
Rational Software Corporation

support@rational.com
http://www.rational.com

Rational® Test RealTime
USER GUIDE

VERSION: 2002 RELEASE 2 - SR1

mailto:support@rational.com
http://www.rational.com

IMPORTANT NOTICE

COPYRIGHT
Copyright ©2000-2002, Rational Software Corporation. All rights reserved.

Part Number: 800-025997-000

Version: 2002 Release 2 - SR1

PERMITTED USAGE
THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION WHICH IS THE PROPERTY OF RATIONAL
SOFTWARE CORPORATION (“RATIONAL”) AND IS FURNISHED FOR THE SOLE PURPOSE OF THE
OPERATION AND THE MAINTENANCE OF PRODUCTS OF RATIONAL. NO PART OF THIS PUBLICATION
IS TO BE USED FOR ANY OTHER PURPOSE, AND IS NOT TO BE REPRODUCED, COPIED, ADAPTED,
DISCLOSED, DISTRIBUTED, TRANSMITTED, STORED IN A RETRIEVAL SYSTEM OR TRANSLATED
INTO ANY HUMAN OR COMPUTER LANGUAGE, IN ANY FORM, BY ANY MEANS, IN WHOLE OR IN
PART, WITHOUT THE PRIOR EXPRESS WRITTEN CONSENT OF RATIONAL.

TRADEMARKS
Rational, Rational Software Corporation, Rational the software development company, ClearCase, ClearQuest, Object
Testing, Purify, Quantify, Rational Apex, Rational Rose, Rational Suite, among others, are either trademarks or
registered trademarks of Rational Software Corporation in the United States and/or in othercountries.All other names
are used for identification purposes only, and are trademarks or registered trademarks of their respective companies.

Microsoft, the Microsoft logo, Windows, Windows NT, Windows Me and Windows 2000 are trademarks or registered
trademarks of Microsoft Corporation in the United States and other countries.

FLEXlm and GLOBEtrotter are trademarks or registered trademarks of GLOBEtrotter Software, Inc. Licensee shall
not incorporate any GLOBEtrotter software (FLEXlm libraries and utilities) into any product or application the
primary purpose of which is software license management.

PATENT
U.S. Patent Nos.5,193,180 and 5,335,344 and 5,535,329 and 5,835,701. Additional patents pending.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

GOVERNMENT RIGHTS LEGEND
Use, duplication, or disclosure by the U.S. Government is subject to restrictions set forth in the applicable Rational
Software Corporation license agreement and as provided in DFARS 277.7202-1(a) and 277.7202-3(a) (1995), DFARS
252.227-7013(c)(1)(ii) (Oct. 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR 227-14, as applicable.

WARRANTY DISCLAIMER
This document and its associated software may be used as stated in the underlying license agreement. Rational
Software Corporation expressly disclaims all other warranties, express or implied, with respect to the media and
software product and its documentation, including without limitation, the warranties of merchantability or fitness for a
particular purpose or arising from a course of dealing, usage, or trade practice.

1

User Guide
Contents
Product Overview.. 13

About Online Documentation .. 14
Context-Sensitive Online Help .. 14
Finding Information ... 15
Printing from the Online Documentation.. 16
Documentation Updates and Feedback .. 17

Source Code Insertion .. 17
Estimating Instrumentation Overhead ... 18
Reducing Instrumentation Overhead... 21
Information Modes .. 22
Generating SCI Dumps... 23

Target Deployment Ports .. 25
Launching the TDP Editor ... 27
Reconfiguring a TDP for a Compiler or JDK.. 28

Unified Modeling Language .. 29
UML Sequence Diagrams... 29
Model Elements and Relationships in Sequence Diagrams 30
Activations .. 30
Classifier Roles... 31
Destruction Markers.. 33
Lifelines .. 34
Messages ... 36
Objects ... 38
Stimuli... 41
Actions.. 43
Exceptions .. 43
Actors ... 44
Loops.. 45
Synchronizations .. 46
Notes .. 48

Upgrading from a Previous Version .. 48

2

Runtime Analysis ..51

Using Runtime Analysis Features ...51
Code Coverage ...52

Coverage Types ..53
Ada Coverage.. 54

Ada Block Coverage ... 54
Ada Call Coverage .. 58
Ada Condition Coverage ... 58
Ada Unit Coverage.. 62
Ada Link Files.. 64
Ada Additional Statements.. 66

C Coverage ... 67
C Block Coverage ... 67
C Call Coverage.. 70
C Condition Coverage... 72
C Function Coverage .. 76
C Additional Statements.. 77

C++ Coverage ... 78
C++ Block Code Coverage ... 78
C++ Method Code Coverage .. 81
C++ Template Instrumentation.. 83
C++ Additional Statements ... 84

Java Coverage .. 84
Java Block Coverage .. 84
Java Method Coverage ... 88
Java Additional Statements... 90

Code Coverage Viewer..90
About the Code Coverage Viewer... 90
Source Report ... 93
Rates Report ... 95
Code Coverage Toolbar .. 95
Code Coverage Viewer Preferences... 96

Code Coverage Dump Driver...96
Static Metrics...97

Static Metric Viewer...97
Static Metrics ... 98
Root Level File View.. 99
Root Level Object View ... 101

Halstead Metrics..103

3

V(g) or Cyclomatic Number... 104
Metrics Viewer Preferences .. 105

Memory Profiling for C and C++ ... 106
Memory Profiling Results for C and C++... 106
Memory Profiling Errors .. 108

Freeing Freed Memory (FFM) ...108
Freeing Unallocated Memory (FUM) ...109
Late Detect Array Bounds Write (ABWL)...109
Late Detect Free Memory Write (FMWL)...110
Memory Allocation Failure (MAF) ..111
Core Dump (COR) ...111

Memory Profiling Warnings ... 111
Memory in Use (MIU)...112
Memory Leak (MLK) ..112
Memory Potential Leak (MPK)...112
File in Use (FIU)...113
Signal Handled (SIG) ...113

Memory Profiling User Heap in C and C++ ... 114
Using the Memory Profiling Viewer ... 119
Memory Profiling Viewer Preferences ... 120

Memory Profiling for Java ... 121
Memory Profiling Results for Java... 121
JVMPI Technology.. 124

Performance Profiling ... 126
Performance Profiling Results... 127
Performance Profiling SCI Dump Driver.. 128
Performance Profiling Viewer Preferences.. 129
Using the Performance Profiling Viewer.. 129

Runtime Tracing.. 130
About Runtime Tracing ... 130
Understanding Runtime Tracing UML Sequence Diagrams 131
Runtime Tracing with a Test Node.. 133
Multi-Thread Support .. 134
Partial Trace Flush.. 135
Trace Item Buffer .. 136
Splitting Trace Files .. 137

4

Automated Testing ..141

Using Test Features..141
Component Testing for C and Ada..142

C and Ada Testing Overview ...143
Integrated, Simulated and Additional Files.. 143
Tester Configuration.. 145
Importing V2001A Component Testing Files .. 146
Options and Settings ... 147

Array and Structure Display .. 147
Initial and Expected Values... 148
Test Script Compiler Macro Definitions... 149

Pointers ... 150
Testing Pointers against Pointer Structure Elements ... 150
Pointer and Array Ambiguities... 151

Testing an Array Whose Elements are Unions ... 151
Initializing Pointer Variables while Preserving the Pointed Value........................... 153

Functions ... 153
Testing Main Functions ... 153
Functions Using a Variable Number of Parameters.. 154
Functions Taking void* Parameters .. 155
Functions Using const Parameters ... 155
Functions Containing Type Modifiers.. 156
Functions Using _inout Mode Arrays .. 157
Functions Taking char* Parameters.. 158

C and Ada Test Script..159
Ada .. 159

Ada Records with Discriminants ... 159
Separate Compilation.. 160
Generic Units... 160
Unknown Values ... 161
Test Program Entry Point.. 161
Testing Generic Packages .. 163
Declaring Global Variables for Testing ... 163
Generating a Separate Test Harness ... 165
Test Script Modification... 166
Testing Ada Tasks .. 166

Environments... 168
About Environments.. 169
Declaring Environments .. 169
Environment Override ... 170

5

Specifying Parameters for Environments ..172
Using Environments...172

Exceptions ...173
Unexpected Exceptions...173

Overview ..173
Declaring Parameters ..173
Test Script Structure ..174

Simulations ..176
C and Ada Syntax Extensions ...176
Creating Complex Stubs..178
Excluding a Parameter from a Stub...178
Sizing Stubs...179

Simulation of Generic Units ...180
Stub Definition in C ..181
Stub Simulation Overview ...184
Stub Usage in Ada...185
Stub Usage in C...187

C and Ada Test Reports ... 188
Comparing Reports..188
Understanding Component Testing Reports ...189
Understanding Component Testing UML Sequence Diagrams for C and
Ada...191

Component Testing for C++.. 191
About Component Testing for C++.. 191
C++ Testing Overview .. 193

C++ Test Nodes...193
C++ Contract-Check Script ..193
C++ Test Driver Script ...194
Files and Classes Under Test..194
Simulated, Additional and Included Files...196
Declaration Files ..198

C++ Test Reports ... 199
Understanding Component Testing for C++ Reports199
Understanding Component Testing for C++ UML Sequence Diagrams ...202
Illegal and Multiple Transitions ..202
Contract-Check Sequence Diagrams ..203
Test Driver Sequence Diagrams..204

Component Testing for Java... 208
Java Testing Overview.. 209

Java Test Nodes ..211

6

Java Test Harness .. 211
Using the TestCase Class... 214
Using the TestResult Class ... 217
Using the TestSuite Class ... 218
Simulated and Additional Classes... 219
Java Stubs... 220
Importing a JUnit Test Campaign.. 221
J2ME Specifics .. 223

Java Test Reports ...224
Understanding Java Test Reports... 224
Understanding Java Component Testing UML Sequence Diagrams 226

System Testing for C...228
System Testing Overview ..229

Circular Trace Buffer ... 229
System Testing Supervisor ... 230

Agents and Virtual Testers...231
System Testing Agents ... 231

Installing System Testing Agents .. 231
System Testing Agent Access Files.. 235

Configuring Virtual Testers.. 235
Debugging Virtual Testers... 237
Deploying Virtual Testers .. 237
Editing the Deployment Script ... 239
Optimizing Execution Traces... 240
Setting Up Rendezvous Members .. 241
System Testing in a Multi-Threaded or RTOS Environment 241
Virtual Tester Thread Starter Program.. 243

System Testing for C Test Scripts..244
Basic Structure .. 244
Include Statements ... 245
Procedures .. 246

Flow Control .. 247
Conditions ... 247
Iterations.. 248
Multiple Conditions.. 249

Native C... 250
CALL Instruction.. 250
Using Native Language... 250

Instances ... 251
Instance Declaration ... 251
Instance Synchronization .. 252

7

Instances ...255
Environments ...255

Error Handling..256
Exception Environment (Error Recovery Block) ..257
Initialization Environment...258
Termination Environment ..260

Time Management ...261
TIME Instruction...262
TIMER Instruction ..263
RESET Instruction ...263
PRINT Instruction ..264
PAUSE Instruction ...264

Event Management..265
Basic Declarations ...266
Sending Messages ..267
Receiving Messages..269
Messages and Data Management...273
Communication Between Virtual Testers ..279

Understanding System Testing for C Reports 280
Understanding System Testing UML Sequence Diagrams282

Advanced System Testing for C.. 285
Trace Probes ...285

Using Probe Macros ..286
Generated Test Script..287
On-the-Fly Tracing...288

Graphical User Interface... 291

Discovering the GUI.. 292
Start Page... 293
Output Window ... 293
Project Explorer .. 294
Properties Window.. 296
Report Explorer... 298
Standard Toolbars .. 298
Using the GUI Components .. 300

Report Viewer ..300
Understanding Test and Runtime Analysis Reports..301
Setting a Zoom Level...302
Report Viewer Toolbar...302

8

Report Viewer Style Preferences.. 303
Text Editor ... 303

Creating a Text File ... 304
Opening a Text File ... 304
Finding Text in the Text Editor .. 305
Replacing Text in the Text Editor .. 306
Locating a Line and Column in the Text Editor ... 307
Text Editor Syntax Coloring .. 307
Text Editor Preferences .. 308

Tools Menu.. 309
Tool Configuration... 310

Test Process Monitor .. 311
Changing Curve Properties... 312
Custom Curves.. 313
Event Markers ... 314
Setting the Time Scale .. 315
Test Process Monitor Toolbar ... 315
Adding a Metric ... 316

UML/SD Viewer ... 317
Navigating through UML Sequence Diagram ... 317
Time Stamping .. 317
Coverage Bar .. 318
Memory Usage Bar ... 319
Thread Bar .. 320
Applying Filters.. 321
Sequence Diagram Triggers ... 322
Editing Trigger or Filter Events.. 324
Finding Text in a UML Sequence Diagram ... 327
Step-by-Step mode ... 327
UML/SD Viewer Toolbar ... 328
UML/SD Viewer Preferences .. 329

Configurations and Settings ..331
Configurations and Settings...331
General Settings..334

Build Settings... 335
External Command Settings.. 338

Probe Control Settings...339
Runtime Analysis Settings ...340

General Runtime Analysis Settings... 340
Memory Profiling Settings ... 343
Performance Profiling Settings.. 346

9

Code Coverage Settings..347
Runtime Tracing Control Settings..349

Automated Testing Settings .. 352
Component Testing Settings for C and Ada ..352
Component Testing for C++ Settings ..353
Component Testing for Java Settings..357
System Testing for C Settings ...358

Selecting Configurations ... 361
Modifying Configurations .. 361

Working with Projects ... 363
Creating a Group .. 363
Manually Creating a Test or Application Node 363
Creating an External Command Node... 364
Importing a Makefile.. 365
Refreshing the Asset Browser... 366
Deleting a Node .. 367
Renaming a Node... 367
Viewing File Properties ... 368
Excluding a Node from a Build.. 368
Adding Files to the Project .. 369
Selecting Build Options... 369
Building and Running a Node ... 370
Cleaning Up Generated Files.. 371
Creating a Source File Folder ... 371
Importing a Data Table (.csv File) ... 372
Opening a Report ... 373
Debug Mode ... 375
Editing Preferences... 375
Project Preferences .. 375
Connection Preferences ... 376

Activity Wizards... 376
New Project Wizard .. 377
Runtime Analysis Wizard .. 377
Component Testing Wizard... 379
System Testing Wizard ... 382
Metrics Diagram.. 384
Advanced Options .. 385

10

Command Line Interface...389

Running a Node from the Command Line ...389
Command Line Runtime Analysis for C and C++..................................390
Command Line Runtime Analysis for Java..392
Command Line Component Testing for C, Ada and C++......................393
Command Line Component Testing for Java ..394
Command Line System Testing for C..395
Command Line Tasks ...397

Setting Environment Variables...397
Preparing an Options Header File..399
Preparing a Products Header File..400
Instrumenting and Compiling the Source Code....................................401
Compiling the TDP Library...402
Compiling the Test Harness...404
Linking the Application...405
Running the Test Harness or Application...405
Splitting the Trace Dump File...406
Troubleshooting Command Line Usage...407

Working with Other Development Tools..409

Working with Configuration Management..409
Working with Rational ClearCase ..409
Working with Rational ClearQuest ...411
CMS Preferences ..412
ClearQuest Preferences ..412
Customizing Configuration Management ...413

Working with Rational Rose RealTime..413
Installing Rose RealTime Integration ...413
Using the Product with Rose RealTime ...414
Collecting Trace Dump Data..416
Viewing Results from Rose RealTime..417
Advanced Rose RealTime Integration ...418

Working with Rational TestManager..422

11

Before Using the TestManager Integration.. 423
Installing TestManager Integration .. 424
Submitting a ClearQuest Defect from TestManager 425
Viewing Results in TestManager... 425
Working with Rational TestManager ... 426

Working with Microsoft Visual Studio .. 427
Installing Microsoft Visual Studio Integration....................................... 427
Configuring Microsoft Visual Studio Integration................................... 427

Technical Support ... 433

Glossary... 437

13

Product Overview 1
Implementing a practical, effective and professional testing process within
your organization has become essential because of the increased risk that
accompanies software complexity. The time and cost devoted to testing must
be measured and managed accurately. Very often, lack of testing causes
schedule and budget over-runs with no guarantee of quality.

Critical trends require software organizations to be structured and to
automate their test processes. These trends include:

• Ever increasing quality and time to market constraints;

• Growing complexity, size and number of software-based equipment;

• Lack of skilled resources despite need for productivity gains;

• Increasing interconnectedness of critical and complex embedded
systems;

• Proliferation of quality & certification standards throughout critical
software markets, including the avionics, medical, and
telecommunications industries.

Rational Test RealTime provides a full range of answers to these challenges
by enabling full automation of system and software test processes.

Test RealTime is a complete test and runtime analysis toolset for embedded,
real-time and networked systems created in any cross-development
environment. Automated testing, code coverage, memory leak detection,
performance profiling, UML tracing - with Test RealTime you fix your code
before it breaks.

14

Test RealTime covers runtime analysis and software testing, all in a fully
integrated testing environment.

About Online Documentation

The entire documentation set for Test RealTime is provided as a full-featured
online help system.

Depending on the operating system you are using, this documentation was
designed to be viewed with either:

• Microsoft's HTML Help browser for Windows.

• Netscape Navigator 4.7 or later on UNIX operating systems or any other
Java-enabled web browser.

Both environments provide contextual-help from within the application, a
full-text search facility, and direct navigation through the Table of Contents
and Index panes on the left-hand side of the Help window.

Context-Sensitive Online Help

As you work with the product, you can obtain information about windows or
dialogs by using the context-sensitive Help available in the application. You
can access this Help in several ways, including:

• Dialog boxes: Dialogs display Help buttons. Click the button and a topic
opens in the Help browser window that explains how to use the fields
and controls at the dialog. You can also press the F1 key in dialog boxes
to get help.

• Windows: From any window, press F1 to get more information about
using it.

15

• Right-click menus: Every right-click menu includes a Help option. For
help on a specific item, right-click and select Help. You can also right-
click inside windows for help.

Finding Information

There are several ways of navigating through the online help system to find
information. These are available through the Navigation Pane at the left of
this window.

• Using the Navigation Pane: The navigation pane is the frame on the left
of this window which contains the Contents, the Index and the Search
facilities.

On the Windows platform, click the button in the Windows Help
browser to hide or show the Navigation Pane.

On UNIX platforms, use the Hide Navigation Pane or Show
Navigation Pane links at the top of the Help page.

• Contents: The Contents tab displays books and pages that
represent the categories of information in the online Help system. When
you click a book, it opens the first page of its content. To expand or
reduce book's contents, click the or buttons to the left of the book.
When you click pages , you select topics to view in the right-hand pane
of the HTML Help viewer.

• Index: The Index tab displays a multi-level list of keywords and
keyword phrases. These terms are associated with topics in the Help
system and they are intended to direct you to specific topics according to
your way of working. Keywords are cross-referenced with synonyms to
provide multiple ways to locate information. To open a topic in the right-
hand pane associated with a keyword, select the keyword and then click
Display. If the keyword is used with more than one topic, a Topics
Found dialog opens so you can select a specific topic to view.

• Search: The Search tab enables you to search for words in the Help

16

system and locate topics containing those words. Full-text searching
looks through every word in the online Help to find matches. When the
search is completed, a list of topics is displayed so you can select a
specific topic to view.

Printing from the Online Documentation

In some cases, you might find useful to print out portions of the
documentation for reading off-line.

To print a topic in Windows:

1. Select a topic

2. In the toolbar, click the Print icon.

To print a topic in UNIX:

1. Select a topic

2. Use the Print command of your Web browser

To print an entire chapter in Windows:

1. In the navigation pane, select the Contents tab.

2. Select a book.

3. In the toolbar, click the Print icon.

4. Select Print the selected section and all subchapter and click OK.

Note Printing an entire chapter is not currently supported in the UNIX
online help.

17

Documentation Updates and Feedback

Latest Updates

For the most recent documentation updates please visit the Product Support
section of the following website:

http://www.rational.com/products/testrt/index.jsp

Feedback

We do our best to provide you with the highest possible quality in our user
documentation, and your feedback is essential for us to improve the
standards of our products. If you have any comments or suggestions about
our online documentation, feel free to contact us at techpubs@rational.com.

Keep in mind that this e-mail address is only for documentation feedback. For
technical questions, please contact Technical Support.

Source Code Insertion

Rational's Source Code Insertion (SCI) technology uses instrumentation
techniques that automatically adds special code to the source files under
analysis. After compilation, execution of the code produces SCI dump data
for the selected runtime analysis or automated testing features.

Rational Test RealTime makes extensive use of SCI technology to
transparently produce test and analysis reports on both native and embedded
target platforms.

http://www.rational.com/products/testrt/index.jsp

18

Estimating Instrumentation Overhead

Instrumentation overhead is the increase in the binary size or the execution
time of the instrumented application, which is due to Source Code Insertion
(SCI) generated by the Runtime Analysis features.

Rational's SCI technology is designed to reduce both types of overhead to a
bare minimum. However, this overhead may still impact your application.

The following table provides a quick estimate of the overhead generated by
the product.

Code Coverage Overhead

Overhead generated by the Code Coverage feature depends largely on the
coverage types selected for analysis.

A 48 byte structure is declared at the beginning of the instrumented file.

Depending on the information mode, each branch is referenced by a 1 byte
(pass mode), 1 bit (compact mode) or 4 byte (count mode) array.

The size of this array may be rounded up by the compiler (especially in
compact mode because of the 8 bit minimum integral type found in C/C++).

Other Specifics:

• loops, switch, case statements: a 1 byte local variable is declared for each
instance

• (not forced) modified/multiple conditions: a n byte local array is declared
at the beginning of the enclosing routine, where n is the number of
conditions belonging to a decision in the routine

I/O is either performed at the end of the execution or when the end-user
decides (please refer to Coverage Snapshots in the documentation).

19

In conclusion:

Count mode and modified/multiple conditions have the greatest data and
execution time overhead. In most cases, it is recommended that coverage
types be independently selected and pass mode be used as the default. Source
code can also be partially instrumented. Compact mode is helpful when data
space is lacking, but there is still an unavoidable increase in code size
(shift/bits masks) and execution time.

Memory and Performance Profiling and Runtime Tracing

Any source file containing an instrumented routine receives a declaration for
a 16 byte structure.

Within each instrumented routine, a n byte structure is locally declared,
where n is:

16 bytes

+4 bytes for Runtime Tracing

+4 bytes for Memory Profiling

+3*t bytes for Performance Profiling, where t is the size of the type
returned by the clock-retrieving function

For example, if t is 4 bytes, each instrumented routine is increased of:

• 20 bytes for Memory Profiling only

• 20 bytes for Runtime Tracing only

• 28 bytes for Performance Profiling only

• 36 bytes for all Runtime Analysis features together

20

Memory Profiling Overhead

Note This applies to Memory Profiling for C, C++ and Ada. Memory
Profiling for Java does not use source code insertion.

Any call to an allocation function is replaced by a call to the Memory Profiling
Library. See the Target Deployment Guide for more information.

These calls aim to track allocated blocks of memory. For each memory block,
16+12*n bytes are allocated to contain a reference to it, as well as to contain
link references and the call stack observed at allocation time. n depends on
the Call Stack Size Setting, which is 6 by default.

If ABWL errors are to be detected, the size of each tracked, allocated block is
increased by 2*s bytes where s is the Red Zone Size Setting (16 by default).

If FFM or FMWL errors are to be detected, a Free Queue is created whose size
depends on the Free Queue Length and Free Queue Size Settings. Queue
Length is the maximum number of tracked memory blocks in the queue.
Queue Size is the maximum number of bytes, which is the sum of the sizes of
all tracked blocks in the queue.

Performance Profiling Overhead

For any source file containing at least one observed routine, a 24 byte
structure is declared at the beginning of the file.

The size of the global data storing the profiling results of an instrumented
routine is 4+3*t bytes where t is the size of the type returned by the clock
retrieving function. See the Target Deployment Guide for more information.

Runtime Tracing Overhead

Implicit default constructors, implicit copy constructors and implicit
destructors are explicitly declared in any instrumented classes that permits it.

21

Where C++ rules forbid such explicit declarations, a 4 byte class is declared as
an attribute at the end of the class.

Reducing Instrumentation Overhead

Rational's Source Code Insertion (SCI) technology is designed to reduce both
performance and memory overhead to a minimum. Nevertheless, for certain
cross-platform targets, it may need to be reduced still further. There are three
ways to do this.

Limiting Code Coverage Types

When using the Code Coverage feature, procedure input and simple and
implicit block code coverage are enabled by default. You can reduce
instrumentation overhead by limiting the number of coverage types.

Note The Code Coverage report can only display coverage types among
those selected for instrumentation.

Instrumenting Calls (C Language)

When calls are instrumented, any instruction that calls a C user function or
library function constitutes a branch and thus generates overhead. You can
disable call instrumentation on a set of C functions using the Selective Code
Coverage Instrumentation Settings.

For example, you can usually exclude calls to standard C library functions
such as printf or fopen.

Code Coverage Information

In C++, use compact mode to decrease the data size overhead for targets
where the code size is less critical.

22

In Ada, you can use pass mode to reduce the data amount overhead in the
instrumented program. When using CLI mode, you can also use the -
instrumentation option of the Instrumentor command line.

Information Modes

The Information Mode is the method used by Code Coverage to code the
trace output. This has a direct impact of the size of the trace file as well as on
CPU overhead.

You can change the information mode used by Code Coverage in the
Coverage Type settings. There are three information modes:

• Default mode

• Compact mode

• Hit Count mode

Default Mode

When using Default or Pass mode, each branch generates one byte of
memory. Which offers the best compromise between code size and speed
overhead.

Compact Mode

The Compact mode is functionally equivalent to Pass mode, except that each
branch needs only one bit of storage instead of one byte. This implies a
smaller requirement for data storage in memory, but produces a noticeable
increase in code size (shift/bits masks) and execution time.

23

Hit Count Mode

In Hit Count mode, instead of storing a Boolean value indicating coverage of
the branch, a specific count is maintained of the number of times each branch
is executed.

This information is displayed in the Code Coverage report. Count totals are
given for each branch, for all trace files transferred to the report generator as
parameters.

In the Code Coverage report, branches that have never been executed are
highlighted with asterisk '*' characters.

The maximum count in the report generator depends on the machine on
which tests are executed. If this maximum count is reached, the report signals
it with a Maximum reached message.

Generating SCI Dumps

By default, the system call atexit() or on_exit() invokes the Target Deployment
Port (TDP) function that dumps the trace data. You can therefore instrument
either all or a portion of the application as required.

When instrumenting embedded or specialized applications that never
terminate, it is sometimes impractical to generate a dump on the atexit() or
on_exit() functions.If you exit such applications unexpectedly, traces may not
be generated. In this case, you must either:

• Specify one or several explicit dump points in your source code, or

• Use an external signal to call a dump routine, or

• Produce an snapshot when a specific function is encountered.

24

Explicit Dump

Code Coverage, Memory Profiling and Performance Profiling allow you to
explicitly invoke the TDP dump function by inserting a call to the
_ATCPQ_DUMP(<int>) macro definition, where <int> is either 0 or 1.

• Use _ATCPQ_DUMP(1) to reset the internal trace table.

• Use _ATCPQ_DUMP(0) to preserve the internal trace table. This
produces redundant information.

Explicit dumps should not be placed in the main loop of the application. The
best location for an explicit dump call is in a secondary function, for example
called by the user when sending a specific event to the application.

The explicit dump method is sometimes incompatible with watchdog
constraints. If such incompatibilities occur, you must:

• Deactivate any hardware or software watchdog interruptions

• Acknowledge the watchdog during the dump process, by adding a
specific call to the Data Retrieval customization point of the TDP.

Dump on Signal

Code Coverage allows you to dump the traces at any point in the source code
by using the ATC_SIGNAL_DUMP environment variable.

When the signal specified by ATC_SIGNAL_DUMP is received, the Target
Deployment Port function dumps the trace data and resets the signal so that
the same signal can be used to perform several trace dumps.

Before starting your tests, set ATC_SIGNAL_DUMP to the following value:
<number>[:0|1]

where <number> is the number of the signal that is to trigger the trace dump.

25

The second parameter (0 or 1) after the separator character indicates whether
the internal tables should be reset, so as to generate separate traces for
successive independent tests (parameter 1) or cumulative traces (parameter
0). For example:

 16:0
 17:1

The signal must be redirectable signal, such as SIGUSR1 or SIGINT for
example.

Instrumentor Snapshot

The Instrumentor snapshot option enables you to specify the functions of
your application that will dump the trace information on entry, return or call.

In snapshot mode, the Runtime Tracing feature starts dumping messages
only if the Partial Message Dump setting is activated. Code Coverage,
Memory Profiling and Performance Profiling features all dump their internal
trace data.

Use the _ATCPQ_RESET macro definition to specify whether the internal
table reset must be done. By default, the _ATCPQ_RESET value is 1 (reset
will be done). If you do not want to reset the tables, you must insert the
compiler option to set this macro value to 0.

Target Deployment Ports

Rational's Target Deployment Technology is a versatile, low-overhead
technology enabling target-independent tests and run-time analysis despite
limitless target support. Used by all Test RealTime features, the Target
Deployment Port (TDP) technology is constructed to accommodate your
compiler, linker, debugger, and target architecture. Tests are independent of
the TDP, so tests don't change when the environment does. Test script

26

deployment, execution and reporting remain easy to use.

Key Capabilities and Benefits

• Compiler dialect-aware and linker-aware, for transparent test building.

• Easy download of the test harness environment onto the target via the
user's IDE, debugger, simulator or emulator.

• Painless test and run-time analysis results download from the target
environment using JTAG probes, emulators or any available
communication link, such as serial, Ethernet or file system.

• Powerful test execution monitoring to distribute, start, synchronize and
stop test harness components, as well as to implement communication
and exception handling.

• Versatile communication protocol adaptation to send and receive test
messages.

• XML-based TDP editor enabling simple, in-house TDP customization

Downloading Target Deployment Ports

Target Deployment technology was designed to adapt to any embedded or
native target platform. This means that you need a particular TDP to deploy
Test RealTime to your target.

A wide array of TDPs has already been developed by Rational to suit most
target platforms. You can freely download available TDPs from the following
page:

http://www.rational.com/products/testrt/tdport/index.jsp

Alternatively, from the Help menu, select Download Target Deployment
Ports.

Downloaded TDPs can be freely used an modified with the TDP Editor.

27

Obtaining New Target Deployment Ports

If there is no existing TDP for your particular target platform, you have two
options:

• You can choose to create, unassisted, a TDP tailored for your embedded
environment. This requires extensive knowledge of your development
environment and the product. This also requires some knowledge of the
scripting language Perl.

• Rational can provide Professional Services and create a tailored TDP for
you.

To create a TDP, see the Target Deployment Guide provided with the TDP
Editor. The Target Deployment Guide provides an overview and detailed
information on setting up a TDP, and using the TDP Editor.

For Rational's Professional Services, please contact Rational via one of these
methods:

• Contact your Rational Sales Representative directly.

• Submit a contact request via this link:
http://www.rational.com/products/testrt/forms/test_rt.jsp

• If you don't know your Sales Representative, contact Rational Customer
Support.

Launching the TDP Editor

The TDP Editor provides a user interface designed to help you customize and
create unified Target Deployment Ports (TDP).

Please refer to the Target Deployment Guide, accessible from the Help menu
of the Target Deployment Port Editor, for information about customizing
Target Deployment Ports and using the editor.

28

To run the TDP Editor from Windows:

• From the Windows Tools menu, select Target Deployment Port Editor
and Start.

Updating a Target Deployment Port

The Target Deployment Port (TDP) settings are read or loaded when a Test
RealTime project is opened, or when a new TDP is used.

If you make any changes to a TDP with the TDP Editor, these will not be
taken into account until the TDP has been reloaded in the project.

To reload the TDP in Test RealTime:

1. From the Project menu, select Configurations.

2. Select the TDP and click Remove.

3. Click New, select the TDP and click OK.

Reconfiguring a TDP for a Compiler or JDK

During installation of Rational Test RealTime:

• on Windows: A local Microsoft Visual Studio compiler and JDK are
located, based on registry settings. Only the compiler and JDK located
during installation will be accessible within Test RealTime.

• on Unix platforms: The user is confronted by two interactive dialogs.
These dialogs serve to clarify the location of the local GNU compiler and
(if present) local JDK. Only the GNU compiler and JDK specified within
these dialogs will be accessible within Test RealTime.

To make a different compiler or JDK accessible in Test RealTime:

1. From the Tools menu, select the Target Deployment Port Editor and
Start.

2. In the TDP Editor, from the File menu, select Open.

29

3. Open the .xdp file corresponding to the new compiler or JDK for which
you would like to generate support

4. From the File menu, select Save.

5. Close the TDP Editor

To update an existing project to use the newly supported compiler or
JVM:

1. Open the existing project in Test RealTime.

2. From the Project menu, select Configuration.

3. In the Configurations window, click New.

4. In the New Configuration window, select the newly supported compiler
or JDK in the dropdown list and click OK.

5. In the Configurations window, click Close.

Unified Modeling Language

UML Sequence Diagrams

A sequence diagram is a Unified Modeling Language (UML) diagram that
provides a view of the chronological sequence of messages between instances
(objects or classifier roles) that work together in an interaction or interaction
instance. A sequence diagram consists of a group of instances (represented by
lifelines) and the messages that they exchange during the interaction. You line
up instances participating in the interaction in any order from left to right,
and then you position the messages that they exchange in sequential order
from top to bottom. Activations sometimes appear on the lifelines.

A sequence diagram belongs to an interaction in a collaboration or an
interaction instance in a collaboration instance.

30

Model Elements and Relationships in Sequence Diagrams

The UML sequence diagrams produced by the UML/SD Viewer illustrate
program interactions with an emphasis on the chronological order of
messages.

Activations

An activation (also known as a focus of control) is a notation that can appear
on a lifeline to indicate the time during which an instance (an actor instance,
object, or classifier role) is active. An active instance is performing an action,
such as executing an operation or a subordinate operation. The top of the
activation represents the time at which the activation begins, and the bottom
represents the time at which the activation ends.

For example, in a sequence diagram for a "Place Online Order" interaction,
there are lifelines for a ":Cart" object and ":Order" object. An "updateTotal"
message points from the ":Order" object to the ":Cart" object. Each lifeline has
an activation to indicate how long it is active because of the "updateTotal"
message.

Shape

An activation appears as a thin rectangle on a lifeline. You can stack
activations to indicate nested stack frames in a calling sequence.

Activation Nested Activations

31

Using Activations

Activations can appear on your sequence diagrams to represent the
following:

• On lifelines depicting instances (actors, classifier roles, or objects), an
activation typically appears as the result of a message to indicate the time
during which an instance is active.

• On lifelines involved in complex interactions, nested activations (also
known as stacked activations or nested focuses of control) are displayed
to indicate nested stack frames in a calling sequence, such as those that
happen during recursive calls.

• On lifelines depicting concurrent operations, the entire lifeline may
appear as an activation (thin rectangles) instead of dashed lines.

Naming Conventions

An activation is usually identified by the incoming message that initiates it.
However, you may add text labels that identify activations either next to the
activation or in the left margin of the diagram.

Classifier Roles

A classifier role is a model element that describes a specific role played by a
classifier participating in a collaboration without specifying an exact instance
of a classifier. A classifier role is neither a class nor an object. Instead, it is a
model element that specifies the kind of object that must ultimately fulfill the
role in the collaboration. The classifier role limits the kinds of classifier that
can be used in the role by referencing a base classifier. This reference
identifies the operations and attributes that an instance of a classifier will
need in order to fulfill its responsibilities in the collaboration.

Classifier roles are commonly used in collaborations that represent patterns.

32

For example, a subject-observer pattern may be used in a system. One
classifier role would represent the subject, and one would represent the
observer. Each role would reference a base class that identifies the attributes
and operations that are needed to participate in the subject-observer
collaboration. When you use the pattern in the system, any class that has the
specified operations and behaviors can fill the role.

Shape

A classifier role appears as a rectangle. Its name is prefixed with a slash and is
not underlined. In sequence diagrams, a lifeline (a dashed, vertical line) is
attached to the bottom of a classifier role to represent its life over a period of
time. For details about lifelines, see Lifelines.

Classifier Role Classifier Role with Lifeline

Using Classifier Roles

You can add classifier roles to your model to represent the following:

• In models depicting role-based interactions, a classifier role represents an
instance in an interaction. Using classifier roles instead of objects can
provide two advantages: First, a class can serve as the base classifier for
multiple classifier roles. Second, instances of a class can realize multiple
classifier roles in one or more collaborations.

• In models depicting patterns, a classifier role specifies the kind of object
that must ultimately fulfill a role in the pattern. The classifier role shows

33

how the object will participate in the pattern, and its reference to a base
class defines the attributes and operations that are required for
participation in the pattern. When the pattern is used in the model,
classes are bound to the collaboration to identify the type of objects that
realize the classifier roles.

The classifier roles in a model are usually contained in a collaboration and
usually appear in sequence diagrams.

Naming Conventions

The name of a classifier role consists of a role name and base class name. You
can omit one of the names. The following table identifies the variations of the
naming convention.

Convention Example Description

/rolename:baseclass /courseOffering:course The courseOffering role is based on the
course class.

/rolename /courseOffering Role name. The base class is hidden or
is not defined.

:baseclass :course Unnamed role based on the course
class.

Destruction Markers

A destruction marker (also known as a termination symbol) is a notation that
can appear on a lifeline to indicate that an instance (object or classifier role)
has been destroyed. Usually, the destruction of an object results in the
memory occupied by the data members of the object being freed.

For example, when a customer exits the Web site for an e-commerce
application, the ":Cart" object that held information about the customer's
activities is destroyed, and the memory that it used is freed. The destruction
of the ":Cart" object can be shown in a sequence diagram by adding a

34

destruction marker on the ":Cart" object's lifeline.

Shape

A destruction marker appears as an X at the end of a lifeline.

Naming Conventions

Destruction markers do not have names.

Lifelines

A lifeline is a notation that represents the existence of an object or classifier
role over a period of time. Lifelines appear only in sequence diagrams, where
they show how each instance (object or classifier role) participates in the
interaction.

For example, a "Place Online Order" interaction in an e-commerce application
includes a number of lifelines in a sequence diagram, including lifelines for a
":Cart" object, ":OnlineOrder" object, and ":CheckoutCart" object. As the
interaction is developed, stimuli are added between the lifelines.

Shape

A lifeline appears as a vertical dashed line in a sequence diagram.

35

Lifeline for an Object Lifeline for a Classifier Role

Using Lifelines

When you add a classifier role or object to a sequence diagram, it will
automatically have a lifeline. You can use lifelines to indicate the following:

• Creation – If an instance is created during the interaction, its lifeline
starts at the level of the message or stimulus that creates it; otherwise, its
lifeline starts at the top of the diagram to indicate that it existed prior to
the interaction.

• Communication – Messages or stimuli between instances are illustrated
with arrows. A message or stimulus is drawn with its end on the lifeline
of the instance that sends it and its arrowhead on the lifeline of the
instance that receives it.

• Activity – The time during which an instance is active (either executing
an operation directly or through a subordinate operation) can be shown
with activations.

• Destruction – If an instance is destroyed during the interaction, its lifeline
ends at the level of the message or stimulus that destroys it, and a
destruction marker appears; otherwise, its lifeline extends beyond the
final message or stimulus to indicate that it exists during the entire
interaction.

Naming Conventions

36

A lifeline has the name of an object or classifier role. For details, see Objects or
Classifier Roles.

Messages

A message is a model element that specifies a communication between
classifier roles and usually indicates that an activity will follow. The types of
communications that messages model include calls to operations, signals to
classifier roles, the creation of classifier roles, and the destruction of classifier
roles. The receipt of a message is an instance of an event.

For example, in the observer pattern, the instance that is the subject sends an
"Update" message to instances that are observing it. You can illustrate this
behavior by adding "Subject" and "Observer" classifier roles and then adding
an "Update" message between them.

Shape

A message appears as a line with an arrow. The direction of the arrow
indicates the direction in which the message is sent. In a sequence diagram,
messages usually connect two classifier role lifelines.

Message shapes can be adorned with names and sequence numbers.

Types of Messages

Different types of messages can be used to model different flows of control.

37

Type Shape Description

Procedure Call or
Nested Flow of
Control

 Models either a call to an operation or a call to a
nested flow of control. When calling a nested flow of
control, the system waits for the nested flow of control
to complete before continuing with the outer flow.

Asynchronous Flow
of Control

 Models an asynchronous message between two
objects. The source object sends the message and
immediately continues with the next step.

Return From a
Procedure Call

 Models a return from a call to a procedure. This type
of message can be omitted from diagrams because it is
assumed that every call has a return.

Using Messages

You can add messages to your model to represent the communications
exchanged between classifier roles during dynamic interactions.

Note Both messages and stimuli are supported. Stimuli are added to
collaboration instances, and messages are added to collaborations. For
details about stimuli, see Stimuli.

The messages in a model are usually contained in collaborations and usually
appear in sequence diagrams.

Naming Conventions

Messages can be identified by a name or operation signature.

Type Example Description

Name // Get the Password A name identifies only the name of the message.
Simple names are often used in diagrams
developed during analysis because the messages
are identified by their responsibilities and not
operations. One convention uses double slashes
(//) to indicate that the stimulus name is not
associated with an operation.

38

Signature getPassword(String) When an operation is assigned to a message,
you can display the operation signature to
identify the name of the operation and its
parameters. Signatures are often used in
diagrams developed during design because the
provide the detail that developers need when
they code the design.

Objects

An object is a model element that represents an instance of a class. While a
class represents an abstraction of a concept or thing, an object represents an
actual entity. An object has a well-defined boundary and is meaningful in the
application. Objects have three characteristics: state, behavior, and identity.
State is a condition in which the object may exist, and it usually changes over
time. The state is implemented with a set of attributes. Behavior determines
how an object responds to requests from other objects. Behavior is
implemented by a set of operations. Identity makes every object unique. The
unique identity lets you differentiate between multiple instances of a class if
each has the same state.

The behaviors of objects can be modeled in sequence and activity diagrams.
In sequence diagrams, you can display how instances of different classes
interact with each other to accomplish a task. In activity diagrams, you can
show how one or more instances of an object changes states during an
activity. For example, an e-commerce application may include a "Cart" class.
An instance of this class that is created for a customer visit, such as
"cart100:Cart." In a sequence diagram, you can illustrate the stimuli, such as
"addItem()," that the "cart100:Cart" object exchanges with other objects. In an
activity diagram, you can illustrate the states of the "cart100:Cart" object, such
as empty or full, during an activity such as a user browsing the online catalog.

Shape

39

In sequence and activity diagrams, an object appears as a rectangle with its
name underlined. In sequence diagrams, a lifeline (a dashed, vertical line) is
attached to the bottom of an object to represent the existence of the object over
a period of time. For details about lifelines, see Lifelines.

Object Object with Lifeline

There are two notable variations of the object shape. First, active objects
appear with thicker borders than other types of objects. Second, multiobjects
appear as two overlapped rectangles. (These types of objects are defined later
in this topic.)

Active Object Multiobject

In addition, the object shape may include adornments for properties, such as
persistence and concurrency. It may display a stereotype with an icon or the
display of the stereotype name in guillemets (« »). Finally, it may show an
attribute compartment. In activity diagrams, an object shape can display the
state of the object under the name.

Types of Objects

The following table identifies three types of objects.

Types of Objects Description

40

Active Owns a thread of control and may initiate control activity. Processes
and tasks are kinds of active objects.

Passive Holds data, but does not initiate control.
Multiobject Is a collections of object or multiple instances of the same class. It is

commonly used to show that a set of objects interacts with a single
stimulus.

Using Objects

You can add objects to your model to represent concrete and prototypical
instances. A concrete instance represents an actual person or thing in the real
world. For example, a concrete instances of a "Customer" class would
represent an actual customer. A prototypical instance represents an example
person or thing. For example, a prototypical instance of a "Customer" class
would contain the data that a typical customer would provide.

The objects in a model usually appear in activity and sequence diagrams.

Naming Conventions

Each object must have a unique name. A full object name includes an object
name, role name, and class name. You may use any combination of these
three parts of the object name. The following table identifies the variations of
object names.

Syntax Example Description

object/role:class cart100/storage:cart Named instance (cart100) of the cart class
that is playing the storage role during an
interaction.

object:class cart100:cart Named instance (cart100) of the cart
class.

/role:class /storage:cart Anonymous instance of the cart class
playing the storage role in an interaction.

object/role cart/storage An object named cart playing the storage
role. This object is either an object that is

41

hiding the name of the class or an
instance that is not associated with a
class.

object cart100 An object named cart100. This object is
either an instance that is hiding the name
of the class or an instance that is not
associated with a class.

/role /storage An anonymous instance playing the
storage role. This object is either an
instance that is hiding the name of the
object and class or an instance that is not
associated with an object or class.

:class :cart Anonymous instance of the customer
class.

Stimuli

A stimulus is a model element that represents a communication between
objects in a sequence diagram and usually indicates that an activity will
follow. The types of communications that stimuli model include calls to
operations, signals to objects, the creation of objects, and the destruction of
objects. The receipt of a stimulus is an instance of an event.

For example, in an e-commerce application, you can model how a customer
logs in to the application. A "Customer" actor instance sends a stimulus
containing a name and password to a "LoginForm" object, and the
"LoginForm" object sends a stimulus to itself to verify the input.

Shape

A stimulus appears as a line with an arrow. The direction of the arrow
indicates the direction in which the stimulus is sent. In a sequence diagram, a
stimulus usually connects two object lifelines.

42

Stimulus shapes can be adorned with names and sequence numbers.

Types of Stimuli

Different types of stimuli can be used to model different flows of control.

Type Shape Description

Procedure Call or
Nested Flow of
Control

 Models either a call to an operation or a call to a
nested flow of control. When calling a nested flow of
control, the system waits for the nested flow of control
to complete before continuing with the outer flow.

Asynchronous Flow
of Control

 Models an asynchronous stimulus between two
objects. The source object sends the stimulus and
immediately continues with the next step.

Return from a
Procedure Call

 Models a return from a call to a procedure. This type
of stimulus can be omitted from diagrams because it
is assumed that every call has a return.

Using Stimuli

You can add stimuli to your model to represent the communications
exchanged between objects during dynamic interaction instances.

Note Both messages and stimuli are supported. Stimuli are added to
collaboration instances, and messages are added to collaborations. For
details about messages, see Messages.

The stimuli in a model are contained in collaboration instances and appear in

43

sequence diagrams.

Naming Conventions

Stimuli can have either names or signatures.

Type Example Description

Name // Get the Password A name identifies only the name of the stimulus.
Simple names are often used in diagrams
developed during analysis because the stimuli
are identified by their responsibilities and not by
their operations. One convention uses double
slashes (//) to indicate that the stimulus name is
not associated with an operation.

Signature getPassword(String) When an operation is assigned to a stimulus, you
can display the operation signature to identify
the name of the operation and its parameters.
Signatures are often used in diagrams developed
during design because the provide the detail that
developers need when they code the design.

Actions

An action is represented as shown below:

The action box displays the name of the action.

The action is linked to its source file. In the UML/SD Viewer, click an action to
open the Text Editor at the corresponding line in the source code.

Exceptions

When tracing C++ exceptions, Runtime Tracing locates the throw point of the

44

exception (the throw keyword in C++) as well as its catch point.

Exceptions are displayed as a slanted red line, as shown in the example
below, generated by Runtime Tracing.

To jump to the corresponding portion of source code:

Click an instance to open the Text Editor at the line in the source code where
the exception is thrown.

Click the catch exception or end of catch exception notes to open the Text
Editor at the line where the exception is caught.

To filter an instance out of the UML sequence diagram:

Right-click an exception and select Filter instance in the pop-up menu.

Actors

An actor is a model element that describes a role that a user plays when
interacting with the system being modeled. Actors, by definition, are external

45

to the system. Although an actor typically represents a human user, it can
also represent an organization, system, or machine that interacts with the
system. An actor can correspond to multiple real users, and a single user may
play the role of multiple actors.

Shape

An actor usually appears as a "stick man" shape.

In models depicting software applications, actors represent the users of the
system. Examples include end users, external computer systems, and system
administrators.

Naming Conventions

Each actor has a unique name that describes the role the user plays when
interacting with the system.

Loops

Loop detection simplifies UML sequence diagrams by summarizing repeating
traces into a loop symbol.

Note Loops are a Rational extension to UML Sequence Diagrams and are
not supported by the UML standard.

A loop is represented as shown below:

46

A tag displays the name of the loop and the number of executions.

The loop is linked to its source file. In the UML/SD Viewer, click a loop to
open the Text Editor at the corresponding line in the source code.

To configure Runtime Tracing to detect loops:

1. From the Project Explorer, select the highest level node to which you
want to apply the option, such as the Workspace.

2. Right-click the node, and select Settings... from the pop-up menu.

3. In the Configuration Settings dialog, select the Runtime Tracing node,
and Trace Control.

4. From the options box, set the Automatic Loop Detection to Yes.

5. Click OK.

Synchronizations

Synchronizations are an extension to the UML standard that only apply when
using the split trace file feature of Runtime Tracing. They are used to show
that all instance lifelines are synchronized at the beginning and end of each
split TDF file.

47

Shape

A synchronization is represented as shown below:

The synchronization box displays the name of the synchronization.

The synchronization is linked to its source file. In the UML/SD Viewer, click a
synchronization to open the Text Editor at the corresponding line in the
source code.

When the Split Trace capability is enabled, the UML/SD Viewer displays the
list of TDF files generated in the UML/SD Viewer toolbar.

At the beginning of each diagram, before the Synchronization, the Viewer
displays the context of the previous file.

Another synchronization is displayed at the end of each file, to insure that all
instance lifelines are together before viewing the next file.

48

Notes

Notes appear as shown below and are centered on, and attached to, the
element to which they apply:

UML notes can be associated to messages and instances.

The note is linked to its source file. In the UML/SD Viewer, click a note to
open the Text Editor at the corresponding line in the source code.

Upgrading from a Previous Version

The current version of Rational Test RealTime is capable of importing from
Rational Test RealTime v2001A or from any of the following discontinued
ATTOL Testware products.

• ATTOL UniTest

• ATTOL SystemTest

• ATTOL Coverage

Files from later versions of Test RealTime are directly compatible with the
current version.

Upgrading from ATTOL UniTest

Test RealTime v2002.05 and later provides an Import function to import .prj,
.cmp, and .ses files from ATTOL UniTest and Rational Test RealTime v2001A.
See Importing v2001 Component Testing Files for more information.

49

Upgrading from ATTOL SystemTest

There is no import facility for ATTOL SystemTest files. The recommended
approach is to manually import the existing source and .pts test script files
into a Test RealTime workspace with the System Testing Wizard.

Project files created in ATTOL SystemTest Studio are not compatible with
Rational Test RealTime.

To import an ATTOL SystemTest project into Test RealTime:

1. Use the Activity Wizard to create a new workspace and System Testing
test node.
When prompted, specify your existing source files.

2. Follow the indications until the System Testing Wizard appears.

3. In the System Testing Wizard, clear the Create a new test script option
and click the ... button to import an existing .pts test script. Click Add to
add the .h interface file.

4. Follow the standard System Testing instructions to configure and deploy
the Virtual Testers.

Upgrading from ATTOL Coverage

The Code Coverage Viewer in Test RealTime can open and display .fdc and
.tio files from ATTOL Coverage versions.

To open a Code Coverage Report:

1. From the File menu, select Open.

2. In the File type list, select Code Coverage Viewer files (*.fdc,*.tio).

3. Locate and select the .fdc and .tio files from the older version.

4. Click OK.

50

 51

Runtime Analysis 2
The runtime analysis feature set allows you to closely monitor the behavior
of your application for debugging and validation purposes. Each feature
instruments the source code providing real-time analysis of the application
while it is running, either on a native or embedded target platform.

Using Runtime Analysis Features

The runtime analysis features of Test RealTime allow you to closely monitor
the behavior of your application for debugging and validation purposes.

These features use Rational's unique SCI technology to instrument the
source code providing real-time analysis of the application while it is
running, either on a native or embedded target platform.

• Memory Profiling analyzes memory usage and detects memory leaks

• Performance Profiling provides performance load monitoring

• Code Coverage performs code coverage analysis

• Runtime Tracing draws a real-time UML Sequence Diagram of your
application

In Test RealTime, each of these runtime analysis features can be used
together with any of the automated testing features providing, for example,
test coverage information.

Note SCI instrumentation of the source code generates a certain amount

52

of overhead, which can impact application size and performance.
See Source Code Insertion Technology for more information.

How to use the runtime analysis features:

Here is a basic rundown of the main steps to using the runtime analysis
feature set:

1. From the Start page, set up a new project. This can be done
automatically with the New Project Wizard.

2. Follow the Activity Wizard to add your application source files to the
workspace.

3. Select the source files under analysis in the wizard to create the
application node. The wizard guides you through the process of
selecting the right test feature for your needs.

4. Select the runtime analysis features to be applied to the application in
the Build options.

5. Use the Project Explorer to set up the test campaign and add any
additional runtime analysis or test nodes.

6. Run the application node to build and execute the instrumented
application.

7. View and analyze the generated test reports.

In Test RealTime, runtime analysis options can be run within a test by
simply adding the runtime analysis setting to an existing test node.

Code Coverage

Source-code coverage consists of identifying which portions of a program
are executed or not during a given test case. Source-code coverage is
recognized as one of the most effective ways of assessing the efficiency of

 53

the test cases applied to a software application.

The Code Coverage feature brings efficient, easy-to-use robust coverage
technologies to real-time embedded systems. Code Coverage provides a
completely automated and proven solution for C, C++ and Ada software
coverage based on optimized source-code instrumentation.

Coverage Types

The Code Coverage feature provides the capability of reporting of various
source code units and branches, depending on the coverage type selected.

By default, Code Coverage implements full coverage analysis, meaning that
all coverage types are instrumented by source code insertion (SCI).
However, in some cases, you might want to reduce the scope of the Code
Coverage report, such as to reduce the overhead generated by SCI for
example.

Branches

When referring to the Code Coverage feature, a branch denotes a generic
unit of enumeration. For each branch, you specify the coverage type. Code
Coverage instruments each branch when you compile the source under test.

Coverage Levels

The following table provides details of each coverage type as used in each
language supported by the product

Coverage Level Languages

Block Coverage C Ada C++ Java
Call Coverage C Ada
Condition
Coverage

C Ada

54

Function, Unit or
Method Coverage

C Ada C++ Java

Link Files Ada

Templates C++
Additional
statements

C Ada C++ Java

To select a coverage level:

1. Right-click the application or test node concerned by the Code
Coverage report.

2. From the pop-up menu, select Settings.

3. In the Configuration list, expand Code Coverage and select
Instrumentation Control.

4. Select or clear the coverage levels as required.

5. Click OK.

Ada Coverage

Ada Block Coverage

When analyzing Ada source code, Code Coverage can provide the
following block coverage types:

• Statement Blocks

• Statement Blocks and Decisions

• Statement Blocks, Decisions, and Loops

Statement Blocks (or Simple Blocks)

Simple blocks are the main blocks within units as well as blocks introduced
by decisions, such as:

• then and else (elsif) of an if

 55

• loop...end loop blocks of a for...while

• exit when...end loop or exit when blocks at the end of an instruction
sequence

• when blocks of a case

• when blocks of exception processing blocks

• do...end block of the accept instruction

• or and else blocks of the select instruction

• begin...exception blocks of the declare block that contain an exceptions
processing block.

• select...then abort blocks of an ATC statement

• sequence blocks: instructions found after a potentially terminal
statement.

A simple block constitutes one branch. Each unit contains at least one
simple block corresponding to its body, except packages that do not contain
an initialization block.

Decision Coverage (Implicit Blocks)

An if statement without an else statement introduces an implicit block.
-- Function power_10
-- -block=decision or -block=implicit
function power_10 (value, max : in integer) return integer
is
 ret, i : integer ;
begin
 if (value == 0) then
 return 0;
 -- implicit else block
 end if ;
 for i in 0..9
 loop
 if ((max /10) < ret) then
 ret := ret *10 ;
 else
 ret := max ;

56

 end if ;
 end loop ;
 return ret;
end ;

An implicit block constitutes one branch.

Implicit blocks refer to simple blocks to describe possible decisions. The
Code Coverage report presents the sum of these decisions as an absolute
value and a ratio.

Loop Coverage (Logical Blocks)

A for or while loop constitutes three branches:

• The simple block contained in the loop is never executed: the exit
condition is true immediately

• The simple block is run only once: the exit condition is false, and then
true on the next iteration

• The simple block run at least twice: the exit condition is false at least
twice, then finally true)

A loop...end loop block requires only two branches because the exit
condition, if it exists, is tested within the loop:

• The simple block is played only once: the exit condition is true on the
first iteration, if the condition exists

• The simple block is played at least twice: the exit condition false at least
once and then finally true, if the condition exists

In the following example, you need to execute the function try_five_times()
several times for 100 % coverage of the three logical blocks induced by this
while loop.

-- Function try_five_times
function try_five_times return integer is
 result, i : integer := 0 ;
begin

 57

 -- try is any function
 while (i < 5) and then (result <= 0) loop
 result := try ;
 i := integer'succ(i);
 end loop ;
 return result;
end ; -- 3 logical blocks

Logical blocks are attached to the loop introduction keyword.

Asynchronous Transfer of Control (ATC) Blocks

This coverage type is specific to the ADA 95 Asynchronous Transfer of
Control (ATC) block statement (see your ADA documentation).

The ATC block contains tree branches:

• Control immediately transferred: The sequence of control never passes
through the block then abort /end select, but is immediately transferred
to the block select/then abort.

• Control transferred: The sequence of control starts at the block then
abort/end select, but never reaches the end of this block. Because of
trigger event appearance, the sequence is transferred to the block
select/then abort.

• Control never transferred: Because the trigger event never appears, the
sequence of control starts and reaches the end of the block then
abort/end select, and was never transferred to the block select/then
abort.

In the following example, you need to execute the compute_done function
several times to obtain full coverage of the three ATC blocks induced by the
select statement:

function compute_done return boolean is
 result : boolean := true ;
begin
 -- if computing is not done before 10s ...
 select
 delay 10.0;

58

 result := false ;
 then abort
 compute;
 end select;
 return result;
end ; -- 3 logical blocks

Code Coverage blocks are attached to the Select keyword of the ATC
statement.

Ada Call Coverage

When analyzing Ada source code, Code Coverage can provide coverage of
function, procedure, or entry calls.

Code Coverage defines as many branches as it encounters function,
procedure, or entry calls.

This type of coverage ensures that all the call interfaces can be shown to
have been exercised for each Ada unit (procedure, function, or entry). This
is sometimes a pass/fail criterion in the software integration test phase.

Ada Condition Coverage

Basic Conditions

Basic conditions are operands of logical operators (standard or derived, but
not overloaded) or, xor, and, not, or else, or and then, wherever they appear
in ADA units. They are also the conditions of if, while, exit when, when of
entry body, and when of select statement, even if these conditions do not
contain logical operators. For each of these basic conditions, two branches
are defined: the sub-condition is true and the sub-condition is false.

A basic condition is also defined for each when of a case statement, even
each sub-expression of a compound when, that is when A | B: two
branches.

-- power of 10 function
-- -cond

 59

Function power_of_10(value, max : in integer)
is
 result : integer ;
Begin
 if value = 0 then
 return 0;
 end if ;
 result := value ;
 for i in 0..9 loop
 if (max > 0) and then ((max / value) < result)
then
 result := result * value;
 else
 result := max ;
 end if ;
 end loop;
 return result ;
end ; -- there are 3 basic conditions (and 6 branches).
-- Near_Color function
Function Near_Color (color : in ColorType) return
ColorType
is
Begin
 case color is
 when WHITE | LIGHT_GRAY => return WHITE ;
 when RED | LIGHT_RED .. PURPLE => return RED ;
 end case ;
End ; -- there are 4 basics conditions (and 4 branches).

Two branches are enumerated for each Boolean basic condition, and one per
case basic condition.

Forced Conditions

A forced condition is a multiple condition in which any occurrence of the or
else operator is replaced with the or operator, and the and then operator is
replaced with the and operator. This modification forces the evaluation of
the second member of these operators. You can use this coverage type after
modified conditions have been reached to ensure that all the contained
basic conditions have been evaluated. With this coverage type, you can be
sure that only the considered basic condition value changes between both
condition vectors.

-- Original source :
-- -cond=forceevaluation

60

 if (a and then b) or else c then
-- Modified source :
 if (a and b) or c then

Note This replacement modifies the code semantics. You need to verify
that using this coverage type does not modify the behavior of the
software.

Example
procedure P (A : in tAccess) is
begin
 if A /= NULL and then A.value > 0 -- the evaluation of
A.value will raise an
 -- exception when
using forced conditions
 -- if the A pointer
is nul
 then
 A.value := A.value - 1;
 end if;
end P;

Modified Conditions

A modified condition is defined for each basic condition enclosed in a
composition of logical operators (standard or derived, but not overloaded).
It aims to prove that this condition affects the result of the enclosing
composition. To do that, find a subset of values affected by the other
conditions, for example, if the value of this condition changes, the result of
the entire expression changes.

Because compound conditions list all possible cases, you must find the two
cases that can result in changes to the entire expression. The modified
condition is covered only if the two compound conditions are covered.

-- State_Control state
-- -cond=modified
Function State_Condtol return integer
is
Begin
 if ((flag_running and then (process_count > 10))
 or else flag_stopped)

 61

 then
 return VALID_STATE ;
 else
 return INVALID_STATE ;
 end if ;
End ;
-- There are 3 basic conditions, 5 compound conditions
-- and 3 modified conditions :
-- flag_running : TTX=T and FXF=F
-- process_count > 10 : TTX=T and TFF=F
-- flag_stopped : TFT=T and TFF=F, or FXT=T and FXF=F
-- 4 test cases are enough to cover all the modified
conditions :
-- TTX=T
-- FXF=F
-- TFF=F
-- FTF=F or FXT=T

Note You can associate a modified condition with more than one case, as
shown in this example for flag_stopped. In this example, the
modified condition is covered if the two compound conditions of at
least one of these cases are covered.

Code Coverage calculates cases for each modified condition.

The same number of modified conditions as Boolean basic conditions
appear in a composition of logical operators (standard or derived, but not
overloaded).

Multiple Conditions

A multiple condition is one of all the available cases of logical operators
(standard or derived, but not overloaded) wherever it appears in an ADA
unit. Multiple conditions are defined by the concurrent values of the
enclosed basic boolean conditions.

A multiple condition is noted with a set of T, F, or X letters, which means
that the corresponding basic condition evaluates to true or false, or it was
not evaluated, respectively. Such a set of letters is called a condition vector.
The right operand of or else or and then logical operators is not evaluated if

62

the evaluation of the left operand determines the result of the entire
expression.

-- State_Control Function
-- -cond=compound
Function State_Control return integer
is
Begin
 if ((flag_running and then (process_count > 10))
 or else flag_stopped
 then
 return VALID_STATE ;
 else
 return INVALIDE_STATE ;
 end if ;
End ;
-- There are 3 basic conditions
-- and 5 compound conditions :
-- TTX=T <=> ((T and then T) or else X) = T
-- TFT=T
-- TFF=F
-- FXT=T
-- FXF=F

Code Coverage calculates the computation of every available case for each
composition.

The number of enumerated branches is the number of distinct available
cases for each composition of logical operators (standard or derived, but not
overloaded).

Ada Unit Coverage

Unit Entries

Unit entries determine which units are executed and/or evaluated.
-- Function factorial
-- -proc
function factorial (a : in integer) return integer is
begin
 if (a > 0) then
 return a * factorial (a - 1);
 else
 return 1;

 63

 end if;
end factorial ;

One branch is defined for each defined and instrumented unit. In the case
of a package, the unit entry only exists if the package body contains the
begin/end instruction block.

For Protected units, no unit entry is defined because this kind of unit does
not have any statements blocks.

Unit Exits and Returns

These are the standard exit (if it is coverable), each return instruction (from
a procedure or function), and each exception-processing block in the unit.

-- Function factorial
-- -proc=ret
function factorial (a : in integer) return integer is
begin
 if (a > 0) then
 return a * factorial (a - 1);
 else
 return 1;
 end if ;
end factorial ; -- the standard exit is not coverable
-- Procedure divide
procedure divide (a,b : in integer; c : out integer) is
begin
 if (b == 0) then
 text_io.put_line("Division by zero");
 raise CONSTRAINT_ERROR;
 end if ;
 if (b == 1) then
 c := a;
 return;
 end if ;
 c := a / b;
exception
 when PROGRAM_ERROR => null ;
end divide ;

For Protected units, no exit is defined because this kind of unit does not
have any statements blocks.

In general, at least two branches per unit are defined; however, in some

64

cases the coding may be such that:

• There are no unit entries or exits (a package without an instruction
block (begin/end), protected units case).

• There is only a unit entry (an infinite loop in which the exit from the
task cannot be covered and therefore the exit from the unit is not
defined).

The entry is always numbered if it exists. The exit is also numbered if it is
coverable. If it is not coverable, it is preceded by a terminal instruction
containing return or raise instructions; otherwise, it is preceded by an
infinite loop.

A raise is considered to be terminal for a unit if no processing block for this
exception was found in the unit.

Ada Link Files

Link files are the library management system used for Ada Coverage. These
libraries contain the entire Ada compilation units contained by compiler
sources, the predefined Ada environment and the source files of your
projects. You must use link files when using Code Coverage in Ada for the
Ada Coverage analyzer to correctly analyze your source code.

You can include a link file within another link file, which is an easy way to
manage your source code.

Link File Syntax

Link files have a line-by-line syntax. Comments start with a double hyphen
(--), and end at the end of the line. Lines can be empty.

There are two types of configuration lines:

• Link file inclusion: The link filename can be relative to the link file

 65

that contains this line or absolute.
<link filename> LINK

• Compilation unit description: The source filename is the file
containing the described compilation unit (absolute or relative to the
link filename). The full unit name is the Ada full unit name (beware of
separated units, or child units).

<source filename> <full unit name> <type> [ada83]

The <type> is one of the following flags:

• SPEC for specification

• BODY for a body

• PROC for procedure or function

Use the optional ada83 flag if the source file cannot be compiled in Ada 95
mode, and must be analyzed in Ada 83 mode.

Generating a Link File

The link file can be generated either manually or automatically with the
Ada Link File Generator (attolalk) tool. See the Test RealTime Reference
Manual for more information about command line tools.

Sending the Link File to the Instrumentor

The loading order of link files is important. If the same unit name is found
twice or more in one (or more) loaded link files, the Instrumentor issues a
warning and uses the last encountered unit.

Included link files are analyzed when the file including the link file is
loaded.

In Ada, Code Coverage loads the link files in the following order:

• By default, either adalib83.alk or adalib95.alk is loaded. These files are

66

part of the Target Deployment Port.

• If you use the -STDLINK command line option, the specified standard
link file is loaded first. See the Test RealTime Reference Manual for
more information

• The link file specified by the ATTOLCOV_ADALINK environment
variable is loaded.

• The link files specified by the -Link option is loaded.

Now, you can start analyzing the file instrument.

Loading A Permanent Link File

You can ask Code Coverage to load the link file at each execution. To do
that, set the environment variable ATTOLCOV_ADALINK with the link
filename separated by ':' on a UNIX system, or ';' in Windows. For example:

ATTOLCOV_ADALINK="compiler.alk/projects/myproject/myproject.alk
"

A Link file specified on the command line is loaded after the link file
specified by this environment variable.

Ada Additional Statements

Terminal Statements

An ADA statement is terminal if it transfers control of the program
anywhere other than to a sequence (return, goto, raise, exit).

By extension, a decision statement (if, case) is also terminal if all its branches
are terminal (i.e., if, then and else blocks and non-empty when blocks contain
a terminal instruction). An if statement without an else statement is never
terminal, since one of the blocks is empty and therefore transfers control in
sequence.

 67

Potentially Terminal Statements

An Ada statement is potentially terminal if it contains a decision choice that
transfers control of the program anywhere other than after it (return, goto,
raise, exit).

Non-coverable Statements

An Ada statement is detected as being not coverable if it is not a goto label
and if it is in a terminal statement sequence. Statements that are not
coverable are detected by the feature during the instrumentation. A
warning is generated to signal each one, which specifies its location source
file and line. This is the only action Code Coverage takes for statements that
cannot be covered.

Note Ada units whose purpose is to terminate execution unconditionally
are not evaluated. This means that Code Coverage does not check
that procedures or functions terminate or return.

Similarly, exit conditions for loops are not analyzed statistically to
determine whether the loop is infinite. As a result, a for, while or loop/exit
when loop is always considered non-terminal (i.e., able to transfer control in
its sequence). This is not applicable to loop/end loop loops without an exit
statement (with or without condition), which are terminal.

C Coverage

C Block Coverage

When running the Code Coverage feature on Ada source code, Test
RealTime can provide the following coverage types for code blocks:

• Statement Blocks

• Statement Blocks and Decisions

68

• Statement Blocks, Decisions, and Loops

Statement Blocks (or Simple Blocks)

Simple blocks are the C function main blocks, blocks introduced by decision
instructions:

• THEN and ELSE FOR IF

• FOR, WHILE and DO ... WHILE blocks

• non-empty blocks introduced by switch case or default statements

• true and false outcomes of ternary expressions (<expr> ? <expr> : <expr>)

• blocks following a potentially terminal statement.
/* Power_of_10 Function */
/* -block */
int power_of_10 (int value, int max)
{
 int retval = value, i;
 if (value == 0) return 0; /* potentially terminal
statement */
 for (i = 0; i < 10; i++) /* start of a sequence block
*/
 {
 retval = (max / 10) < retval ? retval * 10 : max;
 }
 return retval;
} /* The power_of_10 function has 6 blocks */
/* Near_color function */
ColorType near_color (ColorType color)
{
 switch (color)
 {
 case WHITE :
 case LIGHT_GRAY :
 return WHITE;
 case RED :
 case PINK :
 case BURGUNDY :
 return RED;
 /* etc ... */
 }
} /* The near_color function has at least 3 simple blocks */

 69

Each simple block is a branch. Every C function contains at least one simple
block corresponding to its main body.

Decisions (Implicit Blocks)

Implicit blocks are introduced by an IF statement without an ELSE or a
SWITCH statement without a DEFAULT.

/* Power_of_10 function */
/* -block=decision */
int power_of_10 (int value, int max)
{
int retval = value, i;
if (value == 0) return 0; else ;
for (i =0;i <10;i++)
{
retval = (max / 10) < retval ? retval * 10 : max;
}
return retval;
}
/* Near_color function */
ColorType near_color (ColorType color)
{
switch (color)
{
case WHITE :
case LIGHT_GRAY :
return WHITE;
case RED :
case PINK :
case BURGUNDY :
return RED;
/* etc ... with no default */
default : ;
}
}

Each implicit block represents a branch.

Because the sum of all possible decision paths includes implicit blocks as
well as statement blocks, reports provide the total number of simple and
implicit blocks as a figure and as a percentage. Code Coverage places this
information in the Decisions report.

70

Loops (Logical Blocks)

A typical FOR or WHILE loop can reach three different conditions:

• The statement block contained within the loop is executed zero times,
therefore the output condition is True from the start

• The statement block is executed exactly once, the output condition is
False, then True the next time

• The statement block is executed at least twice. (The output condition is
False at least twice, and becomes True at the end)

In a DO...WHILE loop, because the output condition is tested after the
block has been executed, two further branches are created:

• The statement block is executed exactly once. The output is condition
True the first time.

• The statement block is executed at least twice. (The output condition is
False at least once, then true at the end)

In this example, the function try_five_times () must run several times to
completely cover the three logical blocks included in the WHILE loop:

/* Try_five_times function */
/* -block=logical */
int try_five_times (void)
{
int result,i =0;
/*try ()is afunction whose return value depends
on the availability of a system resource, for example */
while (((result = try ())!=0)&&
(++i <5));
return result;
} /* 3 logical blocks */

C Call Coverage

When analyzing Ada source code, Code Coverage can provide coverage of
function or procedure calls.

 71

Code Coverage defines as many branches as it encounters function calls.

Procedure calls are made during program execution.

This type of coverage ensures that all the call interfaces can be shown to
have been exercised for each C function. This may be a pass or failure
criterion in software integration test phases.

You can use the -EXCALL option to select C functions whose calls you do
not want to instrument, such as C library functions for example.

Example
/* Evaluate function */
/* -call */
int evaluate (NodeTypeP node)
{
 if (node == (NodeTypeP)0) return 0;
 switch (node->Type)
 {
 int tmp;
 case NUMBER :
 return node->Value;
 case IDENTIFIER :
 return current value (node->Name);
 case ASSIGN :
 set (node->Child->Name,
 tmp = evaluate (node->Child->Sibling)
);
 return tmp;
 case ADD :
 return evaluate (node->Child) +
 evaluate (node->Child->Sibling);
 case SUBTRACT :
 return evaluate (node->Child) -
 evaluate (node->Child->Sibling);
 case MULTIPLY :
 return evaluate (node->Child) *
 evaluate (node->Child->Sibling);
 case DIVIDE :
 tmp = evaluate (node->Child->Sibling);
 if (tmp == 0) fatal error ("Division by zero");
 else return evaluate (node->Child) / tmp;
 }
} /* There are twelve calls in the evaluate function */

72

C Condition Coverage

When analyzing C source code, Test RealTime can provide the following
condition coverage:

• Basic Coverage

• Forced Coverage

Basic Conditions

Conditions are operands of either || or && operators wherever they appear
in the body of a C function. They are also if and ternary expressions, tests
for for, while, and do/while statements even if these expressions do not
contain || or && operators. Two branches are involved in each condition:
the sub-condition being true and the sub-condition being false.

Basic conditions also enable different case or default (which could be
implicit) in a switch to be distinguished even when they invoke the same
simple block. A basic condition is associated with every case and default
(written or not).

/* Power_of_10 function */
/* -cond */
int power_of_10 (int value, int max)
{
 int result = value, i;
 if (value == 0) return 0;
 for (i = 0; i < 10; i++)
 {
 result = max > 0 && (max / value) < result ?
 result * value :
 max;
 }
 return result ;
} /* There are 4*2 basic conditions in this function */
/* Near_color function */
ColorType near_color (ColorType color)
{
 switch (color)
 {
 case WHITE :
 case LIGHT_GRAY :

 73

 return WHITE;
 case RED :
 case PINK :
 case BURGUNDY :
 return RED;
 /* etc ... */
 }
} /* There are at least 5 basic conditions here */

Two branches are enumerated for each condition, and one per case or
default.

Forced Conditions

Forced conditions are multiple conditions in which any occurrence of the |
| and && operators has been replaced in the code with | and & binary
operators. Such a replacement done by the Instrumentor enforces the
evaluation of the right operands. You can use this coverage type after
modified conditions have been reached to be sure that every basic condition
has been evaluated. With this coverage type, you can be sure that only the
considered basic condition changed between the two tests.

/* User source code */ /* -
cond=forceevaluation */
 if ((a && b) || c) ...
/* Replaced with the Code Coverage feature with : */
 if ((a & b) | c) ...
/* Note : Operands evaluation results are enforced to one if
different from 0 */

Note This replacement modifies the code semantics. You need to verify
that using this coverage type does not modify the behavior of the
software.

int f (MyStruct *A)
{
 if (A && A->value > 0) /* the evaluation of
A->value will cause a program error using
 forced conditions
if A pointer
 is null */
 {
 A->value -= 1;
 }

74

}

Modified Conditions

A modified condition is defined for each basic condition enclosed in a
composition of | | or && operators. It aims to prove that this condition
affects the result of the enclosing composition. To do that, find a subset of
values affected by the other conditions, for example, if the value of this
condition changes, the result of the entire expression changes.

Because compound conditions list all possible cases, you must find the two
cases that can result in changes to the entire expression. The modified
condition is covered only if the two compound conditions are covered.

/* state_control function */
int state_control (void)
{
 if (((flag & 0x01) &&
 (instances_number > 10)) ||
 (flag & 0x04))
 return VALID_STATE;
 else
 return INVALID_STATE;
} /* There are 3 basic conditions, 5 compound conditions
 and 3 modified conditions :
 flag & 0x01 : TTX=T and FXF=F
 nb_instances > 10 : TTX=T and TFF=F
 flag & 0x04 : TFT=T and TFF=F, or FXT=T and FXF=F
 4 test cases are enough to cover all those modified
 conditions :
 TTX=T
 FXF=F
 TFF=F
 TFT=T or FXT=T
 */

Note You can associate a modified condition with more than one case, as
shown in this example for flag & 0x04. In this example, the modified
condition is covered if the two compound conditions of at least one
of these cases are covered.

Code Coverage calculates matching cases for each modified condition.

 75

The same number of modified conditions as Boolean basic conditions
appears in a composition of | | and && operators.

Multiple Conditions

A multiple (or compound) condition is one of all the available cases for the
|| and && logical operator's composition, whenever it appears in a C
function. It is defined by the simultaneous values of the enclosed Boolean
basic conditions.

A multiple condition is noted with a set of T, F, or X letters. These mean that
the corresponding basic condition evaluated to true, false, or was not
evaluated, respectively. Remember that the right operand of a || or &&
logical operator is not evaluated if the evaluation of the left operand
determines the result of the entire expression.

/* state_control function */
/* -cond=compound */
int state_control (void)
{
 if (((flag & 0x01) &&
 (instances_number > 10)) ||
 (flag & 0x04))
 return VALID_STATE;
 else
 return INVALID_STATE;
} /* There are 3 basic conditions
 and 5 compound conditions :
 TTX=T <=> ((T && T) || X) = T
 TFT=T
 TFF=F
 FXT=T
 FXF=F
 */

Code Coverage calculates every available case for each composition.

The number of enumerated branches is the number of distinct available
cases for each composition of || or && operators.

76

C Function Coverage

When analyzing C source code, Test RealTime can provide the following
function coverage:

• Procedure Entries

• Procedure Entries and Exits

Procedure Entries

Inputs identify the C functions that are executed.
/* Factorial function */
/* -proc */
int factorial (int a)
{
 if (a > 0) return a * factorial (a - 1);
 else return 1;
}

One branch is defined per C function.

Procedure Entries and Exits (Returns and Terminal Statements)

These include the standard output (if coverable), and all return instructions,
exits, and other terminal instructions that are instrumented, as well as the
input.

/* Factorial function */
/* -proc=ret */
int factorial (int a)
{
 if (a > 0) return a * factorial (a - 1);
 else return 1;
} /* standard output cannot be covered */
/* Divide function */
void divide (int a, int b, int *c)
{
 if (b == 0)
 {
 fprintf (stderr, "Division by zero\n");
 exit (1);
 };

 77

 if (b == 1)
 {
 *c = a;
 return;
 };
 *c = a / b;
}

At least two branches are defined per C function.

The input is always enumerated, as is the output if it can be covered. If it
cannot, it is preceded by a terminal instruction involving returns or an exit.

In addition to the terminal instructions provided in the standard definition
file, you can define other terminal instructions using the pragma attol
exit_instr.

C Additional Statements

Terminal Statements

A C statement is terminal if it transfers program control out of sequence
(RETURN, GOTO, BREAK, CONTINUE), or stops the execution (EXIT).

By extension, a decision statement (IF or SWITCH) is terminal if all
branches are terminal; that is if the non-empty THEN ... ELSE, CASE, and
DEFAULT blocks all contain terminal statements. An IF statement without
an ELSE and a SWITCH statement without a DEFAULT are never terminal,
because their empty blocks necessarily continue program control in
sequence.

Potentially Terminal Statements

The following decision statements are potentially terminal if they contain at
least one statement that transfers program control out of their sequence
(RETURN, GOTO, BREAK, CONTINUE), or that terminates the execution
(EXIT):

78

• IF without an ELSE

• SWITCH

• FOR

• WHILE or DO ... WHILE

Non-coverable Statements in C

Some C statements are considered non-coverable if they follow a terminal
instruction, a CONTINUE, or a BREAK, and are not a GOTO label. Code
Coverage detects non-coverable statements during instrumentation and
produces a warning message that specifies the source file and line location
of each non-coverable statement.

Note User functions whose purpose is to terminate execution
unconditionally are not evaluated. Furthermore, Code Coverage
does not statically analyze exit conditions for loops to check whether
they are infinite. As a result, FOR ... WHILE and DO ... WHILE
loops are always assumed to be non-terminal, able to resume
program control in sequence.

C++ Coverage

C++ Block Code Coverage

When analyzing C++ source code, Code Coverage can provide the following
block coverage types:

• Statement Blocks

• Statement Blocks and Decisions

• Statement Blocks, Decisions, and Loops

 79

Statement Blocks

Statement blocks are the C++ function or method main blocks, blocks
introduced by decision instructions:

• THEN and ELSE FOR IF, WHILE and DO ... WHILE blocks

• non-empty blocks introduced by SWITCH CASE or DEFAULT
statements

• true and false outcomes of ternary expressions (<expr> ? <expr> : <expr>)

• TRY blocks and any associated catch handler

• blocks following a potentially terminal statement.
int main () /*
-BLOCK */
{
 try {
 if (0)
 {
 func ("Hello");
 }
 else
 {
 throw UnLucky ();
 }
 }
 catch (Overflow & o) {
 cout << o.String << '\n';
 }
 catch (UnLucky & u) {
 throw u;
 } /* potentially terminal statement */
 return 0; /* sequence block */
}

Each simple block is a branch. Every C++ function and method contains at
least one simple block corresponding to its main body.

Decisions (Implicit Blocks)

Implicit blocks are introduced by IF statements without an ELSE statement,
and a SWITCH statements without a DEFAULT statement.

80

/* Power_of_10 function */
/* -BLOCK=DECISION or -BLOCK=IMPLICIT */
int power_of_10 (int value, int max)
{
 int retval = value, i;
 if (value == 0) return 0; else ;
 for (i = 0; i < 10; i++)
 {
 retval = (max / 10) < retval ? retval * 10 : max;
 }
 return retval;
}
/* Near_color function */
ColorType near_color (ColorType color)
{
 switch (color)
 {
 case WHITE :
 case LIGHT_GRAY :
 return WHITE;
 case RED :
 case PINK :
 case BURGUNDY :
 return RED;
 /* etc ... with no default */
 default : ;
 }
}

Each implicit block represents a branch.

Since the sum of all possible decision paths includes implicit blocks as well
as simple blocks, reports provide the total number of simple and implicit
blocks as a figure and a percentage after the term decisions.

Loops (Logical Blocks)

Three branches are created in a for or while loop:

• The first branch is the simple block contained within the loop, and that
is executed zero times (the entry condition is false from the start).

• The second branch is the simple block executed exactly once (entry
condition true, then false the next time).

 81

• The third branch is the simple block executed at least twice (entry
condition true at least twice, and false at the end).

Two branches are created in a DO/WHILE loop, as the output condition is
tested after the block has been executed:

• The first branch is the simple block executed exactly once (output
condition true the first time).

• The second branch is the simple block executed at least twice (output
condition false at least once, then true at the end).

/* myClass::tryFiveTimes method */ /* -
BLOCK=LOGICAL */
int myClass::tryFiveTimes ()
{
 int result, i = 0;
 /* letsgo () is a function whose return value depends
 on the availability of a system resource, for example
*/
 while (((result = letsgo ()) != 0) &&
 (++i < 5));
 return result;
} /* 3 logical blocks */

You need to execute the method tryFiveTimes () several times to
completely cover the three logical blocks included in the while loop.

C++ Method Code Coverage

Inputs to Procedures

Inputs identify the C++ methods executed.
/* Vector::getCoord() method */ /* -PROC
*/
int Vector::getCoord (int index)
{
if (index >= 0 && index < size) return Values[index];
else return -1;
}

One branch per C++ method is defined.

82

Procedure Inputs, Outputs and Returns, and Terminal Instructions

These include the standard output (if coverable), all return instructions, and
calls to exit(), abort(), or

terminate(), as well as the input.
/* Vector::getCoord() method */ /* -PROC=RET */
int Vector::getCoord (int index)
{
if (index >= 0 && index < size) return Values[index];
else return -1;
}
/* Divide function */
void divide (int a, int b, int *c)
{
if (b ==0)
{
fprintf (stderr, "Division by zero\n");
exit (1);
};
if (b ==1)
{
*c =a;
return;
};
*c =a /b;
}

At least two branches per C++ method are defined. The input is always
enumerated, as is the output if it can be covered. If it cannot, it is preceded
by a terminal instruction involving returns or by a call to exit(), abort(), or
terminate().

Potentially Terminal Statements

The following decision statements are potentially terminal if they contain at
least one statement that transfers program control out of its sequence
(RETURN, THROW, GOTO, BREAK, CONTINUE) or that terminates the
execution (EXIT).

• IF without an ELSE

 83

• SWITCH, FOR

• WHILE or DO...WHILE

C++ Template Instrumentation

Code Coverage performs the instrumentation of templates, functions, and
methods of template classes, considering that all instances share their
branches. The number of branches computed by the feature is independent
of the number of instances for this template. All instances will cover the
same once-defined branches in the template code.

Files containing template definitions implicitly included by the compiler (no
specific compilation command is required for such source files) are also
instrumented by the Code Coverage feature and present in the
instrumented files where they are needed.

For some compilers, you must specifically take care of certain templates (for
example, static or external linkage). You must verify if your Code Coverage
Runtime installation contains a file named templates.txt and, if it does, read
that file carefully.

• To instrument an application based upon Rogue Wave libraries , you
must use the -DRW_COMPILE_INSTANTIATE compilation flag that
suppresses the implicit include mechanism in the header files.
(Corresponding source files are so included by pre-processing.)

• To instrument an application based upon ObjectSpace C++ Component
Series , you must use the -DOS_NO_AUTO_INSTANTIATE
compilation flag that suppresses the implicit include mechanism in the
header files. (Corresponding source files are so included by pre-
processing.)

• Any method (even unused ones) of an instantiated template class is
analyzed and instrumented by the Instrumentor. Some compilers do
not try to analyze such unused methods. It is possible that some of
these methods are not fully compliant with C++ standards. For

84

example, a template class with a formal class template argument
named T can contain a compare method that uses the == operator of the
T class. If the C class used for T at instantiation time does not define an
== operator, and if the compare method is never used, compilation
succeeds but instrumentation fails. In such a situation, you can declare
an == operator for the C class or use the -instantiationmode=used
Instrumentor option.

C++ Additional Statements

Non-coverable Statements in C++

A C++ statement is non-coverable if the statement can never possibly be
executed. Code Coverage detects non-coverable statements during
instrumentation and produces a warning message that specifies the source
file and line location of each non-coverable statement.

Java Coverage

Java Block Coverage

When analyzing Java source code, Code Coverage can provide the
following block coverage:

• Statement Blocks

• Statement Blocks and Decisions

• Statement Blocks, Decisions, and Loops

Statement BlocksStatement BlocksStatement BlocksStatement Blocks

Statement blocks are the Java method blocks, blocks introduced by control
instructions:

• THEN for IF and ELSE for IF, WHILE and DO ... WHILE blocks

 85

• non-empty blocks introduced by SWITCH CASE or DEFAULT
statements

• true and false outcomes of ternary expressions (<expr> ? <expr> : <expr>)

• TRY blocks and any associated catch handler

• blocks following a potentially terminal statement.

Example
public class StatementBlocks
{
 public static void func(String _message)
 throws UnsupportedOperationException
 {
 throw new UnsupportedOperationException(_message);
 }
 public static void main(String[] args)
 throws Exception
 {
 try {
 if (false)
 {
 func("Hello");
 }
 else
 {
 throw new Exception("bad luck");
 }
 }
 catch (UnsupportedOperationException _E)
 {
 System.out.println(_E.toString());
 }
 catch (Exception _E)
 {
 System.out.println(_E.toString());
 throw _E ;
 } //potentially terminal statement
 return ; //sequence block
 }
}

Each simple block is a branch. Every Java method contains at least one
simple block corresponding to its main body.

86

Decisions (Implicit Blocks)

Implicit blocks are introduced by IF statements without an ELSE statement,
and a SWITCH statement without a DEFAULT statement.

Example
public class MathOp
{
 static final int WHITE=0;
 static final int LIGHTGRAY=1;
 static final int RED=2;
 static final int PINK=3;
 static final int BLUE=4;
 static final int GREEN=5;
 // power of 10
 public static int powerOf10(int _value, int _max)
 {
 int result = _value, i;
 if(_value==0) return 0; //implicit else
 for(i = 0; i < 10; i++)
 {
 result = (_max / 10) < result ? 10*result : _max ;
 }
 return result;
 }
 // Near color function
 int nearColor(int _color)
 {
 switch(_color)
 {
 case WHITE:
 case LIGHTGRAY:
 return WHITE ;
 case RED:
 case PINK:
 return RED;
 //implicit default:
 }
 return _color ;
 }
}

Each implicit block represents a branch.

Since the sum of all possible decision paths includes implicit blocks as well

 87

as simple blocks, reports provide the total number of simple and implicit
blocks as a figure and a percentage after the term decisions.

Loops (Logical Blocks)

Three branches are created in a FOR or WHILE loop:

• The first branch is the simple block contained within the loop, and that
is executed zero times (the entry condition is false from the start).

• The second branch is the simple block executed exactly once (entry
condition true, then false the next time).

• The third branch is the simple block executed at least twice (entry
condition true at least twice, and false at the end).

• Two branches are created in a DO/WHILE loop, as the output
condition is tested after the block has been executed:

• The first branch is the simple block executed exactly once (output
condition false the first time).

• The second branch is the simple block executed at least twice (output
condition false at least once, then true at the end).

Example
public class LogicalBlocks
{
 public static int tryFiveTimes()
 {
 int result, i=0;
 while (((result=resourcesAvailable())<= 0)
 && (++i < 5));
 // while define 3 logical blocks
 return result;
 }
 public static int resourcesAvailable()
 {
 return (_free_resources_++);
 }

 public static int _free_resources_=0;

88

 public static void main(String[] argv)
 {
 //first call: '0 loop' block is reach
 _free_resources_=1;
 tryFiveTimes();
 //second call: '1 loop' blocks are reach
 _free_resources_=0;
 tryFiveTimes();
 //third call: '2 loops or more' blocks are reach
 _free_resources_=-10;
 tryFiveTimes();
 }
}

Java Method Coverage

Inputs to Procedures

Inputs identify the Java methods executed.

Example
public class Inputs
{
 public static int method()
 {
 return 5;
 }
 public static void main(String[] argv)
 {
 System.out.println("Value:"+method());
 }
}

One branch per Java method is defined.

Procedure Inputs, Outputs and Returns, and Terminal Instructions

These include the standard output (if coverable), all return instructions, and
calls to exit(), abort(), or terminate(), as well as the input.

Example
public class InputsOutputsAndReturn

 89

{
 public static void method0(int _selector)
 {
 if (_selector < 0)
 {
 return ;
 }
 }
 public static int method1(int _selector)
 {
 if(_selector < 0) return 0;
 switch(_selector)
 {
 case 1: return 0;
 case 2: break;
 case 3: case 4: case 5: return 1;
 }
 return (_selector/2);
 }
 public static void main(String[] argv)
 {
 method0(3);
 System.out.println("Value:"+method1(5));
 System.exit(0);
 }
}

At least two branches per Java method are defined. The input is always
enumerated, as is the output if it can be covered.

Potentially Terminal Statements

The following decision statements are potentially terminal if they contain at
least one statement that transfers program control out of its sequence
(RETURN, THROW, GOTO, BREAK, CONTINUE) or that terminates the
execution (EXIT).

• IF without an ELSE

• SWITCH, FOR

• WHILE or DO...WHILE

90

Java Additional Statements

Non-coverable Statements in Java

A Java statement is non-coverable if the statement can never possibly be
executed. Code Coverage detects non-coverable statements during
instrumentation and produces an error message that specifies the source file
and line location of each non-coverable statement.

Code Coverage Viewer

About the Code Coverage Viewer

The Code Coverage Viewer allows you to view code coverage reports
generated by the Code Coverage feature. Select a tab at the top of the Code
Coverage Viewer window to select the type of report:

• A Source Report, showing the source code under analysis, highlighted
with the actual coverage information.

• A Rates Report, providing detailed coverage rates for each activated
coverage type.

You can use the Report Explorer to navigate through the report. Click a
source code component in the Report Explorer to go to the corresponding
line in the Report Viewer.

You can jump directly to the next or previous Failed test in the report by
using the Next Failed Test or Previous Failed Test buttons from the Code
Coverage toolbar.

You can jump directly to the next or previous Uncovered line in the Source
report by using the Next Uncovered Line or Previous Uncovered Line
buttons in the Code Coverage feature bar.

 91

When viewing a Source coverage report, the Code Coverage Viewer
provides several additional viewing features for refined code coverage
analysis.

To open a Code Coverage report:

1. Right-click a previously executed test or application node

2. If a Code Coverage report was generated during execution of the node,
select View Report and then Code Coverage.

Coverage Types

For Ada, C, and C++ the Code Coverage feature offers:

• Function or Method code coverage: select between function Entries,
Entries and exits, or None. See the Function, Unit or Method Code
Coverage Ada, C, and C++ for more information.

• Call code coverage: select Yes or No to toggle call coverage for Ada
and C.

• Block code coverage: select the desired block coverage method. See the
Block Code Coverage for Ada, C, and C++ for details.

• Condition code coverage: select condition coverage for Ada, C.

Please refer to the related topics for details on using each coverage type
with each language.

Any of the Code Coverage types selected for instrumentation can be filtered
out in the Code Coverage report stage if necessary.

To filter coverage types from the report:

1. From the Code Coverage menu, select Coverage Type.

2. Toggle each coverage type in the menu.

Alternatively, you can filter out coverage types from the Code Coverage
toolbar by toggling the Code Coverage type filter buttons.

92

Test by Test Analysis Mode

The Test-by-Test analysis mode allows you to refine the coverage analysis by
individually selecting the various tests that were generated during
executions of the test or application node. In Test-by-Test mode, a Tests
node is available in the Report Explorer.

When Test-by-Test analysis is disabled, the Code Coverage Viewer displays
all traces as one global test.

To toggle Test-by-Test mode:

1. In the Code Coverage Viewer window, select the Source tab.

2. From the Code Coverage menu, select Test-by-Test.

To select the Tests to display in Test-by-Test mode:

1. Expand the Tests node at the top of the Report Explorer.

2. Select one or several tests. The Code Coverage Viewer provides code
coverage information for the selected tests.

Reloading a Report

If a Code Coverage report has been updated since the moment you have
opened it in the Code Coverage Viewer, you can use the Reload command
to refresh the display:

To reload a report:

From the Code Coverage menu, select Reload.

Resetting a Report

When you run a test or application node several times, the Code Coverage
results are appended to the existing report. The Reset command clears
previous Code Coverage results and starts a new report.

 93

To reset a report:

From the Code Coverage menu, select Reset.

Exporting a Report to HTML

Code Coverage results can be exported to an HTML file.

To export results to an HTML file:

From the File menu, select Export.

Source Report

You can use the standards keys (arrow keys, home, end, etc.) to move about
and to select the source code.

Hypertext Links

The Source report provides hypertext navigation throughout the source
code:

• Click a plain underlined function call to jump to the definition of the
function.

• Click a dashed underlined text to view additional coverage information
in a pop-up window.

• Right-click any line of code and select Edit Source to open the source
file in the Text Editor at the selected line of code.

Macro Expansion

Certain macro-calls are preceded with a magnifying glass icon.

Click the magnifying glass icon to expand the macro in a pop-up window
with the usual Code Coverage color codes.

94

Hit Count

The Hit Count tool-tip is a special capability that displays the number of
times that a selected branch was covered.

Hit Count is only available when Test-by-Test analysis is disabled and
when the Hit Count option has been enabled for the selected Configuration.

To activate the Hit Count tool-tip:

1. In the Code Coverage Viewer window, select the Source tab.

2. From the Code Coverage menu select Hit. The mouse cursor changes
shape.

3. In the Code Coverage Viewer window, click a portion of covered
source code to display the Hit Count tool-tip.

Cross Reference

The Cross Reference tool-tip displays the name of tests that executed a
selected branch.

Cross Reference is only available in Test-by-Test mode.

To activate the Cross Reference tool-tip:

1. In the Code Coverage Viewer window, select the Source tab.

2. From the Code Coverage menu select Cross Reference. The mouse
cursor changes shape.

3. In the Code Coverage Viewer window, click a portion of covered
source code to display the Cross Reference tool-tip.

Comment

You can add a short comment to the generated Code Coverage report by
using the Comment option in the Misc. Options Settings for Code Coverage.
This can be useful to distinguish different reports generated with different

 95

Configurations.

Comments are displayed as a magnifying glass symbol at the top of the
source code report. Click the magnifying glass icon to display the comment.

Rates Report

From the Code Coverage Viewer window, select the Rates tab to view the
coverage rate report.

Select a source code component in the Report Explorer to view the coverage
rate for that particular component and the selected coverage type. Select the
Root node to view coverage rates for all current files.

Code Coverage rates are updated dynamically as you navigate through the
Report Explorer and as you select various coverage types.

Code Coverage Toolbar

The Code Coverage toolbar is useful for navigating through code coverage
reports generated by the Code Coverage feature of Test RealTime.

These buttons are available when the Code Coverage Viewer is active.

• The Previous Link and Next Link buttons allow you to quickly
navigate through the Failed items.

• The Previous Uncovered Line and Next Uncovered Line buttons allow
you to quickly navigate through the Failed items.

• The Failed Tests Only or All Tests button toggles between the two
display modes.

• The F button allows you to hide or show functions

• The E button allows you to hide or show function exits

• The B button allows you to hide or show statement blocks

96

• The I button allows you to hide or show implicit blocks

• The L button allows you to hide or show loops.

Code Coverage Viewer Preferences

The Preferences dialog box allows you to change the appearance of your
Code Coverage reports.

To choose Code Coverage report colors and attributes:

1. Select the Code Coverage Viewer node:

• Background color: This allows you to choose a background color for
the Code Coverage Viewer window.

• Stroud Number: This parameter modifies the results of Halstead
Metrics.

2. Expand the Code Coverage Viewer node, and select Styles:

• Styles: This list allows you to select one or several styles that you want
to change. To change several styles at the same time, you can perform
multiple selections in the style list.

• Font: This allows you to change the font type and size for the selected
style.

• Text Color: This allows you to change the foreground and background
colors for the selected style. This opens a standard color palette.

• Text Attributes: This allows you to set the selected style to Bold, Italic,
Underlined or Dashed.

3. Click OK to apply your changes.

Code Coverage Dump Driver

In C and C++, you can dump coverage trace data without using standard
I/O functions by using the Code Coverage Dump Driver API contained in

 97

the atcapi.h file, which is part of the Target Deployment Port

To customize the Code Coverage Dump Driver, open the Target
Deployment Port directory and edit the atcapi.h. Follow the instructions
and comments included in the source code.

Static Metrics

Source code profiling is an extremely important matter when you are
planning a test campaign or for project management purposes. The
graphical user interface (GUI) provides a Metrics Viewer, which provides
detailed source code complexity data and statistics for your project.

Static Metric Viewer

Use the Metrics Viewer to view static testability measurements of the source
files of your project. Source code metrics are created each time a source file
is added to the project. Metrics are updated each time a file is modified.

The metrics are stored in .met metrics files alongside the actual source files.

To open the Metrics Viewer:

1. Right-click a node in the Asset Browser of the Project Explorer.

2. From the pop-up menu, select View Metrics.

To manually open a report file:

1. From the File menu, select Open... or click the Open icon in the main
toolbar.

2. In the Type box of the File Selector, select the .met Metrics File file
type.

3. Locate and select the metrics files that you want to open.

98

4. Click OK.

Report Explorer

The Report Explorer displays the scope of the selected nodes, or selected
.met metrics files. Select a node to switch the Metrics Window scope to that
of the selected node.

Metrics Window

Depending on the language of the analyzed source code, different pages are
available:

• Root Page - File View: contains generic data for the entire scope

• Root Page - Object View: contains object related generic data for C++
and Java only

• Component View: displays detailed component-related metrics for
each file, class, method, function, unit, procedure, etc...

The metrics window offer hyperlinks to the actual source code. Click the
name of a source component to open the Text Editor at the corresponding
line.

Static Metrics

The Source Code Parsers provide static metrics for the analyzed C and C++
source code.

File Level Metrics

The scope of the metrics report depends on the selection made in the Report
Explorer window. This can be a file, one or several classes or any other set
of source code components.

• Comment only lines: the number of comment lines that do not contain

 99

any source code

• Comments: the total number of comment lines

• Empty lines: the number of lines with no content

• Source only lines: the number of lines of code that do not contain any
comments

• Source and comment lines: the number of lines containing both source
code and comments

• Lines: the number of lines in the source file

• Comment rate: percentage of comment lines against the total number
of lines

• Source lines: the total number of lines of source code and empty lines

File, Class or Package, and Root Level Metrics

These numbers are the sum of metrics measured for all the components of a
given file, class or package.

• Total statements: total number of statement in child nodes

• Maximum statements: the maximum number of statements

• Maximum level: the maximum nesting level

• Maximum V(g): the highest encountered cyclomatic number

• Mean V(g): the average cyclomatic number

• Standard deviation from V(g): deviation from the average V(g)

• Sum of V(g): total V(g) for the scope.

Root Level File View

At the top of the Root page, the Metrics Viewer displays a graph based on
Halstead data.

100

On the Root page, the scope of the Metrics Viewer is the entire set of nodes
below the Root node.

Halstead Graph

The following display modes are available for the Halstead graph:

• VocabularySize

• Volume

• Difficulty

• Testing Effort

• Testing Errors

• Testing Time

See the Halstead Metrics section for more information.

Metrics Summary

The scope of the metrics report depends on the selection made in the Report
Explorer window. This can be a file, one or several classes or any other set
of source code components.

 101

Below the Halstead graph, the Root page displays a metrics summary table,
which lists for for the source code component of the selected scope:

• V(g): provides a complexity estimate of the source code component

• Statements: shows the number of statements within the component

• Nested Levels: shows the highest nesting level reached in the
component

• Ext Comp Calls: measures the number of calls to methods defined
outside of the component class (C++ and Java only)

• Ext Var Use: measures the number of uses of attributes defined outside
of the component class (C++ and Java only)

To select the File View:

1. Select File View in the View box of the Report Explorer.

2. Select the Root node in the Report Explorer to open the Root page.

Note With C and Ada source code, File View is the only available view for
the Root page.

To change the Halstead Graph on the Root page:

1. From the Metrics menu, select Halstead Graph for Root Page.

2. Select another metric to display.

Root Level Object View

At the top of the Root page, the Metrics Viewer displays a graph based on
the sum ofdata.

On the Root page, the scope of the Metrics Viewer is the entire set of nodes
below the Root node.

102

File View is the only available view with C or Ada source code. When
viewing metrics for C++ and Java, an Object View is also available.

Two modes are available for the data graph:

• Vocabulary

• Size

• Volume

• Difficulty

• Testing Effort

• Testing Errors

• Testing Time

See the Halstead Metrics section for more information.

Metrics Summary

Below the Halstead graph, the Root page displays a metrics summary table,
which lists for each source code component:

• V(g): provides a complexity estimate of the source code component

 103

• Statements: shows the total number of statements within the object

• Nested Levels: shows the highest statement nesting level reached in
the object

• Ext Comp Calls: measures the number of calls to components defined
outside of the object

• Ext Var Use: measures the number of uses of variables defined outside
of the object

Note The result of the metrics for a given object is equal to the sum of the
metrics for the methods it contains.

To select the Object View:

1. Select the Root node in the Report Explorer to open the Root page.

2. Select Object View in the View box of the Report Explorer.

To switch the object graph mode:

1. From the Metrics menu, select Object Graph for Root Page.

2. Select ExtVarUse by ExtCompCall or Nested Level by Statement.

Halstead Metrics

Halstead complexity measurement was developed to measure a program
module's complexity directly from source code, with emphasis on
computational complexity. The measures were developed by the late
Maurice Halstead as a means of determining a quantitative measure of
complexity directly from the operators and operands in the module.

Halstead provides various indicators of the module's complexity

Halstead metrics allow you to evaluate the testing time of any C/C++ source
code. These only make sense at the source file level and vary with the
following parameters:

104

Parameter Meaning

n1 Number of distinct operators

n2 Number of distinct operands

N1 Number of operators instances

N2 Number of operands instances

When a source file node is selected in the Metrics Viewer, the following
results are displayed in the Metrics report:

Metric Meaning Formula

n Vocabulary n1 + n2

N Size N2 + N2

V Volume N * log2 n

D Difficulty n1/2 * N2/n2

E Effort V * D

B Errors V / 3000

T Testing time E / k

In the above formulas, k is the Stroud number, and has a default value of 18.
You can change the value of k in the Metrics Viewer Preferences.
Adjustment of the Stroud number allows you to adapt the calculation of T
to the testing conditions: team background, criticity level, and so on.

When the Root node is selected, the Metrics Viewer displays the total
testing time for all loaded source files.

V(g) or Cyclomatic Number

The V(g) or cyclomatic number is a measure of the complexity of a function
which is correlated with difficulty in testing. The standard value is between
1 and 10.

A value of 1 means the code has no branching.

 105

A function's cyclomatic complexity should not exceed 10.

The Metrics Viewer presents V(g) of a function in the Metrics tab when the
corresponding tree node is selected.

When the type of the selected node is a source file or a class, the sum of the
V(g) of the contained function, the mean, the maximum and the standard
deviation are calculated.

At the Root level, the same statistical treatment is provided for every
function in any source file.

Metrics Viewer Preferences

The Preferences dialog box allows you to change the appearance of your
Code Coverage reports.

To choose Metrics Viewer report colors and attributes:

1. Select the Metrics Viewer node:

• Background color: This allows you to choose a background color for
the Metrics Viewer window.

• Stroud number: This parameter modifies the results of Halstead
Metrics.

2. Expand the Metrics Viewer node, and select Styles:

• Styles: This list allows you to select one or several styles that you want
to change. To change several styles at the same time, you can perform
multiple selections in the style list.

• Font: This allows you to change the font type and size for the selected
style.

• Text Color: This allows you to change the foreground and background
colors for the selected style. This opens a standard color palette.

106

• Text Attributes: This allows you to set the selected style to Bold, Italic,
Underlined or Dashed.

3. Click OK to apply your changes.

Memory Profiling for C and C++

Run-time memory errors and leaks are among the most difficult errors to
locate and the most important to correct. The symptoms of incorrect
memory use are unpredictable and typically appear far from the cause of
the error. The errors often remain undetected until triggered by a random
event, so that a program can seem to work correctly when in fact it's only
working by accident.

That's where the Memory Profiling feature can help you get ahead.

• You associate Memory Profiling with an existing test node or
application code.

• You compile and run your application.

• The application with the Memory Profiling feature, then directs output
to the Memory Profiling Viewer, which provides a detailed report of
memory issues.

Memory Profiling uses Source Code Insertion Technology for C and C++.

Because of the different technologies involved, Memory Profiling for Java is
covered in a separate section.

Memory Profiling Results for C and C++

After execution of an instrumented application, the Memory Profiling
report provides a list of the following sections:

 107

Summary diagrams

The summary diagrams give you a quick overview of memory usage in
blocks and bytes.

Where:

• Allocated is the total memory allocated during the execution of the
application

• Unfreed is the memory that remains allocated after the application was
terminated

• Maximum is the highest memory usage encountered during execution

Detailed Report

The detailed section of the report lists memory usage events, including the
following errors and warnings:

108

• Error messages

• Warning messages

Memory Profiling Errors

Error messages indicate invalid program behavior. These are serious issues
you should address before you check in code.

List of Memory Profiling Error Messages

• Freeing Freed Memory (FFM)

• Freeing Unallocated Memory (FUM)

• Late Detect Array Bounds Write (ABWL)

• Late Detect Free Memory Write (FMWL)

• Memory Allocation Failure (MAF)

• Core Dump (COR)

Freeing Freed Memory (FFM)

An FFM message indicates that the program is trying to free memory that
has previously been freed.

This message can occur when one function frees the memory, but a data
structure retains a pointer to that memory and later a different function tries
to free the same memory. This message can also occur if the heap is
corrupted.

Memory Profiling maintains a free queue, whose role is to actually delay
memory free calls in order to compare with upcoming free calls. The length
of the delay depends on the Free queue length and Free queue threshold
Memory Profiling Settings. A large deferred free queue length and
threshold increases the chances of catching FFM errors long after the block

 109

has been freed. A smaller deferred free queue length and threshold limits
the amount of memory on the deferred free queue, taking up less memory
at run time but providing a lower level of error detection.

Freeing Unallocated Memory (FUM)

An FUM message indicates that the program is trying to free unallocated, or
invalid, memory.

This message can occur when the memory is not yours to free. In addition,
trying to free the following types of memory causes a FUM error:

• Memory on the stack

• Program code and data sections

Late Detect Array Bounds Write (ABWL)

An ABWL message indicates that the program wrote a value before the
beginning or after the end of an allocated block of memory. Because
Memory Profiling instrumented one or more components with minimal
instrumentation, it cannot determine the exact location of the error. Instead,
Memory Profiling performs a late detect scan after every 200 heap
operations or if 10 seconds have elapsed between the currently active heap
operation and the last heap operation, whichever comes first.

This message can occur when you:

• Make an array too small. For example, you fail to account for the
terminating NULL in a string.

• Forget to multiply by sizeof(type) when you allocate an array of
objects.

• Use an array index that is too large or is negative.

• Fail to NULL terminate a string.

110

• Are off by one when you copy elements up or down an array.

Memory Profiling actually allocates a larger block by adding a Red Zone at
the beginning and end of each allocated block of memory in the program.
Memory Profiling monitors these Red Zones to detect ABWL errors.

Increasing the size of the Red Zone helps Test RealTime catch bounds errors
before or beyond the block.

The ABWL error does not apply to local arrays allocated on the stack.

Note Unlike Rational PurifyPlus, the ABWL error in the Rational Test
RealTime Memory Profiling feature only applies to heap memory
zones and not to global or local tables.

Late Detect Free Memory Write (FMWL)

An FMWL message indicates that the program wrote to memory that was
freed.

This message can occur when you:

• Have a dangling pointer to a block of memory that has already been
freed (caused by retaining the pointer too long or freeing the memory
too soon)

• Index far off the end of a valid block

• Use a completely random pointer which happens to fall within a freed
block of memory

Memory Profiling maintains a free queue, whose role is to actually delay
memory free calls in order to compare with upcoming free calls. The length
of the delay depends on the Free queue length and Free queue threshold
Memory Profiling Settings. A large deferred free queue length and
threshold increases the chances of catching FMWL errors. A smaller
deferred free queue length and threshold limits the amount of memory on

 111

the deferred free queue, taking up less memory at run time but providing a
lower level of error detection.

Memory Allocation Failure (MAF)

An MAF message indicates that a memory allocation call failed. This
message typically indicates that the program ran out of paging file space for
a heap to grow. This message can also occur when a non-spreadable heap is
saturated.

After Memory Profiling displays the MAF message, a memory allocation
call returns NULL in the normal manner. Ideally, programs should handle
allocation failures.

Core Dump (COR)

A COR message indicates that the program generated a UNIX core dump.
This message can only occur when the program is running on a UNIX target
platform.

Memory Profiling Warnings

Warning messages indicate a situation in which the program might not fail
immediately, but might later fail sporadically, often without any apparent
reason and with unexpected results. Warning messages often pinpoint
serious issues you should investigate before you check in code.

List of Memory Profiling Warning Messages

• Memory in Use (MIU)

• Memory Leak (MLK)

• Potential Memory Leak (MPK)

• File in Use (FIU)

112

• Signal Handled (SIG)

Memory in Use (MIU)

An MIU message indicates heap allocations to which the program has a
pointer.

Note At exit, small amounts of memory in use in programs that run for a
short time are not significant. However, you should fix large
amounts of memory in use in long running programs to avoid out-
of-memory problems.

Memory Profiling generates a list of memory blocks in use when you
activate the MIU Memory In Use option in the Memory Profiling Settings.

Memory Leak (MLK)

An MLK message describes leaked heap memory. There are no pointers to
this block, or to anywhere within this block.

Memory Profiling generates a list of leaked memory blocks when you
activate the MLK Memory Leak option in the Memory Profiling Settings.

This message can occur when you allocate memory locally in some function
and exit the function without first freeing the memory. This message can
also occur when the last pointer referencing a block of memory is cleared,
changed, or goes out of scope. If the section of the program where the
memory is allocated and leaked is executed repeatedly, you might
eventually run out of swap space, causing slow downs and crashes. This is
a serious problem for long-running, interactive programs.

To track memory leaks, examine the allocation location call stack where the
memory was allocated and determine where it should have been freed.

Memory Potential Leak (MPK)

 113

An MPK message describes heap memory that might have been leaked.
There are no pointers to the start of the block, but there appear to be
pointers pointing somewhere within the block. In order to free this
memory, the program must subtract an offset from the pointer to the
interior of the block. In general, you should consider a potential leak to be
an actual leak until you can prove that it is not by identifying the code that
performs this subtraction.

Memory in use can appear as an MPK if the pointer returned by some
allocation function is offset. This message can also occur when you
reference a substring within a large string. Another example occurs when a
pointer to a C++ object is cast to the second or later base class of a multiple-
inherited object and it is offset past the other base class objects.

Alternatively, leaked memory might appear as an MPK if some non-pointer
integer within the program space, when interpreted as a pointer, points
within an otherwise leaked block of memory. However, this condition is
rare.

Inspection of the code should easily differentiate between different causes
of MPK messages.

Memory Profiling generates a list of potentially leaked memory blocks
when you activate the MPK Memory Potential Leak option in the Memory
Profiling Settings.

File in Use (FIU)

An FIU message indicates a file that was opened, but never closed. An FIU
message can indicate that the program has a resource leak.

Memory Profiling generates a list of files in use when you activate the FIU
Files In Use option in the Memory Profiling Settings.

Signal Handled (SIG)

114

A SIG message indicates that a system signal has been received.

Memory Profiling generates a list of received signals when you activate the
SIG Signal Handled option in the Memory Profiling Settings.

Memory Profiling User Heap in C and C++

When using Memory Profiling on embedded or real-time target platforms,
you might encounter one of the following situations:

• Situation 1: There are no provisions for malloc, calloc, realloc or free
statements on the target platform.

Your application uses custom heap management routines that
may use a user API. Such routines could, for example, be based
on a static buffer that performs allocation and free actions.

In this case, you need to customize the memory heap parameters
RTRT_DO_MALLOC and RTRT_DO_FREE in the TDP to use
the custom malloc and free functions.

In this case, you can access the custom API functions.

• Situation 2: There are partial implementations of malloc, calloc, realloc
or free on the target, but other functions provide methods of allocating
or freeing heap memory.

In this case, you do not have access to any custom API. This
requires customization of the Target Deployment Port. Please
refer to the Target Deployment Guide provided with the TDP
Editor.

In both of the above situations, Memory Profiling can use the heap
management routines to detect memory leaks, array bounds and other
memory-related defects.

Note Application pointers and block sizes can be modified by Memory
Profiling in order to detect ABWL errors (Late Detect Array Bounds

 115

Write). Actual-pointer and actual-size refer to the memory data
handled by Memory Profiling, whereas user pointer and user-size
refer to the memory handled natively by the application-under-
analysis. This distinction is important for the Memory Profiling
ABWL and Red zone settings.

Target Deployment Port API

The Target Deployment Port library provides the following API for
Memory Profiling:

void * _PurifyLTHeapAction (_PurifyLT_API_ACTION, void *,
RTRT_U_INT32, RTRT_U_INT8);

In the function _PurifyLTHeapAction the first parameter is the type of
action that will be or has been performed on the memory block pointed by
the second parameter. The following actions can be used:

typedef enum {
 _PurifyLT_API_ALLOC,
 _PurifyLT_API_BEFORE_REALLOC,
 _PurifyLT_API_FREE
} _PurifyLT_API_ACTION;

The third parameter is the size of the block. The fourth parameter is either
of the following constants:

#define _PurifyLT_NO_DELAYED_FREE 0

#define _PurifyLT_DELAYED_FREE 1

If an allocation or free has a size of 0 this fourth parameter indicates a
delayed free in order to detect FWML (Late Detect Free Memory Write) and
FFM (Freeing Freed Memory) errors. See the section on Memory Profiling
Configuration Settings for Detect FFM, Detect FMWL, Free Queue Length
and Free Queue Size.

A freed delay can only be performed if the block can be freed with
RTRT_DO_FREE (situation 1) or ANSI free (situation 2). For example, if a
function requires more parameters than the pointer to de-allocate, then the
FMWL and FFM error detection cannot be supported and FFM errors will

116

be indicated by an FUM (Freeing Unallocated Memory) error instead.

The following function returns the size of an allocated block, or 0 if the
block was not declared to Memory Profiling. This allows you to implement
a library function similar to the msize from Microsoft Visual 6.0.

RTRT_SIZE_T _PurifyLTHeapPtrSize (void *);

The following function returns the actual-size of a memory block,
depending on the size requested. Call this function before the actual
allocation to find out the quantity of memory that is available for the block
and the contiguous red zones that are to be monitored by Memory
Profiling.

RTRT_SIZE_T _PurifyLTHeapActualSize (RTRT_SIZE_T);

Examples

In the following examples, my_malloc, my_realloc, my_free and my_msize
demonstrate the four supported memory heap behaviors.

The following routine declares an allocation:
void *my_malloc (int partId, size_t size)
{
 void *ret;
 size_t actual_size = _PurifyLTHeapActualSize(size);
 /* Here is any user code making ret a pointer to a heap or
 simulated heap memory block of actual_size bytes */
 ...
 /* After comes Memory Profiling action */
 return _PurifyLTHeapAction (_PurifyLT_API_ALLOC, ret,
size, 0);
 /* The user-pointer is returned */
}

In situation 2, where you have access to a custom memory heap API,
replace the "..." with the actual malloc API function.

For a my_calloc(size_t nelem, size_t elsize), pass on nelem*elsize as the
third parameter of the _PurifyLTHeapAction function. In this case, you
might need to replace this operation with a function that takes into account

 117

the alignments of elements.

To declare a reallocation, two operations are required:
void *my_realloc (int partId, void * ptr, size_t size)
{
 void *ret;
 size_t actual_size = _PurifyLTHeapActualSize(size);
 /* Before comes first Memory Profiling action */
 ret = _PurifyLTHeapAction (_PurifyLT_API_BEFORE_REALLOC,
ptr, size, 0);
 /* ret now contains the actual-pointer */
 /* Here is any user code making ret a reallocated pointer
to a heap or
 simulated heap memory block of actual_size bytes */
 ...
 /* After comes second Memory Profiling action */
 return _PurifyLTHeapAction (_PurifyLT_API_ALLOC, ret,
size, 0);
 /* The user-pointer is returned */
}

To free memory without using the delay:
void my_free (int partId, void * ptr)
{
 /* Memory Profiling action comes first */
 void *ret = _PurifyLTHeapAction (_PurifyLT_API_FREE, ptr,
0, 0);
 /* Any code insuring actual deallocation of ret */
}

To free memory using a delay:
void my_free (int partId, void * ptr)
{
 /* Memory Profiling action comes first */
 void *ret = _PurifyLTHeapAction (_PurifyLT_API_FREE, ptr,
0, 1);
 /* Nothing to do here */
}

To obtain the user size of a block:
size_t my_msize (int partId, void * ptr)
{
 return _PurifyLTHeapPtrSize (ptr);
}

Use the following macros to save customization time when dealing with

118

functions that have the same prototypes as the standard ANSI functions:
#define _PurifyLT_MALLOC_LIKE(func) \
void *RTRT_CONCAT_MACRO(usr_,func) (RTRT_SIZE_T size) \
{ \
 void *ret; \
 ret = func (_PurifyLTHeapActualSize (size)); \
 return _PurifyLTHeapAction (_PurifyLT_API_ALLOC, ret,
size, 0); \
}
#define _PurifyLT_CALLOC_LIKE(func) \
void *RTRT_CONCAT_MACRO(usr_,func) (RTRT_SIZE_T nelem,
RTRT_SIZE_T elsize) \
{ \
 void *ret; \
 ret = func (_PurifyLTHeapActualSize (nelem * elsize));
\
 return _PurifyLTHeapAction (_PurifyLT_API_ALLOC, ret,
nelem * elsize, 0); \
}
#define _PurifyLT_REALLOC_LIKE(func,delayed_free) \
void *RTRT_CONCAT_MACRO(usr_,func) (void *ptr, RTRT_SIZE_T
size) \
{ \
 void *ret; \
 ret = func (_PurifyLTHeapAction (
_PurifyLT_API_BEFORE_REALLOC, \
 ptr, size, delayed_free
), \
 _PurifyLTHeapActualSize (size)); \
 return _PurifyLTHeapAction (_PurifyLT_API_ALLOC, ret,
size, 0); \
}
#define _PurifyLT_FREE_LIKE(func,delayed_free) \
void RTRT_CONCAT_MACRO(usr_,func) (void *ptr) \
{ \
 if (delayed_free) \
 { \
 _PurifyLTHeapAction (_PurifyLT_API_FREE, ptr, 0,
delayed_free); \
 } \
 else \
 { \
 func (_PurifyLTHeapAction (_PurifyLT_API_FREE, ptr, 0,
delayed_free)); \
 } \
}

 119

Using the Memory Profiling Viewer

Memory Profiling results for C, C++ and Ada are displayed in the Memory
Profiling Viewer.

Memory Profiling for Java uses the Report Viewer

Error and Warning Filter

The Memory Profiling Viewer for C, C++ and Ada allows you to filter out
any particular type of Error or Warning message from the report.

To filter out error or warning messages:

1. Select an active Memory Profiling Viewer window.

2. From the Memory Profiling menu, select Errors and Warnings.

3. Select or clear the type of message that you want to show or hide.

Reloading a Report

If a Memory Profiling report has been updated since the moment you have
opened it in the Memory Profiling Viewer, you can use the Reload
command to refresh the display:

To reload a report:

1. From the View Toolbar, click the Reload button.

Resetting a Report

When you run a test or application node several times, the Memory
Profiling results are appended to the existing report. The Reset command
clears previous Memory Profiling results and starts a new report.

To reset a report:

1. From the View Toolbar, click the Reset button.

120

Exporting a Report to HTML

Memory Profiling results can be exported to an HTML file.

To export results to an HTML file:

From the File menu, select Export.

Memory Profiling Viewer Preferences

The Preferences dialog box allows you to change the appearance of your
Memory Profiling reports for C, C++ and Ada.

To choose Memory Profiling report colors and attributes:

1. Select the Memory Profiling Viewer node:

• Background color: This allows you to choose a background color for
the Memory Profiling Viewer window.

2. Expand the Memory Profiling Viewer node, and select Styles:

• Styles: This list allows you to select one or several styles that you want
to change. To change several styles at the same time, you can perform
multiple selections in the style list.

• Font: This allows you to change the font type and size for the selected
style.

• Text Color: This allows you to change the foreground and background
colors for the selected style. This opens a standard color palette.

• Text Attributes: This allows you to set the selected style to Bold, Italic,
Underlined or Dashed.

3. Click OK to apply your changes.

 121

Memory Profiling for Java

Run-time memory problems are among the most difficult errors to locate
and the most important to correct. The symptoms of incorrect memory use
are unpredictable and typically appear far from the cause of the error. The
issue often remain undetected until triggered by a random event, so that a
program can seem to work correctly when in fact it's only working by
accident.

That's where the Memory Profiling feature can help you get ahead.

• You associate Memory Profiling with an existing test node or
Application code.

• You compile and run your application.

• The application with the Memory Profiling feature, then directs output
to the Memory Profiling Viewer, which provides a detailed report of
memory issues.

The Java language differs from other programming languages, among other
aspects, by the way memory is managed by the Java Virtual Machine (JVM).

The technique used is the JVMPI Agent technology for Java.

Memory Profiling Results for Java

After execution of an instrumented application, the Memory Profiling
report displays:

• In the Report Explorer window: a list of available snapshots

• In the Memory Profiling window: the contents of the selected Memory
Profiling snapshot

122

Report Explorer

The Report Explorer window displays a Test for each execution of the
application node, or for a test node when using Component Testing for Java
in Rational Test RealTime. Inside each test, a Snapshot report is created for
each Memory Profiling snapshot.

Method Snapshots

The Memory Profiling report displays snapshot data for each method that
has performed an allocation. If the Java CLASSPATH is correctly set, you
can click blue method names to open the corresponding source code in the
Text Editor. System methods are displayed in black and cannot be clicked.

Method data is reset after each snapshot.

For each method, the report lists:

• Method: The method name. Blue method names are hyperlinks to the
source code under analysis

• Allocated Objects: The number of objects allocated since the previous
snapshot

• Allocated Bytes: The total number of bytes used by the objects
allocated by the method since the previous snapshot

• Local + D Allocated Objects: The number of objects allocated by the
method since the previous snapshot as well as any descendants called
by the method

• Local + D Allocated Bytes: The total number of bytes used by the
objects allocated by the method since the previous snapshot and its
descendants

 123

Referenced Objects

If you selected the With objects filter option in the JVMPI Settings dialog
box, the report can display, for each method, a list of objects created by the
method and object-related data.

From the Memory Profiling menu, select Hide/Show Referenced Objects.

For each object, the report lists:

• Reference Object Class: The name of the object class. Blue class names
are hyperlinks to the source code under analysis.

• Referenced Objects: The number of objects that exist at the moment
the snapshot was taken

• Referenced Bytes: The total number of bytes used by the referenced
objects

Differential Reports

The Memory Profile report can display differential data between two
snapshots within the same Test. This allows you to compare the referenced
objects. There are two diff modes:

• Automatic differential report with the previous snapshot

• User differential report

Differential reports add the following columns to the current Memory
Profiling snapshot report:

• Referenced Objects Diff AUTO: Shows the difference in the number
of referenced objects for the same method in the current snapshot as
compared to the previous snapshot

• Referenced Bytes Diff AUTO : Shows the difference in the memory
used by the referenced objects for the same method in the current

124

snapshot as compared to the previous snapshot

• Referenced Objects Diff USER: Shows the difference in the number of
referenced objects for the same method in the current snapshot as
compared to the user-selected snapshot

• Referenced Bytes Diff USER: Shows the difference in the memory
used by the referenced objects for the same method in the current
snapshot as compared to the user-selected snapshot

To add or remove data to the report:

1. From the Memory Profiling menu, select Hide/Show Data.

2. Toggle the data that you want to hide or display

To sort the report:

• In the Memory Profiling window, click a column label to sort the table
on that value.

To obtain a differential report:

• From the Memory Profiling menu, select Diff with Previous
Referenced Objects.

To obtain a user differential report:

1. In the Report Explorer, select the current snapshot

2. Right-click another snapshot in the same Test node and select Diff
Report.

JVMPI Technology

Memory Profiling for Java uses a special dynamic library, known as the
Memory Profiling Agent, to provide advanced reports on Java Virtual
Machine (JVM) memory usage.

Garbage Collection

JVMs implement a heap that stores all objects created by the Java code.

 125

Memory for new objects is dynamically allocated on the heap. The JVM
automatically frees objects that are no longer referenced by the program,
preventing many potential memory issues that exist in other languages.
This process is called garbage collection.

In addition to freeing unreferenced objects, a garbage collector may also
reduce heap fragmentation, which occurs through the course of normal
program execution. On a virtual memory system, the extra paging required
to service an ever growing heap can degrade the performance of the
executing program.

JVMPI Agent

Because of the memory handling features included in the JVM, Memory
Profiling for Java is quite different from the feature provided for other
languages. Instead of Source Code Insertion technology, the Java
implementation uses a JVM Profiler Interface (JVMPI) Agent whose task is
to monitor JVM memory usage and to provide a memory dump upon
request.

The JVMPI Agent analyzes the following internal events of the JVM:

• Method entries and exits

• Object and primitive type allocations

The JVMPI Agent is a dynamic library DLL or lib.so depending on the
platform used that is loaded as an option on the command line that
launches the Java program.

During execution, when the agent receives a snapshot trigger request, it can
either an instantaneous JVMPI dump of the JVM memory, or wait for the
next garbage collection to be performed.

Note Information provided by the instantaneous dump includes actual
memory use as well as intermediate and unreferenced objects that

126

are normally freed by the garbage collection. In some cases, such
information may be difficult to interpret correctly.

The actual trigger event can be implemented with any of the following
methods:

• A specified method entry or exit used in the Java code

• A message sent from the Snapshot button or menu item in the
graphical user interface

• Every garbage collection

The JVMPI Agent requires that the Java code is compiled in debug mode,
and cannot be used with Java in just-in-time (JIT) mode.

Performance Profiling

The Performance Profiling feature puts successful performance engineering
within your grasp. It provides complete, accurate performance data—and
provides it in an understandable and usable format so that you can see
exactly where your code is least efficient. Using Performance Profiling, you
can make virtually any program run faster. And you can measure the
results.

Performance Profiling measures performance for every component in C or
C++ source code, in real-time, and on both native or embedded target
platforms. Performance Profiling works by instrumenting the C and C++
source code of your application. After compilation, the instrumented code
reports back to Test RealTime after the execution of the application.

• You associate Performance Profiling with an existing test or application
code.

• You build and execute your code in Test RealTime.

 127

• The application under test, instrumented with the Performance
Profiling feature, then directs output to the Performance Profiling
Viewer, which a provides a detailed report of memory issues.

Performance Profiling Results

The Performance Profiling report provides function profiling data for your
program and its components so that you can see exactly where your
program spends most of its time.

Top Functions Graph

This section of the report provides a high level view of the largest time
consumers detected by Performance Profiling in your application.

Performance Summary

This section of the report indicates, for each instrumented function,
procedure or method (collectively referred to as functions), the following
data:

• Calls: The number times the function was called

128

• Function (F) time: The time required to execute the code in a function
exclusive of any calls to its descendants

• Function+descendant (F+D) time: The total time required to execute
the code in a function and in any function it calls.

Note that since each of the descendants may have been called by
other functions, it is not sufficient to simply add the descendants'
F+D to the caller function's F. In fact, it is possible for the
descendants' F+D to be larger than the calling function's F+D. The
following example demonstrates three functions a, b and c, where
both a and b each call c once:

function F F+D

a 5 15

b 5 15

c 20 20

The F+D value of a is less than the F+D of c. This is because the F+D of a (15)
equals the F of a (5) plus one half the F+D of c (20/2=10).

• F Time (% of root) and F+D Time (% of root): Same as above,
expressed in percentage of total execution time

• Average F Time: The average time spent executing the function each
time it was called

Performance Profiling SCI Dump Driver

In C and C++, you can dump profiling trace data without using standard
I/O functions by using the Performance Profiling Dump Driver API
contained in the atqapi.h file, which is part of the Target Deployment Port

To customize the Performance Profiling Dump Driver, open the Target

 129

Deployment Port directory and edit the atqapi.h. Follow the instructions
and comments included in the source code.

Performance Profiling Viewer Preferences

The Preferences dialog box allows you to change the appearance of your
Performance Profiling reports.

To choose Performance Profiling report colors and attributes:

1. Select the Performance Profiling Viewer node:

• Background color: This allows you to choose a background color for
the Performance Profiling Viewer window.

2. Expand the Performance Profiling Viewer node, and select Styles:

• Styles: This list allows you to select one or several styles that you want
to change. To change several styles at the same time, you can perform
multiple selections in the style list.

• Font: This allows you to change the font type and size for the selected
style.

• Text Color: This allows you to change the foreground and background
colors for the selected style. This opens a standard color palette.

• Text Attributes: This allows you to set the selected style to Bold, Italic,
Underlined or Dashed.

3. Click OK to apply your changes.

Using the Performance Profiling Viewer

The product GUI displays Performance Profiling results in the Performance
Profiling Viewer.

130

Reloading a Report

If a Performance Profiling report has been updated since the moment you
have opened it in the Performance Profiling Viewer, you can use the Reload
command to refresh the display:

To reload a report:

1. From the View Toolbar, click the Reload button.

Resetting a Report

When you run a test or application node several times, the Performance
Profiling results are appended to the existing report. The Reset command
clears previous Performance Profiling results and starts a new report.

To reset a report:

1. From the View Toolbar, click the Reset button.

Exporting a Report to HTML

Performance Profiling results can be exported to an HTML file.

To export results to an HTML file:

From the File menu, select Export

Runtime Tracing

About Runtime Tracing

Runtime Tracing is a feature for monitoring real-time dynamic interaction
analysis. Runtime Tracing uses exclusive source-code instrumentation
technology to generate trace data, which is turned into UML sequence
diagrams within the Test RealTime GUI.

 131

In Test RealTime, Runtime Tracing can run either as a standalone product,
or in conjunction with a Test RealTime component or system testing test
node.

• You associate Performance Profiling with an existing test or application
code.

• You build and execute your code in Test RealTime.

• The application under test, instrumented with the Runtime Tracing
feature, then directs output to the UML/SD Viewer, which a provides a
real-time UML Sequence Diagram of your application's behavior.

Understanding Runtime Tracing UML Sequence Diagrams

Below are a series of examples of Runtime Tracing UML Sequence Diagram
output:

• Object instances

• C++ exceptions

• File instances

• Loops

Object Instances and Routine I/O

The lifeline of an object is represented in the UML/SD Viewer as shown
below.

The instance creation box displays the name of the instance.

Example

Below is an example of object lifelines generated by Runtime Tracing from a
C++ application.

132

In this C++ example, functions and static methods are attached to the World
instance.

Objects are labelled with obj<number>:<classname>

The black cross represents the destruction of the instance.

Constructors are displayed in green.

Destructors are blue.

Return messages are dotted red lines.

Other functions and methods are black.

 133

The main() is a function of the World instance called by the same World
instance.

To jump to the corresponding portion of source code:

• Double-click an element of the object lifeline to open the Text Editor at
the corresponding line in the source code.

To jump to the beginning or to the end of an instance:

• Right-click an element of the object lifeline and select Go to Head or
Go to Destruction in the pop-up menu.

To filter an instance out of the UML sequence diagram:

• Right-click an element of the object lifeline and select Filter instance in
the pop-up menu.

Runtime Tracing with a Test Node

When Runtime Tracing is activated with a Component Testing or System
Testing test node, monitoring a UML sequence diagram of the execution
from Runtime Tracing is a matter of including Runtime Tracing in the Build
options of an existing test node.

If however you are using Runtime Tracing on its own, you need to create an
application node in the Project Explorer, and associate it with the source
files that you want to monitor.

To set the Runtime Tracing option:

1. From the Build toolbar, click the Options button.

2. In the options list, select Runtime Tracing.

3. Click anywhere outside the options list to close it.

Next time you run a Make command on the selected test node, a Runtime
Tracing UML sequence diagram will be produced simultaneously with the
standard test output.

134

To View Runtime Tracing output:

• Runtime Tracing output is displayed, with the UML/SD Viewer, in the
same UML sequence diagram as the standard test's graphical output.

Multi-Thread Support

Runtime Tracing can be configured for use in a multi-threaded environment
such as Posix, Solaris and Windows.

Multi-thread mode protects Target Deployment Port global variables
against concurrent access. This causes a significant increase in Target
Deployment Port size as well as an impact on performance. Therefore, select
this option only when necessary.

Multi thread settings:

These settings are ignored if you are not using a multi-threaded
environment. To change these settings, use the Runtime Tracing Control
Settings dialog box.

• Maximum number of threads: This value sets the size of the thread
management table inside the Target Deployment Port. Lower values
save memory on the target platform. Higher values allow more
simultaneous threads.

• Dump note on thread creation: When selected, the UML Sequence
Diagram displays a note ("Thread Creation") each time a new thread is
created.

• Dump note on thread schedule: When selected, the UML Sequence
Diagram displays a note ("Thread Schedule") each time a thread's
schedule is changed.

 135

Partial Trace Flush

When using this mode, the Target Deployment Port only sends messages
related to instance creation and destruction, or user notes. All other events
are ignored. This can be useful to reduce the output of trace.

When Partial Trace Flush mode is enabled, message dump can be toggled
on and off during trace execution.

The Partial Trace Flush settings are located in the Runtime Tracing Settings
dialog box.

To set Partial Trace Flush from the Node Settings:

1. In the Project Explorer, click the Open Settings... button.

2. Select one or several nodes in the Configuration pane.

3. Select the Runtime Analysis node and the Runtime Tracing node.

4. Select Runtime Tracing Control.

5. Set the Partial trace flush setting to Yes or No to activate or disable the
mode.

6. When you have finished, click OK to validate the changes.

To toggle message dump from within the source code:

To do this, you can use the Runtime Tracing pragma user directives:

• _ATT_START_DUMP

• _ATT_STOP_DUMP

• _ATT_TOGGLE_DUMP

• _ATT_DUMP_STACK

See the Reference Manual for more information about pragma directives.

136

To control message dump through a user signal (native UNIX only):

This capability is available only when using a native UNIX target platform.

Under UNIX, the kill command allows you to send a user signal to a
process. Runtime Tracing can use this signal to toggle message dump on
and off.

1. In the Project Explorer, click the Open Settings... button.

2. Select one or several nodes in the Configuration pane.

3. Select the Runtime Analysis node and the Runtime Tracing node.

4. Select Runtime Tracing Control.

5. Set the Partial trace flush setting to Yes or No to activate or disable the
mode.

6. When you have finished, click OK to validate the changes.

Note By default, the expected signal is SIGUSR1, but you can change this
by setting the ATT_SIGNAL_DUMP environment variable to the
desired signal number. See the Reference Manual for more
information about environment variables.

Trace Item Buffer

Buffering allows you to reduce formatting and I/O processing at time-
critical steps by telling the Target Deployment Port to only output trace
information when its buffer is full or at user-controlled points.

This can prove useful when using Runtime Tracing on real-time
applications, as you can control buffer flush from within the source-under-
trace.

To activate or de-activate trace item buffering:

1. In the Project Explorer, click the Open Settings... button.

 137

2. Select one or several nodes in the Configuration pane.

3. Select the Runtime Analysis node and the Runtime Tracing node.

4. Select Runtime Tracing Control.

5. Set the Buffer trace items setting to Yes or No to activate or disable the
mode.

6. Set the size of the buffer in the Items buffer size box.

7. When you have finished, click OK to validate the changes.

A smaller buffer optimizes memory usage on the target platform, whereas a
larger buffer improves performance of the real-time trace. The default value
is 64.

To flush the trace buffer through a user directive:

It can be useful to flush the buffer before entering a time-critical part of the
application-under-trace. You can do this by adding the
_ATT_FLUSH_ITEMS user directive to the source-under-trace.

Note See Runtime Tracing pragma directives in the Reference Manual to
control Target Deployment Port buffering from within the source
code.

Splitting Trace Files

During execution, Runtime Tracing generates a .tdf dynamic file. When a
large application is instrumented, the size of the .tdf file can impact
performance of UML/SD Viewer.

Splitting trace files allows you to split the .tdf trace file into smaller files,
resulting in faster display of the UML Sequence Diagram and to optimize
memory usage. However, split trace files cannot be used simultaneously
with On-the-Fly tracing.

138

When displaying split .tdf files, Runtime Tracing adds Synchronization
elements to the UML sequence diagram to ensure that all instance lifelines
are synchronized.

To set Split Trace mode:

1. From the Project Explorer, select the highest level node from which
you want to activate split trace mode, the Workspace for instance.

2. Right-click the node, and select Settings... from the pop-up menu.

3. In the Configuration Settings dialog, select the Runtime Tracing tab

4. From the options box, select Miscellaneous options.

5. Select Override parent settings to allow modification of the node's
settings.

6. Select Split trace in the Split Runtime Tracing area.

7. Set the Size (Kb) of each split .tdf. The default size is 5000 Kb.

8. Specify a Prefix for the split .tdf filenames. The prefix is followed by a
4-digit number that identifies each file.

9. Click OK.

Note The total size of split .tdf files is slightly larger than the size of a
single .tdf file, because each file contains additional context
information.

 139

 141

Automated Testing 3
The test features provided with Rational Test RealTime allow you to submit
your application to a robust test campaign. Each feature uses a different
approach to the software testing problem, from the use of test drivers
stimulating the code under test, to source code instrumentation testing
internal behavior from inside the running application.

Using Test Features

The test features provided with Test RealTime allow you to submit your
application to a robust test campaign. Each feature uses a different
approach to the software testing problem, from the use of test drivers
stimulating the code under test, to source code instrumentation testing
internal behavior from inside the running application.

• Component Testing for C and Ada performs black box or functional
testing of software components independently of other units in the
same system.

• Component Testing for C++ uses object-oriented techniques to address
embedded software testing.

• System Testing for C is dedicated to testing message-based
applications.

These test features each use a dedicated scripting language for writing
specialized test cases. Test RealTime's test features can also be used together
with any of the runtime analysis features.

142

To use a test feature:

Here is a rundown of the main steps to using the Test RealTime test
features:

1. Set up a new project in Test RealTime. This can be done automatically
with the New Project Wizard.

2. Follow the Activity Wizard to add your application source files to the
workspace.

3. Select the source files under test with the Test Generation Wizard to
create a test node. The Wizard guides you through process of selecting
the right test feature for your needs.

4. Develop the test cases by completing the automatically generated test
scripts with the corresponding script language and native code.

5. Use the Project Explorer to set up the test campaign and add any
additional runtime analysis or test nodes.

6. Run the test campaign to builds and execute a test driver with the
application under test.

7. View and analyze the generated test reports.

Component Testing for C and Ada

The Component Testing feature of Test RealTime provides a unique, fully
automated, and proven solution for C, C++, Java and Ada Component
Testing, dramatically increasing test productivity.

Overview

Basically, Component Testing for C and Ada interacts with your source
code through a scripting language. There are three scripting languages,
each corresponding to the language used by your source code:

 143

• C Test Script Language

• Ada Test Script Language

The Rational Test RealTime Reference Manual contains full reference
information about each of these languages.

You use the Test RealTime GUI to set up your test campaign, write a C or
Ada .ptu test script, run your tests and view the results.

When the test is executed, Component Testing compiles both the test scripts
and the source under test, then instruments the source code if necessary and
generates a test driver.

The test driver, TDP, stubs and dependency files make up a test harness.
The test harness interacts with the source code under test and produces test
results.

Both the instrumented application and the test driver provide output data
which is displayed within Test RealTime.

Note If your are upgrading from a previous version of Test RealTime,
please see how to import V2001 Component Testing files.

C and Ada Testing Overview

Integrated, Simulated and Additional Files

Component Testing for C and Ada

When creating a Component Testing test node for C and Ada, the
Component Testing wizard offers the following options for specifying
dependencies of the source code under test:

• Integrated files

144

• Simulated files

• Additional files

Integrated Files

This option provides a list of source files whose components are integrated
into the test program after linking.

The Component Testing wizard analyzes integrated files to extract any
global variables that are visible from outside. For each global variable the
Parser declares an external variable and creates a default test which is
added to an environment named after the file in the .ptu test script.

By default, any symbols and types that could be exported from the source
file under test are declared again in the test script.

Simulated Files

This option gives the Component Testing wizard a list of source files to
simulateor stubupon execution of the test.

A stub is a dummy software component designed to replace a component
that the code under test relies on, but cannot use for practicality or
availability reasons. A stub can simulate the response of the stubbed
component.

The Component Testing parser analyzes the simulated files to extract the
global variables and functions that are visible from outside. For each file, a
DEFINE STUB block, which contains the simulation of the file's external
global variables and functions, is generated in the .ptu test script.

By default, no simulation instructions are generated.

 145

Additional Files

Additional files are merely dependency files that are added to the
Component Testing test node, but ignored by the source code parser.
Additional files are compiled with the rest of the test node but are not
instrumented.

For example, Microsoft Visual C resource files can be compiled inside a test
node by specifying them as additional files.

You can toggle a source file from under test to additional by using the
Properties Window dialog box.

Tester Configuration

The Tester Configuration dialog box allows you to configure the
Component Testing test driver.

To open the Tester Configuration dialog box:

1. In the Project Explorer, right-click a .ptu test script.

2. From the pop-up menu, select Tester Configuration.

Service/Test Tab

Use this tab to select one or several SERVICEs or TESTs as defined in the
.ptu test script. During execution, the Component Testing node plays the
selected SERVICEs or TESTs.

Family Tab

Use this tab to select one or several families as defined in the .ptu test script.
During execution, the Component Testing node plays the selected families.

146

Importing V2001A Component Testing Files

The file format of ATTOL UniTest and Test RealTime v2001A Component
Testing for C and Ada is not compatible with the current v2002 Release 2 file
format.

This means that the .prj, .cmp, and .ses files must be imported and
converted in order to be used in a v2002 Release 2 Test RealTime project.

The Import feature creates a new workspace with the updated Component
Testing script files.

Note This problem only affects the Component Testing for C and Ada
feature. Use previous Component Testing for C++ and System
Testing tests in your current v2002 Release 2 projects without
importing them.

1. From the File menu, select Import.

2. In the window Import V2001A Component Testing Files Into a New
Workspace, select the Add... button and then select those V2001
Component Testing files (with the extension .prj, .cmp, and .ses) you
wish to import.

3. Click the OK button

4. In the window Name Workspace, type in a name for the new
workspace and click OK.

Limitations

This feature imports the session, project and campaign data from the old
version of Component Testing, including references to and from test scripts
as well as tested and integrated source files.

After the importation, you must manually check and update the following
items:

 147

• Target Deployment Port: Use the TDP Editor to reconfigure any
custom ATTOL Target Package settings. The Target Deployment Guide
contains advanced information about upgrading from an old Target
Package.

• Configuration Settings: The Import feature retrieves -D condition
information and include directories. Check the General, Build and Unit
Testing tabs of the Configuration Settings dialog box to identify any
other settings that need updating.

• Service and Family parameters: These are not imported and require
manual updating with the Tester Configuration function.

Options and Settings

Array and Structure Display

The Array and Structure Display option indicates the way in which
Component Testing processes variable array and structure statements. This
option is part of the Component Testing Settings for C dialog box.

Standard Array and Structure Display

This option processes arrays and structures according to the statement with
which they are declared. This is the default operating mode of Component
Testing. The default report format is the Standard editing.

Extended Array and Structure Display

Arrays of variables may be processed after the keywords VAR or ARRAY,
and structured variables after the keywords VAR, ARRAY, or
STRUCTURE:

• After a VAR statement, each element in the array is initialized and
tested one by one. Likewise, each member of a structure that is an array
is initialized and tested element by element.

148

• After an ARRAY statement, the entire array is initialized and checked.
Likewise, each member of a structure is initialized and checked
element by element.

• After a STRUCTURE statement, the whole of the structure is
initialized and checked.

When Extended editing is selected, Component Testing interprets ARRAY
and STRUCTURE statements as VAR statements.

The output records in the unit test report are then detailed for each element
in the array or structure.

Note This setting slightly slows down the test execution because checks
are performed on each element in the array.

Packed Array and Structure Display

This command has the opposite effect of the Extended editing option. When
Packed editing is selected, Component Testing interprets VAR statements
as ARRAY or STRUCTURE statements.

Array and structure contents are fully tested, only the output records are
more concise.

Note This setting slightly improves speed of execution because checks are
performed on each array as a whole.

Initial and Expected Values

The Initial and Expected Value settings are part of the Component Testing
Settings for C dialog box and describes how values assigned to each
variable are displayed in the Component Testing report. Component
Testing allows three possible evaluation strategy settings.

 149

Variable Only

This evaluation strategy setting generates both the initial and expected
values of each variable evaluated by the program during execution.

This is possible only for variables whose expression of initial or expected
value is not reducible by the Test Compiler. For arrays and structures in
which one of the members is an array, this evaluation is not given for the
initial values. For the expected values, however, it is given only for Failed
items.

Value Only

With this setting, the test report displays for each variable both the initial
value and the expected value defined in the test script.

Combined evaluation

The combined evaluation setting combines both settings. The test report
thus displays the initial value, the expected value defined in the test script,
and the value found during execution if that value differs from the expected
value.

Test Script Compiler Macro Definitions

You can specify a list of conditions to be applied when starting the Test
Script Compiler. You can then generate the test harness conditionally. In the
test script, you can include blocks delimited with the keywords IF, ELSE,
and END IF.

If one of the conditions specified in the IF instruction is present, the code
between the keywords IF and ELSE (if ELSE is present), and IF and END IF
(if ELSE is not present) is analyzed and generated. The ELSE / END IF
block is eliminated.

150

If none of the conditions specified in the IF instruction is satisfied, the code
between the keywords ELSE and END IF is analyzed and generated.

By default, no generation condition is specified, and the code between the
keywords ELSE and END IF is analyzed and generated.

Pointers

Testing Pointers against Pointer Structure Elements

To test pointers against structure elements which are also pointers, specify
for each pointer the variable it is pointing to.

For example, consider the following code:
typedef struct st_Test
{
 int a;
 int b;
 struct st_Test *Ptr1;
}st_Toto;
int FunctionTest (st_Toto *p_toto)
{
 int res=0;
if (p_toto != 0)
{
 if(p_toto->Ptr1 == 0)
 {
 res = 1;
 }
}
else
{
 res = 2;
}
 return(res);
}

To test the pointer p_toto, write the following test script:
SERVICE TestFunction
SERVICE_TYPE extern
-- Tested service parameter declarations
 #st_toto *p_toto;
-- By function returned type declaration

 151

 #int ret_TestFunction;
 ENVIRONMENT ENV_TestFunction
 VAR ret_TestFunction, init = 0, ev = init
 END ENVIRONMENT -- ENV_TestFunction
 USE ENV_TestFunction
 TEST 1
 FAMILY nominal
 ELEMENT

 STR *p_toto, init = { a => 0, b => 0, Ptr1 => NIL
}, ev= init
 STR *p_toto->Ptr1, init = {a=>2,b=>32, Ptr1=>NIL},
ev= init
 VAR ret_TestFunction, init = 0, ev = init
 #ret_TestFunction = TestFunction(p_toto);
 END ELEMENT
 END TEST -- TEST 1
FIN SERVICE -- TestFunction

Pointer and Array Ambiguities

Use the string_ptr keyword on a VAR line to work around the ambiguity of
the C language between arrays and pointers.

For example the following VAR line (supposing the declaration char*
string;) will generate C code that will copy the string into the memory
location pointed by string.

VAR string, init = "foo", ev = init
-- This is the "traditional" way

Of course, if no memory was allocated to the variable, this is not possible.

The following alternative approach causes the string to point to the memory
location containing "foo". The string is then compared to "foo" using a
string comparison function:

VAR string, string_ptr, init = "foo", ev = init
-- Note the additional field in the line

This syntax allows you to initialize the variable to "NIL", and to compare its
contents to a given string after the test.

Testing an Array Whose Elements are Unions

152

When testing an array of unions, detail your tests for each member of the
array, using VAR lines in the ELEMENT block.

Example

Considering the following variables:
#typedef struct {
int test1;
int test2;
int test3;
int test4;
int test5;
int test6;
} Test;
#typedef struct {
int champ1;
int champ2;
int champ3;
} Champ;
#typedef struct {
int toto1;
int toto2;
} Toto;
#typedef union {
Test A;
Champ B;
Toto C;
} T_union;
#extern T_union Tableau[4];

The test must be written element per element:
TEST 1
FAMILY nominal
 ELEMENT
 VAR Tableau[0], init = {A => { test1 => 0, test2 => 0,
test3 => 0, test4 => 0,
& test5 => 0, test6 =>
0} }, ev = init
 VAR Tableau[1], init = {B => { champ1 => 0, champ2 => 0,
champ3 => 0} }, ev = init
 VAR Tableau[2], init = {B => { champ1 => 0, champ2 => 0,
champ3 => 0}} , ev = init
 VAR Tableau[3], init = {B => { champ1 => 0, champ2 => 0,
champ3 => 0}} , ev = init
 #ret_fct;
 END ELEMENT

 153

END TEST -- TEST 1

Initializing Pointer Variables while Preserving the Pointed Value

To initialize a variable as a pointer while keeping the ability to test the value
of the pointed element, use the FORMAT string_ptr statement in your .ptu
test script.

This allows you to initialize your variable as a pointer and still perform
string comparisons using str_comp.

Example:
TEST 1

FAMILY nominal
 ELEMENT
 FORMAT pointer_name = string_ptr
-- Then your variable pointer_name will be first initialized
as a pointer

 VAR pointer_name, INIT="l11c01pA00", ev=init
-- It is initialized as pointing at the string "l11c01pA00",
--and then string comparisons are done with the expected
values using str_comp.

Functions

Testing Main Functions

You can use the Component Testing feature to test C language main
functions. To do so, you must rename those functions.

Example
#ifdef ATTOL
int test_main (int argc, char** argv)
#else
int main (int argc, char** argv)
#endif
{
...
}

154

If you are running an runtime analysis feature on the Component Testing
test node, you can also use the -rename command line option to rename the
main function name.

See the Instrumentor Line Command Reference section in the Rational Test
RealTime Reference Manual.

Functions Using a Variable Number of Parameters

Some functions accept a variable number of parameters on each call.

You can still stub these functions with the Component Testing feature by
using the '...' syntax indicating that there may be additional parameters of
unknown type and name.

In this case, Component Testing can only test the validity of the first
parameter.

Example

The standard printf function is a good a example of a function that can take
a variable number of parameters:

int printf (const char* param, ...);

Here is an example including a STUB of the printf function:
HEADER add, 1, 1
#extern int add(int a, int b);
##include <stdio.h>
BEGIN
DEFINE STUB MulitParam
#int printf (const char param[200], ...);
END DEFINE
SERVICE add
 #int a, b, c;
 TEST 1
 FAMILY nominal
 ELEMENT
 VAR a, init = 1, ev = init
 VAR b, init = 3, ev = init
 VAR c, init = 0, ev = 4

 155

 STUB printf("hello %s\n")12
 #c = add(a,b);
 END ELEMENT
 END TEST
END SERVICE

Functions Taking void* Parameters

When stubbing a function that takes void* type parameters, the Source
Code Parser generates incomplete code that might not compile.

When you are stubbing functions that take void* parameters, you must
check and edit the .ptu test script accordingly.

Example

Consider the following test script generated by the C Source Code Parser:
DEFINE STUB fct_sim_c
#int fct_sim(double _in c, void _inout d);
END DEFINE
You must modify the .ptu script like this:
DEFINE STUB fct_sim_c
#int fct_sim(double _in c, unsigned char _inout d);
END DEFINE
Or, if testing the parameters is not required:
DEFINE STUB fct_sim_c
#int fct_sim(double _no c, unsigned char _no d);
END DEFINE

Functions Using const Parameters

Functions using const parameters sometimes produce compilation errors
when stubbed with Test RealTime.

This is because the preprocessor generates variables that are used for testing
calls to the STUBs. These variables have the same type as the parameter to
the function being stubbed: const int. These const variables cannot be
modified, causing the compilation errors.

To work around this problem, you can to indicate that type modifiers for a
STUB parameter should be used in the function definition, but not in the

156

declaration of the variables used to control the STUBs.

To do this, add an @ character as a prefix to the the type modifier. If your
function takes a const pointer, then you don't need the @ prefix:

This technique can be used with any type modifier.

Example

Consider the following function:
extern int ConstParam(const int param);

To stub the function, you would normally write the following lines in the
.ptu test script. These will produce compilation error messages:

DEFINE STUB Example
#int ConstParam(const int _in param);
END DEFINE

Instead, use the following syntax to define the stub:
DEFINE STUB Example
#int ConstParam(@const int _in param);
END DEFINE

If your function takes a const pointer:
DEFINE STUB Example
#int ConstParam(const int _in *param);
END DEFINE

Functions Containing Type Modifiers

Type modifiers can appear in the signature of the function but should not
be used when manipulating any passed variables. When using type
modifiers, add @ prefix to the type modifier keyword.

Test RealTime recognizes @-prefixed type modifiers in the function
prototype, but ignores them when dealing internally with the parameters
passed to and from the function.

This behaviour is the default behaviour for the "const" keyword, the '@' is

 157

not necessary for const.

Example

Consider a type modifier __foo
DEFINE STUB tst_cst
#int ModifParam(@__foo float _in param);
END DEFINE

Note In this example, __foo is not a standard ANSI-C feature. To force
Test RealTime to recognize this keyword as a type modifier, you
must add the following line to the .ptu test script:

##pragma attol type_modifier = __foo

Functions Using _inout Mode Arrays

To stub a function taking an array in _inout mode, you must provide
storage space for the actual parameters of the function.

The function prototype in the .ptu test script remains as usual:
#extern void function(unsigned char *table);

The DEFINE STUB statement however is slightly modified:
DEFINE STUB Funct
#void function(unsigned char _inout table[10]);
END DEFINE

The declaration of the pointer as an array with explicit size is necessary to
memorize the actual parameters when calling the stubbed function. For
each call you must specify the exact number of required array elements.

ELEMENT
 STUB Funct.function 1 => (({'a', 'b', 'c', 'd', 'e', 'f',
'g', 'h', 'i', 0x0},
 & {'i', 'h', 'g', 'f', 'e', 'd', 'c', 'b', 'a', 0x0}))
 #call_the_code_under_test();
END ELEMENT

This naming convention compares the actual values and not the pointers.

The following line shows how to pass _inout parameters:

158

({<in_parameter>},{<out_parameter>})

Functions Taking char* Parameters

You can use Component Testing to stub functions that take a parameter of
the char* type.

The char* type causes problems with the Component Testing feature
because of the ambiguity built into the C programming language. The char*
type can represent:

• Pointers

• Pointers to a single char

• Arrays of characters of indeterminate size

• Arrays of characters of which the last character is the character \0, a C
string.

By default, Component Testing treats all variables of this type as C strings.
If this is not the desired behavior, then you must inform Component
Testing with the use of other instructions. To force to another representation
use one of the following methods.

Pointers

Define the stub as in the following example:
#int StubFunction(char* pChar);
DEFINE STUB Stubs
#int StubFunction(void* _in pChar)
END DEFINE
#char MyChar = 'A';
STUB StubFunction(NIL)0, (&MyChar)1

Pointers to a Single char

Define the type as _inout, as in the following example. The * isn't necessary
as the type must be a pointer to be an out parameter:

 159

#int StubFunction(char* pChar);
DEFINE STUB Stubs
#int StubFunction(char _inout pChar)
END DEFINE
STUB StubFunction(('a','A'))0

Arrays of Characters of Indeterminate Size

Use the FORMAT statement to force the treatment as a pointer to an
unsigned char and use the TAB instruction to test the variable as a table.
For example:

#int StubFunction(char* pChar);
DEFINE STUB Stubs
#int StubFunction(unsigned char _in Chars[4])
END DEFINE
STUB StubFunction({'a','b','c','d'})0, ({'A','B','C','D'})1

C strings

This is the default behavior:
#int StubFunction(char* pString);
DEFINE STUB Stubs
#int StubFunction(char* _in pString)
END DEFINE
STUB StubFunction("abcd")0, ("ABCD")1

C and Ada Test Script

Ada

Ada Records with Discriminants

You can use record types with discriminants, with the following ADA
restrictions:

• Initialization part must be complete.

• Evaluation can omit every field except discriminant fields.

Initialization and expected value expressions are ADA aggregates

160

beginning with the value of the discriminant.

Example
type rec (discr:boolean:=TRUE)
 case discr is
 when TRUE =>
 ch2:float;
 when FALSE =>
 ch3:integer;
 end case;
end record;
#r1: rec(TRUE);
#r2: rec;
TEST 1
FAMILY nominal
 ELEMENT
 var r1, init = (TRUE, 0.0), ev ==
 var r2, init = (FALSE, 1), ev = (TRUE, 1.0)
 #func (r);
 END ELEMENT
END TEST

Separate Compilation

You can make internal procedures and variables and the structure of
private types visible from the test program, by including them in the body
of the unit under test with a separate ADA instruction.

You must add the following line at the end of the body of the unit tested:
PACKAGE BODY <name>
...
 PROCEDURE Test is separate;
END;

Defining the procedure Test this way allows you to access every element of
the specification and also those defined in the body.

Generic Units

Types and objects in a generic unit depend on generic formal parameters
that are not known by the Test Script Compiler. Therefore, you cannot test
generic units.

 161

On the other hand, you can test instances of generic units. Such instances
must appear in compilation units or at the beginning of the test script, as
follows:

WITH <generic>;
PACKAGE <instance> IS NEW <generic> (...);

Unknown Values

In some cases, Component Testing for Ada is unable to produce a default
value in the .ptu test script. When this occurs, Component Testing produces
an invalid value with the prefix _Unknown.

Such cases include:

• Private values: _Unknown_private_value

• Function pointers: _Unknown_access_to_function

• Tagged limited private: _Unknown_access_to_tagged_limited_private

Before compiling you must manually replace these _Unknown values with
valid values.

Test Program Entry Point

Since ATTOL_TEST is a sub-unit and not a main unit, Component Testing
for Ada generates a main procedure at the end of the test program with the
name provided on the command line.

Two methods are available to start the execution of the test program:

• Call during the elaboration of the unit under test.

• Call by the main procedure.

Call During the Elaboration of the Unit

In this case, you must add an additional line in the body of the unit tested:
PACKAGE <name>

162

...
END;
PACKAGE BODY <name>
...
 PROCEDURE ATTOL_TEST is SEPARATE;
BEGIN
...
 ATTOL_TEST;
END;

The package specification is not modified, but the test procedure is called at
every elaboration of the package. Therefore, you need to remove or replace
this call with an empty procedure after the test phase.

Call by the Main Procedure

In this case, you must add an additional line in the specification of the unit
tested:

PACKAGE < name>
...
 PROCEDURE ATTOL_TEST;
...
END;
PACKAGE BODY <name> is
...
 PROCEDURE ATTOL_TEST is SEPARATE;
END;

Component Testing will then automatically generate a call to the
ATTOL_TEST procedure in the main procedure of the test program. The
test will be executed during the execution of the main program.

Limitations

Consider the following limitations:

• The unit under test must be of type package.

• The root body of ATTOL_TEST (procedure ATTOL_TEST is separate)
cannot appear inside a generic package.

 163

Testing Generic Packages

To test a generic package, you must instanciate it and then call the instance.
This however causes problems in cases where the test driver procedure
must be generated separately from the tested package.

To avoid this, you need to generate the test driver separately and call it as a
procedure of the instance.

In the .ptu test script, replace the BEGIN line with the following statement:
BEGIN GENERIC(<Generic_Package>, <Instance>),
<Procedure_Name>

where <Generic_Package> is the name of the generic unit under test, and
<Instance> is the name of the instanciated unit from the generic. The
<Procedure_Name> parameter is not mandatory. Component Testing uses
Attol_Test by default.

This Syntax automatically generates a separate procedure <Procedure_Name>
of <Generic_Package> and then calls the procedure
<Instance>.<Procedure_Name>, which is code generated by the Component
Testing Preprocessor).

Note This technique also allows testing of private types within the generic
package.

Declaring Global Variables for Testing

The Target Deployment Ports for Ada do not provide any variables which
might be used freely by the tester.

To avoid having to modify the code under test, it is easier to add an extra
Ada package, which is actually just the spec part of the package, to provide
a set of globally accessible variables. You can do this directly in the .ptu test
script.

164

Declaring Global Variables

Any code inserted between the HEADER and BEGIN keywords is copied
into the generated code as is. For example:

Header Code_Under_Test, 1.0, 1.0
 #With Code_Under_Test; -- only if Code_Under_Test is
used within My_Globals
 -- this context clause goes into the package My_Globals
 #package My_Globals is
 # Global_Var_Integer : Integer := 0;
 #end My_Globals;
 #with Code_Under_Test;
 #with My_Globals;
 -- these two context clauses go into the generated test
harness
Begin
-- etc..

Note Any Ada instruction between HEADER and the BEGIN instruction
must be encapsulated into a procedure or a package. Context clauses
are possible.

Accessing Global Variables

The extra global variable package is visible from within all units of the test
driver.

Variables can be accessed like this:
#My_Globals.Global_Var_Integer := 1;

Variables can be accessed from a DEFINE STUB block for example:
Define Stub Another_Package
#with My_Globals;
#procedure some_proc (param : in out some_type) is
#begin
My_Globals.Global_Var_Integer := 2;
#end some_proc;
-- however, no "return" statement is possible within this
block
End Define

Variables can be accessed in the ELEMENT blocks, just like any other

 165

variable:
VAR My_Globals.Global_Var_Integer, init = 0, EV = 1

Rational Test RealTime processes the .ptu test script in such a way that
global variable package automatically becomes a separate compilable unit.

Generating a Separate Test Harness

Because of restrictions of the Ada language, Component Testing cannot
generate a test harness which is a separate of more than one package.

You can however generate the main test harness as a separate of one of the
packages and declare additional procedures as separates of other packages.
This is done in the header of the .ptu test script, as in the following example:

Header Code_Under_Test, 1.0, 1.0
 #separate (Second_Package);
 #procedure Something is
 #begin
 # -- here internal variables of Second_Package are
 # -- visible; private types can be accessed etc.
 # null;
 #end Something;
 #with Second_Package;
 -- this is to gain visibility on the package
 -- from within the test harness
Begin First_Package, Test_Entry_Point
-- this causes Test RealTime to generate a procedure
-- "Test_Entry_Point" as a separate of "First_Package" as
-- "main" procedure of the Test Harness
-- etc.

If the test script requires access to items from Second_Package, it can call the
corresponding procedure from within an ELEMENT block of this .ptu test
script.

Element
 -- some VAR instructions here
 #Second_Package.Something;
 #-- here is the call to the tested procedure
End Element

166

Test Script Modification

The following modified BEGIN instruction tells Component Testing to
generate a separate test procedure:

BEGIN <tested_unit> [, <separate_procedure>]

where:

• <tested_unit> is the name of the package under test (modified as shown
in the preceding paragraph).

• <separate_procedure> is the name of the separate procedure to be
generated. This parameter is optional. By default, Component Testing
uses ATTOL_TEST.

The generation will be then occur as follows:
SEPARATE (<unit_tested>)
PROCEDURE <separate_procedure> is
 ...
END ATTOL_TEST;

When the unit tested is a sub-unit, you must include the parent unit in ADA
in its name.

The separate procedure will now be referred to as ATTOL_TEST.

Testing Ada Tasks

As a general matter, Test RealTime Component Testing for Ada was
designed for synchronous programming. However, it is possible to achieve
component testing even in an asynchronous environment.

The important detail is that any task which might be producing Runtime
Analysis information (especially by calling stubbed procedures or
functions) must be terminated when control reaches the END ELEMENT
instruction in the .ptu test script.

If the code under test does not provide select statements or entry points in

 167

order to request the termination of the task, an abort call to the task might
be necessary. For tasks who terminate after a certain time (not entering a
infinite loop), the tester might check the task’s state and sleep until
termination of the task. In the .ptu test script, this might read as follows:

#while not TaskX’Terminated loop
delay 1;
#end loop;

This instruction block is placed just before the END ELEMENT statement of
the Test Script.

Example

The source files and complete .ptu script for following example are
provided in the examples/Ada_Task directory.

In this example, the task calls a stubbed procedure. Therefore the task must
be terminated from within the Test Script. Two different techniques of
starting and stopping the task are shown here in Test 1 and Test 2.

HEADER prg_ss_tst, 0.3, 0.0
#with Pck_Muet;
BEGIN Prg_Ss_Tst
DEFINE STUB Pck_Muet
#with Text_IO;
#procedure Proc_Bouchonnee is
#begin
Text_IO.Put_Line("Stub called.");
#end;
END DEFINE
SERVICE UNE
SERVICE_TYPE extern
 #Param_Une : duration;
 #task1 : Prioritaire;
 TEST 1
 FAMILY nominal
 ELEMENT
 VAR Param_Une, init = duration(0), ev = init
 STUB Pck_Muet.Proc_Bouchonnee 1..1 => ()
 #Task1.Unit_Testing_Exit_Loop;
 #delay duration(5);
 #Task1.Unit_Testing_Wait_Termination;
 END ELEMENT

168

 END TEST -- TEST 1
 TEST 2
 FAMILY nominal
 ELEMENT
 VAR Param_Une, init = duration(2), ev = init
 STUB Pck_Muet.Proc_Bouchonnee 1..1 => ()
 #declare
 # Task2 : T_Prio := new Prioritaire;
 #begin
 # Task2.Do_Something_Useful(Param_Une);
 # Task2.Unit_Testing_Exit_Loop;
 # Task2.Unit_Testing_Wait_Termination;
 #end;
 END ELEMENT
 END TEST -- TEST 2
END SERVICE --UNE

In the BEGIN line of the script, it is not necessary to add the name of the
separate procedure Attol_Test, as this is the default name;

The user code within the STUB contains a context clause and some custom
native Ada instructions.

In both Test 1 and Test 2 it is necessary not only to stop the main loop of the
task before reaching the END ELEMENT instruction, but also the task itself
in order to have the tester return.

Task1 and Task2 could run in parallel, however, the test Report would be
unable to distinguish between the STUB calls coming in from either task,
and would show the calls in a cumulative manner.

The entry points Unit_Testing_Exit_Loop and
Unit_Testing_Wait_Termination can be considered as implementations for
testing purposes only. They might not be used in the deployment phase.

The second test is False in the Report, the loop runs twice. This allows to
check that the dump goes through smoothly.

Environments

 169

About Environments

When drawing up a test script for a service, you usually need to write
several test cases. It is likely that, except for a few variables, these scenarios
will be very similar. You could avoid writing a whole series of similar
scenarios by factorizing items that are common to all scenarios.

Furthermore, when a test harness is generated, there are often side-effects
from one test to another, particularly as a result of unchecked modification
of global variables.

To avoid these two problems and leverage your test script writing, the Test
Script Language lets you define test environments introduced by the
keyword ENVIRONMENT.

These test environments are effectively a set of default tests performed on
one or more variables.

Declaring Environments

A test environment consists of a list of variables for which you specify:

• Default initialization conditions for before the test

• Default expected results for after the test

Use the VAR, ARRAY, and STR instructions described previously to
specify the status of the variables before and after the test.

You can only use an environment once you have defined it.

Delimit an environment using the instructions ENVIRONMENT
<environment_name> and END ENVIRONMENT. You must place it after
the BEGIN instruction. When you have declared it, an environment is
visible to the block in which it was declared and to all blocks included
therein.

170

Example

The following example illustrates the use of environments:
HEADER histo, 1, 1
##include <math.h>
##include "histo.h"
BEGIN
ENVIRONMENT image
 ARRAY image, init = 0, ev = init
END ENVIRONMENT
USE image
SERVICE COMPUTE_HISTO
 #int x1, x2, y1, y2;
 #int status;
 #T_HISTO histo;
 #T_IMAGE image1;
 ENVIRONMENT compute_histo
 VAR x1, init = 0, ev = init
 VAR x2, init = SIZE_IMAGE?1, ev = init
 VAR y1, init = 0, ev = init
 VAR y2, init = SIZE_IMAGE?1, ev = init
 ARRAY histo, init = 0, ev = 0
 VAR status, init == , ev = 0
 END ENVIRONMENT
 USE compute_histo

Environment Override

To provide more flexibility in using environments, you can override the
initialization and test specifications in an ENVIRONMENT block for one or
more variables, one or more array elements, or one or more fields of a
structured variable by using either of the following:

• A new environment

• The instructions VAR, ARRAY, or STR in the ELEMENT block

The ENVIRONMENT concept greatly improves test robustness. You can
use this approach to group default initialization and test specifications with
all the variables that are global to a module under test, allowing you to
check that unexpected global variables in tests on a service are indeed not
modified.

 171

The following steps are used to handle environments:

• VAR, ARRAY and STR instructions are stored between
ENVIRONMENT and END ENVIRONMENT instructions.

• When the Test Compiler comes across the instruction USE, it
determines the scope of the environment that has been stored.

• At every END ELEMENT instruction, the Test Compiler browses
through all visible environments beginning with the most recently
declared one. The test compiler then checks every environment
variable to see if it has been fully or partially tested. If it has only been
partially tested, the test compiler generates the necessary tests to
complete the testing of the variable.

This process means that:

• Tests linked to environments are always carried out last.

• The higher the environment's precedence, the earlier the tests it
contains will be carried out.

Example

The following example illustrates an override of an array element in two
tests:

 TEST 1
 FAMILY nominal
 ELEMENT
 VAR histo[0], init = 0, ev = SIZE_IMAGE*SIZE_IMAGE
 #status = compute_histo(x1,y1,x2,y2,histo);
 END ELEMENT
 END TEST
 TEST 2
 FAMILY nominal
 ELEMENT
 ARRAY image, init = {others => {others => 100}}, ev = init
 ARRAY histo[100], init = 0, ev = SIZE_IMAGE*SIZE_IMAGE
 #status = compute_histo(x1,y1,x2,y2,histo);
 END ELEMENT
 END TEST

172

In the first test, only histo[0] has an override. Therefore, all the default tests
were generated except for the test on the histo variable, which had its 0
element removed, and a test was generated on histo[1..255].

In the second test, the override is more noticeable; the histo[100] element has
been removed to generate two tests: one on histo[0..99], and the other on
histo[101..255].

Specifying Parameters for Environments

You can specify parameters for environments.

Declare the parameters in the ENVIRONMENT instruction as you would
for a service:

ENVIRONMENT compute_histo1(a,b,c,d)
 VAR x1, init = a, ev = init
 VAR x2, init = b, ev = init
 VAR y1, init = c, ev = init
 VAR y2, init = d, ev = init
 ARRAY histo[0..SIZE_HISTO?1], init = 0, ev = 0
 VAR status, init ==, ev = 0
END ENVIRONMENT

The parameters are identifiers, which you can use in variable status
instructions, as follows:

• In initial or expected value expressions

• In expressions delimiting bounds of arrays in extended mode

The parameters are initialized when they are used:
USE compute_histo1(0,0,SIZE_IMAGE?1,SIZE_IMAGE?1)

The number of values must be strictly equal to the number of parameters
defined for the environment. The values can be expressions of any type.

Using Environments

The USE keyword declares the use of an environment (in other words, the

 173

beginning of that environment's visibility).

The impact or visibility of an environment is determined by the position at
which you declare the environment's use with the USE statement.

The initial values and tests associated with the environment are applied as
follows, depending on the position of the declaration:

• To all the tests in a program

• To all the tests in a service

• To all the ELEMENT blocks of a particular test

• Within one ELEMENT block of a given test.

Exceptions

Unexpected Exceptions

The generated test driver detects all raised exceptions. If a raised exception
is not specified in the test script, it is displayed in the report.

When the exception is a standard ADA exception
(CONSTRAINT_ERROR, NUMERIC_ERROR, PROGRAM_ERROR,
STORAGE_ERROR, TASKING_ERROR), the exception name is displayed
in the test report.

Overview

Declaring Parameters

ELEMENT blocks contain specific instructions that describe the test start-up
procedures and the post-execution tests.

The hash character (#) at the beginning of a line indicates a native language
statement written in C, C++, or ADA.

174

This declaration is introduced after the SERVICE instruction because it is
local to the SERVICE block; it is invalid outside this block.

It is only necessary to declare parameters of the procedure under test.
Global variables are already present in the module under test or in any
integrated modules, and do not need to be declared locally.

Test Script Structure

The C++ Test Script Language allows you to structure tests to:

• Describe several test cases in a single test script,

• Select a subset of test cases according to different Target Deployment
Port criteria.

A typical Component Testing .ptu test script looks like this:
HEADER add, 1, 1
BEGIN
SERVICE add
 TEST 1
 FAMILY nominal
 ELEMENT
 END ELEMENT
 END TEST
END SERVICE

All instructions in a test script have the following characteristics:

• All statements begin with a keyword.

• Statements are not case sensitive (except when C and C++ expressions
are used).

• Statements start at the beginning of a line and end at the end of a line.
You can, however, write an instruction over several lines using the
ampersand (&) continuation character at the beginning of additional
lines.

• Statements must be shorter than 2000 characters.

 175

Structure Statements

The following statements allow you to describe the structure of a test.

HEADER

For documentation purposes, specifies the name and version number of the
module being tested, as well as the version number of the tested source file.
This information is displayed in the test report.

BEGIN

Marks the beginning of the generation of the actual test program.

SERVICE

Contains the test cases relating to a given service. A service usually refers to
a procedure or function. Each service has a unique name (in this case add).
A SERVICE block terminates with the instruction END SERVICE.

TEST

Each test case has a number or identifier that is unique within the block
SERVICE.

The test case is terminated by the instruction END TEST.

You can execute the test case several times by adding the number of
iterations at the end of instruction TEST, for example:

TEST <name> LOOP <number>

You can add other test cases to the current test case by using the instruction
NEXT_TEST:

TEST <name>
...
NEXT_TEST
...

176

END TEST

This instruction allows a new test case to be added that will be linked to the
preceding test case. Each loop introduced by the instruction LOOP relates
to the test case to which it is attached.

FAMILY

Qualifies the test case to which it is attached. The qualification is free (here
nominal). A list of qualifications can be given (for example: family, nominal,
structure).

ELEMENT

Describes a test phase in the current test case. The phase is terminated by
the instruction END ELEMENT.

The different phases of the same test case cannot be dissociated after the
tests are run, unlike the test cases introduced by the instruction
NEXT_TEST. However, the test phases introduced by the instruction
ELEMENT are included in the loops created by the instruction LOOP.

The three-level structure of the test scripts has been deliberately kept
simple. This structure allows:

• A clear and structured presentation of the test script and report

• Tests to be run selectively on the basis of the service name, the test
number, or the test family.

Simulations

C and Ada Syntax Extensions

For a large number of calls to a stub, use the following syntax for a more
compact description:

<call i> .. <call j> =>

 177

You can describe each call to a stub by adding the specific cases before the
preceding instruction, for example:

<call i> =>

or
<call i> .. <call j> =>

The call count starts at 1 as the following example shows:
 TEST 2
 FAMILY nominal
 COMMENT Reading of 100 identical lines
 ELEMENT
 VAR file1, init = "file1", ev = init
 VAR file2, init = "file2", ev = init
 VAR s, init == , ev = 1
 STUB open_file 1=>("file1")3
 STUB create_file 1=>("file2")4
 STUB read_file 1..100(3,"line")1, 101=>(3,"")0
 STUB write_file 1..100=>(4,"line")1
 STUB close_file 1=>(3)1,2=>(4)1
 #s = copy_file(file1,file2);
 END ELEMENT
 END TEST

Several Calls to a Stub

If a stub is called several times during a test, either of the following are
possible:

• Describe the different calls in the same STUB instruction, as described
previously.

• Use several STUB instructions to describe the different calls. (This
allows a better understanding of the test script when the STUB calls
are not consecutive.)

The following example rewrites the test to use this syntax for the call to the
STUB close_file:

STUB close_file (3)1
STUB close_file (4)1

178

No Testing of the Number of Calls of a Stub

If you don't want to test the number of calls to a stub, you can use the
keyword others in place of the call number to describe the behavior of the
stub for the calls to the stub not yet described.

For example, the following instruction lets you specify the first call and all
the following calls without knowing the exact number:

STUB write_file 1=>(4,"line")1,others=>(4,"")1

Creating Complex Stubs

If necessary, you can make stub operation more complex by inserting native
code into the body of the simulated function. You can do this easily by
adding the lines of native code after the prototype, as shown in the
following example:

DEFINE STUB file
#int fic_errno;
#char fic_err_msg[100];
#int open_file(char _in f[100])
{ errno = fic_errno; }
#int create_file(char _in f[100])
{ errno = fic_errno; }
#int read_file(int _in fd, char _out l[100])
{ errno = fic_errno; }
#int write_file(int fd, char _in l[100])
{ errno = fic_errno; }
#int close_file(int fd)
{ errno = fic_errno; }
END DEFINE

Excluding a Parameter from a Stub

Stub Definition

You can specify in the stub definition that a particular parameter is not to be
tested or given a value. You do this using a modifier of type _no instead of
_in, _out or _inout, as shown in the following example:

DEFINE STUB file
 #int open_file(char _in f[100]);

 179

 #int create_file(char _in f[100]);
 #int read_file(int _no fd, char _out l[100]);
 #int write_file(int _no fd, char _in l[100]);
 #int close_file(int fd);
END DEFINE

In this example, the fd parameters to read_file and write_file are never
tested.

Note You need to be careful when using _no on an output parameter, as
no value will be assigned to it. It will then be difficult to predict the
behavior of the function under test on returning from the stub.

Stub Usage

Parameters that have not been tested (preceded by _no) are completely
ignored in the stub description. The two values of the input/output
parameters are located between brackets as shown in the following
example:

DEFINE STUB file
 #int open_file(char _in f[100]);
 #int create_file(char _in f[100]);
 #int read_file(int _no fd, char _inout l[100]);
 #int write_file(int _no fd, char _in l[100]);
 #int close_file(int _no fd);
END DEFINE
...
 STUB open_file ("file1")3
 STUB create_file ("file2")4
 STUB read_file (("","line 1"))1, (("line 1","line 2"))1,
& (("line2",""))0
 STUB write_file ("line 1")1, ("line 2")1
 STUB close_file ()1, ()1

If a stub is called and if it has not been declared in a scenario, an error is
raised in the report because the number of the calls of each stub is always
checked.

Sizing Stubs

For each STUB, the Component Testing feature allocates memory to:

180

• Store the value of the input parameters during the test

• Store the values assigned to output parameters before the test

A stub can be called several times during the execution of a test. By default,
when you define a STUB, the Component Testing feature allocates space
for 10 calls. If you call the STUB more than this you must specify the
number of expected calls in the STUB declaration statement.

In the following example, the script allocates storage space for the first 17
calls to the stub:

DEFINE STUB file 17
 #int open_file(char _in f[100]);
 #int create_file(char _in f[100]);
 #int read_file(int _in fd, char _out l[100]);
 #int write_file(int fd, char _in l[100]);
 #int close_file(int fd);
END DEFINE

Note You can also reduce the size when running tests on a target platform
that is short on memory resources.

Simulation of Generic Units

You can stub a generic unit like an ordinary unit with the following
restrictions:

Parameters of a procedure or function, and function return types of a type
declared in a generic unit or parameter of this unit must use the _NO mode.

For example, if you want to stub the following generic package:
GENERIC
 TYPE TYPE_PARAM is;
Package GEN is
 TYPE TYPE_INTO is;
 procedure PROC(x:TYPE_PARAM,y:in out TYPE_INTO,Z:out
integer);
 function FUNC return TYPE_INTO;
end GEN;

Use the following stub definition:

 181

DEFINE STUB GEN
procedure PROC(x: _NO TYPE_PARAM,y: _NO TYPE_INTO,Z:out
integer);
function FUNC return _NO TYPE_INTO;
END DEFINE

You can add a body to procedures and functions to process any parameters
that required the _NO mode.

Note With some compilers, when stubbing a unit by using a WITH
operator on the generic package, cross dependencies may occur.

Separate Body Stub

It some cases, you might need to define the body stub separately, with a
proprietary behavior. Declare the stub separately as shown in the following
example, and then you can define a body for it:

DEFINE STUB <STUB NAME>
procedure My_Procedure(...) is separate ;
END DEFINE

The Ada Test Script Compiler will not generate a body for the service
My_Procedure, but will expect you to do so.

Stub Definition in C

The following simulation describes a set of function prototypes to be
simulated in an instruction block called DEFINE STUB ... END DEFINE:

HEADER file, 1, 1
BEGIN
DEFINE STUB file
 #int open_file(char _in f[100]);
 #int create_file(char _in f[100]);
 #int read_file(int _in fd, char _out l[100]);
 #int write_file(int fd, char _in l[100]);
 #int close_file(int fd);
END DEFINE

The prototype of each simulated function is described in ANSI form. The
following information is given for each parameter:

182

• The type of the calling function (char f[100] for example, meaning that
the calling function supplies a character string as a parameter to the
open_file function)

• The method of passing the parameter, which can take the following
values:

• _in for an input parameter

• _out for an output parameter

• _inout for an input/output parameter

These values describe how the parameter is used by the called function,
and, therefore, the nature of the test to be run in the stub.

• The _in parameters only will be tested.

• The _out parameters will not be tested but will be given values by a
new expression in the stub.

• The _inout parameters will be tested and then given values by a new
expression.

Any returned parameters are always taken to be _out parameters.

The following example (for ADA) highlights the simulation of all functions
and procedures declared in the specification of file_io. A new body is
generated for file_io in file <testname>_fct_simule.ada.

HEADER file, 1, 1
BEGIN
DEFINE STUB file_io
END DEFINE

You must always define stubs after the BEGIN instruction and outside any
SERVICE block.

Modifying Stub Variable Values

You can define stubs so that the variable pointed to is updated with

 183

different values in each test case. For example, to stub the following
function:

extern void function_b(unsigned char * param_1);

Declare the stub as follows:
DEFINE STUB code_c
 #void function_b(unsigned char _out param_1);
END DEFINE

Note Any _out parameter is automatically a pointer, therefore the asterisk
is not necessary.

To return '255' in the first test case and 'a' in the second test case, you would
write the following in your test script:

SERVICE function_a
SERVICE_TYPE extern
 -- By function returned type declaration
 #int ret_function_a;
 TEST 1
 FAMILY nominal
 ELEMENT
 VAR ret_function_a, init = 0, ev = 1
 STUB function_b (255)
 #ret_function_a = function_a();
 END ELEMENT
 END TEST -- TEST 1
 TEST 2
 FAMILY nominal
 ELEMENT
 VAR ret_function_a, init = 1, ev = 0
 STUB function_b ('a')
 #ret_function_a = function_a();
 END ELEMENT
 END TEST -- TEST 2
END SERVICE -- function_a

Simulating Global Variables

The simulated file can also contain global variables that are used by the
functions under test. In this case, as with simulated functions, you can
simulate the global variables by declaring them in the DEFINE STUB block,
as shown in the following example:

184

DEFINE STUB file
 #int fic_errno;
 #char fic_err_msg[100];
 #int open_file(char _in f[100]);
 #int create_file(char _in f[100]);
 #int read_file(int _in fd, char _out l[100]);
 #int write_file(int fd, char _in l[100]);
 #int close_file(int fd);
END DEFINE

The global variables are created as if they existed in the simulated file.

Stub Simulation Overview

Stub simulation is based on the idea that functions to be simulated are
replaced with other functions generated in the test driver. These generated
functions have the same interface as the simulated functions, but the body
of the functions is replaced. The functions are called stubs.

The generated test harness can be represented as shown in the following
figure:

These stubs have the following roles:

• Store input parameters to simulated functions

• Assign output parameters from simulated functions

To be able to generate these stubs, the Test Script Compiler needs to know
the prototypes of the functions that are to be simulated and the method of
passing each parameter (input, output, or input/output).

Passing parameters by pointer can lead to problems of ambiguity regarding
the data actually passed to the function. For example, a parameter that is
described in a prototype by int *x can be passed in the following way:

int *x as input ==> f(x)
int x as output or input/output ==> f(&x)
int x[10] as input ==> f(x)
int x[10] as output or input/output ==> f(x)

Therefore, to describe the stubs, you should specify the following:

 185

• The data type in the calling function

• The method of passing the data

Stub Usage in Ada

Range of Values of STUB Parameters

When using stubs, you may need to define an authorized range for each
STUB parameter. Furthermore, you can summarize several calls in one line
associated with this parameter.

Write such STUB lines as follows:
STUB F 1..10 => (1<->5)30

This expression means that the STUB F will be called 10 times with its
parameter having a value between 1 and 5, and its return value is always
30.

You can combine this with several lines; the result looks like the following:
STUB F 1..10 => (1<->5)30,
& 11..19 => (1<->5)0,
& 20..30 => (<->) 1,
& others =>(<->)-1

Raise-exception Stubs

You can force to raise a user-defined (or pre-defined) exception when a
STUB is called with particular values.

The appropriate syntax is as follows:
STUB P(1E+307<->1E+308) RAISE STORAGE_ERROR

If the STUB F happens to be called with its parameter between 1E+307 and
1E+308, the exception STORAGE_ERROR will be raised during execution
of the application; the test will be FALSE otherwise.

Suppose that the current stubbed unit contains at least one overloaded sub-

186

program. When calling this particular STUB, you will need to qualify the
procedure or function. You can do this easily by writing the STUB as
follows:

STUB A.F (1<->2:REAL)RAISE STANDARD.CONSTRAINT_ERROR

The STUB A.F is called once and will raise a CONSTRAINT_ERROR if its
parameter, of type REAL, has a value between 1 and 2.

Compilation Sequence

The Ada Test Script Compiler generates three files:

• <testname>_fct_simule.ada for the body of simulated functions and
procedures

• <testname>_var_simule.ada for the declaration of simulation variables

• <testname>_var_simule_B.ada for the body of test procedures

You must compile your packages in the following order:

1. Simulated unit (specification)

2. <testname>_var_simule.ada

3. <testname>_var_simule_B.ada

4. Test program

5. <testname>_fct_simule.ada

Replacing Stubs

Stubs can be used to replace a component that is still in development. Later
in the development process, you might want to replaced a stubbed
component with the actual source code.

To replace a stub with actual source code:

1. Right-click the test node and select Add Child and Files

 187

2. Add the source code files that will replace the Stubbed functions.

3. If you do not want a new file to be instrumented, right-click the file
select Properties. Set the Instrumentation property to No.

4. Open the .ptu test script, and remove the STUB sections from your
script file.

Stub Usage in C

Stubs are used by means of the STUB instruction within environments or
test scenarios.

This STUB instruction tests input parameters and assigns a value to output
parameters each time the simulated function is called.

The following example illustrates how to use a file stub.
SERVICE copy_file
 #char file1[100], file2[100];
 #int s;
 TEST 1
 FAMILY nominal
 ELEMENT
 VAR file1, init = "file1", ev = init
 VAR file2, init = "file2", ev = init
 VAR s, init == , ev = 1
 STUB open_file ("file1")3
 STUB create_file ("file2")4
 STUB read_file (3,"line 1")1, (3,"line 2")1, (3,"")0
 STUB write_file (4,"line 1")1, (4,"line 2")1
 STUB close_file (3)1, (4)1
 #s = copy_file(file1, file2);
 END ELEMENT
 END TEST
END SERVICE

The following information is required for every stub called in a scenario:

• Test values for the input parameters

• Return values for the output parameters

• Test and return values for the input/output parameters

188

• Where appropriate, the return value of the called stub

Replacing Stubs

Stubs can be used to replace a component that is still in development. Later
in the development process, you might want to replaced a stubbed
component with the actual source code.

To replace a stub with actual source code:

1. Right-click the test node and select Add Child and Files

2. Add the source code files that will replace the Stubbed functions.

3. If you do not want a new file to be instrumented, right-click the file
select Properties. Set the Instrumentation property to No.

4. Open the .ptu test script, and remove the STUB sections from your
script file.

Example

The following example specifies that you expect three calls of foo.
STUB STUB1.foo(1)1, (2)2, (3)3
...
#foo(1);
#foo(2);
#foo(4);

The first call has a parameter of 1 and returns 1. The second has a a
parameter of 2 and returns 2 and the third has a parameter of 3 and returns
3. Anything that does not match is reported in the test report as a failure.

C and Ada Test Reports

Comparing Reports

The Component Testing comparison capability allows you to compare the
results of the last two consecutive tests.

 189

To activate the comparison mode, select Display diff of last two test runs
in the Component Testing Settings for C dialog box.

In comparison mode an additional check is performed to identify possible
regressions when compared with the previous test run.

The Component Testing Report displays an extra column named "Obtained
Value Comparison" containing the actual difference between the current
report and the previous report.

Understanding Component Testing Reports

Test reports for Component Testing are displayed in Test RealTime's Report
Viewer.

The test report is a hierarchical summary report of the execution of a test
node. Parts of the report that have Passed are displayed in green. Failed tests
are shown in red.

Report Explorer

The Report Explorer displays each element of a test report with a Passed ,
Failed symbol.

Elements marked as Failed are either a failed test, or an element that
contains at least one failed test.

Elements marked as Passed are either passed tests or elements that
contain only passed tests.

Test results are displayed for each instance, following the structure of the
.ptu test script.

190

Report Header

Each test report contains a report header with:

• The version of Test RealTime used to generate the test as well as the
date of the test report generation

• The path and name of the project files used to generate the test

• The total number of test cases Passed and Failed. These statistics are
calculated on the actual number of test elements listed in the sections
below

Test Results

The graphical symbols in front of the node indicate if the test, item, or
variable is Passed or Failed :

• A test is Failed if it contains at least one failed variable. Otherwise, the
test is considered Passed.

You can obtain the following data items if you click with the pointer on the
Information node:

• Number of executed tests

• Number of correct tests

• Number of failed tests

A variable is incorrect if the expected value and the value obtained are not
identical, or if the value obtained is not within the expected range.

If a variable belongs to an environment, an environment header is
previously edited.

In the report variables are edited according to the value of the Display
Variables setting of the Component Testing test node.

 191

The following table summarizes the editing rules:

Results Display Variable

All Variables

Display Variable

Incorrect Variables

Display Variable

Failed Tests Only

 Passed test Variable edited
automatically

Variable not edited Variable not edited

 Failed test Variable edited
automatically

Variable edited
automatically

Variable edited if
incorrect

The Initial and Expected Values option changes the way initial and
expected values are displayed in the report.

Understanding Component Testing UML Sequence Diagrams
for C and Ada

During the execution of the test, Component Testing generates trace data
this is used by the UML/SD Viewer. The Component Testing sequence
diagram uses standard UML notation to represent both Component Testing
results.

When using Component Testing for C and Ada with Runtime Tracing or
other Test RealTime features that generate UML sequence diagrams, all
results are merged in the same sequence diagram.

You can click any element of the UML sequence diagram to open the test
report at the corresponding line. Click again in the test report, and you will
locate the line in the .pts test script.

Component Testing for C++

About Component Testing for C++

Component Testing for C++ is a fully integrated feature of Test RealTime

192

that uses object-oriented techniques to address automated testing of C++
embedded and native software.

Object-oriented testing does not mean that the Component Testing for C++
feature is designed solely for the testing object-oriented languages. Whether
the target application is object-oriented or not, Component Testing for C++
adapts to the environment.

In fact, Component Testing for C++ can be used for:

• Software feature tests,

• Component integration tests,

• Software validation,

• Non-regression tests.

Overview

Basically, Component Testing for C++ interacts with your source code
through a scripting language called C++ Test Script Language. You use the
Test RealTime GUI or command line tools to set up your test campaign,
write your test scripts, run your tests and view the test results. Object
Testing's mode of operation is twofold:

• C++ Test Driver scripts describe a test harness that stimulates and
checks basic I/O of the code under test.

• C++ Contract Check scripts, which instrument the code under test,
verifying behavioral assertions during execution of the code.

When the test is executed, Component Testing for C++ compiles both the
test scripts and the source under test, then instruments the source code and
generates a test driver. Both the instrumented application and the test
driver provide output data which is displayed within Test RealTime.

 193

C++ Testing Overview

C++ Test Nodes

The project structure of the Rational Test RealTime GUI uses test nodes to
represent your Component Testing test harness.

Test nodes created for Component Testing for C++ use the following
structure

• C++ Test Node: represents the Component Testing for C++ test harness

• <script>.otc: is the Contract-Check test script

• <script>.otd: is the test driver script

• <source>.cpp: is the source file under test

• <source>.cpp: is an additional source file

C++ Contract-Check Script

The C++ Contract Check script allows you to test invariants and state charts
as well as wraps for each method of the class.

The Contract Check script is contained in an .otc file, whose name matches
the name of the file containing the class definition.

C++ Contract Check scripts are written in C++ Contract Check Language,
which is part of the C++ Test Script language designed for Component
Testing for C++.

Use the Component Testing wizard to set up a test node and create the C++
Contract Check script templates.

See the Test RealTime Reference Manual for the semantics of the C++
Contract Check Language.

194

C++ Test Driver Script

The C++ Test Driver Script stimulates the source code under test to test
assertions on a cluster of classes.

The test driver script itself is contained in an .otd file and may call two
optional files:

• A declaration file (.dcl)that contains C++ code that ensures the types,
class, variables and functions needed by your test script will be
available in your code.

• A stub file (.stb) whose purpose is to define variables, functions and
methods which are to be stubbed.

Using a separate declaration and stub files is optional. It is possible to
include all or certain declarations and stubs directly within the test driver
script file.

C++ Contract Check scripts are written in C++ Contract Check Language,
which is part of the C++ Test Script Language designed for Component
Testing for C++.

Use the Component Testing wizard to set up a test node and create the C++
Test Driver script templates.

See the Test RealTime Reference Manual for the semantics of the C++
Contract Check Language.

Files and Classes Under Test

Source Files

The Source under test are source files containing the code you want to test.
These files must contain either the definition of the classes targeted by the
test, or method implementations of those classes.

 195

Note Source files can be either body files (.C, .cc, .cpp...) or header files
(.h), but it is usually recommended to select the body file. Specifying
both header and body files as Source under test is unnecessary.

When using a C++ Test Driver Script, the wizard generates:

• A template test driver script (.otd) to test each class defined in the
Candidate classes box.

• Declaration (.dcl) and stub (.stb) files to make the environment of the
source under test available to the test script.

When using a C++ Contract Check script, the wizard generates:

• A template contract script (.otc) containing template code allowing you
to add invariants and state charts as well as empty wraps for each
method of the class.

Note If a source under test is a header file (a file containing only
declarations, typically a .h file), the source file under test is
automatically included in the C++ Test Driver script.

Candidate Classes

For source files containing several classes, you may only want to submit a
restricted number of classes to testing.

If no classes are selected, the wizard automatically selects all classes that are
defined or implemented in the source(s) under test as follow:

• The class is defined within the source file (i.e. the sequence class
<name> { };).

• At least one of the methods of the class is defined within the source file
(i.e. a method's body).

Note Classes can only be selected if you have refreshed the File View

196

before running the Test Generation Wizard.

Simulated, Additional and Included Files

Component Testing for C++

When creating a Component Testing test node for C++, the Component
Testing wizard offers the following options for specifying dependencies of
the source code under test:

• Simulated files

• Additional files

• Included files

Simulated Files

This option gives the Component Testing wizard a list of source files to
simulateor stubupon execution of the test.

A stub is a dummy software component designed to replace a component
that the code under test relies on, but cannot use for practicality or
availability reasons. A stub can simulate the response of the stubbed
component.

Note Declaration and stub files (.dcl and .stb) for Component Testing for
C++ do not appear in the test node. You can access and edit these
files from the Asset Browser tab of the Project Explorer.

In Component Testing for C++, the use of stubs requires Source Code
Insertion (SCI) instrumentation of the source code under test.

The Component Testing parser analyzes simulated files and produces an
.stb stub file written in C++ Test Script Language. When manually creating
a test node, use of a separate .stb stub file is optional. It is entirely possible
to define stubs directly inside the .otd C++ Test Driver script.

 197

Additional Files

Additional source files are source files that are required by the test script,
but not actually tested. For example, with Component Testing for C++,
Visual C++ resource files can be compiled inside a test node by specifying
them as additional files.

Additional header files (.h) are not handled in the same way as additional
body files (.cc, .C, or .cpp):

• Body files: With a body file, the Test Generation Wizard considers that
the compiled file will be linked with your test program. This means
that all defined variables and routines are considered as defined, and
therefore not stubbed.

• Header files: With a header file (a file containing only declarations), the
Test Generation Wizard considers that all the entities declared in the
source file itself (not in included files) are defined. Typically, you
would use additional header files if you only have a .h file under test
and a matching object file (.o or .obj), but not the actual source file (.cc,
.C, or .cpp).

You can toggle a source file from under test to additional by changing the
Instrumentation property in the Properties Window dialog box.

Additional directories are directories that are declared to only contain
additional source files.

Included Files

Included files are normal source files under test. However, instead of being
compiled separately during the test, they are included and compiled with
the C++ Test Driver script.

Header files are automatically considered as included files, even if they are
not specified as such.

198

Source files under test should be specified as included when:

• The file contains the class definition of a class you want to test

• A function or a variable definition depends upon a type which is
defined in the file under test itself

• You need access in your test script to a static variable or function,
defined in the file under test

In most cases, you do not have to specify files to be included. The
Component Testing wizard automatically generates a warning message in
the Output Window, when it detects files that should be specified as
included files. If this occurs, rerun the Component Testing wizard, and
select the files to be included in the Include source files section of the
Advanced Options dialog box.

Declaration Files

A declaration file (.dcl) ensures that the types, class, variables and functions
needed by your test script will be available in your code.

Note Declaration and stub files (.dcl and .stb) for Component Testing for
C++ do not appear in the test node. You can access and edit these
files from the Asset Browser tab of the Project Explorer.

Using a separate .dcl file is optional, since it is merely included within the
C++ Test Driver script. It is possible to declare types, classes, variables and
functions directly within an C++ Test Driver script file.

Typically, .dcl files are created by the Component Testing Wizard and do
not need to be edited by the user. If you do need to define your own
declarations for a test, it is recommended that you do this within the Test
Driver script.

Declaration files must be written in C++ Test Script Language and contain
native code declarations. See the Test RealTime Reference Manual for

 199

details about the language.

C++ Test Reports

Understanding Component Testing for C++ Reports

Test reports for Component Testing for C++ are displayed in Test
RealTime's Report Viewer.

The test report is a hierarchical summary report of the execution of a test
node. Parts of the report that have Passed are displayed in green. Failed
tests are shown in red.

Report Explorer

The Report Explorer displays each element of a Test Verdict report with a
Passed , Failed or Undefined symbol:

• Elements marked as Failed are either a failed test, or an element that
contains at least one failed test.

• An Undefined marker means either that the test was not executed, or
that the element contains a test that was not executed AND all
executed tests were passed.

• Elements marked as Passed are either passed tests or elements that
contain only passed tests.

Test results are displayed in two parts:

• Test Classes, Test Suites and Test Cases of all the executed C++ Test
scripts.

• Class results for the entire Test. Each class contains assertions (WRAP
statement), invariants, states and transitions.

200

Report Header

Each Test Verdict report contains a report header with:

• The path and name of the .xrd report file.

• A general verdict for the test campaign: Passed or Failed.

• The number of test cases Passed and Failed. These statistics are
calculated on the actual number of test elements (Test Case, Procedure,
Stub and Classes) listed sections below.

Note The total number counts the actual test elements, not the number of
times each element was executed. For instance, if a test case is run 5
times, of which 2 runs have failed, it will be counted as one Failed
test case.

Test Script

Each script is displayed with a metrics table containing the number of Test
Suite, Test Class, Test Case, Epilogue, Procedure, Prologue and Stub blocks
encountered. In this section, statistics reflect the number of times an element
occurs in a C++ Test script.

Test Results

For each Test Case, Procedure and Stub, this section presents a summary
table of the test status. The table contains the number of times each
verification was executed, failed and passed.

For instance, if a Test Case containing three CHECK statements is run
twice, the reported number of executions will be six, the number of failed
verifications will be two, and the number of passed verifications will be
four.

The general status is calculated as follows:

 201

Condition Result Status

A verification fails Failed

A verification does not occur Undefined

All verifications pass on each
execution

 Passed

Tested ClassesTested ClassesTested ClassesTested Classes

Class results are grouped at the end of the report and sorted in alphabetical
order.

For each class the report shows the general status of assertions (WRAP
statement), invariants, states and transitions.

The general status is computed as follows:

Condition Result Status

An assertion or invariant
fails

 Failed

An assertion or invariant
does not occur

 Undefined

All assertions or all
invariants pass on each
execution

 Passed

A state is not reached Not reached

A state has no exit transition Not fired

When a class does not behave as expected, a table of violations is displayed.
A violation is observed at the exit of a state and can be one of the following:

• Multiple: means that several states were reachable at the same time,

• Illegal: means that no state was reachable.

The displayed table gives the number of times a violation has occurred for
each state. The status of this table is always Failed.

202

Understanding Component Testing for C++ UML Sequence
Diagrams

During the execution of the test, Component Testing for C++ generates trace
data this is used by the UML/SD Viewer. The Component Testing for C++
sequence diagram uses standard UML notation to represent both Contract-
Check and Test Driver results.

• Class Contract-check sequence diagrams,

• Test Driver Sequence Diagrams.

Both types of results can appear simultaneously in the same sequence
diagram. When using Runtime Tracing with Component Testing for C++, all
results are generated in the same sequence diagram.

Illegal and Multiple Transitions

When dealing with state or transition diagrams, Component Testing for C++
adds a custom observation state, which is both the initial state and error state.
All user-defined states can make a transition towards the initial/error state,
and this state can transition towards all user-defined states.

At the beginning of test execution, the object is in the initial/error state.

During the test, the object is continuously tested to comply to the user-
defined STATEs and TRANSITIONs. There are three possible cases.

• The transition can be fired to a single state: the current state is set.

• The transition cannot be fired to any of the defined states: in this case,
the state switches to the observation state and Component Testing for
C++ generates an ILLEGAL TRANSITION note.

• The transitions can be fired to two or more states. In this case, the
transition diagram is no longer unambiguous. The state is set to the
observation state and Component Testing for C++ generates a

 203

MULTIPLE TRANSITION.

When the state diagram is in the initial/error state, the transition is still
continuously checked, however all user defined states can be potentially
fired.

Contract-Check Sequence Diagrams

The following example shows how a typical class contract is represented by
Component Testing for C++. C++ classes are represented as vertical lines,
like object instances. The events related to the class - method entry and exit,
assertion and state chart checks - are attached to the class lifeline.

Methods

For each class, methods are shown with method entry and exit actions:

• Method entry actions have a solid border,

• Method exit actions have a dotted border.

Contract-Checks

Pre and post-conditions, invariants and state verifications are displayed as
Notes, attached to the class instance, and contained within the method.

204

You can click a note to highlight the corresponding OTC Contract-Check
script line in the Text Editor window.

Illegal and Multiple Transitions

State or transition diagram errors are identified as ILLEGAL TRANSITION
or MULTIPLE TRANSITION Notes as shown in the following figure:

Test Driver Sequence Diagrams

The following example illustrates typical results generated by a Test Driver
script:

 205

Instances

When using a Test Driver script, each of the following C++ Test Script
Language keywords are represented as a distinct object instance:

• TEST CLASS

• TEST SUITE

• TEST CASE

• STUB

• PROC

You can click an instance to highlight the corresponding statement in the
Text Editor window.

206

Checks

Test Driver checks are displayed as Notes attached to the instances, as
shown below:

Checks appear in green when the result is Passed, and in red when Failed.

• CHECK

• CHECK PROPERTY

• CHECK STUB

• CHECK METHOD

• CHECK EXCEPTION

To distinguish checks that occur immediately from checks that apply to a
stub, method or exception, the three latter use different shades of red and
green.

You can click an instance to highlight the corresponding statement in the
Text Editor window.

Pre and Post-conditions

The following pre and post-condition statements are green (Passed) or red
(Failed) actions contained in STUB or PROC instances.

• REQUIRE

 207

• ENSURE

Exceptions

Component Testing for C++ generates UNEXPECTED EXCEPTION Notes
whenever an unexpected exception is encountered. These notes will be
followed by the ON ERROR condition.

Error Handling

Whenever a check and a pre- or post-condition generates an error, or an
UNEXPECTED EXCEPTION occurs, the ON ERROR condition is
displayed as shown in the following diagrams.

An ON ERROR BYPASS condition:

An ON ERROR CONTINUE condition:

Comments and Prints

COMMENT and PRINT statements generate a white note, attached to the
corresponding instance.

208

Messages

Messages can represent either a RUN or a CALL statement, or a native code
stub call, as shown below:

Component Testing for Java

The Component Testing feature of Test RealTime provides a unique, fully
automated, and proven solution for C, C++, Java and Ada Component
Testing, dramatically increasing test productivity.

Component Testing for Java uses the standard JUnit testing framework for
test harness development. There are two ways of using the JUnit test
harness:

• You use the Test RealTime GUI to set up your test campaign, write a
JUnit test script, run your tests and view the results

• You import an existing JUnit test harness into the Test RealTime GUI.

The test driver, Target Deployment Port, stubs and dependency files make
up a test harness. The test harness interacts with the source code under test
and produces test results.

At the same time, your code-under-test can be instrumented with Test
RealTime's Runtime Analysis features.

 209

Java Testing Overview

Rational Test RealTime uses JUnit as a standard framework for Component
Testing for Java.

The current documentation assumes that you have basic knowledge and
understanding of the working principles of:

• JUnit

• Java 2 Platform, Standard Edition (J2SE)

• Java 2 Platform, Micro Edition (J2ME)

Component Testing for Java adapts JUnit to either the J2SE or J2ME
framework via Target Deployment Technology.

JUnit Overview

JUnit is a regression testing framework written by Erich Gamma and Kent
Beck. JUnit is Open Source Software, released under the IBM's Common
Public License Version 0.5 and hosted on the SourceForge website

Please refer to the JUnit documentation for further information about JUnit.
More information on JUnit can be found at the following locations:

http://junit.sourceforge.net

http://www.junit.org

JUnit for J2ME

Basic JUnit was originally written for the J2SE framework. Rational Test
RealTime brings offers an additional JUnit implementation for J2ME,
referred to as JUnit for J2ME.

210

Test RealTime JUnit Extensions

Rational Test RealTime extends the JUnit assert primitives with a set of
verify primitives.

The following UML model diagram demonstrates the basic structure of
JUnit as well as how Test RealTime extends the JUnit model.

 211

The main difference of the verify primitives is that failed verify tests do not
stop the execution of the test program.

The complete list of extended verify primitives can be found in the
Component Testing for Java section of the Test RealTime Reference
Manual.

Java Test Nodes

The project structure of the Rational Test RealTime GUI uses test nodes to
represent your Component Testing test harness.

Test nodes created for Component Testing for Java use the following
structure

• Java Test Node: represents the Component Testing for Java test
harness

• TestDriver.java: is the main test driver class

• Test<Class>.java: is the test class derived from the TestCase class

• <Class>.java: is the actual class under test.

In Component Testing for Java, all classes have the excluded from build tag
except for the main TestDriver.java class.

Note JUnit test harnesses that were manually imported into Test
RealTime and not created through the Component Testing wizard
may not display the correct yellow icons. This is not an issue as long
as all files are excluded from the build except for the main test driver
class.

Java Test Harness

Component Testing for Java generates a full Java test harness based on
JUnit-compliant classes for J2SE and J2ME framework.

212

The Java test harness can be used for single thread component testing, using
the following main JUnit classes:

• TestSuite: This class is a container for multiple test classes derived
from TestCase

• TestCase: The basic class that is derived into a series of user-defined
test classes

• TestResult: This class returns the results of a given test class:

• Unexpected errors: unwanted exceptions

• Failed assertions: produced by the JUnit assert test primitives

• Failed verifications: produced by the extended verify test
primitives

The list of extended verify test primitives can be found in the Test RealTime
Reference Manual.

Please refer to the JUnit documentation for further information about JUnit
assert primitives as well as general JUnit documentation. This can be found
at the official JUnit Web site:

http://junit.sourceforge.net

Test Harness Constraints

Component Testing for Java complies with most JUnit test cases. However,
it introduces the two following constraints:

• User test classes must derive from the TestCase class, or from a
TestSuite that contains one or several TestCase classes

• The test harness cannot be applied to multi-threaded Java components

You must be especially aware of these constraints when importing existing

 213

test cases into Rational Test RealTime

Naming Conventions

Test class names should be prefixed with Test, as in
Test<ClassUnderTest>

Where <ClassUnderTest> is the name of the class under test. This naming
convention enables the test class to use test class primitives.

Test method names must be prefixed with test, as in:
 test<TestName>

Where <TestName> is the name of the test.

Test Class Primitives

The test class defines the primitives that create and test the objects under
test. The test class primitives are:

• Creation of the objects under test: This primitive must create and
initialize all the objects under test.

void setUp() throws Exception
setUp:

• End of test: Use this primitive to insert any code that is required to end
the test, such as to set any setUp created objects to null.

void tearDown() throws Exception
tearDown:

• Test Primitives: The test class must also define as many test<TestName>
methods as there are tests.

You can inject such a TestCase into a TestSuite. This way, The TestSuite
automatically creates as many TestCases as requires and executes a
sequential run of all the tests.

214

Running a TestRunning a TestRunning a TestRunning a Test

To run a series of tests, you must incorporate a main inside a TestCase or
TestSuite class, build the main, the TestSuite and TestClass, and execute the
run.

In J2ME, these objects can be built in a midlet, which contains only
TestSuite and TestCase, and launches the run on the start app primitive. If
the test case was generated by Test RealTime, you must comment the main
method that was automatically generated.

Example

To test that the sum of two Moneys with the same currency contains a value
which is the sum of the values of the two Moneys, write:

public void testSimpleAdd() {
 Money m12EUR=new Money(12, "EUR");
 Money m14EUR=new Money(14, "EUR");
 Money expected= new Money(26, "EUR");
 Money result= m12EURdd(m14EUR");
 assertTrue(expected.equals(result));
}

Using the TestCase Class

To create a test case in the Component Testing for Java test harness, create a
test class by deriving from the TestCase of the test harness. Only classes
derived from TestCase can use the test harness services

1. Create a derived class of TestCase:

2. Create a constructor which accepts a String as a parameter and passes
it to the superclass. This string must carry the name of the test class, so
as to call the correct method.

3. Override the method runTest(). This is the method that controls
creation and handling of the objects under test as well as the actual
verification points: the verify and assert methods of the TestCase class.

 215

Adding Test Primitives

To add a new test, use the setup and teardown methods to create and
configure objects under test.

Such objects belong to the test class. The setup method allows you to
configure the objects under test. The teardown frees the objects.

Running a Test Case

The most convenient way to invoke a test case is to use the constructor with
the test name as an argument. For example:

TestCase TestStocksObject = new
TestStocks("testStocksValues");
TestCase TestStocksObject2 = new
TestStocks("testStocksAmount");

This way, the TestCase object automatically call the public method name
that was passed as an argument with the run call.

To use this technique in J2ME, you must first create a runTest() method in
the test class which will call the correct function.

Examples

The following series of examples shows how to test a simple class Stocks in
the J2SE framework. First, derive the test class from TestCase to check the
arithmetic methods:

package examples;
import junit.framework.*;
import examples.Stocks.*;
public class TestStocks extends TestCase {
public TestStokcs(String name) {
super(name);
}
public void testStocks1() {
Stock first = new Stock(“Company,”Dollar”,100,1.25);
Stock second = new Stock(“Company,”Dollar”,250,1.25);
Stock added = new Stock(first + second);

216

//Display a message in the report.
verifyLogMessage("Check equals for the count of stocks");
verifyEquals("verify equals added count",
added.amountstocks(),
(first.amountstocks()+second.amountstocks()));
}

An equivalent implementation for J2ME would be:
import j2meunit.framework.*;
import examples.Stocks.*;
public class TestStocks extends TestCase {
public TestStocks(String name) {
super(name);
}
protected void runTest() throws java.lang.Throwable {
if(getTestMethodName().equals("testStocksAmount"))
testStocksAmount ();
else if(getTestMethodName().equals("testStocksValues"))
testStocksValues();
}

This test class checks for a thrown exception:
public void testException3()
{
verifyLogMessage("Check true for RTE");
Throwable toverify= new Throwable("StocksError");
verify(toverify);
//This rate conversion will thow a StockError Exception.
Stock divided = new Stock(first.convertwithrate(0));
}

The following example demonstrates an object vector verification:
public void testAccounts()
{
 Vector RefAccountStocks = new Vector();
 RefAccountStocks .addElement(new
Stocks(“Company,”Dollar”,100,1.25));
 RefAccountStocks .addElement(new
Stocks(“Company2,”Dollar”,100,2.68));
 verifyLogMessage("Verify Equality for Accounts");
 verify("verify equal vector", RefAccountStocks,
OtherAccountStocks);
}

Component Testing for Java allows you to check timing between events by
using the time method of the TestCase class:

public void testTimerOnStocks()

 217

{
 int idtimer1;
 idtimer1 = createTimer("first timer created");

 //then start the timers.
 timerStart(timer1,"Start 1");
 long val1;
//Unit is ms.
 val2 = 100;
 verifyLogMessage("Timer report Transaction");
 timerReportEllapsedTime(timer1,"First report of time
before the action");
 Stock dynamicalAccount = first.extractfromWebSite(second);
 verifyEllapsedTime(timer1,val1,"ellapsed 1 with 100");
}

In J2SE, run the tests by calling the run method of the test class:
TestResult result = TestStockObject.run() ;

TestResult result = new TestResult();
TestStockObject.run(result) ;

In J2ME, you run the test class by calling the run method of the object under
test:

TestResult result = TestStockObject.run() ;
TestResult result = new TestResult();
TestStockObject.run(result) ;

Using the TestResult Class

The TestResult object is used to produce dynamic test results during the
execution of a TestCase or TestSuite. The TestResult class offers the same
behavior in J2SE and J2ME.

TestResult provides the following methods:

verifyCount()

Returns the number of failed verify calls during test execution.

218

errorCount()

Returns the number of errors (unexpected exceptions) encountered during
test execution.

failureCount()

Returns the number of failed assert calls during test execution.

Using the TestSuite Class

After writing several simple test cases, you will need to group the
individual test classes derived from TestCase and run them together. This
can be done with the TestSuite class.

There are three ways of constructing a TestSuite:

• By explicit calls to TestCase

• By test class (J2SE only)

• By creating the suite() method

A TestSuite can only contain objects derived from TestCase or a TestSuite
that contains a TestCase.

Construction by Explicit calls to TestCase

You can add the explicit calls to the TestSuite instance by instance, as in the
following example:

TestSuite suiteStocks = new TestSuite() ;
suiteStocks.addTest(new TestStocks("testStocksValues"));
suiteStocks.addTest(new TestStocks("testStocksAmount"));

You can also directly pass the test object. In this case, the TestSuite
automatically builds all the test classes from the public method names:

TestSuite suiteStocks = new TestSuite() ;
suiteStocks.addTest(TestStocks.class);

 219

Such a TestSuite can be contained in another TestSuite.

Construction by Test Class
TestSuite suiteAllTests = new TestSuite() ;
suiteAllTests.AddTest(SuiteStocks);
suiteAllTests.AddTest(OthersTests.class);

Creating a suite() Method

In J2ME, to be able to build a TestSuite from a test class, you cannot pass
the class object as sole argument. To resolve this, an extra suite() method is
added to the test class, which returns a valid TestSuite:

TestSuite suiteStocks = new TestSuite() ;
suiteStocks.addTest(new TestStocks().suite());

Running a TestSuite,

In J2SE, you run a test suite exactly as you would run a test class, either by
producing a TestResult object, or by modifying the TestResult passed as a
parameter, as in the following examples:

TestResult result = suiteAllTests.run(result);
TestResult result = new TestResult() ;
suiteAllTests.run(result);

In J2ME, in order to save memory, the TestSuite destroys the last TestCase
instance after each run.

Simulated and Additional Classes

Component Testing for Java

When creating a Component Testing test node for Java, the Component
Testing wizard offers the following options for specifying dependencies of
the source code under test:

• Simulated files

• Additional files

220

Simulated Files

This option gives the Component Testing wizard a list of source files to
simulateor stubupon execution of the test.

A stub is a dummy software component designed to replace a component
that the code under test relies on, but cannot use for practicality or
availability reasons. A stub can simulate the response of the stubbed
component.

See Java Stubs for more information about JUnit stub handling.

Additional Files

Additional source files are source files that are required by the test script,
but not actually tested.

You can toggle a source file from under test to additional by changing the
Instrumentation property in the Properties Window dialog box.

Additional directories are directories that are declared to only contain
additional source classes.

Java Stubs

Component Testing for Java supports the following verification methods for
stubbed classes:

• Stub failure detection

• Stub sequence mechanism

Stub Failure

In the Component Testing for Java test harness, stubs can declare an error.

 221

To check for the existence of a stub error, use the following global call type:
 verify("Test single
sequence",TestSynchroStub.areStubfail(this),true);

Stub Sequence Mechanism

The Component Testing for Java test harness provides a stub logging
mechanism. The purpose of this mechanism is to check that calls to a
stubbed object are achieved in a correct order.

To do this, two objects are provided:

• TestSynchroStub: checks that stub calls follow a given sequence.

• StubInfo: returns the method entry or exit information type:

Example

The purpose of this example is to check the stubbed class StubbedOne is
called with the following sequence:

• Entry into the method methodone

• From this method, entry and exit of the method m1 of the same class

This translates into the following test class:
 StubSequence testof = new StubSequence(this);
 Class StubbedClass = new StubbedObject().getClass();
 testof.addEltToSequence(StubbedClass, "methodone",StubInfo.ENTER) ;
 testof.addEltToSequence(StubbedClass , "m1",StubInfo.ENTER) ;
 testof.addEltToSequence(StubbedClass , "m1",StubInfo.EXIT) ;
 verifyLogMessage("Check false for stub not support for the stubs");
 verify("Test single
sequence",TestSynchroStub.isSeqRespected(testof),true);

Importing a JUnit Test Campaign

JUnit is becoming an industry standard in the field of testing Java software.

Rational Test RealTime can import your existing JUnit test campaigns. This

222

requires manually building a new Java test node that contains:

• The classes under test

• The test classes derived from TestCase

• All other test harness components

After this, you must ensure that only the main test driver class is passed on
to the Java compiler. To do this, exclude all other classes from the build.

Test Harness Constraints

Component Testing for Java complies with most JUnit test cases. However,
it introduces the two following constraints:

• User test classes must derive from the TestCase class, or from a
TestSuite that contains one or several TestCase classes

• The test harness cannot be applied to multi-threaded Java components

You must be especially aware of these constraints when importing existing
JUnit test classes into Rational Test RealTime.

To import an existing JUnit test harness:

1. In the Project Explorer, select the Project View and right-click the
Project node.

2. From the pop-up menu, select Add Child and Component Testing for
Java.

3. Enter the name of the new Java test node.

4. In the Project Explorer, right-click the Java test node.

5. From the pop-up menu, select Add Child and Files.

6. Locate and select the classes under test and the JUnit test classes.

7. Click OK.

 223

8. Exclude from the build all Java classes, except the main test driver class.

J2ME Specifics

Component Testing for Java supports the Java 2 Platform Micro Edition
(J2ME) through a specialized version of the JUnit testing framework.

This framework requires that you manually perform the two following
additional steps:

1. Create a test suite class Suite() that transforms a test class into a J2ME
test suite.

2. Create a runTest() primitive that transforms the name of the test case
into a relevant call to the test function.

The objects under test must belong to the test class and must have been
initialized in the setUp method.

The following code sample is a runTest selection method for J2ME, which
switches the correct test method depending on the name of the test case:

protected void runTest() throws java.lang.Throwable {
if(getTestMethodName().equals("testOne"))
 testOne();
else if(getTestMethodName ().equals("testTwo"))
testTwo();
}

Building a Test Suite

The two following methods demonstrate how to build a test suite from a
J2ME test case.

public Test suite() {
return new TestSuite(new TestOne().getClass(),new String[]
{"testOne"});
}

public static Test suite() {
TestSuite suite = new TestSuite();

224

suite.addTest(new TestMine().suite());
suite.addTest(new TestMine2().suite());
return suite;
}

Integration of Objects Under Test

The objects under test must belong to the test class and must have been
initialized in the setUp method.

Java Test Reports

Understanding Java Test Reports

Test reports for Component Testing for Java are displayed in Test
RealTime's Report Viewer.

The test report is a hierarchical summary report of the execution of a test
node. Parts of the report that have Passed are displayed in green. Failed
tests are shown in red.

Report Explorer

The Report Explorer displays each element of a Test Verdict report with a
Passed or Failed glyph:

• Elements marked as Failed are either a failed test, or an element that
contains at least one failed test.

• Elements marked as Passed are either passed tests or elements that
contain only passed tests.

Test results are displayed in two parts:

• TestClasses, TestSuites and derived test cases of all the executed JUnit
scripts.

• Class results for the entire Test.

 225

Report Header

Each Test Verdict report contains a report header with:

• The path and name of the .xrd report file.

• A general verdict for the test campaign: Passed or Failed.

• The number of test cases Passed and Failed. These statistics are
calculated on the actual number of test elements (Test Case, Procedure,
Stub and Classes) listed sections below.

Note The total number counts the actual test elements, not the number of
times each element was executed. For instance, if a test case is run 5
times, of which 2 runs have failed, it will be counted as one Failed
test case.

Test Script

Each script is displayed with a metrics table containing the number of
TestSuite, TestClass and derived test case encountered. In this section,
statistics reflect the number of times an element occurs in a JUnit script.

Test Results

For each test case, this section presents a summary table of the test status.
The table contains the number of times each verification was executed,
failed and passed.

For instance, if a Test Case containing three assert functions is run twice,
the reported number of executions will be six, the number of failed
verifications will be two, and the number of passed verifications will be
four.

The general status is calculated as follows:

Condition Result Status

226

A verification fails Failed

All verifications pass on each
execution

Passed

Understanding Java Component Testing UML Sequence
Diagrams

During the execution of the test, Component Testing for Java generates
trace data this is used by the UML/SD Viewer. The sequence diagram uses
standard UML notation to represent JUnit test results.

When using Runtime Tracing with Component Testing for Java, all results
are generated in the same sequence diagram.

The following example illustrates typical results generated by a JUnit test
script:

 227

Instances

Each of the following classes are represented as a distinct object instance:

• TestSuite

• Derived test case classes

You can click an instance to highlight the corresponding statement in the
Text Editor window.

Checks

JUnit assert and verify primitives are displayed as Passed (" ") or Failed
(" ") glyphs attached to the instances.

You can click any of these glyphs to highlight the corresponding statement
in the Text Editor window.

Exceptions

Component Testing for Java generates UNEXPECTED EXCEPTION Notes
whenever an unexpected exception is encountered.

Comments

Calls to verifyLogMessage generate a white note, attached to the
corresponding instance.

Messages

Messages can represent either a run or a call statement as shown below:

228

System Testing for C

Test RealTime's System Testing feature is the first commercial automated
feature dedicated to testing message-based applications. Until now most of
the projects developing real-time, embedded or distributed systems spent a
fair amount of resources building dedicated test beds. Project managers can
now save time and money by avoiding this costly, non-core-business
activity.

System Testing helps you solve complex testing issues related to system
interaction, concurrency, and time and fault tolerance by addressing the
functional, robustness, load, performance and regression testing phases
from small, single threads or tasks up to very large, distributed systems.

With Test RealTime's System Testing feature, test engineers can easily
design, code and execute virtual testers that represent unavailable portions
of the system under test - SUT - and its environment.

System Testing is recommended for testing:

• Telecommunication and networking equipment using standard
protocols

• Aerospace equipment using standard or proprietary operating systems
and a communication bus (ARINC, 1553, etc.)

• Automotive Electronic Control Units (ECUs) based on OSEK operating
system, or appliance systems such as Driver Information Systems

• Distributed applications based on message-oriented middleware

 229

(MOM) such as MQseries, Tuxedo or an in-house MOM

• Applications developed using Rational Rose RealTime

System Testing Overview

Circular Trace Buffer

The circular trace buffer memorizes System Testing for C traces and flushes
them to the .rio output file when the Virtual Tester ends or at a specified
point in the .pts test script.

To activate the circular trace buffer option or to set the size of the buffer, see
Test Script Compiler Settings.

How the Circular Buffer Works

During execution of the test node, System Testing accumulates traces in the
buffer. When the buffer fills up, new traces replace old ones, as shown in
the following diagram, without flushing to file.

Contents of the Buffer

By default, the buffer stores all traces.

Use the TRACE_OFF instruction in your .pts System Testing for C test
script to trace only scenario begins and ends, environment blocks,
procedure blocks, PRINT instructions, and failed instructions.

Use the TRACE_ON instruction to resume default behavior.

See the Rational Test RealTime Reference Manual for detailed information
on .pts test script instruction.

230

Flushing the Buffer on the Disk

By default, the buffer is flushed to a file when the Virtual Tester ends.

You may flush the buffer at any point in the .pts test script by using the
FLUSH_TRACE instruction.

You cannot call the FLUSH_TRACE instruction, either directly or
indirectly, from a CALLBACK or PROCSEND block.

See the Rational Test RealTime Reference Manual for detailed information
on .pts test script instruction.

Note The TRACE_ON, TRACE_OFF and FLUSH_TRACE instructions
only apply when the Circular Trace Buffer option is selected.

System Testing Supervisor

Test RealTime System Testing manages the simultaneous execution of
Virtual Testers distributed over a network. When using System Testing
feature of Test RealTime, the machine running Test RealTime runs a
Supervisor process, whose job is to:

• Set up target hosts to run the test

• Launch the Virtual Testers, the system under test and any other tools.

• Synchronize Virtual Testers during execution

• Retrieve the execution traces after test execution

The System Testing Supervisor uses a deployment script, generated by the
Virtual Tester Configuration and Virtual Tester Deployment dialog boxes,
to control System Testing Agents installed on each distributed target host.
Agents can launch either applications or Virtual Testers.

While the agent-spawned processes are running, their standard and error
outputs are redirected to the supervisor.

 231

Note You must install and configure the agents on the target machines
before execution.

Agents and Virtual Testers

Virtual Testers are multiple contextual incarnations of a single .pts System
Testing test script.

One Virtual Tester can be deployed simultaneously on one or several
targets, with different test configurations. A same virtual tester can also
have multiple clones on the same target host machine.

System Testing generates Virtual Testers from a test script according to the
declared instances. The System Testing Supervisor, which runs in the Test
RealTime host machine, is in charge of deploying and controlling remote
Virtual Testers.

Note A System Testing Agent must be installed and running on each
target host before deploying Virtual Testers to those targets.

Following the execution architecture and constraints needed to comply, the
Test Script Compiler provides several ways to generate the Virtual Testers.

System Testing Agents

Installing System Testing Agents

When using Virtual Testers on remote target hosts, a daemon must be
running on the target to act as an interface between the virtual tester and
the System Testing Supervisor. This daemon is known as the System
Testing Agent.

Note Always make sure that the version of the System Testing Agent
matches the version of Test RealTime. If you have upgraded from a

232

previous version of Test RealTime, you must also update all System
Testing Agents on remote machines.

The installation directory of System Testing includes the following
necessary agent files:

• atsagtd.bin: the agent executable binary for UNIX

• atsagtd.exe: the agent executable binary for Windows

• atsagtd: the agent launcher for UNIX when using inetd

• atsagtd.sh: a UNIX shell script that starts atsagtd.bin

Installing the Agent

There are two methods for installing the System Testing Agent:

• Manual launch

• Inetd daemon installation

To install a System Testing Agent for manual execution:

This procedure does not require system administrator access, but launching
of the agent is not fully automated.

1. Copy atsagtd.bin or atsagtd.exe to a directory on the target machine.

2. On the target machine, set the ATS_DIR environment variable to the
directory containing the agent binaries.

3. Add that same agent directory to your PATH environment variable.

Note You can add these commands to the user configuration file: login,
.cshrc or .profile.

4. On UNIX systems, create an agent access file .atsagtd file in your home
directory. On Windows create an atsagtd.ini file in the agent
installation directory. See System Testing Agent Access Files.

 233

5. Move the agent access file to your chosen base directory, such as the
directory where the Virtual Testers will be launched.

6. Launch the agent as a background task, with the port number as a
parameter. By default, this number is 10000.

atsagtd.bin <port number>&
atsagtd <port number>

To install a System Testing Agent with inetd:

This procedure is for UNIX only. Launching agents on target machines is
automatic with inetd.

With this method, the inetd daemon runs the atsagtd.sh shell script that
initializes environment variables on the target machine and launches the
System Testing Agent.

1. Copy atsagtd.sh and atsagtd.bin to a directory on the target machine.

2. On the target machine, set the ATS_DIR environment variable to the
directory containing the agent binaries.

3. Add that same agent directory to your PATH environment variable.

Note You can add these commands to the user configuration file: login,
.cshrc or .profile.

4. Log on as root on the target machine.

5. Add the following line to the /etc/services file:
atsagtd <port number>/tcp

The agent waits for a connection to <port number>. By default, System
Testing uses port 10000.

Note If NIS is installed on the target machine, you may have to update the
NIS server. You can check this by typing ypcat services on the target
host.

6. Add the following line to the /etc/inetd.conf file:
atsagtd stream tcp nowait <username> <atsagtd path>

234

<atsagtd path>

where <username> is the name of the user that will run the agent on the
target machine and <atsagtd path> is the full path name of the System
Testing Agent executable file atsagtd.

7. To reconfigure the inetd daemon, use one of the following methods:

• Type the command /etc/inetd -c on the target host.

• Send the SIGHUP signal to the running inetd process.

• Reboot the target machine.

8. In some cases, you might need to update the file atsagtd.sh shell script
to add some environment variables to the target machine.

9. Return to your user account and create an agent access file .atsagtd file
in your home directory. See System Testing Agent Access Files.

Troubleshooting the agent

To check the installation, type the following command on the host running
Test RealTime:

telnet <target machine> <port number>

where <port number> is the port number you specified during the
installation procedure. By default, System Testing uses port 10000. After the
connection succeeds, press Enter to close the connection.

If the connection fails, try the following steps to troubleshoot the problem:

• Check the target hostname and port.

• Check the Agent Access File.

• Check the target hostname and port in the atsagtd.sh shell script.

• Check the /etc/services and /etc/inetd.conf files on the target machine.

• If you are using NIS services on your network, check the NIS
configuration.

 235

System Testing Agent Access Files

The .atsagtd (UNIX) or atsagtd.ini (Windows) agent access file is an
editable configuration file that secures access to System Testing Agents and
contains a list of machines and users authorized to execute agents on that
machine, with the following syntax:

<Test RealTime hostname> <username>

A plus sign + can be used as a wildcard to provide access to all users or all
workstations.

The minus sign - suppresses access to a particular user.

You can add comments to the agent access file by starting a line with the #
character:

Example
This is a sample .atsagtd or atsagtd.ini file.
The following line allows access from user jdoe on a
machine named workstation
workstation jdoe

The following line allows access from all users of
workstation
workstation +

The following allows access from jdoe on any host
+ jdoe

The following allows access to all users except anonymous
from the machine workstation
workstation +
workstation -anonymous

Configuring Virtual Testers

The Virtual Tester Configuration dialog box allows you to create and
configure a set of Virtual Testers that can be deployed for System Testing.

236

To open the Virtual Test Configuration dialog box:

1. In the Project Explorer, right-click a .pts test script.

2. From the pop-up menu, select Virtual Tester Configuration.

Note The Virtual Tester Configuration box is also included as part of the
System Testing Wizard when you are setting up a new activity.

Virtual Tester List

Use the Virtual Tester List to create a New Virtual Tester, Remove or Copy
an existing one.

Select a Virtual Tester in the Virtual Tester List to apply any changes in the
property tabs on the right.

General Tab

This tab specifies an instance and target deployment to be assigned to the
selected Virtual Tester.

• VT Name: This is the name of the Virtual Tester currently selected in
the Virtual Tester List.

• Implemented INSTANCE: Use this box to assign an instance, defined
in the .pts test script, to the selected virtual tester. This information is
used for Virtual Tester deployment. Select Default to specify the
instance during deployment.

• Target: This specifies the Target Deployment Port compilation
parameters for the selected Virtual Tester.

• Configure Settings: This button opens the Configuration Settings
dialog for the selected Virtual Tester node.

 237

Scenario Tab

Use this tab to select one or several scenarios as defined in the .pts test
script. During execution, the Virtual Tester plays the selected scenarios.

Family Tab

Use this tab to select one or several families as defined in the .pts test script.
During execution, the Virtual Tester plays the selected families.

Debugging Virtual Testers

In some cases, you may want to observe how your system under test reacts
when an error occurs and the consequences of this error on the whole
process, without stopping the Virtual Tester.

By default, when an error occurs in a block, the execution of the block is
interrupted. To prevent interruption, use the virtual tester debug mode.

You can statically activate the debug mode by compiling the generated
Virtual Tester with the ATL_SYSTEMTEST_DEBUG variable, as in the
following example:

cc -c -I$ATLTGT/lib/ -DATL_SYSTEMTEST_DEBUG <source.c>

where $ATLTGT is the current TDP directory.

Deploying Virtual Testers

The Virtual Tester Deployment Table allows to deploy previously created
Virtual Testers.

To open the Virtual Tester Deployment Table

1. In the Project Explorer, right-click a System Testing node.

2. From the pop-up menu, select Deployment Configuration.

3. Select Advanced Options and click Rendezvous.

238

Note The Virtual Tester Deployment Table is also included in the System
Testing Wizard when you are setting up a new activity.

Virtual Tester Deployment Table

Use the Add, Remove or Copy buttons to modify the list. Each line
represents one or several executions of a Virtual Tester assigned to an
instance, target host, and other parameters.

• Number of Occurrences: Specifies the number of simultaneous
executions of the current line.

• Virtual Tester Name: Specifies one of the previously created Virtual
Testers.

• Instance: Specifies the instances assigned to this Virtual Tester. If an
instance was specifically assigned in the Virtual Tester Configuration
box, this cannot be changed. Select <all> only if no INSTANCE is
defined in the test script.

• Network Node: This defines the target host on which the current line is
to be deployed. You can enter a machine name or an IP address.

Advanced Options

Click the Advanced Options button to add the following columns to the
Virtual Tester Deployment Table, and to add the Rendezvous... button.

• Agent TCP/IP Port: This specifies the port used by the System Testing
Agents to communicate with Test RealTime. By default, System Testing
uses port 10000.

• Delay: This allows you to set a delay between the execution of each line
of the table.

• First Occurrence ID: This specifies the unique occurrence ID identifier
for the first Virtual Tester executed on this line. The occurrence ID is
automatically incremented for each number of instances of the current

 239

line. See Communication Between Virtual Testers for more
information.

• Start Routine: This specifies the name of the function containing the
Virtual Tester, for use in multi-threaded or RTOS environments, if the
starting procedure is not main().

Click the Rendezvous Configuration button to set up any rendezvous
members.

File System Limitations

Deployment of the Virtual Testers results in the creation of an .spv
deployment script. This script contains file system commands, such as
CHDIR. If you are deploying the test to a target platform that does not
support a file system, you must edit the .spv script manually.

Editing the Deployment Script

The System Testing Supervisor actually runs a script, which is automatically
generated by configuring Virtual Testers and deploying Virtual Testers.

In some cases, you will need to manually edit the script. To do this, you first
have to generate an .spv deployment script in your workspace.

To generate a deployment script

1. In the Project Explorer, right-click a System Testing node.

2. From the pop-up menu, select Generate Deployment Script.

3. Enter a name for the generated script.

If you decide to manually maintain a deployment script, you must ensure
that any pathnames and other parameters remain up to date with the rest of
the System Testing node.

For information on the .spv script command language, please refer to the

240

Test RealTime Reference Manual.

Optimizing Execution Traces

Each Virtual Tester generates a trace file during its execution. This trace file
is used to generate the System Testing Report.

You may want to adapt the volume of traces generated at execution time.
For example, each Virtual Tester saves its execution traces in an internal
buffer that you can configure.

To optimize execution trace output, use the Execution Traces area in the
Test Script Compiler Settings dialog box.

• By default, System Testing generates a normal trace file.

• Select Time stamp only to generate traces for each scenario begin and
end, all events, and for error cases. This option also generates traces for
each WAITTIL and PRINT instruction. Use this option for load and
performance testing, if you expect a large quantity of execution traces
and you want to store all timing data.

• Select Block start/end only to generate traces for each scenario
beginning and end, all events, and for all error cases.

• Select Error only to generate traces only if an error is detected during
execution of the application. This report will be incomplete, but the
report will show failed instructions as well as a number of instructions
that preceded the error. This number depends on the Virtual Tester's
trace buffer size. Use this option for endurance testing, if you expect a
large quantity execution traces.

In addition to the above, you can select the Circular trace option for strong
real-time constraints when you need full control over the flush of traces to
disk. If you want to still store a large amount of trace data, specify a large
buffer.

 241

Setting Up Rendezvous Members

When you have used Rendezvous points in your .pts test script, it is
necessary to indicate the number of members that the supervisor must
expect at each rendezvous.

The Rendezvous Members dialog box is an advanced option of the Virtual
Tester Configuration.

To specify the number of members for each rendezvous:

1. In the Project Explorer, right-click a System Testing node.

2. From the pop-up menu, select Deployment Configuration.

3. Select Advanced Options and click Rendezvous.

4. For each rendezvous encountered in the .pts test script, select a number
of rendezvous members.

Select AutoGenerate to automatically compute the number of members
in each Rendezvous. In some cases, such as when rendezvous are placed
in an exception, this option cannot provide correct information to the
supervisor.

5. Click OK.

System Testing in a Multi-Threaded or RTOS Environment

When Virtual Testers must be executed as a threaded part of a UNIX or
Windows process, or on RealTime Operating Systems (RTOS) you must
take several constraints into account:

• The Virtual Tester should be generated as a function and not a main
program.

• You must consider the configuration of the Virtual Testers' execution.

There are memory management constraints:

242

• There is no dynamic memory allocation.

• Stacks are small.

• Virtual Testers share global data.

• Configuration of Virtual Tester execution.

Virtual Tester as a Thread or Task

When using a flat-memory RTOS model, the Virtual Testers can run as a
process thread or as a task in order to avoid conflicts with the application
under test's global variables.

Moreover, the Target Deployment Port is fully reentrant. Therefore, you can
run multiple instances of a Virtual Tester in the same process. The system
runs each process as a different process thread.

In this case, the Test Script Compiler generates the virtual tester source code
without a main() function, but with a user function.

To configure System Testing to run in multi-threaded mode, select the Not
shared option in Test Script Compiler Settings.

Multiple Instances of a Same Virtual Tester

Multiple instances of a same Virtual Tester can run simultaneously on a
same target. In this case, you need to protect the Virtual Tester threads in
the same process against access to global variables.

The Not Shared setting in Test Script Compiler Settings allows you to
specify global variables in the test script that should remain unshared by
separate Virtual Tester threads. When selected, multiple instances of a
Virtual Tester can all run in the same process.

You can share some global static variables in order to reuse data among
different Virtual Testers by using the SHARE command in the .pts test

 243

script. See the Rational Test RealTime Reference Manual for information
about the System Testing Language.

Virtual Tester Thread Starter Program

In a multi-thread environment, the only way to start the Virtual Tester
threads is to write a program, specifying:

The name of the execution trace file

The name of the instance to be started

To do this, use the ATL_T_ARG structure, defined in the ats.h header file
of the Target Deployment Port.

Example
#include <stdio.h>
#include <sched.h>
#include <pthread.h>
#include <errno.h>
#include "TP.h"
extern ATL_T_THREAD_RETURN *start(ATL_PT_ARG);
int main(int argc, char *argv[])
{
 pthread_t thrTester_1,thr_Tester_2;
 pthread_attr_t pthread_attr_default;
 ATL_T_ARG arg_Tester_1, arg_Tester_2;
 int status;
 arg_Tester_1.atl_riofilename = "Tester_1.rio";
 arg_Tester_1.atl_filters = "";
 arg_Tester_1.atl_instance = "Tester_1";
 arg_Tester_1.atl_occid = 0;
 arg_Tester_2.atl_riofilename = "Tester_2.rio";
 arg_Tester_2.atl_filters = "";
 arg_Tester_2.atl_instance = "Tester_2";
 arg_Tester_2.atl_occid = 0;
 pthread_attr_init(&pthread_attr_default);
 /* Start Thread Tester 1 */

pthread_create(&thrTester_1,&pthread_attr_default,start,&arg
_Tester_1);
 /* Start Thread Tester 2 */

244

pthread_create(&thrTester_2,&pthread_attr_default,start,&arg
_Tester_2);
 /* Both Testers are running */
 /* Wait for the end of Thread Tester 1 */
 pthread_join(thrTester_1, (void *)&status);
 /* Wait for the end of Thread Tester 2 */
 pthread_join(thrTester_2, (void *)&status);
 return(0);
}

System Testing for C Test Scripts

Basic Structure

The overall structure of a C and Ada test script must follow these rules:

• A test script always starts with the HEADER keyword.

• A test script is composed of one or several scenarios.

The basic structuring statements are:

• HEADER: Specifies the name of the test script, the version of the tested
system, and the version of the test script. This information will be
included in the test report.

• SCENARIO: Indicates the beginning of a SCENARIO block. A
SCENARIO block ends with an END SCENARIO statement. A
SCENARIO block can be iterated multiple times using to the LOOP
keyword.

• FAMILY: Qualifies the scenario and all its sub-scenarios. The FAMILY
attribute is optional. A list of qualifiers can be given such as: FAMILY
nominal, structural.

Each scenario can be split into sub-scenarios.

Example
HEADER "Registering", "1.0", "1.0"
SCENARIO basic_registration

 245

FAMILY nominal
-- The body of my basic_registration test

END SCENARIO
SCENARIO extented_registration
FAMILY robustness
SCENARIO reg_priv_area
 -- The body of my reg_priv_area test
END SCENARIO -- reg_priv_area
SCENARIO reg_pub_area LOOP 10
 -- The body of my reg_pub_area test
END SCENARIO -- reg_priv_area
END SCENARIO

Include Statements

To avoid writing large test scripts, you can split test scripts into several files
and link them using the INCLUDE statement.

This instruction consists of the keyword INCLUDE followed by the name of
the file to include, in quotation marks (" ").

INCLUDE instructions can appear in high- and intermediate-level
scenarios, but not in the lowest-level scenarios.

You can specify both absolute or relative filenames. There are no default
filename extensions for included files. You must specify them explicitly.

Example
HEADER "Socket validation", "1.0", "beta"
INCLUDE "../initialization"

SCENARIO first
END SCENARIO

SCENARIO second
 INCLUDE "scenario_3.pts"
 SCENARIO level2
 FAMILY nominal, structural
 ...
 END SCENARIO
END SCENARIO

246

Procedures

You can also use procedures to build more compact test scripts. The
following are characteristics of procedures:

• They must be defined before they are used in scenarios.

• They do not return any parameters.

A procedure begins with the keyword PROC and ends in the sequence
END PROC. For example:

HEADER "Socket Validation", "1.0", "beta"
PROC function ()
...
END PROC
SCENARIO first
...
CALL function ()
...
END SCENARIO
SCENARIO second
SCENARIO level2
FAMILY nominal, structural
...
END SCENARIO
END SCENARIO

A procedure can call sub-procedures as long as these sub-procedures are
located above the current procedure.

Procedure blocks can take parameters. When defining a procedure, you
must also specify the input/output parameters.

Each parameter is described as a type followed by the name of the variable.

The declaration syntax requires, for each argument, a type identifier and a
variable identifier. If you want to use complex data types, you must use
either a macro or a C or C++ type declaration.

 247

Example

In the following example, the argument to procedure function1 is a
character string of 35 bytes. The arguments to procedure function2 are an
integer and a pointer to a character.

HEADER "Socket Validation", "1.0", "beta"
#typedef char string[35];
##define ptr_car char *
PROC function1 (string a)
...
END PROC
PROC function2 (int a, ptr_car b)
...
END PROC
SCENARIO first
...
CALL function1 ("foo")
...
END SCENARIO

Flow Control

Several execution flow instructions let you develop algorithms with
multiple branches.

System Testing .pts test script flow control instructions include:

• Conditions

• Iterations

• Multiple Conditions

Conditions

The IF statement comprises the keywords IF, THEN, ELSE, and END. It lets
you define branches and follows these rules:

• The test following the keyword IF must be a Boolean expression in C or
C++.

• IF instructions can be located in scenarios, procedures, or environment

248

blocks.

• The ELSE branch is optional.

The sequence IF (test) THEN must appear on a single line. The keywords
ELSE and END IF must each appear separately on their own lines.

Example
HEADER "Instruction IF", "1.0", "1.0"
#int IdConnection;
SCENARIO Main
 COMMENT connection
 CALL socket(AF_UNIX, SOCK_STREAM, 0)@@IdConnection
 IF (IdConnection == -1) THEN
 EXIT
 END IF
END SCENARIO

Iterations

The WHILE instruction comprises the keywords WHILE and END. It lets
you define loops and follows these rules:

• The test following the keyword WHILE must be a C Boolean
expression.

• The WHILE instructions can be located in scenarios, procedures, or
environment blocks.

The sequence WHILE (test) and the keyword END WHILE must each
appear separately on their own lines.

Example
HEADER "Instruction WHILE", "", ""
#int count = 0;
#appl_id_t id;
#message_t message;
SCENARIO One
FAMILY nominal
 CALL mbx_init(&id) @ err_ok
 VAR id.applname, INIT="JUPITER"
 CALL mbx_register(&id) @ err_ok

 249

 VAR message, INIT={
& type=>DATA,
& applname=>"SATURN",
& userdata=>"hello world!"}
 WHILE (count<10)
 CALL mbx_send_message(&id,&message) @ err_ok
 VAR count, INIT=count+1
 END WHILE
 CALL mbx_unregister(&id) @ err_ok
 CALL mbx_end(&id) @ err_ok
END SCENARIO

Multiple Conditions

The multiple-condition statement CASE comprises the keywords CASE,
WHEN, END, OTHERS and the arrow symbol =>.

CASE instructions follow these rules:

• The test following the keyword CASE must be a C or C++ Boolean
expression. The keyword WHEN must be followed by an integer
constant.

• The keyword OTHERS indicates the default branch for the CASE
instruction. This branch is optional.

• CASE instructions can be located in scenarios, procedures, or
environment blocks.

Example
HEADER "Instruction CASE", "", ""
...
MESSAGE message_t: response
SCENARIO One
...
 CALL mbx_send_message(&id,&message) @ err_ok
 DEF_MESSAGE response, EV={}
 WAITTIL(MATCHING(response),WTIME == 10)
 -- Checking the just received event type
 CASE (response.type)
 WHEN ACK =>
 CALL mbx_send_message(&id,&message) @ err_ok
 WHEN DATA =>
 CALL mbx_send_message(&id,&ack) @ err_ok

250

 WHEN NEG_ACK =>
 CALL mbx_send_message(&id,&error) @ err_ok
 WHEN OTHERS => ERROR
 END CASE
END SCENARIO

Native C

CALL Instruction

The CALL instruction lets you call functions or methods in a test script and
to check return values of functions or methods.

For the following example, you must pre-declare the param1, param2,
param4, and return_param variables in the test script, using native
language.

CALL function ()
-- indicates that the return parameter is neither checked
nor stored in a variable.
CALL function () @ "abc"
-- indicates that the return parameter to the function must
be compared with the string "abc", but its value is not
stored in a variable.
CALL function () @@return_param
-- indicates that the return parameter is not checked, but
is stored in the variable return_param.
CALL function () @ 25 @return_param
-- indicates that the return parameter is checked against 25
and is stored in the variable return_param.

Using Native Language

In some cases, it can be necessary to include portions of C native code inside
a .pts test script for one the following reasons:

• To define native variables to control the flow of a scenario

• To insert native code into a scenario

To use native C declarations in the test script, start the declarations with a #
character:

#int i;
#char *foo;

 251

Declarations must be placed outside of System Testing Language blocks or
at the beginning of scenarios and procedures.

To use native C code in the test script, start instructions with a # character:

Start native code with the @ symbol.
@for(i=0; i++; i<100) func(i);
@foo(a,&b,c);

You can add native code either inside or outside of C and Ada Test Script
Language blocks.

Instances

Instance Declaration

The DECLARE_INSTANCE instruction lets you declare the set of the
instances included in the test script.

Note Each instance behavior will be translated into different Virtual
Testers executed within a process or a thread.

The DECLARE_INSTANCE instruction must be located before the top-
level scenario.

The instance declaration can be done by one or several
DECLARE_INSTANCE instructions. They must appear in the test script in
such a way that no INSTANCE block containing global declarations uses
an instance that has not been previously declared.

Example
HEADER "Multi-server / Multi-client example","1.0",""
DECLARE_INSTANCE server1, server2
...
DECLARE_INSTANCE client1, client2, client3
...
SCENARIO Principal
...

252

Instance Synchronization

The RENDEZVOUS statement, provides a way to synchronize Virtual
Testers to each instance.

When a scenario is executed, the RENDEZVOUS instruction stops the
execution until all Virtual Testers sharing this synchronization point (the
identifier) have reached this statement.

When all Virtual Testers have met the rendezvous, the scenario resumes.
SCENARIO first_scenario
FAMILY nominal
 -- Synchronization point shared by both Instances
 RENDEZVOUS sync01
 INSTANCE JUPITER:
RENDEZVOUS sync02
. . .
 END INSTANCE
 INSTANCE SATURN:
RENDEZVOUS sync02
. . .
 END INSTANCE
END SCENARIO

Synchronization can be shared with other parts of the test bench such as in-
house Virtual Testers, specific feature , and so on. This can be done easily by
linking these pieces with the current Target Deployment Port.

Then, to define a synchronization point, you must make a call to the
following function:

atl_rdv("sync01");

This synchronization point matches the following instruction used in a test
script:

RENDEZVOUS sync01

Example

The following test script is based on the example developed in the Event
Management section. The script provides an example of the usefulness of

 253

instances for describing several applications in a same test script.
HEADER "SystemTest Instance-including Scenario Example",
"1.0", ""
DECLARE_INSTANCE JUPITER, SATURN
COMMTYPE appl_comm IS appl_id_t
MESSAGE message_t: message, data, my_ack, neg_ack
CHANNEL appl_comm: appl_ch
#appl_id_t id;
#int errcode;
PROCSEND message_t: msg ON appl_comm: id
CALL mbx_send_message(&id, &msg) @ err_ok
END PROCSEND
CALLBACK message_t: msg ON appl_comm: id
 CALL mbx_get_message (&id, &msg, 0) @@ errcode
 MESSAGE_DATE
 IF (errcode == err_empty) THEN
 NO_MESSAGE
 END IF
 IF (errcode != err_ok) THEN
 ERROR
 END IF
END CALLBACK
SCENARIO first_scenario
FAMILY nominal
 COMMENT Initialize, register, send data
 COMMENT wait acknowledgement, unregister and release
 CALL mbx_init(&id) @ err_ok @ errcode
 ADD_ID(appl_ch,id)
 INSTANCE JUPITER:
 VAR id.applname, INIT="JUPITER"
END INSTANCE
 INSTANCE SATURN:
 VAR id.applname, INIT="SATURN"
 END INSTANCE
 CALL mbx_register(&id) @ err_ok @ errcode
 COMMENT Synchronization of both instances
 RENDEZVOUS start_RDV
 INSTANCE JUPITER:
 VAR message, INIT={type=>DATA,num=>id.s_id,
& applname=>"SATURN",
& userdata=>"Hello Saturn!"}
 SEND(message , appl_ch)
 DEF_MESSAGE my_ack, EV={type=>ACK}
 WAITTIL (MATCHING(my_ack), WTIME==300)
 DEF_MESSAGE data, EV={type=>DATA}
 WAITTIL (MATCHING(data), WTIME==1000)
 END INSTANCE
 INSTANCE SATURN:
 DEF_MESSAGE data, EV={type=>DATA}

254

 WAITTIL (MATCHING(data), WTIME==1000)
 VAR message, INIT={type=>DATA,num=>id.s_id,
& applname=>"JUPITER",
& userdata=>"Fine, Jupiter!"}
 SEND(message , appl_ch)
 DEF_MESSAGE my_ack, EV={type=>ACK}
 WAITTIL (MATCHING(my_ack), WTIME==300)
 END INSTANCE
 CALL mbx_unregister(&id) @ err_ok @ errcode
 CLEAR_ID(appl_ch)
 CALL mbx_end(&id) @ err_ok @ errcode
 COMMENT Termination Synchronization
 RENDEZVOUS term_RDV
END SCENARIO

The scenario describes the behavior of two applications (JUPITER and
SATURN) exchanging messages by using a communications stack.

Some needed resources are allocated and a connection is established with
the communication stack (mbx_init). This connection is made known by the
Virtual Tester with the ADD_ID instruction. Note that this is a common
part to both instances.

Then, the two applications register (mbx_register) onto the stack by giving
their application name (JUPITER or SATURN). These operations are
specific to each instance, which is why these operations are done in two
separate instance blocks.

The application JUPITER sends the message "Hello Saturn!" to the
SATURN application (through the communication stack) which is
supposed to have set itself in a message waiting state (WAITTIL
(MATCHING(data), ...)).

Once the message has been sent, JUPITER waits for an acknowledgment
from the communication stack (WAITTIL(my_ack),...). Then, it waits for the
response of SATURN (WAITTIL (MATCHING(data),...)) which answers
by the message "Fine, Jupiter!" (SEND(message , appl_ch)). These
operations are specific to each instance.

Finally, the applications unregister themselves and free the allocated

 255

resources in the last part, which is common to both instances.

Instances

In a distributed environment, you can merge the description of several
entities, Virtual Testers, in a unique test script. This is possible through the
concept of interaction instances, as defined in UML.

Hence, you create Virtual Testers, all based on a same test script, with
distinct behaviors such as a client and a server or both.

The use of instances in a test script must be split into two parts, as follows:

• The declaration of the instances used in test script

• The description of the instances by specific blocks containing
declarations or instructions.

Environments

When creating a test script, you typically write several test scenarios. These
scenarios are likely to require the same resources to be deployed and then
freed. You can avoid writing a series of scenarios containing similar code by
factorizing elements of the scenario.

To resolve these problems and leverage your test script writing, you can
define environments introduced by the keywords INITIALIZATION,
TERMINATION, and EXCEPTION.

This section describes

• Error Handling

• Exception Environment (Error Recovery Block)

• Initialization Environment

• Termination Environment

256

Error Handling

The ERROR Statement

The ERROR instruction lets you interrupt execution of a scenario where an
error occurs and continue on to the next scenario at the same level.

ERROR instructions follow these rules:

• ERROR instructions can be located in scenarios, in procedures, or in
environment blocks.

• If an ERROR instruction is encountered in an INITIALIZATION
block, the Virtual Tester exits with an error from the set of scenarios at
the same level.

Note In debug mode, the behavior of ERROR instructions is different (see
Debugging Virtual Testers).

The following is an example of an ERROR instruction:
HEADER "Instruction ERROR", "1.0", "1.0"
#int IdConnection;
SCENARIO Main
 COMMENT connection
 CALL socket(AF_UNIX, SOCK_STREAM, 0)@@IdConnection
 IF (IdConnection == -1) THEN
 ERROR
 END IF
END SCENARIO

The EXIT Statement

The EXIT instruction lets you interrupt execution of a Virtual Tester.
Subsequent scenarios are not executed.

EXIT instructions follow these rules:

• EXIT instructions can be located in scenarios, procedures, or
environment blocks.

 257

• If an EXIT instruction is encountered, the EXCEPTION blocks are not
executed.

The following is an example of an EXIT instruction:
HEADER "Instruction EXIT", "1.0", "1.0"
#int IdConnection;
SCENARIO Main
 COMMENT connection
 CALL socket(AF_UNIX, SOCK_STREAM, 0)@@IdConnection
 IF (IdConnection == -1) THEN
 EXIT
 END IF
END SCENARIO

Exception Environment (Error Recovery Block)

A test script is composed of a hierarchy of scenarios. An exception
environment can be defined at a given scenario level.

When an error occurs in a scenario all exception blocks at the same level or
above are executed sequentially.

The syntax for exception environments can take two different forms, as
follows:

• A block: This begins with the keyword EXCEPTION and ends with the
sequence END EXCEPTION. A termination block can contain any
instruction.

• A procedure call: This begins with the keyword EXCEPTION followed
by the name of the procedure and, where appropriate, its arguments.

Example

In the following example, the highest level of the test script is made up of
two scenarios called first and second. The exception environment that
precedes them is executed once if scenario premier finished with an error,
and once if scenario second finishes with an error.

HEADER "Validation", "01a", "01a"

258

PROC Unload_mem()
...
END PROC
EXCEPTION Unload_mem()
SCENARIO first
...
END SCENARIO
SCENARIO second
EXCEPTION
...
END EXCEPTION
SCENARIO level2_1
FAMILY nominal, structural
...
END SCENARIO
SCENARIO level2_2
FAMILY nominal, structural
...
END SCENARIO
END SCENARIO

Scenario second is made up of two sub-scenarios, level2_1 and level2_2. The
second exception environment is executed after incorrect execution of
scenarios level2_1 and level2_2. The highest-level exception environment is
not re-executed if scenarios level2_1 and level2_2 finish with an error.

Only one exception environment can appear at a given scenario level.

An exception environment can appear among scenarios at the same level. It
does not have to be placed before a set of scenarios at the same level.

In a test report, the execution of an exception environment is shown even if
you decided not to trace the execution.

Initialization Environment

A test script is composed of scenarios in a tree structure. An initialization
environment can be defined at a given scenario level.

This initialization environment is executed before each scenario at the same
level.

 259

The syntax for initialization environments can take two different forms, as
follows:

• A block: This begins with the keyword INITIALIZATION and ends
with the sequence END INITIALIZATION. An initialization block can
contain any instruction.

• A procedure call: This begins with the keyword INITIALIZATION
followed by the name of the procedure and, where appropriate, its
arguments.

Example

In the following example, the highest level of the test script is made up of
two scenarios called first and second. The initialization environment that
precedes them is executed twice: once before scenario first is executed and
once before scenario second is executed.

HEADER "Validation", "01a", "01a"
PROC Load_mem()
...
END PROC
INITIALIZATION Load_mem()
SCENARIO first
...
END SCENARIO
SCENARIO second
INITIALIZATION
END INITIALIZATION
SCENARIO level2_1
FAMILY nominal, structural
...
END SCENARIO
SCENARIO level2_2
FAMILY nominal, structural
...
END SCENARIO
END SCENARIO

Scenario second is made up of two sub-scenarios, level2_1 and level2_2. The
second initialization environment is executed before scenarios level2_1 and
level2_2 are executed. The highest-level initialization environment is not re-

260

executed between scenarios level2_1 and level2_2.

Only one initialization environment can appear at a given scenario level.

An initialization environment can appear among scenarios at the same
level. The initialization environment does not have to be placed before a set
of scenarios at the same level.

In a test report, the execution of an initialization environment is shown
beginning with the word INITIALIZATION and ending with the words
END INITIALIZATION.

Termination Environment

A test script is composed of scenarios in a tree structure A termination
environment can be defined at a given scenario level.

This termination environment is executed at the end of every scenario at the
same level, provided that each scenario finished without any errors.

The syntax for termination environments can take two different forms, as
follows:

• A block: This begins with the keyword TERMINATION and ends
with the sequence END TERMINATION. A termination block can
contain any instruction.

• A procedure call: This begins with the keyword TERMINATION
followed by the name of the procedure and, where appropriate, its
arguments.

Example

In the previous example, the highest level of the test script is made up of
two scenarios called first and second. The termination environment that
precedes them is executed twice:

 261

• once after scenario first is executed correctly

• once after scenario second is executed correctly
HEADER "Validation", "01a", "01a"
PROC Unload_mem()
...
END PROC
TERMINATION Unload_mem()
SCENARIO first
...
END SCENARIO
SCENARIO second
TERMINATION
...
END TERMINATION
SCENARIO level2_1
FAMILY nominal, structural
...
END SCENARIO
SCENARIO level2_2
FAMILY nominal, structural
...
END SCENARIO
END SCENARIO

Scenario second is made up of two sub-scenarios, level2_1 and level2_2. The
second termination environment is executed after the correct execution of
scenarios level2_1 and level2_2. The highest-level termination environment is
not re-executed between scenarios level2_1 and level2_2.

Only one termination environment can appear at a given scenario level.

A termination environment can appear among scenarios at the same level.
The termination environment does not have to be placed before a set of
scenarios at the same level.

In a test report, the execution of a termination environment is shown
beginning with the word TERMINATION and ending with the words
END TERMINATION.

Time Management

262

In some cases, you will need information about execution time within a test
script.

The following instructions provide a way to dump timing data, define a
timer, clear a timer, get the value of a timer, and temporarily suspend test
script execution:

• TIME Instruction

• TIMER Instruction

• RESET Instruction

• PRINT Instruction

• PAUSE Instruction

TIME Instruction

The TIME instruction returns the current value of a timer. You must use a C
expression or scripting instruction (IF, PRINT, and so on).

Before using TIME, you must declare the timer with the TIMER instruction.

Example
HEADER "Socket validation", "1.0", "beta"
TIMER globalTime
PROC first
TIMER firstProc
...
PRINT globalTimeValue, TIME (globalTime)
END PROC
SCENARIO second
SCENARIO level2
TIMER level2Scn
...
PRINT level2ScnValue, TIME (level2Scn)
END SCENARIO
END SCENARIO

 263

TIMER Instruction

The TIMER instruction declares a timer in the test script.

You may declare a timer in any test script block: global, initialization,
termination, exception, procedure, or scenario.

The timer lasts as long as the block in which the timer is defined. This
means that a timer defined in the global block can be used until the end of
the test script.

You may define multiple timers in the same test script. The timer starts
immediately after its declaration.

The unit of the timer unit is defined during execution of the application,
with the WAITTIL and WTIME instructions.

Example
HEADER "Socket validation", "1.0", "beta"
TIMER globalTime
PROC first
TIMER firstProc
...
END PROC
SCENARIO second
SCENARIO level2
TIMER level2Scn
...
END SCENARIO
END SCENARIO

RESET Instruction

The RESET instruction lets you reset a timer to zero.

The timer restarts immediately when the RESET statement is encountered.

A timer must be declared before using RESET.

264

Example
HEADER "Socket validation", "1.0", "beta"
TIMER globalTime
PROC first
TIMER firstProc
RESET globalTime
...
END PROC
SCENARIO second
SCENARIO level2
TIMER level2Scn
...
RESET level2Scn
END SCENARIO
END SCENARIO

PRINT Instruction

You can print the result of an expression in a performance report by using
the PRINT statement. The PRINT instruction prints an identifier before the
expression.

Example
HEADER "Socket validation", "1.0", "beta"
#long globalTime = 45;
SCENARIO first
PRINT timeValue, globalTime
END SCENARIO
SCENARIO second
SCENARIO level2
PRINT time2Value, globalTime*10+5
...
END SCENARIO
END SCENARIO

PAUSE Instruction

The PAUSE instruction lets you temporarily stop test script execution for a
given period.

The unit of the PAUSE instruction is defined during execution of the
application, with the WAITTIL and WTIME instructions.

 265

Example
HEADER "Socket validation", "1.0", "beta"
#long time = 20;
PROC first
PAUSE 10
...
END PROC
SCENARIO second
SCENARIO level2
PAUSE time*10
...
END SCENARIO
END SCENARIO

Event Management

Event management helps you describe communication between the Virtual
Tester and the system under test.

Many different means of communication allow your systems to talk with
each other. At the software application level, a communication type is
identified by a set of services provided by specific functions.

For example, a UNIX system provides several means of communication
between processes, such as named pipes, message queues, BSD sockets, or
streams. You address each communication type with a specific function.

Furthermore, each communication type has its own data type to identify the
application you are sending messages to. This type is often an integer
(message queues, BSD sockets, ...), but sometimes a structure type.

Data exchanged this way must be interpreted by all communicating
applications. For this reason, each type of exchanged data must be well
identified and well known. By providing the type of exchanged data to the
Virtual Tester, it will be able to automatically print and check the incoming
messages.

• Basic Declarations

• Sending Messages

266

• Receiving Messages

• Messages and Data Management

• Communication Between Virtual Testers

Basic Declarations

COMMTYPE Instruction

For each communication type, there is a specific data type that identifies the
application you are sending messages to. In a test script, the COMMTYPE
instruction is used to identify clearly this data type, and then, the
communication type.

The data type has to be defined by a C typedef or a C++ object.

On UNIX systems, the data type for the BSD sockets is an integer. The
COMMTYPE instruction is used as follows:

#typedef int bsd_socket_id_t;
COMMTYPE ux_bsd_socket IS bsd_socket_id_t

The stack defines the data type appl_id_t. Therefore, the following figure
defines a new communication type called appl_comm:

COMMTYPE appl_comm IS appl_id_t
MESSAGE Instruction

The MESSAGE instruction identifies the type of the data exchanged
between applications. It also defines a set of reference messages.

The type of the messages exchanged between applications using our stack is
message_t.

The following instruction also declares three reference messages:
MESSAGE message_t: ack, neg_ack, data
CHANNEL Instruction

The CHANNEL instruction is used to declare a communication channel on

 267

a specific communication type. Thanks to channels of communication, the
user can easily manage a large number of opened connections.

CHANNEL appl_comm: appl_channel_1, appl_channel_2
ADD_ID Instruction

A communication channel is a logical medium of communication that
multiplexes several opened connections of the same type between the
Virtual Tester and applications under test. When opening a new connection,
it has to be linked to a communication channel, so that the Virtual Tester
knows about this new connection.

CALL mbx_init(&id) @ err_ok @ errcode
ADD_ID (appl_channel, id)

the function call to mbx_init opens a connection between the Virtual Tester
and the stack. This connection is identified by the value of id after the call.
The ADD_ID instruction add this new connection to the channel
appl_channel.

Sending Messages

PROCSEND Instruction

Event management provides a mechanism to send messages. This
mechanism needs the definition of a message sending procedure or
PROCSEND for each couple communication type, message type.

The PROCSEND instruction is then called automatically to sends a
message to the stack.

In the following example, msg is a message_t typed input formal parameter
specifying the message to send. The input formal parameter stack is used to
know where to send a message on the communication type appl_comm.

PROCSEND message_t: msg ON appl_comm: id
 CALL mbx_send_message (&id, &msg) @ err_ok
END PROCSEND

The sending is done by the API function call to mbx_send_message. The

268

return code is treated to decide whether the message was correctly sent.
Another value than err_ok means that an error occurred during the
sending.

VAR Instruction

The instruction VAR allows you to initialize messages declared using
MESSAGE instructions. This message may also be initialized by any other
C or C++ function or method:

VAR ack, INIT= { type => ACK }
VAR data, INIT= {
& type => DATA,
& applname => "SATURN",
& userdata => "hello world !" }

To learn all the nuts and bolts of the DEF_MESSAGE Instruction, see the
Messages and Data Management chapter.

SEND Instruction

This instruction allows you to invoke a message sending on one
communication channel .

It has two arguments:

• the message to send,

• the communication channel where the message should be sent.

The send instruction is as follows:
SEND (message , appl_ch)

In the previous figure, the SEND instruction allows the test program to
send a message on a known connection (see the ADD_ID instruction). If an
error occurs during the sending of the message, the SEND exits with an
error. The scenario execution is then interrupted.

 269

Example

The following test script describes a simple use of our stack. First of all,
some resources are allocated and a connection is established with the
communication stack (mbx_init). This connection is made known by the
Virtual Tester with the ADD_ID instruction. Then, the Virtual Tester
registers (mbx_register) onto the stack by giving its application name
(JUPITER). The Virtual Tester sends a message to an application under test
(SATURN). Finally, the Virtual Testers unregisters itself (mbx_unregister)
and frees the allocated resources (mbx_end)

HEADER "SystemTest 1st example: sending a message","1.0",""
COMMTYPE appl_comm IS appl_id_t
MESSAGE message_t: message, ack, data, neg_ack
CHANNEL appl_comm: appl_ch
#appl_id_t id;
#int errcode;
PROCSEND message_t: msg ON appl_comm: id
 CALL mbx_send_message (&id, &msg) @ err_ok
END PROCSEND
SCENARIO first_scenario
FAMILY nominal
 COMMENT Initialize, register, send data
 COMMENT wait acknowledgement, unregister and release
 CALL mbx_init(&id) @ err_ok @ errcode
 ADD_ID(appl_ch,id)
 VAR id.applname, INIT="JUPITER"
 CALL mbx_register(&id) @ err_ok @ errcode
 VAR message, INIT={
& type=>DATA,
& applname=>"SATURN",
& userdata=>"hello Saturn!"}
 SEND (message, appl_ch)
 CALL mbx_unregister(&id) @ err_ok @ errcode
 CLEAR_ID(appl_ch)
 CALL mbx_end(&id) @ err_ok @ errcode
END SCENARIO

Receiving Messages

CALLBACK Instruction

The event management provides an asynchronous mechanism to receive
messages. This mechanism needs the definition of a callback for each couple

270

communication type, message type.

A callback should do a non-blocking read for a specific message type on a
specific communication type.

The MESSAGE_DATE instruction lets you mark the right moment of the
reception of messages. The NO_MESSAGE instruction exits from the
callback and indicates that no message has been read.

The callback to receive messages from our stack is as follows:
CALLBACK message_t: msg ON appl_comm: id
 CALL mbx_get_message (&id, &msg, 0) @@ errcode
 MESSAGE_DATE
 IF (errcode == err_empty) THEN
 NO_MESSAGE
 END IF
 IF (errcode != err_ok) THEN
 ERROR
 END IF
END CALLBACK

In this example, msg is an output formal parameter of the callback. Its type
is message_t. The input formal parameter id is used to known where to
read a message on the communication type appl_comm.

The reading is done by the function call to mbx_get_message. The return
code is stored into the variable errcode. The value err_empty for the return
code means that no message has been read. Another value than err_ok or
err_empty means that an error occurred during the reading. The
NO_MESSAGE and ERROR instructions make the callback to return.

DEF_MESSAGE Instruction

The DEF_MESSAGE instruction defines the values of a reference message
declared with the MESSAGE instruction. A reference message is a message
expected by the virtual tester from an application under test.

DEF_MESSAGE ack, EV= { type => ACK }
DEF_MESSAGE data, EV= {

 271

& type => DATA,
& applname => "SATURN",
& userdata => "hello world !" }

To learn all the nuts and bolts of the DEF_MESSAGE Instruction, see the
Messages and Data Management chapter.

WAITTIL Instruction

The WAITTIL instruction allows waiting for events or conditions.
WAITTIL is made of two Boolean expressions: an expected condition, and a
failure condition. The instruction blocks until one of the two expressions
becomes true.

In the following example, the WAITTIL instruction receives all the
messages sent to the Virtual Tester on a known connection. As soon as a
received message matches the reference message ack, the WAITTIL exits
normally. Otherwise, if any message matching the reference message ack is
received during 300 units of time, the WAITTIL exits with an error (the
time unit is configurable in the Target Deployment Port according to the
execution target). The scenario execution is interrupted.

WAITTIL (MATCHING(ack), WTIME == 300)

In the example given above, the status of the reference event variable ack is
tested using the function MATCHING() which identifies if the last
incoming event corresponds to the content of the variable ack. WTIME is a
reserved keyword valuated with the time expired since the beginning of the
WAITTIL instruction.

The WAITTIL Boolean conditions are described using C or C++ conditions
including operators to manipulate events:

• MATCHING: does the last event match the specified reference event?

• MATCHED: did the Virtual Tester receive an event matching the
specified event?

• NOMATCHING: is the last event different from the specified

272

reference event?

• NOMATCHED: did the Virtual Tester receive an event different from
the specified event?

The different combinations of these operators allow an easy an extensive
definition of event sequences:

-- I expect evt1 on channel1 before my_timeout is reached
WAITTIL (MATCHING(evt1, channel1), WTIME>my_timeout)
-- I expect evt1 then evt2 on one channel before my_timeout
is reached
WAITTIL (MATCHED(evt1)&& MATCHING(evt2), WTIME>my_timeout)
-- I expect to receive nothing during my_time
WAITTIL (WTIME>my_time, MATCHING(empty_evt))
-- I expect evtA or evtB before my_timeout is reached
WAITTIL (MATCHING(evtA)||MATCHING(evtB), WTIME>my_timeout)
*

After the WAITTIL instruction, the value of these operators is available
until the next call to WAITTIL.

Example: Sending and Receiving Messages

The following test script describes a simple use of our stack. First of all,
some resources are allocated and a connection is established with the
communication stack (mbx_init). This connection is made known by the
Virtual Tester with the ADD_ID instruction. Then, the Virtual Tester
registers (mbx_register) onto the stack giving its application name
(JUPITER).

The Virtual Tester sends a message to an application under test (SATURN),
and waits for the acknowledgment sent back by the stack with the
WAITTIL instructions. Finally, the Virtual Tester unregisters
(mbx_unregister) and frees the allocated resources (mbx_end).

HEADER "SystemTest 1st example: sending & receiving a
message","1.0",""
COMMTYPE appl_comm IS appl_id_t
MESSAGE message_t: message, ack, data, neg_ack
CHANNEL appl_comm: appl_ch
#appl_id_t id;

 273

#int errcode;
PROCSEND message_t: msg ON appl_comm: id
CALL mbx_send_message (&id, &msg) @ err_ok
END PROCSEND
CALLBACK message_t: msg ON appl_comm: id
CALL mbx_get_message (&id, &msg, 0) @@ errcode
MESSAGE_DATE
IF (errcode == err_empty) THEN
NO_MESSAGE
END IF
IF (errcode != err_ok) THEN
ERROR
END IF
END CALLBACK
SCENARIO first_scenario
FAMILY nominal
COMMENT Initialize, register, send data
COMMENT wait acknowledgement, unregister and release
CALL mbx_init(&id) @ err_ok @ errcode
ADD_ID(appl_ch,id)
VAR id.applname, INIT="JUPITER"
CALL mbx_register(&id) @ err_ok @ errcode
VAR message, INIT={
& type=>DATA,
& applname=>"SATURN",
& userdata=>"hello Saturn!"}
SEND (message, appl_ch)
COMMENT Negative acknowledgment expected
COMMENT (Saturn is not running !)
DEF_MESSAGE ack, EV={type=>ACK}
WAITTIL (MATCHING(ack), WTIME==10)
CALL mbx_unregister(&id) @ err_ok @ errcode
CLEAR_ID(appl_ch)
CALL mbx_end(&id) @ err_ok @ errcode
END SCENARIO

Messages and Data Management

The instruction VAR allows you to initialize and check the contents of
simple or complex variables.

The process of initializing or checking variables is performed independently
by the following two sub-instructions:

VAR <variable> , INIT = <init_expr>

or

274

VAR <variable> , EV = <expec_expr>

This instruction allows you to initialize and check the contents of structured
variables, such as messages.

The field <variable> represents a variable or part of a structured variable.

<init_expr> and <expec_expr> let you describe the contents of structured
variables using a simple syntax.

To describe a sequence of fields at the same level in a structured variable,
you enclose the sequence in braces '{}' or brackets '[]' and separate the fields
with a comma ','.

You can reference members of a structured variable in the following ways:

• Reference by name

• Reference by position

You cannot however mix both methods.

The System Testing report does not show VAR instructions relating to
initializations. Only VAR instructions relating to content checks on
variables or messages are recorded in the test report.

The DEF_MESSAGE instruction allows you to define reference messages
using the DEF_MESSAGE instruction, using exactly the same syntax. The
following examples are presented using the VAR instruction, but are also
applicable to DEF_MESSAGE.

The report does not show DEF_MESSAGE instruction as they appear in the
test script, but only when they are used within a WAITTIL instruction.

Reference by Name

You can describe the contents of a structure by naming each field in the

 275

structure. This is very useful if you do not know the order of the fields in
the declaration of the structure.

When referencing by name, a parameter is described by the name of the
field in the structure followed by the arrow symbol (=>) and the
initialization or checking expression.

#typedef struct
{
int Integer;
char String [15];
float Real;
} block;
block variable;
VAR variable, INIT={Real=>2.0, Integer=>26, String=>"foo"}

You can omit the specification of structure elements by name if you know
the order of the fields within the structure. For the block type defined
above, you can write the following VAR statement:

VAR variable, INIT={ 26, "foo", 2.0 }

Reference by Position

You can describe the contents of an array by giving the position of elements
within the array.

When referencing by position, define a parameter by giving the position of
the field in the array followed by the arrow symbol (=>) and the
initialization or checking expression.

Note that numbering begins at zero.
#int array[5];
VAR array, EV=[4=>5, 1=>12, 2=>-18, 5=>15-26, 3=>0, 0=>123]

You can use ranges of positions when referencing by position. These ranges
are specified by two bounds separated by the symbol double full-stop (..).

#typedef int matrix[3][150];
VAR matrix, EV= [
& 2=>[0..99=>1, 100..149=>2],
& 0=>[99..0=>2, 100..149=>1],

276

& 1=>[0..80=>-1, 81..149=>0]]

Note that the bounds of an interval can be reversed.

When referencing by position, you must reference an entire sequence at a
given level.

Partial Initialization and Checks

With a VAR instruction, you can partially initialize and check a structured
variable.

#float array[10];
VAR array, INIT=[5..7=>2.1]

The array elements 5, 6 and 7 are initialized to 2.1. Other elements are not
initialized.

Multi-dimension Initialization and Checks

With a VAR instruction, you can initialize and check multi-dimension
variables with judicious use of bracket '[]' and brace '{}' separators.

The separators delimit the description of a structured variable to a given
dimension. The absence of separators at a given level indicates that the
initialization or checking value is valid for all the sub-dimensions of the
variable.

In the following example:

• Ex. 1: The set of 300 integer values of the matrix variable are initialized
to zero.

• Ex. 2: The 100 integer values contained in matrix[0] are initialized to 1,
the 100 values of matrix[1] are initialized to 2, and the 100 values of
matrix[2] are initialized to 3.

• Ex. 3: Only the matrix[0][0] is initialized to zero.

 277

• Ex. 4: Only the first 100 values of matrix[0] are initialized to zero.
#int matrix[3][100];
-- -Ex. 1- Global initialization
VAR matrix, INIT=0
-- -Ex. 2- Global initialization of lines
VAR matrix, INIT=[1,2,3]
-- -Ex. 3- Initialization of only one element
VAR matrix, INIT=[[0]]
-- -Ex. 4- Initialization of only one line
VAR matrix, INIT=[0]

The following example provides a set of VAR instructions that are
semantically identical:

#int matrix[3][3];
VAR matrix, EV=0
VAR matrix, EV=[0,0,0]
VAR matrix, EV=[[0,0,0],[0,0,0],[0,0,0]]

In the three VAR instructions above, all the matrix elements are checked
against zero.

Array Indices

With a VAR instruction, you can initialize and check array elements
according to their index at a given level.

The index is specified by a capital I followed by the level number. Levels
begin at 1. You can use I1, I2, I3, etc. as implicit variables.

#int matrix[3][100];
VAR matrix, EV=I1*I2

Each element of the above matrix is checked against the product of
variables I1 and I2, which indicate, respectively, a range from 0 to 2 and a
range from 0 to 99. The above matrix is checked against the 3 by 100
multiplication table.

Reference by Default

You can reference the remaining set of fields in an array, structure, or object

278

in a VAR instruction. To do this, use the keyword OTHERS, followed by
the arrow symbol =>, and an expression in C or C++.

Note: To use OTHERS, the remaining fields must be the same type and
must be compatible with the expression following OTHERS.

#typedef struct {
char String[25];
int Value;
int Value2;
int Array[30];
#} block;
block variable;
VAR variable, INIT=[
& String=>"chaine",
& Array=>[0..10=>0, OTHERS=>1] ,
& OTHERS=>2]

In the previous example, OTHERS has two functions:

• When initializing the array, the values indexed from 11 to 29 begin at 1.

• When initializing the structure, the value and value2 fields begin at 2.

Checking Pointers

With a VAR instruction, you may use NIL and NONIL, to check for null
and non-null pointers.

#typedef struct {
int a;
float b;
#} block, *PT_block;
#PT_block addr[10];
VAR addr, EV=[0..5=>NIL, OTHERS=>NONIL]

In the above example, the pointers indexed from 0 to 5 of the addr array are
compared with the null address. The test of the pointers indexed from 6 to 9
is correct if these pointers are different from the null address.

Checking Ranges

You may use ranges of acceptable values instead of immediate values. To

 279

do this, use the following syntax:
VAR <variable>, EV=[Min..Max]
DEF_MESSAGE <variable>, EV=[Min..Max]

The following example demonstrates this syntax:
#typedef struct {
int a;
float b;
#} block, *PT_block;
#PT_block addr[10];
VAR addr, EV=[0..5=>{a=>[0..100]}, OTHERS=>NONIL]

In the previous example, the elements indexed from 0 to 5 of the addr array
are checked with the following constraint:

a should be greater than 0 and lower than 100.

The test of the pointers indexed from 6 to 9 is correct if these pointers are
different from null address

Character Strings

When you use the VAR instruction for character strings, you may alter it. In
C, a character string can also be an array. This flexibility is retained in the
VAR instruction.

In the following example, the first variable String initializes as in C (null-
terminated). The second String initializes as an array of characters (not null-
terminated).

#char String[15];
VAR String, INIT="abcdef"
VAR String, INIT=['a', 'b', 'c', 'd', 'e', 'f']

Note You must define the VAR instruction either as a character string or
an array of characters.

Communication Between Virtual Testers

Virtual Testers can communicate between themselves with simple messages

280

by using the INTERSEND and INTERRECV statements. These messages
can be either an integer or a text string.

For information about the INTERSEND and INTERRECV statements,
please refer to the C and Ada Test Script Language section in the Rational
Test RealTime Reference Manual.

Identifier

For message delivery purposes, each Virtual Testers carries a unique
identifier. The virtual tester identifier is constructed with the following rules:

• If the Virtual Tester is run as an instance named <instance>:
<instance>_<occid>

• If the Virtual Tester is running in multi-threaded mode, with its entry
point in <function>:

<function_name>_<occid>

• In any other case, the identifier uses the .rio file name:
<filename>.rio_<occid>

By default the occurrence identification number <occid> for each Virtual
Tester is 0, but you can set different <occid> values in the Virtual Tester
Deployment dialog box.

There must never be two Virtual Testers at the same time with the same
identifier. If an INTERSEND message cannot be delivered because of an
ambiguous identifier, the System Testing supervisor returns an error
message.

Understanding System Testing for C Reports

Test reports for System Testing are displayed in Test RealTime's Report
Viewer.

The test report is a hierarchical summary report of the execution of a test

 281

node. Parts of the report that have Passed are displayed in green. Failed tests
are shown in red.

Report Explorer

The Report Explorer displays each element of a test report with a Passed ,
Failed symbol.

• Elements marked as Failed are either a failed test, or an element that
contains at least one failed test.

• Elements marked as Passed are either passed tests or elements that
contain only passed tests.

Test results are displayed for each instance, following the structure of the
.pts test script.

Report Header

Each test report contains a report header with:

• The version of Test RealTime used to generate the test as well as the
date of the test report generation

• The path and name of the project files used to generate the test

• The total number of test cases Passed and Failed. These statistics are
calculated on the actual number of test elements listed in the sections
below

• Virtual Tester information.

Main Report Sections

For each Virtual Tester execution, the report lists the details of test script
execution, with time stamps

and test result tables.

282

• Messages: The report displays fields and values for each field

• Tests Results: For each message, the report compares initial values,
expected values and obtained values

Understanding System Testing UML Sequence Diagrams

During the execution of the test, System Testing generates trace data this is
used by the UML/SD Viewer. The System Testing sequence diagram uses
standard UML notation to represent both System Testing results.

This is an example of a typical System Testing UML sequence diagram.

 283

You can modify the appearance of UML sequence diagrams by changing
the UML/SD Viewer Preferences.

When using System Testing with Runtime Tracing or other Test RealTime

284

features that generate UML sequence diagrams, all results are merged in the
same sequence diagram.

You can click any element of the UML sequence diagram to open the
System Testing reports at the corresponding line. Click again in the test
report, and you will locate the line in the .pts test script.

Virtual Testers and System Under Test

The system under test (SUT) and the Virtual Testers (VT) are represented as
vertical instances. Messages sent and received by the Virtual Tester are
represented along the Virtual Tester lifeline.

Messages

Messages are sent and received between Virtual Tester and system
instances.

Rendezvous

RENDEZVOUS statements are displayed as Synchronizations in the
Virtual Tester lifeline.

Test Script Events and Errors

Test script events and errors are represented as UML actions. Only
significant instructions, such as INITIALIZATION, WAITTIL blocks and
test errors are represented.

By default, errors appear in red. Other events are green.

WAITTIL blocks are displayed with their start and end events. Matching
conditions are represented as notes. Use the mouse cursor tool-tip to get
more information about the matching conditions.

 285

On-the-Fly Tracing

If you are using the On-the-Fly option, only the following information can
be displayed in real-time during the execution of the application:

• Virtual Tester and system under test

• Messages

• Rendezvous

• Test script blocks

Advanced System Testing for C

Trace Probes

The Probe feature of Test RealTime allows you to manually add special
probe C macros at specific points in the source code under test, in order to
trace messages.

Adding trace probes to the application produces a binary which is
functionally identical to the original, but which generates extra message
tracing results with System Testing for C.

Upon execution of the instrumented binary, the probes write trace
information on the exchange of specified messages to the .rio System
Testing output file, including message content and a time stamp. Probe
trace results can then be processed and displayed as .tdf dynamic trace
files in the UML/SD Viewer.

The use of C macros offers extreme flexibility. For example, when
delivering the final application, you can leave the macros in the final source
and simply provide an empty definition.

286

Using Probe Macros

Before adding probe macros to your source code, add the following
#include statement to each source file that is to contain a probe:

#include "atlprobe.h"

The atl_start_trace() and atl_end_trace() macros must be called when the
application under test starts and terminates.

Other macros must be placed in your source code in locations that are
relevant for the messages that you want to trace.

The following probe macros are available:
atl_dump_trace()
atl_end_trace()
atl_recv_trace()
atl_select_trace()
atl_send_trace()
atl_start_trace()
atl_format_trace()

Please refer to the Probe Macros section in the Test RealTime Reference
Manual for a complete definition of each probe macro.

To activate the trace probe feature:

1 In the Project Browser, select the application or test node on
which you want to use the feature.

2 Click Settings and open the Probe Control Settings box.

3 Set Probe Enable to Yes, select the correct output mode in Probe
Settings and click OK.

4 Edit the source code under test to add the trace probe macros,
including the #include line.

5 Set up your trace probes within your application source files.

To read the trace probe output:

1 From the File menu, select Open and File.

 287

2 In the file selector, select Trace Files (*.tsf, *.tdf) and select the .tsf
and .tdf files produced after the execution of the application under
test.

3 Click OK.

Generated Test Script

When a probed application is executed, System Testing for C produces a .pts test
script based on probe activity.

You can edit and reuse this script in further tests to replay the exact same data
exchanges in a System Testing for C test node.

Custom Probe Output

By default, the message traces are written to the .rio System Testing output
file for C. However, the Probe capability can send traces to a temporary
buffer.

• DEFAULT: In this mode, the message traces are written directly to the
.rio System Testing output file for C

• FIFO: Select this to direct traces to a temporary first-in first-out memory
buffer before writing to the .rio file

• FILE: Select this to direct traces to a temporary file before writing to the
.rio file

• USER: Uses a method, described in a user-defined probecst.c file that
must be added to the application node

• IGNORE: Use this setting to ignore trace macros.

In custom mode, when FIFO, FILE or USER are selected in the Probe area
of the Test Script Compiler Settings, the traces must be flushed to the .rio
file with an atl_dump_trace macro placed in the source code.

288

The I/O functions for probe trace output to the temporary location are
defined in the probecst.c source file delivered with the product. You need
to modify this file to adapt the probe mechanism to your application and
platform.

On-the-Fly Tracing

The System Testing for C on-the-fly tracing capability allows you to monitor
the Virtual Testers during the test execution in a UML sequence diagram.
Information provided by dynamic tracking includes:

• Beginning and end of scenarios

• Rendezvous

• Sent and received messages

• Inter-tester messages (only received messages)

• Beginning and end of termination, initialization and exception blocks

• End of Testers

On-the-fly tracing output is displayed in the UML/SD Viewer in real-time.
You can click any item in the sequence diagram to instantly highlight the
corresponding test script line in the Text Editor window.

To activate System Testing dynamic tracking, you must:

• select Display using on-the-fly mode in the System Testing Report
Generator Settings for the System Testing test node

• select Enable for On-the-Fly Tracing in the System Testing Target
Deployment Port Settings for the test node or for each particular
Virtual Tester node.

• ensure that the Authorize connections option in selected in the
General Preferences.

 289

291

Graphical User Interface 4
The graphical user interface (GUI) provides an integrated test environment
designed to act as a single, unified work space for all automated testing and
runtime analysis activities.

This section describes the features and capabilities included within the GUI
that are designed to make your testing effort a lot more manageable.

GUI Philosophy

In addition to acting as an interface with your usual development tools, the
GUI provides navigation facilities, allowing natural hypertext linkage
between test and analysis reports, UML sequence diagrams and source
code. For example:

• You can click any element of a test report to highlight the
corresponding test script line in the embedded text editor.

• You can click any element of an runtime analysis report to highlight
and edit the corresponding item in your application source code

• You can click a filename in the output window to open the file in the
Text Editor

In addition, the GUI provides easy-to-use Activity Wizards to guide you
through the creation of your project components.

292

Discovering the GUI

When you launch the Graphical User Interface (GUI), you are first greeted
with the Start Page and a series of windows. Click the elements below to
learn how to use them:

• The Start Page is a convenient starting point when you launch the GUI

• The Project Explorer is where you create, develop and execute your
project nodes

• The Properties Window provides information about node properties

• The Output Window displays the output of command line tools and
compilers

• The Standard Toolbars provide quick and convenient access to the
most commonly used features

• The Report Explorer allows you to navigate through analysis reports

GUI Components and Tools

In addition to these main windows, the product GUI provides a
comprehensive set of tools and components that make it an efficient and
customizable development environment.

• The Text Editor is a full-featured editor for source code

• The Tools menu is a convenient way of integrating any command-line
tool into the GUI

• The Test Process Monitor provides ongoing activity statistics and
metrics

• The Report Viewer displays runtime analysis reports

• The UML/SD Viewer displays UML sequence diagrams provided by
Runtime Tracing feature.

293

Start Page

When you launch the graphical user interface, the first element that appears
is the Test RealTime Start Page.

The Start Page is the central location of the application. From here, you can
create a new project, start a new activity and navigate through existing
project reports.

The Start Page contains the following sections:

• Get Started: this section lists your recent projects as well as a series of
example projects provided with the product.

• Activities: this section displays a series of new activities. Click a new
activity to launch the corresponding activity wizard.

Note A project must be open before selecting a new activity.

Output Window

The Output Window displays messages issued by product components or
custom features.

The first tab, labelled Build, is the standard output for messages and errors.
Other tabs are specific to the built-in features of the product or any user
defined tool that you may have added.

To switch from one console window to another, click the corresponding tab.
When any of the Output Window tabs receives a message, that tab is
automatically activated.

When a console message contains a filename, double-click the line to open
the file in the Text Editor. Similarly when a test report appears in the
Output Window, double-click the line to view the report.

294

Output Window Actions

Right-click the Output Window to bring up a pop-up menu with the
following options:

• Edit Selected File: Opens the editor with the currently selected
filename.

• Copy: Copies the selection to the clipboard.

• Clear Window: Clears the contents of the Output Window.

To hide or show the Output Window:

From the View menu, select Other Windows and Output Window.

Project Explorer

The Project Explorer allows you to navigate, construct and execute the
components of your project. The Project Explorer organizes your workspace
from two viewpoints:

• Project Browser: This tab displays your project as a tree view, as it is to
be executed.

• Asset Browser: Source code and test script components are displayed
on an object or elementary level.

To change views, select the corresponding tab in the lower section of the
Project Explorer window.

Project Browser

The Project Browser displays the following hierarchy of nodes:

• Project: the Project Explorer's root node.

• Test groups: provide a way to group and organize test nodes into one
or more test campaigns

295

• Test nodes: in Test RealTime only, these contain test scripts and source
files:

• Test Scripts: for Component Testing or System Testing

• Source files: for code-under-test as well as additional source
files

• Any other test related files

• Application nodes: represent your application, to which you can apply
SCI instrumentation for Memory Profiling, Performance Profiling,
Code Coverage and Runtime Tracing.

• External Command nodes: these allow you to add shell command lines
at any point in the Test Campaign.

After execution of a test or application node, double-click the node to open
all associated available reports.

When you run a Build command in the Project Browser, the product parses
and executes each node from the inside-out and from top to bottom. This
means that the contents of a parent node are executed in sequence before
the actual parent node.

Asset Browser

The Asset Browser displays all the files contained in your project. The
product parses the files and displays individual components of your source
files and test scripts, such as classes, methods, procedures, functions, units
and packages.

Use the Asset Browser to easily navigate through your source files and test
scripts.

In Asset Browser, you can select the type of Asset Browser in the Sort

296

Method box at the top of the Project Explorer window. Each view type can
be more or less relevant depending on the programming language used:

• By Files: This view displays a classic source file and dependency
structure

• By Objects: Primarily for C++ and Java, this view type presents objects
and methods independently from the file structure

• By Packages: This is mostly relevant for Java and displays packages
and components

Double-click a node in the Asset Browser to open the source file or test
script in the text editor at the corresponding line.

To switch Project Explorer views:

• Click the Project Browser or Asset Browser tab.

To hide or show the Project Explorer:

1. Right-click an empty area within the toolbar.

2. Select or clear the Project Window menu item.

or from the View menu, select Other Windows and Project Window.

Properties Window

The Properties Window box contains information about the node selected
in the Project Explorer. It also allows you to modify this information.

Project Browser

Depending on the node selected, any of the following relevant information
may be displayed:

• Name: is the name carried by the node in the Project Explorer.

• Exclude from Build: excludes the node from the Build process. When

297

this option is selected a cross is displayed next to the node in the
Project Explorer.

• Execute in background: enables the build and execution of more than
one test or application node at the same time.

• Relative path: indicates the relative path of the file.

• Full path: indicates the entire path of the file.

• Source type: You can select either Integrated or Tested.

Asset Browser

Select the type of Object View in the Sort Method box at the top of the
Project Explorer window: By Object, By Files, or By Packages. Depending
on the sort method selected, and the type of object or file, any of the
following relevant information may be displayed:

• Name: is the name carried of the file, object or package.

• Filters (for folders): is the file extension filter for files in that folder. See
Creating a Source File Folder.

• Name: is the name carried of the file or package.

• Relative path: indicates the relative path of the file.

• Full path: indicates the entire path of the file.

To open the Properties window:

1.In the Project Explorer, right-click a node.

2. Select Properties... in the pop-up menu.

To hide or show the Properties window:

1. Right-click an empty area within the toolbar.

2. Select or clear the <object> Property menu item.

or from the View menu, select Other Windows and <object> Property.

298

Report Explorer

The Report Explorer allows you to navigate through all text and graphical
reports, including:

• Test reports generated by Test RealTime

• Memory Profiling, Performance Profiling and Code Coverage reports

• UML Sequence Diagram reports from the Runtime Tracing feature

• Metrics produced by the Metrics Viewer

The actual appearance of the Report Explorer contents depends on the
nature of the report that is currently displayed, but generally the Report
Explorer offers a dynamic hierarchical view of the items encountered in the
report.

Click an item in the Report Explorer to locate and select it in the Report
Viewer or UML/SD Viewer window.

To hide or show the Report Explorer:

1. Right-click an empty area within the toolbar.

2. Select or clear the Report Explorer menu item.

Standard Toolbars

The toolbars provide shortcut buttons for the most common tasks.

The following toolbars are available

• Main toolbar

• View toolbar

• Build toolbar

• Status bar

299

Main Toolbar

The main toolbar is available at all times:

• The New File button creates a new blank text file in the Text Editor.

• The Open button allows you to load any project, source file, test script,
or report file supported by the product.

• The Save File button saves the contents of the current window.

• The Save All button saves the current workspace as well as all open
files.

• The Cut, Copy and Paste buttons provide the standard clipboard
functionality.

• The Undo and Redo buttons allow you undo or redo the last
command.

• The Find button allows you to locate a text string in the active Text
Editor or report window.

View Toolbar

The View toolbar provides shortcut buttons for the Text Editor and report
viewers.

• The Choose zoom Level box and the Zoom In and Zoom Out buttons
are classic Zoom controls.

• The Reload button refreshes the current report in a report viewer. This
is useful when a new report has been generated.

• The Reset Observation Traces button clears cumulative reports such as
those from Code Coverage, Memory Profiling or Performance
Profiling.

300

Build Toolbar

The build toolbar provides shortcut buttons to build and run the test.

• The Configuration box allows you to select the target configuration on
which the test will be based.

• The Build button launches the build and executes the node selected in
the Project Explorer. You can configure the Build Options for the
workspace by selecting the Options button.

• The Stop button stops the build or execution.

• The Clean Parent Node button removes files created by previous tests.

• The Execute Node button executes the node selected in the Project
Explorer.

Status Bar

The Status bar is located at the bottom of the main GUI window. It includes
a Build Clock which displays execution time, and the Green LED which
flashes when work is in progress.

To hide or show a toolbar:

1. Right-click an empty area within the toolbar.

2. Select and clear those toolbars you want to display or hide.

or from the View menu, select Toolbars and the toolbar(s) you want to
display or hide.

Using the GUI Components

Report Viewer

The Report Viewer allows you to view Test or Runtime Analysis reports
from Component Testing, System Testing and any of the Runtime Analysis

301

features

Most reports are produced as XML-based .xrd files, which are generated
during the execution of the test or application node.

To navigate through the report:

• You can use the Report Explorer to navigate through the report. Click
an element in the Report Explorer to go to the corresponding line in
the Report Viewer.

• You can also jump directly to the next or previous Failed test in the
report by using the Next Failed Test or Previous Failed Test buttons.

To filter out passed tests:

You can choose to only display the Failed tests in the report.

• From the Report Viewer menu, select Failed Tests Only or click the
Failed Tests Only button in the Report Viewer toolbar.

• To switch back to a complete view of the report, from the Report
Viewer menu, select All Tests or click the All Tests button in the
Report Viewer toolbar.

To hide or show report nodes:

The Report Viewer can hide or show some types of elements of the test,
such as Test Cases, Services or Scenarios.

• From the Report Viewer menu, select the elements that you want to
hide or show.

Understanding Test and Runtime Analysis Reports

The product generates Test and Runtime Analysis reports for each test or
runtime analysis feature.

302

Runtime Analysis Reports

• Memory Profiling

• Performance Profiling

• Code Coverage

• Runtime Tracing

Test Verdict Reports

• Component Testing for C and Ada

• Component Testing for C++

• System Testing for C

Setting a Zoom Level

UML sequence diagrams and other reports can be viewed with different
zoom levels.

To set the zoom level:

You can directly change the zoom level in the View Toolbar by using the
Zoom In and Zoom Out buttons or by selecting one of the pre-defined or
custom levels from the Choose Zoom Level box.

Report Viewer Toolbar

The Report toolbar eases report navigation with the Report Viewer.

Report Viewer commands are available when a Report Viewer window is
open:

• The Previous Failed Test and Next Failed Test buttons allow you to
quickly navigate through the Failed items.

• The Failed Tests Only or All Tests button toggles between the two
display modes.

303

Report Viewer Style Preferences

The Preferences dialog box allows you to change the appearance of your
Test and Runtime Analysis reports.

To choose Report Editor colors and attributes

1. Select the Report Viewer node:

• Background color: This allows you to choose a background color for
the Report Viewer window.

2. Expand the Report Viewer node, and select Syntax Color:

• Styles: This list allows you to select one or several styles that you want
to change. To change several styles at the same time, you can perform
multiple selections in the style list.

• Font: This allows you to change the font type and size for the selected
style.

• Text Color: This allows you to change the foreground and background
colors for the selected style. This opens a standard color palette.

• Text Attributes: This allows you to set the selected style to Bold, Italic,
Underlined or Dashed.

3. Click OK to apply your changes.

Text Editor

The product GUI provides its own Text Editor for editing and browsing
script files and source code.

The Text Editor is a fully-featured text editor with the following capabilities:

• Syntax Coloring

• Find and Replace functions

• Go to line or column

304

The main advantage of the Text Editor included in the GUI is its tight
integration with the rest of the test environment. You can click items within
the Project Explorer, Output Window, or any Test and Runtime Analysis
Report to immediately highlight and edit the corresponding line of code in
the Editor.

Creating a Text File

To create a new text file:

1. Click the New Text File toolbar button,

2. From the Editor menu, use the Syntax Color submenu to select the
language.

or

1. From the File menu, select New... and then open the Text File option

2. From the Editor menu, use the Syntax Color submenu to select the
language.

Opening a Text File

The Text Editor is tightly integrated with the Test RealTime GUI. Because of
the links between the various views of the GUI, there are many ways of
opening a text file. The most common ones are described here.

Using the Open command:

1. From the File menu, select Open... or click the Open button from the
standard toolbar.

2. Use the file selector to select the file type and to locate the file.

3. Select the file you want to open.

4. Click OK.

Using the File Explorer:

1. Select a file in the Project Explorer. If there are recognized components

305

in the file, a '+' symbol appears next to it.

2. Click the '+' symbol to expand the list of references in the file.

3. Double-click a reference to open the Text Editor at the corresponding
line.

Tip: You can navigate through the source file by double-clicking other
reference points in the Project Explorer.

Using a Test or Report Viewer:

1. With the Report Viewer open, locate an element inside the report.

2. Double-click the item to open the Text Editor at the corresponding line.

Finding Text in the Text Editor

To locate a particular text string within the Text Editor, use the Find
command.

Search options:Search options:Search options:Search options:

The Search box allows you to select the search mode:

• All searches for the first occurrence from the beginning of the file.

• Selected searches through selected text only.

• Forward and Backward specify the direction of the search, starting at
the current cursor position.

Match case restricts search criteria to the exact same case.

Match whole word only restricts the search to complete words.

Use regular expression allows you to specify UNIX-like regular expressions
as search criteria.

306

To find a text string in the Text Editor:

1. From the Edit menu, select Find...

2. The editor Find and Replace dialog appears with the Find tab selected.

3. Type the text that you want to find in the Find what: section. A history
of previously searched words is available by clicking the Find List
button.

4. Change search options if required.

5. Click Find.

Replacing Text in the Text Editor

To replace a text string with another string, you use the Find and Replace
command.

To replace a text string:

1. From the Edit menu, select Replace...

2. The editor Find and Replace dialog appears with the Replace tab
selected.

3. Type the text that you want to change in the Find what box. A history
of previously searched words is available by clicking the Find List
button.

4. Type the text that you want to replace it with in the Replace with box.
A history of previously replaced words is available by clicking the
Replace List button.

5. Change search options (see below) if required.

6. Click Replace to replace the first occurrence of the searched text, or
Replace All to replace all occurrences.

Search options:

The Search box allows you to select the search mode:

307

• All searches for the first occurrence from the beginning of the file.

• Selected searches through selected text only.

• Forward and Backward specify the direction of the search, starting at
the current cursor position.

Match case restricts search criteria to the exact same case.

Match whole word only restricts the search to complete words.

Use regular expression allows you to specify UNIX-like regular expressions
as search criteria.

Locating a Line and Column in the Text Editor

The Go To command allows you to move the cursor to a specified line and
column within the Text Editor.

To use the Go To feature:

1. From the Edit menu, select Go To...

2. The Text Editor's Find and Replace dialog appears with the Go To tab
selected.

3. Enter the number of the line or column or both.

4. Click Go to close the dialog box and to move the cursor to the specified
position.

Text Editor Syntax Coloring

The Text Editor provides automatic syntax coloring for C, C++, and Ada
source code as well for the C and Ada, C++ test script languages, and
System Testing Script Language. The Text Editor automatically detects the
language based on the filename extension.

However, if the filename does not have a standard extension, you must
select the language from the Syntax Color submenu.

308

To manually set the syntax coloring mode:

1. From the Editor menu, select the desired language through the Syntax
Color submenu.

Note To change the colors used by the Text Editor, see Text Editor
Preferences.

Text Editor Preferences

The Preferences dialog box allows you to change the appearance of the
source code and scripts in the Text Editor.

To choose Editor report colors and attributes:

1. Select the Editor node.

• Font: This allows you to change the general font type and size for
Editor. This parameter is overridden for defined styles by the Style
font setting. This parameter can be overridden for defined styles by the
Style font settings.

• Global Colors: This is where you select background colors for text
categorized as Normal, Information or Error as well as the general
background color. Click a color to open a standard color palette.

• Autodetect parenthesis and bracket mismatch - When this option is
selected, the Error color is used when the Editor detects a missing
bracket "[]" or parenthesis "()".

• Tabulation length: This specifies the tabulation length, which is
equivalent to a number of inserted spaces.

2. Expand the Editor Viewer node, and select Styles:

• Styles: This list allows you to select one or several styles that you want
to change. To change several styles at the same time, you can perform
multiple selections in the style list.

• Font: This allows you to change the font type and size for the selected
style.

309

• Text Color: This allows you to change the foreground and background
colors for the selected style. This opens a standard color palette.

• Text Attributes: This allows you to set the selected style to Bold, Italic,
Underlined or Dashed.

3. Click OK to apply your changes.

Tools Menu

The Tools menu is a user-configurable menu that allows you to access
personal tools from the graphical user interface (GUI). You can customize
the Tools menu to meet your own requirements.

Custom tools can be applied to a selection of nodes in the Project Explorer.
Selected nodes can be sent as a parameter to a user-defined tool application.
A series of macro variables is available to pass parameters on to your tool's
command line.

See the section GUI Macro Variables in the Reference Manual for detailed
information about using the macro command language.

Using the Tools Menu

To use a user-defined tool:

1. Select an icon from the Project Explorer pane.

2. Click the Tools menu and select the tool you want to use.

To add a new tool to the Tools menu:

1. From the Tools menu, select Toolbox...

2. To create an entirely new tool, click Add... If you want to copy from an
existing tool, select the existing tool, click Copy and click Edit...

3. Edit the tool in the Tool Edit box.

4. Click OK and Close.

310

To edit a user-defined tool:

1. From the Tools menu, select Toolbox...

2. Select the tool that you want to modify and click Edit...

3. Edit the tool in the Tool Edit box.

4. Click OK and Close.

To remove a tool from the Tools menu:

1. From the Tools menu, select Toolbox...

2. Select an existing tool from the tool list.

3. Click Remove and Close.

Tool Configuration

The Tool Configuration dialog allows you to configure a new or existing
tool.

In the Tools menu, each tool appears as a submenu item, or Name, with one
or several associated actions or Captions.

Identification

In this tab, you describe how the tool will appear in the Tools menu.

• Enter the Name of the tool submenu as it will appear in the Tools menu
and a Comment that is displayed in the lower section of the Toolbox
dialog box.

• Select Change Management System if the tool is used to send and
retrieve from a change management system. When Change
Management System is selected, Check In and Check Out actions are
automatically added to the Action tab (see below) and a Change
Management System toolbar is activated.

• Clear the Add to Tools menu checkbox if you do not want the tool to

311

be added to the Tools menu.

• Select Send messages to custom tab in the Output Window if you
want to view the tool's text output in the Output Window.

• Use the Icon button to attach a custom icon to the tool that will appear
in the Tools menu. Icons must be either .xpm or .png graphic files and
have a size of 22x22 pixels.

Actions

This tab allows you to describe one or several actions for the tool.

• The Actions list displays the list of actions associated with the tool. If
Change Management System is selected on the Identification tab,
Check In and Check Out tool commands will listed here. These cannot
be renamed or removed.

• Menu text is the name of the action that will appear in the Tools
submenu.

• Command is a shell command line that will be executed when the tool
action is selected from Tools menu. Command lines can include
toolbox macro variables and functions.

Click OK to validate any changes made to the Tool Edit dialog box.

To add a new action:

• Enter a Caption and a Command, then click Add.

To remove an action from the list:

• Select an action in the Actions list and click Remove.

To modify an action:

• Select an action, make any changes in the Caption or Command lines,
and click Modify.

Test Process Monitor

312

The Test Process Monitor provides an integrated monitoring feature that
helps project managers and test engineers obtain a statistical analysis of the
progress of their development effort.

Each generated metric is stored in its own file and consists of one or more
fields.

The Test Process Monitor works by gathering the statistical data from these
files and then generating a graphical chart based on each field.

The preexistence of a file is required before running the Test Process
Monitor. Files are created either by running a runtime analysis feature that
generates test process data, or by creating and updating your own file.

Note Currently only the Code Coverage feature provides data for the Test
Process Monitor. You can, however, build your own files with the
tpmadd command-line feature. See the Reference Manual for
further information.

Changing Curve Properties

The Curve Properties menu allows you to change the way a particular
graph is displayed.

To change the curve color:

1. Right-click a curve.

2. From the pop-up menu, select Change Curve Color.

3. Use the Color Palette to select a new color, and click OK.

To hide a curve:

1. Right-click a curve.

2. From the pop-up menu, select Hide Curve.

To set a maximum value:

Changing the maximum displayed value for a curve actually changes the

313

scale at which it is displayed. For instance, when a curve only reaches 100,
there is no point in displaying it at on a scale of 1000, unless you want to
compare it with another curve that uses that scale.

1. Right-click a curve.

2. From the pop-up menu, select Set Max Value.

3. Enter the scale value, and click OK.

Note Setting a maximum value lower than the actual maximum value of a
curve can result in erratic results.

To display a scale:

For any curve, you can display a scale on the right or left-hand side of the
graph. When you display a new scale, it replaces any previously displayed
one.

1. Right-click a curve.

2. From the pop-up menu, select Right Scale or Left Scale.

Custom Curves

In some cases, you may want to remove certain figures from a chart to make
it more relevant. The custom curves capability allows you to alter the chart
by selecting the records that you want to include.

Note Using the custom curves capability does not impact the actual
database. If you remove a record from the chart by using the custom
curves function, the actual record remains in the database and may
impact other figures.

Custom curves create a new metric, using the name of the base metric, with
a Custom prefix.

To create a custom curve:

1. Make sure a user is selected in the Report Explorer pane. If not, select a

314

user.

2. From the Project menu, select Test Process Monitor and Custom
Curves.

3. In the Custom Curves dialog box, select a metric and the start and end
date of your chart.

4. The record list displays all the records contained in the database of that
metric. Select the records that you want to use for your custom curve.
Clear the records that you do not want to use.

5. Click OK. A new metric is created.

To change a custom curve:

1. From the Project menu, select Test Process Monitor and Custom
Curves.

2. In the Custom Curves dialog box, select the Custom metric that you
want to modify.

3. Select the records that you want to use for your custom curve. Clear
the records that you do not want to use.

4. Click OK.

Event Markers

Use event markers to identify milestones or special events within your Test
Process Monitor chart. An event marker is identified by the date of the
event and a marker label.

Event markers appear as bold vertical lines in a Test Process Monitor chart.

To create an event marker:

1. Right-click the location where you want to put the chart

2. From the pop-up menu, select Event Properties and New Event.

3. Enter the date of the event, and a marker label, and click OK.

315

To remove an event marker:

1. Right-click the event marker that you want to hide.

2. From the pop-up menu, select Delete Event.

To hide a specific event marker:

Hiding a marker does not remove it. You can still make the marker
reappear.

1. Right-click the event marker that you want to hide.

2. From the pop-up menu, select Hide Event.

To hide or show all event markers:

1. In the Test Process Monitor toolbar, click the Events button to hide all
event markers.

2. Click again to show all hidden event markers.

Setting the Time Scale

The Scale capability defines the period that you want to view in the Test
Process Monitor window. This option allows you to select an annual,
monthly or daily view, as well as a user-definable time period.

To set the time scale:

1. Select a user in the Report Explorer pane.

2. From the Project menu, select Test Process Monitor, Scale and the
desired time scale.

3. If you chose Customize, enter the start and end date of the period that
you want to monitor, and click OK.

Test Process Monitor Toolbar

The Test Process Monitor (TPM) toolbar is useful for navigating through
TPM charts.

316

These buttons are available when a TPM window is open:

• The Clear button removes all curves from the chart.

• The Hide Event button hides the displayed event markers.

• The Floating Schedule button toggles the automatic location of new
curves.

To hide or show a toolbar:

1. Right-click an empty area within the toolbar.

2. Select and clear those toolbars you want to display or hide.

Adding a Metric

Metrics generated Code Coverage or other tools are directly available
through the Test Process Monitor. Each metric file contains one or several
fields.

To open a metric database a metric chart:

1. From the Project menu, select Test Process Monitor and either Project
or Current Workspace. Current Workspace applies to the user of the
current workspace. Project applies to all workspace users in the
project.

2. If a new metric database is detected, you need to provide a name for
the metric, as well as a label for each field of the database.

3. In the Report Explorer, select a user.

4. From the Project menu, select Test Process Monitor, the metric and the
field that you want to display.

You can add as many curves as you want to the chart.

To hide a curve:

1. Right-click a curve.

2. From the pop-up menu, select Hide Curve.

317

UML/SD Viewer

The UML/SD Viewer renders sequence diagram reports as specified by the
UML standard.

UML sequence diagram can be produced directly via the execution of the
SCI-instruction application when using the Runtime Tracing feature.

The UML/SD Viewer can also display UML sequence diagram results for
Component and System Testing features.

Navigating through UML Sequence Diagram

There are several ways of moving around the UML sequence diagrams
displayed by the UML/SD Viewer:

• Navigation Panel: Click and drag the Navigation button in the lower
right corner of the UML/SD Viewer window to scroll through a
miniature navigation pane representing the entire UML sequence
diagram.

• Free scroll: Press the Control key and the left mouse button
simultaneously. This displays a compass icon, allowing you to scroll
the UML sequence diagram in all direction by the moving the mouse.

• Report Explorer: The Report Explorer is automatically activated when
the UML/SD Viewer is activated. The Report Explorer offers a
hierarchical view of instances. Click an item in the Report Explorer to
locate and select the corresponding UML representation in the main
UML/SD Viewer window.

Time Stamping

The UML/SD Viewer displays time stamping information on the left of the
UML sequence diagram. Time stamps are based on the execution time of
the application on the target.

318

You can change the display format of time stamp information in the
UML/SD Viewer Preferences.

The following time format codes are available:

• %n - nanoseconds

• %u - microseconds

• %m - milliseconds

• %s - seconds

• %M - minutes

• %H - hours

These codes are replaced by the actual number. For example, if the time
elapsed is 12ms, then the format %mms would result in the printed value
12ms. If the number 0 follows the % symbol but precedes the format code,
then 0 values are printed to the viewer - otherwise, 0 values are not printed.
For example, if the time elapsed is 10ns, and the selected format code is
%0mms %nns, then the time stamp would read 0ms 10ns .

Note: To change the format code you must press the Enter key
immediately after selecting/entering the new code. Simply pressing
the OK button on the Preferences window will not update the time
stamp format code.

Coverage Bar

In C, C++ and Java, the coverage bar provides an estimation of code
coverage.

Note The coverage bar is unrelated to the Code Coverage feature. For
detailed code coverage reports, use the dedicated Code Coverage
feature.

319

When using the Runtime Tracing feature, the UML/SD Viewer can display
an extra column on the left of the UML/SD Viewer window to indicate code
coverage simultaneously with UML sequence diagram messages.

The UML/SD Viewer code coverage bar is merely an indication of the ratio
of encountered versus declared function or method entries and potential
exceptions since the beginning of the sequence diagram.

If new declarations occur during the execution the graph is recalculated,
therefore the coverage bar always displays a increasing coverage rate.

To activate or disable coverage tracing with a Java application:

1. Before building the node-under-analysis, open the Memory Profiling
settings box.

2. Set Coverage Tracing to Yes or No to respectively activate or disable
code coverage tracing for the selected node.

3. Click OK to override the default settings of the node

To hide the coverage bar:

1. Right-click inside the UML/SD Viewer window.

2. From the pop-up menu, select Hide Coverage.

To show the coverage bar:

1. Right-click inside the UML/SD Viewer window.

2. From the pop-up menu, select Show Coverage.

Memory Usage Bar

When using the Runtime Tracing feature on a Java application, the UML/SD
Viewer can display an extra bar on the left of the UML/SD Viewer window
to indicate total memory usage for each sequence diagram message event.

The memory usage bar indicates how much memory has been allocated by
the application and is still in use or not garbage collected.

320

In parallel to the UML sequence diagram, the graph bar represents the
allocated memory against the highest amount of memory allocated during
the execution of the application.

This ratio is calculated by subtracting the amount of free memory from the
total amount of memory used by the application. The total amount of
memory is subject to change during the execution and therefore the graph is
recalculated whenever the largest amount of allocated memory increases.

A tooltip displays the actual memory usage in bytes.

To activate or disable coverage tracing with a Java application:

1. Before building the node-under-analysis, open the Memory Profiling
settings box.

2. Set Coverage Tracing to Yes or No to respectively activate or disable
coverage tracing for the selected node.

3. Click OK to override the default settings of the node

To hide the memory usage bar:

1. Right-click inside the UML/SD Viewer window.

2. From the pop-up menu, select Hide Memory Usage.

To show the memory usage bar:

1. Right-click inside the UML/SD Viewer window.

2. From the pop-up menu, select Show Memory Usage.

Thread Bar

When using the Runtime Tracing feature on C, C++ and Java code, the
UML/SD Viewer can display an extra column on the left of its window to
indicate the active thread during each UML sequence diagram event.

Each thread is displayed as a different colored zone. A tooltip displays the
name of the thread.

321

Thread List

click the thread bar to open the thread list. The thread list window displays
a list of all threads that are created during execution of the application.

You can change the sort order by clicking the column titles.

You can jump to the portion of source code that creates a thread by clicking
a thread name.

To hide the thread bar:

1. Right-click inside the UML/SD Viewer window.

2. From the pop-up menu, select Hide Thread Bar.

To show the thread bar:

1. Right-click inside the UML/SD Viewer window.

2. From the pop-up menu, select Show Thread Bar.

Applying Filters

Filters are used to detect particular events within a test trace. You use the
Viewer's Filter List dialog box to specify how events are to be detected and
filtered.

To access the Filter List:

• From the UML/SD Viewer menu, select Filters or click the Filter
button in the UML/SD Viewer toolbar.

To create a new filter:

1. Click the New button

2. Create the new filter with the Event Editor.

To modify an existing filter:

1. Select the filter that you want to change.

2.Click the Edit button.

322

3. Modify the filter with the Event Editor.

To import one or several filters:

The import facility is useful if you want to re-use filters created in another
Project.

1. Click the Import button.

2. Locate and select the .tft file(s) that you want to import.

3. Click OK.

To export a filter event:

The export facility allows you to transfer filters.

1. Select the filter that you want to export.

2. Click the Export button.

3. Select the location and name of the exported .tft file.

4. Click OK.

Sequence Diagram Triggers

Sequence Diagram triggers allow you to predefine automatic start and stop
parameters for the UML/SD Viewer. The trigger capability is useful if you
only want to trace a specific portion of an instrumented application.

Triggers can be inactive, time-dependent, or event-dependent.

To access the Trigger dialog box:

• From the UML/SD Viewer menu, select Triggers or click the Trigger
button in the UML/SD Viewer toolbar.

Start and End of Runtime Tracing:Start and End of Runtime Tracing:Start and End of Runtime Tracing:Start and End of Runtime Tracing:

The Runtime Tracing start is defined on the Start tab:

• At the beginning: Runtime Tracing starts when the application starts.

323

• On time: Runtime Tracing starts after a specified number of
microseconds.

• On event: Runtime Tracing starts when a specified event is detected.
One or several events must be specified with the Event Editor.

The Runtime Tracing end is defined on the Stop tab:

• Never: Runtime Tracing ends when the application exits.

• On time: Runtime Tracing ends after a specified number of seconds.

• On event: Runtime Tracing ends when a specified event is detected.
One or several events must be specified with the Event Editor.

To create a new trigger event:

1. Click the New button

2. Create the new trigger event with the Event Editor.

To modify an existing trigger event:

1. Select the trigger event that you want to change.

2. Click the Edit button.

3. Modify the trigger event with the Event Editor.

To import one or several trigger events:

The import facility is useful if you want to reuse trigger events created in
another Project.

1. Click the Import button.

2. Locate and select the file(s) that you want to import.

3. Click OK.

To export a trigger event:

The export facility allows you to transfer trigger events.

1. Select the trigger event that you want to export.

324

2. Click the Export button.

3. Select the location and name of the exported .tft file.

4. Click OK.

Editing Trigger or Filter Events

Use the Event Editor to create or modify event triggers or filters for UML
sequence diagrams:

• Filters: Specified events are hidden or shown in the UML sequence
diagram.

• Start triggers: The UML/SD Viewer starts displaying the sequence
diagram when a specified event is encountered. If no event matches the
output of the application, the diagram will appear blank.

• Stop triggers: The UML/SD Viewer stops displaying the sequence
diagram when a specified event is encountered.

Events can be related to messages, instances, notes, synchronizations,
actions or loops.

To define an event or filter:

1. Specify a name for the event.

2. Select the type of UML element you want to define for the event and
select Activate. Several types of elements can be activated for a single
filter or trigger event.

3. Click More or Fewer to add or remove line to the event criteria.

4. From the drop-down criteria box, select a criteria for the filter, and an
argument.

Arguments must reflect an exact match for the criteria. Pay particular
attention when referring to labels that appear in the sequence diagram
since they may be truncated.

325

You can use wildcards (*) or regular expressions by selecting the
corresponding option.

5. Click the Aa button to enable or disable case sensitivity in the criteria.

6. You can add or remove a criteria by clicking the More or Fewer
buttons.

7. Click Ok.

Message Criteria

• Name: Specifies a message name as the filter criteria.

• Internal message: Considers all messages other than constructor calls
coming from any internal source, as opposed to those messages coming
from the World instance.

• From Instance: Considers all messages other than constructor calls
prior to the first message sent from the specified object

• To Instance: Considers out all messages other than constructor calls if
any message is sent to the specified object

• From World: Considers all messages received from the World instance

• To World: Considers all messages sent to the World instance

Instance Criteria

• Name: Specifies an instance name as the filter criteria

• Instance child of: Specifies a child instance of the specified class.

Note Criteria

• All: Considers all notes

• Name: Specifies a note name

• All message notes: Considers any note attached to a message

326

• All instance notes: Considers any note attached to an instance

• Instance child of: Specifies a note attached to an instance of the
specified class

• Note on message named: Considers a note attached to a specified
message

• With style named: Considers a note with the specified style attributes

Synchronization Criteria

• All: Considers all synchronization events

• Name: Specifies a synchronization name

Action Criteria

• All: Considers all actions

• Name: Specifies an action name

• From Instance: Considers an action performed by the specified object

• From World: Considers all actions performed by the World instance

• Instance child of: Specifies an action performed by an instance of the
specified class

• With style named: Considers an action with the specified style
attributes

Loop Criteria

• All: Considers all loops

• Name: Specifies a loop name

Boolean Operators

• All Except expresses a NOT operation on the criteria

327

• Match All performs an AND operation on the series of criteria

• Match Any performs an OR operation on the series of criteria

Finding Text in a UML Sequence Diagram

The UML/SD Viewer has an extensive search facility that allows users to
locate specific UML sequence diagram elements by searching for a text
string.

To search for a text string inside the UML/SD Viewer:

1. Click inside a UML/SD Viewer window to activate it.

2. Select the Edit -> Find... menu item. The Find dialog box opens.

3. Type your search criteria in the Find dialog box.

4. Click the Find Next button.

5. If a string corresponding to the search criteria is found in the UML/SD
Viewer, the string is highlighted and the following message is
displayed: Runtime Tracing has finished searching the document.

6. Click OK.

Search options

• Forward and Backward specifies the direction of the search.

• The Search into option allows you to specify type of object in which
you expect to find the search string.

• The Find dialog box accepts either UNIX regular expressions or DOS-
like wildcards ('?' or '*'). Select either wildcard or reg. exp. in the Find
dialog box to select the corresponding mode.

Step-by-Step mode

When tracing large applications, it may be useful to slow down the display
of the UML sequence diagram. You can do this by using the Step-by-Step

328

mode.

To activate Step-by-Step mode:

• From the UML/SD Viewer menu, select Display Mode and Step-by-
Step.

To select the type of graphical element to skip over:

1. In the UML/SD Viewer toolbar, click the Step button.

2. Select the graphical elements that will stop the Step command. Clear
the elements that are to be ignored.

To step to the next selected element:

• Click the Step button in the UML/SD Viewer toolbar.

To skip to the end of execution:

• Click the Continue button in the UML/SD Viewer toolbar. This will
immediately display the rest of the UML sequence diagram.

To restart the Step-by-Step display:

• Click the Restart button in the UML/SD toolbar.

To de-activate Step-by-Step mode

• From the UML/SD Viewer menu, select Display Mode and All.

UML/SD Viewer Toolbar

The UML/SD Viewer toolbar provides shortcut buttons to commands
related to viewing graphical test reports and UML sequence diagrams.

UML/SD Viewer commands are only available when a UML sequence
diagram is open.

• The Filter button allows you to define a sequence diagram filter.

• The Trigger button sets sequence diagram triggers.

The following buttons are only available when using the Step-by-Step
mode.

329

• The Step button moves the UML/SD Viewer to the next selected event.

• The Select button allows you to select the type of event to trace.

• The Continue button draws everything to the end of the trace diagram.

• The Restart button restarts Step-by Step mode.

• The Pause button pauses the On-the-Fly display mode. The application
continues to run.

The TDF file selector is only available when using the Split TDF File feature.

• Click the button to select a .tdf dynamic trace file from the list.

• Click the and buttons to select the previous or next file in the list.

To hide or show a toolbar:

1. Right-click an empty area within the toolbar.

2. Select and clear those toolbars you want to display or hide.

3. Click OK.

UML/SD Viewer Preferences

The Preferences dialog box allows you to change the appearance of the
UML Sequence Diagram reports.

To choose UML sequence diagram preferences:

1. Select the UML/SD Viewer node:

• Background: This allows you to choose a background color for the
UML sequence diagram.

• Panel: This allows you to choose a background color for panels in the
UML sequence diagram.

• Panel Background: This allows you to choose a background color for
selected panels.

• Coverage Bar: This allows you to choose a background color for the

330

coverage bar.

• Memory Usage: This allows you to choose a background color for the
memory usage bar.

• Print Page header: Select this option to print a page header.

• Print Page footer: Select this option to print a page footer.

• Display Page Breaks: When this option is selected, the UML/SD
Viewer displays horizontal and vertical dash lines representing the
page size for printing.

• Show tooltip in UML/SD Viewer: Use this option to hide or show the
information tooltip in the UML/SD Viewer.

• Time Stamp Format: Use the editable box to select the format in which
time stamps are displayed in the UML/SD Viewer. See Time Stamping.

2. Expand the UML/SD Viewer node, and select Styles or Styles System
Test:

• Styles: This list allows you to select one or several styles that you want
to change. To change several styles at the same time, you can perform
multiple selections in the style list.

• Font: This allows you to change the font type and size for the selected
style.

• Text Color: This allows you to change the foreground and background
colors for the selected style. This opens a standard color palette.

• Text Attributes: This allows you to set the selected style to Bold, Italic,
Underlined or Dashed.

3. Click OK to apply your changes.

331

Configurations and Settings

Configurations and Settings

Two major concepts of Test RealTime are Configurations and Configuration
Settings:

• A Configuration is an instance of a Target Deployment Port (TDP) as
used in your project.

• Configuration Settings are the particular properties assigned to each
node in your project for a given Configuration.

A Configuration is not the actual Target Deployment Port. Configurations
are derived from the Target Deployment Port that you select when the
project is created, and contain a series of Settings for each individual node
of your project.

This provides extreme flexibility when you are using multiple platforms or
development environments. For example:

• You can create a Configuration for each programming language or
compiler involved in your project.

• If you are developing for an embedded platform, you can have one
Configuration for native development on your Unix or Windows
development platform and another Configuration for running and
testing the same code on the target platform.

• You can set up several Configurations based on the same TDP, but
with different libraries or compilers.

• If you are using multiple programming languages in your project, you
can even override the TDP on one or several nodes of a project.

The Configuration Settings allow you to customize test and runtime
analysis configuration parameters for each node or group of your project, as

332

well as for each Configuration. You reach the Configuration Settings for
each node by right-clicking any node in the Project Explorer window and
selecting Settings.

 The left-hand section of the Configuration Settings window allows you to
select the settings families related to the node, as well as the Configuration
itself, to which changes will be made. The right-hand pane lists the
individual setting properties.

The right-hand section contains the various settings available for the
selected node.

Propagation Behavior of Configuration Settings

The Project Explorer displays a hierarchical view of the nodes that
constitute your project.

Settings for each node are inherited by child nodes from parent nodes. For
instance, Settings of a project node will be cascaded down to all nodes in
that project.

Child settings can be set to override parent settings. In this case, the
overridden settings will, in turn, be cascaded down to lower nodes in the
hierarchy. Overridden settings are displayed in bold.

Settings are changed only for a particular Configuration. If you want your
changes to a node to be made throughout all Configurations, be sure to
select All Configurations in the Configuration box.

To change the settings for a node:

1. In the Project Explorer, click the Open Settings... button.

2. Use the Configuration box to change the Configuration for which the
changes will be made.

3. In the left pane, select the settings family that you want to edit.

333

4. In the right pane, select and change the setting properties that you
want to override.

5. When you have finished, click OK to validate the changes.

By default, the settings of each node are inherited from those of the parent
node. When you override the settings of a parent node, changes are
propagated to all child nodes within the same Configuration. Overridden
fields are displayed in bold.

Configuration Settings Structure

The Configuration Settings provides access to the following settings
families:

• General

• Build

• Runtime Analysis

• Component Testing

The actual settings available for each node depend on the type of node and
the language of the selected Configuration.

General Settings

Runtime Analysis

The Runtime Analysis setting family covers Configuration Settings for
Memory Profiling, Performance Profiling, Code Coverage and Runtime
Tracing.

Automated Testing Settings

This setting family covers Configuration Settings for Component Testing

334

and System Testing features (for Rational Test RealTime only).

General Settings

The General settings are part Configuration Settings dialog box, which
allows you to configure settings for each node.

By default, the settings of each node are inherited from those of the parent
node. When you override the settings of a parent node, changes are
propagated to all child nodes within the same Configuration. Overridden
fields are displayed in bold.

Host Configuration

The Host Configuration area lets you override any information about the
machine on which the Target Deployment Port is to be compiled.

• Hostname: The hostname of the machine. By default this is the local
host.

• Address: The IP address of the host. For the local host, use 127.0.0.1.

• System Testing Agent TCP/IP Port: The port number used by System
Testing Agents. The default is 10000.

• Socket Uploader Port: The default value is 7777.

• Target Deployment Port: This allows you to change the Target
Deployment Port for the selected nodes. Child nodes will use the
default Configuration Settings from this Target Deployment Port, such
as compilation flags.

Directories

• Build: Specify an optional working directory for the Target
Deployment Port. This is where the generated test program will be
executed on the target host.

335

• Temporary: Enter the location for any temporary files created during
the Build process

• Report: Specify the directory where test results are created.

• Java Main Class (for Java only): Specifies the name of the main class
for Java programs.

Target Deployment Port

The Target Deployment Port (TDP) Settings allow you to override the TDP
used for a particular node in the current Configuration. By default, the TDP
used is that of the current Configuration.

• Directory: Specifies the TDP directory

• Name: Displays the name of the TDP.

• ini File: Indicates the default .ini file in the TDP directory.

• Language: Sets the current language of the TDP.

To edit the General settings for a node:

1. In the Project Explorer, click the Open Settings... button.

2. Select a node in the Project Explorer pane.

3. In the Configuration Settings list, expand General.

4. Select Host Configuration, Directories or Target Deployment Port.

5. When you have finished, click OK to validate the changes.

Build Settings

The Compiler settings are part of the Build node of the Configuration
Settings dialog box, which allows you to configure settings for each node.

By default, the settings of each node are inherited from those of the parent
node. When you override the settings of a parent node, changes are
propagated to all child nodes within the same Configuration. Overridden

336

fields are displayed in bold.

Compiler Settings

• Preprocessor options: Specific compilation flags to be sent to the Test
Compiler.

• Compiler flags: Extra flags to be sent to the compiler.

• Preprocessor macro definitions: Specify any macro definition that are
to be sent to both the compiler preprocessor (if used) and the Test
Compilers. Several generation conditions must be separated by a
comma ',' with no space, as in the following example:

WIN32,DEBUG=1

• Directories for Include Files: Click the ... button to create or modify a
list of directories for included files when the include statement is
encountered in source code and test scripts. In the directory selection
box, use the Up and Down buttons to indicate the order in which the
directories are searched.

• User Link File for Ada (for Ada only): When using the Ada
Instrumentor, you must provide a link file. See Ada Link Files for more
information.

• Boot Class Path (for Java only): Click the ... button to create or modify
the Boot Class Path parameter for the JVM.

• Class Path (for Java only): Click the ... button to create or modify the
Class Path parameter for the JVM.

Linker Settings

This area contains parameters to be sent to the linker during the build of the
current node.

• Link Flags: Flags to be sent to the linker.

• Additional objects or libraries: A list of object libraries to be linked to

337

the generated executable.

• Directories for Libraries: Click the ... button to create or modify a list
of directories for library link files. In the directory selection box, use the
Up and Down buttons to indicate the order in which the directories are
searched.

Linker Settings for Testing Activities

These linker settings apply to Component Testing and System Testing
nodes when using Test RealTime.

• Test Driver Filename: The name of the generated test driver binary. By
default, Test RealTime uses the name of the test or application node.

• Main application procedure (for Ada only): Ada requires an entry
point in the source code. For other languages, leave this blank.

• Build jar file (for Java only): Specifies whether to build an optional .jar
file.

• Jar file name (for Java only): If Build jar file is set to Yes, enter the
name of the .jar file.

• Manifest file (for Java only): Specifies the name of an optional
manifest file.

• Jar other directories (for Java only): Enter the location to generate the
.jar file. By default this is the source code directory.

Target Deployment Port Settings

This area relates to the parameters of the Target Deployment Port on which
is based the Configuration:

• Measure time used by: Selects between a real-time Operating system
clock or a Process or task clock for time measurement, if both options
are available in the current Target Deployment Port. Otherwise, this

338

setting is ignored.

• Maximum on-target buffer size: This sets the size of the I/O buffer. A
smaller I/O buffer can save memory when resources are limited. A
larger buffer improves performance.
The default setting for the I/O buffer is 1024 bytes.

• Multi-threads: This box, when selected, protects Target Deployment
Port global variables against concurrent access when you are working
in a multi-threaded environment such as Posix, Solaris or Windows.
This can cause an increase in size of the Target Port as-well-as an
impact on performance, therefore select this option only when
necessary.

• Maximum number of threads: When the multi-thread option is
enabled, this setting sets the maximum number threads that can be run
at the same time by the application.

• Run Garbage Collector at exit (for Java only): This setting runs the
JVM garbage collection when the application terminates.

To edit the Build settings for a node:

1. In the Project Explorer, click the Open Settings... button.

2. Select a node in the Project Explorer pane.

3. In the Configuration Settings list, expand Build.

4. Select Compiler, Linker or Target Deployment Port.

5. When you have finished, click OK to validate the changes.

External Command Settings

The External Command settings are part of the Configuration Settings
dialog box, which allows you to configure settings for each node.

Use the External Command setting to set a command line for External
Command nodes. An External Command is a command line that can be

339

included at any point in your workspace. External Commands can contain
GUI macro variables, making them context-sensitive. See the GUI Macro
Variables chapter in the Reference Manual.

By default, the settings of each node are inherited from those of the parent
node. When you override the settings of a parent node, changes are
propagated to all child nodes within the same Configuration. Overridden
fields are displayed in bold.

To edit the External Command settings for one or several nodes:

1. In the Project Explorer, click the Open Settings... button.

2. Select a node in the Project Explorer pane.

3. Select the External Command node and enter a Command line.

4. When you have finished, click OK to validate the changes.

Probe Control Settings

The Probe Control settings are part of the Configuration Settings dialog box,
which allows you to configure settings for each node.

By default, the settings of each node are inherited from those of the parent
node. When you override the settings of a parent node, changes are
propagated to all child nodes within the same Configuration. Overridden
fields are displayed in bold.

• Probe Enable: This setting enables or disables the Trace Probe feature
as implemented with System Testing for C. See Trace Probes.

• Probe Settings: These settings allow you to select the Probe macro
mode.

• Messaging API: Use the Add and Remove buttons to create a list of
Messaging API files. These are source files that define the structure
declarations required by Virtual Testers.

340

To edit the Probe Control settings for a node:

1. In the Project Explorer, click the Open Settings... button.

2. Select a node in the Project Explorer pane.

3. In the Configuration Settings list, select Probe Control.

4. When you have finished, click OK to validate the changes.

Runtime Analysis Settings

General Runtime Analysis Settings

The General Runtime Analysis settings are part of the Configuration
Settings dialog box, which allows you to configure settings for each node.

By default, the settings of each node are inherited from those of the parent
node. When you override the settings of a parent node, changes are
propagated to all child nodes within the same Configuration. Overridden
fields are displayed in bold.

Snapshot Settings

In some case, such as with applications that never terminate or when
working with timing or memory-sensitive targets, you might need to dump
traces at specifics points in your code.

• On Function Entry: Allows you to specify a list of function names,
from your source code, that will dump traces at the beginning of the
function.

• On Function Return: Allows you to specify a list of function names,
from your source code, that will dump traces at the end of the function.

• On Function Call: Allows you to specify a list of function names, from
your source code, that will dump traces before the function is called.

341

For each tab, click the ... button to open the function name selection box.
Use the Add and Remove buttons to create a list of function names.

See Generating SCI Dumps for more information.

Selective Instrumentation

By default, runtime analysis features instrument all components of source
code under analysis.

The Selective Instrumentation settings allow you to more finely define
which units (classes and functions) you want to instrument and trace.

• Units excluded from instrumentation: Click the ... button to access a
list of units (classes and functions) that can be excluded from the
instrumentation process. Click a unit to select or clear a unit. Use the
Select File and Clear File buttons to select and clear all units from a
source file.

• Files excluded from instrumentation: Click the ... button and use the
Add and Remove buttons to select the files to be excluded.

• Instrument inline methods: Extends instrumentation to inline
methods.

• Instrument included methods or functions: Extends instrumentation
to included methods or functions.

• Directories excluded from instrumentation: Click the ... button and
use the Add, Remove buttons to select the files to be excluded.

Static File Storage

Depending on the runtime analysis feature, the product generates .tsf or
.fdc temporary static data files during source code instrumentation of the
application under analysis.

342

• Code Coverage Static File Storage (.fdc): These settings apply to Code
Coverage .fdc static trace files:

• Build directory: Select this option to use the current directory
for all generated files.

• Other directory: Select this option to define a specific
directory.

• Source directory: Select this option to use the same directory
as the source under analysis.

• Use single temporary file (.fdc): By default, Code Coverage
produces one .fdc file for each instrumented source file. Select
this option to use a single .fdc file for all instrumented source
files, and specify its location.

• FDC Directory: When using the Use single temporary file (.fdc)
option in the previous setting, specify a location for the .fdc file.

• Memory Profiling, Performance Profiling, and Runtime Tracing
Storage: This setting applies to Memory Profiling, Performance
Profiling and Runtime Tracing .tsf static trace files.

• Build directory: Select this option to use the current directory
for all generated files.

• Other directory: Select this option to define a specific
directory.

• Source directory: Select this option to use the same directory
as the source under analysis.

• Use single temporary file (.tsf): By default, Memory Profiling,
Performance Profiling and Runtime Tracing produces one .tsf
file for each instrumented source file. Select this option to use a

343

single .tsf file for all instrumented source files, and specify its
location.

• TSF Directory: When using the Use single temporary file (.tsf) option
in the previous setting, specify a location for the .tsf file.

Miscellaneous Options

• Label Instrumented Files: Select this option to add an identification
header to files generated by the Instrumentor, including the command
line used to generate the file, the version of the product, date and
operating system information.

• Full template instantiation: By default unused methods are ignored by
the Instrumentor. Set this option to Yes to analyze all template
methods, even if they are not used.

• Additional Instrumentor Options: This setting allows you to add
command line options for the Instrumentor. Normally, this line should
be left blank.

To edit the General Runtime Analysis settings for a node:

1. In the Project Explorer, click the Open Settings... button.

2. Select a node in the Project Explorer pane.

3. In the Configuration Settings list, expand Runtime Analysis and
General.

4. Select Snapshot, Selective Instrumentation, Static File Storage or
Miscellaneous.

5. When you have finished, click OK to validate the changes.

Memory Profiling Settings

The Memory Profiling Instrumentation Control and Memory Profiling
Misc. Options settings are part of the Runtime Analysis node of the
Configuration Settings dialog box, which allows you to configure settings

344

for each node.

By default, the settings of each node are inherited from those of the parent
node. When you override the settings of a parent node, changes are
propagated to all child nodes within the same Configuration. Overridden
fields are displayed in bold.

Instrumentation Control

• File in use (FIU): When the application exits, this option reports any
files left open.

• Memory in use (MIU): When the application exits, this option reports
allocated memory that is still referenced.

• Signal (SIG): This option indicates the signal number received by the
application forcing it to exit.

• Freeing Freed Memory (FFM) and Late Detect Free Memory Write
(FMWL): Select Display Message to activate detection of these errors.

• Free queue length (blocks) specifies the number of memory blocks
that are kept free.

• Free queue size (Kbytes) specifies the total buffer size for free queue
blocks. See Freeing Freed Memory (FFM) and Late Detect Free Memory
Write (FMWL).

• Display Detect Array Bounds Write (ABWL): Select Yes to activate
detection of this error.

• Red zone length (bytes) specifies the number of bytes added by
Memory Profiling around the memory range for bounds detection.

• Number of functions: specifies the maximum number of functions
reported from the end of the CPU call stack. The default value is 6.

345

Misc. Options

• Trace File Name (.tpf): This box allows you to specify a filename for
the generated .tpf trace file.

• Global variables to exclude from observation (for Java only): This box
specifies a list of global variables that are not to be inspected for
memory leaks. This option can be useful to save time and
instrumentation overhead on trusted code. Use the Add and Remove
buttons to add and remove global variables.

JVMPI

• Object hashtable size: Specifies the size of hashtables for objects where
<size> must be 64, 256, 1024 or 4096 values.

• Class hashtable size: Specifies the size of hashtables for classes where
<size> must be 64, 256, 1024 or 4096 values.

• Take a Snapshot: You can select one of the following options:

• On method entry or return or dump snapshot button: Uses a
specified method to perform snapshot or the GUI snapshot button
as specified in the Enable dump Snapshot button setting.

• After each Garbage Collection: Takes a snapshot each time the
JVM garbage collector runs.

• Enable dump snapshot button and Delay Snapshot until next
Garbage Collection: Specify the trigger method.

• Host name used by dump Snapshot button: Use this option to specify
a hostname for the JVMPI Agent to communicate with the GUI.

• Port Number used by dump Snapshot button: Use this option to
specify a port number for the JVMPI Agent to communicate with the
GUI.

• TPF file name (.tpf): Specifies the name of the Memory Profiling trace
dump file produced by the JVMPI Agent.

346

• TSF file name (.tsf): Specifies the name of the static trace dump file.

• Display only listed methods: Use the Add and Remove buttons to add
and remove methods to be listed by the Java Memory Profiling report.

• Collect referenced objects: Sets the filter to be used with the Java
Memory Profiling Report.

• Display only listed packages: Use this setting to filter out of the report
the packages that do not match the specified full package name
(package and class).

• Display only listed classes: Use this setting to filter out of the report
the classes that do not match the specified full classes.

• Display call stack for listed methods: Use this setting to list the
methods for which the call stack is to be displayed in the Java Memory
Profiling report.

To edit the Memory Profiling settings for one or several nodes:

1. In the Project Explorer, click the Open Settings... button.

2. Select one or several nodes in the Configuration pane.

3. Select the Runtime Analysis node and the Memory Profiling node.

4. Select either Instrumentation Control, Misc. Options or JVMPI.

5. When you have finished, click OK to validate the changes.

Performance Profiling Settings

The Performance Profiling settings are part of the Runtime Analysis node
of the Configuration Settings dialog box, which allows you to configure
settings for each node.

By default, the settings of each node are inherited from those of the parent
node. When you override the settings of a parent node, changes are
propagated to all child nodes within the same Configuration. Overridden
fields are displayed in bold.

347

Trace File Name (.tqf): This box allows you to specify a filename for the
generated .tqf trace file for Performance Profiling.

To edit the Performance Profiling settings for one or several nodes:

1. In the Project Explorer, click the Open Settings... button.

2. Select one or several nodes in the Configuration pane.

3. Select the Runtime Analysis node and the Performance Profiling
node.

4. When you have finished, click OK to validate the changes.

Code Coverage Settings

The Code Coverage Instrumentation Control settings are part of the
Runtime Analysis node of the Configuration Settings dialog box, which
allows you to configure settings for each node.

By default, the settings of each node are inherited from those of the parent
node. When you override the settings of a parent node, changes are
propagated to all child nodes within the same Configuration. Overridden
fields are displayed in bold.

Instrumentation Control Settings

You can use the Coverage Type settings to declare various types of
coverage.

• Coverage Level Functions or Methods: select between function
Entries, With exits, or None. See the Function or Method Code
Coverage Ada, C, and C++ for more information.

• Coverage Level Calls: select Yes or No to toggle call code coverage for
Ada and C.

• Coverage Level Blocks: select the desired block code coverage method.
See the Block Code Coverage for Ada, C, and C++ for details.

348

• Coverage Level Conditions: select condition code coverage for Ada, C.

Please refer to Selecting Coverage Types for details on using each coverage
type with each language.

You can combine, enable, or disable any of these coverage types before
running the application node. All coverage types selected for
instrumentation can be filtered out in the Code Coverage Viewer.

• Mode: This setting specifies the Instrumentation Modes to be used by
Code Coverage.

• Default (Optimized for Code Size and Speed): This setting uses one
byte per branch to indicate branch coverage.

• Compact (Optimized for Memory): This setting uses one bit per
branch. This method saves target memory but uses more CPU time.

• Report Hit Count: This adds information about the number of times
each branch was executed. This method uses one integer per branch.

• Prefix (for Ada only): Add a new prefix to Ada packages if the default
Code Coverage prefix (atc_) generates conflicts.

• Suffix (for Ada only): Specifies how Code Coverage names the
instrumented Ada packages:

• Select Standard to use the your package name as a suffix

• Select Short to reduce the size of the generated package name
for compilers that have a package name length limit.

Selective Code Coverage Instrumentation

• C/C++ Ternary coverage: For C and C++, when this option is selected,
Code Coverage is extended to ternary expressions as statement blocks.

• Ada specification: For Ada, selecting this option extends
instrumentation to Ada package specifications. Specifications can

349

contain calls and conditions. In this case, the specification file must be
included in the application node.

• Functions to Exclude from Calls Code Coverage: Specifies a list of
functions to be excluded from the call coverage instrumentation type,
such as printf or fopen. Use the Add, Remove buttons to tell Code
Coverage the functions to be excluded.

Miscellaneous Options

• Trace File Name (.tio): this allows you to specify a path and filename
for the .tio dynamic coverage trace file.

• Compute Deprecated Metrics:

• User comment: This adds a comment to the Code Coverage Report.
This can be useful for identifying reports produced under different
Configurations. To view the comment, click the a magnifying glass
symbol that is displayed at the top of your source code in the Code
Coverage Viewer.

To change the Code Coverage Instrumentation Control setting for an
application or test node.

1. In the Project Explorer, click the Open Settings... button.

2. Select one or several nodes in the Configuration pane.

3. Select the Runtime Observation node, and the Coverage node.

4. Select Instrumentation Control.

5. When you have finished, click OK to validate the changes.

Runtime Tracing Control Settings

The Runtime Tracing Control settings are part of the Runtime Analysis
node of the Configuration Settings dialog box, which allows you to
configure settings for each node.

350

By default, the settings of each node are inherited from those of the parent
node. When you override the settings of a parent node, changes are
propagated to all child nodes within the same Configuration. Overridden
fields are displayed in bold.

Instrumentation Control

• Trace File Name (.tdf): This allows you to force a filename and path for
the dynamic .tdf file. By default, the .tdf carries the name of the
application node.

• Functions called within a return expression are sequenced: For C
only. With this option, the UML/SD Viewer displays calls located in
return expressions as if they were executed sequentially and not in a
nested manner.

• Collapse unnamed classes and structures: For C++ only. With this
option, unnamed structs and unions are not instrumented.

• Display class template instantiation in a note: For C++ only. With this
option, the UML/SD Viewer will not display notes for template
instances for each template class instance.

Trace Control

• Split Trace File Enable: See Splitting trace files for more information
on this setting.

• Maximum Size (Kbytes):

• File name prefix:

• Automatic Loop Detection Enable: Loop detection simplifies UML
sequence diagrams by summarizing repeating traces into a loop
symbol. Loops are an extension to the UML sequence diagram
standard and are not supported by UML.

• Options (Reserved for future use):

351

• Display largest call stack length: When selected, the Target
Deployment Port records the highest level attained by the call stack
during the trace. This information is displayed at the end of the UML
Sequence Diagram in the UML/SD Viewer as Maximum Calling Level
Reached.

Target Deployment Port Settings

These settings allow you to set compilation flags that define how the
Runtime Tracing feature interacts with the Target Deployment Port. These
are general settings for the Target Deployment Port.

• Disable on-the-fly mode: When selected, this setting stops on-the-fly
updating of the dynamic .tdf file. This option is primarily for Target
Deployment Ports that use printf output.

• Trace Buffer Enable and Partial Trace Flush Enable: Please see Trace
Item Buffer and Partial Trace Flush for more information about these
settings.

• Maximum number of recorded Trace elements before buffer flush

• When receiving user signal: No Action, Flush Call Stack, Trace
On/Off

• Record and display Time Stamp: This setting adds time stamp
information to each element in the UML sequence diagram generated
by Runtime Tracing.

• Record and display Heap Size:

• Record and display Thread Info:

To edit the Runtime Tracing Control settings for one or several nodes:

1. In the Project Explorer, click the Open Settings... button.

2. Select one or several nodes in the Configuration pane.

3. Select the Runtime Analysis node and the Runtime Tracing node.

352

4. Select Runtime Tracing Control.

5. When you have finished, click OK to validate the changes.

Automated Testing Settings

Component Testing Settings for C and Ada

The Component Testing settings are part of the Component Testing for C
and Ada node of the Configuration Settings dialog box, which allows you
to configure settings for each node.

By default, the settings of each node are inherited from those of the parent
node. When you override the settings of a parent node, changes are
propagated to all child nodes within the same Configuration. Overridden
fields are displayed in bold.

Display

• Display variables: lets you select the level of detail of the Component
Testing output report

• Initial and expected value display: the way in which the values
assigned to each variable are displayed in the report. See Initial and
Expected Values.

• Array and structure display: indicates the way in which Component
Testing processes variable array and structure statements. See Array
and Structure Display for more information.

Additional Options

• Continue test build despite warnings: Select this option to ignore
warning during the test compilation phase.

• Call breakpoint function on test failure: Select this option to call a
breakpoint function whenever a test failure occurs in a .ptu Test Driver

353

script. To use this feature, you must set a breakpoint on the function
priv_check_failed (), located in the <target_deployment_port>/lib/priv.c,
file. You can use this option for debugging purposes.

• Simulation: This setting determines the conditional generation of code
in the test program when using SIMUL blocks in the .ptu test script.

• Display diff of last two test runs: This setting activate the comparison
option. See Comparing Reports.

• Additional test compilation options enabled:

• Additional test compilation options: Sends extra command line
options to the Component Testing Test Compiler. Please refer to the
Test RealTime Reference Manual for further information about
addressing the Test Compiler in command-line mode.

• Additional report generation options: Sends extra command line
options to the Component Testing Report Generator. Please refer to the
Test RealTime Reference Manual for further information about
addressing the Report Generator in command-line mode.

To edit the Component Testing for C and Ada settings for a node:

1. In the Project Explorer, click the Open Settings... button.

2. Select a node in the Project Explorer pane.

3. In the Configuration Settings list, expand Component Testing for C
and Ada.

4. Select Display, Additional Options, or Comparison.

5. When you have finished, click OK to validate the changes.

Component Testing for C++ Settings

The Component Testing settings for C++ are part of the Configuration
Settings dialog box, which allows you to configure settings for each node in
your workspace.

354

The Component Testing for C++ node settings lets you to customize the
parameters for the Component Testing for C++ feature of Test RealTime.

By default, the settings of each node are inherited from those of the parent
node. When you override the settings of a parent node, changes are
propagated to all child nodes within the same Configuration. Overridden
fields are displayed in bold.

Files

This area specifies the path and filenames for the intermediate files
generated by the Component Testing for C++ feature during the test
execution.

• Test report file name (.xrd): contains the location and name of the .xrd
report file generated by Component Testing for C++

• Generated test driver source file name: contains the location and name
of a .cpp source file generated from the C++ Test scripts by Component
Testing for C++

• Contract check file name: contains the path and file name of a
temporary .oti file created during source code instrumentation by
Component Testing for C++

General Options

This area contains general information for the Component Testing for C++
feature.

• Maximum test compilation errors displayed: Specifies the maximum
number of error messages that can be displayed by the C++ Test Script
Compiler. The default value is 30.

• Add #line directive into instrumented source file: This option allows
use of #line statements in the source code generated by Component
Testing for C++. Disable this option in environments where the

355

generated source code cannot use the #line mechanism. By default #line
statements are generated.

Testing Options

These options are used for the C++ Test Driver Script.

• Call breakpoint function on CHECK failure: Select this option to call a
breakpoint function whenever a check failure occurs in an .otd Test
Driver script. To use this feature, you must set a breakpoint on the
function priv_check_failed (), located in the
<target_deployment_port>/lib/priv.c, file. You can use this option for
debugging purposes.

• Report only failed CHECKs: Select this option to hide passed tests in
the UML Sequence Diagram generated by Component Testing for C++.
Only failed checks are displayed. This option also reduces the size of
the intermediate trace file.

• Instances stack size: This value defines the maximum level for C++
Test Driver Script calls that you expect to reach when running an .otd
Test Driver script. The C++ Test Driver Script calling stack includes
RUN, CALL and STUBs. The default value is 256 and should be large
enough for most cases. When using recursive stubs, you may need to
increase this value.

• Display all PRINT arguments in a single note: Select this option to
display only one UML note for all arguments of a PRINT statement in
the Component Testing for C++ UML Sequence Diagram. This option
requires use of a PRINT buffer, which uses memory on the target
machine. Disable this option if memory on the target is an issue. In this
case, Component Testing for C++ generates one UML note for each
argument of each PRINT statement.

• PRINT buffer size (bytes): With the previous option selected, this
option defines the size, in bytes, of the buffer devoted to the PRINT
instructions during the execution. This buffer should be large enough

356

to handle the complete result of a PRINT instruction. You may have to
increase this value if your PRINT statements contain many arguments,
or if arguments are long strings.

Contract Check Options

These options are used by the C++ Contract-Check Script.

• Call breakpoint function on assertion failure: Select this option to call
a breakpoint function whenever an assertion failure occurs in an .otc
Contract Check script. To use this feature, you must set a breakpoint on
the function priv_check_failure (), located in the
<target_deployment_port>/lib/priv.c, file. You can use this option, for
example, to debug your application when an assertion fails.

• Report only failed assertions: Select this option to hide passed
assertions in the UML Sequence Diagram generated by Component
Testing for C++. Only failed assertions are displayed. This option also
reduces the size of the intermediate trace file.

• Trace unchanged states: Select this option to report states in UML
Sequence Diagram generated by Component Testing for C++ each time
states are evaluated. If the option is disabled, states are reported in
UML Sequence Diagram only when they change. This affects both trace
size and UML Sequence Diagram display size, but has no impact on
execution time.

• Check 'const' methods: Usually C++ const methods are not checked for
state changes because they cannot modify a field of the this object.
Instead, const methods are only evaluated once for invariants. In some
cases, however, the this object may change even if the method is
qualified with const (by assembler code, or by calling another method
that casts the this parameter to a non-const type). There may also be
pointer fields to objects which logically belong to the object, but the
C++ Test Script Compiler will not enforce that these pointed sub-objects
are not modified. Select this option only if your code contains such

357

code implementations.

• Reentrant object support: Select this option if your application is
multi-threaded and objects are shared by several threads. This ensures
atomicity for state evaluation. This option has no effect if multi-thread
support is not activated in the Target Deployment Compilation
Settings.

• Enforce 'const' assertions: When this option is selected, the compiler
requires that invariant and state expressions are constant. Disable this
option if you do not use the const qualifier on methods that are actually
constant.

To edit the Component Testing for C++ settings for a node:

1. In the Project Explorer, click the Open Settings... button.

2. Select a node in the Project Explorer pane.

3. In the Configuration Settings list, expand Component Testing for C++.

4. Select Files, General, Testing or Contract Check.

5. When you have finished, click OK to validate the changes.

Component Testing for Java Settings

The Component Testing settings for Java are part of the Configuration
Settings dialog box, which allows you to configure settings for each node in
your workspace.

The Component Testing for Java node settings lets you to customize the
parameters for the Component Testing for Java feature of Test RealTime.

By default, the settings of each node are inherited from those of the parent
node. When you override the settings of a parent node, changes are
propagated to all child nodes within the same Configuration. Overridden
fields are displayed in bold.

358

Mode Settings

This area contains parameters to be sent to the linker during the build of the
current node.

• Check Stub: If selected, Component Testing for Java checks simulated
classes. Use No to save memory on the target platform.

• Display Stub: If the Check Stub setting is set to Yes, this setting
specifies whether to display simulated class information in the
Component Testing sequence diagram.

To edit the Component Testing for Java settings for a node:

1. In the Project Explorer, click the Open Settings... button.

2. Select a node in the Project Explorer pane.

3. In the Configuration Settings list, expand Component Testing for Java.

4. Select Files, General, Testing or Contract Check.

5. When you have finished, click OK to validate the changes.

System Testing for C Settings

The Test Script Compiler settings are part of the System Testing node of the
Configuration Settings dialog box, which allows you to configure settings
for each node.

By default, the settings of each node are inherited from those of the parent
node. When you override the settings of a parent node, changes are
propagated to all child nodes within the same Configuration. Overridden
fields are displayed in bold.

Test Compiler Settings

• Virtual Tester Memory Allocation Method: Allows you to allocate
memory to the Virtual Tester for internal data storage.

359

• Static - use global static variables for internal data storage.
This allows the Virtual Tester to run on systems that do not
support dynamic memory allocation or that have limited
execution stacks.

• Stack - store internal data in a local variable of the main()
function. Necessary memory is then allocated on the execution
stack.

• Heap - allocate memory through a Target Deployment Port
dynamic allocation function, which is configurable.

• Enable Generate Virtual Testers as a Thread (instead of as a process):
Use this setting to on multi-thread platforms.

• Entry function name: Specifies the name of a main entry function.

• Do not share user-defined Virtual Tester global variables: When
using multiple Virtual Tester threads, this setting allows you to specify
global variables in the test script that should remain unshared by
separate Virtual Tester threads. When selected, multiple instances of a
virtual tester can all run in the same process.

• Trace Buffer Optimization: See Optimizing Execution Traces.

• Select Time stamp only to generate a normal trace file.

• Select Block start/end only to generate traces for each scenario
beginning and end, all events, and for error cases.

• Select Errors only to generate traces only if an error is detected
during execution of the application.

• Circular buffer: Select this option to activate the Circular Trace Buffer.

• Trace Buffer size (Kbytes): This box specifies the size - in kilobytes - of
the circular trace buffer. The default setting is 10Kb.

360

Report Generator Settings

• Enable Initial and Expected Value Display: the way in which the
values assigned to each variable are displayed in the report. See Initial
and Expected Values.

• Sort by time stamp: By default, the report is sorted by test script
structure blocks. Select this option to force the report to follow a fully
chronological order.

• Display using on-the-fly mode: Select this option to monitor Virtual
Testers in a UML sequence diagram during execution of the test. See
On the Fly Tracing.

Target Deployment Port Settings

• Item bufferized (No = Text bufferized): This option performs internal
compression of trace data. Select this for hard real-time constraints. If
you select NO, no compression of trace data is performed.

• Line buffer size (bytes): Specifies the size of the line buffer for both
options.

• Enable On-the-fly Trace: This option enables on-the-fly tracing at
Target Deployment Port level.

• On-the-fly trace buffer size (bytes): This specifies the size of the trace
buffer for on-the-fly tracing. By default the buffer size is 4096 bytes.

• Timeout for INTERRECV (seconds): This specifies the timeout
associated to inter-tester communications.

To edit the System Testing settings for a node:

1. In the Project Explorer, click the Open Settings... button.

2. Select a node in the Project Explorer pane.

3. In the Configuration Settings list, expand System Testing.

4. Select Test Script Compiler, Messaging API, Report Generator or

361

Target Deployment Port.

5. When you have finished, click OK to validate the changes.

Selecting Configurations

Although a project can use multiple Configurations, as well as multiple
TDPs, there must always be at least one active Configuration.

The active Configuration affects build options, individual node settings and
even wizard behavior. You can switch from one Configuration to another at
any time, except during build activity, when the green LED flashes in the
Build toolbar.

To switch Configurations:

• From the Build toolbar, select the Configuration you wish to use in the
Configuration box.

Modifying Configurations

Configurations are based on the Target Deployment Ports (TDP) that are
specified when you create a new project. In fact, a Configuration contains
basic Configuration Settings for a given TDP applied to a project, plus any
node-specific overridden settings.

Remember that although a project can use multiple Configurations, as well
as multiple TDPs, there must always be at least one active Configuration.

Configuration Settings are a main characteristic of the project and can be
individually customized for any single node in the Project Explorer.

To open the Configurations dialog box:

1. From the Project menu, select Configurations. This opens the
Configurations dialog.

362

To create a new Configuration for a Project:

1. In the Configurations dialog box, click the New... button.

2. Enter a Name for the Configuration.

3. Select the Target Deployment Port to be used to create the
Configuration.

4. Enter the Hostname, Address and Port of the machine on which the
Target Deployment Port is to be compiled.

5. Click OK.

6. Click Close.

To remove a Configuration from a Project:

If you choose to remove a Configuration, all custom settings for that
Configuration will be lost.

1. In the Configurations dialog box, select the Configuration to be
removed.

2. Click the Remove button.

3. Click Yes to confirm the removal of the Configuration

To copy an existing Configuration:

This can be useful if you want several Configurations, with different custom
settings, based on a unique Target Deployment Port.

1. In the Configurations dialog box, select an existing Configuration.

2. Click the Copy To... button

3. Enter a Name for the new Configuration.

4. Click OK.

363

Working with Projects

The project is your main work area in the GUI, as displayed in the Project
Explorer window.

A project is a tree representation that contains nodes. Each node has its own
individual Configuration Settings inherited from its parent node and can be
individually executed.

Creating a Group

The Group node is designed to contain several application nodes. This
allows you to organize workspace by grouping applications together.

This also allows you to build and run a specific group of application nodes
without running the entire workspace.

To create a group node:

1. In the Project Explorer, right-click the workspace node or right-click
any application node.

2. From the pop-up menu, select Add Child and Group.

3. In the New Group box, enter the name of the group.

4. Click OK.

Manually Creating a Test or Application Node

Application nodes and test nodes (for Test RealTime only) are the main
building blocks of your workspace. An application node typically contains
the source files required to build the application.

Test nodes contain the source under test, test scripts and any dependency
filed requires for the test.

364

The preferred method to create an application node is to use the Activity
Wizard, which guides you through the entire creation process.

However, if you are re-using existing components, you might want to create
an empty application node and manually add its components to the
workspace.

To manually add components to the application node.

1. In the Project Explorer, right-click the Workspace node or a Group
node.

2. From the pop-up menu, select Add Child and Files.

3. In the File Selector, select the files that you want to add to the
application node.

4. Click Ok.

Note Before running an application node created with this method, please
ensure that all necessary files are present in the application node and
that all Configuration Settings have been correctly set.

Creating an External Command Node

External Command nodes are custom nodes that allow you to add a user-
defined command line at any point in the project tree.

This is particularly useful when you need to run a custom command line
during test execution.

To add an external command to a workspace:

1. In the Project Explorer, right-click the node inside which you want to
create the test, application or external command node

2. From the pop-up menu, select Add Child and External Command.

3. To move the node up or down in the workspace, right-click the

365

external command node and select Move Up or Move Down.

To specify a command line for the external node:

Once the External Command node has been created, you can specify the
command line that it will be carrying in the Configuration Settings dialog
box:

1. In the Project Explorer, click the Open Settings... button.

2. Click the External Command node.

3. Enter the command in the Command box.

4. Click OK.

Note External Commands support the GUI Macro Language so that you
can send variables from the GUI environment to your command
line. See the GUI Macro Language section in the Reference Manual
for further details.

Importing a Makefile

The GUI offers the ability to create a project from an existing makefile.

The makefile import feature creates a new project, reads the makefile and
adds the source files found in the makefile to the project. The project is
creating with the default Configuration Settings of the current Target
Deployment Port (TDP).

Any other information contained in the makefile, such as compilation
options must be entered manually in the Configuration Settings dialog box.

Any environment variables used within the makefile must be valid.

To import files from a makefile:

1 Close any open projects.

366

2 From the File menu, select Import and Import Makefile.

3 Use the file selector to locate a valid makefile and click Open.

4 Enter a name for the new project and click OK.

5 Select the correct Configuration in the Configuration toolbar.

6 In the Project Explorer, click Settings.

7 Enter any specific compilation options in the Build settings.

8 Click OK.

Refreshing the Asset Browser

The Asset Browser view of the Project Explorer window analyzes source
files and extracts information about file contents (classes, methods,
functions, etc...) as well as any dependency files. This capability allows you
to navigate through your source files more easily and provides direct access
to the components through the Text Editor.

When the automatic file tagging option is selected, the GUI refreshes the file
information whenever a change is detected. However, you can use the
Refresh Information command to update a single file or the entire project.

Note When many files are involved in the tagging process, the Refresh
Information command may take several minutes.

To manually refresh a single file in the Asset Browser:

1. In the Project Explorer, select the Asset Browser tab.

2. Right-click the file or object that you want to refresh.

3. From the pop-up menu, select Refresh Information.

To refTo refTo refTo refresh all project files:resh all project files:resh all project files:resh all project files:

• From the Build menu, select Refresh Asset Browser, or press the F9

367

key.

To activate or de-activate the automatic refresh:

With the automatic file tagging option, files are automatically refreshed
whenever a file is loaded into the workspace or selected in the Project
Explorer.

1. From the Edit menu, select Preferences.

2. Select the Project preferences node.

3. Select or clear the Activate file tagging option, and then click OK.

Deleting a Node

Removing nodes from a project does not actually delete the files, but merely
removes them from the Project Explorer's representation.

To delete a node from the Project Explorer:

1. Select one or several nodes that you want to delete.

2. From the Edit menu, select Delete or press the Delete key.

Renaming a Node

Renaming a node in the Project Explorer involves modifying the properties
of the node.

To change the name of a node:

1. In the Project Explorer, right-click the node that you want to modify.

2. Select Properties in the pop-up menu.

3. Change the Name of the node.

4. Click OK.

368

Viewing File Properties

You can obtain and change file or node properties by opening the
Properties window.

To view file properties:

1. Right-click a file in the Project Explorer.

2. Select Properties... from the pop-up menu.

Excluding a Node from a Build

In some cases, you might want to temporarily exclude one or several nodes
from the build process. This can be done directly in the Project Explorer, as
described below, or through the Properties window.

Note If you exclude a node that contains child nodes, such as an
application node, a group or even a project, none of the contents of
the node are executed.

In the Project Explorer, excluded nodes are displayed with a 'x' symbol.

To exclude a node from the build:

1. In the Project Explorer, select the node that you want to exclude from
the build.

2. In the Properties window set the Build property to No.

To cancel the exclusion of a node:

1. In the Project Explorer, select the node that you want to exclude from
the build.

2. In the Properties window set the Build property to No.

369

Adding Files to the Project

The Project Explorer centralizes all Project files in a unique location. For
Test RealTime to access and analyze source files, they must be accessible
from the Project Explorer.

Files are automatically added when you use the Activity Wizard.

To add files to the Project Explorer:

1. In the Project Explorer, select the Object Browser tab

2. In the Sort Method box, select By Files.

3. From the Project menu, select Add to Current Project and New File...

4. This opens the file selector. In the file Type box, select the type of files
that are to be added.

5. Locate and select one or several files to be added, and click Open.

The selected files will appear under the Source sections of the Project
Explorer.

If you have the Automatic source browsing option enabled, your source
files will be analyzed, making their components directly accessible in the
Project Explorer.

Selecting Build Options

The GUI allows you to specify the items that will be performed during a
build.

The Stages section contains the compilation options. In most cases, you will
need to select the All option to ensure the test is up to date.

The Runtime Analysis section allows you to enable debugging and
Runtime Analysis features.

370

To select build options:

1. From the Build toolbar, click the black arrow located next to the Build
button to display the Build Options box.

2. Select the Runtime Analysis features (Memory Profiling, Performance
Profiling, Code Coverage and Runtime Tracing) and build options to
use them on the current node.

Building and Running a Node

You build and execute workspace nodes by using the Build button on the
Build toolbar. The build process compiles, links, deploys, executes, and then
retrieves results. However, you first have to specify the various build
options.

You can use the Build command to execute any application node, as well as
a single specific source file, a group node or even the whole project.

Note When you run the Build command, all open files are saved. This
means that any unsaved changes will actually be taken into account
for the build.

Before building a node:

1. Select the correct Configuration for your target in the build toolbar.

2. Exclude any temporarily unwanted nodes from the build.

3. Select the build options for the test.

4. If necessary, clean up files left by any previous executions by clicking
the Clean button.

To build and execute the node:

1. From the Build toolbar, click the Build button.

2. During run-time, the Build Clock indicates the execution time and the
green LED flashes. The Project Explorer displays a check mark next to

371

each item to mark progression of the build process.

3. When the build process is finished, you can view the related test
reports.

To stop the execution:

• If you want to stop the execution of a node before it finishes, or if the
application does not stop by itself, click the Stop Build/Execution
button.

Cleaning Up Generated Files

In some cases, you might want to delete any files created by a build
execution, such as to perform the build process in a clean environment or
when you are running short of disk space.

Use the Clean All Generated Files command to do this.

To clean your workspace:

1. From the Build toolbar, click the Clean All Generated Files button.

Creating a Source File Folder

The Project Explorer Asset Browser provides a convenient way of viewing
the source files in your project.

To make this even more convenient, you can create custom folders to
accommodate any file types. This makes navigation through your source
files even easier.

Note The Asset Browser provides a virtual navigation interface. The actual
files do not change location. Use the Properties Window to view the actual
file locations.

372

To create a custom folder:

1. In the Asset Browser, select the By Files sort method.

2. Right-click on an existing folder.

3. From the popup menu, select New Folder...

4. Enter a name for the new folder and a file filter for the desired file type.

Importing a Data Table (.csv File)

Rational Test RealTime Component Testing for C, Ada and C++ provide the
ability to import .csv table files and to turn these into standard header files.
Once included in your .ptu or .otd test script, this data can be used by the
test driver script or the application under test.

Such .csv files can be produced by third party applications, for example
Microsoft Excel.

To import a .csv file into a test node:

1. From the Project Explorer, right click an existing test node.

2. From the pop-up menu, select Add File...

3. Locate and select the .csv file and click OK.

4. By default, added files are excluded from the build. Click the Excluded
marker to allow the file to be built.

CSV File Format

The input file format must respect the following formatting rules:

• The default separator is a semicolon character (";"). This can be changed
in the General Settings dialog box.

• The first line contains the names of the variable arrays

• The second line optionally specifies the data type: string, char or int,

373

long, float and double, which can be signed or unsigned. if this
information is not specified, then int is assumed by default.

• Each following line contains the data for the corresponding array

• When a blank file is encountered, an end of array is assumed. Any
further values for that array will be ignored.

When the test node is built, Test RealTime produces a <filename>.h header
file, where <filename> is based on the name of the input <filename>.csv file.

Use the arrays produced by the .csv file by including <filename>.h into your
test script or source code.

Example

This is an example of a valid table.csv data table:
var_A;var_B;var_C
int;signed int;float
12;34;45.2345
14;2;3.142
;-5;0

This produces the following corresponding table.h file:
int var_A[]={12,14};
signed int var_B[]={34,2,-5};
float var_C[]={45.2345,3.142,0};

Opening a Report

Because of the links between the various views of the GUI, there are many
ways of opening a test or runtime analysis report in Test RealTime. The
most common ones are described here.

To open a report from the Project Explorer:

1. Execute your test with the Build command.

2. Right-click the test node.

374

3. From the pop-up menu, select View Report and then the appropriate
report.

Note Reports cannot be viewed before the test has been executed.

To manually open a report file:

1. From the File menu, select Open... or click the Open icon in the
Standard toolbar.

2. In the Type box of the File Selector, select the appropriate file type.

3. Locate and select the report files that you want to open.

4. Click OK.

Note Some reports require opening several files. For instance, when
manually opening a UML sequence diagram, you must select at the
complete set of .tsf files as well as the .tdf file generated at the same
time. A mismatch in .tsf and .tdf files would result in erroneous
tracing of the UML sequence diagram.

Report Viewers

The GUI opens the report viewer adapted to the type of report:

• The UML/SD Viewer displays UML sequence diagram reports.

• The Report Viewer displays test reports for Test RealTime and Memory
Profiling reports for Java.

• The Code Coverage Viewer displays code coverage reports.

• The Memory Profiling Viewer and Performance Profiling Viewer
display Memory Profiling for C, Ada and C++ and Performance
Profiling results.

375

Debug Mode

The Debug option allows you to build and execute your application under a
debugger.

The debugger must be configured in the Target Deployment Port.

Note: Before running in Debug mode you must change the Compilation
and Link Configuration Settings to support Debug mode. For
example set the -g option with most Linux compilers.

Editing Preferences

Rational TestRealTime has many Preference settings that allow you to
configure various components of the graphical user interface.

To edit product preferences:

1. From the Edit menu, select Preferences.

2. In the tree-view, select the component that you want to configure.

3. Make any changes to the preferences.

4. Click OK.

Project Preferences

The Project Preferences dialog box lets you set parameters for the Test
RealTime project.

In the Preferences dialog box, select Project to change the project
preferences.

• Automatic file tagging: Select this option to activate the Project
Explorer's automatic parsing mode, in which all source code and script
components are automatically listed. If disabled, you will have to

376

manually refresh the File View each time you modify the structure of a
file.

• Calculate static metrics: Select this option to ensure that static metrics
are recalculated whenever a file is added, modified or refreshed in the
Project Explorer window.

Connection Preferences

The Preferences dialog box allows you to customize the Test RealTime GUI.

The Connections node of the Preferences dialog box lets you set the
network parameters for the graphical user interface.

1. In the Preferences dialog box, select the General node and
Connections.

• Allow remote connections: This allows external commands and tools
to send messages to the GUI over a network. For example, this enables
the Runtime Tracing on-the-fly capability on remote hosts.

• For information only, the Current TCP/IP port is automatically
selected by GUI.

2. Click OK to apply your changes.

Activity Wizards

The Start Page provides with a full set of activity wizards to help you get
started with a new project or activity.

To start a new activity wizard:

1. From the Start Page, click New Activities

2. Select the activity of your choice.

377

New Project Wizard

When Test RealTime starts, the Start page offers to either open an existing
project or create a new project. The New Project wizard creates a brand new
project.

To create a new project:

1. From the Start Page, select New Project.

2. In the Project Name, enter a name for the project.

3. In the Location box, change the default directory if necessary and click
Next to continue.

4. Select one or several Target Deployment Ports for the new project.
The Wizard creates a Configuration based on each selected Target
Deployment Port. Later, when working with the project, any changes
are made to the Configuration Settings, not to the Target Deployment
Port itself.

5. Click the Set as Active button to set the current TDP. The active port is
the default Configuration to be used in your project.

6. Click Finish

Once your project has been created, the wizard opens the Activities page.

Runtime Analysis Wizard

The Runtime Analysis Wizard helps you create a new application node in
the Project Explorer. Basically, an application node represents the build of
your C, C++, Ada or Java source code, which is very similar to most other
integrated development environments (IDE). You can actually use this
graphical user interface as your primary IDE.

With Test RealTime, you simply add to this application node the options
required to run any of the following runtime analysis features:

378

• Memory Profiling

• Performance Profile

• Code Coverage

• Runtime Tracing

To create an application node with the Runtime Analysis Wizard:

1. Use the Start Page or the File menu to open or create a project.

2. Ensure that the correct Configuration is selected in the Configuration
box.

3. On the Start Page, select Activities and choose the Runtime Analysis
activity.

4. On the Application Files page, click Add to add your source code files
to the list. This opens a file sector.
Use the Move Up and Move Down buttons to change the order in
which files appear in the application node, and subsequently are
compiled. Use the Remove button to remove files from the selection.

Click Next to continue.

5. Select the C procedures and functions, C++ or Java classes or Ada units
that you want to analyze.
Use the Select File and Deselect File buttons to specify the files that
contain the components that you want to analyze. The Select All and
Deselect All buttons to select or clear all components.
Click Next to continue.

6. If you are creating a Java application node, set the basic settings that
are required for the program to compile:

• Class path: Click the ... button to create or modify the Class Path
parameter for the JVM

• Java main class: Select the name of the main class

• Jar creation: Specifies whether to build an optional .jar file, as well as

379

the basic .jar related options

Click Next to continue.

6. Enter a name for the application node.
By default, the new application node inherits Configuration Settings
from the current project. If necessary, click Settings... to access the
Configuration Settings dialog box. This allows you to change any
particular settings for the new application node as well as its contents.

Click Next to continue.

7. In the Summary page, check that all the parameters are correct, and
click Finish.

The wizard creates an application node that includes all of the associated
source files.

You can now select your build options to apply any of the runtime analysis
features to the application under analysis.

Component Testing Wizard

The Component Testing Wizard helps you create a new Component Testing
test node in your project for C, C++, Ada and Java

For each script type, the wizard analyzes the source code under test to
extract class and method information and will produce a corresponding test
script template using the following test script types:

• C Test Script Language

• C++ Test Driver Script Language

• C++ Contract-Check Language

• Ada Test Script Language

380

• JUnit Test Harness

You use the generated test script template to elaborate your own test cases.

You can later add to this test node any of the runtime analysis features
included in Test RealTime.

The first decision you have to make with the Component Testing wizard is
to select the level of automation for the test generation process. The wizard
offers several modes:

• Single Mode: In C and Ada, this mode creates one test node for each
source file under test. In C++ and Java, it creates one test node for all
selected source code component.

• Multiple Mode: This creates a single test node for each selected source
code component.
Single Mode and Multiple Mode are only available when several
source files or units are selected.

• Typical Mode: In this mode, the wizard automatically stubs all
dependency classes or functions that are found in the source under test.
This is faster when producing many unit tests.

• Expert Mode: This mode allowing you to manually drive generation of
the test harness. This provides more flexibility in sophisticated
software architectures.

To run the Component Testing Wizard from the Start Page:

1. Use the Start Page or the File menu to open or create a project.

2. Ensure that the correct Configuration is selected in the Configuration
box. The selected programming language impacts the type of
Component Testing test node to be created.

3. On the Start Page, select Activities and choose the Component Testing
activity.

4. The Application Files page opens. Use the Add and Remove buttons

381

to build a list of source files to add to your project. The Up and Down
buttons allow you to select the order in which each file is to be
compiled. The Project Settings button allows you to override the
default Configuration Settings, and recalculates the testability metrics.

5. The Components Under Test page lists various static testability
metrics for the selected source files. Use this list to choose the source
code units (packages, classes, functions) that require testing.
Click Metrics Diagram to select the units under test from a graph
representation.

To run the Component Testing Wizard on a source code component:

1. Use the Start Page or the File menu to open or create a project.

2. Ensure that the correct Configuration is selected in the Configuration
box. The selected programming language impacts the type of
Component Testing test node to be created.

3. In the Project Explorer, select the Object Browser tab.

4. Right click an object, package or source file.

5. From the popup menu, select Test...

To create a test node with the Component Testing wizard:

1. On the Test Mode page select Expert or Typical Mode and click Next>
to continue.

2. If you are in Expert Mode, select the simulated, integrated (C and Ada)
and Additional files that are required to compile your application.
See the following sections for more information:

• Integrated, Simulated and Additional Files for C and Ada

• Simulated, Additional and Included Files for C++

• Simulated and Additional Classes for Java

 Click Next> to continue.

382

3. Enter a Test Name. This is the name of the new test node.
Click Advanced Options to modify the default test generation options.
These advanced options are those offered by the Source Code Parser
command line of the selected language. See the Test RealTime
Reference Manual for more information.
Click Settings to set the Configuration Settings. You can always
modify the test node Configuration Settings later if necessary, from the
Project Explorer.
Click Next> to continue.

4. Review the Summary. This page provides a summary of the selected
options and the files that are to be generated by the wizard.
Click Next> to create the test node based on this information.

5. The Test G
Click Finish to quit the Component Testing Wizard.

6. Generation Result page displays progression of the test node creation
process.
The wizard creates an application node that includes all of the
associated source files.

You can now complete your Component Testing test scripts in the Text
Editor. Refer to the Test RealTime Reference Manual for information about
the actual language semantics.

System Testing Wizard

The System Testing Wizard helps you create a new System Testing test
node in your project.

Basically, a System Testing node contains a blank test script as well as a set
of Virtual Testers for message-based testing.

You can later add to this test node any of the runtime analysis features
included with Test RealTime.

383

To create a System Testing node:

1. Enter the name of the new System Testing node.

2. Enter the Test Script Selection information.
First, select whether you want to create a blank .pts test script file, or if
you want to reuse an existing test script. In both cases you will need to
enter a name for the .pts test script.
This page requires that you select the source files that are used to build
your application among the source files that are currently in your
workspace.
Next, use the Add and Remove buttons to build a list of interface files.
The Interface Files List must contain files that define the
communication routines of your application.
Click Next to continue.

3. Specify the include directories for your application.
Use the Add and Remove buttons to build a list of include directories.
These are all the directories that contain files that are included by your
application's source code. Use the Up and Down buttons to indicate
the order in which they are searched.
Click Next to continue. If you chose to create a new .pts test script, this
brings you straight to step 6.

4. Create a set of Virtual Testers.
See Configuring Virtual Testers for information about this page. If
necessary, click the Configure Settings button to access the
Configuration Settings for the selected Virtual Tester node.
Click Next to continue.

5. Deploy the Virtual Testers onto your target hosts.
See Deploying Virtual Testers for information about this page.
Click Next to continue.

6. Perform a quick review of the options in the Summary Page, and use
the <Back button if necessary to make any changes.

• Test Script File: indicates the name of the .pts test script

384

• Interface Files: lists the interface files defining the communication
routines of your application.

• Included Directories: lists the directories containing files included by
your application.

• Virtual Testers: lists the Virtual Tester that are to be deployed by the
System Testing node.

7. Click the Finish button to launch the generation of the System Testing
node with the corresponding Virtual Testers.

The wizard creates a test node with the associated test scripts. The test node
appears in the Project Explorer.

If you chose to create a new .pts test script, you can now write your System
Testing test script in the Text Editor and then configure and deploy your
Virtual Testers.

Refer to the Test RealTime Reference Manual for information about the
System Testing Language (STL).

Metrics Diagram

As part of the Component Testing wizard, Test RealTime provides static
testability metrics to help you pinpoint the critical components of your
application. You can use these static metrics to prioritize your test efforts.

The graph displays a simple two-axis plot based on the static metrics
calculated by the wizard. The actual metrics on each axis can be changed in
the Metrics Diagram Options dialog box.

Each unit (function, package or class, depending on the current
Configuration language) is represented by a checkbox located at the
intersection of the selected testability metrics values.

385

Move the mouse pointer over a checkbox to display a tooltip with the
names of the associated units. To test a unit, select the corresponding
checkbox.

Test RealTime also provides a Static Metrics Viewer, which is independent
from the Component Testing wizard and can be accessed at any time.

To access the wizard Metrics Diagram:

1. From the Start Page, run the Component Testing wizard.

2. From the Components under Test page, click Metrics Diagram.

To select a unit for test:

1. If necessary, click Options to set the two most relevant metrics for your
application. This displays each unit at the intersection point of the two
values.

2. Move the mouse pointer over a checkbox to display a tooltip with the
name of the unit.

3. Select the most relevant units to test. Units under test are displayed in
the list box.

4. Click OK to validate the selection.

Advanced Options

The Advanced Options dialog box allows you to specify a series of
advanced test generation parameters in the Component Testing wizard. In
most cases, you can leave the default values.

The actual options available in this dialog box depend on the programming
language of the current Configuration:

• C or Ada

• C++

386

• Java

Advanced options may override the default Configuration Settings for the
current project. In this case, the overridden settings are applied to the
generated test node.

Component Testing for C and Ada

The following advanced options are available in the Component Testing
wizard with a C or Ada Target Deployment Port:

• Tested file: name of the source file under test

• Test script and path: location and name of the generated Ada test
script template

• Test static/private data or functions: specifies whether the file under
test is included in a #include statement.

• Additional options: allows you to add specific command line options
for the C or Ada Source Code Parser. See the Command Line
Reference section in the Rational Test RealTime Reference Manual
for further information.

Component Testing for C++

The following advanced options are available in the Component Testing
wizard for C++:

• Tested file: name of the source file under test.

• Test driver path and filename: specifies whether an .otd test driver
script is to be generated.

• Contract-Check script: specifies whether an .otc Contract Check driver
script is to be generated.

• Test script and path: location and name of the generated .otd test
driver script template.

387

• Directory for Contract-Check script files: sets the location where the
.otc Contract Check script files are created.

• Additional options: allows you to add specific command line options
for the C++ Source Code Parser. See the Line Command section in the
Rational Test RealTime Reference Manual for further information.

• Ignore #line directive: by default, the Test Generation Wizard analyzes
#line directives, although use of preprocessed files with Component
Testing for C++ is not recommended. Select this option when #line
directives should be ignored.

• Test union and struct as class: tells the Test Generation Wizard to
consider classes defined with the struct or union keyword as candidate
classes. This option is only available if the auto-select candidate classes
was selected on the File and Classes under Test page.

• Test each template instance: tells the wizard to generate C++ Test
Script Language code for each instance of a template class. If this
option is selected, there must be template class instances in the source
file under test. By default, the Test Generation Wizard generates a
single portion of C++ Test Script Language code for a template class.

• Overwrite previous test scripts: tells the wizard to overwrite any
previously generated .otc or .otd test scripts. if this option is not
selected, no changes will be made to any existing .otc or .otd test
scripts.

• Path for included header files: specifies how include file names must
be analyzed.

• Select Relative for relative filenames.

• Select Absolute for absolute filenames.

• Select Copy to use include the path as specified.

• Included files: use the Add and Remove buttons to add and remove
directories in the list. The include file list used by the Component

388

Testing wizard are kept in the generated test node settings.

Component Testing for Java

The following advanced options are available in the Component Testing
wizard for C++:

• Test driver name: name of the generated Java test script template.

• Directory for generated files: sets the location of generated files.

• Testing framework: allows you to override the TDP setting to the J2SE
or J2ME framework.

• Test class prefix: specifies the prefix for test class names.

 389

Command Line Interface 5
Rational Test RealTime was designed ground-up to provide seamless
integration with your development process. To achieve this versatility, the
entire set of features are available as command line tools.

In most cases when a CLI is necessary, the easiest method is to develop, set
up and configure your project in the graphical user interface and to use the
command line to launch the GUI and run the corresponding project node.

The complete syntax and command line reference for each tool is covered in
the Reference Manual.

Running a Node from the Command Line

Although the product contains a full series of command line tools, it is
usually much easier to create and configure your runtime analysis
specifications inside the graphical user interface (GUI). The CLI would then
be used to simply launch the GUI with a project or project node as a
parameter.

By doing this, you combine the ease and simplicity of the GUI with the
ability to execute project nodes from a CLI.

Note This functionality can be used to execute any node in a project,
including group nodes, application nodes, test nodes or the entire
project.

390

To run a specific node from a command line:

1. Set up and configure your project in the GUI.

2. Save your project and close the GUI.

3. Type the following command
studio -r <node>.{[.<node>]} <project_file>

 where <node> is the node to be executed and <project> is the .rtp project
file.

The <node> hierarchy must be specified from the highest node in the project
(excluding the actual project node) to the target node to be executed, with
periods ('.') separating each item:

<node>{[.<node>]}

Example

The following command opens the project.rtp project in the GUI, and runs
the app2 application node, located in group1 of the sub-project subproject1:

studio -r subproject1.group1.app2 project.rtp

Command Line Runtime Analysis for C and C++

The runtime analysis features for C and C++ include:

• Memory Profiling

• Performance Profiling

• Code Coverage

• Runtime Tracing

These features use Source Code Insertion (SCI) technology. When analyzing
C and C++ code, the easiest way to implement SCI features from the

 391

command line is to use the C and C++ Instrumentation Launcher.

The Instrumentation Launcher is designed to fit directly into your
compilation sequence; simply add the attolcc command in front of your
usual compilation or link command line.

Note The attolcc binary is located in the /cmd directory of the applicable
Target Deployment Port.

To perform runtime analysis on C or C++ source code:

1. First, set up the necessary environment variables. See Setting
Environment Variables.

2. Edit your usual makefile with the following command line:
attolcc [-options] [--settings] -- <compiler command line>

Where <compiler command line> is the command that you usually invoke
to build your application.

For example:
 attolcc -- cc -I../include -o appli appli.c bibli.c -lm
 attolcc -TRACE -- cc -I../include -o appli appli.c bibli.c
-lm

Please refer to the Instrumentation Launcher section of the Reference
Manual for information on attolcc options and settings, or type attolcc --
help on the command line.

3. After execution of your application, in order to process SCI dump
information (i.e. the runtime analysis results), you need to separate the
single output file into separate, feature-specific, result files. See
Splitting the SCI Dump File.

4. Finally, run the graphical user interface to view the reports.

392

Command Line Runtime Analysis for Java

The runtime analysis features for Java covered in this section include:

• Performance Profiling

• Code Coverage

• Runtime Tracing

These features use Source Code Insertion (SCI) technology. Memory
Profiling for Java relies on JVMPI instead of SCI technology. Please refer to
the JVMPI Agent section of the Reference Manual.

The easiest way to implement SCI from the command line is to use the Java
Instrumentation Launcher: javic. The product provides two methods for use
of javic:

• Java Instrumentation Launcher: designed to fit directly into your
compilation sequence; simply add the javic command in front of your
usual compilation or link command line

• Java Instrumentation Launcher for Ant: this integrates javic with the
Apache Jakarta Ant utility

For details of command line usage and option syntax, see the Reference
Manual.

To perform runtime analysis on Java source code:

1. First, set up the necessary environment variables. See Setting
Environment Variables.

2. Edit your usual makefile by adding the Java Instrumentation Launcher
to the command line:

javic [-options] -- <compiler command line>

Where <compiler command line> is the command that you usually invoke
to build your application.

 393

Please refer to the Instrumentation Launcher section of the Reference
Manual for information on the options and settings.

3. After execution, to obtain the final test results, as well as any SCI dump
information, you need to separate the output file into separate result
files. See Splitting the SCI Dump File.

4. Finally, run the graphical user interface to view the test reports.

Command Line Component Testing for C, Ada and
C++

Use Component Testing for C and Ada and Component Testing for C++ to
test individual components of your C, C++ and Ada source code.

To perform component testing on C, C++ or Ada source code:

1. First, set up the necessary environment variables. See Setting
Environment Variables.

2. Generate a set of test script templates based on your source files by
using the Source Code Parser. See corresponding Source Code Parser
command line section in the Reference Manual.

3. Use the generated .ptu, .otc or .otd templates to write a test script. See
the Reference Manual for test script syntax.

4. If you are using an .otc Contract Check script, set up an options.h
header file. See Preparing an Options Header File.

5. Compile the generated test harness source file. See Compiling the Test
Harness

6. If you are using any of the runtime analysis features, instrument and
compile the source code. See Instrumenting and Compiling the Source
Code.
If not, simply compile your source code with your usual compiler.

394

7. Set up the TDP configuration file, called product.h. See Preparing a
Products Header File.

8. Compile the TDP Library. See Compiling the TDP Library.

9. Link the compiled files together to create an executable test binary. See
Linking the Application.

10. Execute the test binary. See Running the Test Harness or Application.

11. After execution, to obtain the final test results, as well as any SCI dump
information, you need to separate the output file into separate result
files. See Splitting the SCI Dump File.

12. Run the Report Generator to produce a test report. See the
corresponding Report Generator command line section in the
Reference Manual.

13. Finally, run the Graphical User Interface to view the test reports.

Command Line Component Testing for Java

Use Component Testing for Java to test individual components of your Java
source code.

To perform component testing on Java source code:

1. First, set up the necessary environment variables. See Setting
Environment Variables.

2. Generate a set of test script templates based on your source files by
using the Source Code Parser. See corresponding Source Code Parser
command line section in the Reference Manual.

3. Use the generated .ptu, .otc or .otd templates to write a test script. See
the Reference Manual for test script syntax.

4. Compile the generated test harness source file. See Compiling the Test
Harness.

 395

5. If you are using any of the runtime analysis features, instrument and
compile the source code. See Instrumenting and Compiling the Source
Code.
If not, simply compile your source code with your usual compiler.

6. Set up the TDP configuration file Products.java. See Preparing a
Products Header File.

7. Compile the TDP Library. See Compiling the TDP Library.

8. Link the compiled files together to create an executable test binary. See
Linking the Application.

9. Execute the test binary. See Running the Test Harness or Application.

10. After execution, to obtain the final test results, as well as any SCI dump
information, you need to separate the output file into separate result
files. See Splitting the SCI Dump File.

11. Run the Report Generator to produce a test report. See the
corresponding Report Generator command line section in the
Reference Manual.

12. Finally, run the Graphical User Interface to view the test reports.

Command Line System Testing for C

Use System Testing to test message-based systems and subsystems written
in C.

To perform message based testing on a system:

1. First, set up the necessary environment variables. See Setting
Environment Variables.

2. Write a System Testing .pts test script. See the Reference Manual for
test script syntax.

3. Write a System Testing .spv supervisor script. See the Reference

396

Manual for test script syntax.

Note Manually created supervisor scripts may be overwritten by the Test
RealTime graphical user interface.

4. Compile the generated test harness source file. See Compiling the Test
Harness.

5. If you are using any of the runtime analysis features, instrument and
compile the source code. See Instrumenting and Compiling the Source
Code.
If not, simply compile your source code with your usual compiler.

6. Set up the TDP configuration file, called product.h. See Preparing a
Products Header File.

7. Compile the TDP Library. See Compiling the TDP Library.

8. Link the compiled files together to create an executable test binary. See
Linking the Application.

9. Ensure that the System Testing agents are running on all remote target
hosts. See Installing System Testing Agents.

10. Run the supervisor script on the supervisor machine (the machine
running Test RealTime) with the following command:

atsspv <supervisor.spv>

where supervisor is the name of the .spv supervisor script.

11. Run the System Testing Report Generator to produce a test report. See
the corresponding Report Generator command line section in the
Reference Manual.

12. Finally, launch the Graphical User Interface to view the test reports.

 397

Command Line Tasks

Setting Environment Variables

The command line interface (CLI) tools require several environment
variables to be set.

These variables determine, for example, the Target Deployment Port (TDP)
that you are going to use. The available TDPs are located in the product
installation directory, under targets. Each TDP is contained in its own sub-
directory.

Prior to running any of the CLI tools, the following environment variables
must be set:

• TESTRTDIR indicates the installation directory of the product

• ATLTGT and ATUTGT specify the location of the current TDP:
$TESTRTDIR/targets/<tdp>, where <tdp> is the name of the TDP.

• PATH must include an entry to $TESTRTDIR/bin/<platform>/<os>,
where <platform> is the hardware platform and <os> is the current
operating system.

You must also add the product installation bin directory to your PATH.

Note Some command-line tools may require additional environment
variables. See the chapters dedicated to each command in the
Reference Manual section.

Test RealTime

If you are running Rational Test RealTime, the following additional
environment variables must be set:

398

• ATUDIR for Component Testing, points to $TESTRTDIR/lib

• ATS_DIR, for System Testing, points to
$TESTRTDIR/bin/<platform>/<os>, where <platform> is the hardware
platform and <os> is the current operating system.

Library Paths

UNIX platforms require the following additional environment variable:

• On Solaris and Linux platforms: LD_LIBRARY_PATH points to
$TESTRTDIR/lib/<platform>/<os>

• On HP-UX platforms: SH_LIB points to
$TESTRTDIR/lib/<platform>/<os>

• On AIX platforms: LIB_PATH points to
$TESTRTDIR/lib/<platform>/<os>

where <platform> is the hardware platform and <os> is the current operating
system.

Example

The following example shows how to set these variables for Test RealTime
with a sh shell on a Suse Linux system. The selected Target Deployment
Port is clinuxgnu.

TESTRTDIR=/opt/Rational/TestRealTime.v2002R2
ATCDIR=$TESTRTDIR/bin/intel/linux_suse
ATUDIR=$TESTRTDIR/lib
ATS_DIR=$TESTRTDIR/bin/intel/linux_suse
ATLTGT=$TESTRTDIR/targets/clinuxgnu
ATUTGT=$TESTRTDIR/targets/clinuxgnu
LD_LIBRARY_PATH=$TESTRTDIR/lib/intel/linux_suse
PATH=$TESTRTDIR/bin/intel/linux_suse:$PATH
export TESTRTDIR
export ATCDIR
export ATUDIR
export ATS_DIR
export ATLTGT
export ATUTGT

 399

export LD_LIBRARY_PATH
export PATH

Preparing an Options Header File

This step is necessary if you are using:

• System Testing for C

• .otc Contract Check feature

Before you can compile a generated source file, you must set up a file
named options.h, which contains compilation parameters for such files.

How to prepare the options.h file:

1. From the sub-directory lib of the selected Target Deployment Port,
copy a file named options_model.h to a directory of your choice, and
rename it to options.h.
The directory of your choice may be the directory where the generated
source files or instrumented source files are located.

2. Open options.h in a text editor and add the following define at the
beginning of the file:

#define ATL_WITHOUT_STUDIO

3. Make any necessary changes by adjusting the corresponding macros in
the file.

The options_model.h file is self-documented, and you can adjust every
macro to one of the values listed. Each macro is set to a default value, so
you can keep everything unchanged if you don't know how to set them.

Take note of the directory where this file is stored, you will need it in order
to compile the generated or instrumented source files.

400

Preparing a Products Header File

Before you can compile the TDP library source files, you must set up a file
named products.h for C and C++ or Products.java for Java. This file
contains the options that describe how the TDP library files are to be
compiled.

To set up a products header file

1. For C and C++, copy the product_model.h file from the lib sub-
directory of the current Target Deployment Port to a directory of your
choice, and rename it to products.h.

2. The directory of your choice may be the directory where the generated
source files or instrumented source files are located.

3. For Java, copy the Products_defaults.java.txt file from the lib sub-
directory of the current Target Deployment Port to
com/rational/test/Products.java.

4. Open products.h or Products.java in a text editor and add the
following define at the beginning of the file:

#define ATL_WITHOUT_STUDIO

5.. Make any necessary changes by adjusting the corresponding macros in
the file.

The product_model.h file is self-documented, and you can adjust every
macro to one of the values listed. Each macro is set to a default value, so
you can keep everything unchanged if you don't know how to set them.

Note Pay attention to correctly set the macros starting with USE_, because
these macros set which features of Test RealTime you are using.
Certain combinations are not allowed, such as using several test
features simultaneously.

Ensure that the ATL_TRACES_FILE macro correctly specifies the name of
the trace file which will be produced during the execution. If you are using

 401

Component Testing, this value may be overridden by a Test Script
Compiler command line option.

Take note of the directory where this file is stored, you will need it in order
to compile the generated or instrumented source files.

Instrumenting and Compiling the Source Code

The runtime analysis features (Memory Profiling, Performance Profiling,
Code Coverage and Runtime Tracing) as well as Component Testing for
C++ Contract Check all use SCI instrumentation technology to insert
analysis and SCI dump routines into your source code.

Requirements

Before compiling an SCI-instrumented source file, you must make sure that:

• A working C, C++, Java or Ada compiler is installed on your system

• If you use Component Testing for C++, you have prepared a valid
options.h file

• If you compile on a target different from the host where the generated
file has been produced, the instrumented file must have been produced
using option -NOPATH, and the sub-directory lib of the selected
Target Deployment Port directory must be copied onto the target.

There are two alternatives to instrument and compile your source code:

• Using the Instrumentation Launcher in your standard makefile

• Using the Instrumentor and Compiler separately.

Instrumentation Launcher

The Instrumentation Launcher replaces your actual compiler command in
your makefiles. This launcher transparently takes care of source code

402

preprocessing, instrumentation and compiling.

See the command line information for the Instrumentation Launcher in the
Reference Manual.

Instrumentation and Compilation

Alternatively, you can use the actual Instrumentor command line tools to
instrument the source files.

See the command line information for each Instrumentor in the Reference
Manual.

If you are compiling on a different target, you must copy the TDP /lib
directory over to that target.

Add to the include search path the /lib sub-directory that you have copied
onto the target. In C and C++, use the -I compiler option. In Java, add the
directory to the CLASSPATH.

After this, simply compile the instrumented source file with your compiler.

Compiling the TDP Library

Before you can link your test harness or your instrumented application, you
must compile the Target Deployment Port library. This section describes
how to do this.

Requirements

To compile the Target Deployment Port library, make sure that:

• A working C or C++ Test Script Compiler is installed on your system

• You have prepared a valid Products file

 403

Compilation

Depending on the language of your source file:

• For C: compile the TP.c file

• For C++: compile the TP.cpp file

• For Ada: compile the contents of the /lib directory

• For Java: set the CLASSPATH to the TDP /lib directory

Do not forget to add to the include search path the directory where the
products.h or Products.java file is located (usually with option -I or /I,
depending on the compiler).

Configuration Settings

A wide variety of compilation flags can be used by the command line tools,
allowing you to select sub-components of the application under test. These
flags are equivalent to the Test Configuration Settings dialog box of the
graphical user interface and are covered in the Reference Manual.

Default settings are contained in the following Perl script. You can use this
file to define your own customized configuration settings.

<InstallDir>/lib/scripts/BatchCCDefaults.pl

To run this script, type the following command:
$TESTRTDIR/bin/<cpu>/<os>/perl -I$TESTRTDIR/lib/perl
$TESTRTDIR/lib/scripts/TDPBatchCC.pl <my_env.pl>

where <cpu> is the architecture platform of the machine, <os> is the
operating system, and <my_env.pl> is your customized copy of the
BatchCCDefaults.pl file

The TESTRTDIR and ATLTGT environment variables must have been
previously set.

404

Compiling the Test Harness

Each of the test compilers converts a test script into test harness source
code. This section explains how to compile the test harness source file.

Requirements

In order to compile a generated source file, you must check that:

• A working C, C++ or Ada compiler is installed on your system

• If you are using System Testing, you have prepared a valid options.h
file

• If you are compiling on a target different from the host where the file
was generated, the generated file must have been produced using the -
NOPATH option (available with every test compiler), and the /lib sub-
directory of the Target Deployment Port directory must be copied onto
the target.

Compilation

If you are using Component Testing, System Testing or Component Testing
for C++ alone without any of the runtime analysis features, then simply
compile the generated test harness source file with your C or C++ compiler.

If you are compiling on a remote target, do not forget to add to the include
search path the /lib sub-directory that you have copied onto the target.

If you are using SCI instrumentation features (Memory Profiling,
Performance Profiling, Code Coverage, Runtime Tracing and C++ .otc
contract check), use the specific command line options for the Instrumentor
in the Reference Manual.

 405

Linking the Application

Once you have compiled all your source files, you need to link them to
build an executable. This section describes linkage specifics when using a
test or runtime analysis feature.

Requirements

In order to compile an instrumented source file, you must check that:

• A working C, C++ or Ada linker is installed on your system

• You have compiled every source file, including any instrumented
source files, of your application under test

• If using a Component Testing for C, Ada or C++, or System Testing,
you have compiled the test harness.

• You have compiled the Target Deployment Port library.

Linking

If you are using only runtime analysis feature (Runtime Tracing, Code
Coverage, Memory Profiling, Performance Profiling, C++ Contract Check),
you just have to add the Target Deployment Port library object to the object
files linked together. If you are using a test feature, you also have to add the
tester object to the linked files.

Running the Test Harness or Application

Once you have produced a binary tester or instrumented application, you
want to run it in order to obtain test or SCI analysis information.

By default, the generated SCI dump file is named atlout.spt.

406

To run the test application binary:

1. Check that the current directory is correct, relatively to the previously
specified trace file, if the trace files was specified with a relative path.

2. Run the binary. When the application terminates, the trace file should
be available.

Splitting the Trace Dump File

When you use several features together, the executable produces a
multiplexed trace file, containing several outputs targeting different
features from Test RealTime. By default, the trace file is named atlout.spt.

Requirements

In most cases, you must split the atlout.spt trace file into several files for use
with each particular Report Generator or the product GUI.

To do this, you must have a working perl interpreter. You can use the perl
interpreter provided with the product in the /bin directory.

To split the trace file:

• Use the atlsplit tool supplied in the /bin directory of Test RealTime:
atlsplit atlout.spt

After the split, depending on the selected runtime analysis features, the
following file types are generated:

• .rio test result files: process with a Report Generator

• .tio Code Coverage report files: view with Code Coverage Viewer

• .tdf dynamic trace files: view with UML/SD Viewer

• .tpf Memory Profiling report files: view with Memory Profiling
Viewer

• .tqf Performance Profiling report files: view with Performance

 407

Profiling Viewer

Troubleshooting Command Line Usage

The following information might help if you encounter any problems when
using the command line tools.

Failure Response

Compilation fails Ensure that the selected Target Deployment Port matches
your compiler; there may be several Target Deployment Ports
for one OS, each of which targets a different compiler. If you
are unsure, you can check the full name of a Target
Deployment Port by opening any of the .ini files located in
the Target Deployment Port directory.

Compiler reports that
options.h is missing

Ensure that you have correctly prepared the options.h file,
and that this file is located in a directory that is searched by
your compiler (this is usually specified with -I or /I option on
the compiler command line).

Compiler reports that
TP.h file is missing

If you are compiling on a target different from the host where
the generated file has been produced, double-check the above
specific requirements to compilation on a different target.
If the test script compiler and C/C++ Test Script Compiler are
executed on the same machine, ensure you have not used the
-NOPATH option on the test compiler command line, and
that the ATLTGT environment variable was correctly set
while the test compiler was executed.

Compilation fails Ensure that the selected Target Deployment Port matches
your compiler; there may be several Target Deployment Ports
for one OS, each of which targets a different compiler. If you
are unsure, you can check the full name of a Target
Deployment Port by opening any of the .ini files located in
the Target Deployment Port directory.

Compiler reports that
options.h is missing

Ensure that you have correctly prepared the options.h file,
and that this file is located in a directory that is searched by
your compiler (this is usually specified with -I or /I option on

408

the compiler command line).
Compiler reports that
TP.h file is missing

If you are compiling on a target different from the host where
the generated file has been produced, double-check the above
specific requirements to compilation on a different target.
If the test compiler and C/C++ compiler are executed on the
same machine, ensure you have not used the -NOPATH
option on the test compiler command line, and that the
ATLTGT environment variable was correctly set while the
test script compiler was executed.

Linkage fails because of
undefined references

Ensure you have successfully compiled the Target
Deployment Port library object, and have included it in your
linked files
Ensure you have correctly configured the products.h options
file.
If you are using a test feature, ensure that you are linking
both source under test and additional files. You may also
want to add some stubs in your .ptu or .otd test script.
Ensure the options set in options.h (if required) are coherent
with the options set in products.h.

Errors are reported
through #error directives

You may have selected a combination of options in
products.h which is incompatible. The error messages help
you to locate the inconsistencies.

 409

Working with Other
Development Tools 6

Rational Test RealTime was designed as a versatile product that integrates
within your existing development environment.

Working with Configuration Management

The GUI provides an interface that allows you to control your project files
through a configuration management (CM) system such as Rational
ClearCase and submit software defect report to a Rational ClearQuest
system

You can also set up the GUI to use a CM system of your choice.

Working with Rational ClearCase

Rational ClearCase is a software configuration management (SCM) tool
providing version control, workspace management, process configurability,
and build management. With ClearCase, your development team gets a
scalable, best-practices-based development process that simplifies change
management – shortening your development cycles, ensuring the accuracy
of your releases, and delivering reliable builds and patches for your
previously shipped products.

By default, the product offers configuration management support for
ClearCase. You can however customize the product to support different
configuration management software. When using Rational ClearCase you

410

can instantly control your files from the product Tools menu.

Note Before using ClearCase commands, select Rational ClearCase as
your CMS tool in the CMS Preferences.

To start source-controlling one or several files:

1. Select one or several files in the Project Explorer window.

2. From the Tools menu, select Rational ClearCase and Add to Source
Control.

To check out the latest version of one or several files from ClearCase:

1. Select one or several files in the Project Explorer window.

2. From the Tools menu, select Rational ClearCase and Get Latest
Version.

To check in one or several files into ClearCase:

1. Select one or several files in the Project Explorer window.

2. From the Tools menu, select Rational ClearCase and Check In.

To check out one or several files from ClearCase:

1. Select one or several files in the Project Explorer window.

2. From the Tools menu, select Rational ClearCase and Check Out.

To undo the check out of one or several files:

1. Select one or several files in the Project Explorer window.

2. From the Tools menu, select Rational ClearCase and Undo Check Out.

To compare a file with a previous version:

1. Select one or several files in the Project Explorer window.

2. From the Tools menu, select Rational ClearCase and Check Out.

To show the history of a controlled file:

1. Select a files in the Project Explorer window.

2. From the Tools menu, select Rational ClearCase and Show History.

 411

To the ClearCase properties of a controlled file:

1. Select a files in the Project Explorer window.

2. From the Tools menu, select Rational ClearCase and Show Properties.

Please refer to the documentation provided with Rational ClearCase for
more information.

Working with Rational ClearQuest

Rational ClearQuest is a defect and change tracking (DCT) tool designed to
operate in a client/server environment. It allows you to easily track defects
and change requests, target your most important problems or
enhancements to your product. ClearQuest helps you determine the quality
of your application or component during each phase of the development
cycle and helps you track the release in which a feature, enhancement or
bug fix appears.

By default, the product offers defect tracking support for ClearQuest. When
using ClearQuest you can directly submit a defect report from the test or
runtime analysis report in the product.

To submit a defect report from the product:

1. In the Report Explorer, right-click a Failed test.

2. From the pop-up menu, select Submit ClearQuest Defect Report.

3. This opens the ClearQuest Submit Defect window, with information
about the Failed test.

4. Enter any other necessary useful information, and click OK.

Please refer to the documentation provided with Rational ClearQuest for
more information.

412

CMS Preferences

The Preferences dialog box allows you to change the settings related to the
integration of the product with Rational ClearCase or other configuration
management software (CMS).

To change configuration management settings:

1. Select the CMS node.

• Repository directory: Use this box to specify the location of the vault
directory for the CMS tool.

• Selected Configuration Management System: Use this box to select
Rational ClearCase or a different CMS tool. Before setting this option,
make sure that the CMS system has been configured in Tools menu.

2. Click OK to apply your changes.

ClearQuest Preferences

The Preferences dialog box allows you to specify the location of the
Rational ClearQuest database.

Please refer to the documentation provided with ClearQuest for more
information.

To change ClearQuest preferences:

1. Select the ClearQuest node.

• Schema Repository: Use this box to select the schema repository you
want to use.

• Database: Use this box to enter the location of the ClearQuest database.

• User Name and Password: Enter the user information provided by
your ClearQuest administrator.

2. Click OK to apply your changes.

 413

Customizing Configuration Management

Out of the box, the product offers configuration management support for
Rational ClearCase, but the product can be configured to use most other
Configuration Management Software (CMS) that uses a vault and local
repository architecture and that offers a command line interface.

To configure the product to work with your version control software:

1. Add a new CMS tool to the Toolbox with the command lines for
checking files into and out of the configuration management software.
This activates the Check In and Check Out commands in the Project
Explorer and the ClearCase Toolbar.

2. Set up version control repository in CMS Preferences.

Working with Rational Rose RealTime

Rational Rose RealTime is a software development environment tailored to
the demands of real-time software. Developers use Rose RealTime to create
models of the software system based on the Unified Modeling Language
(UML) constructs, to generate the implementation code, compile, then run
and debug the application.

Installing Rose RealTime Integration

For the integration between these products to be fully operational, Test
RealTime v2002 Release 2 and Rose RealTime v2002 (Release 1 or 2) must be
installed on the same machine.

Windows Installation

If you installed the Test RealTime after Rose RealTime, the installation
procedure automatically adds new menus to Rose RealTime for direct

414

access to the features of the product.

If not, from the Windows Start menu, select Programs, Test RealTime,
Tools and Install Rational Test RealTime add-in for Rose RealTime to
add the new menu items to Rose RealTime.

UNIX Installation

If you installed the product after Rose RealTime, the installation procedure
automatically adds new menus to Rose RealTime for direct access to the
features of the product.

To install the plugin you must run a script. This is because it modifies the
Rose RealTime configurations in the users home directory.

The Rose RealTime installation script, for Solaris for example, can be found
in the directory:

<installdir>/<product>.v2002R2/bin/sun4/RoseRT

where <installdir> is the directory containing the Rational products.

First read the README.txt file in this directory.

The installation script is called update_register.sh. Running it will install the
plugin only for the user running the script.

If not, please re-install Test RealTime after the installation of Rose RealTime.

Using the Product with Rose RealTime

Before using Rational Test RealTime as a Rose RealTime plug-in, you must
first open or create a model within Rose RealTime.

To activate Runtime Analysis features:

1. From Rose RealTime, open the Component Specification of the

 415

components that you want to observe and select the Test RealTime
tab.

2. Select Enable Component Instrumentation.

3. In the Coverage section, select the code coverage type

4. Select Enable Memory Profiling, Enable Performance Profiling and
Enable Runtime Tracing to specify the Runtime Analysis features that
you want to activate. The Additional Options box allows you to add
other options to the Instrumentation Launcher command line.

5. Activate Add Target Deployment Port Object Files if you want to link
the selected component with the TDP.

This is required when producing an executable. For a library component,
this depends on whatever components are linked to the library.

This option also adds a new version of cmdCommand.obj to the object
file list if such a file exists in <InstallDir>\bin\intel\RoseRT\<TDP>, where
<InstallDir> is the Test RealTime installation directory and <TDP> is the
name of the current TDP. This object file dumps SCI traces when the user
clicks on the Stop button in Rose RealTime.

6. Select Support Multi-threaded Code Generation if necessary.
Optionally, you can enter a new location and file name for the trace file
in Output Trace File Name. By default, <model directory>\atlout.spt is
used.

7. Click OK.

8. In Rose RealTime, from the Tools menu, select Rational Test RealTime
and Enable Instrumentation of Selected Components. You must
repeat this whenever you change any of the options described above.

To run a build with the runtime analysis features:

• In Rose RealTime, click the Build Component button, or from the
Build menu, select Build or Rebuild.

416

These commands generate the code and makefile, and launch the product
instrumentation with the selected options.

To run the instrumented binary:

1. Just like a standard Rose RealTime application, from the Build menu,
select Run or click the Run button.

2. Then, click Start and, when appropriate, Stop.

Collecting Trace Dump Data

Rational's Source Code Insertion (SCI) technology is designed to minimize
overhead. The instrumented code stores information in memory (except for
the Runtime Tracing feature) and dumps this SCI data when the program
terminates. To use this technique, you must add a call to a dumping
function in your source code:

extern "C" _atl_obstools_dump(int);
...
_atl_obstools_dump(1);

In some cases, such as in embedded applications, it is not practical to dump
traces upon exit. See Generating Trace Dumps for more information.

To connect the SCI data dump to the Rose RealTime Stop button:

1. Add the following code to the cmdCommand.cc file.

At the beginning of the file:
#include <RTDebugger.h>
#include <RTMemoryUtil.h>
#include <RTObserver.h>
#include <RTTcpSocket.h>
#include <stdio.h>
extern "C" _atl_obstools_dump(int);

In the RTObserver::cmdCommand method:
else if(0 == RTMemoryUtil::strcmp(commandString, "stop"
))
 {
_atl_obstools_dump(1);

 417

printf("TestRT dump\n");
haltByProbe = 0;
resumeToRun = 0;
debugger->step(0U);
 }

2. Re-compile this file and add the cmdCommand.obj to the Additional
Object Files section of the model's Component Specification window

Note For Visual C++ 6.0, such an object file is already provided in:
<install dir>\bin\intel\RoseRT\VC6
where <install dir> is the Test RealTime installation directory.

3. By default, when executing the model, press the Rose RealTime Stop
button to ensure that trace information is uploaded.

Any other code point could be used to dump the traces, as long as the
chosen code point is linked to a specific eventa particular message or an
external eventin order to force the dump.

Viewing Results from Rose RealTime

To view the results with Test RealTime report viewers:

1. In Rose RealTime, from the Tools menu, select Rational Test
RealTime, Viewer and select:

• With Model Code Coverage to open the Code Coverage viewer of the
product only on the code included in the actions of each transition and
with 2 additional coverage levels for State and Transition coverage.

• With Code Coverage to open the Code Coverage viewer of the product
with the entire source code.

In both cases, Runtime Tracing, Memory Profiling and Performance
Profiling work on the entire code.

To view coverage information in a Rose RealTime state diagram:

• In Rose RealTime, from the Tools menu, select Rational Test
RealTime, Model Code Coverage and Load. This displays a coverage

418

report on each State Diagram.

Note You must run the product viewer before loading Code Coverage
information on Rose RealTime.

Advanced Rose RealTime Integration

To use a cross compiler:

When using a compiler that produces code for a non-native platform, you
must set up two Target Deployments Ports for both the native and the
target platform.

• Locate the corresponding Target Deployment Ports. These TDPs must
contain an attolcc Instrumentation Launcher binary.

• In the TDP.txt file located in the Rose RealTime installation directory,
write a line for each Target Deployment Ports based on the following
example:

NT40T.x86-VisualC++-6.0 , cvisual6

To compile with a makefile:

If you chose not to use the Rose RealTime environment for compilation and
link, but instead to use a makefile to perform these tasks, you can use the
Rational Test RealTime Instrumentation Launcher tools as described below:

• Modify your compiler command as follows:
CC = attolcc <options> -- cc
LD = attolcc <options> -- ld (if necessary)

attolcc is the Instrumentation Launcher which must be available in the
Target Deployment Port, in the /cmd directory. This directory must be in
your PATH.

<options> are the instrumentation options. See the Reference Manual for
more information about the Instrumentation Launcher command line.

 419

To display the report

The instrumented application produces the atlout.spt file at the end of the
execution.

• Run the following command:
studio *.fdc *.tsf atlout.spt atlout.tio atlout.tdf
atlout.tqf atlout.tpf

This launches the Test RealTime graphical user interface. The .fdc and .tsf
files are static files generated by the instrumentation. The four last files are
created by the product to store the traces for each component.

Troubleshooting Rose RealTime Integration

In some cases, conflicts or problems may prevent the Rose RealTime
integration to work as expected. The following tables sum up some of the
issues that may occur, and explains how to solve them.

Project Instrumentation and Compilation

Instrumentation options cannot be changed:

The component or model is read-only. Change the component to read-write
status.

An .fdc correspondence file is not found during instrumentation:

The component Cov or Cov/Model directory may have been destroyed, for
example bya Clean command. To restore the lost information, run the
Enable Instrumentation of Selected Component command.

420

New settings are ignored after performing an Enable Instrumentation of
Selected Component command:

Quick Build does not regenerate makefiles. Run the Rebuild command
instead of a Quick Build.

An error message states that an Instrumentor is missing during
instrumentation:

Another component for which no Instrumentation Launcher (attolcc) is
available, or no link exists between the Rose RealTime code generation and
the TDP, has been enabled with Enable Component Instrumentation.

Only enable components for which a complete configuration exists.

Project Link

An application should not be instrumented with instrumented libraries:

Activate the Add TDP option for the application component. The plug-in
automatically scans application dependencies and adds the TDP.Obj of
instrumented libraries to the User Obj.

Note Instrumentation options must be the same for all libraries.

An application should not be instrumented with external instrumented
libraries:

The Rose RealTime plug-in does not know where TDP is generated when
external components are used. In this case, create an external library that
contains TP.obj.

 421

Execution

Multithreading issues:

Check that the Multithreading instrumentation setting is correctly
configured.

Link issues:

When multiple subcomponents are involved in a component (libraries and
binary), check that instrumentation options are the same for all components
and that the TDP.obj is correctly linked.

Instrumentation issues

Check that no warning message appears during instrumentation. It may be
necessary to exclude one or several components from instrumentation
(attolcc -exunit). See the Reference Manual for further information about
Instrumentation Launcher command line options.

Missing Results

Files are missing when the Test RealTime is launched to display report files.
Code Coverage results are missing or display the entire application as
uncovered.

The runtime analysis trace dump was interrupted. Dumps can take a long
time, especially when the Memory Profiling feature is in use. See
Generating SCI Dumps for more information.

Missing files on another component:

The plug-in offers to display all the results for enabled components.
Disable the any components that are not under analysis.

No coverage results on a diagram

422

Check that the component was correctly generated with the Code Coverage
instrumentation option.

Check that the component is enabled for instrumentation. The Plug-in only
changes state diagrams for enabled components.

Check that the component is not read-only, such as for an inherited
diagram.

Working with Rational TestManager

You can open and run test cases associated with Test RealTime from
TestManager.

When you execute a Test RealTime test node from Test Manager, the Test
RealTime GUI does not appear and the test node is run silently. To obtain
full feedback of test execution, run the test node directly from Test
RealTime.

To open a test or application node from TestManager:

1. In TestManager, from the File menu, select Open Test Script.
Alternatively, click the Open button on the Implementation tab of a
Test Case Properties window.

2. Select a workspace in the Select a Workspace within the Project
window. The Select a Test Node / Group Node lists all the test nodes
and group nodes within the workspace.

The corresponding project opens in Test RealTime.

To execute a test node from TestManager:

• In TestManager, execute test cases associated with Test RealTime like
any other test cases. No special steps are required.

 423

Before Using the TestManager Integration

All of the Test RealTime integration functionality is accessed and performed
in TestManager.

A Rational project must be enabled with the Enable Rational Project tool in
order to be used with Test RealTime.

The Rational project and Test RealTime project can be located on any
network-accessible drive, but test execution must occur locally, on the
Windows machine. TestManager does not support remote target execution
of Test RealTime tests.

Test Manager associates test cases with nodes in the Test RealTime Project
Explorer.

You can only associate TestManager test cases with Test RealTime test
nodes. application nodes are not supported.

Although you can associate a test case with a Test RealTime group node, it
is recommended that a one-to-one correspondence between the test case
and the individual test node is preserved.

To associate a TestManager test case with a test node:

1. In TestManager, access the properties window of a test case and select
the Implementation tab.

2. In the Automated Implementation section, click Select and choose
Rational Test RealTime.

3. In the Rational Test RealTime Test Selection box, click Browse to
select an .rtp Test RealTime project file and click Open.

Note When the .rtp file is located on a network drive, indicate the location
with a UNC path ("\\machine_name\directory\file") instead of using
a mapped drive letter ("G:\directory\file").

424

The Select a Workspace within the Project window appears, displaying
a list of workspaces contained in the project.

5. Select a workspace in the Select a Workspace within the Project
window. The Select a Test Node / Group Node lists all the test nodes
and group nodes within the workspace.

6. Select the test node or group node that you want to associate with the
TestManager test case, and click OK. You can specify either a single
test node or a Group node that can contain several test nodes.

The text box in the Automated Implementation section now displays the
following path to the test node:
<group node name>.<test node name>

Note Click Options in the Implementation tab after selecting a Test
RealTime test or group node, to view the path to the Test RealTime
project, the workspace name, and the test or group node names.

Installing TestManager Integration

Integration with TestManager is only available for the Windows version of
Test RealTime.

Both Test RealTime 2002.05 and TestManager 2002.05 must be installed on
the same machine.

To enable Test RealTime integration with TestManager:

1. From the Windows Start menu, select Programs, Test RealTime, Tools
and Install Rational TestManager Integration to install the additional
files for the Test RealTime support in TestManager.

2. From the Windows Start menu, select Programs, Test RealTime, Tools
and Enable Rational Project for TestManager Integration. This tool
updates a Rational project for use with Test RealTime tests. This menu
item only appears once the Install Rational TestManager Integration

 425

tool has been run.

3. Log in to an existing Rational project. A dialog box then confirms that
the project has been enabled.

The Enable Rational Project tool must be run once for each Rational
project. You cannot enable more than one Rational project at the same time.

Submitting a ClearQuest Defect from TestManager

In TestManager, you can submit a defect relating to a Test RealTime test
node as part of the ClearQuest integration.

To automatically submit the script name, you must submit the defect from
the Script Start line and not from the User Defined line. This is because
TestManager does not submit the Script Name from a User Defined line.

Viewing Results in TestManager

Once a Test RealTime test node has been executed, the results are accessible
from the TestManager LogViewer.

For each TestManager test case, the LogViewer displays a User Defined line
per Test RealTime test node. This means that if a test case was associated
with a group node, and the group node contained five test nodes, then five
User Defined lines are shown in the test log for this particular test case.
Each line has its own associated Pass or Fail status

In the properties window of a User Defined line, on the General tab:

• For a passed test: The Failure Description field indicates:
All <x> tests passed
where <x> is the total number of tests performed by a particular test
node

426

• For a failed test: The Failure Description field indicates:
<x> tests failed. <y> tests passed
where <x>+<y> is the total number of tests performed by a particular
test node.

In the properties window of a User Defined line, on the View Test
RealTime Logs tab, click the Open button to view the test and runtime
analysisreports for the selected test node.

Note These files are copies of the original test scripts and source files
solely intended for report purposes. Any changes to these files are
not made to the actual test scripts and source files. Open the original
files in Test RealTime for debugging purposes.

Working with Rational TestManager

Rational TestManager is used to manage all aspects of testing and all
sources of information related to the testing effort throughout all phases of
a software development project.

Test RealTime integration with TestManager enables the following features:

• Association of TestManager test inputs, via test cases, with Test
RealTime test nodes and Group nodes.

• Execution of Test RealTime tests from within TestManager

• Local copy of Test RealTime test and runtime analysis results, test
scripts, and referenced source code in the Rational project log folder, all
of which can be baselined along with other Rational project log files

• Test RealTime test and runtime analysis results available within the
Test RealTime GUI directly from a LogViewer test log

• Facilitated debug efforts by maintaining the original test and runtime
analysis results in the Test RealTime project.

 427

• Execution support of multiple Test RealTime tests in multiple
projectsstored on multiple machinesfrom within a single TestManager
test suite.

Working with Microsoft Visual Studio

Installing Microsoft Visual Studio Integration

Integration with Microsoft Visual Studio is only available for the Windows
versions of Test RealTime.

Either Test RealTime and Microsoft Visual Studio 6.0 must be installed on
the same machine.

To enable the product integration with Visual Studio, from the Windows
Start menu, select Programs, Test RealTime, Tools and Install Rational
Test RealTime add-in for Microsoft Visual Studio 6.0 to add the new
menu items to Microsoft Visual Studio.

Configuring Microsoft Visual Studio Integration

Test RealTime provide a special setup tool to configure runtime analysis
features with Microsoft Visual Studio 6.0.

Note Integration with Microsoft Visual Studio is only available with the
Windows version of the product.

Configuration

The Rational Test RealTime Setup for Microsoft Visual Studio tool allows
you to set up and activate coverage types and instrumentation options for

428

Test RealTime runtime analysis features, without leaving Microsoft Visual
Studio.

To run the product Setup for Microsoft Visual Studio:

In Microsoft Visual Studio, two new items are added to the Tools menu:

• Test RealTime Viewer: this launches the Test RealTime user interface,
providing access to reports generated by Test RealTime runtime
analysis and test features.

• Test RealTime Options: this launches the Rational Setup for Microsoft
Visual Studio tool.

The following commands are available:

• Apply: Applies the changes made

• OK: Apply the choices made and leave the window

• Enable or Disable: Enables or disables the runtime analysis features

• Cancel: Cancels modifications

Code Coverage Instrumentation options

See About Code Coverage and the sections about coverage types.

• Function instrumentation:

• Select None to disable instrumentation of function inputs,
outputs and termination instructions.

• Select Functions to instrument function inputs only.

• Select Exits to instrument function inputs, outputs and
termination instructions.

• Function calls instrumentation (C only):

• Select None to disable function call instrumentation.

 429

• Select Calls to enable function call instrumentation.

• Block instrumentation

• Select None to disable block instrumentation.

• Select Statement Blocks to instrument simple blocks only.

• Select Implicit Blocks to instrument simple and implicit
blocks.

• Select Loops to instrument implicit blocks and loops.

• Condition instrumentation (C only)

• Select None to disable condition instrumentation

• Select Basic to instrument basic conditions

• Select Modified/Multiple to instrument multiple

• Select Forced to instrument forced multiple conditions

• No Ternaries Code Coverage: when this option is selected, simple
blocks corresponding for the ternary expression true and false branches
are not instrumented

• Instrumentation Mode: see Information Modes for more information.

• Pass mode: allows you to distinguish covered branches from
those not covered.

• Count mode: The number of times each branch is executed is
displayed in addition to the pass mode information in the
coverage report.

• Compact mode: The compact mode is similar to the Pass
mode. But each branch is stored in one bit instead of one byte

430

to reduce overhead.

Other Options

• Dump: this specifies the dump mode:

• Select None to dump on exit of the application

• Select Calling to dump on call of the specified function

• Select Incoming to dump when entering the specified function

• Select Returning to dump when exiting from the specified
function

• Static Files Directory: allows you to specify where the .fdc and .tsf files
are to be generated

• Runtime Tracing: this option activates the Runtime Tracing runtime
analysis feature

• Memory Profiling: this option activates the Memory Profiling runtime
analysis feature

• Performance Profiling: this option activates the Performance Profiling
runtime analysis feature

• Other: allows you to specify additional command-line options that are
not available using the buttons. See the Test RealTime Reference
Manual for a complete list of Instrumentor options.

 431

 433

Technical Support 7
When contacting Rational Technical Support, please be prepared to supply
the following information:

• About you:
Name, title, e-mail address, telephone number

• About your company:
Company name and company address

• About the product:
Product name and version number (from the Help menu, select
About).
What components of the product you are using

• About your development environment:
Operating system and version number (for example, Windows NT 4.0,
Solaris 2.5.1/2.6/2.7, or HP-UX 10.20)Target compiler, operating system
and microprocessor. If necessary, send the Target Deployment Port file

• About your problem:
Your service request number (if you are calling about a previously
reported problem)
A summary description of the problem, related errors, and how it was
made to occur
Please state how critical your problem is
Any files that can be helpful for the technical support to reproduce the
problem (project, workspace, test scripts, source files). Formats
accepted are .zip and compressed tar (.tar.Z or .tar.gz)

If your organization has a designated, on-site support person, please try to

434

contact that person before contacting Rational Technical Support.

You can obtain technical assistance by sending e-mail to just one of the e-
mail addresses cited below. E-mail is acknowledged immediately and is
usually answered within one working day of its arrival at Rational. When
sending an e-mail, place the product name in the subject line, and include a
description of your problem in the body of your message.

Note When sending e-mail concerning a previously-reported problem,
please include in the subject field: "[SR#<number>]", where <number>
is the service request number of the issue. For example:

Re:[SR#12176528] New data on Rational Test RealTime install
issue

Sometimes Rational technical support engineers will ask you to fax
information to help them diagnose problems. You can also report a
technical problem by fax if you prefer. Please mark faxes "Attention:
Technical Support" and add your fax number to the information requested
above.

Location Contact

North America Rational Software,
18880 Homestead Road,
Cupertino, CA 95014
voice: (800) 433-5444
fax: (408) 863-4001
e-mail: support@rational.com

Europe, Middle East, and Africa Rational Software,
Beechavenue 30,
1119 PV Schiphol-Rijk,
The Netherlands
voice: +31 20 454 6200
fax: +31 20 454 6201
e-mail: support@europe.rational.com

Asia Pacific Rational Software Corporation Pty Ltd,
Level 13, Tower A, Zenith Centre,

 435

821 Pacific Highway,
Chatswood NSW 2067,
Australia
voice: +61 2-9419-0111
fax: +61 2-9419-0123
e-mail: support@apac.rational.com

436

 437

Glossary

Additional Files

Source files that are required by the test script, but not actually tested.

API

Application Programmer Interface. A reusable library of subroutines or
objects that encapsulates the internals of some other system and provides
a well-defined interface. Typically, it makes it easier to use the services of
a general-purpose system, encapsulates the subject system providing
higher integrity, and increases the user's productivity by providing
reusable solutions to common problems.

Application

A software program or system used to solve a specific problem or a class
of similar problems.

Application node

The main building block of your application under analysis. It contains
the source files required to build the application.

Assertion

A predicate expression whose value is either true or false.

Asynchronous

Not occurring at predetermined or regular intervals.

438

Black box testing

A software testing technique whereby the internal workings of the item
being tested are not known by the tester.

Boundary

The set of values that defines an input or output domain.

Boundary condition

An input or state that results in a condition that is on or immediately
adjacent to a boundary value.

Branch

When referring to the Code Coverage feature, a branch denotes a generic
unit of enumeration.For a given branch, you specify the coverage type.
Code Coverage instruments this branch when you compile the source
under test.

Branch coverage

Achieved when every path from a control flow graph node has been
executed at least once by a test suite. It improves on statement coverage
because each branch is taken at least once.

Breakpoint

A statement whose execution causes a debugger to halt execution and
return control to the user.

Bug

An error or defect in software or hardware that causes a program to
malfunction.

Build

The executable(s) produced by a build generation process. This process

 439

may involve actual translation of source files and construction of binary
files by e.g. compilers, linkers and text formatters.

Build generation

The process of selecting and merging specific versions of source and
binary files for translation and linking within a component and among
components.

Check-in

In configuration management, the release of exclusive control of a
configuration item.

Check-out

In configuration management, the granting of exclusive control of a
configuration item to a single user.

Class

A representation or source code construct used to create objects. Defines
public, protected, and private attributes, methods, messages, and
inherited features. An object is an instance of some class. A class is an
abstract, static definition of an object. It defines and implements instance
variables and methods.

Class contract

The set of assertions at method and class scope, inherited assertions, and
exceptions.

Class invariant

An assertion that specifies properties that must be true of every object of
a class.

Clear box testing

A software testing technique whereby explicit knowledge of the internal

440

workings of the item being tested are used to select the test data. Test
RealTime leverages the power of source code analysis to initiate the
creation of white box tests.

Code Coverage

Test RealTime feature whose function is to measure the percentage of
code coverage achieved by your testing efforts, using a variety of
powerful data displays to ensure all portions of your code are exercised
and thus verified as properly implemented.

Complexity

A characteristic of software measured by various statistical models.

Component

Any software aggregate that has visibility in a development
environment, for example, a method, a class, an object, a function, a
module, an executable, a task, a utility subsystem, an application
subsystem. This includes executable software entities supplied with an
API.

Component Testing

The Test RealTime feature used to automate the white box testing of
individual software components in your system, facilitating early,
proactive debugging and provided a repeatable, well-defined process for
runtime analysis.

Computational complexity

The study of the time (number of iterations) and space (quantity of
storage) required by algorithms and classes of algorithms.

Configuration

It is a Target Deployment Port, applied to a Project, plus node-specific
settings.

 441

Configuration management

A technical and administrative approach to manage changes and control
work products.

Container class

A class whose instances are each intended to contain multiple
occurrences of some other object.

Coverage

The percentage of source code that has been exercised during a given
execution of the application.

Cyclomatic complexity

The V(g) or cyclomatic number is a measure of the complexity of a
function which is correlated with difficulty in testing. The standard value
is between 1 and 10. A value of 1 means the code has no branching. A
function's cyclomatic complexity should not exceed 10.

Debug

To find the error or misconception that led to a program failure
uncovered by testing, and then to design and to implement the program
changes that correct the error.

Debugger

A software tool used to perform debugging.

Defect

An incorrect or missing software component that results in a failure to
meet a functional or performance requirement.

Destructor

A method that removes an active object.

442

Embedded system

A combination of computer hardware and software, and perhaps
additional mechanical or other parts, designed to perform a dedicated
function. In some cases, embedded systems are part of a larger system or
product, as is the case of an anti-lock braking system in a car.

Equivalence class

A set of input values such that if any value is processed correctly
(incorrectly), then it is assumed that all other values will be processed
correctly (incorrectly).

Error

A human action that results in a software fault.

Event

Any kind of stimulus that can be presented to an object: a message from
any client, a response to a message sent to the virtual machine
supporting an object, or the activation of an object by an externally
managed interrupt mechanism.

Exception

A condition or event that causes suspension of normal program
execution. Typically it results from incorrect or invalid usage of the
virtual machine.

Exception handling

The activation of program components to deal with an exception.
Exception handling is typically accomplished by using built-in features
and application code. The exception causes transfer to the exception
handler, and the exception handler returns control to the module that
invoked the module that encountered the exception.

 443

Garbage collector (Java)

The process of reclaiming allocated blocks of main memory (garbage)
that are (1) no longer in use or (2) not claimed by any active procedure.

Included Files

Included files are normal source files under test. However, instead of
being compiled separately during the test, they are included and
compiled with the object test driver script.

Inheritance

A mechanism that allows one class (the subclass) to incorporate the
declarations of all or part of another class (the superclass). It is
implemented by three characteristics: extension, overriding, and
specialization.

Instrumentation

The action of adding portions of code to an existing source file for
runtime analysis purposes. The product uses Rational's source code
insertion technology for instrumentation.

JUnit

JUnit is an open source testing framework for Java. It provides a means
of expressing how the application should work. By expressing this in
code, you can use JUnit test scripts to test your code.

Memory profiling

Test RealTime feature whose function is to measure your code's
reliability as it pertains to memory usage. Applicable to both Application
and Test Nodes, the memory profiling feature detects memory leaks,
monitors memory allocation and deallocation and provides detailed
reports to simplify your debugging efforts.

444

Method (Java, C++)

A procedure that is executed when an object receives a message. A
method is always associated with a class.

Model

A representation intended to explain the behavior of some aspects of [an
artifact or activity]. A model is considered an abstraction of reality.

Node

Any item that appears in the Project Explorer. This includes test nodes,
application nodes, source files or test scripts.

Package (ADA)

Program units that allow the specification of groups of logically related
entities.

Package (Java)

A group of types (classes and interfaces).

Performance profiling

Test RealTime feature whose function is to measure your code's
reliability as it pertains to performance. Applicable to both Application
and Test nodes, the performance profiling feature measures each and
every function, procedure or method execution time, presenting the data
in a simple-to-read format to simplify your efforts at code optimization.

Polymorphism

This refers to a programming language's ability to process objects
differently depending on their data type or class. More specifically, it is
the ability to redefine methods for derived classes.

 445

Postcondition

An assertion that defines properties that must hold when a method
completes. It is evaluated after a method completes execution and before
the message result is returned to the client.

Precondition

An assertion that defines properties that must hold when a method
begins execution. It defines acceptable values of parameters and
variables upon entry to a module or method.

Predicate expression

An expression that contains a condition (conditions) that evaluates true
or false.

Procedure (C)

A procedure is a section of a program that performs a specific task.

Project

The project is your main workspace as shown in the Project Explorer.
The project contains all the files required to build, analyze and test an
application.

Requirement

A desired feature, property, or behavior of a system.

Runtime Tracing

The Test RealTime feature whose function is to monitor code s it
executes, generating an easy-to-read UML-based sequence diagram of
events. Perfect for developers trying to understand inherited code, this
feature also greatly simplifies the debugging process at the integration
level.

446

Scenario

An interaction with a system under test that is recognizable as a single
unit of work from the user's point of view. This step, procedure, or input
event may involve any number of implementation functions.

SCI

Source Code Insertion. Method used to enable the runtime analysis
functionality of Test RealTime. Pre-compiled source code is modified via
the insertion of custom commands that enable the monitoring of
executing code. The actual code under test is untouched. The testing
features of Test RealTime do not require SCI.

SCI dump

Data that is dumped from a SCI-instrumented application.

Sequence diagram

A sequence diagram is a UML diagram that provides a view of the
chronological sequence of messages between instances (objects or
classifier roles) that work together in an interaction or interaction
instance. A sequence diagram consists of a group of instances
(represented by lifelines) and the messages that they exchange during the
interaction.

Snapshot

In Memory Profiling for Java, a snapshot is a memory dump performed
by the JVMPI Agent whenever a trigger request is received. The snapshot
provides a status of memory and object usage at a given point in the
execution of the Java program.

Subsystem

A subset of the functions or components of a system.

 447

System Testing

The Test RealTime feature dedicated to testing message-based
applications. It helps you solve complex testing issues related to system
interaction, concurrency, and time and fault tolerance by addressing the
functional, robustness, load, performance and regression testing phases
from small, single threads or tasks up to very large, distributed systems.

TDP

Target Deployment Port. A versatile, low-overhead technology enabling
target-independent tests and runtime analysis despite limitless target
support. Its technology is constructed to accommodate your compiler,
linker, debugger, and target architecture.

Template class

A class that defines the common structure and operations for related
types. The class definition takes a parameter that designates the type.

Test driver

A software component used to invoke a component under test. The
driver typically provides test input, controls and monitors execution, and
reports results.

Test harness

A system of test drivers and other tools to support test execution.

Test node

The main building block of your test campaign. It contains one or more
test scripts as well as the source code under test.

Transition

In a state machine, a change of state.

448

UML

Unified Modeling Language. A general-purpose notational language for
specifying and visualizing complex software, especially large, object-
oriented projects.

Unit

Generic term referring to language specific code elements such as
procedures, classes, functions, methods, packages.

Unit Testing

See Component Testing.

White box testing

See Clear box testing.

	Rational® Test RealTime
	Contents
	Product Overview
	About Online Documentation
	Context-Sensitive Online Help
	Finding Information
	Printing from the Online Documentation
	Documentation Updates and Feedback

	Source Code Insertion
	Estimating Instrumentation Overhead
	Reducing Instrumentation Overhead
	Information Modes
	Generating SCI Dumps

	Target Deployment Ports
	Launching the TDP Editor
	Reconfiguring a TDP for a Compiler or JDK

	Unified Modeling Language
	UML Sequence Diagrams
	Model Elements and Relationships in Sequence Diagrams
	Activations
	Classifier Roles
	Destruction Markers
	Lifelines
	Messages
	Objects
	Stimuli
	Actions
	Exceptions
	Actors
	Loops
	Synchronizations
	Notes

	Upgrading from a Previous Version

	Runtime Analysis
	Using Runtime Analysis Features
	Code Coverage
	Coverage Types
	Ada Coverage
	Ada Block Coverage
	Ada Call Coverage
	Ada Condition Coverage
	Ada Unit Coverage
	Ada Link Files
	Ada Additional Statements

	C Coverage
	C Block Coverage
	C Call Coverage
	C Condition Coverage
	C Function Coverage
	C Additional Statements

	C++ Coverage
	C++ Block Code Coverage
	C++ Method Code Coverage
	C++ Template Instrumentation
	C++ Additional Statements

	Java Coverage
	Java Block Coverage
	Java Method Coverage
	Java Additional Statements

	Code Coverage Viewer
	About the Code Coverage Viewer
	Source Report
	Rates Report
	Code Coverage Toolbar
	Code Coverage Viewer Preferences

	Code Coverage Dump Driver

	Static Metrics
	Static Metric Viewer
	Static Metrics
	Root Level File View
	Root Level Object View

	Halstead Metrics
	V(g) or Cyclomatic Number
	Metrics Viewer Preferences

	Memory Profiling for C and C++
	Memory Profiling Results for C and C++
	Memory Profiling Errors
	Freeing Freed Memory (FFM)
	Freeing Unallocated Memory (FUM)
	Late Detect Array Bounds Write (ABWL)
	Late Detect Free Memory Write (FMWL)
	Memory Allocation Failure (MAF)
	Core Dump (COR)

	Memory Profiling Warnings
	Memory in Use (MIU)
	Memory Leak (MLK)
	Memory Potential Leak (MPK)
	File in Use (FIU)
	Signal Handled (SIG)

	Memory Profiling User Heap in C and C++
	Using the Memory Profiling Viewer
	Memory Profiling Viewer Preferences

	Memory Profiling for Java
	Memory Profiling Results for Java
	JVMPI Technology

	Performance Profiling
	Performance Profiling Results
	Performance Profiling SCI Dump Driver
	Performance Profiling Viewer Preferences
	Using the Performance Profiling Viewer

	Runtime Tracing
	About Runtime Tracing
	Understanding Runtime Tracing UML Sequence Diagrams
	Runtime Tracing with a Test Node
	Multi-Thread Support
	Partial Trace Flush
	Trace Item Buffer
	Splitting Trace Files

	Automated Testing
	Using Test Features
	Component Testing for C and Ada
	C and Ada Testing Overview
	Integrated, Simulated and Additional Files
	Tester Configuration
	Importing V2001A Component Testing Files
	Options and Settings
	Array and Structure Display
	Initial and Expected Values
	Test Script Compiler Macro Definitions

	Pointers
	Testing Pointers against Pointer Structure Elements
	Pointer and Array Ambiguities

	Testing an Array Whose Elements are Unions
	Initializing Pointer Variables while Preserving the Pointed Value

	Functions
	Testing Main Functions
	Functions Using a Variable Number of Parameters
	Functions Taking void* Parameters
	Functions Using const Parameters
	Functions Containing Type Modifiers
	Functions Using _inout Mode Arrays
	Functions Taking char* Parameters

	C and Ada Test Script
	Ada
	Ada Records with Discriminants
	Separate Compilation
	Generic Units
	Unknown Values
	Test Program Entry Point
	Testing Generic Packages
	Declaring Global Variables for Testing
	Generating a Separate Test Harness
	Test Script Modification
	Testing Ada Tasks

	Environments
	About Environments
	Declaring Environments
	Environment Override
	Specifying Parameters for Environments
	Using Environments

	Exceptions
	Unexpected Exceptions

	Overview
	Declaring Parameters
	Test Script Structure

	Simulations
	C and Ada Syntax Extensions
	Creating Complex Stubs
	Excluding a Parameter from a Stub
	Sizing Stubs

	Simulation of Generic Units
	Stub Definition in C
	Stub Simulation Overview
	Stub Usage in Ada
	Stub Usage in C

	C and Ada Test Reports
	Comparing Reports
	Understanding Component Testing Reports
	Understanding Component Testing UML Sequence Diagrams for C and Ada

	Component Testing for C++
	About Component Testing for C++
	C++ Testing Overview
	C++ Test Nodes
	C++ Contract-Check Script
	C++ Test Driver Script
	Files and Classes Under Test
	Simulated, Additional and Included Files
	Declaration Files

	C++ Test Reports
	Understanding Component Testing for C++ Reports
	Understanding Component Testing for C++ UML Sequence Diagrams
	Illegal and Multiple Transitions
	Contract-Check Sequence Diagrams
	Test Driver Sequence Diagrams

	Component Testing for Java
	Java Testing Overview
	Java Test Nodes
	Java Test Harness
	Using the TestCase Class
	Using the TestResult Class
	Using the TestSuite Class
	Simulated and Additional Classes
	Java Stubs
	Importing a JUnit Test Campaign
	J2ME Specifics

	Java Test Reports
	Understanding Java Test Reports
	Understanding Java Component Testing UML Sequence Diagrams

	System Testing for C
	System Testing Overview
	Circular Trace Buffer
	System Testing Supervisor

	Agents and Virtual Testers
	System Testing Agents
	Installing System Testing Agents
	System Testing Agent Access Files

	Configuring Virtual Testers
	Debugging Virtual Testers
	Deploying Virtual Testers
	Editing the Deployment Script
	Optimizing Execution Traces
	Setting Up Rendezvous Members
	System Testing in a Multi-Threaded or RTOS Environment
	Virtual Tester Thread Starter Program

	System Testing for C Test Scripts
	
	Basic Structure
	Include Statements
	Procedures

	Flow Control
	Conditions
	Iterations
	Multiple Conditions

	Native C
	CALL Instruction
	Using Native Language

	Instances
	Instance Declaration
	Instance Synchronization
	Instances

	Environments
	Error Handling
	Exception Environment (Error Recovery Block)
	Initialization Environment
	Termination Environment

	Time Management
	TIME Instruction
	TIMER Instruction
	RESET Instruction
	PRINT Instruction
	PAUSE Instruction

	Event Management
	Basic Declarations
	Sending Messages
	Receiving Messages
	Messages and Data Management
	Communication Between Virtual Testers

	Understanding System Testing for C Reports
	Understanding System Testing UML Sequence Diagrams

	Advanced System Testing for C
	Trace Probes
	Using Probe Macros
	Generated Test Script
	On-the-Fly Tracing

	Graphical User Interface
	Discovering the GUI
	Start Page
	Output Window
	Project Explorer
	Properties Window
	Report Explorer
	Standard Toolbars
	Using the GUI Components
	Report Viewer
	Understanding Test and Runtime Analysis Reports
	Setting a Zoom Level
	Report Viewer Toolbar
	Report Viewer Style Preferences

	Text Editor
	Creating a Text File
	Opening a Text File
	Finding Text in the Text Editor
	Replacing Text in the Text Editor
	Locating a Line and Column in the Text Editor
	Text Editor Syntax Coloring
	Text Editor Preferences

	Tools Menu
	Tool Configuration

	Test Process Monitor
	Changing Curve Properties
	Custom Curves
	Event Markers
	Setting the Time Scale
	Test Process Monitor Toolbar
	Adding a Metric

	UML/SD Viewer
	Navigating through UML Sequence Diagram
	Time Stamping
	Coverage Bar
	Memory Usage Bar
	Thread Bar
	Applying Filters
	Sequence Diagram Triggers
	Editing Trigger or Filter Events
	Finding Text in a UML Sequence Diagram
	Step-by-Step mode
	UML/SD Viewer Toolbar
	UML/SD Viewer Preferences

	Configurations and Settings
	Configurations and Settings
	General Settings
	Build Settings
	External Command Settings

	Probe Control Settings
	Runtime Analysis Settings
	General Runtime Analysis Settings
	Memory Profiling Settings
	Performance Profiling Settings
	Code Coverage Settings
	Runtime Tracing Control Settings

	Automated Testing Settings
	Component Testing Settings for C and Ada
	Component Testing for C++ Settings
	Component Testing for Java Settings
	System Testing for C Settings

	Selecting Configurations
	Modifying Configurations

	Working with Projects
	Creating a Group
	Manually Creating a Test or Application Node
	Creating an External Command Node
	Importing a Makefile
	Refreshing the Asset Browser
	Deleting a Node
	Renaming a Node
	Viewing File Properties
	Excluding a Node from a Build
	Adding Files to the Project
	Selecting Build Options
	Building and Running a Node
	Cleaning Up Generated Files
	Creating a Source File Folder
	Importing a Data Table (.csv File)
	Opening a Report
	Debug Mode
	Editing Preferences
	Project Preferences
	Connection Preferences

	Activity Wizards
	New Project Wizard
	Runtime Analysis Wizard
	Component Testing Wizard
	System Testing Wizard
	Metrics Diagram
	Advanced Options

	Command Line Interface
	Running a Node from the Command Line
	Command Line Runtime Analysis for C and C++
	Command Line Runtime Analysis for Java
	Command Line Component Testing for C, Ada and C++
	Command Line Component Testing for Java
	Command Line System Testing for C
	Command Line Tasks
	Setting Environment Variables
	Preparing an Options Header File
	Preparing a Products Header File
	Instrumenting and Compiling the Source Code
	Compiling the TDP Library
	Compiling the Test Harness
	Linking the Application
	Running the Test Harness or Application
	Splitting the Trace Dump File
	Troubleshooting Command Line Usage

	Working with Other Development Tools
	Working with Configuration Management
	Working with Rational ClearCase
	Working with Rational ClearQuest
	CMS Preferences
	ClearQuest Preferences
	Customizing Configuration Management

	Working with Rational Rose RealTime
	Installing Rose RealTime Integration
	Using the Product with Rose RealTime
	Collecting Trace Dump Data
	Viewing Results from Rose RealTime
	Advanced Rose RealTime Integration
	Troubleshooting Rose RealTime Integration

	Working with Rational TestManager
	Before Using the TestManager Integration
	Installing TestManager Integration
	Submitting a ClearQuest Defect from TestManager
	Viewing Results in TestManager
	Working with Rational TestManager

	Working with Microsoft Visual Studio
	Installing Microsoft Visual Studio Integration
	Configuring Microsoft Visual Studio Integration

	Glossary

