
Rational Software Corporation
User’s Guide
RATIONAL QUALITY ARCHITECT REALTIME EDITION

VERSION: 2002.05.20 

PART NUMBER: 800-025107-000
support@rational.com
http://www.rational.com

WINDOWS/UNIX





IMPORTANT NOTICE

COPYRIGHT 

Copyright ©1993-2002, Rational Software Corporation. All rights reserved. 

Part Number: 800-025107-000

Version Number: 2002.05.20

PERMITTED USAGE

THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION WHICH IS THE 
PROPERTY OF RATIONAL SOFTWARE CORPORATION (“RATIONAL”) AND IS 
FURNISHED FOR THE SOLE PURPOSE OF THE OPERATION AND THE 
MAINTENANCE OF PRODUCTS OF RATIONAL. NO PART OF THIS 
PUBLICATION IS TO BE USED FOR ANY OTHER PURPOSE, AND IS NOT TO BE 
REPRODUCED, COPIED, ADAPTED, DISCLOSED, DISTRIBUTED, 
TRANSMITTED, STORED IN A RETRIEVAL SYSTEM OR TRANSLATED INTO 
ANY HUMAN OR COMPUTER LANGUAGE, IN ANY FORM, BY ANY MEANS, IN 
WHOLE OR IN PART, WITHOUT THE PRIOR EXPRESS WRITTEN CONSENT OF 
RATIONAL.

TRADEMARKS

Rational, Rational Software Corporation, Rational the e-development company, 
ClearCase, ClearCase Attache, ClearCase MultiSite, ClearDDTS, ClearQuest, 
ClearQuest MultiSite, DDTS, Object Testing, Object-Oriented Recording, ObjecTime 
&amp; Design, Objectory, PerformanceStudio, ProjectConsole, PureCoverage, 
PureDDTS, PureLink, Purify, Purify'd, Quantify, Rational, Rational Apex, Rational 
CRC, Rational Rose, Rational Suite, Rational Summit, Rational Visual Test, Requisite, 
RequisitePro, RUP, SiteCheck, SoDA, TestFactory, TestFoundation, TestMate, The 
Rational Watch, AnalystStudio, ClearGuide, ClearTrack, Connexis, e-Development 
Accelerators, ObjecTime, Rational Dashboard, Rational PerformanceArchitect, 
Rational Process Workbench, Rational Suite AnalystStudio, Rational Suite 
ContentStudio, Rational Suite Enterprise, Rational Suite ManagerStudio, Rational 
Unified Process, SiteLoad, TestStudio, VADS, among others, are either trademarks or 
registered trademarks of Rational Software Corporation in the United States and/or 
in othercountries.All other names are used for identification purposes only, and are 
trademarks or registered trademarks of their respective companies.

Microsoft, the Microsoft logo, Active Accessibility, Active Channel, Active Client, 
Active Desktop, Active Directory, ActiveMovie, Active Platform, ActiveStore, 
ActiveSync, ActiveX, Ask Maxwell, Authenticode, AutoSum, BackOffice, the 
BackOffice logo, BizTalk, Bookshelf, Chromeffects, Clearlead, ClearType, CodeView, 
Computing Central, DataTips, Developer Studio, Direct3D, DirectAnimation, 
DirectDraw, DirectInput, DirectMusic, DirectPlay, DirectShow, DirectSound, DirectX, 
DirectXJ, DoubleSpace, DriveSpace, FoxPro, FrontPage, Funstone, IntelliEye, the 



IntelliEye logo, IntelliMirror, IntelliSense, J/Direct, JScript, LineShare, Liquid Motion, 
the Microsoft eMbedded Visual Tools logo, the Microsoft Internet Explorer logo, the 
Microsoft Office Compatible logo, Microsoft Press, the Microsoft Press logo, Microsoft 
QuickBasic, MS-DOS, MSDN, Natural, NetMeeting, NetShow, the Office logo, One 
Thumb, OpenType, Outlook, PhotoDraw, PivotChart, PivotTable, PowerPoint, 
QuickAssembler, QuickShelf, Realmation, RelayOne, Rushmore, SourceSafe, 
TipWizard, TrueImage, TutorAssist, V-Chat, VideoFlash, Virtual Basic, the Virtual 
Basic logo, Visual C++, Visual FoxPro, Visual InterDev, Visual J++, Visual SourceSafe, 
Visual Studio, the Visual Studio logo, Vizact, WebBot, WebPIP, Win32, Win32s, Win64, 
Windows, the Windows CE logo, the Windows logo, Windows NT, the Windows Start 
logo, and XENIX are trademarks or registered trademarks of Microsoft Corporation in 
the United States and other countries.

FLEXlm and GLOBEtrotter are trademarks or registered trademarks of GLOBEtrotter 
Software, Inc. Licensee shall not incorporate any GLOBEtrotter software (FLEXlm 
libraries and utilities) into any product or application the primary purpose of which is 
software license management.

Portions Copyright ©1992-2002, Summit Software Company. All rights reserved.

PATENT

U.S. Patent Nos.5,193,180 and 5,335,344 and 5,535,329 and 5,835,701. Additional 
patents pending.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

GOVERNMENT RIGHTS LEGEND 

Use, duplication, or disclosure by the U.S. Government is subject to restrictions set 
forth in the applicable Rational Software Corporation license agreement and as 
provided in DFARS 277.7202-1(a) and 277.7202-3(a) (1995), DFARS 
252.227-7013(c)(1)(ii) (Oct. 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR 227-14, 
as applicable.

WARRANTY DISCLAIMER 

This document and its associated software may be used as stated in the underlying 
license agreement. Rational Software Corporation expressly disclaims all other 
warranties, express or implied, with respect to the media and software product and its 
documentation, including without limitation, the warranties of merchantability or 
fitness for a particular purpose or arising from a course of dealing, usage, or trade 
practice.

 



Contents
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Audience. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Other Resources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Contacting Rational Technical Publications  . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Contacting Rational Technical Support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 Introduction to Rational Quality Architect RealTime (RQA-RT)  . .11
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

RQA-RT Add-In Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Capsule Under Test  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Specification Sequence Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Model Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Approaches to using Rational Quality Architect RealTime 
(RQA-RT)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Scenario-Based Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Specification Verification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Specification-Based Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Regression Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Debugging Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Creating Specification Sequence Diagrams . . . . . . . . . . . . . . . . . .25
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Understanding Rational Quality Architect (RQA-RT) . . . . . . . . . . . . . . . . . . 25

Manually Creating Specification Sequence Diagrams . . . . . . . . . . . . . . . . . 26
Creating a New Specification Sequence Diagram . . . . . . . . . . . . . . . . . . . . . . . 27
Adding Instances One at a Time  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Adding all Instances at Once . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Adding Instances Manually. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Contents v



Specifying Replicated Capsule Instances  . . . . . . . . . . . . . . . . . . . . . . . . . . .31

Automatically Generating Specification Sequence Diagrams  . . . . . . . . . . . .32
Automatically Generating Specification Sequence Diagrams using the RQA-RT 

Add-In  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Automatically Generating Specification Sequence Diagrams using the Message 

Trace feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Creating Capsule Unit Test Specification Sequence Diagrams  . . . . . . . . . . . . . 33

Unit Testing a Capsule  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34

4 Customizing your RQART Sequence Diagram  . . . . . . . . . . . . . . . 35
Modifying Capsule Behavior with Message Flows . . . . . . . . . . . . . . . . . . . . .35

Adding Messages to a Specification Sequence Diagram . . . . . . . . . . . . . . . . . . 36
Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Passing an Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
Passing an Object with the String Field  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

Port  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Message Priority. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Message Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Composite Message Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43

Coregions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Getting the Most Out of Your Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . .46
Using Driver and Stub Behavior to Simulate Your Test. . . . . . . . . . . . . . . . . . . . 46

Integrating Capsules into a Sequence Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
Integrating Capsule Roles into a Sequence Diagram . . . . . . . . . . . . . . . . . . . . . . . . .47

Generating Behavior for a Driver  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Allowing Path Elements to be Drivers in a Containment Hierarchy. . . . . . . . . . . . . . .47

Using Collaboration Diagrams to Capture the Test Environment . . . . . . . . . . . . 49
Sequence Diagrams and Model Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49

Making the Container a Driver  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Interaction Instance RQA-RT Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Local Action  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Send Message Sender / Receiver Code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Race Condition Analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
Race Condition Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Prior Messages and Subsequent Messages  . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
vi Contents



5 Verifying Specification Sequence Diagrams  . . . . . . . . . . . . . . . . . 59
Running a Verification  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59

Verifying Multiple Specification Sequence Diagrams . . . . . . . . . . . . . . . . . . . . . 63
Running Verification on a Capsule Subclass . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

RQA-RT Options Dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64

Verification Run Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71

Verify Behavior Results  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
Summary Sequence Diagrams  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Trace Sequence Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Models Under Source Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 Inspecting Rational Quality Architect - RealTime (RQA-RT) Results
77

Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77

Comparison Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78
System Ports  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Framework Components  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Troubleshooting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Standalone Differencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81
Sequence Diagram Differencing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Verifying a Trace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Troubleshooting and Known Issues for RQA-RT . . . . . . . . . . . . . . . . . . . . . .82
Driver Methods for Sending Messages to the Log and Custom Comparison  . . 82
Lost Information in To Port for a Message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Do not use -runScriptAndQuit when running RQA-RT from a script  . . . . . . . . . 82
Creation of Container Capsules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Converting MSCs in Rational Rose RealTime using the RQA-RT. . . . . . . . . . . 83
Creating Messages and Sequence Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Sending Message Specification Data Field Format for Java . . . . . . . . . . . . . . . 84
Limitations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7 RQA-RT Batch Mode Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . 87
Introduction to Batch Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87

Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87

Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90
Example using Summit Basic Script  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Contents vii



8 ObjecTime Developer to Rational Rose RealTime Migration . . . . 95
Conversion Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95

Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
viii Contents



Preface
This manual provides an introduction to Rational Quality Architect RealTime 
(RQA-RT). The User’s Guide extends Rational Rose RealTime’s design automation 
capabilities to model, debug, and test. You can automatically generate complete unit 
and integration test harnesses directly from sequence diagram specifications. 

Audience

This guide is intended for all readers, including managers, project leaders, analysts, 
developers, and testers.

Other Resources

� Online Help is available for Rational Rose RealTime. 

Select an option from the Help menu.

All manuals are available online, either in HTML or PDF format. To access the 
online manuals, click Rose RealTime Online Documentation from the Start menu. 

� For more information on training opportunities, see the Rational University Web 
site: http://www.rational.com/university.

Contacting Rational Technical Publications

To send feedback about documentation for Rational products, please send e-mail to 
our Technical Documentation Department at techpubs@rational.com.
ix



Contacting Rational Technical Support

If you have questions about installing, using, or maintaining this product, contact 
Rational Technical Support.

Note:  When you contact Rational Technical Support, please be prepared to supply the 
following information:

� Your name, telephone number, and company name 
� Your computer’s make and model
� Your computer’s operating system and version number
� Product release number and serial number
� Your case ID number (if you are following up on a previously-reported problem)

Your Location Telephone Fax E-mail

North America (800) 433-5444
(toll free)

(408) 863-4000
Cupertino, CA

(781) 676-2460
Lexington, MA

support@rational.com 

Europe, Middle 
East, Africa

+31 (0) 20-4546-200
Netherlands

+31 (0) 20-4546-202
Netherlands

support@europe.rational.com 

Asia Pacific +61-2-9419-0111
Australia

+61-2-9419-0123
Australia

support@apac.rational.com 
x Preface



1Introduction to Rational 
Quality Architect 
RealTime (RQA-RT)
Contents

This chapter is organized as follows:

� Overview on page 11
� RQA-RT Add-In Framework on page 12
� Capsule Under Test on page 12
� Specification Sequence Diagram on page 13
� Model Example on page 13

Overview

The Rational Quality Architect (RQA-RT) User’s Guide extends Rational Rose 
RealTime’s design automation capabilities to model, debug, and test. You can 
automatically generate complete unit and integration test harnesses directly from 
sequence diagram specifications. This eliminates the expensive and time consuming 
manual coding of stubs and drivers for debugging and testing. 

Rational Quality Architect - RealTime supports C++ and Java languages. For 
language-specific information, see the appropriate reference guide:

� Rational Rose RealTime C++ Reference
� Rational Rose RealTime Java Reference

RQA-RT automatically verifies designs against sequence diagram specifications both 
analytically and during execution. Application generation and automatic testing of 
fully or partially complete designs, plus animated visual and symbolic debuggers, 
encourages early and continuous design refinement and validation. 

A use case defines a set of use case instances, where each instance is a scenario that 
describes the sequence of actions that a system performs. You can capture scenarios as 
UML sequence diagrams, also known as MSCs. An MSC is a diagram that describes a 
pattern of chronologically ordered message interactions among objects. 
11



For model analysis, development, and debugging, RQA-RT helps you to deliver 
higher quality code to market, in less time, with less risk. Early disciplined debugging 
and testing is a key element of successful iterative design strategy by identifying risks 
and offering proof that requirements have been satisfied. It is easier and less 
expensive to correct bugs early in the design cycle. 

With RQA-RT, test harness generation is automated. This reduces the time spent 
creating and maintaining test harnesses, and provides more time for building, 
debugging and testing components. Test specifications can be built quickly and are 
reusable. For testing, you can specify a set of scenarios, which completely cover the 
requirements of a component, including failure modes. Then, the scenarios can be 
run, one at a time or as a group, to validate any changes made to a component. These 
test scenarios are represented as sequence diagrams in the RQA-RT Add-In and all 
testing framework is based on these sequence diagrams. 

Early detection of design oversights is also critical for reducing the risk of project 
failure. For example, race conditions in real time systems are difficult to predict and 
even more difficult to find. For development, you can catch potential race conditions 
at analysis time, before even beginning design work. Causal analysis of sequence 
diagrams has also been enhanced.

RQA-RT Add-In Framework

The RQA-RT Add-In introduces a number of components to support the verification 
process. When you execute a verification, framework components are generated 
automatically and displayed in the model browser. For the most part, the framework 
components are viewed as transparent to the user. However, for advanced users, 
customization of the components is possible (See Framework Components on page 80). 

Capsule Under Test 

The capsule representing a system or sub-system to test is referred to as the Capsule 
Under Test (CUT). It normally contains many low level components and may itself be 
a component of another capsule. Multiple CUT’s may be placed in an interaction and 
tested simultaneously. 
12 Chapter 1 - Introduction to Rational Quality Architect RealTime (RQA-RT)



Specification Sequence Diagram 

For a sequence diagram to qualify as a specification, it must describe the following: 

� An interaction between capsule instances with specified roles

� Synchronous and asynchronous communication between ports

� Internal messages 

Since RQA-RT supports testing of multiple CUT’s (Capsule Under Test), there are 
very few limitations on what makes a Sequence Diagram a specification. Almost any 
interaction can be set as specification and run through the verify procedure as long as 
the capsule instances specify roles with a port interface, and the messages indicate 
which ports they are sending to and receiving from.

Model Example

Test scenarios are represented as sequence diagrams in the RQA-RT Add-In. These 
sequence diagrams can be verified through the RQA-RT verify behavior functionality. 
For an example of a use-case provided through a sequence diagram, see the 
ReliableService Model Example in the following directory:

$ROSERT_HOME/Examples/Models/C++/ReliableService
Specification Sequence Diagram 13





2Approaches to using 
Rational Quality Architect 
RealTime (RQA-RT) 
Contents

This chapter is organized as follows:

� Overview on page 15
� Scenario-Based Debugging on page 15
� Specification Verification on page 19
� Specification-Based Development on page 19
� Regression Testing on page 20
� Debugging Scenarios on page 22

Overview

The RQA-RT functionality is built in to Rational Rose RealTime. You can model a 
RQA-RT unit test by creating a Use Case diagram to represent it.

There are four approaches to utilizing the RQA-RT Add-In: 

� Scenario-Based Debugging
� Specification Verification
� Specification-Based Development
� Regression Testing

Scenario-Based Debugging 

RQA-RT gives you full control over the execution of a model. Because debugging is 
simplified, it encourages frequent, disciplined testing. An executable framework is 
generated automatically from a sequence diagram specification, the framework is run, 
and the execution results graphically are compared against the original sequence 
diagram specification. 

RQA-RT can record and save the run-time interactions in a new sequence diagram. 
Incomplete or partial sequence diagrams can be used to incrementally discover or 
deepen your understanding of runtime component interactions. By choosing multiple 
sequence diagrams, an entire set of scenarios can be tested simultaneously. 
15



With RQA-RT there is no need to write smart stubs for missing components or 
functionality. Simply stub out unavailable components in the interaction. RQA-RT 
generates portable C++ drivers and harnesses so you can debug on the host without 
tying up target resources, and validate components directly on the target later. 

The RQA-RT Add-In delivers enhancements to the current debugging environment. 
By combining debugging styles with automation, it provides observation, interaction 
and generated test harnesses. 

Components of natural evolution in model debugging are: 

� Design observation using trace, animation and watch points. 

� Interaction through message injection, model breakpoints and source breakpoints. 

� Test Harness package can be observed / modified after the test.

The sequence diagram defines an execution scenario of an application. By using the 
sequence diagram to specify the messages to send to an executing capsule, and by 
tracing the resulting messages sent from the executing capsule, you can create a fully 
automatic capsule test and debugging environment using sequence diagrams as the 
execution scripting language. 

RQA-RT can automatically create executable test harnesses similar to that shown in 
Figure 1, directly from the sequence diagram, and can use them to automatically 
observe and verify the behavior of running applications during test or debug. You can 
test components against a series of tests before submitting the components to the 
build.
16 Chapter 2 - Approaches to using Rational Quality Architect RealTime (RQA-RT)



Figure 1 Run-time message tracing and sequence diagram generation

The automatic scenario verification sequence in Figure 2 shows how you can use a 
sequence diagram to verify the behavior of a component in the wireless network. 
Scenario-Based Debugging 17



Figure 2 Automatic scenario verification 

The numbers in the diagram correspond to the following actions: 

1 From the sequence diagram(s) associated with a model, generate a test harness to 
automatically verify run-time behavior.

2 Choose verify behavior from the right mouse context menu of the sequence 
diagram or collaboration. 

3 Select the sequence diagram(s) to verify and select appropriate options for the test 
run.
18 Chapter 2 - Approaches to using Rational Quality Architect RealTime (RQA-RT)



4 Select Verify to automatically generate a complete executable test harness for the 
selected sequence diagram(s), including the application and the components. 

5 Compare the generated sequence diagram with the specification sequence 
diagram. Mismatched signals are identified using a causal differencing engine and 
the results are output to the Rose RealTime Output log where they can be double 
clicked to graphically navigate to the problem area in the trace / specification 
diagrams.

Specification Verification

The RQA-RT Add-In lets you test systems from a Black Box or White Box perspective. 

With Black Box testing, Specification sequence diagrams are constructed with only the 
CUT instance. The goal is to verify the message flow at the interface of the system. 

With White Box testing, component capsule instances are added to the Specification 
sequence diagram to allow internal system behavior to be checked. 

Specification-Based Development

Because any capsule in a RQA-RT test harness can be a driver, you can design and run 
a test harness with all capsules stubbed out. This means you can run your test harness 
with fully executed specifications, before writing any code. To integrate your test 
harness using specification-based development:

1 Define the capsule structure of the system, at least down to the level of the 
specification sequence diagrams.

2 Construct the specification sequence diagrams if they have not already been 
created or supplied as part of the analysis phase.

3 Build a test harness in which every capsule is stubbed out by making every sub 
capsule a driver on the Verify options tab.

The resulting test suite will pass all test cases because every capsule will behave 
exactly as defined in the specification sequence diagrams. 

4 Replace the stubbed capsules with real implementations one capsule at a time. 

Note:  Real behavior can be introduced once piece at a time within a capsule, since 
sub-capsules can be drivers too. 
Specification Verification 19



As each capsule is implemented it is removed from the test harness driver list. 
Eventually, no drivers remain. At this point the system is complete and the time 
spent debugging has been minimized, since the system was integrated from the 
start.

Regression Testing 

The RQA-RT Add-In lets you verify system behavior as the system evolves over time:

1 Initially, a specification sequence diagram is constructed with the CUT (see Capsule 
Under Test on page 12) and component capsules of interest. Only CUT interface 
messages are included - no internal message flow is specified. This specification 
sequence diagram is executed with the RQA-RT Add-In. 

2 The resulting run sequence diagram captures the initial system behavior. 

3 To use this sequence diagram as a specification in future tests as a means of 
monitoring system development, move the trace sequence diagram into its real 
collaboration by dragging and dropping the sequence diagram in the Rose 
RealTime browser. 

Note:  Batch mode support to automate regression testing is available through 
scripting capability. For additional information, see RQA-RT Batch Mode Introduction 
on page 87.
20 Chapter 2 - Approaches to using Rational Quality Architect RealTime (RQA-RT)



Figure 3 Example of an sequence diagram

A sequence diagram can serve as a specification of desired system behavior - this type 
of diagram is referred to as a specification diagram. A useful form of testing is to use a 
specification diagram to create a wrapper which drives a system with appropriate 
input messages. The resulting system behavior, a trace diagram, can be compared 
with the expected behavior. Manually running the comparison can be tedious and 
error-prone. The RQA-RT Add-In simplifies this process by providing:

� Support for the creation of a specification diagram 

� The automatic generation of one or more drivers 

� The execution of the generated test harness and drivers

� Verification of the resulting output trace diagram
Regression Testing 21



Debugging Scenarios 

There are several debugging scenarios with RQA-RT capabilities. You can script the 
execution of individual capsules (for example, unit test) or capsule collaborations (for 
example, integration test). Some common usage scenarios are: 

1 Specify an initial message, and the participants in a specification. Verify to 
discover what the model will do. Take the trace diagram from the verify and add 
another stimulus message, verify again to explore the model deeper. Use race 
condition analysis on the resulting diagram to look for design problems. 

2 Specify all the stimulus messages, but no other messages. After a verify, the 
unspecified messages are filled in. Use race condition analysis on the resulting 
sequence diagram to look for design problems. 

3 Capture the current behavior of a capsule in trace diagrams. After making 
changes, for example, introducing additional functionality, re-verify the sequence 
diagrams to make sure that the changes did not break the existing functionality. 

4 Smart stubbing. Use the sequence diagram to describe the behavior of 
not-yet-available functionality capsules that the CUT must later integrate with 
Test. 

A stub is a component, or complete implementation subsystem, containing 
functionality for testing or debugging purposes. When you use an incremental 
integration strategy you select a set of components to be integrated into a build. 
These components may need other components to be able to compile the source 
code, and execute the tests. This is specifically needed in integration test, where 
you need to build up test specific functionality that can act as stubs for things not 
included or not yet implemented. The styles used are: 

❑ Stubs that are simply dummies with no functionality other than being able to 
return a pre-defined value

❑ Smart stubs that are more intelligent and can simulate a more complex 
behavior.

If you have complete components that cannot be executed on their own, you can 
use smart stubbing to test these components individually, without the components 
on which they depend. 
22 Chapter 2 - Approaches to using Rational Quality Architect RealTime (RQA-RT)



Smart stubbing should be used with discretion since it takes more resources to 
implement. You need to be sure it adds value. You may end up in situations where 
your stubs also need to be carefully tested, which is very time consuming. RQA-RT 
automates the creation of smart stubs. 

5 Test. Use the sequence diagram to describe the expected behavior of an capsule 
and then to verify that the implementation has been done correctly.
Debugging Scenarios 23





3Creating Specification 
Sequence Diagrams
Contents

This chapter is organized as follows:

� Overview on page 25
� Understanding Rational Quality Architect (RQA-RT) on page 25
� Manually Creating Specification Sequence Diagrams on page 26
� Specifying Replicated Capsule Instances on page 31
� Automatically Generating Specification Sequence Diagrams on page 32

Overview

For a specified sequence diagram, the toolset automatically: 

� Generates a test framework
� Runs the component under test
� Compares the results of the test run against the specification sequence

The sequence diagram used to drive the test is the specification. The component(s) 
under testing is the Capsule Under Test (see CUT, Capsule Under Test on page 12). A 
CUT may be comprised of any number of sub-components.

Understanding Rational Quality Architect (RQA-RT) 

RQA-RT is an Add-In for Rational Rose RealTime, and can be installed with the 
Professional Edition of Rational Rose RealTime. After you install Rational Rose 
RealTime Professional Edition, create new specification sequence diagrams or modify 
the existing ones to take advantage of the RQA-RT capabilities. 

RQA-RT uses the information in your specification sequence diagram to create the 
test framework. As a result, you must provide more detail in your specification 
diagram than what you may have provided in previous sequence diagrams. For 
25



example, the specification must contain an instance corresponding to the CUT. 
Similarly, any sub-capsule of the CUT that plays a role in the specification sequence 
diagram must be associated with a valid capsule instance.

Finally, because the test harness framework drives the CUT through its external 
interface, the specification diagram must specify the following:

� the port and signal names for all messages between the CUT(s) 
� drivers 
� internal components 
� if talking through a SAP, the environment 

There are two main approaches to create the detailed specification sequence diagram:

� manually build a sequence diagram from scratch
� work from a sequence diagram generated by an RTS trace. 

Manually Creating Specification Sequence Diagrams 

When manually creating the specification sequence diagrams, use the Rational Rose 
RealTime sequence diagram editor. To manually create a specification sequence 
diagram: 

1 Create a new specification sequence diagram containing an instance of the CUT(s) 
to test and driver(s) and, optionally, any components of the CUT(s) that are of 
importance to the test. 

See Creating a New Specification Sequence Diagram on page 27.

2 Specify the interaction between the CUT(s) and the environment. 

See Specifying Replicated Capsule Instances on page 31.
26 Chapter 3 - Creating Specification Sequence Diagrams



Creating a New Specification Sequence Diagram 

Creating a specification sequence diagram is no more difficult than creating a normal 
sequence diagram. You must specify instance information in addition to naming the 
capsules in the specification sequence diagram. To specify instance information, use 
one of the following methods:

� Drag and drop the instances onto the sequence diagram one at a time. See Adding 
Instances One at a Time on page 27.

� Create all the instances at once. See Adding all Instances at Once on page 28.

� Draw the sequence diagram and add the instance information manually. See 
Adding Instances Manually on page 30. This method involves the most work, and is 
recommended if you have to add instance information to an existing sequence 
diagram.

Adding Instances One at a Time 

To create a sequence diagram containing a fully specified instance of the CUT(s) and 
any components of interest:

1 In the model browser, select the collaboration or structure diagram on which the 
sequence diagram is to be based, as shown in Figure 4.

2 Right click on the collaboration or structure diagram and select New / Sequence 
Diagram. 

3 Provide a unique name for the newly selected sequence diagram in the model 
browser. 

4 Double click on the new sequence diagram, or right click on it and select Open.

5 Go to the containment view browser and find the capsule that contains the 
instances you wish to test. 

6 Drag and drop the applicable capsule roles from the browser onto the new 
sequence diagram. 
Manually Creating Specification Sequence Diagrams 27



Figure 4 Adding instances one at a time 

Adding all Instances at Once 

This is the quickest way to manually create a specification sequence diagram. 

To add all instances at once: 

1 Go to the structure diagram or collaboration diagram under which the sequence 
diagram will be based.

2 Optionally, select one or more capsule roles by shift clicking on them or using the 
drag selection capability.
28 Chapter 3 - Creating Specification Sequence Diagrams



3 Right click on the background of the structure or collaboration diagram and select 
Create Sequence Diagram as shown in Figure 5.

4 The sequence diagram opens with interaction instances for all the selected roles. A 
default name is provided. Right-click and select Select In Browser to rename the 
diagram to something more appropriate.

Figure 5 Adding all instances at once 

If you miss any instances in your first pass, you will have to add each missed instance 
as described in Adding Instances One at a Time on page 27.
Manually Creating Specification Sequence Diagrams 29



Adding Instances Manually 

If you are working with existing sequence diagrams, you will want to add any 
required instances manually. 

To add instances manually: 

1 In the model browser, select the collaboration or structure diagram on which the 
sequence diagram is to be based.

2 Right click on the collaboration or structure diagram and select New / Sequence 
Diagram. 

3 Provide a name for the newly selected sequence diagram in the model browser. 
See Figure 6 for an example of names. 

4 Double-click on the new sequence diagram, or right click on it and select Open.

5 Add a new instance to the sequence diagram using the Interaction Instance tool. 

6 From the shortcut menu that appears, choose a capsule instance path on which to 
base the instance. 

Figure 6 Adding instances manually
30 Chapter 3 - Creating Specification Sequence Diagrams



Specifying Replicated Capsule Instances 

You can either specify the replication index for Replicated Capsule Instances, or 
accept the default replication index of 0. 

To specify a replication index: 

1 Open the specification dialog on the capsule instance of the replicated reference.

2 Go to the RQA-RT properties tab and click on the Cardinality Index Path button to open 
an Edit Cardinalities dialog. 

3 In the Edit Cardinalities dialog, click on the applicable capsule reference(s), then 
specify the desired replication index in the index field. (see Figure 7.)

Note:  For any reference that has a container capsule(s) that is replicated, the 
replication index of the parent(s) can be specified. This allows the specification of a 
reference that is contained in a nested hierarchy of replicated capsules. 

Figure 7 Edit Cardinalities dialog 
Specifying Replicated Capsule Instances 31



The specification sequence diagrams are not automatically updated by the toolset. 
Therefore, changes that you make to the decomposition hierarchy of the model could 
invalidate the capsule path or replication indices of specification interaction instances. 

Automatically Generating Specification Sequence Diagrams 

In some situations, it may be more expedient to use an existing model to aid in the 
generation of a specification sequence diagram. For example, complex sequence 
diagrams with many instances and messages may be better constructed automatically. 
You can use RQA-RT or the message trace feature. 

Automatically Generating Specification Sequence Diagrams using the 
RQA-RT Add-In 

To generate a specification sequence diagram using the RQA-RT Add-In: 

1 Start building a sequence diagram manually as detailed in Manually Creating 
Specification Sequence Diagrams on page 26. 

2 Add the instances that you would like to trace, and any messages involving the 
environment. Do not add anything else. 

3 Verify the behavior of this sequence diagram by clicking Verify Behavior from the 
shortcut menu. 

4 Modify the resulting trace sequence diagram to meet the specification sequence 
diagram requirements detailed above.

5 Save as the new specification sequence diagram. 
32 Chapter 3 - Creating Specification Sequence Diagrams



Automatically Generating Specification Sequence Diagrams using the 
Message Trace feature 

To generate a specification sequence diagram for a single CUT using the 
message trace feature: 

1 Build a wrapper capsule that has internal end ports that mirror the external 
interface of the CUT. 

Specify the CUT as a sub-capsule of the wrapper capsule. 

❑ Bind the internal end ports with the external ports of the CUT. 

❑ Place interface ports that mirror the internal end ports on the wrapper. 

❑ Have the behavior of the wrapper forward messages into the wrapper on to the 
component capsule. 

2 Create a component and set the target configuration to a known platform. 

3 Drag the component to a processor to create a component instance. 

4 Build and run the component instance. 

5 When target observability is active, place daemons on the wrapper interface ports. 

Create inject messages for the daemons. 

6 Open a trace window on the CUT and sub-capsules of interest. 

7 Run the RTS and inject messages in the daemons as appropriate. 

8 When completed, create a sequence diagram from the trace in the message trace 
window and save it. 

9 Edit the new sequence diagram and ensure that it meets the specification sequence 
diagram requirements as detailed above. 

10 Save it as the new specification sequence diagram. 

Creating Capsule Unit Test Specification Sequence Diagrams

When developing a capsule it may be useful to test its behavior and interface in 
isolation without any dependencies. This is called unit testing. RQA-RT provides 
some methods for unit testing that do not depend on outside capsule contributors. 
You can create a new sequence diagram, or use an existing sequence diagram to 
perform unit testing. 
Automatically Generating Specification Sequence Diagrams 33



Unit Testing a Capsule

When unit testing a capsule, you need to create or use existing sequence diagrams 
from which a testing harness is generated. The testing harness automates a sequence 
of tests on a capsule or an instance. 

To unit test a capsule:

1 Create a new collaboration diagram.

2 Add a role of the capsule to be tested onto the collaboration diagram.

3 Create a sequence diagram for the role of the capsule by selecting the role and 
right clicking to select Create Sequence Diagram.

4 Add an unspecified interaction instance to the sequence diagram to send messages 
to the CUT (see Capsule Under Test on page 12). The unspecified instance is 
automatically generated as a driver when Verify Behavior is run.

On the sequence diagram, specify the ports for message ends corresponding to the 
capsule under test on the send message port detail page. Port names on the 
message side corresponding to the interaction instance with unspecified roles, or 
port names which you have specified, may be omitted and subsequently 
generated by RQA-RT.

5 To run the test, select Tools - Rational Quality Architect - RealTime Edition - Verify Behavior. 
A trace is generated each time a test is run.

6 Run RQART to test different use cases based on how the CUT reacts to the 
messages. For example, after you run a test you can view the results, modify test 
parameters and run the test again to see what changes. 

7 Repeat steps 1 to 6 for each new standalone capsule you create in the test harness.

Note:  Ensure that normal restrictions on port connectivity are observed. For example, 
no port from a capsule under test can be used by two different ports derived from a 
testing interaction instance.

8 Click Tools > Rational Quality Architect - RealTime Edition > Verify Behavior to test the 
instance.
34 Chapter 3 - Creating Specification Sequence Diagrams



4Customizing your RQART 
Sequence Diagram
Contents

This chapter is organized as follows:

� Modifying Capsule Behavior with Message Flows on page 35
� Getting the Most Out of Your Test Results on page 46
� Race Condition Analysis on page 56

Modifying Capsule Behavior with Message Flows

The RQA-RT Add-In lets you modify the behavior of Capsules Under Test (CUT’s) by 
driving them through their external interface. You can modify the behavior via the 
concept of drivers - instances that drive the interface of a CUT. 

If a driver interaction instance is invoking a timing service, InformIn, the timing 
service gets generated into the driver capsule.

All messages to and from a CUT’s external ports can be from a driver or from another 
CUT. Although stimulation is primarily focused on CUTs, RQA-RT can also stimulate 
CUT components to facilitate simulation of SAP/ SPP layer communication. You 
must specify that these messages are sent to and from the environment. Only system 
messages can be sent to and from the environment, since the environment is not the 
driver.

You should also specify system service messages to and from a CUT or its component 
capsules. 

When running multiple specifications in a test, in sequence, ensure that you complete 
each sequence when using a CUT so that the CUT is self-contained. 
35



Adding Messages to a Specification Sequence Diagram

To properly add messages to a specification sequence diagram: 

1 Add a message to the specification sequence diagram by using the Asynchronous 
Send Message Tool from the sequence diagram tool palette. 

2 After adding a new message, activate a specification dialog (see Figure 8) by 
double clicking on the message or right clicking on the message and selecting 
Open Specification from the local menu. 

3 In the specification dialog, specify the Signal, Port, Priority, Data and port index 
attributes of the message. These attributes are discussed below.

Figure 8 Send Message Specification Dialog 
36 Chapter 4 - Customizing your RQART Sequence Diagram



Signal

All valid signals for a selected port are listed in the Signal combo box. 

All valid out-signals for the port through which the following message types are sent, 
are listed in the Signal pane.

� messages destined for the environment 

� messages travelling between capsule instances

For messages originating from the environment, all valid in-signals for the port 
receiving messages originating in the environment, are listed in the Signal pane.

All valid in-signals and out-signals for relay ports are listed in the Signal pane for the 
associated port. 

To specify a message signal, select the desired signal name. 

Specification of a signal is optional (*) for any internal message between component 
capsules. However, for messages to and from the environment or to and from a driver, 
the signal must be specified. If it is not specified, the RQA-RT Add-In reports an error 
in the specification sequence diagram. 

Although specification sequence diagrams generally use the signal name as the 
message label, which is untitled or (*) by default, you can modify the message label by 
using the message specification dialog, or by directly using the Text Tool on the 
sequence diagram tool palette. 

When a trace is specified to trace relay ports, the information is saved between 
sessions. This is accomplished through toolset simulation. The RTS is not actually 
tracing the messages through relay ports; the toolset adds the sub-capsules to the trace 
behind the scenes and creates a mapping from the final end-ports to the relay ports 
the message passed through. This is available through MSC tracing.

If the signal name is specified to be something other than untitled or (*), then 
modifying the message label will not automatically change the signal name - it will 
keep its specified name. 

Note:  Trace sequence diagrams created by RQA-RT always default the message label 
to that of the signal name. 
Modifying Capsule Behavior with Message Flows 37



Passing an Object

RQA-RT supports data specified in the send signals through ASCII-encoded strings. 
The format is the same used for the data injected in a probe. The format is linked 
directly to the encoding and decoding functions. If the encode and decode functions 
have not been overridden on a data type, the Services Library provides a default 
ASCII encoder/decoder. 

For C++, use the following:

<type> ::= <type name>{ <attributes> } 
<attributes> ::= <attribute name>{ <attributes> } | 
<basic attribute><basic type>,<attributes> |

<basic attribute><basic type> 
<basic type> ::= <value> | <basic type>,<value> 

where: 

<attribute name> an attribute of a composite type (such as a type composed of other 
attributes). For example, another class.

<basic attribute> the name of an attribute of a basic type (such as int, long, short, char, 
enum, double, float, and string).

<value> the value of an attribute of a basic type.

For additional information on the injected data format, see Probe Specification in the 
online help book Toolset Guide.

For Java, use the following string:

<type> <constructor_arguments>

where:

type 

constructor_arguments

For example, for the following object:

new MyType(Friday,"WeekendIsNear") 

the data field will be: 

MyType Friday,"WeekendIsNear"
38 Chapter 4 - Customizing your RQART Sequence Diagram



Passing an Object with the String Field

Passing objects by pointers requires additional steps. Below, you will find example 
steps required to pass the object containing "char*". 

Note:  Set the type descriptor for this field to RTType_RTpchar and specify proper 
memory allocation and de-allocation in the class constructor, copy constructor, 
assignment operator, and destructor.

To successfully pass an object with the string field, you must:

� Set the initial value to (char *)0 for the attribute.
Modifying Capsule Behavior with Message Flows 39



� Set the Type Descriptor RTType_RTpchar for the attribute (see steps 6 through 8 in 
the example below).

� Override the default copy constructor (see steps 10 through 23 below).

� Override the assignment operator (see steps 24 through 35 below).

� Override the default destructor (see steps 36 through 40 below).

For example, a class called myClass, has the field char *name. To ensure proper 
decoding of this object when passing this object as signal data, do the following:

1 Select a class, right-click and click Open Specification.

2 Click the Attributes tab.

3 Right-click and click Insert.

4 Set the Name to name, press ENTER, and press TAB to advance to the Type column.

5 Press F8 and type (char *)0.

6 Double-click on the new attribute name.

The Class Attribute Specification for name dialog displays.

7 Click the C++ TargetRTS tab.
40 Chapter 4 - Customizing your RQART Sequence Diagram



8 In the TypeDescriptor box in the Item properties area, type the following type 
descriptor:

RTType_RTpchar

9 Click OK.

Next, you want to override the default copy constructor.

10 Click the Operations tab.

11 Right-click and click Insert.

12 Set the Name to myClass, press ENTER.

13 Double-click on the new operation name.

The Operation Specification for myClass dialog displays.

14 Click the Detail tab.

15 In the Parameters area, right-click and click Insert.

16 Set the Name to other.

17 Press TAB to advance to the Type column.

18 Press F8 and type the following:

const myClass &

19 In the Code area, type the following:

if( name != (char *)0 )

name = RTMemoryUtil::strdup( name );

20 Click Apply.

21 Click the C++ tab.

22 In the ConstructorInitializer box, type the following:

:name( other.name ) [, other_fileds_initialization]

23 Click OK.

The Operation Specification for myClass dialog closes and the Class Specification dialog 
displays.
Modifying Capsule Behavior with Message Flows 41



Next, you want to override the assignment operator.

24 Right-click and click Insert.

25 Set the Name to operator=, press ENTER.

26 Press TAB to advance to the Return Type column.

27 Press F8 and type the following:

myClass &

28 Double-click on the new operation name.

The Operation Specification for operator= dialog displays.

29 Click the Detail tab.

30 In the Parameters area, right-click and click Insert.

31 Set the Name to rhs.

32 Press TAB to advance to the Type column.

33 Press F8 and type the following:

const myClass &

34 In the Code area, type the following:

if( this != &rhs )

{

if( (name = rhs.name) != (char *)0 )

name = RTMemoryUtil::strdup( name );

[other_field = rhs.other_field];// assign other fields

}

return *this;

35 Click OK.

The Operation Specification for operator= dialog closes and the Class Specification 
dialog displays.

Next, you want to override the default destructor.

36 Right-click and click Insert.

37 Set the Name to ~myClass, press ENTER.
42 Chapter 4 - Customizing your RQART Sequence Diagram



38 Double-click on the new operation name.

The Operation Specification for ~myClass dialog displays.

39 Click the Detail tab.

40 In the Code box, type the following:

delete [] name;

Port 

You can specify the receiver and sender ports in the from and to port combo boxes 
respectively. The port combo boxes list all valid ports for the CUT and component 
capsule classes. A message port is specified by selecting the desired port name. 

Specification of a message output port is optional (*) for any internal message. 
However, all messages involving the environment must have a port specified; if not, 
the RQA-RT Add-In will report an error in the specification sequence diagram. 

For a message from an instance to the environment, or from an instance to a driver, 
the name of the port through which the message is sent must be specified. 

For a message from the environment to an instance, or from a driver to an instance, 
the name of the port through which the message is received must be used. 

Message Priority 

The Priority pane combo box lists all the priorities a message can possess. A message 
priority is specified by selecting the desired priority level. Specification of a message 
priority is optional for all messages. 

Message Data 

The message data area appears in the detail tab of the message specification. This area 
contains a textual description of the message data that is sent for reference purposes. 
It is also used by driver capsules as the actual data sent out with the message. 

You can specify primitive data to be sent with the message. To send more complex 
message data such as class objects or arrays, use the composite message data format.

Composite Message Data

RQA-RT supports data specified in the send signals through ASCII-encoded strings. 

Note:  This format is the same as the inject data format in Rose RealTime. For 
information on the inject data format see Format of the injected data in the Rational 
Rose RealTime Toolset Guide.
Modifying Capsule Behavior with Message Flows 43



The Data area of the driver send message is a string representation of the data to be 
sent with the message. The format of the string depends on the encoding and 
decoding scheme used by the data type being sent with the message.

Therefore, the format of the driver send data is linked directly to the encoding and 
decoding functions. If the encode and decode functions have not been overridden on 
a data type, the Services Library provides a default ASCII encoder/decoder.

In most cases, you send data using the default ASCII decoder. If this is the case, you 
can use the following syntax to specify the Data area of a message:

Note:  You do not have to enclose the expression in double quotes.

Default ASCII encoding syntax

<type> ::= <type name>{ <attributes> }

<attributes> ::= <attribute name>{ <attributes> } |

<basic attribute><basic type>,<attributes> |

<basic attribute><basic type>

<basic type> ::= <value> | <basic type>,<value> 

where

<attribute name> is an attribute of a composite type (e.g., a type composed of other 
attributes - for example another class)

<basic attribute> is the name of an attribute of a basic type (int, long, short, char, enum, 
double, float, string)

<value> is the value of an attribute of a basic type 

Sending strings within the composite data

If data to be passed contains the string, enter the data in quotes in the data tab. If you 
need to pass a string as a part of composite data, the following rules apply:

� Specify the initial value for the char field containing the string (char *)0

� Set type descriptor for the field to RTType_RTpchar.

� Override default copy constructor in order to duplicate memory allocated.

� Override assignment operator in order to duplicate memory allocated.

� Override default destructor in order to prevent memory leaks.
44 Chapter 4 - Customizing your RQART Sequence Diagram



For example, if you are trying to pass an object of a class named SomeClass with the 
field char *name, the following alterations will be required:

Name: SomeClass

Parameters: Name: other Type: const SomeClass &

if( name != (char *)0 )

name = RTMemoryUtil::strdup( name );

Constructor initializer : :name( other.name ) [, 
other_fileds_initialization]

Override assignment operator:

Name: operator=

Return type: SomeClass &

Parameters:Name: rhs Type: const SomeClass & 

Code:

if( this != &rhs )

{

if( (name = rhs.name) != (char *)0 )

name = RTMemoryUtil::strdup( name );

other_field = rhs.other_field];// assign other fileds

}

return *this;

Override default destructor:

Name: ~SomeClass

Code: delete [] name;

These requirements are caused by the way memory allocation for strings is handled in 
Rose RealTime.

Coregions 

Place coregions around a set of messages to indicate that the events may occur in any 
order. Coregions can be used in a specification sequence diagram to handle race 
conditions or simply to indicate message flows where you do not want the message 
order verified. Coregions are usually placed on both participating interaction 
instances unless the order is not essential only for one instance.
Modifying Capsule Behavior with Message Flows 45



Getting the Most Out of Your Test Results

To get the most out of your test results, you will want to narrow your test simulation 
down to the lowest functionality, by eliminating dependencies. This helps you to 
localize any problems found. 

Capsule behavior can be quite complex, therefore, modeling the sent messages may 
not provide the level of detail required to localize a problem. For each message sent 
and received, data is passed that may be manipulated and created by the capsule. 

A driver is a generated capsule based on a user specified interaction instance. Its 
behavior simulates the messages coming in and out of the interaction instance. A 
driver has no concept of this data manipulation from the sequence diagram message 
order. This is why you will want to take advantage of custom user code to simulate 
capsule behavior more accurately.

Using Driver and Stub Behavior to Simulate Your Test

You can specify user code and user attributes to simulate some basic behavior and 
help the drivers behave a certain way. This makes the simulation more accurate. For 
example, assume the following capsules exist in a sequence diagram:

� Capsule A, as the top capsule
� Capsule B
� Capsule C, as a sub-capsule of Capsule A

You can stub out Capsule C, allowing Capsule C to be a driver, to narrow the test 
down to include only Capsule A.

Integrating Capsules into a Sequence Diagram

In a sequence diagram with Capsules A, B, C, and D, you will want to test iteratively, 
by testing each component at a time and integrating it into the diagram. One scenario 
could be:

1 Unit test each capsule or capsule role. For more information on unit testing, see 
Unit Testing a Capsule on page 34.

2 If Capsules A, B, and C are ready, and D is not, you can stub out D to test the 
integration of A, B, and C. After you have unit tested A, you can add it to the 
sequence diagram and test it with D stubbed out. In this case, any messaging sent 
to D is ignored, but RQA-RT generates simulated behavior for D. This gives D 
behavior, without functionality, so that you can test the interaction of A in the 
diagram, unless you add user code to messages and/or local actions.
46 Chapter 4 - Customizing your RQART Sequence Diagram



3 To integrate B and C into the diagram, perform unit testing for B and C. Integrate 
each into the diagram after you have unit tested. This enables you to test the 
interaction of A and B with D stubbed out, and then A, B, and C with D stubbed 
out.

To stub out a capsule, use the RQA-RT properties dialog from the context menu of the 
capsule you wish to stub out.

Integrating Capsule Roles into a Sequence Diagram

You can stub out capsule roles to test a capsule. This lets you test and integrate each 
capsule role into the capsule before you unit test the capsule.

Generating Behavior for a Driver

The RQA-RT Add-in lets you create a test harness environment to test the interaction 
between different capsule instances and then verify the results. 

You can use the sequence diagrams to specify various states for each test. For 
example, to start a test from a clean state, insert a reset action in the appropriate place 
in the sequence diagram. All capsules involved in the previous test will be destroyed.

A driver can be an instance that has generated behavior, or an instance based on a 
capsule that is not fully implemented. 

A driver with generated behavior can interact with the capsules under test (CUT’s). 
To run a test, you need to inject drivers into the system; these drivers produce test 
results which you can verify after running the test. 

If the driver is based on a capsule that is not fully implemented, you need to generate 
behavior for it in order to test the other instances in the interaction.

The drivers provide shell behavior for capsules that are not yet fully implemented. 
This lets you run tests using the driver to simulate externally triggered events.

Allowing Path Elements to be Drivers in a Containment Hierarchy

In a containment hierarchy you can allow interaction sequences in a sequence 
diagram to be drivers as long as they are leaf nodes. Leaf nodes are instances at the 
bottom of the containment hierarchy within the interaction. 

Defining an interaction instance to be a driver/stub causes RQA-RT to generate a new 
capsule behavior for that instance representing the message flow on the interaction 
life line.
Getting the Most Out of Your Test Results 47



In the example in Figure 9, the capsule roles are as follows:

� A is a top level capsule in the collaboration
� B is a capsule role in A
� C is a capsule role in B
� D is a top level capsule in the collaboration

Figure 9 Collaboration diagram with containment hierarchy

Referring to the example in Figure 10, which represents the sequence diagram for the 
collaboration shown in Figure 9, only C and D can be stubbed out. To stub out B, you 
would have to either delete C from the specification or make C an unspecified 
instance. B would then become a leaf node. 
48 Chapter 4 - Customizing your RQART Sequence Diagram



Figure 10 Sequence diagram with containment hierarchy

Using Collaboration Diagrams to Capture the Test Environment

Use a Collaboration diagram to capture the test environment, rather than the 
structure. Place the Top capsule on the Collaboration diagram. From this top 
reference, RQA-RT can see the Top capsule and all contained capsules. 

If you already have a Sequence diagram on the structure that you are trying to copy, 
then copy the structure into a Collaboration diagram. To do this, use CTRL key and 
drag the structure from the capsule into a package. This will duplicate the structure 
into a Collaboration including the sequence diagrams. 

Note:  You can also create a collaboration on the capsule; however, we recommend 
that you manage collaborations in packages.

After you create the collaboration, place the Top capsule on the Collaboration 
diagram. The Top capsule in a collaboration can be used with RQA-RT, and all its 
contained capsules are accessible in the Sequence diagrams and by RQA-RT.

Sequence Diagrams and Model Management

There are some performance, memory and model management advantages to using 
collaborations to capture test specifications rather than using capsule structures. 
Sequence diagrams can be very complex (and large) model elements. There may also 
be a large number of them in a model. By placing test cases on collaborations in 
Getting the Most Out of Your Test Results 49



packages, it is easier to choose whether to load or not load the collaborations into a 
model. Old Sequence diagrams and collaborations that are no longer required do not 
need to be shared or added to the model to simplify model navigation. If the 
collaborations are not shared or added in, the model will load faster and the toolset 
memory footprint will be smaller. The file size for a controlled unit capsule will be 
smaller than with Sequence diagrams. Additionally, the code generator performance 
will also be improved because the code generator will be working with smaller files. 
Because capsule files will not have test specifications in them, they are not handled 
(and regenerated) whenever the Sequence diagrams are updated. Another benefit of 
placing the sequence diagrams on collaborations in packages is that there is less 
impact for those who share in these capsules because they do not get the Sequence 
diagrams, unless they also load the collaborations containing the sequence diagrams. 

A containing capsule uses a protected port to talk to a contained Capsule Role. The 
port in the containing capsule is a public relay port: messages shown in the Sequence 
diagram in the example model flow from the relay port to a Capsule Role. 

After you copy a Sequence diagram:

1 Add the Top capsule to the Collaboration diagram.

2 Open the Sequence diagram and change the path to be relative to the Top class you 
added.

3 Delete the unused roles from the Collaboration diagram.

Making the Container a Driver

If you want to make the containing capsule the driver, then the sub-capsules is not 
present at run-time. If your test specification references a sub-capsule, you cannot 
stub out its container. If you want to make the container a driver, then you need to 
remove the sub-capsules from the test specification. 

Example

If you want to test a structure where container capsule A contains container capsule B 
(Figure 11), then the test specification would look like that in Figure 12. A problem 
will occur if you stub out A because B will no longer exist.
50 Chapter 4 - Customizing your RQART Sequence Diagram



Figure 11 Capsule A Contains Capsule B

Figure 12 Sequence Diagram for A and B
Getting the Most Out of Your Test Results 51



To solve this problem, remove B from the test specification and then make A a driver. 
A problem continues to exist: How do you test A independently of B? A can only be 
tested with a B. You can change the structure to de-couple A and B; this makes the 
system easier to test. For example, Figure 13 shows this equivalent design.

Figure 13

A continues to communicates with B, and the implementation of A and B are the same. 
A can now be tested independently from B, and B independently from A. In addition, 
A, B, or both A and B can be stubbed out (manually or automatically). If you want to 
make the container a driver, then A and B can be part of the test specification. 
Occasionally, the container needs behavior. For example, to manage the life cycles of A 
and B in dynamic structures (incarnate/destroy), you would likely try to verify the 
implementation of the container and would not want to stub it out. You may want to 
stub out A and B to simplify the testing scenario.

Interaction Instance RQA-RT Properties

Attributes: You can specify attributes that are relevant to the test. For instance, a 
message may be received by the driver that has data which needs to be stored for 
future message processing. User code specified in a local action or message send / 
receive can access attributes defined here to simulate Capsule behavior.

Syntax: Specify only one attribute per line using the following format:

<Name> : <Type> [ = InitialValue ]

where:

<Name> is the name of the attribute.

<Type> is the attribute’s type.

InitialValue is optional value.
52 Chapter 4 - Customizing your RQART Sequence Diagram



Examples:

To use an attribute that is a pointer

Example: 

pMyInt : int * 

To use an attribute that is a user-defined class

Example: 

pMyClass : MyClass

Observe the name of the file header generated for this class and include it into the 
HeaderPreface box if it is an interaction instance. For example, if you defined a 
user-defined class called MyClass, you would add the following to the 
HeaderPreface box:

#include <MyClass.h>

We recommend that you put a class into a package, then reference the package in a 
component that can be copied later. This ensure that the code for the class MyClass 
will be built.

To use an attribute that is an array

Example: 

MyArrInt : int [2] 

Minimum Run Time: Specifies the minimum amount of time that this instance should be 
active. This ensures that the instance will run long enough to send and receive all of 
the messages on its lifeline. When all of the interaction instances have exceeded their 
minimum run time and the last driver message has been sent or received, then the test 
will complete.

Note:  The Interaction Instance Specification for Environment (for example, the 
"border" of a Sequence diagram) only has one functional field, Minimum Run Time. 
Setting this field sets the minimum runtime for the test as a whole. All other fields are 
ignored for the Environment instance.
Getting the Most Out of Your Test Results 53



Figure 14 Interaction Instance RQA-RT Properties Specification 

Local Action

A local action is part of the actual sequence diagram specification. It shows up on the 
lifeline of the interaction instance as a rectangular box. By right clicking and choosing 
Open Specification, you can click on the RQA-RT tab to enter your user code. The user 
code is in the language of the model (C++ or Java) and will become part of the 
generated driver capsules state machine behavior. The user code for local actions is 
typically used to model explicit capsule behavior, for example, data manipulation / 
creation (see Figure 15). 

This user-specified attributes property is typically modified in the local action user 
code.
54 Chapter 4 - Customizing your RQART Sequence Diagram



Figure 15 Local Action RQA-RT Properties Specification 

Send Message Sender / Receiver Code

For more implicit driver behavior, for example, behavior for testing, you can use the 
message send and receive code. This behavior is not part of the specification sequence 
diagram. Messages sent by a driver can specify Sender Test Driver Code to do a custom 
comparison of signal data. As with the Local Action code, this is code in the same 
language of the model (C++ or Java). 

A helper function SendACompareFailure allows you to send a custom message to 
the log that will show up as a difference after Verify Behavior has completed (see 
Figure 16). Similarly for messages received by a driver, you can specify Receiver Test 
Driver Code. This operates exactly the same as the Sender Test Driver Code except your 
verify message data being received.

If you need to access rtdata from this code, be sure to use explicit conversion to the 
data type desired:

<desired data type>rtdata
Getting the Most Out of Your Test Results 55



Figure 16 Send Message RQA-RT Properties Specification
 

Race Condition Analysis 

A race condition occurs between pairs of events when these events appear in one 
order in the specification sequence diagram, but occur in either that order or an 
opposite order when the system is run. Race conditions pose a problem for the 
RQA-RT process since these arbitrary ordering of pairs of events can cause the trace 
sequence diagram to look different from the specification sequence diagram. These 
differences will generate error reports in the Rational Rose RealTime log pane. 

The interpretation of causal relationships between sequence diagram messages helps 
you to understand the relationship between messages in the system. Race conditions 
exist when the temporal ordering of events cannot be inferred from a sequence 
diagram. For example, race condition analysis lets you know when the ordering of 
messages in a sequence diagram is ambiguous. 

Ambiguous ordering can indicate alternate scenario execution paths to consider or 
can pinpoint subtle but potentially serious design problems. Race condition analysis 
locates ambiguous message sequences identifying race conditions. It is nearly 
impossible to locate these sequences by reviewing the code or sequence diagrams. 



Three race condition analysis, in order of utility, are as follows: 

� Find alternate execution paths in a sequence diagram

� Find design flaws where ordering of messages cannot be guaranteed by the design 

� Find situations where sequence diagram message ordering cannot be 
predetermined, but also doesn’t matter and a co-region can be used

Race condition analysis can be used on user defined sequence diagrams, trace 
sequence diagrams, and target observability traces. During the creation of a 
specification sequence diagram, the existence of race conditions may not be obvious.

To detect race conditions use the following procedure: 

1 Open the specification diagram. 

2 Right mouse click on the diagram to open the context menu. 

3 Select Race Conditions... 

When executed, this menu item displays a list of all of the pairs of messages in the 
specification sequence diagram which are in a race condition. The list items have a 
menu item that allows you to select (highlight) the pair of messages. 

If pairs of messages are already within the same coregion, then no race condition is 
reported for those messages. If, however, the messages are in different coregions, then 
a race condition could exist between the pair, and it will be reported. 

Race Condition Example 

Figure 17 shows a simple sequence diagram with race conditions. In this sequence 
diagram, there are two race conditions: one between b and d, and the other between c 
and d. The sequence diagram shows one race condition, c and d, selected. To be valid, 
this sequence diagram must have coregions placed between b and d, and also 
between c and d. 

Since coregions cannot be nested, the proper coregion placement in this sequence 
diagram would be to place a single coregion, on Instance2, just before message b and 
continuing to just after message d. This would allow the proper verification of a trace 
sequence diagram which had message d being received in its two other valid 
orderings (just before b, or between b and c). 
Race Condition Analysis 57



Figure 17 Sequence Diagram with Race Conditions 

Prior Messages and Subsequent Messages

In addition to being able to detect race conditions in a specification sequence diagram, 
it is also useful to identify the causal relationships between messages. Knowing causal 
relationships can help you understand message flow within a specification sequence 
diagram and help in the placement of coregions. 

Causal relationships for a particular message can be classified in one of two ways: 

� Prior Messages -messages received before the particular message was sent

� Subsequent Messages -messages sent after a particular message was received

In Figure 17, the Prior Messages of message c are a and b. The Subsequent Message of 
message b is c. 
58 Chapter 4 - Customizing your RQART Sequence Diagram



5Verifying Specification 
Sequence Diagrams
Contents

This chapter is organized as follows:

� Running a Verification on page 59
� RQA-RT Options Dialog on page 64
� Verification Run Results on page 71
� Verify Behavior Results on page 71

Running a Verification

To use the RQA-RT functionality using one of the following methods:

� From the Rational Rose RealTime menu, select 
Tools - Rational Quality Architect - RealTime Edition. 

� To verify a sequence diagram from the Model View tab in the browser or directly 
from the diagram view, right-click and select Verify Behavior. The sequence diagram 
appears in the Current Test order list (see Figure 23). 

� To verify multiple sequence diagrams that are owned by a Collaboration diagram, 
right-click on the collaboration diagram and select Verify behavior. All sequence 
diagrams owned by the Collaboration diagram appear in the Current Test order list.

After you select Verify Behavior for the first time, you are prompted (Figure 18) to 
launch a wizard to help you configure your test.

Figure 18 Selecting Verify Behavior for the First Time

Click Yes to launch the wizard, or No to open the Verify Behavior dialog.
59



Figure 19 RQART - RT Wizard - General Pane

In the Test name box, specify a meaningful name for the test. This name will prefix the 
harness package that is generated.

In the Component area, select your desired production component. Select 
Copy selected component to copy the component, or Reuse selected component to 
override current settings. Select Rebuild to rebuild the selected component.

In the Processor area, select the processor from the drop-down list that is compatible 
with the component you selected in the Component area. For a first iteration, select 
<<New component instance>>.

Click Next.
60 Chapter 5 - Verifying Specification Sequence Diagrams



Figure 20 RQART - RT Wizard - Drivers/Stubs Pane

In the Select drivers area, select the capsule roles (that "drive" the test) for RQA - RT to 
generate the behavior to determine what messages are sent.

Figure 21 RQART - RT Wizard - Verify Pane
Running a Verification 61



Use this pane to specify parameters for the RQA - RT differencing results.

Basic Events

In this area, you specify the types of events that the differencing will consider when it 
performs a comparison between the trace and the Specification diagrams. If you do no 
select any basic events, although those events may appear in the trace, they will be 
ignored. 

Lifetime Events

In this area, you specify the types of events that the differencing will consider when it 
performs a comparison between the trace and the Specification diagrams. If you do no 
select any basic events, although those events may appear in the trace, they will be 
ignored.

Perform casual trim on results

Where applicable, scale down the results.

Check cardinality index path

Verify the instance numbers for nested capsule roles.

Figure 22 RQART - RT Wizard - Results Pane
62 Chapter 5 - Verifying Specification Sequence Diagrams



By default, the results appear in the Rational Rose RealTime Output window. In the 
Log area, select Log results to file, then specify a location in the Path box.

When tests to not end in the expected time, use the Maximum time per test (sec) box 
to specify the length of time for the test, in seconds.

Click Finish to open the Verify Behavior dialog, where you can select the Sequence 
diagrams to include in the test.

Note:  You can modify the options you selected in the wizard by clicking Options on 
the Verify Behavior dialog.

Figure 23 Verify Behavior dialog

Verifying Multiple Specification Sequence Diagrams 

Multiple Specification sequence diagrams can be verified at once. Choose the desired 
specification diagrams from the left-hand pane of the Verify Behavior dialog. (see 
Figure 23). Click the Add button to move them to the test order pane. Change the order 
of the tests by selecting specific diagrams and clicking the Move up and Move down 
buttons. 

The Specification sequence diagrams are verified in the order in which they appear in 
the right hand pane in the Verify Behavior dialog. In order to reset the instances in 
between tests, click the Insert Reset button. A reset will essentially destroy all instances 
from the previous test and then recreate them in the subsequent test.
Running a Verification 63



Running Verification on a Capsule Subclass 

Sequence diagrams are not inherited by a capsule sub-class in the browser.

To use the sequence diagram of the super capsule in the subclass: 

1 In the Model View tab in the browser, select the sequence diagram in the superclass.

2 Hold the control key down and drag the diagram onto the sub class capsule in the 
browser. Observe that a duplicated version of the diagram now exists in the 
browser under the subclass.

3 Select the duplicated sequence diagram. 

4 To run a verification, follow the steps in Running a Verification on page 59 using the 
duplicate sequence diagram as the specification diagram. 

RQA-RT Options Dialog 

To configure specific settings or options for the test run, you must set the options by 
clicking Options on the Verify Behavior dialog. All the options for the test are set to 
default values. The Options dialog (Figure 24) allows you to select parameters that 
govern the verification run for the selected Specification sequence diagrams. 

Figure 24 Options Dialog - General Tab
64 Chapter 5 - Verifying Specification Sequence Diagrams



� Test name - This is the name given to the test run. It is added as a suffix to the test 
harness package that is generated.

� Component - This allows you to pick a specific component to run the test on. It is 
necessary for you to set some of the properties of the component, such as the target 
configuration. This is important so that RQA-RT can run tests on the same target as 
the production system. Or inversely for simulation on a local target, such as the 
same environment Rose RT is running on (such as Windows NT/2000, Solaris, and 
so on).

� Rebuild - When this option is selected, a full re-build is performed, and when it is 
not selected, an incremental build is performed. We recommend that you do not 
set this option. Only set this option to clear out build problems caused by manual 
file editing, or same-name-files being overwritten. For RQA-RT automation, use 
ReBuildCode. It’s type is boolean where True means re-build, and False means 
incremental build (default).

� Processor - Allows user to choose the processor that the component will run on.

� Component instance - You can choose an existing component instance or generate a 
new one based on an existing component instance. The chosen instance must be 
the same as the existing component instance.

Figure 25 Options Dialog - Drivers Tab
RQA-RT Options Dialog 65



� Drivers - This pane lists all the interaction instances in the sequence diagram. The 
box beside each name, if checked, indicates that RQA-RT is to generate a driver / 
stub in place of the real interaction instance. Names of interaction instances with 
unspecified roles are dimmed. The box beside a dimmed name is always checked, 
since interaction instances with unspecified roles must have drivers.

Figure 26 Options Dialog - Harness Tab

� Generate new harness - When checked, RQA-RT will generate a new test harness 
upon beginning the test that will be compiled and run on the target. The location 
button allows you to specify a specific location to place the generated test harness. 
This is useful if the destination for the test harness package is inside a scratch pad 
package. Since the test harness package is not really part of the production model 
being tested, it is practical to place it inside a scratch pad so that there are no 
source control implications.

� Use existing harness - For performance reasons, it may be more practical to use a 
previously generated harness instead of regenerating it each time. This ensures the 
harness is not regenerated and compiled. This is only a viable solution as long as 
no changes have been made to any of the sequence diagrams being verified 
in-between tests. The test harness is generated based on the message passing and 
structure of the sequence diagrams. If changes have been made to the CUT’s that 
don’t effect the sequence diagram, i.e. change in behavior / internal structure, then 
a previous test harness may be reused.
66 Chapter 5 - Verifying Specification Sequence Diagrams



� Auto delete test harness - When checked, this option will automatically delete the 
generated test harness after the test run is completed.

Figure 27 Options Dialog - Verify Tab

� Basic events - Check the box beside these messages to include them in the 
differencing algorithm comparison.

� Specification only - These messages are not supported by the regular Verify Behavior 
process i.e. not generated on the trace and may appear on the specification 
diagram only. These check box options are only accessible through the stand-alone 
differencing command where two specification diagrams may be compared.

� Lifetime events - Check the boxes to include comparison of destroy and terminate 
messages in the differencing algorithm.

� Perform causal trim on results - This option will filter the differencing algorithm 
results. If a difference causes another difference to occur later on, this can make it 
unclear what the original problem was. By using the causal trim, only the original 
difference will appear and differencing caused by previous differences will be 
filtered out.

� Check cardinality index path - Used with specification diagrams containing replicated 
capsule instances. Values specified in the Edit Cardinalities dialog will be used to 
establish correspondence between interaction instances from the specification 
diagram and the trace diagram.
RQA-RT Options Dialog 67



Figure 28 Options Dialog - Results Tab

� Maximum time per test (sec.) - This field is a safeguard to make sure that the test run 
will eventually complete. If a test has not completed in the time specified, i.e. a 
capsule under test doesn’t respond to stimulation, the RQA-RT Add-In stops the 
test and either moves on to another test, or closes the RTS and displays the results 
of the verification.

� Log results to file - Normally results are logged to the output pane in Rose RealTime. 
For persistent results and / or results useful from overnight sanity tests, it is 
possible to log results to a file. The specific file path can be chosen or browsed to.
68 Chapter 5 - Verifying Specification Sequence Diagrams



Figure 29 Options Dialog - Advanced Tab

The Mode: radio buttons control access to the RTS. The modes are as follows: 

� Load and run executable - This is the default Mode option since it provides for a 
hands-off execution of the verification tool. The RTS is loaded, run, and shut-down 
automatically.

� Assume Manual Loaded Executable - This option is for use with targets that do not 
support the automatic download and execution of models from the toolset 
workstation. The option provides a pause in the RQA-RT verification process 
allowing you to manually load the complied model onto the target outside of the 
toolset. 

If you select this option, the Manual Target Control dialog appears, as shown in 
Figure 30. From the Manual Control dialog, you can Load, Attach, and Run a 
component instance manually.
RQA-RT Options Dialog 69



Figure 30 Manual Target Control

� Load executable and wait -This option is enabled only when compiling for the 
TargetRTS with Target Observability enabled. Selection of this mode requires that 
you run the model in order for the verification to be completed. 

The following fields are for the specific target being tested:

� Harness Controller Port - This is a unique identifier used to create the communication 
socket between RQA-RT and the target executable. If RQA-RT is having trouble 
communicating with the target, try adjusting this value to something different.

� Connection timeout (sec.) - Specifies the maximum allowed wait time for 
communication to be established with a target. If communication cannot be 
established within the given time, the target will be reset. The default is 7 seconds.

The remaining options are limit fields that you should not need to set except in rare 
circumstances:

� Tracing message threshold - Sets the tracing level for a Verify Behavior test run. 

Default: 1000 messages. More complex models may require this to be increased if a 
lot of message passing occurs within the interaction.

� Unique name generation limit - Sets the number of generated test harnesses that can be 
stored within a model.
70 Chapter 5 - Verifying Specification Sequence Diagrams



Verification Run Results 

1 If you select the Load mode, manually step though or run the models until all tests 
are completed and the RTS automatically closes. 

OR . . .

If you select the Load for manual target mode, the RQA-RT process is as follows: 

❑ Select Verify in the RQA-RT Verify Behavior dialog. The Manual Mode dialog 
appears. You can Load, Attach, and Run a component instance manually.

❑ After the model loads, click OK and the toolset will load the RTS. 

❑ If the toolset cannot establish a connection with the target platform (referenced 
configuration), an error dialog will display. 

❑ After the RTS loads, you must select Run for the RQA-RT process to continue 
automatically. 

2 If you select the Run mode, RQA-RT automatically opens the RTS, runs the models 
in the RQA-RT framework, and then closes the RTS.

After the RTS closes, the results of these comparisons are appear in the Rational Rose 
RealTime Log tab in the Output window.

Verify Behavior Results

The Summary diagrams generated contain the number of passed or failed tests, as 
well as a list of the passed or failed Sequence diagrams. The resulting Sequence 
diagrams appear in the Model View tab in the browser. 

Note:  These Sequence diagrams are populated only when you select a Sequence 
diagram and open it, or if you double-click on one of the notes in a results diagram. 

The new Sequence and Summary diagrams are contained within the results 
collaboration. The results will be in the Logical View package in the Model View tab 
under the package named:

RQART_+ <test_name>

where <test_name> is the name that you specified for the test. Figure 31 shows the 
Summary and Trace Sequence diagrams in the Logical View package.
Verification Run Results 71



Figure 31 Results on the Model View tab in the Browser

Summary Sequence Diagrams

Figure 32 shows the results for tests that failed and Figure 33 shows the results for 
tests that passed. The Results diagrams are hyperlinked to each other. Double-clicking 
on a note in the Passed results diagram opens the Failed results diagram, and vice 
versa.
72 Chapter 5 - Verifying Specification Sequence Diagrams



Figure 32 Results that Failed

The newly created Summary Sequence diagrams contain a date and time stamp. The 
format for this stamp is:

YYMMDDHHMMSS

where YY is the year, MM the month, DD the day, HH the hour, MM the minutes, and SS 
the seconds.

Figure 33 Results that Passed

In the Documentation tab (Figure 34) you will see the date and time stamp and the 
RQA-RT version number for the test.
Verify Behavior Results 73



Figure 34 Documentation tab

Trace Sequence Diagrams

The title of the window for the newly created diagrams (Figure 35) have the following 
format:

<sequence_diagram>_Trace_<date and time stamp>

where <sequence_diagram> is the name of the sequence diagram being tested, and <date 
and time stamp> is the date and time in the format YYMMDDHHMMSS.

For example, BrewCycle:MainFlow_Trace_020308155408

If you select a Trace Sequence diagram, the name appears in the Documentation tab 
(Figure 34), as well as the date/time stamp and RQA-RT version number.
74 Chapter 5 - Verifying Specification Sequence Diagrams



Figure 35 Trace Sequence Diagram

Note:  These Sequence diagrams are populated only when you select a Sequence 
diagram and open it, or if you double-click on one of the notes in a results diagram. 

Models Under Source Control

The Sequence diagrams are automatically populated with views when the Sequence 
diagram is opened unless you clicked No to a Source Control prompt, or the model is 
read only. 

Typically, opening a sequence diagram is not considered an operation that would 
change the model files. However, if the Sequence diagram is unpopulated, an attempt 
to populate the model causes the model files to change, unless it is prevented from 
continuing. 

Note:  If the model is not under source control and is not read only, or if it is under 
source control but the appropriate unit is already checked out, then the population 
will proceed silently but the unit will be marked as modified and you will be 
prompted to save the model upon closing.
Verify Behavior Results 75





6Inspecting Rational 
Quality Architect - 
RealTime (RQA-RT) 
Results
Contents

This chapter is organized as follows:

� Overview on page 77
� Comparison Rules on page 78
� Standalone Differencing on page 81
� Troubleshooting and Known Issues for RQA-RT on page 82

Overview

Upon completion of verification, the results of the differencing algorithm comparison 
are displayed in the Log tab in the Rational Rose RealTime Output window. Each line in 
the browser list represents an error result related to a specification / trace pair of 
Sequence diagrams. Each line entry shows: the diagram in which the inconsistency 
was found (specification diagram or trace diagram), and the name of the message in 
question (see Figure 36).

Figure 36 Rational Rose RealTime Log tab in the Output Window
77



If no differences are apparent and the specification successfully matches the trace 
diagram, then the following message will appear:

Differences between specification: <spec. diagram> and trace: <trace diagram>:None

If differences are found, they will appear as in Figure 36. You can double-click on any 
warnings or errors that appear in the Log tab in the Output window as a result of the 
RQA-RT Verify Behavior Comparison to navigate to the specific model element in the 
sequence diagram (either specification or trace) which is causing the difference to 
appear. The Sequence diagram or trace diagram is automatically opened, and the 
message that is causing the differencing warning is selected and centered in the 
diagram.

For unsuccessful matches, the dialog box shows one of the following results: 

� Warning: <Specification or Trace>  <Message Name> was unexpected

� Warning: no matching instance found for instance <Instance Name>

� <Message Name> failed to match with custom comparison message: <User entered 
string>

Comparison Rules 

In the RQA-RT process, the specification sequence diagrams and trace sequence 
diagrams are not compared for equality, but rather for similarity. The governing rules 
are as follows: 

� Instances - a capsule reference is only traced, that is, appears in the trace sequence 
diagram, if its position in the system hierarchy matches that described in the 
reference path of a specification sequence diagram. Even though the CUT(s) may 
have many other component capsules, the verification process ignores these 
capsules as well as messages to and from them. They will not appear in the trace 
sequence diagram. This permits the specification sequence diagram to be a 
blackbox description of the system. 

Unnamed interaction instances are always included in a trace.

� Event Order - the mismatched events from the specification sequence diagram will 
be shown followed by the mismatched events from the trace diagram. You can 
apply causal dependency elimination through the Verify Options tab. 

� Coregions - if a set of messages is specified within a coregion on the specification 
sequence diagram, then these events are allowed to occur in any order in the trace 
sequence diagram. 
78 Chapter 6 - Inspecting Rational Quality Architect - RealTime (RQA-RT) Results



� Local States - if present in the specification sequence diagram, states must be 
present in the trace diagram having matching names. You can specify whether or 
not Local States are included in the comparison through the Verify Options tab.

� Local Actions - actions in the specification sequence diagram are ignored in the 
Verify Behavior process. They can be compared through the stand-alone 
differencing functionality if you specify this as an option. 

� Messages - For any message pair to match, they must satisfy all of the following 
matching criteria: 

❑ order

❑ source instances 

❑ destination instances 

❑ port names - the name empty port name, if used, must match the name of one 
other port name, as generated port names may not necessarily be present in the 
spec diagram, but will be present in the sequence diagram

❑ signal name

❑ synchronous versus asynchronous mode

� Mechanism - identifies a matching interaction instance in trace and spec diagrams. 
For interaction instances with unspecified roles, follow the name generation rules 
to determine which interaction instances are a match. 

Note:  Message data is not compared by default. This is left up to you through the 
custom data comparison mechanism.

System Ports 

System Ports / Unwired ports, also known as SAPs, include the Frame, Log, 
Exception, and Timer. 

Note:  Not all of these SAPs can send or receive messages. 

The messages travelling through the basic system SAPs, that are provided by the 
Target Services Library, are not under the control of the test harness. The messages for 
these services are traced, but it is your responsibility to correctly code the model to 
ensure that the messages are sent or received. 

For example, the test harness does not inject time-out messages. This is done by the 
Target Services Library after a timer is correctly set up. 

Note:  Because these messages do not involve the test harness, they are not considered 
when trying to figure out when a test has completed.
Comparison Rules 79



Framework Components 

In general, the framework components that support the RQA-RT Add-In are 
transparent to the user. However, some advanced users may wish to customize some 
of the components in order to suit their own specific testing requirements. It should be 
noted, that modifications to the framework may impair the RQA-RT Add-In’s 
functionality. 

To avoid possible naming conflicts between your model and elements generated by 
RQA-RT we recommend that you avoid names beginning with RQART, since 
RQA-RT prefixes all generated names with this string.

The framework components and their function are as follows: 

� Driver capsules - the RQA-RT Add-In uses the specified driver Capsules and a set of 
specification sequence diagram(s) to create a set of driver capsules. Each driver 
capsule implements the externally visible messages of its matching specification 
sequence diagram. In the model browser there is a package called RQA-RT Classes 
that contains the abstract capsule class that the driver capsules are derived from. 
These capsules are contained a couple of levels deep in the package to account for 
language and version number of the shared package.

❑ RQARTAbstractTestDriver  - concrete capsule class drivers are derived from this 
capsule

❑ RQARTTestDriverProtocol - protocol class that simulates the capsule interface.

� Harness Capsule - the capsule within which all the driver capsules and CUT are 
executed. The structure contains the CUT(s) roles and roles of all the drivers. When 
loaded and executed in the RTS, the harness capsule automatically incarnates each 
of the driver capsules in succession and reports on their success or failure. The 
following capsule classes are added within the RQA-RT Classes package for 
implementing the harness:

❑ RQARTAbstractTestHarness  - concrete capsule class harness is derived from this 
capsule. This provides all the necessary infrastructure and utilities required by 
a concrete harness capsule class.

❑ RQARTCPServer - capsule used for communicating with the RQA-RT Add-In.

To clean your model of generated test harnesses, RQA-RT packages, and 
associated artifacts, select Rational Quality Architect - RealTime Edition - Remove RQA-RT 
Artifacts From the Model.
80 Chapter 6 - Inspecting Rational Quality Architect - RealTime (RQA-RT) Results



Troubleshooting 

One common problem occurs when the port or signal names in a message are 
specified incorrectly. You will have to correct these errors and rerun the verification. 
Typically, RQA-RT provides feedback in the application log if it is unable to generate a 
harness from the given sequence diagram(s).

Standalone Differencing

The differencing algorithm lets you compare two sequence diagrams of your choice. 
Since sequence diagrams can be generated from previous traces, you can use 
standalone differencing to verify the trace from an actual production run of a system, 
as opposed to traces generated from the test-harness. 

Sequence Diagram Differencing

You can compare previous runs and actual production traces with your specification 
diagrams and you can specify more precise filtering for the differencing to get a more 
accurate picture of the differences.

To use sequence diagram differencing:

1 Select the specification sequence diagram. A list of packages containing sequence 
diagrams appears on the left, and all sequence diagrams within the selected 
package appear on the right. 

2 Select the trace sequence diagram to compare.

3 From the differencing options tab, select different filtering options. Filter out 
invalid messages from the interaction diagram.

4 The differencing results appear on the Real RealTime log pane. You can link the 
results to the model elements by double clicking.

Verifying a Trace

This feature is a variation of the stand-alone differencing functionality; it uses an 
output trace as the trace component. Instead of comparing two sequence diagrams, 
this compares a trace to a sequence diagram as long as target observability is active. 
The trace is converted to a temporary interaction and then compared with the 
specification sequence diagram of your choice.

This feature is only relevant when target observability is active and a Trace window is 
open.
Standalone Differencing 81



Troubleshooting and Known Issues for RQA-RT 

The following information explains the troubleshooting and limitation of Rational 
Quality Architect - RealTime Edition.

Driver Methods for Sending Messages to the Log and Custom 
Comparison

RQA-RT includes two helper functions in RQA-RTAbstractTestWrapper, the capsule 
that is the superclass for all generated drivers. These functions are:

SendACompareFailure(<some_string>);

LogAMessage(<some_string>);

Both of these functions send a message to the RoseRT log that is hyperlinked to the 
appropriate message in the trace Sequence diagram. SendACompareFailure also 
causes the sequence diagram differencing algorithm to fail on that message. These 
functions can be called in any user-specified code in a Sequence diagram. This 
includes:

� Local action code blocks from the "Quality Architect - RT" tab of the Local Action 
Specification.

� The "Sender Driver Test Code" and "Receiver Driver Test Code" code blocks 
available from the "Quality Architect - RT" tab of the Send Message Specification".

This code will be inserted on the appropriate transition in the generated driver 
capsule. If you want to see exactly where it is inserted, use the Find In feature to search 
for some identifiable piece of the code (possibly a unique string in a comment) in the 
generated driver capsule.

Lost Information in To Port for a Message

If you load an LF-file into Rational Rose RealTime and perform the conversion, there 
are a number of instances where the information on the To Port of a message is lost. In 
Rational Rose RealTime 2002.05.00, the conversion was enhanced to determine the 
receiver port on any message sent between two instances that have a direct logical 
connection from the sender port. This calculation increases the time required to 
perform the conversion. Diagrams which have messages between instances that skip 
relay ports will continue to require the receiver port to be entered manually.

Do not use -runScriptAndQuit when running RQA-RT from a script

When running RQA-RT from a script using the RunVerifyBehavior method do not use 
the -runScriptAndQuit command line option to cause RoseRT to exit once the script is 
complete. Since Verify Behavior runs asynchronously after RunVerifyBehavior is 
82 Chapter 6 - Inspecting Rational Quality Architect - RealTime (RQA-RT) Results



called this will cause RoseRT to exit before Verify Behavior is complete. Use the 
szScriptOnCompletion parameter of RunVerifyBehavior to specify a script that 
contains the actions that you want to occur after Verify Behavior is complete. This 
script can exit RoseRT using the Exit method.

Creation of Container Capsules

RQA-RT does not automatically create container capsules for a nested capsule when 
the container is not included in the Sequence Diagram.

Converting MSCs in Rational Rose RealTime using the RQA-RT

Problem

Many MSCs have a variable of the same name (prepareSetupReqD), but they can have 
a different type. When RQA-RT synthesizes these attributes from the multiple driver 
instances and attempts to generate one test driver, there is a name conflict and it 
selects the last Sequence Diagram attribute's type as the type for the attribute of the 
test driver class.

Background

In ObjecTime Developer, attributes are a characteristic of MSCs; each MSC can have 
its own attributes. These attributes can be considered variables for the environment 
which acts as a driver in TestScope.

When the MSCs are converted in Rational Rose RealTime using the RQA-RT 
conversion tool, each MSC is converted to a Sequence Diagram. In this Sequence 
Diagram, what was the environment in ObjecTime Developer is now a driver capsule 
that is automatically created. The interaction instance (of the driver) in the sequence 
diagram has attributes which were converted from the MSC in ObjecTime Developer.

This newly created interaction instance is set as a driver during the Verify Behavior 
operation. As a result, a new RQADriver is created.

Example:

Seq1:: driver has an attribute xAttrib of type Xtype

Seq2:: driver has an attribute xAttrib of type Ytype

Test harness generates a driver class with an attribute xAttrib of type Xtype or Ytype. 
The compilation occurs and the result will be many errors in the test harness. The 
errors occur because some of the action code interprets xAttrib as type Xtype and 
some as type Ytype.
Troubleshooting and Known Issues for RQA-RT 83



Workaround

Run the Sequence Diagrams from separate test harnesses. This means that you will 
have completely separate components and will have to compile again.

Creating Messages and Sequence Diagrams

The Item Properties in the Create Message Specification dialog, with the exception of 
Thread, only apply if you are creating a Capsule Under Test (CUT). Thread applies in 
every case. The Item Properties entries are as follows:

� Capsule class - a capsule name. Enter a value here only if you want to override the 
default capsule class associated with the role that is associated with the interaction 
instance being created.

� Initial data - Enter a value here only if your Capsule Under Test (CUT) requires 
data on startup. To provide data you must specify an attribute in the driver 
sending the create message with the appropriate initial values. You cannot provide 
initial data in create messages sent from the environment.

� Data Descriptor - if you provided initial data, you must specify the type descriptor 
of the type of data that you specified. This is in the format RTType_<type of initial 
data>

� Thread name

Sending Message Specification Data Field Format for Java
� For the data to be passed with the messages, the data type should be specified as 

<data_type> <constructor_arguments>. For example, to pass Integer object referring 
to the number 5, place the following:

� Integer 5 or java.lang.Integer 5

� If <data_type> is omitted, Integer is assumed.

� The <constructor_arguments> should contain the exact line to be passed as an 
argument to constructor. For example, for the MyObject(Integer, String) the 
following line can be used: MyObject 5, "Acme"

Note:  No additional brackets or quotes need to be placed around 
<constructor_arguments>.
84 Chapter 6 - Inspecting Rational Quality Architect - RealTime (RQA-RT) Results



Limitations
� RQA-RT does not support C models.

� Only leaf node instances in the interaction/sequence diagram can be specified as a 
driver/stub.

� Within a specification sequence diagram, each interaction instance without a 
specified role must have a unique name. Only one interaction instance per test set 
can be left unnamed.

� When running multiple specifications in a test, a port on a capsule under test 
(CUT) can only be connected to one interaction instance with an unspecified role 
for the set of specifications.

� An interaction instance with an unspecified role cannot have a cardinality index. 
Care should be exercised using unspecified roles to test capsules and/or ports 
with cardinality greater than 1.

� If the generated trace sequence diagram is manually compared to the specification 
sequence diagram, it is important to remember that such comparison is 
asymmetric - the specification sequence diagram should always be selected before 
the trace diagram.

� When running multiple specifications in a test, remember that the capsules under 
test continue to execute between tests. Ensure that each sequence diagram 
becomes quiescent at the end of each test scenario.

� If you generate a new harness into a controlled package which isn't checked out 
warnings will be generated.

� In Java, replicated sub-capsules can only be specified as drivers if the replication 
index is 1.

� Interaction instances with unspecified roles cannot be used to simulate 
interactions with sub-capsules. An error will occur if an unsupported use of 
"unnamed" interaction instance is detected.

Workaround: For example: top capsule A has capsule role B in it's structure. 
Capsule B has capsule role C in it's structure. If you run a test on the Sequence 
Diagram located under A's Structure Diagram, "unnamed" interaction instances 
can communicate with the B, but not C. To use "unnamed" interaction instance 
with the C, a Sequence Diagram should be located under B's Structure Diagram.

Note:  "unnamed" interaction instances are not a mandatory part of the verification 
process.
Troubleshooting and Known Issues for RQA-RT 85



� If a capsule role has a cardinality greater than 1, the cardinality index should be 
specified on interaction instances.

RQA-RT support of unspecified interaction instances allows you to easily drive an 
unconnected port without having to add a driver capsule to the collaboration. 
More complex tests will require the use of a driver capsule. Regardless, you cannot 
drive a test using a port that is part of the system currently being tested.
86 Chapter 6 - Inspecting Rational Quality Architect - RealTime (RQA-RT) Results



7RQA-RT Batch Mode 
Introduction
Contents

This chapter is organized as follows:

� Introduction to Batch Mode on page 87
� Properties on page 87
� Methods on page 90

Introduction to Batch Mode

One of the more powerful aspects of RQA-RT is in its use for sanity testing of your 
model/project. Through the use of batch mode, scripts can be constructed that will 
run the RQA-RT Verify Behavior through a fully automated process. Overnight sanity 
runs can verify that the current model passes the specification diagram requirements.

Any option / test variation that is accessible through the Verify Behavior dialog can 
also be accessed through the RQA-RT interface. The interface is COM based so any 
scripting language that supports COM can be used to run RQA-RT. Rational Rose 
RealTime ships with a Summit Basic Editor and interpreter that can run RQA-RT 
scripts, as shown in Example using Summit Basic Script on page 91.

Below is a list of the RQA-RT properties and methods that can be externally accessed.

Properties

AutoDelete [type: Boolean] - When set to True the generated test harness is 
automatically deleted after all of the test runs have completed. If this is set to False, 
then the generated test harness package will remain as an artifact. This is set to False 
by default.

Collaboration [type: LPDISPATCH] - Sets the collaboration under which the tests are 
run. Verify Behavior runs can verify any or all sequence diagrams under a specific 
collaboration during a test run.

Component [type: LPDISPATCH] - Sets the component that the test will build on.
87



ComponentInstanceName [type: BSTR] - Qualified name of the component instance, 
like: 

Deployment View::CPU_PIII::TSCPTestInstancemango. 

If not specified, a new component instance will be created with default parameters. 
Component instances have to be under ProcessorName. 

DiffOptions [type: long] - Bitmapped value for differencing options. The bits are used 
as follows:

#define DIFF_SEND_MASK0x00000001

 - send messages are to be included in comparison

#define DIFF_REPLY_MASK0x00000002

 - reply messages are to be included in comparison

#define DIFF_SYSTEM_MASK0x00000004

 - system messages are to be included in comparison

#define DIFF_STATE_MASK0x00000008

 - local states are to be included in comparison

#define DIFF_DESTROY_MASK0x00000010

 - destroy messages are to be included in comparison

#define DIFF_TERMINATE_MASK0x00000020

 - terminate messages are to be included in comparison

#define DIFF_CALL_MASK0x00000100

 - call messages are to be included in comparison

#define DIFF_RETURN_MASK0x00000200

 - return messages are to be included in comparison

#define DIFF_ACTION_MASK0x00000400

 - unidentified actions are to be included in comparison

#define DIFF_TRIM_MASK0x00001000

 - casual trim is to be performed on the results
88 Chapter 7 - RQA-RT Batch Mode Introduction



#define DIFF_PATH_MASK0x00002000

 - capsule index path will be taken in to effect

bits set to "1" are treated as "yes"; "0" as "no". 

By default the value is equal to DIFF_SEND_MASK | DIFF_REPLY_MASK | 
DIFF_SYSTEM_MASK | DIFF_DESTROY_MASK | DIFF_TERMINATE_MASK

HarnessLocation [type: BSTR] - Qualified name under which testing packet will be 
generated. Like "Logical View::User1". By default it is set to "Logical View".

LogPath [type: BSTR] - Sets the file path for the log dump if LogToFile is set to True.

LogToFile [type: Boolean] - When set to True, the output log will be sent to a file. This 
is useful for overnight sanity, i.e. if a static record of the runs needs to be kept around 
for reference.

MaxNamingRetries [type: short] - Sets the number of generated test harnesses that 
can stored within a model.

MaxTime [type: short] - Sets the time out period for ending the test in a worst case 
scenario, i.e. if the CUT(s) goes into an endless loop, becomes unresponsive, etc.

MaxTraceMessages [type: long] - Sets the tracing level for a Verify Behavior test run. 
Default: 1000 messages. More complex models may require this to be increased if a lot 
of message passing occurs within the interaction

ProcessorName [type: BSTR] - Qualified name of the processor used. Like 
"Deployment View::CPU_PIII". If not set first, processor will be used.

ResultsLocation [type: BSTR] - Qualified name under which the trace results will be 
generated. Like “Logical View::User”. By default it is set to "Logical View".

ReuseCapsuleName [type: BSTR] -  Qualified name of the top capsule in the 
generated harness specified by ReusePackageName. Like "Logical 
View::TSCP_mango::TSCPTestHarnessmango". Used only with 
ShouldGenerateHarness set to True.

ReusePackageName [type: BSTR] - Qualified name of the package containing the 
harness to be reused. Like "Logical View::TSCP_mango". Used only with 
ShouldGenerateHarness set to True.

RQARTAuto - Name of the interaction instance in the event you did not specify a 
name.

ShouldCopyComponent [type: Boolean] - When set to True the component (above) 
will be copied and the copied component will be used for the test run. If set to False, 
then the component will be reused.
Properties 89



ShouldCopyInstance [type: Boolean] - True: component instance will be copied 
(default); False: component instance will be reused.

ShouldGenerateHarness [type: Boolean] - True: new harness will be generated 
(default). False: existing harness will be reused. If set to true proper values for 
ReusePackageName and ReuseCapsuleName must be specified.

StoreResultsWithHarness [type: Boolean] - When set to True, the results are saved 
with the generated test harness. If set to False, then the ResultsLocation property is 
used to determine where the results are stored.

TargetCommTimeout [type: long] - (seconds) Specifies the maximum allowed 
timeout for a target to be uncommunicative. If communication cannot be established 
with the given time, the target will be reset. Default: 7 seconds

TargetPort [type: short] - Sets the unique identifier for creating the communication 
socket between RQA-RT and the target executable.

TestName [type: BSTR] - Name that is prefixed to the generated test harness for 
identification purposes.

Methods

AddDriver():AddDriver(DriverPath)

- Sets a capsule as a driver for the current run, where:

DriverPath is a text string composite of the drivers' role names separated by a 
colon (:) :

<role_name_1>:<role_name_2>:...:<role_name_N>

❑ <role_name_1> is the name of the classifier in the collaboration, <role_name_2> is 
the classifier name in the structure of the classifier <role_name_1> and so on.

- In the following example:

Capsule1R1:Capsule2R1:Capsule3R1

-TopCapsule has sub-capsule role Capsule1R1, which in turn has a sub-capsule 
with the role Capsule2R1. Capsule2R1 has a sub-capsule role Capsule3R1, 
which will be a driver. 

GenerateInstanceDriverBehavior()

- generates ports and connectors to the system drivers.

void AddResetToEnd()

- Adds a reset to the current run.
90 Chapter 7 - RQA-RT Batch Mode Introduction



boolean AddTestToEnd(IDispatch* interaction)

- Adds a new test to the current run.

void DeleteOptionsSet(BSTR szSetName)

- Will delete option set 'string' stored in the collaboration specified in the option 
setboolean LoadOptionsSet(BSTR szSetName).

- Will load option set 'string' from the collaboration specified in the option set. Will 
return False in case of failure; True otherwise. Collaboration containing the options set 
in question should be specified prior to execution of this command. This can be done 
through the Collaboration property.

void OnSelectRaceConditions(IDispatch* pRRTApp)

- Displays the Race Conditions dialog.

short OnVerifyBehavior(IDispatch* pRRTApp)

- Displays the Verify Behavior dialog.

void OnVerifyTrace(IDispatch* pRRTApp)

- Displays the Verify Trace dialog.

void RemoveAllDrivers()

- Resets all of the capsules set as drivers in the current run to be CUTs.

void RemoveAllTests()

- Removes all tests from the current run.

boolean RunVerifyBehavior(IDispatch* pRRTApp, BSTR szScriptOnCompletion)

- Runs the Verify Behavior functionality in script mode (for example, no UI). This 
assumes all the options for the current run have been set. The parameter 
szScriptOnCompletion allows additional functionality to run afterwards because, 
typically, this has to be the last command in a script since the command 
RunVerifyBehavior is asynchronous, i.e. it returns before having completed.

void SaveOptionsSet(BSTR szSetName)

- Will save current option in collaboration specified in the option set under the name 
'string'.

Example using Summit Basic Script 
Note:  You can load this example script into Rose RealTime from the following 
directory:

$ROSERT_HOME/RRTEI/SummitBasic/ReliableService.ebs 
Methods 91



Example

Sub Main

Dim am As RoseRT.AddInManager

Dim addIns As RoseRT.AddInCollection

Dim addIn As RoseRT.Addin

Dim aName As String

Dim rqart As Object

' Open model containing test collaborations

Dim pathString As String

'NT Path

pathString = "\Examples\Models\C++\ReliableService\"

'To run On Sun Or HPUX use the following pathString instead: 

'pathString = "/Examples/Models/C++/ReliableService/"

Dim origModel As String

origModel = "ReliableService.rtmdl"

Dim pathMap As RoseRT.PathMap

Set pathMap = RoseRTApp.PathMap

Dim actualPath As String

actualPath = pathMap.GetActualPath("$ROSERT_HOME")

pathString = actualPath + pathString

origModel = pathString + origModel

RoseRTApp.OpenModel origModel

' Sample script to start up RQA-RT Verify Behavior

Set am = RoseRTApp.AddInManager

Set addIns = am.AddIns

nAddins = addIns.count

For i = 1 To nAddIns

Set addIn = addIns.GetAt(i)
92 Chapter 7 - RQA-RT Batch Mode Introduction



aName = addIn.name

If aName = "OT::QualityArchitectRT" Then

'Print i, aName

GoTo foundAddin

End If

Next i

foundAddin:

'Print addIn.ServerName

Set rqart = addIn.EventHandler

'Find the logical view

Dim model As RoseRT.Model

Set model = RoseRTApp.CurrentModel

foundLogicalView:

'Set the Collaboration the interactions come from

Dim collab As RoseRT.Collaboration

Dim collabDiag As RoseRT.CollaborationDiagram

Dim collabCollect As RoseRT.ModelElementCollection

Dim collabName As String 

collabName = "ServiceProviderCollaboration"

Set collabCollect = model.FindModelElements(collabName)

For i = 1 To collabCollect.Count

 If collabCollect.GetAt(i).name = collabName Then

GoTo foundCollab

End If

Next i

'An error has occurred.  Provide info on error then terminate

ErrorTerminate1:

msgbox "No collaboration found with name " + collabName

Exit Sub
Methods 93



foundCollab:

Set collabDiag = collabCollect.GetAt(i)

Set collab = collabDiag.ParentModelElement

rqart.Collaboration collab

'Load the appropriate options set.  Note this is configured 'for 

'NT host in this script.  To run on Sun or HPUX, change the 'NT_ 
prefix

'to Sun_ or HPUX_ as appropriate to load the presaved option 'set 
for the

'specific host platform.  

rqart.LoadOptionsSet "NT_ServiceUserDriver"

'Override the options set to dump the log to a file

rqart.LogToFile TRUE

'Set the LogPath Property

Dim logString As String

logString = pathString + "ReliableService.txt"

rqart.LogPath logString

Dim postScript As String

postScript = ""

rqart.RunVerifyBehavior RoseRTApp, postScript

End Sub
94 Chapter 7 - RQA-RT Batch Mode Introduction



8ObjecTime Developer to 
Rational Rose RealTime 
Migration
Contents

This chapter is organized as follows:

� Conversion Procedure on page 95
� Differences on page 96

For information on general model migration issues from Objectime Developer to Rose 
RealTime, see the main toolset migration guide and on-line help for Rose RealTime. 
Since RQA-RT is an add-in, the conversion of the sequence diagram RQA-RT artifacts 
is a separate process.

Conversion Procedure

To convert an ObjecTime Developer model to Rational Rose RealTime:

1 Export your OTD model to Linear Form (*.lf).

2 Open the Linear Form file in Rose RealTime using File Open and change the files 
of type combo box to be (*.lf).

3 Follow the steps in the migration guide for converting your ObjecTime model to 
Rose RealTime.

4 To convert the sequence diagrams to the new Rose RealTime format, go to the 
Tools menu and select in the RQA-RT flyout Convert ObjecTime RQART Diagrams.

5 A progress bar displays and any warnings and/or problems that occurred during 
the conversion appear in the log pane.

This will take your existing sequence diagrams in each capsule (previously MSC’s), 
and create a new collaboration under the same capsule. The new collaboration named 
Converted_OTD_MSC is where the converted sequence diagrams will reside. The 
original sequence diagrams (MSC’s) are left intact and unmodified for reference 
purposes. You may delete them if you wish.
95



Differences

There are some significant differences between the original and converted sequence 
diagrams that are due to the architecture changes in RQA-RT. 

First of all, tests are no longer run by the environment (test harness). Tests are now run 
by the user-specified drivers. Consequently, the conversion routine must create a 
driver capsule that drives the test in the same way the environment previously did by 
looking at the messages from the environment, and creating a driver that sends the 
same messages to the CUT. This is so that tests may have multiple CUT’s or drivers to 
allow maximum flexibility and coverage of different specification scenarios (see 
Figure 37 and Figure 38).

C++ data is handled somewhat differently in Rational Rose RealTime. 

In OTD it was possible to add code segments to the data field in a message. In 
Rational Rose RealTime this is not the case. The data field is merely dropped in the 
signal send call. 

To accommodate this difference C++ data from OTD messages is mapped onto a new 
local action, which will appear before the message that contained the C++ data.

Note:  RPL data cannot be converted over to Rational Rose RealTime models. A local 
action will be created, but the RPL code is commented out. You must translate this 
manually. A warning in the Rational Rose RealTime log will appear, to alert you to 
this.
96 Chapter 8 - ObjecTime Developer to Rational Rose RealTime Migration



Figure 37 Unconverted Sequence Diagram
Differences 97



Figure 38 Converted Sequence Diagram
 

98 Chapter 8 - ObjecTime Developer to Rational Rose RealTime Migration



Index
A
AddDriver 90
add-in

RQA-RT framework 12
Adding 27, 28, 30, 36
adding

instances (RQA-RT) 27
instances manually for RQA-RT 30
messages to a specification sequence diagram

specification Sequence diagram
adding messages

messages
adding to specification

sequence
diagram 36

messages to specification sequence diagrams 
(RQA-RT) 36

adding instance to specification sequence 
diagrams 27

Advanced Tab 69
Allowing some path elements to be drivers in a 

containment hierarchy 47
AutoDelete 87
Automatically 32
Automatically Generating Specification Sequence 

Diagrams 32
Automatically Generating Specification Sequence 

Diagrams using the Message Trace 
feature 33

B
Batch 87
batch mode methods (RQA-RT)

AddDriver 90
GenerateInstanceDriverBehavior 90

batch mode properties (RQA-RT)
AutoDelete 87
Collaboration 87
Component 87
ComponentInstanceName 88
DiffOptions 88
HarnessLocation 89
LogPath 89
LogToFile 89
MaxNamingRetries 89
MaxTime 89
MaxTraceMessages 89
ProcessorName 89
ResultsLocation 89
ReuseCapsuleName 89
ReusePackageName 89
RQARTAuto 89
ShouldCopyComponent 89
ShouldCopyInstance 90
ShouldGenerateHarness 90
StoreResultsWithHarness 90
TargetCommTimeout 90
TargetPort 90
TestName 90

Behavior 35
Black Box testing 19
boolean 91

C
Capsule 12
capsule

container 50
unit testing for RQA-RT 34

capsule instances
replicated (RQA-RT) 31

Capsule subclass 64
Capsule Under Test 25, 33
Capsule Under Test (RQA-RT) 12
capturing test environment 49
Index 99



Cardinality 31
Collaboration 87
collaboration diagram

using to capture test environment 49
Comparison 78
comparison rules

coregions 78
event order 78
instances 78
local actions 79
local states 79
mechanism 79
messages 79

comparison rules (RQA-RT) 78
Component 87
ComponentInstanceName 88
Composite 43
composite data

sending strings 44
composite message data (RQA-RT) 43
contacting Rational technical publications ix
contacting Rational technical support x
container capsule 50
Conversion 95
conversion procedure for RQA-RT 95
Converted Sequence Diagram 98
Converting MSCs in Rational Rose RealTime 

using the RQA-RT 83
Coregions 45
coregions (RQA-RT) 45
creating

capsule unit test specification sequence 
diagrams 33

Messages and Sequence Diagrams 84
new specification sequence diagrams 

(RQA-RT) 27
specification sequence diagram 27
specification sequence diagrams manually 

(RQA-RT) 26
specification sequence diagrams manually for 

RQA-RT 26
Creating a New Specification Sequence 

Diagram 27

Creating Capsule Unit Test Specification 
Sequence Diagrams 33

creating specification sequence diagrams 
(RQA-RT) 25

Creation of Container Capsules 83
customizing

sequence diagrams for RQA-RT 35
CUT 12, 25, 33

creating specification sequence diagrams 33

D
debugging

RQA-RT 15
scenario-based for RQA-RT 15
scenarios for RQA-RT 22

Debugging Scenarios 22
development

specification-based for RQA-RT 19
Differences 96
differencing

Sequence Diagram (RQA-RT) 81
standalone (RQA-RT) 81

differencing (RQA-RT) 81
DiffOptions 88
documentation feedback ix
driver

generating behavior (RQA-RT) 47
Making the container a driver 50

driver methods for Sending Messages to the Log 
and Custom Comparison 82

Drivers 47
drivers 50
Drivers/Stubs tab 65

F
Framework 80
framework components (RQA-RT) 80
100 Index



G
GenerateInstanceDriverBehavior 90
generating

behavior for a driver 47
specification sequence diagrams 

(RQA-RT) 32
Getting the most out of your test results 46

H
harness

capsule 80
Controller Port 70
generate new 66

Harness Tab 66
HarnessLocation 89

I
Inspecting Rational Quality Architect - RealTime 

Edition (RQA-RT) Results 77
instance

interaction properties (RQA-RT) 52
instances

adding (RQA-RT) 27, 28
adding for RQA-RT 27
adding manually (RQA-RT) 30
adding manually for RQA-RT 30

Integrating Capsule Roles into a Sequence 
Diagram 47

Integrating Capsules into a Sequence 
Diagram 46

Interaction 52
interaction instance properties 52

L
Limitations

RQA-RT 85
limitations

RQA-RT 85
Linear Form 95
Local 54

Local action (RQA-RT) 54
Log Pane 77
LogPath 89
LogToFile 89

M
Manually 26
MaxNamingRetries 89
MaxTime 89
MaxTraceMessages 89
memory advantages

collaborations 49
Message 43
message data

composite 43
message data (RQA-RT) 43
message flows (RQA-RT) 35
message priority (RQA-RT) 43
message trace

generating specification sequence diagrams 
(RQA-RT) 33

messages
prior (RQA-RT) 58
subsequent (RQA-RT) 58

Methods 90
Model Example 13
model examples

RQA-RT 13
model management 49
model management advantages 49
Modifying 35
multiple specification sequence diagrams 63

O
object

passing 38
steps for passing (RQA-RT) 39

ObjecTime 95
Options Dialog 64
Index 101



P
passing an object

format 38
passing and object

steps 39
performance advantages

collaborations 49
pointers

passing objects by (format of) 38
Port 43
ports (RQA-RT) 43
Prior 58
prior messages (RQA-RT) 58
priority

messages (RQA-RT) 43
ProcessorName 89
Properties 87

R
Race 56, 57
race condition (RQA-RT) 56
race condition analysis 56
race conditions

detecting (RQA-RT) 57
example 57

Rational Quality Architect (see RQA-RT) 25
Rational technical publications

contacting ix
Rational technical support

contacting x
Receiver 55
Regression 20
regression testing (RQA-RT) 20
Replicated Capsule Instance 31
replicated capsule instances 31
replicated capsule instances (RQA-RT) 31
Results Tab 68
ResultsLocation 89
ReuseCapsuleName 89
ReusePackageName 89
RQA-RT

Add-In Framework 12
Add-in framework 12

adding instances 27
adding instances manually 30
adding messages to a specification sequence 

diagram 36
adding messages to specification sequence 

diagrams 36
Capsule Under Test 12
Capsule Under Testing 12
comparison rules 78
composite message data 43
conversion procedure 95
Coregions 45
creating capsule Unit Test specification 

sequence diagrams 33
creating specification sequence diagrams 25
customizing sequence diagrams 35
CUT 12
debugging 15
debugging scenarios 22
description 25
detecting race conditions 57
development 19
differencing 81
framework components 80
generating specification sequence 

diagrams 32
generating specification sequence diagrams 

using message trace 33
instances 27
interaction instance properties 52
limitations 82, 85
Local Action 54
message priority 43
Model Example 13
options 64
OTD to Rose RealTime conversion 

procedure 95
overview 11, 25
ports 43, 79
properties 52
race condition analysis 56
receiver code 55
regression testing 20
replicated capsule instances 31
results 77
102 Index



sending strings 44
signals 37
Specification Sequence diagram 13
specification verification 19
specification versification 19
specification-based development 19
troubleshooting 81
verifying a trace 81

RQA-RT batch mode
example 91

RQA-RT batch mode methods 90
AddDriver()

AddDriver(DriverPath) 90
AddResetToEnd() 90
AddTestToEnd(IDispatch* interaction) 91
DeleteOptionsSet(BSTR szSetName) 91
OnSelectRaceConditions(IDispatch* 

pRRTApp) 91
OnVerifyTrace(IDispatch* pRRTApp) 91
RemoveAllDrivers() 91
RemoveAllTests() 91
RunVerifyBehavior(IDispatch* pRRTApp, 

BSTR szScriptOnCompletion) 91
SaveOptionsSet(BSTR szSetName) 91

RQA-RT batch mode properties 87
AutoDelete 87
Collaboration 87
Component 87
ComponentInstanceName 88
DiffOptions 88
HarnessLocation 89
LogPath 89
LogToFile 89
MaxNamingRetries 89
MaxTime 89
MaxTraceMessages 89
ProcessorName 89
ResultsLocation 89
ReuseCapsuleName 89
ReusePackageName 89
ShouldCopyComponent 89
ShouldGenerateHarness 90
StoreResultsWithHarness 90
TargetPort 90
TestName 90

RQA-RT test results
generating behavior for a driver 47
integrating capsule roles into sequence 

diagram 47
integrating capsules into sequence 

diagram 46
path elements 47
using driver and stub behavior 46

RQARTAbstractTestHarness 80
RQARTAuto 89
RQARTCPServer 80
rtdata 55
RTType_RTpchar 39
Running a Verification 59
Running Verification on a Capsule Subclass 64
-runScriptAndQuit 82

S
Scenario 15
Send 55
send

passing an object 38
strings within the composite data 

(RQA-RT) 44
send (RQA-RT) 55
send message

receiver (RQA-RT) 55
receiver code 55
sender (RQA-RT) 55

Sender 55
sending

strings within the composite data 
(RQA-RT) 44

sending strings within the composite data 
(RQA-RT) 44

Sequence Diagram
differencing 81

sequence diagram
differencing 81
local action (RQA-RT) 54

Sequence diagrams
model management 49
Index 103



sequence diagrams
differences after conversion (RQA-RT) 96
multiple 63

ShouldCopyComponent 89
ShouldCopyInstance 90
ShouldGenerateHarness 90
Signal 37
signals (RQA-RT) 37
Specification 13, 19
Specification Sequence diagram

creating new 27
running a verification (RQA-RT) 59

Specification Sequence diagrams
generating 32
manually creating for RQA-RT 26

specification sequence diagrams
adding instances 27
adding messages 36
capsule unit testing 33
generating (RQA-RT) 32
multiple 63

specification verification
RQA-RT 19

specification verification (RQA-RT) 19
specification-based development (RQA-RT) 19
Specifying 31
standalone differencing (RQA-RT) 81
StoreResultsWithHarness 90
string field

passing object with 38
Stubs 22
stubs 50
subsequent messages (RQA-RT) 58
Summit Basic Script 91
System 79
system ports (RQA-RT) 79

T
TargetCommTimeout 90
TargetPort 90
TestName 90
To Port 82

Top capsule 49
collaboration diagram 49

Trace 16
trace

verifying (RQA-RT) 81
verifying for RQA-RT 81

tracing message threshold 70
troubleshooting

limitations of RQA-RT 82
Rational Quality Architect 81
RQA-RT 81, 82

troubleshooting (Rational Quality Architect) 81
type descriptor

setting when passing an object with string 
field (RQA-RT) 39

U
Unconverted Sequence Diagram 97
Understanding Rational Quality Architect - Real-

Time Edition (RQA-RT) 25
Unique name generation limit 70
Unit 34
Unit Testing 33
Using Driver and Stub Behavior to Simulate your 

Test 46

V
Verification 71
verification

running for RQA-RT 59
Verify tab 67
Verifying Multiple Specification Sequence 

Diagrams 63
void 90, 91

W
White Box testing 19
104 Index


	User’s Guide
	Preface
	Audience
	Other Resources
	Contacting Rational Technical Publications
	Contacting Rational Technical Support

	Introduction to Rational Quality Architect RealTime (RQA-RT)
	Overview
	RQA-RT Add-In Framework
	Capsule Under Test
	Specification Sequence Diagram
	Model Example

	Approaches to using Rational Quality Architect RealTime (RQA-RT)
	Overview
	Scenario-Based Debugging
	Specification Verification
	Specification-Based Development
	Regression Testing
	Debugging Scenarios

	Creating Specification Sequence Diagrams
	Overview
	Understanding Rational Quality Architect (RQA-RT)
	Manually Creating Specification Sequence Diagrams
	Creating a New Specification Sequence Diagram
	Adding Instances One at a Time
	Adding all Instances at Once
	Adding Instances Manually

	Specifying Replicated Capsule Instances
	Automatically Generating Specification Sequence Diagrams
	Automatically Generating Specification Sequence Diagrams using the RQA-RT Add-In
	Automatically Generating Specification Sequence Diagrams using the Message Trace feature
	Creating Capsule Unit Test Specification Sequence Diagrams
	Unit Testing a Capsule



	Customizing your RQART Sequence Diagram
	Modifying Capsule Behavior with Message Flows
	Adding Messages to a Specification Sequence Diagram
	Signal
	Passing an Object
	Passing an Object with the String Field

	Port
	Message Priority
	Message Data
	Composite Message Data

	Coregions

	Getting the Most Out of Your Test Results
	Using Driver and Stub Behavior to Simulate Your Test
	Integrating Capsules into a Sequence Diagram
	Integrating Capsule Roles into a Sequence Diagram

	Generating Behavior for a Driver
	Allowing Path Elements to be Drivers in a Containment Hierarchy

	Using Collaboration Diagrams to Capture the Test Environment
	Sequence Diagrams and Model Management

	Making the Container a Driver
	Interaction Instance RQA-RT Properties
	Local Action
	Send Message Sender / Receiver Code

	Race Condition Analysis
	Race Condition Example
	Prior Messages and Subsequent Messages


	Verifying Specification Sequence Diagrams
	Running a Verification
	Verifying Multiple Specification Sequence Diagrams
	Running Verification on a Capsule Subclass

	RQA-RT Options Dialog
	Verification Run Results
	Verify Behavior Results
	Summary Sequence Diagrams
	Trace Sequence Diagrams
	Models Under Source Control



	Inspecting Rational Quality Architect - RealTime (RQA-RT) Results
	Overview
	Comparison Rules
	System Ports
	Framework Components
	Troubleshooting

	Standalone Differencing
	Sequence Diagram Differencing
	Verifying a Trace

	Troubleshooting and Known Issues for RQA-RT
	Driver Methods for Sending Messages to the Log and Custom Comparison
	Lost Information in To Port for a Message
	Do not use -runScriptAndQuit when running RQA-RT from a script
	Creation of Container Capsules
	Converting MSCs in Rational Rose RealTime using the RQA-RT
	Creating Messages and Sequence Diagrams
	Sending Message Specification Data Field Format for Java
	Limitations


	RQA-RT Batch Mode Introduction
	Introduction to Batch Mode
	Properties
	Methods
	Example using Summit Basic Script


	ObjecTime Developer to Rational Rose RealTime Migration
	Conversion Procedure
	Differences

	Index


