (Memory Profiling, Performance Profiling,
Code Coverage and Runtime Tracing) as well as Component Testing for
C++ Contract Check all use SCI instrumentation technology to insert
analysis and SCI dump routines into your source code.

Requirements

Before compiling an SCI-instrumented source file, you must make sure that:

• A working C, C++, Java or Ada compiler is installed on your system

• If you use Component Testing for C++, you have prepared a valid
options.h file

• If you compile on a target different from the host where the generated
file has been produced, the instrumented file must have been produced
using option -NOPATH, and the sub-directory lib of the selected Target
Deployment Port directory must be copied onto the target.

There are two alternatives to instrument and compile your source code:

• Using the Instrumentation Launcher in your standard makefile

• Using the Instrumentor and Compiler separately.

Instrumentation Launcher

The Instrumentation Launcher replaces your actual compiler command in
your makefiles. This launcher transparently takes care of source code
preprocessing, instrumentation and compiling.

See the command line information for the Instrumentation Launcher in the
Reference Manual.

Instrumentation and Compilation

216

Alternatively, you can use the actual Instrumentor command line tools to
instrument the source files.

See the command line information for each Instrumentor in the Reference
Manual.

If you are compiling on a different target, you must copy the TDP /lib
directory over to that target.

Add to the include search path the /lib sub-directory that you have copied
onto the target. In C and C++, use the -I compiler option. In Java, add the
directory to the CLASSPATH.

After this, simply compile the instrumented source file with your compiler.

Compiling the TDP Library

Before you can link your test harness or your instrumented application, you
must compile the Target Deployment Port library. This section describes
how to do this.

Requirements

To compile the Target Deployment Port library, make sure that:

• A working C or C++ Test Script Compiler is installed on your system

• You have prepared a valid Products file

Compilation

Depending on the language of your source file:

• For C: compile the TP.c file

• For C++: compile the TP.cpp file

 217

• For Ada: compile the contents of the /lib directory

• For Java: set the CLASSPATH to the TDP /lib directory

Do not forget to add to the include search path the directory where the
products.h or Products.java file is located (usually with option -I or /I,
depending on the compiler).

Configuration Settings

A wide variety of compilation flags can be used by the command line tools,
allowing you to select sub-components of the application under test. These
flags are equivalent to the Test Configuration Settings dialog box of the
graphical user interface and are covered in the Reference Manual.

Default settings are contained in the following Perl script. You can use this
file to define your own customized configuration settings.

<InstallDir>/lib/scripts/BatchCCDefaults.pl

To run this script, type the following command:
$TESTRTDIR/bin/<cpu>/<os>/perl -I$TESTRTDIR/lib/perl
$TESTRTDIR/lib/scripts/TDPBatchCC.pl <my_env.pl>

where <cpu> is the architecture platform of the machine, <os> is the
operating system, and <my_env.pl> is your customized copy of the
BatchCCDefaults.pl file

The TESTRTDIR and ATLTGT environment variables must have been
previously set.

Linking the Application

Once you have compiled all your source files, you need to link them to
build an executable. This section describes linkage specifics when using a
test or runtime analysis feature.

218

Requirements

In order to compile an instrumented source file, you must check that:

• A working C, C++ or Ada linker is installed on your system

• You have compiled every source file, including any instrumented
source files, of your application under test

• If using a Component Testing for C, Ada or C++, or System Testing, you
have compiled the test harness.

• You have compiled the Target Deployment Port library.

Linking

If you are using only runtime analysis feature (Runtime Tracing, Code
Coverage, Memory Profiling, Performance Profiling, C++ Contract Check),
you just have to add the Target Deployment Port library object to the object
files linked together. If you are using a test feature, you also have to add the
tester object to the linked files.

Running the Test Harness or Application

Once you have produced a binary tester or instrumented application, you
want to run it in order to obtain test or SCI analysis information.

By default, the generated SCI dump file is named atlout.spt.

To run the test application binary:

1. Check that the current directory is correct, relatively to the previously
specified trace file, if the trace files was specified with a relative path.

2. Run the binary. When the application terminates, the trace file should be
available.

 219

Splitting the Trace Dump File

When you use several features together, the executable produces a
multiplexed trace file, containing several outputs targeting different
features from PurifyPlus RealTime. By default, the trace file is named
atlout.spt.

Requirements

In most cases, you must split the atlout.spt trace file into several files for use
with each particular Report Generator or the product GUI.

To do this, you must have a working perl interpreter. You can use the perl
interpreter provided with the product in the /bin directory.

To split the trace file:

• Use the atlsplit tool supplied in the /bin directory of PurifyPlus
RealTime:

atlsplit atlout.spt

After the split, depending on the selected runtime analysis features, the
following file types are generated:

• .rio test result files: process with a Report Generator

• .tio Code Coverage report files: view with Code Coverage Viewer

• .tdf dynamic trace files: view with UML/SD Viewer

• .tpf Memory Profiling report files: view with Memory Profiling Viewer

• .tqf Performance Profiling report files: view with Performance
Profiling Viewer

Troubleshooting Command Line Usage

The following information might help if you encounter any problems when
using the command line tools.

220

Failure Response

Compilation fails Ensure that the selected Target Deployment Port matches
your compiler; there may be several Target Deployment Ports
for one OS, each of which targets a different compiler. If you
are unsure, you can check the full name of a Target
Deployment Port by opening any of the .ini files located in
the Target Deployment Port directory.

Compiler reports that
options.h is missing

Ensure that you have correctly prepared the options.h file,
and that this file is located in a directory that is searched by
your compiler (this is usually specified with -I or /I option on
the compiler command line).

Compiler reports that
TP.h file is missing

If you are compiling on a target different from the host where
the generated file has been produced, double-check the above
specific requirements to compilation on a different target.

If the test script compiler and C/C++ Test Script Compiler are
executed on the same machine, ensure you have not used the
-NOPATH option on the test compiler command line, and
that the ATLTGT environment variable was correctly set
while the test compiler was executed.

Compilation fails Ensure that the selected Target Deployment Port matches
your compiler; there may be several Target Deployment Ports
for one OS, each of which targets a different compiler. If you
are unsure, you can check the full name of a Target
Deployment Port by opening any of the .ini files located in
the Target Deployment Port directory.

Compiler reports that
options.h is missing

Ensure that you have correctly prepared the options.h file,
and that this file is located in a directory that is searched by
your compiler (this is usually specified with -I or /I option on
the compiler command line).

Compiler reports that
TP.h file is missing

If you are compiling on a target different from the host where
the generated file has been produced, double-check the above
specific requirements to compilation on a different target.

If the test compiler and C/C++ compiler are executed on the

 221

same machine, ensure you have not used the -NOPATH
option on the test compiler command line, and that the
ATLTGT environment variable was correctly set while the
test script compiler was executed.

Linkage fails because of
undefined references

Ensure you have successfully compiled the Target
Deployment Port library object, and have included it in your
linked files

Ensure you have correctly configured the products.h options
file.

If you are using a test feature, ensure that you are linking
both source under test and additional files. You may also
want to add some stubs in your .ptu or .otd test script.

Ensure the options set in options.h (if required) are coherent
with the options set in products.h.

Errors are reported
through #error directives

You may have selected a combination of options in
products.h which is incompatible. The error messages help
you to locate the inconsistencies.

 223

Working with Other Development
Tools 5

Rational PurifyPlus RealTime were designed as versatile products that
integrate within your existing development environment.

Working with Configuration Management

The GUI provides an interface that allows you to control your project files
through a configuration management (CM) system such as Rational
ClearCase and submit software defect report to a Rational ClearQuest
system

You can also set up the GUI to use a CM system of your choice.

Working with Rational ClearCase

Rational ClearCase is a software configuration management (SCM) tool
providing version control, workspace management, process configurability,
and build management. With ClearCase, your development team gets a
scalable, best-practices-based development process that simplifies change
management – shortening your development cycles, ensuring the accuracy
of your releases, and delivering reliable builds and patches for your
previously shipped products.

By default, the product offers configuration management support for
ClearCase. You can however customize the product to support different
configuration management software. When using Rational ClearCase you
can instantly control your files from the product Tools menu.

Note Before using ClearCase commands, select Rational ClearCase as

224

your CMS tool in the CMS Preferences.

To start source-controlling one or several files:

1. Select one or several files in the Project Explorer window.

2. From the Tools menu, select Rational ClearCase and Add to Source
Control.

To check out the latest version of one or several files from ClearCase:

1. Select one or several files in the Project Explorer window.

2. From the Tools menu, select Rational ClearCase and Get Latest Version.

To check in one or several files into ClearCase:

1. Select one or several files in the Project Explorer window.

2. From the Tools menu, select Rational ClearCase and Check In.

To check out one or several files from ClearCase:

1. Select one or several files in the Project Explorer window.

2. From the Tools menu, select Rational ClearCase and Check Out.

To undo the check out of one or several files:

1. Select one or several files in the Project Explorer window.

2. From the Tools menu, select Rational ClearCase and Undo Check Out.

To compare a file with a previous version:

1. Select one or several files in the Project Explorer window.

2. From the Tools menu, select Rational ClearCase and Check Out.

To show the history of a controlled file:

1. Select a files in the Project Explorer window.

 225

2. From the Tools menu, select Rational ClearCase and Show History.

To the ClearCase properties of a controlled file:

1. Select a files in the Project Explorer window.

2. From the Tools menu, select Rational ClearCase and Show Properties.

Please refer to the documentation provided with Rational ClearCase for
more information.

Working with Rational ClearQuest

Rational ClearQuest is a defect and change tracking (DCT) tool designed to
operate in a client/server environment. It allows you to easily track defects
and change requests, target your most important problems or
enhancements to your product. ClearQuest helps you determine the quality
of your application or component during each phase of the development
cycle and helps you track the release in which a feature, enhancement or
bug fix appears.

By default, the product offers defect tracking support for ClearQuest. When
using ClearQuest you can directly submit a defect report from the test or
runtime analysis report in the product.

To submit a defect report from the product:

1. In the Report Explorer, right-click a Failed test.

2. From the pop-up menu, select Submit ClearQuest Defect Report.

3. This opens the ClearQuest Submit Defect window, with information
about the Failed test.

4. Enter any other necessary useful information, and click OK.

Please refer to the documentation provided with Rational ClearQuest for

226

more information.

CMS Preferences

The Preferences dialog box allows you to change the settings related to the
integration of the product with Rational ClearCase or other configuration
management software (CMS).

To change configuration management settings:

1. Select the CMS node.

• Repository directory: Use this box to specify the location of the vault
directory for the CMS tool.

• Selected Configuration Management System: Use this box to select
Rational ClearCase or a different CMS tool. Before setting this option,
make sure that the CMS system has been configured in Tools menu.

2. Click OK to apply your changes.

ClearQuest Preferences

The Preferences dialog box allows you to specify the location of the
Rational ClearQuest database.

Please refer to the documentation provided with ClearQuest for more
information.

To change ClearQuest preferences:

1. Select the ClearQuest node.

• Schema Repository: Use this box to select the schema repository you
want to use.

• Database: Use this box to enter the location of the ClearQuest database.

• User Name and Password: Enter the user information provided by your

 227

ClearQuest administrator.

2. Click OK to apply your changes.

Customizing Configuration Management

Out of the box, the product offers configuration management support for
Rational ClearCase, but the product can be configured to use most other
Configuration Management Software (CMS) that uses a vault and local
repository architecture and that offers a command line interface.

To configure the product to work with your version control software:

1. Add a new CMS tool to the Toolbox with the command lines for
checking files into and out of the configuration management software.
This activates the Check In and Check Out commands in the Project
Explorer and the ClearCase Toolbar.

2. Set up version control repository in CMS Preferences.

Working with Rational Rose RealTime

Rational Rose RealTime is a software development environment tailored to
the demands of real-time software. Developers use Rose RealTime to create
models of the software system based on the Unified Modeling Language
(UML) constructs, to generate the implementation code, compile, then run
and debug the application.

Installing Rose RealTime Integration

For the integration between these products to be fully operational,
PurifyPlus RealTime v2002 Release 2 and Rose RealTime v2002 (Release 1 or
2) must be installed on the same machine.

228

Windows Installation

If you installed the PurifyPlus RealTime after Rose RealTime, the
installation procedure automatically adds new menus to Rose RealTime for
direct access to the features of the product.

If not, from the Windows Start menu, select Programs, PurifyPlus
RealTime, Tools and Install Rational PurifyPlus RealTime add-in for
Rose RealTime to add the new menu items to Rose RealTime.

UNIX Installation

If you installed the product after Rose RealTime, the installation procedure
automatically adds new menus to Rose RealTime for direct access to the
features of the product.

To install the plugin you must run a script. This is because it modifies the
RoseRT configurations in the users home directory.

The RoseRT installation script, for Solaris for example, can be found in the
directory:

<installdir>/<product>.v2002R2/bin/sun4/RoseRT

where <installdir> is the directory containing the Rational products.

First read the README.txt file in this directory.

The installation script is called update_register.sh. Running it will install the
plugin only for the user running the script.

If not, please re-install PurifyPlus RealTime after the installation of Rose
RealTime.

Using the Product with Rose RealTime

Before using Rational PurifyPlus RealTime as Rose RealTime plug-ins, you

 229

must first open or create a model within Rose RealTime.

PurifyPlus RealTime could perform Source Code Insertion (SCI)
instrumentation on several components.

To activate Runtime Analysis features:

1. From Rose RealTime, open the Component Specification of the
components that you want to observe and select the PurifyPlus
RealTime tab.

2. Select Enable Component Instrumentation.

3. In the Coverage section, select the code coverage type

4. Select Enable Memory Profiling, Enable Performance Profiling and
Enable Runtime Tracing to specify the Runtime Analysis features that
you want to activate. The Additional Options box allows you to add
other options to the Instrumentation Launcher command line.

5. Activate Add Target Deployment Port Object Files if you want to link
the selected component with the TDP.

This is required when producing an executable. For a library component,
this depends on whatever components are linked to the library.

This option also adds a new version of cmdCommand.obj to the object
file list if such a file exists in <InstallDir>\bin\intel\RoseRT\<TDP>,
where <InstallDir> is the PurifyPlus RealTime installation directory and
<TDP> is the name of the current TDP. This object file dumps SCI traces
when the user clicks on the Stop button in Rose RealTime.

6. Select Support Multi-threaded Code Generation if necessary.
Optionally, you can enter a new location and file name for the trace file
in Output Trace File Name. By default, <model directory>\atlout.spt is
used.

230

7. Click OK.

8. In Rose RealTime, from the Tools menu, select Rational PurifyPlus
RealTime or Rational PurifyPlus RealTime, and Enable
Instrumentation of Selected Components. You must repeat this
whenever you change any of the options described above.

To run a build with the runtime analysis features:

1. In Rose RealTime, click the Build Component button, or from the Build
menu, select Build or Rebuild.

These commands generate the code and makefile, and launch the product
instrumentation with the selected options.

To run the instrumented binary:

1. Just like a standard Rose RealTime application, from the Build menu,
select Run or click the Run button.

2. Then, click Start and, when appropriate, Stop.

Collecting Trace Dump Data

Rational's Source Code Insertion (SCI) technology is designed to minimize
overhead. The instrumented code stores information in memory (except for
the Runtime Tracing feature) and dumps this SCI data when the program
terminates. To use this technique, you must add a call to a dumping
function in your source code:

extern "C" _atl_obstools_dump(int);
...
_atl_obstools_dump(1);

In some cases, such as in embedded applications, it is not practical to dump
traces upon exit. See Generating Trace Dumps for more information.

To connect the SCI data dump to the Rose RealTime Stop button:

1. Add the following code to the cmdCommand.cc file.

 231

At the beginning of the file:
#include <RTDebugger.h>
#include <RTMemoryUtil.h>
#include <RTObserver.h>
#include <RTTcpSocket.h>
#include <stdio.h>
extern "C" _atl_obstools_dump(int);

In the RTObserver::cmdCommand method:
else if(0 == RTMemoryUtil::strcmp(commandString, "stop"
))
 {
_atl_obstools_dump(1);
printf("TestRT dump\n");
haltByProbe = 0;
resumeToRun = 0;
debugger->step(0U);
 }

2. Re-compile this file and add the cmdCommand.obj to the Additional
Object Files section of the model's Component Specification window

Note For Visual C++ 6.0, such an object file is already provided in:
<install dir>\bin\intel\RoseRT\VC6
where <install dir> is the PurifyPlus RealTime installation directory.

3. By default, when executing the model, press the Rose RealTime Stop
button to ensure that trace information is uploaded.

Any other code point could be used to dump the traces, as long as the
chosen code point is linked to a specific eventa particular message or an
external eventin order to force the dump.

Viewing Results from Rose RealTime

To view the results with PurifyPlus RealTime report viewers:

1. In Rose RealTime, from the Tools menu, select Rational PurifyPlus
RealTime, Viewer and select:

• With Model Code Coverage to open the Code Coverage viewer of the

232

product only on the code included in the actions of each transition and
with 2 additional coverage levels for State and Transition coverage.

• With Code Coverage to open the Code Coverage viewer of the product
with the entire source code.

In both cases, Runtime Tracing, Memory Profiling and Performance
Profiling work on the entire code.

To view coverage information in a Rose RealTime state diagram:

• In Rose RealTime, from the Tools menu, select Rational PurifyPlus
RealTime, Model Code Coverage and Load. This displays a coverage
report on each State Diagram.

Note You must run the product viewer before loading Code Coverage
information on Rose RealTime.

Advanced Rose RealTime Integration

To use a cross compiler:

When using a compiler that produces code for a non-native platform, you
must set up two Target Deployments Ports for both the native and the
target platform.

1. Locate the corresponding Target Deployment Ports. These TDPs must
contain an attolcc Instrumentation Launcher binary.

2. In the TDP.txt file located in the Rose RealTime installation directory,
write a line for each Target Deployment Ports based on the following
example:
NT40T.x86-VisualC++-6.0 , cvisual6

To compile with a makefile:

If you chose not to use the Rose RealTime environment for compilation and
link, but instead to use a makefile to perform these tasks, you can use the
Rational PurifyPlus RealTime Instrumentation Launcher tools as described

 233

below:

1. Modify your compiler command as follows:
CC = attolcc <options> -- cc
LD = attolcc <options> -- ld (if necessary)

attolcc is the Instrumentation Launcher which must be available in the
Target Deployment Port, in the /cmd directory. This directory must be in
your PATH.

<options> are the instrumentation options. See the Reference Manual for
more information about the Instrumentation Launcher command line.

To display the report

The instrumented application produces the atlout.spt file at the end of the
execution.

1. Run the following command:
studio *.fdc *.tsf atlout.spt atlout.tio atlout.tdf
atlout.tqf atlout.tpf

This launches the PurifyPlus RealTime graphical user interface. The .fdc
and .tsf files are static files generated by the instrumentation. The four last
files are created by the product to store the traces for each component.

Troubleshooting Rose RealTime Integration

In some cases, conflicts or problems may prevent the Rose RealTime
integration to work as expected. The following tables sum up some of the
issues that may occur, and explains how to solve them.

Project Instrumentation and Compilation

Instrumentation options cannot be changed:

The component or model is read-only. Change the component to read-write

234

status.

An .fdc correspondence file is not found during instrumentation:

The component Cov or Cov/Model directory may have been destroyed, for
example bya Clean command. To restore the lost information, run the
Enable Instrumentation of Selected Component command.

New settings are ignored after performing an Enable Instrumentation of
Selected Component command:

Quick Build does not regenerate makefiles. Run the Rebuild command
instead of a Quick Build.

An error message states that an Instrumentor is missing during
instrumentation:

Another component for which no Instrumentation Launcher (attolcc) is
available, or no link exists between the Rose RealTime code generation and
the TDP, has been enabled with Enable Component Instrumentation.

Only enable components for which a complete configuration exists.

Project Link

An application should not be instrumented with instrumented libraries:

Activate the Add TDP option for the application component. The plug-in
automatically scans application dependencies and adds the TDP.Obj of
instrumented libraries to the User Obj.

Note Instrumentation options must be the same for all libraries.

An application should not be instrumented with external instrumented
libraries:

 235

The Rose RealTime plug-in does not know where TDP is generated when
external components are used. In this case, create an external library that
contains TP.obj.

Execution

Multithreading issues:

Check that the Multithreading instrumentation setting is correctly
configured.

Link issues:

When multiple subcomponents are involved in a component (libraries and
binary), check that instrumentation options are the same for all components
and that the TDP.obj is correctly linked.

Instrumentation issues

Check that no warning message appears during instrumentation. It may be
necessary to exclude one or several components from instrumentation
(attolcc -exunit). See the Reference Manual for further information about
Instrumentation Launcher command line options.

Missing Results

Files are missing when the Test RealTime is launched to display report files.
Code Coverage results are missing or display the entire application as
uncovered.

The runtime analysis trace dump was interrupted. Dumps can take a long
time, especially when the Memory Profiling feature is in use. See
Generating SCI Dumps for more information.

Missing files on another component:

236

The plug-in offers to display all the results for enabled components.
Disable the any components that are not under analysis.

No coverage results on a diagram

Check that the component was correctly generated with the Code Coverage
instrumentation option.

Check that the component is enabled for instrumentation. The Plug-in only
changes state diagrams for enabled components.

Check that the component is not read-only, such as for an inherited
diagram.

Working with Microsoft Visual Studio

Installing Microsoft Visual Studio Integration

Integration with Microsoft Visual Studio is only available for the Windows
versions of PurifyPlus RealTime.

Either PurifyPlus RealTime and Microsoft Visual Studio 6.0 must be
installed on the same machine.

To enable the product integration with Visual Studio, from the Windows
Start menu, select Programs, PurifyPlus RealTime, Tools and Install
Rational PurifyPlus RealTime add-in for Microsoft Visual Studio 6.0 to
add the new menu items to Microsoft Visual Studio.

Configuring Microsoft Visual Studio Integration

PurifyPlus RealTime provide a special setup tool to configure runtime
analysis features with Microsoft Visual Studio 6.0.

 237

Note Integration with Microsoft Visual Studio is only available with the
Windows version of the product.

Configuration

The Rational PurifyPlus RealTime Setup for Microsoft Visual Studio tool
allows you to set up and activate coverage types and instrumentation
options for PurifyPlus RealTime runtime analysis features, without leaving
Microsoft Visual Studio.

To run the product Setup for Microsoft Visual Studio:

In Microsoft Visual Studio, two new items are added to the Tools menu:

• PurifyPlus RealTime Viewer: this launches the PurifyPlus RealTime
user interface, providing access to reports generated by PurifyPlus
RealTime runtime analysis features.

• PurifyPlus RealTime Options: this launches the Rational Setup for
Microsoft Visual Studio tool.

The following commands are available:

• Apply: Applies the changes made

• OK: Apply the choices made and leave the window

• Enable or Disable: Enable or Disable the runtime analysis features

• Cancel: Cancels modifications

Code Coverage Instrumentation options

See About Code Coverage and the sections about coverage types.

• Function instrumentation:

Select None to disable instrumentation of function inputs,
outputs and termination instructions.

238

Select Functions to instrument function inputs only.

Select Exits to instrument function inputs, outputs and
termination instructions.

• Function calls instrumentation (C only):

Select None to disable function call instrumentation.

Select Calls to enable function call instrumentation.

• Block instrumentation

Select None to disable block instrumentation.

Select Statement Blocks to instrument simple blocks only.

Select Implicit Blocks to instrument simple and implicit blocks.

Select Loops to instrument implicit blocks and loops.

• Condition instrumentation (C only)

Select None to disable condition instrumentation

Select Basic to instrument basic conditions

Select Modified/Multiple to instrument multiple

Select Forced to instrument forced multiple conditions

• No Ternaries Code Coverage: when this option is selected, simple
blocks corresponding for the ternary expression true and false branches
are not instrumented

• Instrumentation Mode: see Information Modes for more information.

Pass mode: allows you to distinguish covered branches from
those not covered.

 239

Count mode: The number of times each branch is executed is
displayed in addition to the pass mode information in the
coverage report.

Compact mode: The compact mode is similar to the Pass mode.
But each branch is stored in one bit instead of one byte to
reduce overhead.

Other Options

• Dump: this specifies the dump mode:

Select None to dump on exit of the application

Select Calling to dump on call of the specified function

Select Incoming to dump when entering the specified function

Select Returning to dump when exiting from the specified
function

• Static Files Directory: allows you to specify where the .fdc and .tsf files
are to be generated

• Runtime Tracing: this option activates the Runtime Tracing runtime
analysis feature

• Memory Profiling: this option activates the Memory Profiling runtime
analysis feature

• Performance Profiling: this option activates the Performance Profiling
runtime analysis feature

• Other: allows you to specify additional command-line options that are
not available using the buttons. See the PurifyPlus RealTime Reference
Manual for a complete list of Instrumentor options.

240

 241

Technical Support 6
When contacting Rational Technical Support, please be prepared to supply
the following information:

• About you:
Name, title, e-mail address, telephone number

• About your company:
Company name and company address

• About the product:
Product name and version number (from the Help menu, select About).
What components of the product you are using

• About your development environment:
Operating system and version number (for example, Windows NT 4.0,
Solaris 2.5.1/2.6/2.7, or HP-UX 10.20)Target compiler, operating system
and microprocessor. If necessary, send the Target Deployment Port file

• About your problem:
Your service request number (if you are calling about a previously
reported problem)
A summary description of the problem, related errors, and how it was
made to occur
Please state how critical your problem is
Any files that can be helpful for the technical support to reproduce the
problem (project, workspace, test scripts, source files). Formats accepted
are .zip and compressed tar (.tar.Z or .tar.gz)

If your organization has a designated, on-site support person, please try to
contact that person before contacting Rational Technical Support.

You can obtain technical assistance by sending e-mail to just one of the e-

242

mail addresses cited below. E-mail is acknowledged immediately and is
usually answered within one working day of its arrival at Rational. When
sending an e-mail, place the product name in the subject line, and include a
description of your problem in the body of your message.

Note When sending e-mail concerning a previously-reported problem,
please include in the subject field: "[SR#<number>]", where <number>
is the service request number of the issue. For example:

Re:[SR#12176528] New data on Rational PurifyPlus RealTime
install issue

Sometimes Rational technical support engineers will ask you to fax
information to help them diagnose problems. You can also report a
technical problem by fax if you prefer. Please mark faxes "Attention:
Technical Support" and add your fax number to the information requested
above.

Location Contact

North America

Rational Software,
18880 Homestead Road,
Cupertino, CA 95014
voice: (800) 433-5444
fax: (408) 863-4001
e-mail: support@rational.com

Europe, Middle East, and Africa Rational Software,
Beechavenue 30,
1119 PV Schiphol-Rijk,
The Netherlands
voice: +31 20 454 6200
fax: +31 20 454 6201
e-mail: support@europe.rational.com

Asia Pacific Rational Software Corporation Pty Ltd,
Level 13, Tower A, Zenith Centre,

821 Pacific Highway,

Chatswood NSW 2067,

 243

Australia

voice: +61 2-9419-0111

fax: +61 2-9419-0123

e-mail: support@apac.rational.com

244

 245

Glossary 7
Additional Files

Source files that are required by the test script, but not actually tested.

API

Application Programmer Interface. A reusable library of subroutines or
objects that encapsulates the internals of some other system and provides
a well-defined interface. Typically, it makes it easier to use the services of
a general-purpose system, encapsulates the subject system providing
higher integrity, and increases the user's productivity by providing
reusable solutions to common problems.

Application

A software program or system used to solve a specific problem or a class
of similar problems.

Application node

The main building block of your application under analysis. It contains
the source files required to build the application.

Assertion

A predicate expression whose value is either true or false.

Asynchronous

Not occurring at predetermined or regular intervals.

Black box testing

A software testing technique whereby the internal workings of the item

246

being tested are not known by the tester.

Boundary

The set of values that defines an input or output domain.

Boundary condition

An input or state that results in a condition that is on or immediately
adjacent to a boundary value.

Branch

When referring to the Code Coverage feature, a branch denotes a generic
unit of enumeration. For a given branch, you specify the coverage type.
Code Coverage instruments this branch when you compile the source
under test.

Branch coverage

Achieved when every path from a control flow graph node has been
executed at least once by a test suite. It improves on statement coverage
because each branch is taken at least once.

Breakpoint

A statement whose execution causes a debugger to halt execution and
return control to the user.

Bug

An error or defect in software or hardware that causes a program to
malfunction.

Build

The executable(s) produced by a build generation process. This process
may involve actual translation of source files and construction of binary
files by e.g. compilers, linkers and text formatters.

 247

Build generation

The process of selecting and merging specific versions of source and
binary files for translation and linking within a component and among
components.

Check-in

In configuration management, the release of exclusive control of a
configuration item.

Check-out

In configuration management, the granting of exclusive control of a
configuration item to a single user.

Class

A representation or source code construct used to create objects. Defines
public, protected, and private attributes, methods, messages, and
inherited features. An object is an instance of some class. A class is an
abstract, static definition of an object. It defines and implements instance
variables and methods.

Class contract

The set of assertions at method and class scope, inherited assertions, and
exceptions.

Class invariant

An assertion that specifies properties that must be true of every object of
a class.

Code Coverage

PurifyPlus RealTime feature whose function is to measure the percentage
of code coverage achieved by your testing efforts, using a variety of
powerful data displays to ensure all portions of your code are exercised

248

and thus verified as properly implemented.

Complexity

A characteristic of software measured by various statistical models.

Component

Any software aggregate that has visibility in a development
environment, for example, a method, a class, an object, a function, a
module, an executable, a task, a utility subsystem, an application
subsystem. This includes executable software entities supplied with an
API.

Component Testing

The PurifyPlus RealTime feature used to automate the white box testing
of individual software components in your system, facilitating early,
proactive debugging and provided a repeatable, well-defined process for
runtime analysis.

Computational complexity

The study of the time (number of iterations) and space (quantity of
storage) required by algorithms and classes of algorithms.

Configuration

It is a Target Deployment Port, applied to a Project, plus node-specific
settings.

Configuration management

A technical and administrative approach to manage changes and control
work products.

Container class

A class whose instances are each intended to contain multiple
occurrences of some other object.

 249

Coverage

The percentage of source code that has been exercised during a given
execution of the application.

Cyclomatic complexity

The V(g) or cyclomatic number is a measure of the complexity of a
function which is correlated with difficulty in testing. The standard value
is between 1 and 10. A value of 1 means the code has no branching. A
function's cyclomatic complexity should not exceed 10.

Debug

To find the error or misconception that led to a program failure
uncovered by testing, and then to design and to implement the program
changes that correct the error.

Debugger

A software tool used to perform debugging.

Defect

An incorrect or missing software component that results in a failure to
meet a functional or performance requirement.

Destructor

A method that removes an active object.

Embedded system

A combination of computer hardware and software, and perhaps
additional mechanical or other parts, designed to perform a dedicated
function. In some cases, embedded systems are part of a larger system or
product, as is the case of an anti-lock braking system in a car.

250

Equivalence class

A set of input values such that if any value is processed correctly
(incorrectly), then it is assumed that all other values will be processed
correctly (incorrectly).

Error

A human action that results in a software fault.

Event

Any kind of stimulus that can be presented to an object: a message from
any client, a response to a message sent to the virtual machine
supporting an object, or the activation of an object by an externally
managed interrupt mechanism.

Exception

A condition or event that causes suspension of normal program
execution. Typically it results from incorrect or invalid usage of the
virtual machine.

Exception handling

The activation of program components to deal with an exception.
Exception handling is typically accomplished by using built-in features
and application code. The exception causes transfer to the exception
handler, and the exception handler returns control to the module that
invoked the module that encountered the exception.

Garbage collector (Java)

The process of reclaiming allocated blocks of main memory (garbage)
that are (1) no longer in use or (2) not claimed by any active procedure.

Included Files

Included files are normal source files under test. However, instead of

 251

being compiled separately during the test, they are included and
compiled with the object test driver script.

Inheritance

A mechanism that allows one class (the subclass) to incorporate the
declarations of all or part of another class (the superclass). It is
implemented by three characteristics: extension, overriding, and
specialization.

Instrumentation

The action of adding portions of code to an existing source file for
runtime analysis purposes. The product uses Rational's source code
insertion technology for instrumentation.

JUnit

JUnit is an open source testing framework for Java. It provides a means
of expressing how the application should work. By expressing this in
code, you can use JUnit test scripts to test your code.

Memory profiling

PurifyPlus RealTime feature whose function is to measure your code's
reliability as it pertains to memory usage. Applicable to both Application
and Test Nodes, the memory profiling feature detects memory leaks,
monitors memory allocation and deallocation and provides detailed
reports to simplify your debugging efforts.

Method (Java, C++)

A procedure that is executed when an object receives a message. A
method is always associated with a class.

Model

A representation intended to explain the behavior of some aspects of [an
artifact or activity]. A model is considered an abstraction of reality.

252

Node

Any item that appears in the Project Explorer. This includes test nodes,
application nodes, source files or test scripts.

Package (ADA)

Program units that allow the specification of groups of logically related
entities.

Package (Java)

A group of types (classes and interfaces).

Performance profiling

PurifyPlus RealTime feature whose function is to measure your code's
reliability as it pertains to performance. Applicable to both Application
and Test nodes, the performance profiling feature measures each and
every function, procedure or method execution time, presenting the data
in a simple-to-read format to simplify your efforts at code optimization.

Polymorphism

This refers to a programming language's ability to process objects
differently depending on their data type or class. More specifically, it is
the ability to redefine methods for derived classes.

Postcondition

An assertion that defines properties that must hold when a method
completes. It is evaluated after a method completes execution and before
the message result is returned to the client.

Precondition

An assertion that defines properties that must hold when a method
begins execution. It defines acceptable values of parameters and
variables upon entry to a module or method.

 253

Predicate expression

An expression that contains a condition (conditions) that evaluates true
or false.

Procedure (C)

A procedure is a section of a program that performs a specific task.

Project

The project is your main workspace as shown in the Project Explorer.
The project contains all the files required to build, analyze and test an
application.

Requirement

A desired feature, property, or behavior of a system.

Runtime Tracing

Feature whose function is to monitor code s it executes, generating an
easy-to-read UML-based sequence diagram of events. Perfect for
developers trying to understand inherited code, this feature also greatly
simplifies the debugging process at the integration level.

Scenario

An interaction with a system under test that is recognizable as a single
unit of work from the user's point of view. This step, procedure, or input
event may involve any number of implementation functions.

SCI

Source Code Insertion. Method used to enable the runtime analysis
functionality of PurifyPlus RealTime. Pre-compiled source code is
modified via the insertion of custom commands that enable the
monitoring of executing code. The actual code under test is untouched.

254

SCI dump

Data that is dumped from a SCI-instrumented application.

Sequence diagram

A sequence diagram is a UML diagram that provides a view of the
chronological sequence of messages between instances (objects or
classifier roles) that work together in an interaction or interaction
instance. A sequence diagram consists of a group of instances
(represented by lifelines) and the messages that they exchange during the
interaction.

Snapshot

In Memory Profiling for Java, a snapshot is a memory dump performed
by the JVMPI Agent whenever a trigger request is received. The snapshot
provides a status of memory and object usage at a given point in the
execution of the Java program.

Subsystem

A subset of the functions or components of a system.

TDP

Target Deployment Port. A versatile, low-overhead technology enabling
target-independent tests and runtime analysis despite limitless target
support. Its technology is constructed to accommodate your compiler,
linker, debugger, and target architecture.

Template class

A class that defines the common structure and operations for related
types. The class definition takes a parameter that designates the type.

Test driver

A software component used to invoke a component under test. The

 255

driver typically provides test input, controls and monitors execution, and
reports results.

Test harness

A system of test drivers and other tools to support test execution.

Test node

The main building block of your test campaign. It contains one or more
test scripts as well as the source code under test.

Transition

In a state machine, a change of state.

UML

Unified Modeling Language. A general-purpose notational language for
specifying and visualizing complex software, especially large, object-
oriented projects.

Unit

Generic term referring to language specific code elements such as
procedures, classes, functions, methods, packages.

Unit Testing

See Component Testing.

White box testing

See Clear box testing.

	Rational® PurifyPlus RealTime - User Guide
	Contents
	Product Overview
	About Online Documentation
	Documentation Updates and Feedback

	Source Code Insertion
	Estimating Instrumentation Overhead
	Reducing Instrumentation Overhead
	Information Modes
	Generating SCI Dumps

	Target Deployment Ports
	Launching the TDP Editor
	Reconfiguring a TDP for a Compiler or JDK

	Unified Modeling Language
	UML Sequence Diagrams
	Model Elements and Relationships in Sequence Diagrams
	Activations
	Classifier Roles
	Destruction Markers
	Lifelines
	Messages
	Objects
	Stimuli
	Actions
	Exceptions
	Actors
	Loops
	Synchronizations
	Notes

	Runtime Analysis
	Using Runtime Analysis Features
	Code Coverage
	Coverage Types
	Selecting Coverage Levels
	Ada Coverage
	Ada Block Coverage
	Ada Call Coverage
	Ada Condition Coverage
	Ada Unit Coverage
	Ada Link Files
	Ada Additional Statements

	C Coverage
	C Block Coverage
	C Call Coverage
	C Condition Coverage
	C Function Coverage
	C Additional Statements

	C++ Coverage
	C++ Block Code Coverage
	C++ Method Code Coverage
	C++ Template Instrumentation
	C++ Additional Statements

	Java Coverage
	Java Block Coverage
	Java Method Coverage
	Java Additional Statements

	Code Coverage Viewer
	About the Code Coverage Viewer
	Source Report
	Rates Report
	Code Coverage Toolbar
	Code Coverage Viewer Preferences

	Code Coverage Dump Driver

	Static Metrics
	Static Metric Viewer
	Viewing Static Metrics
	Static Metrics
	Root Level File View
	Root Level Object View

	Halstead Metrics
	V(g) or Cyclomatic Number
	Metrics Viewer Preferences

	Memory Profiling for C and C++
	About Memory Profiling for C, C++ and Ada
	Memory Profiling Results for C, C++ and Ada
	Memory Profiling Errors
	Error Messages
	Freeing Freed Memory (FFM)
	Freeing Unallocated Memory (FUM)
	Late Detect Array Bounds Write (ABWL)
	Late Detect Free Memory Write (FMWL)
	Memory Allocation Failure (MAF)
	Core Dump (COR)

	Memory Profiling Warnings
	Warning Messages
	Memory in Use (MIU)
	Memory Leak (MLK)
	Memory Potential Leak (MPK)
	File in Use (FIU)
	Signal Handled (SIG)

	Memory Profiling User Heap in C and C++
	Using the Memory Profiling Viewer
	Memory Profiling Viewer Preferences

	Memory Profiling for Java
	Memory Profiling for Java
	Memory Profiling Results for Java
	JVMPI Technology

	Performance Profiling
	About Performance Profiling
	Performance Profiling Results
	Performance Profiling SCI Dump Driver
	Performance Profiling Viewer Preferences
	Using the Performance Profiling Viewer

	Runtime Tracing
	About Runtime Tracing
	Understanding Runtime Tracing UML Sequence Diagrams
	Advanced
	Multi-Thread Support
	Partial Trace Flush
	Trace Item Buffer
	Splitting Trace Files

	Graphical User Interface
	Discovering the GUI
	Start Page
	Output Window
	Project Explorer
	Properties Window
	Report Explorer
	Standard Toolbars
	Using the GUI Components
	
	Using the Report Viewer
	Understanding Test and Runtime Analysis Reports
	Setting a Zoom Level
	Report Viewer Toolbar
	Report Viewer Style Preferences

	Text Editor
	Creating a Text File
	Opening a Text File
	Finding Text in the Text Editor
	Replacing Text in the Text Editor
	Locating a Line and Column in the Text Editor
	Text Editor Syntax Coloring
	Text Editor Preferences

	Tools Menu
	Tool Configuration

	Test Process Monitor
	About the Test Process Monitor
	Changing Curve Properties
	Custom Curves
	Event Markers
	Setting the Time Scale
	Test Process Monitor Toolbar
	Adding a Metric

	UML/SD Viewer
	Navigating through UML Sequence Diagram
	Time Stamping
	Coverage Bar
	Memory Usage Bar
	Thread Bar
	Applying Filters
	Sequence Diagram Triggers
	Editing Trigger or Filter Events
	Finding Text in a UML Sequence Diagram
	Step-by-Step mode
	UML/SD Viewer Toolbar
	UML/SD Viewer Preferences

	Configurations and Settings
	General Settings
	Build Settings
	External Command Settings

	Runtime Analysis Settings
	General Runtime Analysis Settings
	Memory Profiling Settings
	Performance Profiling Settings
	Code Coverage Settings
	Runtime Tracing Control Settings

	Automated Testing Settings
	Selecting Configurations
	Modifying Configurations

	Working with Projects
	Creating a Group
	Manually Creating a Test or Application Node
	Creating an External Command Node
	Importing a Makefile
	Refreshing the Asset Browser
	Deleting a Node
	Renaming a Node
	Viewing File Properties
	Excluding a Node from a Build
	Adding Files to the Project
	Selecting Build Options
	Building and Running a Node
	Cleaning Up Generated Files
	Creating a Source File Folder
	Opening a Report
	Debug Mode
	Editing Preferences
	Project Preferences
	Connection Preferences

	Activity Wizards
	New Project Wizard
	Runtime Analysis Wizard

	Command Line Interface
	Running a Node from the Command Line
	Command Line Runtime Analysis for C and C++
	Command Line Runtime Analysis for Java
	Command Line Tasks
	Setting Environment Variables
	Instrumenting and Compiling the Source Code
	Compiling the TDP Library
	Linking the Application
	Running the Test Harness or Application
	Splitting the Trace Dump File
	Troubleshooting Command Line Usage

	Working with Other Development Tools
	Working with Configuration Management
	Working with Rational ClearCase
	Working with Rational ClearQuest
	CMS Preferences
	ClearQuest Preferences

	Customizing Configuration Management

	Working with Rational Rose RealTime
	Installing Rose RealTime Integration
	Using the Product with Rose RealTime
	Collecting Trace Dump Data
	Viewing Results from Rose RealTime
	Advanced Rose RealTime Integration
	Troubleshooting Rose RealTime Integration

	Working with Microsoft Visual Studio
	Installing Microsoft Visual Studio Integration
	Configuring Microsoft Visual Studio Integration

	Technical Support
	Glossary

