
Rational Software Corporation
Modeling Language Guide
RATIONAL ROSE® REALTIME

VERSION: 2002.05.20

PART NUMBER: 800-025112-000
support@rational.com
http://www.rational.com

WINDOWS/UNIX

IMPORTANT NOTICE

COPYRIGHT

Copyright ©1993-2002, Rational Software Corporation. All rights reserved.

Part Number: 800-025112-000

Version Number: 2002.05.20

PERMITTED USAGE

THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION WHICH IS THE
PROPERTY OF RATIONAL SOFTWARE CORPORATION (“RATIONAL”) AND IS
FURNISHED FOR THE SOLE PURPOSE OF THE OPERATION AND THE
MAINTENANCE OF PRODUCTS OF RATIONAL. NO PART OF THIS
PUBLICATION IS TO BE USED FOR ANY OTHER PURPOSE, AND IS NOT TO BE
REPRODUCED, COPIED, ADAPTED, DISCLOSED, DISTRIBUTED,
TRANSMITTED, STORED IN A RETRIEVAL SYSTEM OR TRANSLATED INTO
ANY HUMAN OR COMPUTER LANGUAGE, IN ANY FORM, BY ANY MEANS, IN
WHOLE OR IN PART, WITHOUT THE PRIOR EXPRESS WRITTEN CONSENT OF
RATIONAL.

TRADEMARKS

Rational, Rational Software Corporation, Rational the e-development company,
ClearCase, ClearCase Attache, ClearCase MultiSite, ClearDDTS, ClearQuest,
ClearQuest MultiSite, DDTS, Object Testing, Object-Oriented Recording, ObjecTime
& Design, Objectory, PerformanceStudio, ProjectConsole, PureCoverage,
PureDDTS, PureLink, Purify, Purify'd, Quantify, Rational, Rational Apex, Rational
CRC, Rational Rose, Rational Suite, Rational Summit, Rational Visual Test, Requisite,
RequisitePro, RUP, SiteCheck, SoDA, TestFactory, TestFoundation, TestMate, The
Rational Watch, AnalystStudio, ClearGuide, ClearTrack, Connexis, e-Development
Accelerators, ObjecTime, Rational Dashboard, Rational PerformanceArchitect,
Rational Process Workbench, Rational Suite AnalystStudio, Rational Suite
ContentStudio, Rational Suite Enterprise, Rational Suite ManagerStudio, Rational
Unified Process, SiteLoad, TestStudio, VADS, among others, are either trademarks or
registered trademarks of Rational Software Corporation in the United States and/or
in othercountries.All other names are used for identification purposes only, and are
trademarks or registered trademarks of their respective companies.

Microsoft, the Microsoft logo, Active Accessibility, Active Channel, Active Client,
Active Desktop, Active Directory, ActiveMovie, Active Platform, ActiveStore,
ActiveSync, ActiveX, Ask Maxwell, Authenticode, AutoSum, BackOffice, the
BackOffice logo, BizTalk, Bookshelf, Chromeffects, Clearlead, ClearType, CodeView,
Computing Central, DataTips, Developer Studio, Direct3D, DirectAnimation,
DirectDraw, DirectInput, DirectMusic, DirectPlay, DirectShow, DirectSound, DirectX,
DirectXJ, DoubleSpace, DriveSpace, FoxPro, FrontPage, Funstone, IntelliEye, the

IntelliEye logo, IntelliMirror, IntelliSense, J/Direct, JScript, LineShare, Liquid Motion,
the Microsoft eMbedded Visual Tools logo, the Microsoft Internet Explorer logo, the
Microsoft Office Compatible logo, Microsoft Press, the Microsoft Press logo, Microsoft
QuickBasic, MS-DOS, MSDN, Natural, NetMeeting, NetShow, the Office logo, One
Thumb, OpenType, Outlook, PhotoDraw, PivotChart, PivotTable, PowerPoint,
QuickAssembler, QuickShelf, Realmation, RelayOne, Rushmore, SourceSafe,
TipWizard, TrueImage, TutorAssist, V-Chat, VideoFlash, Virtual Basic, the Virtual
Basic logo, Visual C++, Visual FoxPro, Visual InterDev, Visual J++, Visual SourceSafe,
Visual Studio, the Visual Studio logo, Vizact, WebBot, WebPIP, Win32, Win32s, Win64,
Windows, the Windows CE logo, the Windows logo, Windows NT, the Windows Start
logo, and XENIX are trademarks or registered trademarks of Microsoft Corporation in
the United States and other countries.

FLEXlm and GLOBEtrotter are trademarks or registered trademarks of GLOBEtrotter
Software, Inc. Licensee shall not incorporate any GLOBEtrotter software (FLEXlm
libraries and utilities) into any product or application the primary purpose of which is
software license management.

Portions Copyright ©1992-2002, Summit Software Company. All rights reserved.

PATENT

U.S. Patent Nos.5,193,180 and 5,335,344 and 5,535,329 and 5,835,701. Additional
patents pending.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

GOVERNMENT RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions set
forth in the applicable Rational Software Corporation license agreement and as
provided in DFARS 277.7202-1(a) and 277.7202-3(a) (1995), DFARS
252.227-7013(c)(1)(ii) (Oct. 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR 227-14,
as applicable.

WARRANTY DISCLAIMER

This document and its associated software may be used as stated in the underlying
license agreement. Rational Software Corporation expressly disclaims all other
warranties, express or implied, with respect to the media and software product and its
documentation, including without limitation, the warranties of merchantability or
fitness for a particular purpose or arising from a course of dealing, usage, or trade
practice.

Contents

Chapter 1 Modeling Language Guide 9
Real-time Notations to UML 10
Purpose 10
Building Blocks 10

Real-Time Systems 10
Support for real-time systems 11
Concurrency 11
Capsules and Ports 11
Capsule Structure Diagrams 12

Real-Time Specializations Overview 12
Executable Models 13
Services Library 14

Further Reading 15

Chapter 2 Elements 17
Structural 18
Behavioral 18
Grouping 18
Annotational 18

Use Cases 18

Actors 19

Flow of Events 20

Concrete and Abstract Use Cases 21

Use Case Instance 22
Modeling Language Guide - Rational Rose RealTime v

Use Case Packages 22

Use Case Concurrency 22

Classes 23

Interfaces 24

Attributes 25

Operations 25

Association Class 27

Utility Class 27

Instantiated Class Utility 28

Parameterized Class 28

Instantiated Class 29

Parameterized Utility Class 30

Capsules 30

Capsule Roles 33

Ports 34

Protocols 38

Cardinality and Capsule Structure 40

Substitutability 41

Multiple Containment 42

Actions, Messages, and Events 45

Actions 45

Call Event 46

Signal Event 46
vi Modeling Language Guide - Rational Rose RealTime

State Machine 47
Events and signals 47
State machine variations 47
Overview 48

States 49

Transitions 51

Run-to-Completion 53

Initial Point and Initial Transition 54

Final State 55

Top State 55

History - Hierarchical State Machines 55

Group Transitions 57

Junction Points 57

Choice Points 61

Transition Selection Rules 63

Interactions 64

Components 65

Nodes 66

Packages 67

Notes 68

Chapter 3 Relationships 69
Real-time Notations 69

Association 70
Association Name 71
Association Ends 71
Association Multiplicity 71
Navigability 72
Aggregation 72
Modeling Language Guide - Rational Rose RealTime vii

Composition 73
Visibility 74
Qualifiers 74
Constraints 75
Association Classes 75
Actor Communicates-Association 76
Connectors 76
Capsule Class Aggregation and Composition Relationships 77

Realization 79
Realization of Use Cases 79

Generalization 80
Actor Generalization 81
Include Relationship 81
Extend Relationship 82

Dependency 83
Component-Dependency Relationship 84

Chapter 4 Diagrams 85
Important visual relationships 85
Structure 86
Behavior 86
Real-time specialization 87

Use Case Diagram 87

Class Diagram 88

State Diagram 91

Collaboration Diagram 91

Capsule Structure Diagram 93

Sequence Diagram 95

Component Diagram 97

Deployment Diagram 99

Index 101
viii Modeling Language Guide - Rational Rose RealTime

Chapter 1

Modeling Language Guide

The Unified Modeling Language (UML) is a graphical language for
visualizing, specifying, constructing, documenting, and executing
software systems. Although conventional programming languages are
good for expressing different algorithms, they cannot directly show the
high-level features of a system. The UML is therefore a language for
expressing high-level system properties that are best modeled
graphically.

UML provides a base visual modeling language; however, it is not
possible for the language to be sufficient for all domains. For this
reason the UML has been designed open-ended to make it possible for
the language to be extended. Without bloating the base language, new
building blocks can be derived from the base to create ones that are
specific to a domain.

Figure 1 Layered UML architecture
Modeling Language Guide - Rational Rose RealTime 9

Chapter 1 Modeling Language Guide
Real-time Notations to UML

To address the category of systems that are characterized as complex,
event-driven, and potentially distributed, a set of new modeling
constructs has been added to a library of applied UML concepts. The
notations that are based on the UML is primarily for the use of
modeling the architectures of complex real-time systems.

Purpose

This document does not attempt to present the UML in its entirety.
Rather, the goal of this document is to present, in detail, the real-time
notations to the UML accompanied by a brief overview of the key UML
modeling concepts you will need to understand when using Rational
Rose RealTime.

Building Blocks

Building blocks include

� “Elements” on page 17 - are the basic object-oriented building
blocks of the UML and real-time specializations. They are used to
construct models.

� “Relationships” on page 69 - are used to join elements together in
models.

� “Diagrams” on page 85 - help assemble related collections of
elements together into a graphical depiction of all or part of a
model.

Real-Time Systems

Models are important tools for developing complex systems. Models are
used to represent the system at an abstract level, hiding unnecessary
details. They enable communication about the composition and
operation of a system. In Rational Rose RealTime, the model also
serves as the basis for the implementation. All of the implementation
details required to build an executable are either contained within the
model, or generated from the model automatically.

Software developers have always used informal modeling techniques in
the past, for example, drawing whiteboard diagrams and writing
documents.
10 Modeling Language Guide - Rational Rose RealTime

Real-Time Systems
The evolution of the Unified Modeling Language (UML) has enabled
developers to capture and communicate software designs with a
common set of notations.

The UML uses visual notations to describe various views of an object
model. Classes are the fundamental building blocks of this object
model. The abstract structure, behavior and configuration of the
software are described through diagrams. The implementation details
of each class can be specified through various class properties.

Support for real-time systems

In addition to supporting the regular UML constructs, we have used
the extensibility features of UML to define some new constructs that
are specialized for real-time system development.

Concurrency

Most real-time systems must be capable of performing many
simultaneous activities. External events are unpredictable, and the
software must be able to handle interrupts and other external events
at any time without dropping current work in progress.

Capsules and Ports

UML for Real Time provides built-in light weight concurrent objects,
known as Capsules. Capsules are simply a pattern for providing light-
weight concurrency directly in the modeling notation. A capsule is
implemented in Rational Rose RealTime as a special form of class.
Capsules allow the design of systems that can handle many
simultaneous activities without incurring the high overhead of
multitasking at the operating system level. In fact, many real-time
projects end up hand-coding some kind of mechanism to handle
multiple simultaneous transactions.

In addition to their concurrency properties, capsules are highly
encapsulated and communicate through special message-based
interfaces called Ports. A capsule sends and receives messages through
its ports. The ports are in turn connected to other capsules, enabling
the transmission of messages among capsules. The advantage of
message-based interfaces is that a capsule has no knowledge of its
environment outside of these interfaces, making it much more flexible
and robust than regular objects.
Modeling Language Guide - Rational Rose RealTime 11

Chapter 1 Modeling Language Guide
Capsule Structure Diagrams

A new diagram has been introduced to specify the capsule's interface
and its internal composition. The diagram is called a Capsule
Structure Diagram, and is based on the UML 1.3 specification
collaboration diagram. This is a specification type of diagram, and not
an interaction diagram, as collaboration diagrams in other versions of
Rational Rose are. The semantics around the capsule structure
diagram allow Rational Rose RealTime to generate detailed code to
implement the communication and aggregation relationships among
capsules.

Real-Time Specializations Overview

Following is a list of the real-time specializations to the UML:

� “Capsules” on page 30

� “Protocols” on page 38

� “Ports” on page 34

� “Connectors” on page 76

� “Capsule Structure Diagram” on page 93

In addition to the new modeling elements, which are used during
analysis and design, it was necessary to introduce new concepts and
adapt others (components, processors) to support building, running,
and debugging of models built in Rational Rose RealTime. Although
you might be familiar with UML, it is worth while to understand the
added concepts and how Rational Rose RealTime uses common UML
constructs to build and deploy executable models:

� Using components to build a model

Observability options - Probes, Monitors, Message traces, Source
breakpoints
12 Modeling Language Guide - Rational Rose RealTime

Real-Time Systems
Executable Models

The addition of the capsule and the formal semantics surrounding the
capsule structure allows Rational Rose RealTime to generate, compile
and run a complete C++ implementation based on a model containing
capsules.

The ability to execute models has a revolutionary impact on the
software development process. The results are higher quality
software, and shorter and more predictable delivery cycles.
Executing models is the surest way to find problems and issues that
whiteboarding and document reviews do not find. Even high-level
architectural models can be executed.

Use model execution to better understand the problem, to detect errors
and problems in requirements and architecture specifications, to
explore alternative designs quickly, and to test design models
continuously during the development process.

Process note: To make the best use of Rational Rose RealTime, you
should aim to get your model running as often as possible. Making
small, incremental changes and running your model each day will
bring much better results than making widespread changes and
working for weeks to get the model running again.
Modeling Language Guide - Rational Rose RealTime 13

Chapter 1 Modeling Language Guide
Services Library

To construct a Rational Rose RealTime model, two major parts are
required:

� The structure and behavior of the model

� A Rational Rose RealTime Services Library (these are language
specific)

Figure 2 The services library is a framework for real-time systems

The services library is essentially a framework for real-time systems. It
includes functionality for controlling concurrency execution of finite
state machines, for delivering messages, and for providing timing and
logging services. A framework is a like a library of classes and
operations used by an application, but with an inversion of control,
meaning that the main control lies in the framework, and the
framework invokes functions in the application to pass control to
application objects as required. Application classes are subclassed
from framework classes so that they inherit operations which are
invoked by the framework.
14 Modeling Language Guide - Rational Rose RealTime

Real-Time Systems
There is no main() function in a Rational Rose RealTime model. The
main() function is contained in the services library and takes care of
creating the capsules in your model and kicking off the execution of
their state machines. All you need to do is describe the capsules and
define state machines for them and they will be automatically created
and executed by the services library. The capsule state machines can,
in turn, invoke operations on other classes (data classes), and send
messages to other capsules. The services library is responsible for
managing the creation and destruction of capsules, and the delivery of
messages between capsules (even across threads).

The addition of the real-time specializations to the UML concepts
allows the toolset to generate complete code for the model which is tied
in to the services library. When you generate code for and compile a
model in Rational Rose RealTime, the tool will link it with a services
library compiled for the particular platform you are running on.

Further Reading

The details of the Services Library routines that can be called from
within your model are described in the Language Add-in Language
References.
Modeling Language Guide - Rational Rose RealTime 15

Chapter 2

Elements

Elements are the basic object-oriented building blocks of the UML, and
real-time notations. They are used to construct models. There are four
kinds of elements: Structural, Behavioral, Grouping, and
Annotational.

Figure 3 Elements overview
Modeling Language Guide - Rational Rose RealTime 17

Chapter 2 Elements
Structural

The structure of a system identifies the entities that are to be modeled.
The primary relationships captured between structure elements are
communication and containment relationships.

Behavioral

These elements represent the dynamic parts of the model that describe
the changing state of a system over time.

Grouping

These are organizational parts of a model. There is only one kind of
grouping element in UML.

� Packages

Annotational

These provide common ways of describing or annotating any element
in a diagram.

� Notes

Use Cases

A use case is a description of a set of sequences of actions, called
scenarios, that a system performs to yield an observable result of value
to an actor. A use case describes what a system (subsystem, class, or
interface) does but does not specify how the system internally performs
its tasks. This is left for the use case realizations to show.

UML base Classes, Interfaces, Use Cases,
Components, Nodes

Real-time notations Capsules

UML base State Machine, Interactions

Real-time notations Protocols
18 Modeling Language Guide - Rational Rose RealTime

Actors
Use cases can be concrete or abstract. See “Concrete and Abstract Use
Cases” on page 21.

Graphical notation

The graphical notation for a use case in a use case diagram is an
ellipse.

Other features

Use cases can have attributes and operations that you may represent
just as for classes. Since use cases are classifiers, you can also attach
state machines, interaction diagrams, sequence diagrams and class
diagrams as more ways of describing the behavior and scenarios
described by a use case.

Relationships

Actors

An actor is anything that exchanges data with the system. An actor can
be a user, external hardware, or another system.

Type From a use case to a(n)

Include Relationship use case

Diagrams use case

Actor Generalization use case

Actor Communicates-
Association

Actors
Modeling Language Guide - Rational Rose RealTime 19

Chapter 2 Elements
The difference between an actor and an individual system user is that
an actor represents a particular class of user rather than an actual
user. Several users can play the same role, which means they can be
one and the same actor. In that case, each user constitutes an instance
of the actor. Since actors represent system users, they help delimit the
system and give a clearer picture of what it is supposed to do.

An actor specification is identical to a class specification with the
addition of the stereotype field set to actor.

Graphical notation

The graphical notation for an actor is a stickman.

Relationships

Flow of Events

The flow of events of a use case contains the most important
information derived from use case modeling work. It should describe
the use case's behavior clearly enough for an outsider to easily
understand. Here are some guidelines for the contents of the flow of
events:

1. Describe how the use case starts and ends.

2. Describe what data is exchanged between the actor and the use
case.

Type From an actor to a(n)

generalization-relationship actor

Actor Communicates-
Association

Use Cases
20 Modeling Language Guide - Rational Rose RealTime

Concrete and Abstract Use Cases
3. Do not describe the user interface.

4. Detail the flow of events. Remember that test designers are to use
these to identify test cases.

Structure

The two main parts of the flow of events are basic flow of events and
alternative flows of events. The basic flow of events should cover what
“normally” happens when the use case is performed. The alternative
flows of events cover behavior of optional or exceptional character in
relation to the normal behavior, and also variations of the normal
behavior. You can think of the alternative flows of events as “detours”
from the basic flow of events, some of which will return to the basic flow
of events and some of which will end the execution of the use case.

Documenting

A flow of events document should be created for each use case. The
format of the document can vary depending primarily on how formal
they are. The Rational Unified Process provides templates for
documenting flow of events. Alternatively, SoDA can be used.

Concrete and Abstract Use Cases

There is a distinction between concrete and abstract use cases. A
concrete use case is initiated by an actor and constitutes a complete
flow of events. “Complete” means that an instance of the use case
performs the entire operation called for by the actor.

An abstract use case is never instantiated in itself. Abstract use cases
are included in including, extending, or generalizing other use cases.
When a concrete use case is initiated, an instance of the use case is
created. This instance also exhibits the behavior specified by its
associated abstract use cases. Thus, no separate instances are created
from abstract use cases.

The distinction between the two is important because it is concrete use
cases the actors will “see” and initiate in the system.

You indicate that a use case is abstract by writing its name in italics.
Modeling Language Guide - Rational Rose RealTime 21

Chapter 2 Elements
Use Case Instance

A use case instance is a specific flow of events through a use case.
Many flows of events are possible and many may be similar. Related
flows of events should be grouped into one use case.

Use Case Packages

A model structured into smaller units is easier to understand. It is
easier to show relationships among the model's main parts if you can
express them in terms of packages. A package is either the top-level
package of the model, or stereotyped as a use case package. You can
also let the customer decide how to structure the main parts of the
model.

If there are many use cases or actors, you can use case packages to
further structure the use case model. A use case package contains a
number of actors, use cases, their relationships, and other packages;
thus, you can have multiple levels of use case packages (packages
within packages). The top-level package contains all top-level use case
packages, all top-level actors, and all top-level use cases.

Use Case Concurrency

Instances of several use cases and several instances of the same use
case work concurrently if the system permits it. In use case modeling,
you can assume that instances of use cases can be active concurrently
without conflict. The design model is expected to solve this problem,
because use-case modeling does not describe how things work. One
way to view this is to assume that only one use case instance is active
at a time and that executing this instance is an atomic action. In use
case modeling, the “interpreting machine” is considered infinitely fast,
so that serialization of use case instances is not a problem.
22 Modeling Language Guide - Rational Rose RealTime

Classes
Classes

A class is a design-time specification for one or more distinct objects
with common structure, attributes, behavior, and operations. At run-
time there are instances of classes, referred to as objects. Use the
implementation language syntax and semantics when specifying
Operations and Attributes.

Structure

The structural features of a class are defined by its attributes.

Behavior

An object can react differently to a specific message depending on what
state it is in. You can specify the behavior of a class by drawing a State
Diagram. For each state the object can enter, the diagram shows what
messages it can receive, what operations will be carried out, and what
state the object will be in thereafter.

Persistence

A persistent class represents instances where their state will be
preserved when the instance is destroyed. Instances created from a
transitory class have their state destroyed when the instance is
destroyed.

Standard stereotypes of classes

� Utility Class

� Instantiated Class

� Parameterized Class

� Parameterized Utility Class

� Instantiated Class Utility

� metaclass
Modeling Language Guide - Rational Rose RealTime 23

Chapter 2 Elements
Graphical notation

A class icon is drawn as a three-part box, with the class name in the
top part, a list of attributes (with optional types and values) in the
middle part, and a list of operations (with optional argument lists and
return types) in the bottom part.

The attribute and operation sections of the class box can be
suppressed to reduce detail in an overview. Suppressing a section
makes no statement about the absence of attributes or operations, but
drawing an empty section explicitly states that there are no elements
in that part.

Interfaces

An interfaces is a model element that defines a set of behaviors (a set
of operations) offered by a classifier model element. A classifier may
realize one or more interfaces. An interface may be realized by one or
more classifiers. Any classifiers that realize the same interfaces may be
substituted for one another in the system. Each interface should
provide an unique and well-defined set of operations.

Graphical notation

An interface is shown graphically as a circle with its name. Or it can be
shown as a class with the <<interface>> stereotype.
24 Modeling Language Guide - Rational Rose RealTime

Attributes
Attributes

An attribute is a named property of an object. The attribute name is a
noun that describes the attribute's role in relation to the object. An
attribute can be scoped to a class or an instance and configured with
a specific visibility. In addition you can specify its type, initial value,
and multiplicity.

You should model the property of an object as an attribute only if it is
a property of that object alone. Otherwise, you should model the
property with an association or aggregation relationship to a class
whose objects represent the property.

Changeability properties

Determines whether a value may be modified after the object is created.
The possible values are

� changeable - no restrictions or modification

� frozen - the value may not be altered after the object is instantiated
and its values initialized; no additional values may be added to a
set

� add only - meaningful only if the multiplicity is not fixed to a single
value; additional values may be added to the set of values, but once
added, a value in the set cannot be removed or altered

Operations

An operation is a service that can be requested from an object to affect
its behavior. The only way other objects can get access to or affect the
attributes or relationships of an object is through its operations. The
operations of an object are defined by its class. A specific behavior can
be performed via the operations, which may affect the attributes and
relationships the object holds and cause other operations to be
performed. An operation corresponds to a member function in C++ or
to a function or procedure in Ada.
Modeling Language Guide - Rational Rose RealTime 25

Chapter 2 Elements
Class or instance

An operation nearly always denotes object behavior. An operation can
also denote behavior of a class, in which case it is a class operation.
This can be modeled in the UML by modifying the scope of the
operation.

Operations Have Parameters

In the specification of an operation, the parameters constitute formal
parameters. Each parameter has a name and type. You can use the
implementation language syntax and semantics to specify the
operations and their parameters so that they will already be specified
in the implementation language when coding starts. Use the
implementation language syntax and semantics when specifying
operations.

Properties

� abstract - if an operation is abstract, then it does not have an
implementation defined, and one must be supplied by a
descendant

� leaf (polymorphic) - if an operation is a leaf, then the operation
cannot be overridden by a descendant; if false, the operation is
polymorphic, and the implementation of the operation can be
overridden by a descendant—that is, a leaf operation is mapped to
a C++ a non-virtual operation)

� query - if an operation is query, then the execution of this
operation leaves the state of the system unchanged, meaning that
the operation has no side effects

These next properties address the concurrency semantics of an
operation.

� sequential - callers of this operation must coordinate outside the
object so that only one flow of control is in the object at a time; if
simultaneous calls occur, then the semantics and integrity of the
system cannot be guaranteed

� guarded - multiple calls from concurrent flows of control may occur
simultaneously, but only one is allowed to commence; the others
are blocked until the performance of the first operation is complete

� concurrent - multiple calls from concurrent flows of control may
occur simultaneously, and all of them may proceed concurrently
26 Modeling Language Guide - Rational Rose RealTime

Association Class
Association Class

Use the association class to model properties of associations. The
properties are stored in a class and linked to the association
relationship. Link Attributes are degenerate association classes
comprised only of attributes. To create an association class, create an
association and an association class. Connect the association class to
the association.

Graphical notation

An association class is a class linked to an association.

Utility Class

A utility class specifies a class whose attributes and operations are all
class scoped. An instantiated utility class represents an instance of a
utility class.

Graphical notation

The class utility is shown with the same three compartments as a
class.
Modeling Language Guide - Rational Rose RealTime 27

Chapter 2 Elements
Instantiated Class Utility

An instantiated class utility is created by substituting actual values for
the formal parameters of a parameterized class utility.

Graphical notation

An instantiated class utility is displayed as utility class.

Parameterized Class

A parameterized class is a template for creating any number of
instantiated classes that follow its format. A parameterized class
declares formal parameters. You can use other classes, types, and
constant expressions as parameters. You cannot use the
parameterized class itself as a parameter. You must instantiate a
parameterized class before you can create its objects.

In its simplest form, you use parameterized classes to build container
classes.

You can also use parameterized classes to capture design decisions
about the protocol of a class. The arguments of the parameterized class
can be used to import classes or values that export a specific operation.
In this form, a parameterized class denotes a family of classes whose
structure and behavior are defined independently of its formal class
parameters.
28 Modeling Language Guide - Rational Rose RealTime

Instantiated Class
Graphical notation

A parameterized class is a class icon with a dashed-line box in the
upper right corner. The parameters are automatically displayed there.

Instantiated Class

An instantiated class is a class formed from a parameterized class by
supplying actual values for parameters. You create an instantiated
class by supplying actual values for the formal parameters of the
parameterized class. This instantiation process forms a concrete class
in the family of the parameterized class. You must place the
instantiated class at the client end of an instantiate relationship
(accessible using Create > Instantiated Class on the Tools menu) that
points to the corresponding parameterized class.

An instantiated class whose actual parameters differ from other
concrete classes in the parameterized class' family forms a new class
in the family.

To create an instantiated class, create a class and enter the class name
with parameters in brackets to distinguish it from other forms of
classes.

Graphical notation

An instantiated class is depicted as a class.
Modeling Language Guide - Rational Rose RealTime 29

Chapter 2 Elements
Parameterized Utility Class

A parameterized utility class is a set of operations or functions that are
not associated with a higher level class and are defined in terms of
formal parameters. Use a parameterized class utility as a template for
creating instantiated class utilities. You must instantiate a
parameterized class utility before you can create its objects.

Graphical notation

A parameterized class utility is a class icon with a dashed-line box in
the upper right corner and a gray shadow at the lower edge of the
rectangle. The parameters are automatically displayed there.

Capsules

Capsules are the fundamental modeling element of real-time systems.
A capsule represents independent flows of control in a system.
Capsules have much of the same properties as classes; for example,
they can have operations and attributes. Capsules may also participate
in dependency, generalization, and association relationships. However,
they also have several specialized properties that distinguish them
from classes.
30 Modeling Language Guide - Rational Rose RealTime

Capsules
The main characteristics that specializes capsules from other classes
are summarized below:

Structure

A capsule may have any number of attributes that define its structure
or none at all. These attributes represent some properties of the
capsule class that are shared by all instances. What differentiates a
capsule from a class is how you can formally specify the internal
organization of its structure, as a network of collaborating capsule
roles. This collaboration is a specialized UML collaboration called a
capsule collaboration.

Classes
have...

Capsules
have...

Details

public
operations

public ports Sending messages through public ports is
the only method that capsules can
communicate with other capsules. Classes
cannot invoke operations directly on other
capsules. Capsules can call operations on
classes, but since a capsule does not have
public operations classes cannot call
operations on capsules.

public,
protected,
and private
attributes

private
attributes

A class’s structure is defined by its
attributes. The same goes for capsules;
however, this structure is completely private,
in the sense that no outside object can
directly access these attributes. Capsules
can have the following kinds of attributes:
capsule roles, protected ports, and classes.

Note: The only public attributes of a capsule
are its public ports.

operation
invocation

message
passing

Messages are the sole means of
communication between capsules. Messages
are sent and received through ports.

behavior
defined by
methods

behavior
defined by
state
machines

The action that a class performs when an
operation is invoked as defined by the
implementation of the operation. However,
when a capsule receives a signal event the
behavior is controlled by its state machine.
Modeling Language Guide - Rational Rose RealTime 31

Chapter 2 Elements
Behavior

The behavior of a class is triggered by the invocation of a public
operation on the class. Whereas, a capsules behavior is triggered by the
receipt of a signal event.

When a capsule receives a message from another capsule a signal
event is generated and some response by the capsule is usually
required. This typically involves performing some calculations,
formulating a response, and sending one or more messages. The
optional state machine associated with a capsule represents its
behavior. It controls the operation of the capsule itself. The state
machine is the only element that can access the protected parts of the
capsule.

Logical threads of control

Capsules provide a very light weight modeling element for breaking a
problem down into multiple threads of control. Each capsule instance
has its own logical thread of control, though it may share an actual
processing thread (known as a “physical thread”) with other instances.

Graphical notation

Since a capsule is a stereotype of a class, the stereotype icon appears
in the name compartment of the class rectangle.
32 Modeling Language Guide - Rational Rose RealTime

Capsule Roles
Relationships

Capsule Roles

Capsule roles represent a specification of the type of capsules that can
occupy a particular position in a capsule's collaboration, or structure.
Capsule roles are strongly owned by the container capsule, and cannot
exist independently of the container capsule. A capsule’s structural
decomposition usually includes a network of collaborating capsule
roles joined by connectors.

Classification of capsule roles

Note that the classifications below are attributes of capsule roles rather
than an attribute of the capsule classes that fill the role. This
maximizes the reuse potential of capsule specifications.

� Fixed - By default, capsule roles are fixed, meaning that they are
created automatically when their containing capsule is created,
and are destroyed when the container is destroyed.

Type From a capsule to a

generalization-relationship capsule (class view)

aggregation & composition-
relationship

capsule, protocol (class view)

dependency-relationship class, capsule (class view)

association class (class view)

connector capsules (capsule collaboration view)
Modeling Language Guide - Rational Rose RealTime 33

Chapter 2 Elements
� Optional - Some capsule roles in the structure may not be created
at the same time as their containing capsule. Instead, they may be
created subsequently, when and if necessary, by the state machine
of the capsule. And they can be destroyed before the container is
destroyed.

� Plug-in - The structure of a capsule may contain plug-in capsule
roles. These are, in effect, placeholders for capsule roles that are
filled in dynamically. This is necessary because it is not always
known in advance which specific objects will play those roles at
run time. Once this information is available, the appropriate
capsule instance (which is owned by some other composite
capsule) can be “plugged” into such a slot and the connectors
joining its ports to other capsule roles in the collaboration are
automatically established. When the dynamic relationship is no
longer required, the capsule is “removed” from the plug-in slot, and
the connectors to it are taken down.

Cardinality

You can specify the cardinality of capsule roles as a shorthand
structural method of grouping multiple copies of the same type of
capsule role in a graphically compact and reusable pattern.

Substitutability

Optional and plug-in capsule roles can be designated as substitutable.

Ports

Ports are objects whose purpose is to send and receive messages to and
from capsule instances. They are owned by the capsule instance in the
sense that they are created along with their capsule and destroyed
when the capsule is destroyed. Each port has its identity, which is
distinct from the identity and state of their owning capsule instance.
34 Modeling Language Guide - Rational Rose RealTime

Ports
Ports and Protocols

To specify which messages can be sent to and from a port, a port is
associated with a protocol role. The protocol role is the specification of
a set of the messages that can be received (in) and sent (out) from the
port. The protocol role essentially defines the port type.

A protocol is the specification of communication patterns between
capsules. In any communication scenario the exchange of messages
(those being sent and those being received) are different depending
from which end of the communicating participants you chose to view
the exchange. A protocol specifies all the views of a communication,
and each of these different views are what we call the protocol roles.
Since a port plays the role of one participant in a communication
relationship it's valid message sets (in and out) are defined by those in
a specific protocol role. When creating a port, you must specify which
participant (protocol role) this port will play in the protocol. Currently,
Rational Rose RealTime only supports binary protocols, which involve
just two participants, or two protocol roles. These roles are called the
'base' role and the 'conjugate'.

Communication Rules

In order for two ports to be connected by a connector, the ports must
be compatible; that is, every signal in the 'Out' set of one protocol role
must be in the 'In' set of the other protocol role. Each protocol role can
have additional signals in the 'In' set; however, there can not be any
signals in the ‘Out’ set that are not in the corresponding 'In' set on the
other side. In other words, the set of 'In' signals on both sides of two
connected ports must be equal to - or be a superset of - the set of 'Out'
signals on the other side. In addition, the data class of an 'Out' signal
must be the same as - or a subclass of - the data class of the
corresponding 'In' signal of the other port.

Classification of Ports

Visibility

� Public - Public ports are ports that are part of a capsule’s interface.
These ports are shown in a capsule collaboration diagram as being
located on a capsules boundary. Public ports may be visible both
from outside the capsule and inside.
Modeling Language Guide - Rational Rose RealTime 35

Chapter 2 Elements
� Protected - Protected ports are used to connect capsules to
contained capsule roles. These ports are not visible from the
outside of a capsule since they are not part of the capsule’s
interface.

Connector type

� Wired - Wired ports must be connected by a connector to other
ports in order to send messages. In a capsule’s structure these are
the ports that are graphically connected to other ports.

� Non-wired - Non-wired ports are used to model dynamic
communication channels. These ports cannot be connected with
connectors to other ports. Unlike wired connections, which are
established when a capsule is created and disconnected when
destroyed, non-wired connections can be dynamically controlled.
This is useful for modeling client/server designs where a shared
service is shared by a large number of clients, and the clients are
not known at design time.

Termination

� Relay - Relay ports are by nature implicitly public and wired. They
are used to model connections that funnel signal events directly to
protected capsule components without being processed by the
capsule itself. If a relay port is not connected to an internal
component, all signal events arriving on that port are lost.
Generally speaking, relay ports can be used to export the interfaces
of contained capsule roles.

� End - End ports can be public or protected, wired or non-wired.
Messages sent to an end port can be processed directly by the
capsule’s behavior. End ports are the ultimate destination of all
signal events sent by capsules. These signals are generated in the
state machines and received by state machines.

Graphical notation

The notation for a port uses white and black squares to indicate which
protocol role (base or conjugate), the port plays in a protocol. The white
square is used to show conjugated ports.

Class view - in a class diagram, capsule ports are listed in a special
labeled list compartment, which normally appears after the attribute
and operator compartments. In addition, a stereotyped <<port>>
association shows the relationship between the capsule and a protocol.
36 Modeling Language Guide - Rational Rose RealTime

Ports
Note: From the class view, you cannot tell the role of the port in the
protocol.

Capsule role view - only public ports are shown on capsule roles.
Externally there is no distinction between relay and end ports. The
name of the port and protocol role (base or conjugate) is displayed.
Modeling Language Guide - Rational Rose RealTime 37

Chapter 2 Elements
Capsule collaboration view - all ports are visible in the structure view.
There physical placement, either on the capsules container or inside,
differentiates between protected and public ports. End ports are shown
with a line connected to a circle. The following illustration shows the
symbols for the different port types.

Protocols

The set of messages exchanged between two objects conforms to some
communication pattern called a protocol. It is basically a contractual
agreement defining the valid types of messages that can be exchanged
between the participants in the protocol. Therefore a protocol
comprises a set of participants, each of which plays a specific role in
the protocol.

Each such protocol role is specified by a unique name and a
specification of messages that are received by that role as well as a
specification of the messages that are sent by that role (either set could
be empty). As an option, a protocol may have a specification of the valid
communication sequences; a state machine may specify this. Finally,
a protocol may also have a set of prototypical interaction sequences
(these can be shown as sequence diagrams). These must conform to
the protocol state machine, if one is defined.
38 Modeling Language Guide - Rational Rose RealTime

Protocols
Protocol participants (protocol roles)

The fact that a protocol role is defined by what is “sent” and what is
“received” implies that a protocol role is specified from the perspective
of only one of the participants in a protocol. Thus, a protocol is
composed of the different protocol roles, or perspectives of some
communication pattern.

Binary protocols

Binary protocols, involving just two participants, are by far the most
common and the simplest to specify. One advantage of these protocols
is that only one role, called the base role, needs to be specified when
defining the protocol. The other side of the communication pattern,
called the conjugate, can be derived from the base role simply by
inverting the incoming and outgoing message sets. This inversion
operation is known as conjugation.

Figure 4 A binary protocol as a composite of two roles

When working with binary protocols there is no need to explicitly define
the conjugate role.

Ports and protocols

Protocols are primarily used to identify the type of a port. Ports play the
role of one participant in a communication relationship, so technically
the type of a port is specified by the protocol role and not the protocol.
Modeling Language Guide - Rational Rose RealTime 39

Chapter 2 Elements
Graphical notation

A binary protocol can be shown using the standard notation for
classifiers with an explicit stereotype label and two optional specialized
list compartments for incoming and outgoing signal sets, as shown in
Figure 4. The state machine and interaction diagrams associated with
a protocol are represented using the standard UML notation.

Cardinality and Capsule Structure

You can specify the cardinality of capsule roles and ports as a
shorthand structural method of grouping multiple copies of the same
type of element in a graphically compact and reusable pattern.

Note: Cardinality is an attribute of the capsule role and not of the
capsule class. The decision of how many instances of a capsule are
needed is not a property of the capsule, rather it is based on the needs
of the application.

We often refer to capsule roles or ports that have a specified cardinality
as being replicated, meaning that there are several copies.

Cardinality rules for capsule roles

� fixed - all instances of a replicated fixed capsule role are created
automatically when the container capsule is created.

� optional - instances of replicated optional capsule roles are created
dynamically. Their number can vary from zero (0) up to the
specified cardinality.

� plug-in - these slots are filled in dynamically. Their number can
vary from zero (0) up to the specified cardinality.

Cardinality and ports

In order to connect replicated capsule roles, use cardinality to group
ports on a capsule that share a common protocol. The cardinality
factor on a port determines the number of instances of a port.

Unspecified cardinality

Cardinality values do not have to be specified. They can be left open
ended by using the asterisk character '*'.
40 Modeling Language Guide - Rational Rose RealTime

Substitutability
Common structural patterns

Different capsule collaboration capsule role configurations can be
achieved using combinations of cardinality applied to both ports and
capsule roles.

Figure 5 Structural patterns with cardinality

Substitutability

Substitutability is a property of an optional or plug-in capsule role. It
allows the capsule role to be instantiated with either an instance of the
capsule class represented by the capsule role or any other compatible
capsule class. Two capsules are compatible if they have the same
interface, or are subclasses of the same superclass. Since a capsule's
interface is defined by its public ports, compatible capsules must have
matching public ports.
Modeling Language Guide - Rational Rose RealTime 41

Chapter 2 Elements
Substitutability rules

To be compatible with its superclass, a subclass must have a matching
compatible port for every connected interface of the superclass
reference. In the following example we use the notation A(C1) to
represent a port A of type protocol C1. Let Gen be a capsule role
belonging a generic (abstract) class in some design and let Real1,
Real2, and Real3 be capsule roles belonging to subclasses of this class.
We illustrate the compatibility rules with three different cases in
Figure 6.

Figure 6 Compatibility rules

Multiple Containment

Multiple containment allows you to represent capsule roles that are
simultaneously part of two or more capsule collaborations. Specifying
that two different capsule roles are actually bound to the same run-
time instance can simplify the structure of the system by allowing it to
be decomposed into different views. Figure 7, “Multiple containment
42 Modeling Language Guide - Rational Rose RealTime

Multiple Containment
example,” on page 44 shows an example design of a telephone
switching system, which has a VoiceCallHandler capsule that is
responsible for processing calls, and a MaintenanceSystem capsule
that is responsible for maintaining system integrity, both of which
contain the same voiceLineHandler capsule role.

When to use multiple containment

In order to understand the need for this, it is necessary to examine the
meaning of encapsulation in object-oriented design in general. When
two or more capsule roles are placed together in a common capsule, the
intent is to capture some user-defined relationship between these
components. The simplest example of a relationship between objects is
pure physical containment; for example, a shelf contains a particular
card. When we move into the domain of software, however, the types of
relationships that exist can be quite diverse. In communications, for
instance, when two terminals are connected to each other in order to
exchange information, they are involved in a call relationship. The
object-oriented approach encourages us to capture such identifiable
relationships as distinct objects. Note that, in physical terms, there is
no real entity corresponding to a call; however, it is quite useful to
think of it in that way.

Once relationships such as these are captured in unique addressable
objects, then it is possible to conceive of operations over such objects,
such as terminating a particular call or adding another party to it. To
the entities invoking the operations, the structure and implementation
within such objects are typically of no concern. Following this line of
thought leads us to conclude that these objects are in fact like any
other software objects: entities with a set of externally accessible
operations and an encapsulation shell that hides their internals.
Therefore, capsules can be used to represent arbitrary user-defined
relationships between their component actors.

With this explanation of capsules, the need for multiple containment is
more apparent. It is required to capture situations where a capsule role
is involved in multiple simultaneous relationships with capsule roles
in another containment. In our communications example, a terminal
can simultaneously be involved in a call and be part of a device
subsystem.
Modeling Language Guide - Rational Rose RealTime 43

Chapter 2 Elements
Multiple containment example

Each port on a capsule can only be used in one of the decomposition
views. For example, in the example below, if the callSuper port on the
voiceLineHandler were used in both the VoiceCallHandler and
MaintenanceSystem, it would lead to a conflict, so it is not allowed.

Figure 7 Multiple containment example
44 Modeling Language Guide - Rational Rose RealTime

Actions, Messages, and Events
Actions, Messages, and Events

There are several ways for objects to communicate with each other.
Regardless of the mechanism used there is always someone sending
the message, a sender, and someone receiving the message, a receiver.
When two objects communicate something must be passed between
them. The thing that is passed between two objects must convey what
the sender wants done, pass some optional information the receiver
might need to complete the requested behavior, and also specify the
way in which the thing will be communicated from the sender to the
receiver.

� Messages - A message is a specification of the thing that will be
communicated between two objects. A signal is a special type of
message that is sent asynchronously. An instance of a message
can be called a stimulus or message instance. However, message
instance and message are commonly used interchangeably.

� Actions - An action represents the sending, or dispatching of a
message by a sender. The type of action can specify the type of
request (for example, invoke operation, or signal event to be
raised).

� Events - An event represents the reception of a message by the
receiver. When the message is received an event is raised in the
receiver object. There are two kinds of events: call events and signal
events.

Graphical notation

The communication between objects is modeled in interaction
diagrams by linking the sender and receiver with an association.

Actions

Actions are the things the behavior does when a transition is taken.
They represent executable atomic computations that are written as
statements in a detail-level programming language and incorporated
into a state machine. Actions are atomic, in the sense that they cannot
be interrupted by the arrival of a higher priority event. An action
therefore runs to completion.
Modeling Language Guide - Rational Rose RealTime 45

Chapter 2 Elements
Actions may be composed of any number of operation calls, creation or
destruction of other objects, or the sending of messages to other
objects.

An action may be attached to the following parts of a state machine:

1. A transition (including a transition to an initial state)

2. A state, as an entry action

3. A state, as an exit action

Blocking actions

Because of run-to-completion semantics, any action that blocks—for
example, by invoking a synchronous operation call—will effectively
block the entire state machine from handling any new events that may
arrive. Further event processing will only resume once the action has
completed.

Call Event

A call event represents the reception of a request to synchronously
invoke a specific operation.

Flow of control

A call event is sent synchronously, meaning that when an object
invokes an operation on another, control passes from the sender to the
receiver. Once the receiver has finished processing the event, the
operation returns, and control is returned to the sender.

Signal Event

A signal event represents the reception of a particular asynchronous
message. A signal event may be sent by the action of a state transition
in a state machine. The execution of an operation can also send
signals.

The receipt of a signal event usually triggers a state transition in a state
diagram.
46 Modeling Language Guide - Rational Rose RealTime

State Machine
Flow of control

When an object sends a signal event, it is sent asynchronously,
meaning that control does not transfer to the receiver. Once the signal
event is sent, the sending object can continue its action and start
processing other events, instead of being blocked until the receiver has
finished processing the sent event.

State Machine

State machines are used to model the dynamic aspects of a system.
Whereas interactions model a set of roles that work together to perform
some common behavior, a state machine models the behavior of a
particular class, protocol, or capsule. State machines can be used to
describe a use-case flow of events, or to completely specify the behavior
of classes that receive events.

Events and signals

Event-driven means that behavior is stationary until it is activated by
the arrival of an anticipated signal on one of its interfaces. After
responding to an event, the process reverts to a stable state in which it
is ready to receive the next event. An event is generated whenever a
message is received by an object. An event is an occurrence that may
cause the state of an object to change; it has no duration and can
precede or follow another event. A message can be used to convey
either information or data values from one object to another.

State machine variations

Because state machines are used to describe the behavior of several
different kinds of elements, there are some small differences between
what is allowed in each one:

� Class and Use Case state diagrams - All trigger events are simple
uninterpreted text.

� Protocol state diagrams - All trigger events are signals defined on
the protocol.
Modeling Language Guide - Rational Rose RealTime 47

Chapter 2 Elements
� Capsule state diagrams - All trigger events are defined by a port
and signal pair.

❑ Limitation: final states are not allowed.

❑ Limitation: junction points do not support the continuation kind
attribute; that is, if a transition is not continued, it defaults to
history (except for internal transitions)

Overview

A state diagram is a directed graph of states connected by transitions.
A state diagram describes the life history of objects of a given class. A
state machine contains exactly one initial state and initial transition,
one top state, one or more states, choice points, and the state
transitions between them.

Figure 8 Example state diagram
48 Modeling Language Guide - Rational Rose RealTime

States
States

A state is a condition during the life time of an object where it is ready
to process events. A state machine is essentially composed of a top
state, which can itself contain any number of other states. A state has
the following parts:

� Name - A state must have a name so that it can be distinguished
from other states that are in the same context.

� Entry/Exit actions - Actions that are executed on entering and
exiting the state - an entry action is executed whenever a state is
entered, regardless of which incoming transition was taken.
Similarly, an exit action is taken whenever we leave the state from
whatever outgoing transition.

Hierarchical states

A state can be composed of other states, called substates. This allows
modeling of complex state machines by abstracting away detailed
behavior into multiple levels.

States that do not contain substates are called simple states. A state
that has substates is called a composite state. States may be nested to
any level.

Graphical notation

States can be viewed from two different perspectives: an external view
and an internal view. The external view shows a state as a substate of
its container state machine. The external view is in effect an abstract
view of the state. The internal view shows a states internal details —
its implementation.
Modeling Language Guide - Rational Rose RealTime 49

Chapter 2 Elements
External view

In this view a state is shown as a rounded rectangle with a name
compartment. Optional graphical clues can be shown at the bottom of
the state rectangle to show that a state is a composite state and to show
if entry or exit actions have been defined. All junction points are shown
as solid dots. Details regarding the state transitions, whether they
terminate or continue within the composite state, are not shown.

Internal view

In this view you see the details of the composite state. The states border
is seen as a bolder rounded rectangle that encapsulates its internal
details. Within this view you can see if incoming transitions from the
external view end on the state, go to history, or continue to other
substates.
50 Modeling Language Guide - Rational Rose RealTime

Transitions
Transitions

A transition is a relationship between two states: a source state and a
destination state. It specifies that when an object in the source state
receives a specified event and certain conditions are met, the behavior
will move from the source state to the destination state.

A transition has the following parts:

Trigger

With the exception of the initial transition all behavior in a state
machine is triggered by the arrival of events on one of an object’s
interfaces. Therefore, a trigger defines which events from which
interfaces will cause the transition to be taken.

The trigger is associated with the interface on which the triggering
event is expected to arrive. Moreover, a transition can have multiple
triggers such that an event that satisfies any one of the triggers will
cause the transition to be taken.

Guard Condition

Each trigger can have a boolean expression associated with it which
will be evaluated before the transition is triggered. This is referred to as
a guard condition. If the expression evaluates to True, then this trigger
will cause the transition to be taken; if the expression evaluates to
False, the transition is not taken. If no guard condition is specified, the
condition defaults to True. Guard conditions are coded using a detail
level language which must evaluate to a boolean result, although it can
contain an arbitrarily complex expression.

Actions

The actions in a behavior are where an object does work. For example,
it can perform operation calls, create and destroy other objects, and
sends signals to other objects. It is important to understand that a
transition cannot be interrupted by the arrival of an event. A transition
is therefore said to run-to-completion.
Modeling Language Guide - Rational Rose RealTime 51

Chapter 2 Elements
Kinds of transitions

� Normal transitions - transitions that originate and terminate on
different states.

Following are three kinds of self-transitions that are characterized by
originating and terminating on the same state, having no continuing
segments, and not ending on a continuing junction point.

� Inner self transitions - Where the exit and entry code is not
executed for the state on which it originates and terminates.

� Inner internal self transitions - Where the transition executes
without exiting or re-entering the state in which it is defined. And
in addition the exit and entry actions of all states which where
exited and re-entered are not executed. These kinds of transitions
are similar to having global operations defined on a state machine;
when taken do not change the state of the system.

� External self transitions - Where the exit and entry code is
executed for the state on which it originates and terminates.

Junction points

Junction points provide a way of correlating different segments of a
transition that span multiple hierarchical contexts. They are located on
the boundary of a state, and represent either the source or destination
of a transition segment.

All transitions originate and terminate on a junction.
52 Modeling Language Guide - Rational Rose RealTime

Run-to-Completion
Graphical notation

A transition is rendered as a solid directed line from a source state to
a target state. It can be decorated in different ways: a black arrow head
indicates that actions have been associated with the transition; a
broken transition line indicates that no triggers have been defined for
the transition; a dashed line indicates an internal self-transition.

Run-to-Completion

The processing of a single event at a time by a state machine is known
as a run-to-completion step. Events are dispatched and processed by
the state machine, one at a time.

Simplifying concurrency

If preemption were allowed in a state machine, the handling of a high-
priority event could possibly modify some internal variables that were
in the process of being modified as a result of the previous low priority
event. When the low priority processing is resumed these variables
would be changed, leading to errors.

With the run-to-completion approach, handling of the current event
does not allow any interruptions, even by the arrival of higher priority
events - hence, avoiding the internal concurrency problem. The
advantage of this model is simplicity. The biggest disadvantage is that
processing of events cannot take too long to ensure a timely processing
of higher priority events.
Modeling Language Guide - Rational Rose RealTime 53

Chapter 2 Elements
Initial Point and Initial Transition

An initial point is a special point which explicitly shows the beginning
of the state machine. You connect the initial point to a start state.
Where the start state will be the first active state in the objects state
machine. The transition from the initial point to the start state, initial
transition, is the first transition taken before any other transition. Only
one initial state is allowed in each state diagram.

Note: The transition from an initial point to the start state can have an
action; however, the other transition features, including a guard
condition and trigger event, are not allowed.

Transitions to and from the initial state

Only one outgoing transition can be placed from the initial point.

There can be several incoming transitions to the initial state. In this
case the initial state acts like a junction point which forces the
behavior back through the initial transition. If the initial transition is
used to completely initialize an object, then any incoming transition to
the initial state will effectively reset the behavior of an object without
having to destroy then re-create it.

No initial transition

A state machine does not require an initial transition. In the example
below, when the state machine is created we are in the Top state until
the triggering event for t1 is received.
54 Modeling Language Guide - Rational Rose RealTime

Final State
Graphical notation

The initial state icon is a small filled circle:

Final State

A final state if a special kind of state signifying that the enclosing
composite state is completed. If the enclosing state is the top state,
then it means that the entire state machine has completed. A final
state cannot have any outgoing transitions.

Final states cannot be added to a capsule state diagram.

Top State

The top-level state that is the root of the state machine containment
hierarchy. There is exactly one state in every state machine that is the
top state.

The top state cannot have exit and entry actions, or outer self-
transitions.

History - Hierarchical State Machines

The history of a state is defined as the substate that was the last
current substate the last time the state was active. In the case of simple
states, they are always the last active state.

History is useful when dealing with situations where an event takes
control away from the current state and initiates a separate behavior
sequence for handling the new event. The new sequence can involve
new states and transitions. However, once completed, we often want to
resume from the point before the interruption occurred.
Modeling Language Guide - Rational Rose RealTime 55

Chapter 2 Elements
Continuation kinds - shallow history, deep history and default

When a transition terminates on shallow history, the active substate
becomes the most recently active substate prior to this entry. Whereas,
deep history implies returning to history at all state hierarchy levels.

Example

A common use of history is shown in the state machine in Figure 9. In
this case transition ee is a self-transition that has a trigger for an event
that none of the substates can handle. When that event occurs the self-
transition will fire then go to history, meaning that it will revert to the
last active substate. The effect is to perform event handling without
changing the state of the system.

Figure 9 An example use of history

Note: Beware of how entry and exit actions are called when the ee
transition is taken. For example, if the current active state is S2, when
ee is triggered, the exit action for S2 will be taken, then the actions for ee
will execute, and finally the entry action for S2 will be executed.
56 Modeling Language Guide - Rational Rose RealTime

Group Transitions
Group Transitions

Group transitions are transitions from hierarchical states that are
common to all the substates within that state. Thus common behavior
that is normally represented by equivalent transitions from every state,
can be represented by a single transition originating from the
containing hierarchical state.

Junction Points

Junction points are located on the boundary of states, and represent
either the source or the destination of a transition segment. Junction
points are split into those that terminate on the state boundary, history
junctions, and those which are notations that continue within the
state. Similarly transitions outgoing from a hierarchically nested state
are divided into those that terminate on the enclosing state and those
that continue from the state boundary to a target state.

Note: Every transition, whether composed of multiple segments or of a
single segment, eventually terminates to a junction point.
Modeling Language Guide - Rational Rose RealTime 57

Chapter 2 Elements
Transition segments

Transitions that span multiple hierarchies, thus cross state
boundaries, change context on the way from the source to the
destination state. Therefore they must be partitioned into different
segments. Each transition segment has a distinct name, and only the
originating segment has a trigger defined. The sum of all transition
segments is called the transition chain.

Note: Transition chains are executed in one single run-to-completion
step.

Joining transition segments

Two or more transition segments can converge on to a single junction
point. This allows multiple transitions to be defined, which perform the
same action in response to an event, and share the same destination
state. In the example below t4 and t9 both terminate on the same
junction point.

Note: Only the originating transition segments can have triggers
defined. For example, although t6 can have actions, it cannot have a
trigger.

Continuation

When a transition terminates on a composite state (there are no other
transitions continuing from the junction point), the behavior of the
state machine at this point is determined by the Continuation kind
property of the terminating junction point.

This selection specifies the semantics for how the state history will be
used when there is no continuing transition. There are three options:

� Default - specifies that the default (initial) transition should be
taken.

� History - specifies that the state should return to shallow history.

� Deep History - specifies that the state should return to deep
history, meaning that all substates also return to history. This is
the behavior for all capsule state machines, so it is automatically
selected.

Note: The default for capsule state machines is to always go to deep
history, so deep history will be automatically selected for capsule states,
and the selections will be grayed out.
58 Modeling Language Guide - Rational Rose RealTime

Junction Points
Graphical notation

Junction points are displayed differently depending whether a state is
shown from an abstract view, as a substate of another containing state,
or whether shown from a detailed view, the inside of a composite state.
Junction points viewed from the abstract state view are always shown
as a solid dot. However, from the detail view, different junctions are
shown with graphical clues.
Modeling Language Guide - Rational Rose RealTime 59

Chapter 2 Elements
Continuing junctions

Type of
junction

Example Shown as...

internal t8 originates from an internal
junction. The junction is not
visible from the abstract view
of this state.

a small circle on the state
boundary

external t7 originates from an external
junction. This junction is
visible from the external view
of the state so that it can
eventually be connected to.
Until an external junction has
been connected it behaves like
an internal junction.

a solid circle connected with a
solid line to the container
state’s boundary.

external
incoming

t6 originates from an external
incoming junction. The label
of the transition segment that
is attached to the junction is
shown as e6. t6 cannot have a
trigger.

a solid circle connected with a
solid line to the container
state’s boundary with an
arrow at the circle.

external
outgoing

t5 terminates on an external
outgoing junction. The next
transition segment is shown
as e5. t5 has a trigger.

a solid circle connected with a
solid line to the container
state’s boundary with an
arrow at the container state
boundary.
60 Modeling Language Guide - Rational Rose RealTime

Choice Points
Terminating junctions (to history)

Choice Points

Choice points allow a single transition to be split into two outgoing
transition segments, each of which can terminate on a different state.
The decision of which branch to take is made after the transition is
taken.

Choice points are motivated mainly by practical considerations: it often
happens that the decision on which state to terminate a transition can
only be made following certain calculations. Each choice point has an
associated boolean predicate that is evaluated after the incoming
transition action is executed. Depending on the truth value of this
predicate, one or the other branch is taken.

Type of
junction

Example Shown as...

internal t8 terminates on an internal
terminating junction. This
junction is not visible from the
external view of the state.

a circle with the letter 'H' (for
history) connected to the
container states boundary
with a dotted line.

external t7 terminates on an external
terminating junction. This
junction is visible from the
external view of the state. If
this junction is ever used to
connect another transition
segment, it will become a
continuing junction, since it
will no longer terminate a
transition.

a circle with the letter 'H' (for
history) connected to the
container states boundary
with a solid line.

external
incoming

e3 terminates on an external
terminating junction. This
junction is visible from the
external view of the state.

a circle with the letter 'H' (for
history) connected to the
container states boundary
with a solid line with an arrow
at the circle.
Modeling Language Guide - Rational Rose RealTime 61

Chapter 2 Elements
Example

A very common use of choice points is to count events. That is when
the decision of transferring from one state to the next depends on the
number of events that have occurred. For example, if a player can only
draw cards once he has received 5 cards from a dealer, you could model
this behavior the following way:

The player would keep track of how many cards he has received and
every time a new card is received would test if he has enough cards.

Graphical notation

A choice point is rendered as a circle with one incoming point, and two
outgoing for the true and false transitions. The choice point is shown
with a 'C' in the middle if the boolean predicate is defined

.

62 Modeling Language Guide - Rational Rose RealTime

Transition Selection Rules
Transition Selection Rules

When an event is ready to be processed by a state machine, a search
for a candidate transition takes place to determine which one will be
taken. A transition is said to be enabled if its trigger is satisfied by the
current event, meaning that the transition has the same event and
interface specified as the current event, and the guard condition
evaluates to true.

The search order is defined by the following algorithm:

1. The search begins in the innermost current active state.

2. Within the scope of the innermost current active state, transitions
are evaluated sequentially. If a transition is enabled, the search
terminates and the corresponding transition is taken.

3. If no transition is enabled in the current scope, the search in step 2
is repeated for the next higher scope, one level up in the state
hierarchy.

4. If the top-level state has been reached and no transitions are
enabled, then the current event is discarded and the state of the
behavior remains unchanged.

When a transition is enabled the algorithm continues with the
following:

1. If the enabled transition is not an internal transition, then execute
the exit actions of all substates starting with the deepest history up
to the current scope.

2. If the enabled transition is an internal transition, then none of the
substates exit and entry actions are executed.

3. Execute the enabled transition (this includes all the transition
segments) actions. This chain ultimately terminates on a simple
state. Note that executing the transition may include executing
other state entry and exit actions as well.

4. The terminating simple state becomes the current active state.
Modeling Language Guide - Rational Rose RealTime 63

Chapter 2 Elements
Example

In the following example t1 is a group transition outside of S1. If S11
is the current active state when the current event enabled transition
t1, then the following actions would be executed as part of the
transition chain.

1. Exit action for S11

2. Exit action for S1

3. Action code for t1

4. Entry action for S1

5. Entry action for S11

S11 remains the current active state after the transition is complete.

Interactions

An interaction is a behavior that consists of a set of messages
exchanged among a set of objects or roles to accomplish a specific
purpose. Interactions can be given in two different forms: either a
specification level (showing classifier roles, association roles, and
messages) or at the instance level (showing objects or instances, links,
and stimuli). Interactions are important to modelers because they
clarify the roles things play in a particular scenario, and thus provide
input for determining interfaces (protocols and the public operations of
a class).
64 Modeling Language Guide - Rational Rose RealTime

Components
Interactions model the dynamic aspects of a model. Interactions can be
modeled in two views: in sequence diagrams and in collaborations.

Collaborations are the constraining element to a set of sequences. The
sequences show all the different communication scenarios that can
occur between the instances or roles in the collaboration.

Figure 10 A collaboration with the set of sequences that define the
different scenarios of the collaboration

Components

Components are used to model the physical elements that may reside
on a node, such as executables, libraries, source files, and documents.
The component, therefore, represents the physical packaging of the
logical elements, such as classes and capsules.
Modeling Language Guide - Rational Rose RealTime 65

Chapter 2 Elements
Mapping from logical to physical

The mapping from design - that is, classes and capsules - to source
code and executables is not an easy task. It is during this phase that
the majority of errors are introduced into a system. In addition, there
is always the risk that the implementation diverges from the original
design. However, since the UML is a well-formed language, with the
help of tools, models can be automatically generated into a lower level
language and compiled into an executable. With automatic compilation
of your design, the model becomes the system.

In the context of automatic executable generation, a component is used
to configure sets of design elements that are to be generated and built.
In addition, several configuration parameters relating to the generation
of the executable, such as dependencies and compiler preferences, are
maintained by the component.

Component instances

A component can have instances. An instance of a component can be
a single executable, or a library that can reside on a number of different
nodes. To allow for this, specific component instances can be assigned
to nodes. Component instances are not shown in the component
diagram. They can only be shown in the deployment diagram.

Organization

Components can be organized by placing them in packages.

Relationships

Nodes

Nodes represent physical devices, more specifically, a computational
resource having memory and processing capability. Component
instances reside and run on nodes. Use nodes to model the topology of
the hardware on which your system executes.

Type From a component to a(n)

dependency-relationship component

realization-relationship interface
66 Modeling Language Guide - Rational Rose RealTime

Packages
Connections

The most common relationship between nodes is an association. In the
context of deployment, an association represents a physical connection
between nodes.

Figure 11 A simple deployment diagram

Packages

A design package is a collection of classes, relationships, use-case
realizations, diagrams, and other packages. It is used to structure the
design model by dividing it into smaller parts. Packages are used
primarily for model organization.

Note: Although packages can serve as a unit of configuration
management, for pragmatic reasons it is preferable to manage
versioning at the class level, than at the package level. Rational Rose
RealTime supports class level versioning.

The big picture

The design model can be structured into smaller units to make it easier
to understand. By grouping design model elements into packages, then
showing how those groupings relate to one another, it is easier to
understand the overall structure of the model.

Package Content Visibility

A class contained in a package can be public or private. A public class
can be associated by any other class. A private class can only be
associated with classes contained within the same the package.
Modeling Language Guide - Rational Rose RealTime 67

Chapter 2 Elements
A package interface consists of a package's public classes. The package
interface (public classes) isolates and implements the dependencies on
other packages. In this way, parallel development is simplified because
you can establish interfaces early on, and the developers need to know
only about changes in the interfaces of other packages.

Notes

A note captures the assumptions and decisions applied during
analysis and design. Notes may contain any information, including
plain text, fragments of code, or references to other documents. A note
holds an unlimited amount of text and can be sized accordingly.

Notes behave like labels. They are available on all diagram toolboxes.
Notes only show up where they have been placed on diagrams. They are
not considered part of the model. Notes may be deleted like any other
item on a diagram.

Graphical notation

The shape of a note is a rectangle with a folded edge in the upper right
hand corner.

Relationships

A note may be unconnected, meaning that it applies to the diagram as
a whole. You can also attach a note via a note anchor to any item or
items that can be selected in a diagram.
68 Modeling Language Guide - Rational Rose RealTime

Chapter 3

Relationships

Most often model elements must collaborate with other elements in a
number of ways. Relationships allow representation of how elements
stand in relation to others.

There are four main kinds of relationships in the base UML:

� “Association” on page 70 - represent structural relationships
between elements

� “Realization” on page 79 - represent the relationship between an
interface and its implementation

� “Generalization” on page 80 - link generalizations with their
specializations

� “Dependency” on page 83 - represent using relationships between
elements

The relationships expressed above are in simple form. However, they
also have a number of properties that allow them to be used to model
relationships with an increased level of detail. This increased level of
detail is necessary in order for total source code generation of a model.

Real-time Notations

In addition to the base UML relationships, the real-time specialization
is a specialized association role relationship:

� “Connectors” on page 76 - is a specialized association role that
captures the static communication relationships between capsule
roles.
Modeling Language Guide - Rational Rose RealTime 69

Chapter 3 Relationships
Association

An association is a structural relationship that is used to connect one
element to another. Associations can be used during analysis to
initially identify general relationships between classes. As your model
evolves, you will add additional properties to associations to make
them more specific.

Association roles

The relationships between roles in a collaboration diagram are called
association roles. These define the required communication links
between the roles in a collaboration.

Graphical notation

The graphical notation of an association will depend on the amount of
detail that has been added to describe it.

Figure 12 A simple association relationship

Figure 13 Association with role name, multiplicity,& navigation
70 Modeling Language Guide - Rational Rose RealTime

Association
Additional properties

You can assign a variety of additional properties to association
relationships. They include

� association name

� association ends

� association multiplicity

� navigability

� aggregation

� composition

� visibility

� qualifiers

� constraints

� association classes

� Actor communicates-association

� Connectors

Association Name

You can name associations to describe the nature of the relationship
between the elements it links. Although relationships can have names,
you won't necessarily need to include one if the association includes
association ends.

Association Ends

The end of an association where it connects to an element is called an
association end. End names can be used instead of association names
to describe the role an element plays in the relationship.

Association Multiplicity

It defines the number of objects that participate in an association
relationship. There are two multiplicity indicators for each association,
one at each end.
Modeling Language Guide - Rational Rose RealTime 71

Chapter 3 Relationships
Multiplicity is a specification of the range of allowable cardinalities that
a set may assume. The multiplicity is written as a range or as an
explicit value.

Navigability

The navigability property on an association end indicates that it is
possible to navigate from a associating class to the target class using
the association. This may be implemented in a number of ways: by
direct object references, by associative arrays, hash-tables, or any
other implementation technique that allows one object to reference
another. Navigability is indicated by an open arrow, which is placed on
the target end of the association line next to the target class (the one
being navigated to). The default value of the navigability property is
true.

Aggregation

Aggregation is a special form of association that specifies the whole-
part relationship between an aggregate (whole) and the component
(part). There are many examples of aggregation relationships: an
Elevator contains Doors, within a company Departments are made-up
of Employees, a Computer is composed of a number of Devices. To
model this, the aggregate (Elevator) has an aggregation association to
its constituent parts (Doors).

1 Exactly one

0..* Zero or more

1..* One or more

0..1 Zero or one

7..9 Specific range

6 A specific number
72 Modeling Language Guide - Rational Rose RealTime

Association
Graphical notation

A hollow diamond is attached to the end of an association path on the
side of the aggregate (the whole) to indicate aggregation.

Composition

If there is strong inter-dependency relationship between the aggregate
and the parts—where the definition of the aggregate is incomplete
without the parts—then a composition should probably be used
instead of a plain aggregation.

Aggregate or association?

Aggregation should be used only in cases where there is a composition
relationship between classes, where one class is composed of other
classes, where the "parts" are incomplete outside the context of the
whole. Consider the case of an order: it makes no sense to have an
order which is "empty" and consists of "nothing". The same is true for
all aggregates: Departments must have Employees, Families must have
Family Members, and so on.

If the classes can have independent identity outside the context
provided by other classes, and if they are not parts of some greater
whole, then the association relationship should be used. In addition,
when in doubt, an association may be more appropriate. Aggregations
are generally obvious, and choosing aggregation is only done to help
clarify. It is not something that is crucial to the success of the modeling
effort.

Composition

Composition is a form of aggregation with strong ownership and
coincident lifetime of the part with the aggregate. The multiplicity of the
aggregate end may not exceed one (i.e. it cannot be shared). The
aggregation is also unchangeable, that is once established, its links
cannot be changed. By implication, a composite aggregation forms a
“tree” of parts, with the root being the aggregate, and the “branches”
the parts.
Modeling Language Guide - Rational Rose RealTime 73

Chapter 3 Relationships
A composition should be used over “plain” aggregation when there is
strong inter-dependency relationship between the aggregate and the
parts; where the definition of the aggregate is incomplete without the
parts.

Graphical notation

A solid filled diamond is attached to the end of an association path to
indicate composition. In this example, the Customer Interface is
composed of several other classes. In this example the multiplicities of
the aggregations are also specified.

A CustomerInterface object knows which Receipt Printer, Keypad, and
Speaker objects belong to it.

Visibility

There are circumstances in which you will want to limit the visibility of
the association relative to elements outside the association.

The visibility property can be used to control the visibility of elements
owned by packages and the visibility of the features (attribute or
operation) of a classifier. Possible values are

� Public - public access specifies that any outside classifier with
visibility to classifier can use the feature. This is the default
visibility.

� Protected - protected access means that classifier features are
accessible only to descendants, friends, or to the classifier itself.

� Private - private access means that the features of the classifier are
accessible only to the classifier itself.

Qualifiers

Qualifiers are used to further restrict and define the set of instances
that are associated to another instance; an object and a qualifier value
identify a unique set of objects across the association, forming a
composite key. Qualification usually reduces the multiplicity of the
opposite end; the net multiplicity shows the number of instances of the
related class associated with the first class and a given qualifier value.
74 Modeling Language Guide - Rational Rose RealTime

Association
Qualifiers are drawn as small boxes on the end of the association
attached to the qualifying class. They are part of the association, not
the class. A qualifier box may contain multiple qualifier values; the
qualification is based on the entire list of values. A qualified association
is a variant form of association attribute.

Constraints

The basic constructs of associations, are usually sufficient in
describing most structural relationships you will encounter. But they
cannot describe them all. In UML, you can use constraints, on
association ends and associations, to capture important conditions of
the association. The constraint is an expression of some semantic
condition that must be preserved while the system is in a steady state.

Graphical notation

Constraints are shown in curly braces '{', '}'.

Implementing constraints

In practice, the constraints identified in the model should be verified in
your system. To be valuable, constraints shouldn't simply be a
modeling aid. An approach to implementing constraints is to use
assertions (if your programming language supports them) to verify post
conditions, pre-conditions, and invariants.

Association Classes

An association class is an association that also has class properties
(such as attributes, operations, and associations). It is shown by
drawing a dashed line from the association path to a class symbol that
holds the attributes, operations, and associations for the association.
The attributes, operations, and associations apply to the original
association itself. Each link in the association has the indicated
properties. The most common use of association classes is the
reconciliation of many-to-many relationships (see example below). In
principle, the name of the association and class should be the same,
but separate names are permitted if necessary. A degenerate
association class just contains attributes for the association; in this
case you can omit the association class name to de-emphasize its
separateness.
Modeling Language Guide - Rational Rose RealTime 75

Chapter 3 Relationships
Actor Communicates-Association

Use cases and actors interact by sending signals to one another. To
indicate such interactions we use a communicates-association
between use case and actor. A use case has at most one
communicates-association to each actor, and an actor has at most one
communicates-association to each use case, no matter how many
signal transmissions there are. The complete network of such
associations is a static picture of the communication between the
system and its environment.

Communicates-associations are not given names. Because there can
be only one communicates-association between a use case and an
actor, you need only specify the start and end points to identify a
particular communicates-association.

Connectors

Connectors really capture the key communication relationships
between capsule roles. They interconnect capsule roles that have
similar public interfaces, which are called ports. A key feature of
connectors is that they can only interconnect compatible ports.

Connectors only exist in the context of a capsule collaboration.
76 Modeling Language Guide - Rational Rose RealTime

Association
Graphical notation

A connector is shown as a line between ports in a collaboration
diagram.

Figure 14 A capsule collaboration shown with 3 capsule roles
connected with connectors

Capsule Class Aggregation and Composition Relationships

Relationships between capsule classes

Capsule roles in a class diagram are shown by composition
relationships between capsule classes. Depending on the attributes of
the capsule role (fixed, optional, or plug-in), the aggregation can be
shown as a composition. For example plug-in and optional capsule
roles are shown with aggregation relationships whereas fixed capsule
roles are shown with composition. The capsule role name is shown as
the end name of the association. Cardinality of the capsule role is also
displayed.
Modeling Language Guide - Rational Rose RealTime 77

Chapter 3 Relationships
Relationships between capsule classes and protocol classes

Ports can also be modeled in the class diagram using a stereotyped
<<port>> composition relationship between a protocol and a capsule
class. The port name is specified using the association end name. The
cardinality can also be specified.

Class diagram shows a different perspective

The decomposition of a capsule can also be shown in a capsule
collaboration. In addition to the information shown in the class
diagram the capsule collaboration diagram specifies the precise
interconnection topology between capsule roles, indicated by
connectors.

Example

The following diagrams show the same model, but it is shown from
both the class diagram and then the capsule collaboration diagram
perspectives.

Figure 15 Class diagram
78 Modeling Language Guide - Rational Rose RealTime

Realization
Realization

A realization relationship defines a contract between classifiers where
the contract is set of behaviors. There are two elements in the UML that
can be realized: interfaces and use cases. Simply put, interfaces and
use cases specify behavior without detailing the implementation. The
classifier who will realize the interface or use case is responsible for
providing the implementation.

Realizations are a good way of separating the specification from the
implementation.

Realization is a form of generalization, in which only behavior is
inherited.

Graphical notation

Realizations are represented as a cross between a dependency and
generalization as a hashed line with a large open arrowhead.

Realization of Use Cases

In an executing system, an instance of a use case does not correspond
to any particular object in the implementation model. Instead it
corresponds to a specific flow of events that is executed as sequence of
events between implementation objects.

By creating a society of classes and other elements that work together
to implement the behavior of the use case we realize a use case.

Note: The relationship between the use case and its realization may not
be visualized explicitly, although the tools that are used to manage your
models maintain this relationship.

Using interaction diagrams

Use cases are realized by describing its flow of events in interaction
diagrams. You should describe each flow variant in a separate diagram.
Start by describing the basic flow, then describe variants such as
exceptional flows, error handling, and time-out handling.
Modeling Language Guide - Rational Rose RealTime 79

Chapter 3 Relationships
Note: The focus of a system's architecture is to find the minimal set of
well-structured interactions for all use cases in a system.

Generalization

A generalization relationship between classes shows a relationship
between a general element, called the superclass or parent, and a more
specific element, called the subclass or child. With a generalization
relationship, the child will inherit all the structure and behavior
defined in the parent. The child may also add new structure or
behavior.

Graphical notation

A generalize relationship is a solid line with an arrowhead pointing to
the superclass.

Details

Generalization is a static relationship, meaning that it can only be
visualized in a class diagram or a use case diagram. In addition,
generalization can only link same types of elements. A capsule cannot
be a superclass of a class.
80 Modeling Language Guide - Rational Rose RealTime

Generalization
Actor Generalization

Several actors can play the same role in a particular use case. To make
the model clearer, you can represent the different kinds of users user
by subclassing. Each inherited actor represents one of the user's roles
relative to the system.

Include Relationship

The include-relationship connects a base use case to an inclusion use
case. The inclusion use case is always abstract. It describes a behavior
segment that is inserted into a use-case instance that is executing the
base use case. The base use case has control of the relationship to the
inclusion and can depend on the result of performing the inclusion,
but neither the base nor the inclusion may access each other's
attributes. The inclusion is in this sense encapsulated, and represents
behavior that can be reused in different base use cases.

Figure 16 Example includes relationship
Modeling Language Guide - Rational Rose RealTime 81

Chapter 3 Relationships
You can use the include-relationship to:

1. Factor out behavior from the base use case that is not necessary
for the understanding of the primary purpose of the use case, only
the result of it is important.

2. Factor out behavior that is in common for two or more use cases.

Extend Relationship

The extend-relationship connects an extension use case to a base use
case. It is used to model part of a use case that a user may see as
optional.

You can use the extensions for several purposes:

1. To show that a part of a use case is optional, or potentially
optional, system behavior. In this way, you separate optional
behavior from mandatory behavior in your model.

2. To show that a subflow is executed only under certain (sometimes
exceptional) conditions, such as triggering an alarm.

3. To show that there may be a set of behavior segments of which one
or several may be inserted at an extension point in a base use case.
It will depend on the interaction with the actors during the
execution of the base use case which of the behavior segments are
inserted and in what order.

The specialization is conditional, which means its execution is
dependent on what has happened while executing the base use case.
The base use case does not control the conditions for the execution of
the specialization, those conditions are described within the extend-
relationship. The specialization use case may access and modify
attributes of the base use case. The base use case, however, cannot see
the specializations and may not access their attributes. The base use
case is implicitly modified by the specializations. You can also say that
the base use case defines a modular framework into which
specializations can be added, but the base does not have any visibility
82 Modeling Language Guide - Rational Rose RealTime

Dependency
of the specific specializations. The base use case should be complete in
and of itself, meaning that it should be understandable and
meaningful without any references to the specializations. However, the
base use case is not independent of the specializations, since it cannot
be executed without the possibility of following the specializations.

Dependency

A dependency relationship is used to specify that a change in the
specification of one element may affect another element that uses it,
but not necessarily the reverse. Dependency relationships are used to
model dependencies that have not been implicitly captured by the
other types of relationships in your model.

Graphical notation

A dependency relationship is a dotted line with an arrowhead at one
end. The arrowhead points to the supplier class. In this example,
Element B is dependent on class A.

Applications

Dependency relationships can have different shades of meaning
depending on which elements are part of the relationship. The different
meanings can be shown in your diagram by applying stereotypes to the
relationship.

Example uses:

1. A client class accesses a value, constant or variable, defined in a
supplier class/interface (class diagram).

2. An operations of a client class invoke operations of a supplier
class/interface (class diagram).

3. Operations of a client class have signatures whose return class or
arguments are instances of a supplier class/interface (class
diagram).
Modeling Language Guide - Rational Rose RealTime 83

Chapter 3 Relationships
4. A component requires a compilation dependency on another
component (component diagram).

5. A use case includes or extends another use case (use case
diagram).

6. To show the layering of a system, you can add dependencies
between packages.

Component-Dependency Relationship

An important use of a dependency relationship is to represent
compilation dependencies between components. A compilation
dependency exists from one component to the components that are
needed to compile the component. In C++, for example, the compilation
dependencies are indicated with #include statements. In Ada,
compilation dependencies are indicated by the with clause. In Java the
compilation dependency is indicated by the import statement. In
general there should be no cyclical compilation dependencies.
84 Modeling Language Guide - Rational Rose RealTime

Chapter 4

Diagrams

Diagrams allow you to assemble related collections of elements
together into a graphical depiction of all or part of a model. Each
diagram provides a view into the elements that make up your model.
In this way the user of the model can decide to see only the views of the
underlying model that are of interest.

Important visual relationships

Although each type of diagram shows different views of the model, they
all show common relationships between the elements. The most
important of these relationships are:

� Connections - provide some clue as to the relationships between
elements.
Modeling Language Guide - Rational Rose RealTime 85

Chapter 4 Diagrams
� Containments - are shown as symbols with a boundary. For
example, a capsule’s collaboration is shown as a box with a heavy
border to represent the boundary of the capsule. Capsule roles
within the boundary are contained by the capsule. And elements
placed directly on the boundary are interface elements, visible from
outside the element.

� Visual attachment - symbols being near or far from one another,
for example, represent layering in a system.

Structure
� “Class Diagram” on page 88 (static structure) - is a high level

generalization of a system that shows a set of elements and their
general relationships.

� “Collaboration Diagram” on page 91 (dynamic structure) - captures
a desired pattern of interactions between a set of objects,
emphasizing the structural organization of the objects.

� “Component Diagram” on page 97 - captures the static
implementation view of a system.

� “Deployment Diagram” on page 99 - captures the configuration of
run-time processing nodes and the components that run on them.

Behavior
� “Sequence Diagram” on page 95 - captures interactions between a

set of objects, emphasizing the logical ordering of messages.

� “State Diagram” on page 91 - captures the dynamic aspects of an
event-driven system, and is best used for modeling the behavior of
event-driven classes.

� “Use Case Diagram” on page 87 - captures the context and
intended behavior of the system, a subsystem, or a class.
86 Modeling Language Guide - Rational Rose RealTime

Use Case Diagram
Real-time specialization

In addition to the base UML diagrams, the “Capsule Structure
Diagram” on page 93 is a specialized form of the collaboration diagram
with formal semantics that enable complete code generation:

� “Capsule Structure Diagram” on page 93 - captures structural
patterns that specify the communication relationships between a
capsule's objects. The communication takes place in order to
accomplish a task, or the behavior of the capsule. The diagram also
shows the interface elements of a capsule.

Use Case Diagram

A use case diagram shows actors and use cases together with their
relationships. The individual use cases represent functionality, or
requirements of functionality of a system, a class, or a capsule.

Use case diagrams can be organized into (and owned by) use case
packages, showing only what is relevant within a particular package.

It is recommended that you include each actor, use case, and
relationship in at least one of the diagrams. If it makes the use case
model clearer. They can be part of several diagrams and you can show
them several times in the same diagram.

Graphical notation

A use case diagram is a graph of actors, use cases, use case packages,
and the relationships between these elements.
Modeling Language Guide - Rational Rose RealTime 87

Chapter 4 Diagrams
Example

Class Diagram

Class diagrams show the static structure of the model. Although it is
called a class diagram, it may also contain other elements besides
classes that exist in a model, such as capsules, protocols, packages,
their internal structure, and their relationships to other elements.
Class diagrams do not show temporal information.

Class diagrams may be organized into (and owned by) packages, but
the individual class diagrams are not meant to represent the actual
divisions in the underlying model. A package may then be represented
by more then one class diagram.

A model element can appear in more than one class diagram.

Graphical notation

The basic notation for elements in a class diagram is using a solid-
outline rectangle with three compartments separated by a horizontal
line. The top compartment is used to display the name of the element,
and other optional properties such as stereotypes and icons. The
bottom compartments, or list compartments, are used to show string
representations of an elements features. For example operations and
88 Modeling Language Guide - Rational Rose RealTime

Class Diagram
attributes are commonly represented. However, other optional list
compartments can show other features. For example, a capsule has a
list compartment for ports and capsule roles.

Relationships are shown as lines connecting two element symbols in
the diagram. The lines may have a number of graphical representations
to show their properties.

Example

The following class structures are suitable for illustration in class
diagrams, but you will not use all of them in all situations. Each class
structure should have its own class diagram.

1. The most important classes and their relationships. Diagrams of
this type can function as an object model summary and are of
great help in reviewing the model. These diagrams are likely to be
included in the logical view of the architecture.

2. Functionally related or coherent classes.

3. Classes that belong to the same package.

4. Important aggregation hierarchies.

5. Important structures of entity objects, including class structures
with association, aggregation and generalization relationships. If
possible you should create a class diagram that contains all the
classes of the long-lived objects and their relationships. This kind
of diagram is especially useful in reviewing what is stored in the
system, and the storage structures.

6. Packages and their dependencies, possibly illustrating their
layering.

7. Classes that participate in a specific use-case realization.

8. A single class, its attributes, operations, and relationships with
other classes.
Modeling Language Guide - Rational Rose RealTime 89

Chapter 4 Diagrams
Figure 17 A class diagram showing Aggregation hierarchies
90 Modeling Language Guide - Rational Rose RealTime

State Diagram
State Diagram

A state diagram shows the sequence of states that an object or an
interaction goes through during its life in response to received
messages, together with its responses and actions. A state machine is
a graph of states and transitions that describes the response of an
object of a given class to the receipt of outside stimuli. State diagrams
show a state machine and are especially useful in modeling event-
driven systems.

Graphical notation

A statechart diagram represents a state machine. The states are
represented by state symbols and the transitions are represented by
arrows connecting the state symbols. States may also contain
subdiagrams, or other state machines that represent different
hierarchical state levels.

Example

Collaboration Diagram

Collaboration diagrams show the communication patterns among a set
of objects or roles to accomplish a specific purpose. The diagram can
be shown in two different forms: either a specification level (showing
classifier roles, association roles, and messages) or at the instance level
(showing objects or instances, links, and stimuli).
Modeling Language Guide - Rational Rose RealTime 91

Chapter 4 Diagrams
Collaborations are the constraining element to a set of sequences. The
sequences show all the different communication scenarios that can
occur between the instances or roles in the collaboration, while the
collaboration shows the connection topology between the elements.

To model the explicit time related sequence of interactions between
objects, use a sequence diagram.

It is important to understand that a collaboration defines a set of
interactions that are meaningful for a given purpose, for example, to
accomplish a certain task. However, a collaboration does not identify a
global relationships between model elements.

Roles and objects

The participants in a collaboration define the roles that objects play in
an interaction. The role describes the type of object that can play the
role, such as an object with the required interface.

Graphical notation

A collaboration is shown as a graph of classifier roles together with
connected lines called association roles. Normally, only the name of the
compartment is shown. The name compartment contains the string:

role name : classifier name

A communication relationship can be shown between roles in a
collaboration by adding an association role, a solid line connecting two
role boxes.
92 Modeling Language Guide - Rational Rose RealTime

Capsule Structure Diagram
Example

A collaboration may be attached to a class or a use case to describe the
context in which their behavior occurs. For example, by showing the
roles objects play to perform the behavior of a use case or operation.

A collaboration can also be used to formally specify the composite
structure of a capsule. This specialized collaboration, called a capsule
structure, shows roles or capsule roles, and their connectors. In
addition, the collaboration visually shows the capsules interfaces by
placing them on the boundary of the collaboration.

Capsule Structure Diagram

A capsule structure diagram is a specialized collaboration diagram.
This diagram is used for the same purpose as the general collaboration,
that is to specify a pattern of communication between objects. However
in a capsule structure the communication pattern is owned by a
particular capsule and represents the composite structure of its
capsule roles, ports, and connectors.

It is important to understand that a capsule structure defines a set of
interactions that are meaningful for a given purpose, that is for the
implementation of it's behavior (e.g. a capsules behavior is actually the
composite behavior of all its components). However the collaboration
does not identify global relationships between its capsule role.
Modeling Language Guide - Rational Rose RealTime 93

Chapter 4 Diagrams
Differences between a general collaboration and a capsule
structure

� capsule roles - The roles in a capsule structure are restricted to
capsule roles; association roles are not allowed. When a capsule
role is shown in a capsule structure diagram, its public ports are
shown. This allows connectors to be created between capsule roles.

Note: You can model the collaboration of a capsule's attributes that
are not capsule classes by using a normal collaboration diagram.

� ports - Since capsules communicate with each other via ports (and
not operation invocation), a capsule structure shows a capsule’s
ports. Ports can be placed on the boundary of the collaboration to
show that they are externally visible (public interfaces), or
contained within the boundary to show that they are protected (not
accessible from outside the capsule).

� capsule boundary - A capsule structure diagram shows a visual
representation of the capsule’s encapsulation shell. This shell
shows both the implicit containment relationship between capsule
roles and a capsule, and visually identifies the ports which are
interfaces.

� connectors - In a general collaboration communication between
objects is modeled using an association role between two classifier
roles. In a capsule structure, communication relationships are
explicitly shown between capsule ports.

� code generation - A capsule's collaboration is a formal specification
which allows for the source code implementation to be
automatically generated. The semantics of a general collaboration
are not formal enough to result in automatic code generation.

Graphical notation

A capsule structure is shown as a box with a heavy border, which
represents the capsule’s boundary. Capsule roles are shown inside the
boundary as composite parts. Ports are shown as rectangles and
connectors as solid lines connecting ports.
94 Modeling Language Guide - Rational Rose RealTime

Sequence Diagram
Example

The following capsule structure shows the capsule roles which make
up a control center switching software.

Figure 18 Capsule structure diagram example

Sequence Diagram

An interaction is a pattern of communication among objects at run-
time. A sequence diagram is used to show this interaction from the
perspective of showing the explicit ordering messages. Sequence
diagrams are often used to show specific communication scenarios of
a collaboration.
Modeling Language Guide - Rational Rose RealTime 95

Chapter 4 Diagrams
Sequence diagrams are particularly important to designers because
they clarify the roles of objects in a flow and thus provide basic input
for determining class responsibilities and interfaces.

Graphical notation

A sequence diagram has two dimensions, the vertical dimension
represents time, and the horizontal dimension represents the different
objects in the interaction.

Object box

In a sequence diagram each object that participates in the interaction
is represented by a rectangular box at the top of the diagram. The name
field maps to the name of an object which conforms to a role in a
collaboration.

Lifelines

These are the dashed vertical lines that descend from the object box.
They represent the existence of the object at a particular time. When
an object is created or destroyed, then its lifeline start or stops at the
appropriate point. The object symbol is drawn at the top of the lifeline.
If the object is destroyed, then its destruction is marked on the lifeline
by a large 'X'.

Focus of control

An activation, or focus of control, shows the period during which an
object is performing an action. It represents both the duration of the
action and the control relationship between the activation and its
callers.

Messages

A message is the specification of a communication between objects that
convey information with the expectation that activity will occur upon
receipt. A message instance is shown as a line from the lifeline of one
object to the lifeline of another. In the case of a message sent by an
object to itself, the arrow may start and finish on the same lifeline. The
arrow is named with the name of the message. The arrow head of the
message can be shown in different ways to convey the different types
of message communication.
96 Modeling Language Guide - Rational Rose RealTime

Component Diagram
Example
Figure 19 An abbreviated call setup scenario

Component Diagram

A component diagram shows the dependencies among software
components. A software module may be represented as a component.
Some components exist at compile time, some exist at link time, some
exist at run time, and some exist at more than one time. A compile-only
component is one that is only meaningful at compile time. The run-
time component in this case would be an executable program. A
component diagram has only a type form, not an instance form. To
show component instances, use the deployment diagram.
Modeling Language Guide - Rational Rose RealTime 97

Chapter 4 Diagrams
Graphical notation

A component diagram is a graph of components connected by
dependency relationships. Components can be connected to
components by physical containment representing composition
relationships. Components can also be organized in component
packages. Component diagrams contain:

� component packages

� components

� dependency relationships

You can create one or more component diagrams to depict the
component packages and components at the top level of the
component view, or to depict the contents of each component package.
Such component diagrams belong to the component package that they
depict.

Example
Figure 20 Example Component diagram
98 Modeling Language Guide - Rational Rose RealTime

Deployment Diagram
Deployment Diagram

The deployment diagram provides a basis for understanding the
physical distribution of the run-time processes across a set of
processing nodes. There is only one deployment view of the system.
Nodes may contain component instances, which indicates that the
component runs on the node.

Graphical notation

A deployment diagram is a graph of nodes connected by a
communication association called a connection. The deployment
diagram is used to show which components will run on which nodes.

Example
Figure 21 Example Deployment diagram
Modeling Language Guide - Rational Rose RealTime 99

Index
A
Actions 45
actions 45

blocking 46
Notation 45

Actions, messages, and events 45
actor

generalization 81
Actor generalization 81
Actors 19

graphical notation 20
relationships 20

Additional properties 70
Aggregate or association? 73
Aggregation 72
aggregation 72

Graphical notation 73
Annotational 18
Association 70

class 27
roles 71

association 70
Additional properties 71
aggregation 72
composition 73
Modeling Language Guide - Rational Rose RealTime

ends 71
Graphical notation 70
multiplicity 71
name 71
navigability 72
roles 70

Association class 27
association class 27, 75

Graphical notation 27
Association ends 71
Attributes 25
attributes 25

Changeability properties 25
private (capsules) 31

B
Behavioral 18
Binary protocols 39
Blocking actions 46
Building blocks 10

C
Call event 46
call event 46

flow of control 46
 101

Index
Capsule aggregation and composition re-
lationships 77

Capsule class aggregation and composi-
tion relationships 77

capsule collaboration and general collab-
oration, differences between 94

Capsule collaboration diagram 93
Capsule roles 33
capsule roles 33

Cardinality 34
Substitutability 34

capsule structure diagram 93
capsule boundary 94
capsule roles 94
code generation 94
connectors 94
Differences between a general collab-

oration and a capsule collabo-
ration 94

Example 95
Graphical Notation 94
ports 94

Capsules 30
capsules 30

aggregation & composition-relation-
ship 33

association 33
Behavior 32
connector 33
dependency-relationship 33
generalization-relationship 33
Graphical notation 32
Logical threads of control 32
message passing 31
private attributes 31
public ports 31
102 M

Relationships 33
roles 33
Structure 31

Capsules and ports 11
cardinality 40

capsule roles 34
Common structural patterns 41
rules for capsule roles 40
unspecified 40

Cardinality and capsule structure 40
cardinality and ports 40
Cardinality rules for capsule roles 40
choice point 61

example 62
Graphical notation 62

Choice points 61
class 23

Behavior 23
Graphical notation 24
instantiated 29
parameterized 28
parameterized utility 30
Persistence 23
Standard stereotypes of classes 23
Structure 23
utility 27

Class diagram 78
Class diagram shows a different perspec-

tive 78
class utility

instantiated 28
parameterized 30

Classes 23
Classification of capsule roles 33
Collaboration diagram 91

Example 93
odeling Language Guide - Rational Rose RealTime

Index
Graphical Notation 92
Roles and objects 92

Common structural patterns 41
communication rules for ports 35
Component diagram 97
component diagram 97

Example 98
graphical notation 98

Component instances 66
Component-dependency relationship 84
component-dependency Relationship 84
Components 65
components 65

Mapping from logical to physical 66
Organization 66
Relationships 66

Composition 73
composition 73

Graphical notation 74
Concrete and abstract use cases 21
Concurrency 11
concurrency

simplifying 53
use case 22

Connections 85
Connectors 76
connectors 76

Graphical notation 77
Containments 86
Continuation kinds - shallow history,

deep history and default 56

D
Dependency 83
dependency 83
Modeling Language Guide - Rational Rose RealTime

Applications 83
example uses 83
Graphical notation 83

Dependency relationship 83
Deployment diagram 99
deployment diagram 99

Example 99
Graphical Notation 99

deployment diagram, a simple 67
Diagrams

Capsule collaboration 93
Collaboration 91
Component 97
Deployment 99

diagrams
Behavior 86
capsule structure 93
component 97
deployment 99
important visual relationships 85
real-time specialization 87
sequence 95
state 91
Structure 86

Differences between a general collabora-
tion and a capsule collaboration
94

E
End ports 36
event

call 46
signal 46

events 45
Example 56, 89
 103

Index
Example includes relationship 81
Example state diagram 48
Example uses

 83
Executable Models 13
Extend Relationship 82
external incoming junction 60
external junction 60
external outgoing junction 60

F
final state 55
flow of control

call event 46
signal event 47

flow of events 20
Documenting 21
Structure 21

G
general collaborations and capsule col-

laboration, differences between
94

Generalization 80
generalization

actor 81
Details 80
Graphical notation 80
relationships 80

Graphical notation 19, 20
Group transitions 57
group transitions 57
Grouping 18
guarded condition (trigger) 51
104 M

H
Hierarchical State Machines 55
Hierarchical states 49
History - hierarchical state machines 55
history, an example use of 56

I
Include relationship 81
include relationship 81
initial

point 54
transition 54

Initial point and initial transition 54
initial state

transition from 54
Initial state and initial transition 54
initial transition

Graphical notation 55
none 54

instance
use case 22

Instantiated class 29
instantiated class 29

Graphical notation 29
Instantiated class utility 28
instantiated class utility 28

Graphical notation 28
Interactions 64
interactions 64
Interfaces 24
interfaces 24

Graphical notation 24
internal junction 60
odeling Language Guide - Rational Rose RealTime

Index
J
Joining transition segments 58
junction point

continuation 58
Continuing junctions 60
Graphical notation 59
joining transition segments 58
terminating junction types 61
transition segments 58

Junction points 52, 57
junction points 57

L
logical threads 32

M
message passing

capsules 31
messages 45

sequence diagram 96
Modeling Language Reference 9
Modeling language Reference 9
Multiple containment 42

example 44
Multiple containment example 44
multiplicity

association 71

N
Nodes 66
nodes 66

Connections 67
Notation 88
Notes 68
Modeling Language Guide - Rational Rose RealTime

notes 68
Graphical notation 68
Relationships 68

O
Operations 25
operations 25

Class or instance 26
Have Parameters 26
Properties 26

Other features 19

P
package 67

Content Visibility 67
overview 67

Packages 67
packages

use case 22
Parameterized class 28
parameterized class 28

Graphical notation 29
Parameterized utility class 30
parameterized utility class 30

Graphical notation 30
Persistence 23
point

initial 54
Ports 34
ports 34

classification of 35
Communication rules 35
Connector type 36
End 36
 105

Index
Graphical notation 36
Non-wired 36
public 31
Relay 36
Termination 36
Visibility 35
Wired 36

Ports and protocols 35, 39
Protocol participants (protocol roles) 39
protocols 38

binary protocols 39
Graphical notation 40
participants (protocol roles) 39

public ports 31
Purpose 10

Q
qualifiers 74

R
Realization 79
realization 79

Graphical notation 79
of use cases 79
Using interaction diagrams 79

Realization of use cases 79
Real-time extension 69
Real-time extension to UML 10
Real-time notations 69
Real-time notations to UML 10
Real-time specialization 87
Real-Time Specializations Overview 12
Relationships 19, 20, 66, 69
106 M

relationships 69
actor communicates-Association 76
aggregation 72
association 70
association classes 75
capsule class aggregation 77
component-Dependency 84
composition 73, 77
connectors 76
constraints 75
dependency 83
Example 78
extend 82
generalization 80
include 81
qualifiers 74
realization 79
visibility 74

Relationships between capsule classes 77
Relationships between capsule classes

and protocol classes 78
relay ports 36
Run-to-completion 53
run-to-completion 53

Simplifying concurrency 53

S
Sequence diagram 95
sequence diagram

Example 97
Focus of control 96
Graphical Notation 96
Lifelines 96
Messages 96
Object box 96
odeling Language Guide - Rational Rose RealTime

Index
Signal event 46
signal event 46

flow of control 47
State diagram 91
state diagram 91

Example 91
graphical notation 91

State machine 47
state machine 47

Events and signals 47
Overview 48
variations 47

State Machines
Hierarchical 55

States 49
states 49

Entry and Exit actions 49
External view 50
final 55
Graphical notation 49
hierarchical 49
Internal view 50
top 55

Structural 18
Structural patterns with cardinality 41
structural patterns, common 41
Substitutability 41
substitutability 41

rules 42
Support for real-time systems 11

T
Terminating junctions (to history) 61
threads

control (capsules) 32
Modeling Language Guide - Rational Rose RealTime

Top state 55
top state 55
transition 51

Actions 51
Example 64
Graphical notation 53
group 57
Guard Condition 51
initial 54
junction points 52
selection rules 63
to and from the initial state 54
Trigger 51
types 52

Transition segments 58
Transition selection rules 63
Transitions 51
trigger 51

U
Unspecified cardinality 40
Use Case

concurrency 22
Graphical Notation 87
instance 22
packages 22

Use case concurrency 22
Use Case diagram

diagrams
Use Case 87

Example 88
Use case diagram 87
Use case instance 22
Use case packages 22
 107

Index
Use Cases
abstract 21
concrete 21
graphical notation 19
other features 19
relationships 19

Use cases 18
Utility class 27
utility class 27

Graphical notation 27

V
visibility 74
Visual attachment 86

W
When to use multiple containment? 43
wired ports 36
108 M

odeling Language Guide - Rational Rose RealTime

	Modeling Language Guide
	Modeling Language Guide
	Real-time Notations to UML
	Purpose
	Building Blocks
	Real-Time Systems
	Support for real-time systems
	Concurrency
	Capsules and Ports
	Capsule Structure Diagrams
	Real-Time Specializations Overview
	Executable Models
	Services Library
	Further Reading

	Elements
	Structural
	Behavioral
	Grouping
	Annotational
	Use Cases
	Actors
	Flow of Events
	Concrete and Abstract Use Cases
	Use Case Instance
	Use Case Packages
	Use Case Concurrency
	Classes
	Interfaces
	Attributes
	Operations
	Association Class
	Utility Class
	Instantiated Class Utility
	Parameterized Class
	Instantiated Class
	Parameterized Utility Class
	Capsules
	Capsule Roles
	Ports
	Protocols
	Cardinality and Capsule Structure
	Substitutability
	Multiple Containment
	Actions, Messages, and Events
	Actions
	Call Event
	Signal Event
	State Machine
	Events and signals
	State machine variations
	Overview

	States
	Transitions
	Run-to-Completion
	Initial Point and Initial Transition
	Final State
	Top State
	History - Hierarchical State Machines
	Group Transitions
	Junction Points
	Choice Points
	Transition Selection Rules
	Interactions
	Components
	Nodes
	Packages
	Notes

	Relationships
	Real-time Notations
	Association
	Association Name
	Association Ends
	Association Multiplicity
	Navigability
	Aggregation
	Composition
	Visibility
	Qualifiers
	Constraints
	Association Classes
	Actor Communicates-Association
	Connectors
	Capsule Class Aggregation and Composition Relationships

	Realization
	Realization of Use Cases

	Generalization
	Actor Generalization
	Include Relationship
	Extend Relationship

	Dependency
	Component-Dependency Relationship

	Diagrams
	Important visual relationships
	Structure
	Behavior
	Real-time specialization
	Use Case Diagram
	Class Diagram
	State Diagram
	Collaboration Diagram
	Capsule Structure Diagram
	Sequence Diagram
	Component Diagram
	Deployment Diagram

	Index

