
Rational Software Corporation

support@rational.com
http://www.rational.com

Rational® Test RealTime
Rational® PurifyPlusRealTime
TARGET DEPLOYMENT GUIDE

VERSION: 2002 RELEASE 2 - SR1

mailto:support@rational.com
http://www.rational.com

IMPORTANT NOTICE

COPYRIGHT
Copyright ©2000-2002, Rational Software Corporation. All rights reserved.

Part Number: 800-025997-000

Version: 2002 Release 2 - SR1

PERMITTED USAGE
THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION WHICH IS THE PROPERTY OF RATIONAL
SOFTWARE CORPORATION (“RATIONAL”) AND IS FURNISHED FOR THE SOLE PURPOSE OF THE
OPERATION AND THE MAINTENANCE OF PRODUCTS OF RATIONAL. NO PART OF THIS PUBLICATION
IS TO BE USED FOR ANY OTHER PURPOSE, AND IS NOT TO BE REPRODUCED, COPIED, ADAPTED,
DISCLOSED, DISTRIBUTED, TRANSMITTED, STORED IN A RETRIEVAL SYSTEM OR TRANSLATED
INTO ANY HUMAN OR COMPUTER LANGUAGE, IN ANY FORM, BY ANY MEANS, IN WHOLE OR IN
PART, WITHOUT THE PRIOR EXPRESS WRITTEN CONSENT OF RATIONAL.

TRADEMARKS
Rational, Rational Software Corporation, Rational the software development company, ClearCase, ClearQuest, Object
Testing, Purify, Quantify, Rational Apex, Rational Rose, Rational Suite, among others, are either trademarks or
registered trademarks of Rational Software Corporation in the United States and/or in othercountries.All other names
are used for identification purposes only, and are trademarks or registered trademarks of their respective companies.

Microsoft, the Microsoft logo, Windows, Windows NT, Windows Me and Windows 2000 are trademarks or registered
trademarks of Microsoft Corporation in the United States and other countries.

FLEXlm and GLOBEtrotter are trademarks or registered trademarks of GLOBEtrotter Software, Inc. Licensee shall
not incorporate any GLOBEtrotter software (FLEXlm libraries and utilities) into any product or application the
primary purpose of which is software license management.

PATENT
U.S. Patent Nos.5,193,180 and 5,335,344 and 5,535,329 and 5,835,701. Additional patents pending.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

GOVERNMENT RIGHTS LEGEND
Use, duplication, or disclosure by the U.S. Government is subject to restrictions set forth in the applicable Rational
Software Corporation license agreement and as provided in DFARS 277.7202-1(a) and 277.7202-3(a) (1995), DFARS
252.227-7013(c)(1)(ii) (Oct. 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR 227-14, as applicable.

WARRANTY DISCLAIMER
This document and its associated software may be used as stated in the underlying license agreement. Rational
Software Corporation expressly disclaims all other warranties, express or implied, with respect to the media and
software product and its documentation, including without limitation, the warranties of merchantability or fitness for a
particular purpose or arising from a course of dealing, usage, or trade practice.

1

Target Deployment Guide
Contents
Overview ... 5

About Online Documentation ... 6
Documentation Updates and Feedback .. 6

Setting Up a Target Deployment Port... 9

Determining Target Requirements... 11
Data Retrieval Capability .. 13
Free Data Space... 14
Free Stack Space ... 14
Mutex.. 14
Thread Self and Private Data.. 15
Clock Interface.. 15
Heap Management ... 15
High-Speed Link ... 16
Task Management .. 16
BSD Socket Compliance... 16
Thread Adaptation .. 17
Clock Adaptation... 17
JVMPI Support.. 17
Heap Settings ... 18

Retrieving Data from the Target Host .. 18
Target System Categories .. 19
Determining Target Architecture Support .. 21
Data Retrieval Examples .. 22

Migrating pre-V2002 TDPs to Present Format... 26

2

unitest.ini .. 27
Perl Scripts ... 28
atuconf.h... 31
attol_comm and attol_serv.. 33
private_io.ads ... 34
private_io.adb... 35
attolcov_io.ads.. 36
attolcov.opp .. 36
atlcov.hpp... 36
atlcov.def .. 36
atl_cc.def .. 37
atl_cc.def for C++ ... 37
standard-ada95.ads.. 37
standard-ada83.ads.. 37
standard*.*.. 38

Using the TDP Editor.. 41

Creating a new Target Deployment Port .. 42
Updating a Target Deployment Port... 43
Using a Post-generation Script... 43

Technical Support .. 45

3

5

Overview 1
The Rational Test RealTime and PurifyPlus RealTime Target Deployment
Port Technology is a versatile, low-overhead technology enabling both
limitless embedded target support and target-independent testing and
runtime analysis capabilities. Used by all of the features of the product, the
Target Deployment Port (TDP) technology is built to accommodate your
compiler, linker, debugger, and target architecture. The TDP acts as a
buffer between your target architecture and all test and runtime analysis
assets, ensuring full product independence. The product assets don't have
to change when the environment does. Test script deployment, execution
and reporting remain unaffected by a changing environment as well.

Over twenty TDP configurations are shipped with Rational Test RealTime
and PurifyPlus RealTime, and additional TDPs are periodically made
available on our website (this site can be accessed via the Help menu in the
product). However, in order to help you achieve your test objectives, each
Target Deployment Port can be tailored - via an interactive TDP editor - to
match the specifics of the environment in which you are working.

The TDP Editor is accessible via the Tools menu in Test RealTime or
PurifyPlus RealTime.

Target Deployment Port Technology: Key Capabilities and Benefits

• Compiler dialect-aware and linker-aware, for transparent test building.

• Simplified upload of the test harness onto your target via your own
IDE, debugger, simulator or emulator.

• Painless test and runtime analysis results download from the target
environment using JTAG probes, emulators or any available

6

communication link, such as serial, Ethernet or file system.

• Powerful test execution monitoring to distribute, start, synchronize and
stop test harness components, as well as to implement communication
and exception handling.

• Versatile communication protocol adaptation to send and receive test
messages.

• XML-based TDP editor enabling simple, in-house TDP creation and
customization

• About Online Documentation

About Online Documentation

The entire documentation set for Test RealTime and PurifyPlus RealTime is
provided as a full-featured online Help system.

Depending on the operating system you are using, this documentation was
designed to be viewed with either:

• Microsoft's HTML Help browser for Windows.

• Netscape Navigator 4.5 or later on other operating systems.

Both environments provide contextual-Help from within the application, a
full-text search facility, and direct navigation through the Table of
Contents and Index panes on the left side of the Help window.

We welcome any feedback regarding this documentation.

Documentation Updates and Feedback

For the most recent documentation updates, please visit the Product
Support section of the Web site at:

Test RealTime: http://www.rational.com/products/testrt

http://www.rational.com/products/testrt

7

PurifyPlus RealTime: http://www.rational.com/products/testrt/pplus_rt.jsp

Feedback

We do our best to provide you with first-rate user documentation, so your
feedback is essential for us to improve the quality of our products. If you
have any comments or suggestions about our online documentation, feel
free to contact us at techpubs@rational.com.

Keep in mind that this e-mail address is only for documentation feedback.
For technical questions, please contact Technical Support.

http://www.rational.com/products/testrt/pplus_rt.jsp

9

Setting Up a Target
Deployment Port 2

Rational's Target Deployment Technology extends Rational Test RealTime
and PurifyPlus RealTime to provide support for your own target
environment.

Setting up a Target Deployment Port (TDP) essentially involves the
creation of a set of files and procedures that enable the execution of
generated test programs or instrumented applications directly on your
target host, as well as enabling the retrieval of test and runtime analysis
results from the target host.

Due to the nature of the tasks at hand and to the characteristics of each
target host, you may or may not be able to run certain features of the
product on certain targets.

First, refer to Target Requirements for a list of minimum requirements that
the target system must provide for each test and runtime analysis feature.

Contents of a Target Deployment Port

By default, the Target Deployment Ports available on your machine are
located within the product installation folder, in the \targets directory:

Each Target Deployment Port is stored in its own directory. The directory
name starts with a c for the C and C++ languages, ada for the Ada language
or j for Java, followed by the name of the development environment, such
as the compiler and target platform.

TDP Configuration Format

A Target Deployment Port can be subdivided into four primary sections:

10

• Basic Settings: Used to specify default file extensions, default flags,
environment variables and custom variables required for your target
architecture.

• Build Settings: Used to configure the functions required for the
integrated build process. Within it are defined compilation, link and
execution scripts, plus any user-defined scripts.

• Library Settings: Used to modify a variety of library settings required
by the Target Deployment Port. These files are stored in the TDP lib
subdirectory.

• Parser Settings: Used to modify the default behavior of the Test
RealTime parser in order to address, for example, non-ANSI
extensions. The resulting files are stored in the TDP ana subdirectory.

Use the Help Window in the TDP Editor to obtain reference information
about each setting.

TDP Templates

XML-based TDP templates are provided to guide you through the TDP
creation process. Several types of templates are available:

• blank templates

− templatec.xdp for C and C++ TDPs

− templatea.xdp for Ada TDPs

− templatej2se.xdp for Java 2 Platform, Standard Edition (J2SE) TDPs

− templatej2me.xdp for Java 2 Platform, Micro Edition (J2ME) TDPs

• fully configured templates: used to guide creation of a TDP configured
for your own environment

All TDP templates are located within the \targets\xml folder - each

11

possessing a .xdp extension.

To create a new TDP:

1. Using the Tools menu item in Test RealTime or PurifyPlus RealTime,
select TDP Editor->TDP Editor

2. Open the appropriate v2002 Release 2 template for your development
language

or

Run two instances of the TDP editor, open a pre-existing TDP template
very similar to your target in one editor, and open the appropriate blank
template in the other editor

2. Item by item, code or copy-paste the appropriate information into each
section of the template, using the information supplied in this chapter
of the TDP User Guide to direct you.

Determining Target Requirements

Determining Target Requirements

The following tables lists the minimum requirements that your
development environment must provide to enable use of each feature of
the product:

• C, C++ and Ada requirements

• Java requirements

C, C++ and Ada Requirements

Each feature is listed as a column title.

12

 Component
Testing for
C and Ada

Component
Testing for
C++

System
Testing
for C
#Virtual
Testers=1

System
Testing for
C
#Virtual
Testers>1

Code
Coverage

Runtime
Tracing

Memory
Profiling

Performance
Profiling

Data Retrieval
Capability

Required Required Required Required Required Required Required Required

Free Data Space For stand
alone

For stand
alone

For stand
alone

For stand
alone

Free Stack
Space

 For stand
alone

For stand
alone

For stand
alone

For stand
alone

Mutex For MT For MT For MT For MT For MT

Thread Self and
PrivateData

 For MT For MT For MT For MT

Clock Interface Required Required Required

Heap
Management

 Required Required Required

High Speed
Link

 Required

Task
Management

 For MT Required For MT For MT For MT

BSD Sockets Required

Ada N/A N/A N/A N/A N/A N/A

• For stand alone: Required for stand alone use of a runtime analysis
feature - i.e. used without a test feature

• For MT: Required if the application under test is a multi-threaded
application based on a preemptive multi-tasking mechanism.

Note: Only the Component Testing for C and Ada and Code Coverage
features support the Ada language. System Testing for C can,
however, be used to send messages to an Ada-written application if
C bindings exist for that feature.

13

Java Requirements

 Component
Testing for
Java

Code
Coverage

Runtime
Tracing

Memory
Profiling

Performance
Profiling

Data Retrieval
Capability

Required Required Required Required Required

Free Data Space For stand
alone

For stand
alone

For stand
alone

For stand
alone

Free Stack Space For stand
alone

For stand
alone

For stand
alone

For stand
alone

Thread Adaptation Required Required Required
Clock Adaptation Required
JVMPI Support Required
Heap Settings Required

• For stand alone: Required for stand alone use of a runtime analysis

feature - i.e. used without Component Testing for Java.

Data Retrieval Capability

Test programs or instrumented applications need to generate a text file on
the host - this is how information is gathered to prepare Test RealTime and
PurifyPlus RealTime reports.

The Target Deployment Port gathers this report data by obtaining the
value of a (char *) global variable, containing regular ASCII codes, from the
application or test driver running on the target machine.

This retrieval can be accomplished in whichever way is most practical for
the target. It could be through file system access, a socket, specific system
calls or a debugger script. Most known environments allow at least some
form of I/O.

At least one form of data retrieval capability is required.

14

Free Data Space

All runtime analysis features are based on Rational Source Code
Instrumentation (SCI) technology. The overhead introduced by this
technology is dependent both on the selected instrumentation level and on
code complexity.

The Code Coverage feature requires the most free data space. The
overhead for default Code Coverage levels (procedure/method entries and
decisions) typically increases code size by 25%. Runtime Tracing, Memory
Profiling and Performance Profiling introduce a significantly lower
overhead (about 16 bytes per instrumented file).

The Testing features of the product do not typically require additional free
memory as it is rare for the whole application to be run on the target.

Free Stack Space

The stack size should not be optimized for the requirements of the original
application. The Test RealTime and PurifyPlus RealTime instrumentation
process adds a few bytes to the stack and inserts calls to the TDP
embedded runtime library.

Since, based on experience, it is difficult to identify stack overflow, the user
should assume that each instrumented function requires, on average, an
extra 30 bytes for local data.

Mutex

This customization is required by all runtime analysis features of the
product if the application under test uses a preemptive scheduling
mechanism. A mutual exclusion mechanism is required to ensure
uninterrupted operation of critical sections of the Target Deployment Port.

15

Thread Self and Private Data

It must be possible to retrieve the current identifier of a thread, and it must
be possible to create thread-specific data (e.g. pthread_key_create for
POSIX).

Clock Interface

A clock interface is not necessary for the Component Testing for C and
Ada, for C++, Memory Profiling and Performance Profiling features, but it
is required for Performance Profiling and System Testing for C. The goal is
to read and return a clock value (Performance Profiling) and to provide
time out values (System Testing for C).

If you are using Performance Profiling and System Testing for C with
Component Testing and the clock interface does exist, then Component
Testing indicates time measurements for each function under test and the
Runtime Tracing feature timestamps all messages.

Heap Management

This customization is required by Memory Profiling and System Testing
for C only.

Both Memory Profiling and System Testing for C need to allocate memory
dynamically.

Memory Profiling also tracks and records memory heap usage, based on
the standard malloc and free functions. However, it can also handle user-
defined or operating system dependent memory usage functions, if
necessary.

16

High-Speed Link

For Runtime Tracing only.

To use the Runtime Tracing feature without a testing feature, a high-speed
link between the host and target machine is required. This is because
Runtime Tracing-instrumented code "writes a line" to the host for each
entry point and exit point of every instrumented function. This means that
as the application is running, a continuous flow of messages is written to
the host. Understandably, a 9600 bit rate, for example, would not be
sufficient for use of the Runtime Tracing feature with an entire application.

Note that the Code Coverage, Memory Profiling and Performance Profiling
features store their data in static target memory, and data is only sent back
to the host at specified flush points (with the Runtime Tracing feature,
static memory is also flushed when it becomes full). Technically, a Memory
Profiling, Performance Profiling, and Code Coverage instrumented
application can run for weeks without seeing a growth in consumed
memory; nothing need be sent to the host until a user-defined flush point
is reached.

Task Management

When the System Testing feature for C executes more than one virtual
tester, full task management capabilities must be available. In other words,
System Testing for C should be able to start a task, stop a task, and get the
status of a task.

Runtime analysis features also require task management capabilities when
they are used to monitor multi-threaded applications.

BSD Socket Compliance

When the System Testing feature for C executes more than one virtual

17

tester, the target must be BSD socket compliant. This is necessary because
System Testing for C uses TCP/IP sockets to enable communication
between System Testing Agents and the System Testing Supervisor, as well
as to enable virtual tester RENDEZVOUS synchronization.

If, in fact, the target host is BSD socket-compliant, then it is guaranteed that
you can address the Data Retrieval Capability and the High-Speed Link
requirements.

Thread Adaptation

This is required by all Java runtime analysis features except Memory
Profiling for Java.

The waitForThreads method must wait for the last thread to terminate
before dumping results and exiting the application.

On J2ME platforms, this method is empty.

Clock Adaptation

This customization is required for the Performance Profiling feature

• The getClock method must return the clock value, represented as a
long.

• The getClockUnit method must return an array of bytes representing
the clock unit.

JVMPI Support

The Java Virtual Machine (JVM) must support the JVM Profiler Interface
(JVMPI) technology used for memory monitoring.

This is required for Memory Profiling for Java.

18

Heap Settings

This customization is part of the JVMPI support settings.

If available, the dynamic memory allocation required by the feature is
made through standard malloc and free functions.

If the use of such routines is not allowed on the target, fill JVMPI_SIZE_T,
jvmpi_usr_malloc and jvmpi_usr_free types and functions with the
appropriate code.

Retrieving Data from the Target Host

All test and runtime analysis features of the product must be able to
retrieve the value of a global (char *) variable from an application running
on the target machine and then write that value to a text file on the host
machine. (The variable will contain only ASCII values).

This retrieval may be the result of a specific program running on the target,
of an adapted execution procedure on the host, or both.

To perform data retrieval, the program generated or instrumented by the
product is linked with the Target Deployment Port data retrieval functions
and type definition.

For example, in the C language, the type definition and data retrieval
functions are:

#define RTRT_FILE <Type>
RTRT_FILE priv_open(char *fName); /* fName: file
name to be written on the host */
RTRT_FILE priv_append(char *fName); /* fName: file
name to be written on the host */
void priv_writeln(RTRT_FILE f,char *data); /* data is the
data that should be printed in the file */
void priv_close(RTRT_FILE f); /* Close the
host file */

19

These data retrieval functions are called by the Target Deployment Port
library. Depending on the nature of the target platform, some or all of
these routines may be empty.

Target System Categories

Target platforms can be classified into three categories, characterized by
their data-retrieval method:

• Standard Mode

• User Mode

• Breakpoint Mode

Standard Mode

This kind of target system allows use of a regular FILE * data type and of
the fopen, fprintf and fclose functions found in the standard C library.
Such systems include, for example, all UNIX or Windows platforms, as
well as LynxOS or QNX.

If the standard C library is usable on the target, use these regular
fopen/fprintf/fclose functions for TDP data retrieval. This is by far the
easiest data retrieval option.

• If your target system is compliant with the Standard Mode category,
data retrieval is assured.

User Mode

On User Mode systems, the standard C library calls described above are not
available but other calls that send characters to the host machine are
available. This could be a simple putchar-like function sending a character

20

to a serial line, or it could be a method for sending a string to a simulated
I/O channel, such as in the case of a microprocessor simulator.

• If your target system is using an operating system, there are usually
functions that enable communication between the host machine and
the target. Therefore, data retrieval capability is assured.

• If your target system allows use of a standard socket library, User
Mode is always possible - thus data retrieval is assured.

Breakpoint Mode

On breakpoint mode systems, no I/O functions are available on the target
platform. This is usually the case with small target calculators, such as
those used in the automotive industry, running on a microprocessor
simulator or emulator with no operating system.

If no communication functions are available on the target platform, the
best alternative is to use a debugger logging mechanism. Assuming one
exists:

1. set a breakpoint on the priv_writeln function

2. at this breakpoint, have the debugger retrieve the value of atl_buffer
and write it to a host-based file

3. continue the execution

Note: In breakpoint mode, some compilers and linkers ignore empty
functions and remove them from the final a.out binary. As the
debugger must use these routines to set breakpoints, you must
ensure that the linker includes these functions - any associated
symbols must be in the map file. Currently, all of the priv_
functions for C and C++ contain a small amount of dummy code to
avoid this issue; however, you might need to add dummy code for
Ada.

21

Determining Target Architecture Support

If your target can be used in Standard or User Mode, then it is fully
supported by Test RealTime and PurifyPlus RealTime.

However, if your target can only be used in Breakpoint Mode, then you
must ask yourself the following questions to determine if your target
platform has enough data retrieval capability to be supported by Test
RealTime and PurifyPlus RealTime:

• Does this debugger provide access to symbols?

• Is there a command language?

• Is there a way to run commands from a file?

• Can a command file be executed automatically when the debugger
starts, either from a particular filename or from an option of the
command line syntax.

• Is there a command to stop the debugger? (The execution process must
be blocked until execution is terminated and the trace file is generated.)

• Is there a way to set software breakpoints?

• Is there a way to log what happens into a file?

• Is there a way to dump the contents of a variable in any format, or to
dump a memory buffer and log the value?

• Can the debugger automatically run other debugger commands when
a breakpoint is reached, such as a variable dump and resume; or,
alternatively, does the debugger command language include loop
instructions?

If the answer to any of these questions is "No", then no data retrieval
capability exists. Therefore, test and runtime analysis feature execution on
the target machine will not be possible with Rational Test RealTime and
PurifyPlus RealTime.

22

Data Retrieval Examples

Data Retrieval is accomplished through the association of the Target
Deployment Port library functions with an execution procedure.

The following examples demonstrate the Standard, User, and Breakpoint
Modes, based on a simple program which writes a text message to a file
named "cNewTdp\\atl.out".

Standard Mode Example: Native
#define RTRT_FILE FILE *
RTRT_FILE priv_open(char *fileName)
 { return((RTRT_FILE)(fopen(fileName,"w"))); }
void priv_writeln(RTRT_FILE f,char *s)
 { fprintf(f,"%s",s); }
void priv_close(RTRT_FILE f)
 {fclose(f) ;}
char atl_buffer[100];
void main(void)
{
RTRT_FILE f ;
strcpy(atl_buffer,"Hello World ");
f=priv_open("cNewTdp\\atl.out");
priv_writeln(f,atl_buffer);
priv_close(f);
}

Execution command : a.out

When executing a.out, cNewTdp\atl.out will be created, and will contain
"Hello World".

User Mode Example: BSO-Tasking Crossview

Source code of the program running on the target:
#define RTRT_FILE int
RTRT_FILE priv_open(char *fName) { return(1); }
void priv_writeln(RTRT_FILE f,char *s) { _simo(1,s,80); }
void priv_close(RTRT_FILE f) { ; }
char atl_buffer[100];
void main(void)

23

{
 RTRT_FILE f ;
 strcpy(atl_buffer,"Hello World");
 f=priv_open("cNewTdp\\atl.out");
 priv_writeln(f,atl_buffer);
 priv_close(f);
}

Execution command from host:
xfw166.exe a.out -p TestRt.cmd

Content of TestRt.cmd:
1 sio o atl.out
r
q y

In this example, priv_open and priv_close functions are empty.
Priv_writeln uses a BSO-Tasking function, _simo, which allows to send the
content of the s parameter on the channel number 1 (an equivalent of a file
handle).

On another side, on the host machine, the Crossview simulator (launched
by the xfw166.exe program) is configured by the command

1 sio o atl.out

indicating to the simulator running on the host, that any character being
written on the channel number 1 should be logged into a file name atl.out

The next command is to run the program, and quit at the end.

The original needs, which was to have cNewTdp\atl.out file be written on
the host has to completed by a script on the host machine, consisting in
moving the atl.out generated in the current directory into the cNewTdp
directory. The complete execution step would be in Perl:

SystemP("xfw166.exe a.out -p TestRt.cmd");
If (! -r atl.out) { Error…. return(1);}
move("atl.out","cNewTdp/atl.out");

Breakpoint-Mode :

24

In all the breakpoint mode examples, the priv_ functions are empty.

Breakpoint Mode Example: Keil MicroVision

Source code of the program running on the target:
#define RTRT_FILE int
RTRT_FILE priv_open(char *fName) { return(1); }
void priv_writeln(RTRT_FILE f,char *s) {;}
void priv_close(RTRT_FILE f) { ; }
char atl_buffer[100];
void main(void)
{
RTRT_FILE f ;
strcpy(atl_buffer,"Hello World");
f=priv_open("cNewTdp\\atl.out");
priv_writeln(f,atl_buffer);
priv_close(f);
}

Execution command from host:
uv2.exe -d TestRt.cmd

Content of TestRt.cmd:
load a.out
func void out(void) {
int i=0;
while(atl_buffer[i]) printf("%c",atl_buffer[i++]);
printf("\n");
}
bs priv_writeln,"out()"
bs priv_close
reset
log > Tmpatl.out
g
exit

In this example, all the priv_ functions are empty. The intelligence is
deported into the TestRt.cmd script which a command file for the
debugger.

It first loads a.out executable program. It then defines a function, which
prints the value of atl_buffer in the MicroVision command window. Then
it sets two breakpoints. The first one in priv_writeln, and the second one in

25

priv_close. When priv_writeln is reached, the program halts, and the
debugger automatically runs his out() function, which print the value of
atl_buffer into its command window. When priv_close is reached, the
program halts.

Then, the debugger scripts resets the processor, and logs anything that
happens in the debugger command window into a file named Tmpatl.out.
It then starts the execution, (which finally halts when priv_close is reached
as no action is associated with this breakpoint) and exits.

The final result is contained into Tmpatl.out, which should be cleanup by
the host (a little decoder in Perl for example) to give the final expected
cNewTdp\atl.out file containing "Hello World". The global execution step
in Perl would be:

SystemP("uv2.exe -d TestRt.cmd") ;
Decode and clean Tmpatl.out and write the results in
cNewTdp\atl.out
Decode_Tmpatl.out_Into_Final_Intermediate_Report();

Breakpoint Mode Example: PowerPC-SingleStep

Source code of the program running on the target:
#define RTRT_FILE int
RTRT_FILE priv_open(char *fName) { return(1); }
void priv_writeln(RTRT_FILE f,char *s) { _simo(1,s,80); }
void priv_close(RTRT_FILE f) { ; }
char atl_buffer[100];
void main(void)
{
RTRT_FILE f ;
strcpy(atl_buffer,"Hello World");
f=priv_open("cNewTdp\\atl.out");
priv_writeln(f,atl_buffer);
priv_close(f);
}

Execution command from host:
simppc.exe TestRt.cmd

Content of TestRt.cmd:

26

debug a.out
break priv_close
break priv_writeln -g -c "read atl_buffer >> Tmpatl.out"
go
exit

As in the previous example, all the priv_ functions are empty. The
intelligence is deported into the TestRt.cmd script which a command file
executed when the SingleStep debugger is launched.

It first loads the executable program, a.out by the debug command.

Then it sets a breakpoint at priv_close function, which serves as an exit-
point, then set a breakpoint in the priv_writeln function. The -g flag of the
break commmand indicates to continue the execution, whilest the -c
specifies a command that should be executed before continuing. This
command (read) writes the value of the atl_buffer variable into Tmpatl.out.

The SingleStep debugger then starts the execution. When it stops, it means
than priv_close has been reached. It then executes the exit command, to
terminate the debugging session.

The final result is contained into Tmpatl.out, and should be cleaned-up by
the host (a little decoder in Perl for example) to produce the final expected
cNewTdp\atl.out file containing "Hello World".

Based on the "Hello World" program, we should now focus on automating
the execution step and having atl.out being written.

Migrating pre-V2002 TDPs to Present Format

This section describes the conversion of TDPs built for previous versions of
Rational Test RealTime and PurifyPlus RealTime to the new, unified
format that has been introduced in the v2002 Release 2. Recall that with the
new format, one TDP supports all features of the product.

27

This section does not apply to Java TDPs.

To migrate your old TDP to the v2002 Release 2 format:

1. In the TDP Editor, create a new Target Deployment Port based on the
appropriate v2002 Release 2 template:

• use templatec.xdp for C and C++ TDPs

• use templatea.xdp for Ada TDPs

2. Item by item, recode or copy-paste information from your old TDP to
the corresponding customization points in the TDP Editor, using the
information in this section of the Target Deployment Guide to direct
you.

unitest.ini

Template: either

Copy all unitest.ini settings into the Basic Settings section of the TDP
Editor.

Environment Variables

In the old TDP, the following line inserted the string "Value;" in the front of
the current value of X:

ENV_X="Value; "

In the new TDP, the same syntax would set x equal to "Value; ". The new,
proper syntax for insertion or concatenation is either:

ENV_X="Value;$ENV{'X'}"

or
ENV_X="$ENV{'X'};Value"

This concatenation and insertion algorithm is also valid for simple $Ini

28

fields.

Additionally, the following line now sets <Value> to X if X is not defined in
the environment:

ENV_SET_IF_NOT_SET_X="<Value>"

Other Changes

The following fields are no longer used and can be deleted:
COMPILERVER=""
CCSCRIPT="atl_cc.pl"
LDSCRIPT="atl_link.pl"
EXESCRIPT="atl_exec.pl"
STDFILE="atl_cc.def"

Perl Scripts

atl_cc.pl

Original Location: cmd folder

Template: either

This file contained 2 functions.

Copy the atl_cc function into the Build Settings->Compilation function
section of the TDP Editor.

Copy the atl_cpp function into the Build Settings->Preprocessing
function section of the TDP Editor.

Function prototypes

The function prototypes have changed. Old prototypes were:
sub atl_cc {
my ($SourceFile, $OutputFile, $Includes,
$AdditionalOptions)=@_;

29

}

and
sub atl_cpp {
my ($SourceFile, $OutputFile, $Includes,
$AdditionalOptions)=@_;
}

These are replaced by:
sub atl_cc ($$$$\@\@) {
my ($lang,$src,$out,$cflags,$Defines,$Includes) = @_;
}

and
sub atl_cpp ($$$$\@\@) {
my ($lang, $src,$out,$cppflags,$Defines,$Includes) = @_;
}

where

$Defines and $Includes are Perl references to arrays.

$lang contains C, CPP, ADA or ADA83, based on the source file
extension.

$src and $out are the source file and the output file to generate.

These functions must now compile both C or C++ source code. In fact, the
same TDP should support both C and C++. To accomplish this dual
functionality, simply make the appropriate edits for C++ in the Parser
Settings section of the TDP Editor.

atl_link.pl

Original Location: cmd folder

Template: either

Copy the atl_cc function into the Build Settings->Link function section of

30

the TDP Editor.

Any other files required for the link phase, such as linker command files,
boot assembly startup code, etc., should be added to the Build Settings
section of the TDP editor by right-clicking the Build Settings node and
selecting Add Child->ASCII File.

Function prototype

The function prototype has changed. The old prototype was:
sub atl_link() {
my ($ListObject,$OutputFile,$AdditionalFiles)=@_;
}

This has been replaced by:
sub atl_link ($\@$\@$) {
my ($OutputFile,$Objects,$LdFlags,$LibPath, $Libraries)=@_
;
}

where

$Objects, $LibPath are now given as references to Perl arrays.

All other parameters are scalar.

atl_exec.pl

Original Location: cmd folder

Template: either

Copy the atl_exec function into the Build Settings->Execution function
section of the TDP Editor.

Any other files required for the link phase, such as debugger scripts,
mapping definitions, etc., should be added to the Build Settings section of
the TDP editor by right-clicking the Build Settings node and selecting Add

31

Child->ASCII File.

Function prototype

The function prototype remains unchanged:
sub atl_exec($$$) {
 my ($exe,$out,$params)=@_;
}

Other Perl Scripts

Any file other than atl_cc.pl, atl_link.pl or atl_exec.pl must be added to
the Build Settings section of the TDP editor by right-clicking the Build
Settings node and selecting Add Child->ASCII File.

atuconf.h

Original Location: lib folder

Template: templatec.xdp

Old settings are listed in the left column, updated settings in the right. All
TDP Editor references are located in the Library Settings section.

#define ANSI_C Target Compiler Specifics->Linkage Directives-
>RTRT_KR
The default value is unselected. Keep this setting
unselected is ANSI_C was defined.

#define USE_OLD 1 Environmental Constraints->sprintf function
avaliability->RTRT_SPRINTF
If USE_OLD is set to 1, select RTRT_SPRINTF..

#define ATTOL_HEADER_MAIN int
main(void) { empty_func(); }

For Test RealTime Testing Features->Test
program entry point prototype and termination
instruction->
 RTRT_MAIN_HEADER
RTRT_MAIN_HEADER equals
ATTOL_HEADER_MAIN.

32

Note: empty_func() was a function used to
initialize a set of unused variables. This function is
no longer needed. As a result, it is not necessary to
redefine main() unless 'main' is not the name of the
entry function.

Copy #define ATTOL_RETURN_MAIN
return (0);

For Test RealTime Testing Features->Test
program entry point prototype and termination
instruction->
 RTRT_MAIN_RETURN
RTRT_MAIN_RETURN equals the value of
ATTOL_RETURN_MAIN.

#define USE_STRING 0 For Test RealTime Testing Features-> String
support->RTRT_STRING
If USE_STRING is set to 0, deselect
RTRT_STRING.

#define USE_FLOAT 0 For Test RealTime Testing Features-> Floating-
point number support-> RTRT_FLOAT
If USE_FLOAT was set to 0, deselect
RTRT_FLOAT.

Three Possibilities:
a. #define ATL_EXIT exit(0)
b. #define ATL_EXIT
c. #define ATL_EXIT my_exit

Environmental Constraints->exit function
availability->RTRT_EXIT
Set RTRT_EXIT to RTRT_STD if ATL_EXIT was
set to exit(0).
Set RTRT_EXIT to RTRT_NONE if ATL_EXIT
was defined as nothing.
Set RTRT_EXIT to RTRT_USR if ATL_EXIT was
defined to a user-defined function, and report the
code of this function in the usr_exit section.

Three Possibilities:
a. #define STD_TIME_FUNC
b. #define USR_TIME_FUNC

int usr_time() {
 /* Return current clock

value*/ return(-1);
}

c. No clock interface defined.

Clock Interface->RTRT_CLOCK
If STD_TIME_FUNC was defined, set
RTRT_CLOCK to RTRT_STD.
If USR_TIME_FUNC was defined, set
RTRT_CLOCK to RTRT_USR, and report the
code of usr_time in the usr_clock section.
If no clock interface was defined, set
RTRT_CLOCK equal to RTRT_NONE.

Three Possibilities:
a. #define STD_DATE_FUNC
b. #define USR_DATE_FUNC

void usr_date(char *s) {

No longer needed; dates are supplied by the host.

33

 /* Sets s to the current date */
s[0]=0;

}
c. Nothing date interface defined

Three Possibilities
a. #define STD_IO_FUNC
b. #define USR_IO_FUNC

typedef int usr_file;
usr_file usr_open(char *name) {
 /* Open the file named

name */
 usr_file x=1;
 return(x);
}
void usr_writeln(usr_file file,char
*str) {
 /* Print str into file and add

\n */
 printf("%s",str);
}
void usr_close(usr_file file) {
 /* Close the file */
}

c. Nothing defined for IO

Data Retrieval and Error Output->Test and
runtime analysis results output->RTRT_IO
If STD_IO_FUNC was defined, set RTRT_IO to
the RTRT_STD value.
If USR_IO_FUNC was defined, set RTRT_IO to
RTRT_USR, set RTRT_FILE_TYPE to the usr_file
type, and type the code of the functions usr_open,
usr_writeln and usr_close into the corresponding
usr_open, usr_writeln and usr_close sections.
If no data retrieval function was defined, set
RTRT_IO to RTRT_NONE.

#define BUFFERED_IO No longer necessary; this is the default mode.

This list is not exhaustive but it contains most of the TDP settings typically
found in earlier releases of the TDP technology.

attol_comm and attol_serv

Original Location: lib folder

Template: templatea.xdp

These files contained the implementation of any Ada restrictions made by
target environment.

34

If your Ada environment implements the entire Ada standard, select the
setting Library Settings->Ada restrictions->std

If your Ada environment does not allow the use if image attributes and of
Ada exceptions, select the setting Library Settings->Ada restrictions-
>smart

If your Ada environment does not allow the use of image attributes and
Ada exceptions, and if the floating-point numbers were written from the
target in hexadecimal mode, select the setting Library Settings->Ada
restrictions->dump

private_io.ads

Original Location: lib folder

Template: templatea.xdp

Old settings are listed in the left column, updated settings in the right. All
TDP Editor references are located in the Library Settings section.

With clauses; with clauses for package specification

Affichage_chaine : constant :=100 Constant definitions->string_max_len

subtype priv_file is something; Data types->PRIV_FILE

subtype longest_integer is something; Data types->LONGEST_INTEGER

subtype longest_float is float; Data types->LONGEST_FLOAT

Subtype priv_int is longest_integer; Data types->INTEGER_32B

clock_present : constant boolean := FALSE ; No longer used.

clock_offset : constant priv_int := 0; Constant definitions->clock_offset
This constant has been changed from integer
to float.

clock_divide : constant priv_int := 1; Constant definitions->clock_divide

clock_multiply : constant priv_int := 1; Constant definitions->clock_multiply

35

clock_unit: constant string := "D0 ";
 -- D0 ms, D1 micro s, D2 cycles, D3 tops

Constant definitions->clock_unit

access_size : constant := 32; Constant definitions->access_size

access_max : constant :=
 (2**(access_size-1))-1;

Constant definitions->access_max

access_min : constant := -(2**(access_size-1)); Constant definitions->access_min

Any additional function/procedure
specifications other than those for user_open,
user_close, priv_open, priv_close, priv_writeln,
priv_clock, priv_date.

User-defined function specifications

private_io.adb

Original Location: lib folder

Template: templatea.xdp

The code for the procedures priv_clock, priv_open, priv_close and
priv_writeln must be reported with no modification in the settings Library
settings->Function bodies->Clock function/Open function/Close
function/Write function

Be aware that some parameter names may have changed; for example, the
parameter "fichier" is now "file".

Any additional with clauses that were written in private_io.adb have to be
reported in the setting Library settings->Function bodies->with clauses
for package body

Any other functions that were written in private_io.adb have to be
reported in the setting Library settings->Function bodies->User-defined
function bodies

36

attolcov_io.ads

Original Location: lib folder

Template: templatea.xdp

Report the value of the constant atc_nb_bit_branch into the setting
Library Settings->Constants definitions->atc_nb_bit_branch

attolcov.opp

Original Location: <OldInstallDir>/…/atc/target/oldTdp

Template: templatec.xdp

Report the contents of this file into the TDP editor in the section Parser
Settings->Component Testing and runtime analysis features for C++-
>Analyzer file configuration

atlcov.hpp

Original Location: <OldInstallDir>/…/atc/target/oldTdp

Template: templatec.xdp

Report the contents of the old file into the TDP editor in the section
Parser Settings->Component Testing and runtime analysis features for
C++->Header file configuration

atlcov.def

Original Location: <OldInstallDir>/…/atc/target/oldTdp

Template: templatec.xdp

37

Report the contents of this file into the TDP editor in the section
Parser Settings->Runtime analysis features for C

atl_cc.def

Location: <OldInstallDir>/…/atu/target/oldCTdp/cmd

Template: templatec.xdp

Report the contents of this file into the TDP editor in the section
Parser Settings->Component Testing and System Testing for C

atl_cc.def for C++

Location: <OldInstallDir>/…/atu/target/oldCTdp/cmd

Template: templatec.xdp

Report the contents of this file into the TDP editor in the section
Parser Settings->System Testing for C++

standard-ada95.ads

Location: <OldInstallDir>/…/atc/target/oldTdp)

Template: templatea.xdp

Report the contents of this file into the TDP editor in the section
Parser Settings->Standard specification for Ada

standard-ada83.ads

Location: <OldInstallDir>/…/atc/target/oldTdp)

Template: templatea.xdp

38

Report the contents of this file into the TDP editor in the section
Parser Settings->Standard specification for Ada83

standard*.*

Location: <OldInstallDir>/…/atu/target/oldTdp/ana)

Template: templatea.xdp

Here is the list of adaptations that must be reported in the TDP editor in
the section Parser Settings->Standard specification for Ada83

These settings correspond to the previous use of Ada83 with the old
Analyzer (without using Code Coverage).

- replace the boolean type defintion with

 type Boolean is _internal(BOOLEAN);

- replace the character type definition with

 type Character is _internal(CHARACTER_8);

- delete the universal_integer and universal_float type definitions

- delete all function definitions for all types.

- add after the FLOAT type definition:

 type _INTERNAL_INTEGER is _internal(INTERNAL_INTEGER);

 type _INTERNAL_FLOAT is _internal(INTERNAL_FLOAT83);

The first is preferred; the second one corresponds to the case where
Code Coverage is not available.

39

41

Using the TDP Editor 3
The TDP Editor provides a user interface designed to help you customize
and create unified Target Deployment Ports.

Overview

First, you need to load an .xdp definition file for the TDP you are working
on.

The TDP Editor is made up of 4 main sections:

• A Navigation Tree: Use the navigation tree on the left to select
customization points.

• A Help Window: Provides direct reference information for the selected
customization point.

• An Edit Window: The format of the Edit Window depends on the
nature of the customization point.

• A Comment Window: Lets you to enter a personal comment for each
customization point.

In the Navigation Tree, you can click on any customization point to
obtained detailed reference information for that parameter in the Help
Window.

Use the reference information to customize the TDP to suit your
requirements.

42

Customization Points

Use the Navigation Tree on the left to select customization points. A Target
Deployment Port can be subdivided into four primary sections:

• Basic Settings: Used to specify default file extensions, default flags,
environment variables and custom variables required for your target
architecture.

• Build Settings: Used to configure the functions required for the
integrated build process. Within it are defined recompilation, link and
execution scripts, plus any user-defined scripts.

• Library Settings: Used to modify a variety of library settings required
by the Target Deployment Port. These files are stored in the TDP lib
subdirectory.

• Parser Settings: Used to modify the default behavior of the Test
RealTime and PurifyPlus RealTime parser in order to address, for
example, non-ANSI extensions. The resulting files are stored in the TDP
ana subdirectory.

Creating a new Target Deployment Port

To create a new Target Deployment Port (TDP), the best method is to make
a copy of an existing TDP that requires minimal modifications.

• First, locate the existing TDP that has the most in common with the new
target.

• Make a copy of the corresponding xdp file from the xml directory, and
rename it to the new TDP name.

• Run the TDP Editor to adapt the new TDP to your target environment.

• From the File menu, select Save As.

43

Naming Conventions

By convention, the TDP directory name starts with a c for the C and C++
languages, or ada for the Ada language, followed by the name of the
development environment, such as the compiler and target platform.

Updating a Target Deployment Port

The Target Deployment Port (TDP) settings are read or loaded when a Test
RealTime or PurifyPlus RealTime project is opened, or when a new TDP is
used.

If you make any changes to a TDP with the TDP Editor, these will not be
taken into account until the TDP has been reloaded in the project.

To reload the TDP in Test RealTime or PurifyPlus RealTime:

1. From the Project menu, select Configurations.

2. Select the TDP and click Remove.

3. Click New, select the TDP and click OK.

Using a Post-generation Script

In some cases, it can be necessary to make changes to the way the TDP is
written to its directory beyond the possibilities offered by the TDP editor.

To do this, the TDP editor runs a post-generation Perl script called
postGen.pl, which can be launched automatically at the end of the TDP
directory generation process.

To use the postGen script:

1. In the TDP editor, right click on the Build Settings node and select Add
child and Ascii File.

44

2. Name the new node postGen.pl.

3. Write a perl function performing the actions that you want to perform
after the TDP directory is written by the TDP Editor.

Example

Here is a possible template for the postGen.pl script file:
sub postGen
{
 $d=shift;
the only parameter passed to this function is the path
to the target directory
here any action to be taken can be added
}
1;

The parameter $d contains <install_dir>/targets/<tdp_name>, where
<install_dir> is the product installation directory, and <tdp_name> is the
name of the current TDP directory.

45

Technical Support 4
When contacting Rational Technical Support, please be prepared to supply
the following information:

• About you:
Name, title, e-mail address, telephone number

• About your company:
Company name and company address

• About the product:
Product name and version number (from the Help menu, select About).
What components of the product you are using

• About your development environment:
Operating system and version number (for example, Windows NT 4.0,
Solaris 2.5.1/2.6/2.7, or HP-UX 10.20)Target compiler, operating system
and microprocessor. If necessary, send the Target Deployment Port file

• About your problem:
Your service request number (if you are calling about a previously
reported problem)
A summary description of the problem, related errors, and how it was
made to occur
Please state how critical your problem is
Any files that can be helpful for the technical support to reproduce the
problem (project, workspace, test scripts, source files). Formats accepted
are .zip and compressed tar (.tar.Z or .tar.gz)

If your organization has a designated, on-site support person, please try to
contact that person before contacting Rational Technical Support.

46

You can obtain technical assistance by sending e-mail to just one of the e-
mail addresses cited below. E-mail is acknowledged immediately and is
usually answered within one working day of its arrival at Rational. When
sending an e-mail, place the product name in the subject line, and include a
description of your problem in the body of your message.

Note When sending e-mail concerning a previously-reported problem,
please include in the subject field: "[SR#<number>]", where <number>
is the service request number of the issue. For example:

Re:[SR#12176528] New data on Rational PurifyPlus RealTime
install issue

Sometimes Rational technical support engineers will ask you to fax
information to help them diagnose problems. You can also report a
technical problem by fax if you prefer. Please mark faxes "Attention:
Technical Support" and add your fax number to the information requested
above.

Location Contact

North America

Rational Software,
18880 Homestead Road,
Cupertino, CA 95014
voice: (800) 433-5444
fax: (408) 863-4001
email: support@rational.com

Europe, Middle East, and Africa Rational Software,
Beechavenue 30,
1119 PV Schiphol-Rijk,
The Netherlands
voice: +31 20 454 6200
fax: +31 20 454 6201
email: support@europe.rational.com

Asia Pacific Rational Software Corporation Pty Ltd,
Level 13, Tower A, Zenith Centre,
821 Pacific Highway,
Chatswood NSW 2067,
Australia

47

voice: +61 2-9419-0111
fax: +61 2-9419-0123
email: support@apac.rational.com

	Rational® Test RealTime Rational® PurifyPlusRealTime
	Contents
	Overview
	About Online Documentation
	Documentation Updates and Feedback

	Setting up a TDP
	Determining Target Requirements
	Data Retrieval Capability
	Free Data Space
	Free Stack Space
	Mutex
	Thread Self and Private Data
	Clock Interface
	Heap Management
	High-Speed Link
	Task Management
	BSD Socket Compliance
	Thread Adaptation
	Clock Adaptation
	JVMPI Support
	Heap Settings

	Retrieving Data from the Target Host
	Target System Categories
	Determining Target Architecture Support
	Data Retrieval Examples

	Migrating pre-V2002 TDPs to Present Format
	unitest.ini
	Perl Scripts
	atuconf.h
	attol_comm and attol_serv
	private_io.ads
	private_io.adb
	attolcov_io.ads
	attolcov.opp
	atlcov.hpp
	atlcov.def
	atl_cc.def
	atl_cc.def for C++
	standard-ada95.ads
	standard-ada83.ads
	standard*.*

	Using the TDP Editor
	Creating a new Target Deployment Port
	Updating a Target Deployment Port
	Using a Post-generation Script

	Technical Support

