
Rational Software Corporation
Customizing Rational Rose
RealTime for Target Control
and Observability
RATIONAL ROSE® REALTIME

VERSION: 2002.05.20
support@rational.com
http://www.rational.com

WINDOWS/UNIX

IMPORTANT NOTICE

COPYRIGHT

Copyright ©2002, Rational Software Corporation. All rights reserved.

Part Number: 800-025105-000

Version Number: 2002.05.20

PERMITTED USAGE

THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION WHICH IS THE
PROPERTY OF RATIONAL SOFTWARE CORPORATION (“RATIONAL”) AND IS
FURNISHED FOR THE SOLE PURPOSE OF THE OPERATION AND THE
MAINTENANCE OF PRODUCTS OF RATIONAL. NO PART OF THIS
PUBLICATION IS TO BE USED FOR ANY OTHER PURPOSE, AND IS NOT TO BE
REPRODUCED, COPIED, ADAPTED, DISCLOSED, DISTRIBUTED,
TRANSMITTED, STORED IN A RETRIEVAL SYSTEM OR TRANSLATED INTO
ANY HUMAN OR COMPUTER LANGUAGE, IN ANY FORM, BY ANY MEANS, IN
WHOLE OR IN PART, WITHOUT THE PRIOR EXPRESS WRITTEN CONSENT OF
RATIONAL.

TRADEMARKS

Rational, Rational Software Corporation, Rational the e-development company,
ClearCase, ClearCase Attache, ClearCase MultiSite, ClearDDTS, ClearQuest,
ClearQuest MultiSite, DDTS, Object Testing, Object-Oriented Recording, ObjecTime
& Design, Objectory, PerformanceStudio, ProjectConsole, PureCoverage,
PureDDTS, PureLink, Purify, Purify'd, Quantify, Rational, Rational Apex, Rational
CRC, Rational Rose, Rational Suite, Rational Summit, Rational Visual Test, Requisite,
RequisitePro, RUP, SiteCheck, SoDA, TestFactory, TestFoundation, TestMate, The
Rational Watch, AnalystStudio, ClearGuide, ClearTrack, Connexis, e-Development
Accelerators, ObjecTime, Rational Dashboard, Rational PerformanceArchitect,
Rational Process Workbench, Rational Suite AnalystStudio, Rational Suite
ContentStudio, Rational Suite Enterprise, Rational Suite ManagerStudio, Rational
Unified Process, SiteLoad, TestStudio, VADS, among others, are either trademarks or
registered trademarks of Rational Software Corporation in the United States and/or
in othercountries.All other names are used for identification purposes only, and are
trademarks or registered trademarks of their respective companies.

Microsoft, the Microsoft logo, Active Accessibility, Active Channel, Active Client,
Active Desktop, Active Directory, ActiveMovie, Active Platform, ActiveStore,
ActiveSync, ActiveX, Ask Maxwell, Authenticode, AutoSum, BackOffice, the
BackOffice logo, BizTalk, Bookshelf, Chromeffects, Clearlead, ClearType, CodeView,
Computing Central, DataTips, Developer Studio, Direct3D, DirectAnimation,
DirectDraw, DirectInput, DirectMusic, DirectPlay, DirectShow, DirectSound, DirectX,
DirectXJ, DoubleSpace, DriveSpace, FoxPro, FrontPage, Funstone, IntelliEye, the

IntelliEye logo, IntelliMirror, IntelliSense, J/Direct, JScript, LineShare, Liquid Motion,
the Microsoft eMbedded Visual Tools logo, the Microsoft Internet Explorer logo, the
Microsoft Office Compatible logo, Microsoft Press, the Microsoft Press logo, Microsoft
QuickBasic, MS-DOS, MSDN, Natural, NetMeeting, NetShow, the Office logo, One
Thumb, OpenType, Outlook, PhotoDraw, PivotChart, PivotTable, PowerPoint,
QuickAssembler, QuickShelf, Realmation, RelayOne, Rushmore, SourceSafe,
TipWizard, TrueImage, TutorAssist, V-Chat, VideoFlash, Virtual Basic, the Virtual
Basic logo, Visual C++, Visual FoxPro, Visual InterDev, Visual J++, Visual SourceSafe,
Visual Studio, the Visual Studio logo, Vizact, WebBot, WebPIP, Win32, Win32s, Win64,
Windows, the Windows CE logo, the Windows logo, Windows NT, the Windows Start
logo, and XENIX are trademarks or registered trademarks of Microsoft Corporation in
the United States and other countries.

FLEXlm and GLOBEtrotter are trademarks or registered trademarks of GLOBEtrotter
Software, Inc. Licensee shall not incorporate any GLOBEtrotter software (FLEXlm
libraries and utilities) into any product or application the primary purpose of which is
software license management.

Portions Copyright ©1992-2002, Summit Software Company. All rights reserved.

PATENT

U.S. Patent Nos.5,193,180 and 5,335,344 and 5,535,329 and 5,835,701. Additional
patents pending.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

GOVERNMENT RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions set
forth in the applicable Rational Software Corporation license agreement and as
provided in DFARS 277.7202-1(a) and 277.7202-3(a) (1995), DFARS
252.227-7013(c)(1)(ii) (Oct. 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR 227-14,
as applicable.

WARRANTY DISCLAIMER

This document and its associated software may be used as stated in the underlying
license agreement. Rational Software Corporation expressly disclaims all other
warranties, express or implied, with respect to the media and software product and its
documentation, including without limitation, the warranties of merchantability or
fitness for a particular purpose or arising from a course of dealing, usage, or trade
practice.

Contents
1 Customizing for Target Control and Observability.7
Introduction. 7

Model Compilation and Target Control . 7
Intended Audience . 8

Target Control . 8
Target Control Modes . 9

Manual Mode . 9
Basic Mode. 9
Debugger Mode . 10

Target Control Scripts . 10

Menu Commands . 11
Reset . 11
Load . 12
Unload . 13
Execute. 14
Terminate . 15
General Issues . 16

Third-Party Source Code Debugger Integration . 16
Registering Threads on Unix . 17
Calling Sequence . 17
Debugger DLL API . 19

Get DLL Capabilities . 19
Create Debug Session . 20
Destroy Debug Session . 21
Initialize Debugger . 22
Cleanup Debugger . 22
Start Debugger . 23
Stop Debugger . 24
Set Callback . 24
Event Callback Function. 25
Set Source Search Path . 26
Contents v

Set Breakpoint in File .27
Set Breakpoint At Function .27
Clear Breakpoint .28
Set DllTrace. .29

Index . 31
vi Contents

1Customizing for Target
Control and Observability
Contents

This chapter is organized as follows:

� Introduction on page 7
� Model Compilation and Target Control on page 7
� Target Control on page 8
� Menu Commands on page 11
� Third-Party Source Code Debugger Integration on page 16

Introduction

Rational Rose RealTime is a comprehensive visual modeling environment that
delivers a powerful combination of notation, processes, and tools optimized to meet
the challenges of real-time software development. The Rational Rose RealTime UML
model compiler converts models directly into executable applications. Those
executables can be controlled and debugged at run-time under the control of the
toolset. Rational Rose RealTime integrates with source debuggers providing the
developer with the choice of debugging at the UML and source code level. A
combination of UML editors, a model compiler, and run-time debugging tools
address the complete life-cycle of a project from early use case analysis through
design, implementation, and test.

This document describes how to add support to Rational Rose RealTime 6.0 and later
for target control and observability, and how to integrate Rational Rose RealTime with
source code debuggers.

Model Compilation and Target Control

Rational Rose RealTime models are compiled seamlessly into applications ready for
execution on the host or target operating systems. Figure 1 provides a high level
overview of model compilation.
7

Figure 1 UML Model Compilation

Rational Rose RealTime also has the ability to control the executing application at
run-time (for example, during debugging). Target Observability provides the ability
to observe and debug the executing application at the UML level. Figure 2 shows a
simplified high-level overview of Target Control and Observability.

Figure 2 Target Control and Observability

Rational Rose RealTime also supports inter-working with traditional source code
debuggers. This enables developers to control, observe, and debug the application at
the UML level and detailed source code level simultaneously.

Intended Audience

This guide is specifically designed for technical staff responsible for enabling these
capabilities for a specific target execution environment. It is assumed that the reader
has significant knowledge and experience with the development environment,
operating system, and target hardware.

Target Control

Target Control refers to the Rational Rose RealTime toolset’s features that load,
unload, execute, and terminate a Rational Rose RealTime-generated application, as
well as the ability to reset a remote target platform.
8 Chapter 1 - Customizing for Target Control and Observability

Target Control is not the same feature as Target Observability. Target Observability
allows the observation of the application executing on a target from the UML level
(such as state change, state machine breakpoints, event tracing, and so on) on the
host-based toolset. Target Control interacts with the APIs of the target execution
environment to load, run, and terminate the application, whereas Target
Observability communicates directly with the running application.

Target Control Modes

Rational Rose RealTime supports three different Target Control modes:

� Manual Mode
� Basic Mode
� Debugger Mode

Manual Mode

In Manual mode, Rational Rose RealTime does not provide any Target Control
functionality. The user is responsible for performing Target Control operations (such
as loading, executing). After the target application starts, the user can direct the
Rational Rose RealTime toolset to connect to the executing target application for
Target Observability.

Basic Mode

In Basic mode, Rational Rose RealTime uses the target environment’s APIs to control
the execution of the target application. Rational Rose RealTime supports automatic
target control for a number of host and target platform combinations. Users deploy on
a number of other target environments as well.

Rational Rose RealTime uses Perl scripts to perform the Target Control operations.
These scripts can call the target APIs directly or can call some intermediary helper
application to control the execution on the target.

There are five Target Control scripts:

� reset.pl
� load.pl
� unload.pl
� execute.pl
� terminate.pl
Target Control 9

Debugger Mode

Debugger mode provides same the capabilities as Basic mode and, in addition, provides
the ability to inter-work with a C or C++ source debugger (for example, Visual C++)
to set source code level breakpoints from within the UML model. When these source
breakpoints are hit at run-time, control of the executable is passed to the source
debugger. When the application is continued, control of the executable is passed back
to the Rational Rose RealTime toolset. Debugger mode provides an integrated debug
environment that permits a simultaneous use of source code and UML debugging
styles.

Target Control Scripts

When you open the Specification dialog for a Processor in the Deployment View, notice
that Load Scripts text box specifies the path to the Target Control scripts (for example,
$TARGET_PATH/win32/, $TARGET_PATH/tornado2/). This directory contains up to
five Target Control scripts, each of which has a different function:

� reset.pl - resets the target processor, see Reset
� load.pl - loads a Component onto a target, see Load
� unload.pl - unloads a Component from a target, see Unload
� execute.pl - executes a Component, see Execute
� terminate.pl - terminates the execution of a Component, see Terminate

The Target Control Scripts determine the Target Control capabilities for the Processor.
If a script exists in the Target Control Scripts directory, then the toolset assumes that
the corresponding capability exists. Whenever a Component Instance is created on a
Processor (that is, a Component in the Component View is assigned to a Processor in the
Deployment View), the toolset checks to see which scripts are available and enables
those capabilities in the toolset menus that are accessible by right-clicking on a
Component Instance. These menu options are now available to the user.

The presence of the scripts is not their only purpose. Each existing Target Control
script must also provide the associated capability. For example, the load script must
load the corresponding component onto the target specified by the Processor, and so
on. The scripts use information from Processor and Component Instances
specifications, but note that the scripts do not need to use all the parameters that are
passed to them. Any script just needs to process the arguments that allow it to
perform its intended operation.

These scripts are written in Perl, but they may spawn other executables that may be
needed to provide the desired capability. Every script also indicates whether it was
successful.
10 Chapter 1 - Customizing for Target Control and Observability

Menu Commands

If the path to the Target control scripts contains the following scripts, that
corresponding menu command will become active on the Processor menu:

� reset.pl - resets the target processor and activates the Reset menu option
� load.pl - loads a Component onto a target and activates the Load menu option
� unload.pl - unloads a Component from a target and activates the Unload menu

option
� execute.pl - executes a Component and activates the Run menu option (Execute)
� terminate.pl - terminates the execution of a Component and activates the Shutdown

menu option (Terminate)

Reset

Description

The reset.pl script resets a target processor. If this script exists, the Reset menu item
will be active on the corresponding Processor menu.

Command Line

Rtperl reset.pl –ip target –server targetServer –os targetOS –cpu targetCPU

Arguments

Returns

Note: The data for the script arguments are retrieved from the Processor Specification
dialog.

-ip target Target name or address.

-server targetServer Target server name or address.

-os OS OS executing on target.

-cpu CPU CPU on the target.

::Ok:: String indicating success.

Error String Error string to be displayed in error message box in the
toolset.
Menu Commands 11

Load

Description

The load.pl script loads a component onto the corresponding target processor. If this
script exists, the Load menu item will be active on the corresponding Component
Instance menu when the Component Instance is in a "loadable" state.

Command Line

Rtperl load.pl –ip target –server targetServer –os targetOS –cpu targetCPU

 -exe componentDir –prio priority –port Toport

Arguments

Returns

Note: The data for the options are retrieved from the Processor and Component Instance
Specification.

-ip target Target name or address.

-server targetServer Target server name or address.

-os OS OS executing on target.

-cpu CPU CPU on the target.

-exe executable 6.1 and later: Fully qualified executable name.

-prio priority Priority to run the component instance

-port Toport Target Observability port.

::Ok:: [-warning ‘xxx’]
[-passback xxx]

6.1 and later: String indicating success. Now two option
parameters may follow the ::Ok:: string: -warning and -passback.
See General Issues.

Error String Error string to be displayed in error message box in the toolset.
12 Chapter 1 - Customizing for Target Control and Observability

Unload

Description

The unload.pl script removes a component from the corresponding target processor. If
this script exists, the Unload menu item will be active on the corresponding
Component Instance menu when the Component Instance is in an "unloadable" state.

Command Line

Rtperl unload.pl –ip target –server targetServer –os targetOS –cpu targetCPU

 -exe componentDir –prio priority –port TOport paramsFromLoad

Arguments

Returns

Note: The data for the options are retrieved from the Processor and Component Instance
Specification.

-ip target Target name or address.

-server targetServer Target server name or address.

-os OS OS executing on target.

-cpu CPU CPU on the target.

-exe executable 6.1 and later: Fully qualified executable name.

-prio priority Priority to run the component instance

-port Toport Target Observability port.

ParamsFromLoad Any parameters that were returned from a successful Load
operation.

::Ok:: [-warning ‘xxx’] 6.1 and later: String indicating success. Now, one option
parameter may follow ::Ok:: string: -warning. See General Issues.

Error String Error string to be displayed in error message box in the toolset.
Menu Commands 13

Execute

Description

The execute.pl script starts execution of a component instance on the corresponding
target processor. If this script exists, the Run menu item is available on the Component
Instance menu when the Component Instance is in a "runable" state.

Command Line

Rtperl execute.pl –ip target –server targetServer –os targetOS –cpu targetCPU

 -exe componentDir –prio priority –port Toport

 -args commandLineArgs

Arguments

-ip target Target name or address.

-server targetServer Target server name or address.

-os OS OS executing on target.

-cpu CPU CPU on the target.

-exe componentDir 6.0.x: Path to Component directory. It is used to locate the
component.

-exe executable 6.1 and later: Fully qualified executable name.

-prio priority Priority to run the component instance

-port Toport Target Observability port.

-args
commandLineArgs

Command Line arguments that are to be used when starting the
target application. Parameters that follow the -args tag are all
passed to the target application.
14 Chapter 1 - Customizing for Target Control and Observability

Returns
:

Note: The data for the options are retrieved from the Processor and Component
Instance Specification.

An example of paramsFromExecute is a handle that identifies the process that was
created. For example, on Windows we return –pid nnnnnn. This allows us to pass back
the PID (Process ID) to the Terminate script.

Terminate

Description

The terminate.pl script is used to kill a component instance on the corresponding
target processor. If this script exists, the Shutdown menu item will be active on the
corresponding Component Instance menu when the Component Instance is in a
"killable" state.

Command Line

Rtperl execute.pl –ip target –server targetServer –os targetOS –cpu targetCPU

 -exe componentDir –prio priority –port TOport
paramsFromExecute

Arguments

:Ok:: paramsFromExecute String indicating success. Any strings passed back after the
::Ok:: will be based to the terminate.pl script when the user
invokes the Shutdown command.

::Ok:: [-warning ‘xxx’]
[-passback xxx]

6.1 and later: String that represents the operation was
successful. Now two option parameters may follow the ::Ok::
string: -warning and -passback. See General Issues.

Error String Error string to be displayed in error message box in the
toolset.

-ip target Target name or address.

-server targetServer Target server name or address.

-os OS OS executing on target.

-cpu CPU CPU on the target.
Menu Commands 15

Returns

Note: The data for the options are retrieved from the Processor and Component Instance
Specification.

General Issues
� The –exe option is followed by the Component Directory in releases 6.0.x. The Load

and Execute scripts call a Perl script (findexe.pl) to find the corresponding
executable.

� The –exe option is followed by the fully qualified executable name in releases
6.1 and later.

� 6.1 formalized what comes after the ::Ok:: string. The Load, Unload, Execute, and
Terminate can succeed (in other words, return ::Ok::) but may return a warning. The
warning is identified by the parameter –warning followed by a string enclosed in
single quotes (’). The toolset will display a dialog box specifying that a warning
occurred. The string returned in quotes is appended to the toolset logs. Anything
appearing after the -passback parameter will be returned to the originating call.

Third-Party Source Code Debugger Integration

The format for the Debugger Mode is Debugger-X where X is the name of the debugger
DLL. This DLL must exist in the $ROSERT_HOME/bin/$ROSERT_HOST directory
and is called libX.dll.

-exe executable 6.1 and later: Fully qualified executable name.

-prio priority Priority to run the component instance.

-port Toport Target Observability port.

ParamsFromExecute Any parameters that were returned from a successful Run
operation.

::Ok:: [-warning ‘xxx’] 6.1 and later: String indicating success. Now optional parameter
may follow the ::Ok:: string: -warning. See General Issues.

Error String Error string to be displayed in error message box in the toolset.
16 Chapter 1 - Customizing for Target Control and Observability

Registering Threads on Unix

When building a debugger integration DLL without MainWin and using callback
functions, additional steps are required to ensure that Rational Rose RealTime knows
about the callback thread. The following steps are necessary for a thread-safe interface:

� Call tcThreadInit() from the callback thread before doing any callbacks.

� The callback thread must call tcThreadCleanup() before terminating.

There is a header file for this service in $ROSERT_HOME/bin/tc/tcsetup.h and a
supporting dynamic library (for Solaris) in
$ROSERT_HOME/bin/tc/sun5/libtcsetup.so.

You may call tcThreadInit (init) and tcThreadCleanup (cleanup) as many times as you
like, as long as the tcThreadInit is always followed by a tcThreadCleanup before the next
init occurs. This is useful if you wanted to do something similar to the following:
tcThreadInit, callback, tcThreadCleanup, for each callback instead of tcThreadInit at thread
startup, and tcThreadCleanup at thread termination. However, we recommend that the
tcThreadInit and tcThreadCleanup fuctions be called only once (tcThreadInit at startup and
cleanup at termination) since this approach is less error prone.

Calling Sequence

Source code debuggers come with a variety of capabilities. For the toolset to use the
debugger DLL in the best possible way, the DLL must provide a list of its capabilities.
The following are capabilities of the debugger DLL that are available to Rational Rose
RealTime:

Capability Description

Function Breakpoints The DLL uses the function name to set a breakpoint.

Line Breakpoints The DLL uses a file name and line number to set a breakpoint.

Detects Breakpoint Hits The DLL calls the callback function when a breakpoint is hit.

User Termination Detected The DLL calls the callback function when it detects that the
user terminated the debugger manually.

Debugger Loads Target The DLL must be called to load the target. If not, the toolset
uses the Basic mode mechanism, if one exists.

Debugger Unloads Target The DLL must be called to unload the target. If not, the toolset
uses the Basic mode mechanism, if one exists.

Debugger Executes
Component

The DLL must be called to start the Component Instance. If
not, the toolset uses the Basic mode mechanism, if one exists.
Third-Party Source Code Debugger Integration 17

The values of these flags determine how and which debugger DLL functions are
called. The following are the rules of operation.

1 The debugger DLL is loaded once the user applies the change to the Operation
Mode in the Component Instance specification for the Component Instance. The
debugger DLL is loaded only once per toolset session.

2 If the DLL is loaded successfully, the toolset obtains the debugger DLLs
capabilities and saves them.

3 Next, the toolset calls the tcCreateDebugSession function to create a new session.
Note: A new session is created for each Component Instance that uses the debugger
DLL.

4 The Target Control capabilities (Load, Unload, Run, Shutdown) are determined using
the debugger DLL capabilities as well as the Target Control scripts. The debugger
DLL capabilities take precedence over the Target Control scripts.

5 If a target must be loaded, it can be loaded in one of two ways: using the debugger
or the Basic mode Target Control script. If the "Debugger Loads Target" flag is set,
the debugger DLL is expected to load the target in the tcInitializeDebugger function.
Otherwise, the Target Control load script is used to load the target, and then the
tcInitializeDebugger function is called.

6 If the target is not loadable, then the tcInitializeDebugger function is called when the
user invokes the Run command.

7 If the "Debugger Executes Component" flag is set, then the tcStartDebugger function
is called. If not set, then the Target Control execute script is called and then
followed by a call to the tcStartDebugger function. Note: The breakpoint functions
may be called before the tcStartDebugger function if breakpoints were set in the
previous debug session.

Debugger Terminates
Component Instance

The DLL must be called to terminate a component instance. If
not, the toolset will use the Basic mode mechanism if one
exists.

Supports Search Paths The DLL can use a given search path to search for source code.

Reload Before Restarting The target must be reloaded before it is restarted.

Capability Description
18 Chapter 1 - Customizing for Target Control and Observability

8 When the user invokes the Shutdown command, all breakpoints are removed, and
the tcStopDebugger function is called. If the "Debugger Terminates Component
Instance" is set, the tcStopDebugger must terminate the Component Instance. If not
set, then the Target Control terminate script is called. If the target does not need to
be unloaded, then the tcCleanupDebugger function is called as well.

9 When the user invokes the Unload command and the "Debugger Unloads
Component" flag is set, then the tcCleanupDebugger function is called. This function
must unload the component from the target. If this capability is not set, then the
Target Control unload script is called.

10 When the Debugger DLL is unloaded from the toolset (when the Component
Instance Operation mode is changed or when the toolset is shut down)
tcDestroySession is called. This function is responsible for releasing any resources
associated with this debugger DLL session.

Debugger DLL API

This section describes the API that must be implemented by a debugger DLL. The file,
tcdllinterface.h contains all the required type declarations and function prototypes.
The functions are:

� Get DLL Capabilities
� Create Debug Session
� Destroy Debug Session
� Initialize Debugger
� Cleanup Debugger
� Start Debugger
� Stop Debugger
� Set Callback
� Event Callback Function
� Set Source Search Path
� Set Breakpoint in File
� Set Breakpoint At Function
� Clear Breakpoint
� Set DllTrace

Note: Several functions have parameters of type TC_TCHAR. This type corresponds to
TCHAR type familiar to Windows developers. It is either a regular character (char) or a
wide character (wchar_t). By default, TC_TCHAR is type defined to char in the file
tcdllinterface.h.

Get DLL Capabilities
TCRET
Third-Party Source Code Debugger Integration 19

tcGetDllCapabilities(

TCDLLCAPS * pCaps/* Pointer to struct to get the
capabilites */

) ;

Description

This function populates in the given capability structure with the capabilities of the
corresponding DLL. This is the first function that is called in the debugger DLL.

Arguments

Returns

Create Debug Session
TCHANDLE

tcCreateDebugSession(

const TC_TCHAR * szServerName, /* Name of Target
Server */

const TC_TCHAR * szTargetName, /* Name of Target*/

 const TC_TCHAR * szArchitecture,/* Processor
Architecture */

 const TC_TCHAR * szOS, /* Operating System
*/

TCDEBUGFLAG eFlag /*
Enables/disables Tracing*/

) ;

Description

This function is called to create a debug session. It is called after the debugger DLL is
loaded. It returns a DLL specific handle that represents the newly created session.
This handle is passed back to all other calls except the tcGetDllCapabilities. Typically, the
handle is a pointer to a DLL-specific structure that maintains session-specific
information.

TCDLLCAPS * pCaps Structure to receive the DLL capabilities.

TC_OK Operation was successful.

TC_FAILED Operation failed. Missing capability structure.
20 Chapter 1 - Customizing for Target Control and Observability

Arguments

Returns

Note: Note: Currently, the toolset does not provide any means to set or clear the
debug flag.

Destroy Debug Session
TCRET

tcDestroyDebugSession(

 TCHANDLE hSession /* Session to terminate */

) ;

Description

This function is called before the Debugger DLL is unloaded. It must release all
session-specific resources that may have been allocated during the session.

Arguments

const TC_TCHAR *
szServerName

Name or address of a Target Server.

const TC_TCHAR *
szTargetName

Name or address of the target.

const TC_TCHAR *
szArchitecture

Type of CPU on the target.

const TC_TCHAR * szOS OS running on the target

TCDEBUGFLAG eFlag Enables/Disables Debug output from the DLL. See Note
below.

TCHANDLE DLL specific handle identifying the newly created session.

(TCHANDLE)0 Unable to create a session.

TCHANDLE hSession A handle identifying a particular debug session.
Third-Party Source Code Debugger Integration 21

Returns

Initialize Debugger
TCRET

tcInitializeDebugger(

TCHANDLE hSession, /* Debugger Session */

const TC_TCHAR * szComponent/* Location/name of the
component */

) ;

Description

This function is called to identify the component that the debugger is to work with. In
some environments this function will load the component onto the target.

Arguments

Returns

Cleanup Debugger
TCRET

tcCleanupDebugger(

 TCHANDLE hSession /* Debugger Session */

) ;

TC_OK Operation was successful.

TC_FAILED Operation failed.

TCHANDLE hSession A handle identifying a particular debug session.

const TC_TCHAR *
szComponent

The fully qualified name of the component.

TC_OK Operation was successful.

TC_FAILED Operation failed.
22 Chapter 1 - Customizing for Target Control and Observability

Description

This function is called to undo the activities of the tcInitializeDebugger function. In
some environments this function will unload the component from the target.

Arguments

Returns

Start Debugger
TCRET

tcStartDebugger(

 TCHANDLE hSession,/* Debugger Session */

 const TC_TCHAR * pszArgs,/* Command line arguments for
comp */

 int nPriority /* start up priority */

) ;

Description

This function is called to start the Component Instance. If the debugger does not start
the Component instance, this is the point where the debugger should attach to it.

Arguments

TCHANDLE hSession A handle identifying a particular debug session.

TC_OK Operation was successful.

TC_FAILED Operation failed.

TCHANDLE hSession A handle identifying a particular debug session.

const TC_TCHAR * pszArgs, Command line arguments for the Component Instance.

int nPriority Priority to run the application.
Third-Party Source Code Debugger Integration 23

Returns

Stop Debugger
TCRET

tcStopDebugger(

 TCHANDLE hSession/* Loader.Debugger Session */

) ;

Description

This function is called to terminate the Component Instance. If the debugger does not
terminate the Component instance, this is the point where the debugger should
detach from it.

Arguments

Returns

Set Callback
TCRET

tcSetCallback(

 TCHANDLE hSession, /* Debugger Session */

 CALLBACKFNC pfncCallback,/* function to call on event */

 USERDEFINED lUserDefined1,/* toolset defined data */

 USERDEFINED lUserDefined2 /* toolset defined data */

) ;

TC_OK Operation was successful.

TC_FAILED Operation failed.

TCHANDLE hSession A handle identifying a particular debug session.

TC_OK Operation was successful.

TC_FAILED Operation failed.
24 Chapter 1 - Customizing for Target Control and Observability

Description

This function is called during the Target Observability session if the debugger DLL
can detect breakpoint hits or user termination. It is used to set or clear a Toolset
defined function.

Arguments

Returns

Event Callback Function
void

fncCallback(

TCDLLEVENT* pEvent, /* identifies what event
occurred */

USERDEFINED data1, /* data from SetCallback */

USERDEFINED data2 /* data from SetCallback */

) ;

Description

This is the prototype of the callback function that is to be called by the debugger DLL
when a breakpoint hit or user termination is detected.

TCHANDLE hSession A handle identifying a particular debug session.

CALLBACKFNC
pfncCallback,

Pointer to function the debugger DLL is to call when a
breakpoint hit or user termination is detected.

USERDEFINED
lUserDefined1

Toolset information that must be passed back in the
callback function.

USERDEFINED
lUserDefined2

Toolset information that must be passed back in the
callback function.

TC_OK Operation was successful.

TC_FAILED Operation failed.
Third-Party Source Code Debugger Integration 25

Arguments

Returns

Set Source Search Path
TCRET

tcSetSearchPath(

 TCHANDLE hSession, /* Debugger Session */

 int nEntries, /* number of paths */

 const TC_TCHAR ** ppszSearchPaths/* list of search paths */

) ;

Description

This function is called by the toolset to specify the directories that contain the
generated source code.

Arguments

Returns

TCDLLEVENT * pEvent Identifies the type of event the Debugger DLL is notifying the
toolset of.

USERDEFINED
lUserDefined1

Toolset information from the last tcSetCallback.

USERDEFINED
lUserDefined2

Toolset information from the last tcSetCallback.

void Nothing

TCHANDLE hSession A handle identifying a particular debug session.

int nEntries The number of paths specified in the next parameter.

const TC_TCHAR **
ppszSearchPaths

A list of search paths.

TC_OK Operation was successful.
26 Chapter 1 - Customizing for Target Control and Observability

Set Breakpoint in File
unsigned long

tcSetBreakpointInFile(

 TCHANDLE hSession, /* Debugger Session */

 const TC_TCHAR * szFileName,/* File to set breakpoint in
*/

 int nLineNo /* line number in file */

) ;

Description

This function is called when a breakpoint is required and the Debugger DLL supports
breakpoints using file name and line number. This function may be called before the
tcStartDebugger.

Arguments

Returns

Set Breakpoint At Function
unsigned long

tcSetBreakpointAtFnc(

 TCHANDLE hSession, /* Debugger Session */

 const TC_TCHAR * szFunctionName/* fully qualified name
*/

TC_FAILED Operation failed.

TCHANDLE hSession A handle identifying a particular debug session.

const TC_TCHAR *
szFileName

Name of file where we want to set the breakpoint.

int nLine No The line number in the file where the breakpoint is to
be set.

unsigned long A number uniquely identifying the corresponding
breakpoint.

0 Unable to set breakpoint.
Third-Party Source Code Debugger Integration 27

) ;

Description

This function is called when a breakpoint is required and the Debugger DLL supports
breakpoints using function names. This function may be called before the
tcStartDebugger.

Arguments

Returns

Clear Breakpoint
TCRET

tcClearBreakpoint(

 TCHANDLE hSession, /* Debugger Session */

 unsigned long nBreakpointId /* breakpoint to remove
*/

) ;

Description

This function is removes the specified breakpoint for the given session.

Arguments

TCHANDLE hSession A handle identifying a particular debug session.

const TC_TCHAR *
szFunctionName

The fully qualified name of the function.

unsigned long A number uniquely identifying the corresponding
breakpoint.

0 Unable to set breakpoint.

TCHANDLE hSession A handle identifying a particular debug session.

unsigned long
nBreakpointId

Identifier of breakpoint to be removed. Returned by a set
breakpoint function.
28 Chapter 1 - Customizing for Target Control and Observability

Returns

Set DllTrace
void

tcSetDllTrace(

 TCHANDLE hSession,/* Debugger Session */

 TCDEBUGFLAG eFlag /* enables/disables trace output
*/

) ;

Description

This function is enables or disables Debugger DLL output for the given session.

Arguments

Returns

Note: This function is not currently used by the toolset, but it must exist. If this
function is omitted from the debugger DLL, the toolset will not load the DLL
successfully.

TC_OK Operation was successful.

TC_FAILED Unable to remove breakpoint.

TCHANDLE hSession A handle identifying a particular debug session.

TCDEBUGFLAG eFlag Specifies whether to enable or disable output.

TC_OK Operation was successful.

TC_FAILED Operation failed.
Third-Party Source Code Debugger Integration 29

30 Chapter 1 - Customizing for Target Control and Observability

Index
A
audience 8

B
basic mode 9
building

debugger integration DLL without
MainWin 17

C
callback functions 17
callback thread 17
calling sequence 17
Cleanup Debugger 22
Clear Breakpoint 28
commands

Execute 14
Load 12
Reset 11
Terminate 15
Unload 13

Create Debug Session 20

D
debugger DLL API 19

Cleanup Debugger 22
Clear Breakpoint 28
Create Debug Session 20
Destroy Debug Session 21
Event Callback Function 25
Get DLL Capabilities 19
Initialize Debugger 22
Set Breakpoint At Function 27
Set Breakpoint in File 27
Set Callback 24

Set DllTrace 29
Set Source Search Path 26
Start Debugger 23
Stop Debugger 24

debugger integration DLL 17
debugger mode 10
Destroy Debug Session 21
DLL functions 18

E
Event Callback Function 25
Execute command 14
execute.pl 11

G
get DLL Capabilities 19

I
Initialize Debugger 22

L
Load command 12
load.pl 11

M
manual mode 9
menu commands 11
model compilation 7
modes

basic 9
debugger 10
manual 9
target control 9
Index 31

O
observability

adding support for 7

R
Registering Threads on Unix 17
Reset command 11
reset.pl 11
rules of operation 18

S
scripts 10

target control 9
Set Breakpoint At Function 27
Set Breakpoint in File 27
Set Callback 24
Set DllTrace 29
Set Source Search Path 26
source code debugger integration 16
Start Debugger 23
Stop Debugger 24

T
target control

adding support for 7
basic mode 9
calling sequence 17
debugger mode 10
defined 8
Execute command 14
general issues 16
Load command 12
manual mode 9
menu commands 11
model compilation 7
modes 9
overview 8
Reset command 11
rules of operation 18
scripts 10

Terminate command 15
third-party source code debugger

integration 16
Unload command 13

target control scripts 9, 10
defined 10

target observability
defined 8
overview 8

tcThreadCleanup 17
tcThreadInit 17
Terminate command 15
terminate.pl 11
threads

registering on UNIX 17
thread-safe interface 17

U
UNIX

Registering threads 17
Unload command 13
unload.pl 11
32 Index

	Customizing Rational Rose RealTime for Target Control and Observability
	Customizing for Target Control and Observability
	Introduction
	Model Compilation and Target Control
	Intended Audience

	Target Control
	Target Control Modes
	Manual Mode
	Basic Mode
	Debugger Mode

	Target Control Scripts

	Menu Commands
	Reset
	Load
	Unload
	Execute
	Terminate
	General Issues

	Third-Party Source Code Debugger Integration
	Registering Threads on Unix
	Calling Sequence
	Debugger DLL API
	Get DLL Capabilities
	Create Debug Session
	Destroy Debug Session
	Initialize Debugger
	Cleanup Debugger
	Start Debugger
	Stop Debugger
	Set Callback
	Event Callback Function
	Set Source Search Path
	Set Breakpoint in File
	Set Breakpoint At Function
	Clear Breakpoint
	Set DllTrace

	Index

