
Rational Software Corporation®

support@rational.com
http://www.rational.com

Rational® ClearCase®

Mainframe Connectors
User’s Guide

VERSION: 2003.06.00 AND LATER

UNIX/WINDOWS EDITION

Legal Notices
Copyright ©1992-2003, Rational Software Corporation. All Rights Reserved.
Version Number: 2003.06.00 and later

This manual (the "Work") is protected under the copyright laws of the United States and/or other
jurisdictions, as well as various international treaties. Any reproduction or distribution of the Work is
expressly prohibited without the prior written consent of Rational Software Corporation.

The Work is furnished under a license and may be used or copied only in accordance with the terms of
that license. Unless specifically allowed under the license, this manual or copies of it may not be
provided or otherwise made available to any other person. No title to or ownership of the manual is
transferred. Read the license agreement for complete terms.

Rational Software Corporation, Rational, Rational Suite, Rational Suite ContentStudio, Rational Apex,
Rational Process Workbench, Rational Rose, Rational Summit, Rational Unified process, Rational Visual
Test, AnalystStudio, ClearCase, ClearCase Attache, ClearCase MultiSite, ClearDDTS, ClearGuide,
ClearQuest, PerformanceStudio, PureCoverage, Purify, Quantify, Requisite, RequisitePro, RUP,
SiteCheck, SiteLoad, SoDa, TestFactory, TestFoundation, TestMate and TestStudio are registered
trademarks of Rational Software Corporation in the United States and are trademarks or registered
trademarks in other countries. The Rational logo, Connexis, ObjecTime, Rational Developer Network,
RDN, ScriptAssure, and XDE, among others, are trademarks of Rational Software Corporation in the
United States and/or in other countries. All other names are used for identification purposes only and
are trademarks or registered trademarks of their respective companies.

Portions covered by U.S. Patent Nos. 5,193,180 and 5,335,344 and 5,535,329 and 5,574,898 and 5,649,200
and 5,675,802 and 5,754,760 and 5,835,701 and 6,049,666 and 6,126,329 and 6,167,534 and 6,206,584.
Additional U.S. Patents and International Patents pending.

U.S. Government Restricted Rights
Licensee agrees that this software and/or documentation is delivered as "commercial computer
software," a "commercial item," or as "restricted computer software," as those terms are defined in
DFARS 252.227, DFARS 252.211, FAR 2.101, OR FAR 52.227, (or any successor provisions thereto),
whichever is applicable. The use, duplication, and disclosure of the software and/or documentation
shall be subject to the terms and conditions set forth in the applicable Rational Software Corporation
license agreement as provided in DFARS 227.7202, subsection (c) of FAR 52.227-19, or FAR 52.227-14, (or
any successor provisions thereto), whichever is applicable.

Warranty Disclaimer
This document and its associated software may be used as stated in the underlying license agreement.
Except as explicitly stated otherwise in such license agreement, and except to the extent prohibited or
limited by law from jurisdiction to jurisdiction, Rational Software Corporation expressly disclaims all
other warranties, express or implied, with respect to the media and software product and its
documentation, including without limitation, the warranties of merchantability, non-infringement, title
or fitness for a particular purpose or arising from a course of dealing, usage or trade practice, and any
warranty against interference with Licensee's quiet enjoyment of the product.

Third Party Notices, Code, Licenses, and Acknowledgements
Portions Copyright ©1992-1999, Summit Software Company. All rights reserved.

Microsoft, the Microsoft logo, Active Accessibility, Active Client, Active Desktop, Active Directory,

ActiveMovie, Active Platform, ActiveStore, ActiveSync, ActiveX, Ask Maxwell, Authenticode,
AutoSum, BackOffice, the BackOffice logo, bCentral, BizTalk, Bookshelf, ClearType, CodeView,
DataTips, Developer Studio, Direct3D, DirectAnimation, DirectDraw, DirectInput, DirectX, DirectXJ,
DoubleSpace, DriveSpace, FrontPage, Funstone, Genuine Microsoft Products logo, IntelliEye, the
IntelliEye logo, IntelliMirror, IntelliSense, J/Direct, JScript, LineShare, Liquid Motion, Mapbase,
MapManager, MapPoint, MapVision, Microsoft Agent logo, the Microsoft eMbedded Visual Tools logo,
the Microsoft Internet Explorer logo, the Microsoft Office Compatible logo, Microsoft Press, the
Microsoft Press logo, Microsoft QuickBasic, MS-DOS, MSDN, NetMeeting, NetShow, the Office logo,
Outlook, PhotoDraw, PivotChart, PivotTable, PowerPoint, QuickAssembler, QuickShelf, RelayOne,
Rushmore, SharePoint, SourceSafe, TipWizard, V-Chat, VideoFlash, Visual Basic, the Visual Basic logo,
Visual C++, Visual C#, Visual FoxPro, Visual InterDev, Visual J++, Visual SourceSafe, Visual Studio, the
Visual Studio logo, Vizact, WebBot, WebPIP, Win32, Win32s, Win64, Windows, the Windows CE logo, the
Windows logo, Windows NT, the Windows Start logo, and XENIX, are either trademarks or registered
trademarks of Microsoft Corporation in the United States and/or in other countries.

Sun, Sun Microsystems, the Sun Logo, Ultra, AnswerBook 2, medialib, OpenBoot, Solaris, Java, Java 3D,
ShowMe TV, SunForum, SunVTS, SunFDDI, StarOffice, and SunPCi, among others, are trademarks or
registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

Licensee shall not incorporate any GLOBEtrotter software (FLEXlm libraries and utilities) into any
product or application the primary purpose of which is software license management.

BasicScript is a registered trademark of Summit Software, Inc.

Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma, Richard Helm,
Ralph Johnson and John Vlissides. Copyright © 1995 by Addison-Wesley Publishing Company, Inc. All
rights reserved.

Copyright ©1997 OpenLink Software, Inc. All rights reserved.

This software and documentation is based in part on BSD Networking Software Release 2, licensed from
the Regents of the University of California. We acknowledge the role of the Computer Systems Research
Group and the Electrical Engineering and Computer Sciences Department of the University of California
at Berkeley and the Other Contributors in its development.

This product includes software developed by Greg Stein <gstein@lyra.org> for use in the mod_dav
module for Apache (http://www.webdav.org/mod_dav/).

Additional legal notices are described in the legal_information.html file that is included in your Rational
software installation.

Contents
Preface. .xv
About This Manual . xv

ClearCase Documentation Roadmap . xvi

ClearCase Integrations with Other Rational Products .xvii

Typographical Conventions . xviii

Online Documentation . xix

Customer Support . xx

Overview .1
Remote Build Components . 1

About the Remote Build Server . 1
Starting a Remote Build Request . 2

Hardware and Software Requirements for Remote Build . 2
Client Requirements . 2
Server Requirements . 2

Connectivity . 2
Supported Hardware and Operating Systems . 2

Installing Remote Build Client and Server Components 3
Installing the Client Component . 3

Setting Up the Server Component . 3
About Installing Remote Build Server . 3
About Remote Build Server Files . 4

MVS Deliverables. 4
USS Deliverables . 5

Installation Prerequisites . 5
Preparing to Upload RCCOS390 To a PDS. 6
Uploading RCCOS390 From a Remote Build Client 6
Running the RCCOS390 EXEC. 6

Setting Up the Servers . 7
Setting up Run-Time Parameters. 7

Configuring the Remote Build Server. .11
About Processing Build Requests. 11

Running a Build Server in MVS . 11
v

Running a Build Server in USS . 11
Processing Multiple Requests . 14

Queuing Requests . 15
Setting Queue Size . 16

Authenticating Users . 16
Understanding Server Authentication Modes . 16

Making MVS Users Owners of Their Remote Build Jobs . 17
Overriding the Default Job Name . 17

Returning MVS Output Files to the Client Machine. 18

Returning USS Output Files to the Client Machine . 18

Logging Server Messages and Traces . 19
Activating Server Tracing . 19
Activating Build Request Tracing . 19

MVS Builds. 19
USS Builds . 20
Determining the USS Trace File Location . 20

Configuring the Server Under MVS. 20
Modifying JCL. 21

Editing the RCCRUNM Member . 21
Editing the RCCMVS Member . 22

Starting the Server . 22
Stopping the Server . 22

Configuring the Server Under USS . 23
Modifying JCL. 23

Editing the RCCRUNU Member. 23
Editing the RCCUSS Member . 24

Starting and Stopping the Server . 24

Verifying Client/Server Communication (MVS) . 24

Verifying Client/Server Communication (USS) . 25
Running the Sample Executable . 26

Sending a Build Request. 27
Using the Client Command (rccbuild) . 27

Synopsis . 27
DESCRIPTION . 29

Repeating Command Options . 29
EBCDIC Translation (MVS Only) . 29
Sending User IDs and Passwords . 29

OPTIONS AND ARGUMENTS. 29
vi User’s Guide

Obtaining the Remote Build Client Version . 30
Specifying a Remote Build Server . 30
Pinging a Remote Build Server . 30
Specifying a Local Build Script . 31
Specifying a Server-Side Build Script . 31
Specifying a Server-Side Build Script in a Nondefault PDS 32
Specifying Client-Based Source Files . 32
Returning Output Files to Client Machine . 33
Keeping Output Files on the Server . 33
Specifying the Directory for a USS Build . 34
Specifying TSO Login Details . 35
Specifying Codepages for ASCII to EBCDIC Conversion 35
Setting Message Verbosity . 36
Setting the Condition for Valid Return Codes . 36
Specifying a Time-out Factor. 37
Setting Environment Variables . 37
Passing Variables to Build Scripts . 37
Specifying Prefix for Messages Returned to Client Log File 38

Using the –i, –o and –d Options with USS Builds . 38
Specifying Input and Dependent Files . 38

Input File Examples . 39
Specifying Output Files . 40

Output File Examples . 40

Working with Build Scripts . 41
Identifying Build Scripts at Run Time . 41

Understanding JCL Build Scripts . 41
Understanding Coding Requirements . 41
Testing Scripts on the Mainframe . 42

Identifying Build Files . 42
Sample Scenarios . 43

Input File on Client Machine . 43
Dependent File on Client Machine . 43
Output File, Link-Edit Step. 44

Coding the EXEC Statement . 44

Coding the DD Statement. 46
Identifying Files Using RCCEXT DD Parameters . 47

Identifying Input Files. 47
Identifying Dependent Files . 47
Sending Output Messages to a Client File . 47
Contents vii

Sending Output Messages to the Client’s Screen and a File. 48
Using Variables . 49

Using Predefined Variables . 49
Using User-Defined Variables . 51
Setting Defaults for User-Defined Variables . 51

File Name Conversions for MVS . 52
Conversion Examples . 52

Using Remote Build with clearmake . 53
Creating a makefile for a Remote Build . 53

Running the makefile . 54
Returning Derived Objects to the Client. 54

SSL Security Proxy and Secure Password Protection. 57
Introduction . 57

Process Overview . 57

Creating a Secure Password for the Remote Build Client . 58
Executing rccMKSecure . 58
When Your Password Expires . 59
Removing a User and Password . 59

Setting the Environment Variable for the Remote Build Proxy 59

Setting Up SSL for Remote Build . 59
What Is a Proxy? . 60

How stunnel Works . 60
Remote Build Proxy Server Parameters. 60
Setting Up the Remote Build Proxy Server . 61

Example: Setting Up SSL for Remote Build . 63

For More Information. 65

Sample Build Files . 67
About the Sample Files . 67

Submitting the COBOL Build Request . 67
Editing the Batch File . 68
Understanding the User-Defined Variables in the Build Script 68
Running the Batch File . 68

Running the COBOL Load Module . 69
Editing the Batch File . 69
Running the Batch File . 70
viii User’s Guide

Sample rccbuild Commands . 71
Sample Commands . 71

Index . 73
Contents ix

x User’s Guide

Figures
Figure 1 Processing an MVS Build Request . 12
Figure 2 Processing a USS Build Request . 13
Figure 3 Handling Multiple MVS Build Requests . 14
Figure 4 Handling Multiple USS Build Requests . 15
Figure 5 Build Files in ClearCase Explorer . 54
Figure 6 Derived Objects in ClearCase Explorer . 55
xi

xii User’s Guide

Tables
Table 1 Authentication Modes and Run-time Job Names 17
Table 2 USS Trace File Location . 20
Table 3 rccSSLProxy Parameters and Variables . 61
Table 1 Sample Files . 67
xiii

xiv User’s Guide

Preface
Rational ClearCase is a comprehensive configuration management (CM) system that
manages multiple variants of evolving software systems and tracks changes.
ClearCase maintains a complete version history of all software development artifacts,
including code, requirements, models, scripts, test assets, and directory structures.

About This Manual

This manual describes how to install and configure Remote Build Feature of the
Rational ClearCase Mainframe Connectors. It covers installation, configuration,
creation of JCL build scripts, and submission of build requests.

Using Remote Build, programmers who write COBOL and other mainframe
applications on client workstations can submit remote build requests to the
mainframe.
xv

ClearCase Documentation Roadmap

More Information
Command Reference
Online documentation

Help files

Installation Guide

Administrator’s Guide
(Rational ClearCase/

Rational ClearCase LT)

Administrator’s Guide
(Rational ClearCase MultiSite)

Platforms Guide
(See online documentation)

Project
Management

Orientation

Software
Development

Build
Management Administration

Managing Software Projects

Introduction

Release Notes
(See online documentation)

Online tutorials

Developing Software

Building Software

OMAKE Guide
(Windows platforms)
xvi Mainframe Connectors User’s Guide

ClearCase Integrations with Other Rational Products

Integration Description Where it is documented

Base ClearCase-
ClearQuest

Associates change requests
with versions of ClearCase
elements.

ClearCase: Developing Software
ClearCase: Managing Software
Projects

ClearQuest: Administrator’s Guide

Base ClearCase-Apex Allows Apex developers to
store files in ClearCase.

Installing Rational Apex (UNIX)

Base ClearCase-
ClearDDTS

Associates change requests
with versions of ClearCase
elements.

ClearCase ClearDDTS Integration

Base ClearCase-
PurifyPlus

Allows developers to invoke
ClearCase from PurifyPlus.

PurifyPlus Help

Base ClearCase-
RequisitePro

Archives RequisitePro projects
in ClearCase.

RequisitePro User’s Guide

RequisitePro Help

Base ClearCase-Rose Stores Rose models in
ClearCase.

Rose Help

Base ClearCase-
Rose RealTime

Stores Rose RealTime models in
ClearCase.

Rose RealTime Toolset Guide

Rose RealTime Guide to Team
Development

Base ClearCase-SoDA Collects information from
ClearCase and presents it in
various report formats.

Using Rational SoDA for Word
Using Rational SoDA for Frame

SoDA Help

Base ClearCase-XDE Stores XDE models in
ClearCase

XDE Help

UCM-ClearQuest Links UCM activities to
ClearQuest records.

ClearCase: Developing Software

ClearCase: Managing Software
Projects

ClearQuest: Administrator’s Guide

UCM-PurifyPlus Allows developers to invoke
ClearCase from PurifyPlus.

PurifyPlus Help
Preface xvii

Typographical Conventions

This manual uses the following typographical conventions:

■ ccase-home-dir represents the directory into which the ClearCase Product Family
has been installed. By default, this directory is /opt/rational/clearcase on UNIX and
C:\Program Files\Rational\ClearCase on Windows.

■ cquest-home-dir represents the directory into which Rational ClearQuest has been
installed. By default, this directory is /opt/rational/clearquest on UNIX and
C:\Program Files\Rational\ClearQuest on Windows.

■ Bold is used for names the user can enter; for example, command names and
branch names.

■ A sans-serif font is used for file names, directory names, and file extensions.

UCM-RequisitePro Allows RequisitePro
administrators to create
baselines of RequisitePro
projects in UCM, and to create
RequisitePro projects from
baselines.

RequisitePro User’s Guide
RequisitePro Help

Using UCM with Rational Suite

UCM-Rose Stores Rose models in
ClearCase.

Rose Help

Using UCM with Rational Suite

UCM-Rose RealTime Associates activities with
revisions.

Rose RealTime Toolset Guide

Rose RealTime Guide to Team
Development

UCM-SoDA Collects information from
ClearCase and presents it in
various report formats.

Using Rational SoDA for Word
Using Rational SoDA for Frame

SoDA Help

UCM-TestManager Stores test assets in ClearCase. Rational TestManager User’s Guide

TestManager Help
Using UCM with Rational Suite

UCM-XDE Stores XDE models in
ClearCase

XDE Help

UCM-XDE Tester Stores XDE Tester Datastores in
ClearCase

XDE Tester Help

Integration Description Where it is documented
xviii Mainframe Connectors User’s Guide

■ A sans-serif bold font is used for GUI elements; for example, menu names and
names of check boxes.

■ Italic is used for variables, document titles, glossary terms, and emphasis.

■ A monospaced font is used for examples. Where user input needs to be
distinguished from program output, bold is used for user input.

■ Nonprinting characters appear as follows: <EOF>, <NL>.

■ Key names and key combinations are capitalized and appear as follows: SHIFT,
CTRL+G.

■ [] Brackets enclose optional items in format and syntax descriptions.

■ { } Braces enclose a list from which you must choose an item in format and syntax
descriptions.

■ | A vertical bar separates items in a list of choices.

■ ... In a syntax description, an ellipsis indicates you can repeat the preceding item
or line one or more times. Otherwise, it can indicate omitted information.

Note: In certain contexts, you can use “...” within a pathname as a wildcard, similar
to “*” or “?”. For more information, see the wildcards_ccase reference page.

■ If a command or option name has a short form, a “medial dot” (⋅) character
indicates the shortest legal abbreviation. For example:

lsc⋅heckout

Online Documentation

The ClearCase Product Family (CPF) includes online documentation, as follows:

Help System: Use the Help menu, the Help button, or the F1 key. To display the contents
of the online documentation set, do one of the following:

■ On UNIX, type cleartool man contents

■ On Windows, click Start > Programs > Rational Software > Rational ClearCase >
Help

■ On either platform, to display contents for Rational ClearCase MultiSite, type
multitool man contents

■ Use the Help button in a dialog box to display information about that dialog box or
press F1.
Preface xix

Reference Pages: Use the cleartool man and multitool man commands. For more
information, see the man reference page.

Command Syntax: Use the –help command option or the cleartool help command.

Tutorial: Provides a step-by-step tour of important features of the product. To start the
tutorial, do one of the following:

■ On UNIX, type cleartool man tutorial

■ On Windows, click Start > Programs > Rational Software > Rational ClearCase >
ClearCase Tutorial

PDF Manuals: Navigate to:

■ On UNIX, ccase-home-dir/doc/books

■ On Windows, ccase-home-dir\doc\books

Customer Support

If you have any problems with the software or documentation, please contact Rational
Customer Support by telephone, fax, or electronic mail as described below. For
information regarding support hours, languages spoken, or other support information,
click the Support link on the Rational Web site at www.rational.com.

Your
location

Telephone Facsimile Electronic mail

North
America

800-433-5444
toll free or
408-863-4000
Cupertino, CA

408-863-4194
Cupertino, CA
781-676-2460
Lexington, MA

support@rational.com

Europe,
Middle
East, and
Africa

+31-(0)20-4546-200
Netherlands

+31-(0)20-4546-201
Netherlands

support@europe.rational.com

Asia Pacific 61-2-9419-0111
Australia

61-2-9419-0123
Australia

support@apac.rational.com
xx Mainframe Connectors User’s Guide

1Overview
Using the Remote Build feature of Mainframe Connectors, you can submit build
requests from Windows and UNIX client platforms for ClearCase to OS/390 and z/OS
(MVS and USS). You can configure Remote Build to return the derived objects to the
client platforms where you can version them in ClearCase. In addition, you can audit
the builds using the clearmake facility.

Remote Build Components

Remote Build has the following major components:

Note: Throughout this User’s Guide, the use of “OS/390” refers to both the OS/390 and
z/OS operating systems, unless otherwise indicated.

About the Remote Build Server

The Remote Build server is multithreaded and starts a new job for each request. Builds
run concurrently and are limited only by system resources, such as MVS JES initiators,
and by a server option.

Remote Build supports multiple server instances, which you set up through different
OS/390 ports.

Client executable rccbuild

Control statements Job Control Language statements (JCL)

Mainframe executables Load modules, such as RCCBLDW

USS deliverables Executables (.exe and .dll)

ClearCase clearmake utility and client-based VOBs

Mainframe connectivity TCP/IP
1

Starting a Remote Build Request

You can start a build request at the operating system prompt, or through a script or
makefile. In addition, you can point to build scripts and input files on client or server
machines.

Hardware and Software Requirements for Remote Build

This section describes software requirements for the client and server components.

Client Requirements

Install the client by selecting the Remote Build feature when you install Rational
ClearCase. See the Installation Guide for Rational ClearCase for Remote Build client
requirements.

Server Requirements

Connectivity

TCP/IP

Supported Hardware and Operating Systems

Hardware Platform Operating System

IBM System/390 OS/390 2.10, including UNIX System Services (USS)

IBM zSeries OS/390 2.10, including USS
z/OS 1.3, including USS
2 User’s Guide

2Installing Remote
Build Client and
Server Components
This chapter describes how to install the Remote Build client and server components.

Installing the Client Component

When you install ClearCase, you select a custom option to install the Mainframe
Connectors Remote Build feature.

By selecting this option and installing ClearCase using the Rational Setup Wizard, you
successfully set up the client component for use with the Remote Build feature.

To use the SSL Security Proxy and Secure Password Protection feature, see Chapter 7,
SSL Security Proxy and Secure Password Protection.

Setting Up the Server Component

This section describes how to install the Remote Build server component on the
mainframe. This component is included in the same ClearCase patch with the Remote
Build client component

About Installing Remote Build Server

Using ISPF panels and the ISPF Editor, you set up both the MVS and USS Remote Build
servers. You can select either MVS or USS, but you must install the MVS server before
installing the USS server.

The installation process can accomplish the following tasks:

■ Scan for existing Remote Build SMP/E control files (CSI).

■ Allocate partitioned datasets (PDSs), including:

❑ JCL library, which contains JCL that starts the Remote Build server load
modules.

❑ Load libraries, which contains server load module.

❑ Object library, which contains server object code.
3

❑ Procedures library, which can contain production build scripts that you write.

❑ Samples library, which can contain sample JCL build scripts.

■ Create the JCL required to generate the SMP/E control file (CSI).

■ Customize run-time JCL using the high-level qualifier that you specify.

■ Prompt for the location of the Language Environment library (SCEELKED).

■ Prompt for the HFS location for the USS server.

■ Prompt for the VOLSER and device type for all Remote Build PDSs.

■ Create the JCL to receive, apply, and accept the SMP/E installation files.

■ Link-edit the necessary Remote Build object modules.

■ Install USS executables.

■ Remove all work files when the installation completes successfully.

■ Set execute and read permissions on the USS executables and shell script.

About Remote Build Server Files

MVS Deliverables

These load modules are created during installation:

These JCL members are used by the MVS server.

RCCBLDS Main executable that accepts MVS and USS build requests.

RCCBLDW Executable that processes MVS build requests.

RCCDLL Dynamic link library for MVS.

RCCINIT Wrapper executable that calls RACF and the RCCBLDS
module.

RCCMSENU English-language messages.

RCCMSG Executable that formats messages.

RCCMVS Calls the RCCBLDW load module.

RCCRUNM Calls the RCCINIT load module.
4 User’s Guide

USS Deliverables

The USS deliverables include:

■ JCL

❑ RCCRUNU – Calls the RCCBLDS load module.

❑ RCCUSS – Calls the USS shell script rccbldw.sh.

❑ RCCSESU - Calls the USS shell script rccSSLUSSServerProxy.sh.

■ Executables

❑ rccbldw – Executable that processes USS build requests.

❑ rccbldw.sh – Shell script that calls the rccbldw executable.

❑ rccdll – Dynamic link library.

❑ rccSSLMVSServerProxy.sh - SSL shell script for MVS Server.

❑ rccSSLUSSServerProxy.sh - SSL shell script for USS Server.

Installation Prerequisites

Before installing the Remote Build feature, ensure you are authorized to do the
following:

■ Add datasets to the APF list

■ Browse the system log using SDSF

■ Ability to create new dataset high-level qualifiers (ALTER ability within RACF)

In addition, the following are required:

■ The system must have a USS partition active and available for update.

■ The TSO logon region size must be a minimum of 2 MB

■ You must know the dataset name of the Language Environment library (member
SCEELKED)

■ You must know the HFS location of the USS server

RCCSESM Calls the USS shell script rccSSLMVSServerProxy.sh.
Chapter 2 - Installing Remote Build Client and Server Components 5

Preparing to Upload RCCOS390 To a PDS

Take the following steps to upload RCCOS390 to a PDS:

1 Upload the REXX exec RCCOS390 in binary mode to a PDS (recfm=fb,lrecl=200).

2 Using IBM’s RACF, define RATIONAL as a valid high-level qualifier. This
high-level qualifier is used only during the SMP/E installation process and only
for temporary datasets deleted at the end of the job.

3 Ensure the LinkList contains references to the following two modules:

a IEWL (Linkage editor)

b GIMAPI (SMP/E CSI Application Interface)

Uploading RCCOS390 From a Remote Build Client

To upload RCCOS390 from a Remote Build client workstation:

1 Open an FTP connection to OS/390 MVS.

2 Specify the location of the RCCOS390 file on the client.

When using the FTP lcd command from a Windows client, enter a local directory
path in double quotes.

For example, lcd “C:\Program Files\dir\subdir”

3 Change to binary transfer mode: binary

4 Change the destination to the desired PDS.

cd 'pds'

5 Upload the file:

put RCCOS390

6 Quit the FTP session.

Running the RCCOS390 EXEC

From the ISPF Command Shell panel, run the command

ex 'pds(RCCOS390)'

■ where pds is the destination PDS for the REXX exec.
6 User’s Guide

The SMP/E INSTALLATION menu opens.

Setting Up the Servers

Set up the Run-time Parameters to set up to MVS Server.

Setting up Run-Time Parameters

Warning: During the installation process, do not exit from the SMP/E panels until the
install completes successfully.

Note: Please note that the data you enter in Step 4 through Step 8 is not validated for
content.

1 Select either the NO SCAN option or the SCAN option and press ENTER.

❑ Use the NO SCAN option if you know the name of your existing Remote Build
CSI or if you want to create a new CSI.

❑ Use the SCAN option to view a list of Remote Build CSIs found on your system.

Note: Using the SCAN option could take an extended amount of time, depending
on the size of your DASD farm.

2 A panel listing the CSIs to choose from opens. Select the Remote Build CSI you
want to work with and press ENTER.

❑ Selecting NEW SMP/E CSI will create a JCL job stream to first deinstall any
existing Remote Build CSI of the same name, and then install a new CSI.

❑ Selecting SPECIFY will present you with a pop-up panel on which to enter the
name of an existing Remote Build CSI. After entering the CSI name, press
ENTER and then press F3.

❑ Selecting an existing CSI from the list presented by the SCAN option allows you
to work with that particular CSI.

3 A CUSTOMIZATION & INSTALLATION panel opens. Type 1 for MODIFY JOB
CARD, and press ENTER.

4 Modify the JOB statement.

a Specify an eight character Job Name.

b Specify a TSO userid to notify upon completion of the install process. (For
example, NOTIFY=TSOUSR1 (where TSOUSR1 is the TSO userid to notify).
Chapter 2 - Installing Remote Build Client and Server Components 7

c Press ENTER and then press F3.

5 From the CUSTOMIZATION & INSTALLATION menu, type 2 for DASD
INFORMATION, and press ENTER.

a In the High Level Qualifier field, specify one or more high-level qualifiers (for
example, RCC).

b In the Volume serial number field, specify a volume serial number (for example,
RTL001).

c In the Device type field, specify a device type (for example, 3380, 3390, sysda,
sysallda, etc.).

d Press ENTER and then press F3.

6 From the CUSTOMIZATION & INSTALLATION menu, type 3 for SCEELKED
LIBRARY, and press ENTER.

a In the SCEELKED Library field, specify the dataset name of the Language
Environment library.

b Press ENTER and then press F3.

7 From the CUSTOMIZATION & INSTALLATION menu, type 4 for HFS
DIRECTORY, and press ENTER.

a In the Directory field, specify an existing USS directory (for example,
/rational/user). This is the destination for Remote Build server executables and
shell scripts.

b Press ENTER and then press F3.

8 From the CUSTOMIZATION & INSTALLATION menu, type 5 for SELECT
OPTIONAL USS SERVER INSTALLATION, and press ENTER.

a Select Yes to schedule installation of the USS server, or No to bypass this
option.

b Press ENTER and then press F3.

Note: This option will be disabled if the CSI you are working with has the USS
server installed.

9 From the CUSTOMIZATION & INSTALLATION menu, type 6 for INSTALL
REMOTE BUILD, and press ENTER.
8 User’s Guide

The ABOUT TO INSTALL panel is displayed, listing the sysmods specific to this
release of Remote Build which were previously applied to the CSI you have chosen
to work with, as well as those that will be applied to the CSI. You cannot at this
point make any further selections. Press ENTER.

Note: If applying updates to a CSI containing sysmods for a previous release (for
example, release 2002.05 compared release 2003.06) of Remote Build, the message
OLD RELEASE WILL BE REPLACED. CLIENT MUST BE SYNCH. HIT ENTER TWICE. is
displayed. Hit ENTER twice to generate the JCL required to complete the SMP/E
install. If not applying updates to a CSI containing sysmods from a previous
release of Remote Build, the message HIT ENTER TO GENERATE JCL is displayed
under the CSI name. Press ENTER twice.

10 A JCL job stream, based on the data entered above, is displayed.

a Edit the JCL as needed.

b On the command line, submit the job by typing SUB.

c Press ENTER and then press F3.

The message STAY ON UNTIL JOB COMPLETION is displayed under the CSI name
on the ABOUT TO INSTALL panel.

Caution: Do not exit the SMP/E installation panels until the job completes.

11 On successful completion, a JES2 message like the following one appears:

userid ENDED AT N1 MAXCC=0 CN(INTERNAL)
Chapter 2 - Installing Remote Build Client and Server Components 9

10 User’s Guide

3Configuring the
Remote Build Server
This chapter describes how to configure and run a Remote Build server. It also explains
how to verify client/server communication.

About Processing Build Requests

The Remote Build server performs the following tasks:

■ Receives build requests and files from the client.

■ Performs character conversions (MVS only).

■ Runs builds within its environment.

■ Optionally collects and returns results to the client.

Running a Build Server in MVS

In MVS, the server load module RCCBLDS receives client build requests. RCCBLDS
triggers the JCL member RCCMVS, which executes the RCCBLDW module.
RCCBLDW processes your build scripts (Figure 1 on page 12).

Running a Build Server in USS

For USS operations, the server load module RCCINIT and RCCBLDS run in MVS.
RCCBLDS triggers the JCL member RCCUSS, which starts the USS shell script
rccbldw.sh. This script starts the executable rccbldw, which processes build requests
(Figure 2 on page 13).
11

Figure 1 Processing an MVS Build Request

IBM's RACFRCCINIT

RCCBLDW

Child process

RCCMVS
(JCL)

RCCBLDS

Remote Build
client

TCP/IP

TCP/IP
session

Script
processing

MVS

User ID
validation
12 User’s Guide

Figure 2 Processing a USS Build Request

IBM's RACFRCCINIT

RCCBLDW

Child process

rccbldw.sh

RCCUSS
(JCL)

RCCBLDS

Remote Build
client

TCP/IP

TCP/IP
session

Script
processing

MVS

USS

User ID
validation
Chapter 3 - Configuring the Remote Build Server 13

Processing Multiple Requests

The server is multithreaded. Each build request starts a new process to handle the
build transaction. You control the number of concurrent jobs using the –n server
option. Concurrency is limited by system resources (such as JES initiators) and
workload policies.

Figure 3 illustrates the spawning process for multiple MVS build requests.

Figure 3 Handling Multiple MVS Build Requests

Figure 4 illustrates the spawning process for multiple USS build requests.

RCCBLDW

RCCMVS
(JCL)

First

RCCBLDW

RCCBLDS

RCCMVS
(JCL)

Second

RCCBLDW

RCCMVS
(JCL)

Third
14 User’s Guide

Figure 4 Handling Multiple USS Build Requests

Queuing Requests

When the concurrency limit is reached, the server queues any additional requests and
submits them on a first-come-first-served basis. Each queued request uses a TCP/IP
socket in a finite pool. The default queue size is 10. You control the queue size with the
server option –q.

When the queue is full, the client waits 10 seconds and retries indefinitely. Retries are
recorded in the client log file (rccbuild.log). The queue size must not exceed the pool
size.

RCCBLDW

RCCUSS
(JCL)

First

RCCBLDW

RCCBLDS

RCCUSS
(JCL)

Second

RCCBLDW

rccbldw.sh rccbldw.sh rccbldw.sh

RCCUSS
(JCL)

Third
Chapter 3 - Configuring the Remote Build Server 15

Setting Queue Size

We recommend that the sum of queue size and number of concurrent builds be less
than the number of sockets that the server can keep active at a time:

queue_size + concurrent_builds < number_sockets

Authenticating Users

Remote Build server interfaces with IBM’s RACF to perform the following tests:

■ Validate TSO user IDs and passwords that are passed by the client command.

■ Check user privileges for using MVS libraries and USS directories accessed during
a build request.

A user ID that passes these tests becomes the owner of the remote build process.

To enable user authentication:

1 Start the Remote Build server with authentication mode 1 or 2.

2 Store the RCCINIT module in an APF-authorized library.

Understanding Server Authentication Modes

There are three authentication modes, as described below.

For information about setting the authentication mode in MVS, see Editing the
RCCRUNM Member on page 21.

For information about setting the authentication mode in USS, see Editing the
RCCRUNU Member on page 23.

Mode Description

0 No user authentication. The user ID that starts the Remote Build server
becomes the owner for build processes requested by all users.

1 TSO user ID and password, passed by the client, are optional. If supplied,
RACF validates them.

2 TSO user ID and password, passed by the client, are required. RACF
validates them.
16 User’s Guide

Making MVS Users Owners of Their Remote Build Jobs

When you use a JOB statement in your RCCMVS JCL that specifies a hardcoded job
name, Remote Build Server generates a job name as follows:

your_job_name + n

where n is a number from 0 through 9. For example, the first job that is named
ACPRUN becomes ACPRUN0.

Overriding the Default Job Name

You can override the job name in RCCMVS with the TSO user ID of the build
requestor.

To override the job name:

1 Substitute the job name value with the user-defined parameter &USERID. For
example:

//&USERID JOB (ACCT#),'DEFINE TSO ID',CLASS=A

2 Specify a valid TSO user ID as the rccbuild –au parameter. For example:

rccbuild –h…–au RBUSER…

3 Start the Remote Build server using authentication mode –a1 or –a2.

Table 1 describes the requirements for substituting a TSO user ID as a remote build
job name.

Table 1 Authentication Modes and Run-time Job Names

Server
authenticati
on mode

User ID
supplied in
rccbuild
command

&USERID value in RCCMVS
JCL Member

Run-time job
name

–a0 No Replaced by RACF user ID that
starts server

Server job ID plus
suffix

–a0 Yes Replaced by RACF user ID that
starts server

Server job ID plus
suffix

–a1 No Replaced by RACF user ID that
starts server

Server job ID plus
suffix
Chapter 3 - Configuring the Remote Build Server 17

Returning MVS Output Files to the Client Machine

To send output files from an MVS build to the client machine:

1 Identify the file extension of the output file in your JCL build script using a DD
statement with the RCCEXT extension parameter.

For example:

//SYSOUT DD RCCEXT=PRO,DISP=(NEW,DELETE),

// UNIT=VIO,SPACE=(TRK,(10,10)),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)

For more information about using the extension parameters to identify output
files, see Identifying Files Using RCCEXT DD Parameters on page 47.

2 Specify the output file, using the rccbuild –o option.

For example:

rccbuild … –o c:\builds\banner.pro

Returning USS Output Files to the Client Machine

To send output from a USS build to the client machine:

1 Specify a build directory, using the rccbuild –l or –la options. For example:

rccbuild … –la /accounts/q3

2 Include an instruction in your build script or program that copies the output files
to the current build directory. For example:

cp myoutput.exe .

3 Specify the output file on the command line using the rccbuild –o option. For
example:

–a1 Yes Replaced by the –au supplied
name

–au name plus
suffix

–a2 Yes Replaced by the –au supplied
name

–au name plus
suffix

Table 1 Authentication Modes and Run-time Job Names
18 User’s Guide

rccbuild … –o c:\builds\myoutput.exe

Logging Server Messages and Traces

Remote Build server logs the trace for the server and for build runs in separate data
sets.

■ Server (RCCINIT) messages

Server messages are captured in the dataset defined by the RCCBLOG DD
statement in the RCCRUNM JCL. Trace entries are captured in the server
(RCCRUNM) sysout. The default location for both datasets is the JES2 output
queue.

■ Build Run (RCCBLDW) messages

Messages for a specific build run are recorded in a dataset defined by the
RCCBLOG DD statement in the RCCMVS JCL.

Activating Server Tracing

To specify a RCCBLOG location other than the default sysout, modify the RCCBLOG
DD statements in the RCCRUNM and RCCMVS JCL.

To activate tracing, add the –t option to the PARM clause within the EXEC statement
in the RCCRUNM JCL.

Activating Build Request Tracing

Activating build tracing varies by build platform.

MVS Builds

To activate tracing for build requests, make the following changes to RCCMVS JCL:

1 Add this directive to the PARM clause within the EXEC statement that calls the
RCCBLDW load module.

PARM='ENVAR("_CEE_ENVFILE=DD:EDCENV")'

2 Update the EDCENV DD statement and point to a sequential dataset or a PDS
member. For example:

//EDCENV DD DSN=sequential.dataset,DISP=SHR
Chapter 3 - Configuring the Remote Build Server 19

3 In the sequential dataset that the DSN parameter points to, add only this line:

RCC_TRACE=*

USS Builds

To activate tracing, modify the shell script rccbldw.sh:

Do the following:

1 Change export RCCTRACE=* to export RCC_TRACE=*

2 Add the command export RCC_TRACEFILE=~/filename

where filename specifies the trace file.

Determining the USS Trace File Location

The location of the trace file depends on the following factors:

■ Authentication mode of the Remote Build server.

■ rccbuild –au value.

■ Directory where rccbldw is running.

Table 2 describes the effect of these factors.

Configuring the Server Under MVS

This section describes how to customize the JCL that is used in running the server.

Table 2 USS Trace File Location

Server
authentication
mode

–au value Directory running rccbldw Trace file location

–a0 any value /rational/smith /rational/smith

–a1 acp /rational/smith /rational/acp

–a1 no value /rational/smith /rational/smith

–a2 gls /rational/smith /rational/gls
20 User’s Guide

Modifying JCL

Customize the following JCL members:

■ RCCRUNM, which executes the RCCINIT module.

■ RCCMVS, which executes the RCCBLDW module.

Editing the RCCRUNM Member

1 Customize the JOB statement, as needed.

2 The RSERVER PROC contains default values for user-defined variables in the
PARM EXEC parameter. Modify the RSERVER parameters as follows:

❑ ‘PORTNO=portno: Replace portno with the server listening port.

❑ AUTH=number: Replace number with the server authentication mode. Valid
values are 0, 1, 2. For more information about authentication modes, see
Understanding Server Authentication Modes on page 16.

❑ MAXBUILD=number: Replace number with the maximum number of concurrent
builds. The default is 1. For more information about concurrency, see Processing
Multiple Requests on page 14.

3 Specify the following run-time parameters by adding options to the PARM clause
within the EXEC statement:

For example:

// PARM=('ENVAR("_CEE_ENVFILE=DD:EDCENV")/

// –p &PORTNO –a &AUTH –n &MAXBUILD –q 5 -t –V –V')

–t Activates tracing. Trace entries are captured in the dataset defined by
the RCCBLOG DD statement.

–q number Specifies the size of the queue for client requests. The default is 10.

–V Optional. Specifies the verbosity level of server messaging (1, 2, or 3).
The first instance sets the level at 1. Specify up to three instances.
There is no default verbosity level.
The following string sets the verbosity level at 2.

PARM='… –V –V'
Chapter 3 - Configuring the Remote Build Server 21

Editing the RCCMVS Member

Following are required modifications for RCCMVS. Do not make any other
modifications. The maximum number of JCL statements is 25.

1 Customize the JOB statement. To use the remote build requestor name (TSO ID) as
the job name, insert &USERID in the job name field. For example:

//&USERID JOB (ACCT#),'DEFINE TSO ID',CLASS=A

For more information about using the requestor name, see Overriding the Default
Job Name on page 17.

2 Modify the RCCPROC DD statement to point to the dataset that contains your
MVS build scripts.

This modification is needed only if your build scripts reside on the MVS system. If
your build script resides on the client, you must pass it to the server as part of the
build transaction. For more information about build scripts, see Chapter 5, Working
with Build Scripts.

3 If you want to activate tracing for build requests, follow the instructions detailed
in Activating Build Request Tracing on page 19.

Starting the Server

You can start the server in two ways:

■ As a started task
■ As a batch job

To enable Remote Build to run as a started task:

1 Modify the RCCRUNM JCL, as needed.

a Delete the JOB statement.

b Delete all lines starting from the PEND statement.

2 Copy the modified RCCRUNM JCL to the library SYS1.PROCLIB.

To start the Remote Build server as a batch job, submit the RCCRUNM JCL.

Stopping the Server

To stop the Remote Build server, cancel the job that was used to start it.
22 User’s Guide

Configuring the Server Under USS

This section describes how to customize the JCL that is used in running the server.

Modifying JCL

Customize the following JCL:

■ RCCRUNU, which executes the RCCINIT module.

■ RCCUSS, which calls the BPXBATCH utility to run the rccbldw shell script.

Editing the RCCRUNU Member

1 Customize the JOB statement.

2 Modify the PARM EXEC parameter:

// PARM='–p portno –a number –n number –q number –t –V '

where:

–p portno Required. Specifies the server listening port.

–a number Specifies the authentication mode of the server. The default
mode is 2. You can use authentication modes 1 and 2 only if the
RCCINIT module is run from an APF-authorized library.

–n number Specifies the number of concurrent builds. The default is 1.
When this limit is reached, the server queues any additional
requests and submits them on a first come, first serve basis.

–q number Specifies the size of the queue for client requests. The default
is 10.

–t Activates tracing. Trace entries are captured in the dataset
referenced by the RCCBLOG DD statement.

–V Specifies the verbosity level of the server (1, 2, or 3). The first
instance sets the level at 1. Specify up to three instances. There
is no default verbosity level.

The following string sets the verbosity level at 2.
PARM='… –V –V'
Chapter 3 - Configuring the Remote Build Server 23

Editing the RCCUSS Member

1 Edit the RCCUSS member by customizing the JOB statement, as needed.

2 Follow the steps in Editing the RCCMVS Member on page 22.

Starting and Stopping the Server

To start the Remote Build server, submit the RCCRUNU JCL.

To stop the server, cancel the job that was used to start it.

Verifying Client/Server Communication (MVS)

This section describes how to verify the connection between an MVS server and a client
workstation by processing a sample text file.

1 On the client machine, run the following rccbuild command:

rccbuild –h servermachine@portno –ft sample.jcl –b sample –it sample.inp
 –ot sample.out –k IBM-850 –r IBM-037

where:

Sample JCL and an input file (sample.inp) are sent to the server. The input file is
copied to the file sample.out and returned to the client machine.

Messages, like the following ones, appear on the client screen:

servermachine Specifies the server machine.

portno Specifies the listening port on the server machine. The port
number must match the number in the RCCRUNM
member.

UNIX users, remove these codepage parameters:
–k IBM-850 –r IBM-037

sample.jcl
sample.inp

sample.bat

Members of Samples directory created by client install.
24 User’s Guide

02/03/15 12:18:31 *** Success ***

02/03/15 12:18:31

RCCI-003

Program Name : 'IEBGENER'.

PARM : ''.

RCCI-004

The MVS step 'TEST1' return code is '000000'.

02/03/15 12:18:31 Message files from build:

02/03/15 12:18:31 1:TEST1.SYSPRINT

02/03/15 12:18:32

*--

2 In the directory that contains the rccbuild executable, browse the file sample.out
for the following messages:

The Remote Build server and client components are communicating.

To see the server output messages, view the file RCCBLDC.LOG.

Verifying Client/Server Communication (USS)

This section describes how to verify the connection between an USS server and a client
workstation by compiling a C-language program and returning the output executable
to the client machine.

1 On the client machine, run the following rccbuild command:

rccbuild –h servermachine@portno –b cc –it rcopy.c –p --o rcopy.ob rcopy.c –o
rcopy.ob –V

where:

servermachine Specifies the server machine.

portno Specifies the listening port on the server machine. The port
number must match the number in the RCCRUNU
member.
UNIX users, remove these codepage parameters:

–k IBM-850 –r IBM-037

r.copy.c Source code. Member of Samples directory created by client
install.
Chapter 3 - Configuring the Remote Build Server 25

The C-language source file rcopy.c is sent to the server and compiled. The output
file rcopy.ob is returned to the client machine.

Messages, like the following ones, appear on the client screen:

The build job has been queued by the server. Position is 1.

02/05/06 13:33:55

RCCI-014

Job 'BUILD000.' has been started by the server.

...

02/05/06 13:33:58 *** Success ***

02/05/06 13:33:58

Input Files: rcopy.c

Output Files: rcopy.ob

2 In the directory from which you ran rccbuild, browse for the file rcopy.ob.

Running the Sample Executable

The rcopy executable copies the list of files in a specified directory and their associated
permissions to the client screen.

On the client machine, run the following rccbuild command:

rccbuild –h servermachine@portno –b rcopy.ob –fb rcopy.ob –p path –V

where:

The server runs the rcopy executable and returns a list of files and associated
permissions to the client machine.

servermachine Specifies the server machine.

portno Specifies the listening port on the server machine. The port
number must match the number in the RCCRUNU member.

path Specifies an existing directory path on the server machine.
26 User’s Guide

4Sending a Build
Request
This chapter describes how to configure and send a build request.

The server creates a build job when you run the client program rccbuild. The client
then waits for completion of the build while the server runs the build script. After
running the build script, the server returns the results of the build to the client along
with a return code of 0 (success) or 1 (failure).

If both the rccbuild –o option and the appropriate server and build script JCL options
are used, build results are sent to the remote workstation’s file system. These results
include return codes, messages and any files that are returned to the client.

Using the Client Command (rccbuild)

This section describes rccbuild options and processing.

Synopsis
■ Find out the version of the Remote Build client:

rccbuild –version

■ Allowing connection to the Remote Build server from a Remote Build server proxy
on the same machine:

rccbuild -h localhost@portno

■ Specify a Remote Build Server:

rccbuild –h servermachine@portno…

■ Find out whether a Remote Build server is running on a specific port:

rccbuild –h servermachine@portno –testServer

■ Specify a build script that resides on the client machine:

rccbuild –h servermachine@portno –f [t|b] client_build_script –b copy_to_name…

■ Specify a build script that resides on the server:
27

rccbuild –h servermachine@portno –b server_build_script…

■ Specify a build script that resides on the server in a PDS not pointed to by the
RCCPROC DD statement in the RCCMVS JCL:

rccbuild –h servermachine@portno –b server_build_script
–proclib mvs_buildscript_library…

■ Specify client-based input and dependent files to the build process:

rccbuild –h servermachine@portno –i [t|b|n] input_file –d [t|b|n] dependent_file

■ Return output files, such as compiled objects, to the client machine.

rccbuild –h servermachine@portno –o [t|b] output_file…

■ Keep derived files on the server:

rccbuild –h servermachine@portno –on output_file…

■ Specify the directory for a USS build:

rccbuild –h servermachine@portno –l[a][c] build_directory…

■ Specify TSO login details:

rccbuild –h servermachine@portno…–au userid –ap password

■ Specify codepages for ASCII to EBCDIC conversion (MVS server only):

rccbuild –h servermachine@portno…–k client_codepage –r server_codepage

■ Set message verbosity level:

rccbuild –h servermachine@portno…[–V|–V–V|–V–V–V]

■ Set the condition for valid return codes:

rccbuild –h servermachine@portno…–c condition –n good_rc

■ Specify a time-out factor, in minutes:

rccbuild –h servermachine@portno…–T timeout

■ Set environment variables:

rccbuild –h servermachine@portno…–v var1=value var2=value2…

■ Pass run-time variables to the build script:

rccbuild –h servermachine@portno…–p build_parameters
28 User’s Guide

■ Specify a prefix that is attached to the front of the message files returned by the
server (for example, 1234COBC.SYSPRINT):

rccbuild –h servermachine@portno…–P message_prefix

DESCRIPTION

Use the rccbuild executable to submit a build request to an OS/390 server.

Repeating Command Options

You can repeat command options. The effect varies, as follows:

■ For the following options, when there are conflicts in option values, the last value
overrides other instances.

❑ –ap, –au, –b, –c, –f, –h, –k, –l, –n, –proclib, –P, –r, –T

■ Each instance of the following options supplements the current value:

❑ –db, –dn, –dt, –ib, –in, –it, –ob, –on, –ot, –p, –V, –v

EBCDIC Translation (MVS Only)

During a client-to-server transfer, text files are converted to EBCDIC. When server files
are transferred to the client, text files are converted to ASCII. Binary files are not
converted in either direction.

The rccbuild processor cannot handle files that contain both text and binary data. If
you have text files with imbedded binary data, transfer these files to the appropriate
data sets before issuing the rccbuild command.

Sending User IDs and Passwords

Using the –au and –ap options, specify user IDs and passwords in uppercase.
Lowercase and mixed-case names are not converted.

OPTIONS AND ARGUMENTS

You must specify the –h option with all rccbuild options except the –version option,
which does not make a server request.

See the Synopsis on page 27 for examples of correct option and argument syntax.
Chapter 4 - Sending a Build Request 29

Obtaining the Remote Build Client Version

localhost
This flag is used with the new Remote Build SSL functionality. It offers
additional security by only allowing connections to the Remote Build server
from a Remote Build server proxy on the same machine. If this flag is not set,
a Remote Build client can connect directly to the Remote Build server, allowing
the client to decide whether to secure its data. If this is not the desired behavior,
use this flag to allow clients to connect only through the proxies.

See Chapter 7, SSL Security Proxy and Secure Password Protection, for more
information on the SSL feature.

–version
Returns the following information about the executable. For example:

rccbuild Version:1.0.3.5

Specifying a Remote Build Server

–h servermachine@portno
Required except when –version is specified. Specifies the server name and the
listening port. For example:

–h os390@2600

Supported server platforms: MVS, USS.

Pinging a Remote Build Server

–testServer
Returns the following information about the server: operating system, Remote
Build server version, and authentication mode. The only other required option
is –h.

Supported server platforms: MVS.

Sample output:

Operating System: OS/390 MVS
Version: 2002.05.20
Authentication Mode: 2
30 User’s Guide

Specifying a Local Build Script

–f [t|b] client_build_script –b copy_to_name

where:

–f [t|b] client_build_script

Specifies a build script file that resides on the client machine, which is
transferred to the server for processing. The t option (default) specifies that the
build script file is a text file. Specify the b option if the file is binary. Note that
the MVS server only accepts build files in text format.

–b copy_to_name

Specifies a copy-to name for the build script. Remote Build script copies the
local script to the server under the copy-to name.

Supported server platforms: MVS, USS.

Examples:

This MVS example identifies a local JCL file on Windows, which is in text
format:

–f D:\MYCOMP.JCL –b MYCOMP

Specifying a Server-Side Build Script

–b server_build_script
Without the –f option, the –b option specifies that the build script resides on
the server.

In MVS, the server looks for the script in the PDS that is pointed to by the
RCCPROC DD statement in the RCCMVS JCL. The RCCMVS JCL is stored
in the JCL installation library. To override this PDS, use the –proclib option.

Supported server platforms: MVS, USS.

Example:

In the following example, the server looks for the script MYSCRIPT in the
default PDS.
Chapter 4 - Sending a Build Request 31

rccbuild…–b MYSCRIPT

Specifying a Server-Side Build Script in a Nondefault PDS

–proclib mvs_buildscript_library
Specifies an override to the default PDS that contains JCL build scripts. Use a
fully qualified PDS name, and also specify the –b option. For information
about the default PDS, see the –b option. The –proclib option is ignored when
you use the –f option.

Supported server platforms: MVS.

Example:

rccbuild… –proclib REMOTE.BUILD.SCRIPTS

Specifying Client-Based Source Files

–i [t|b|n] input_file…
Specifies the names of one or more input files (separated by blanks) or a file
that contains a space-delimited or comma-delimited list of files. Precede the
name of a file that contains a file list with an at sign (@). For example:
@mylist.txt

Supported server platforms: MVS, USS.

To indicate that the files are in text format, specify the t option. This is the
default.

To indicate that the files are in binary format, specify the b option.

To indicate that the input files already exist on the server and are not
transferred to the server, specify the n option. Use a DD statement in your JCL
build script to indicate the location.

For more information about specifying files for USS builds, see Using the –i, –o
and –d Options with USS Builds on page 38.

–d [t|b|n] dependent_file…
Specifies the names of one or more dependent files (separated by blanks) or a
file that contains a list of files. Precede the name of a file that contains a file list
with an ampersand (@). For example: @mylist.txt
32 User’s Guide

Supported server platforms: MVS, USS.

To indicate that the files are in text format, specify the t option. This is the
default.

To indicate that the files are in binary format, specify the b option.

To indicate that the input files already exist on the server and are not
transferred to the server, specify the n option.

For more information about specifying files for USS builds, see Using the –i, –o
and –d Options with USS Builds on page 38.

Returning Output Files to Client Machine

–o [t|b] output_file…
Specifies the names of one or more output files (separated by blanks).

Supported server platforms: MVS, USS.

To indicate that the files to be transferred to the client are in text format, specify
the t option.

To indicate that the files are in binary format, specify the b option. This is the
default.

For more information about specifying files for USS builds, see Using the –i, –o
and –d Options with USS Builds on page 38.

Keeping Output Files on the Server

–on output_file…
Keeps a copy of the derived files on the server. To prevent transfer of the
specified files to the client, specify the n option. After a successful build, the
client creates the files specified after the n option as empty files.

The actual build output remains on the server, and an empty file is returned to
the client. This provides a record on the client (with a time stamp) that the
build was done. This file can be used to prevent unnecessary builds when used
in conjunction with a make file.

Supported server platforms: MVS, USS.
Chapter 4 - Sending a Build Request 33

Specifying the Directory for a USS Build

–l [a] [c] build_location
Specifies the path for the build location. To identify a relative path, omit the a
option. To identify an absolute path, specify the a option and a fully qualified
path. The server creates any directories that do not exist.

If you use the –la options, copying the output file to the current directory (.) is
not needed.

Supported server platforms: USS.

To delete new directories when the build completes, specify the c option.

Examples:

The following example creates, if not present, the directory Driver01 and
compiles hello.c in that directory. Because the c option is not specified (–l
instead of –lc), the directory Driver01 is not deleted, and the object file hello.o
is left in the directory.

rccbuild… –l Driver01 … –b cc –p --c --o hello.o hello.c –i hello.c

The following example builds the hello object using hello.o (from the previous
example). Because the c option is specified (–lc instead of –l), the directory
Driver01 is deleted after the build is complete.

rccbuild… –lc Driver01 … –b cc –p --hello hello.o –o hello

The following example builds the hello object using hello.o (from the previous
example). Because the a option is specified (–la instead of –l) therefore, the
server creates the directory /Driver01 and makes the directory /Driver01 the
current directory for the build transaction.

Because the c option is not specified (–la instead of –lac), Driver01 is not
deleted, and the object file hello.o is left in the directory.

rccbuild… –la /Driver01 … –b cc –p --hello hello.o –o hello

The following example builds the hello object using hello.o (from the previous
example). Because the c option is specified (–lac instead of –la), the directory
Driver01 is deleted after the build is complete.

rccbuild… –lac /Driver01 … –b cc –p --hello hello.o –o hello
34 User’s Guide

Specifying TSO Login Details

–au userid
Specifies a TSO ID.

Supported server platforms: MVS and USS.

The server authentication mode determines whether a TSO ID is required. This
is specified in the RCCRUNM JCL. For more information about authentication
modes, see Editing the RCCRUNM Member on page 21.

–ap password
Specifies a TSO password.

Supported server platforms: MVS and USS.

The server authentication mode determines whether a TSO password is
required. This is specified in the RCCRUNM JCL. For more information about
authentication modes, see Editing the RCCRUNM Member on page 21.

-au (without -ap)

In previous releases of Remote Build, both the -au(userID) and -ap(password)
parameters had to be specified in the Remote Build script if user authentication
was required. In this release, the -ap parameter can be removed from the script
if you are using the secure password protection feature in Chapter 7, SSL
Security Proxy and Secure Password Protection. The client uses the encrypted
password in the file .rccSecure.

Specifying Codepages for ASCII to EBCDIC Conversion

–k client_codepage
Specifies the codepage for the input, output, and build script files on the client.
Codepage conversion occurs only on text files. The default codepage for the
Windows NT client is IBM-850. The UNIX default is ISO-8859-1.

Supported server platforms: MVS, USS.

–r server_codepage
Specifies the codepage used on the server. The default codepage is IBM-1047.

Supported server platforms: MVS, USS.
Chapter 4 - Sending a Build Request 35

Setting Message Verbosity

[–V|–V–V|–V–V–V]
Specifies the verbosity level of the server (1, 2, or 3). The first instance sets the
level at 1. Specify up to three instances.

Supported server platforms: MVS, USS.

Example:

The following command sets the verbosity level at 2: rccbuild… –V –V

Setting the Condition for Valid Return Codes

–n good_rc
Specifies a comparison value for determining whether the return code from a
build run signals success. The default value is 0. The –n option works in
conjunction with the –c option.

Supported server platforms: MVS, USS.

–c condition
Specifies the comparison operator for determining whether the return code
from a build run signals success. The –c option works in conjunction with the
–n option.

The comparison operators include the following:

LT (less than)
LE (less than or equal to)
GT (greater than)
GE (greater than or equal to)
EQ (equal to)
NE (not equal to)

Supported server platforms: MVS, USS.

Examples:

rccbuild options Return code Success?

–n 4 –c LT 4 No
36 User’s Guide

Specifying a Time-out Factor

–T timeout
Specifies the number of minutes that the server waits for an invoked build
script to return before stopping the build event. The minimum time-out
interval is 5 minutes.

Supported server platforms: MVS, USS.

Setting Environment Variables

–v variable-name=value…
Specifies the list of variables and their values that are used to modify the build
environment. variable- names are limited to 30 characters.

Supported server platforms: MVS, USS.

Build environment variables are used differently in MVS and USS.

In MVS, the –v option works in conjunction with user-defined variables on a
DD statement. For more information about the MVS implementation, see
Using User-Defined Variables on page 51.

In USS, the –v option changes or sets an environment variable. It is the
equivalent of using the C-language command putenv().

Passing Variables to Build Scripts

–p build_parameters
Specifies parameters that are passed to the build script. Build parameters are
used differently by MVS and USS servers.

Supported server platforms: MVS, USS.

–n 4 –c LE 4 Yes

–n 4 –c GT 3 No

rccbuild options Return code Success?
Chapter 4 - Sending a Build Request 37

In MVS, the –p option works in conjunction with the PARM parameter on a
DD statement. For more information about the MVS implementation, see
Using Predefined Variables on page 49.

For UNIX platforms, specify two hyphens (- -) instead of one (-) when you
need to pass a hyphen to your build script. This enables the server to
distinguish between rccbuild parameters and your build script parameters.

Example:

The passed values of the –p option are –o hello hello.c, which are preceded by
an extra hyphen. If the hyphen is omitted, the values are interpreted by the
rccbuild command.

rccbuild –b cc –i hello.c –o hello -p --o hello hello.c

Specifying Prefix for Messages Returned to Client Log File

–P prefix
Specifies a prefix that is added to the front of the message files returned to the
client by the server.

Supported server platforms: MVS, USS.

Example:

Using the –i, –o and –d Options with USS Builds

The file specifications on the -i, –o, and –d options are interpreted differently by the
client and server.

Specifying Input and Dependent Files

The client treats file locations specified with the –i and –d options as absolute or
relative to the client's current directory. The server places input and dependent files in
a subdirectory relative to where the server is running. The server has a concept of build
location, which is the directory the server uses as the current working directory.

Prefix Server message file Client message file

122500 COMPILE.SYSPRINT 122500COMPILE.SYSPRINT
38 User’s Guide

■ To use the default location, which is a subdirectory relative to the directory in
which the Remote Build server starts, omit the –l and –la options. The subdirectory
is deleted after the build request completes.

■ To force Remote Build server to create a subdirectory relative to a specified
directory, use the –l option. The relative is not deleted unless the –lc options are
specified.

■ To specify an absolute path, use the –la options.

Input File Examples

command Description

rccbuild… –it foo.c The client reads the file foo.c from its current
directory. The server creates a temporary directory
(typically named tbnnnn) and creates foo.c there.
At the end of the build, the server deletes the
directory.

rccbuild… –it foo.c –l MyDir The server creates or reuses the subdirectory
MyDir as the build location, and does not delete it
at the end of the build.

rccbuild… –it foo.c –la
 /u/server/test

The server uses the absolute directory
/u/server/test as the build location. The directory is
not deleted after the build.

rccbuild… –it foo.c –lc MyDir The server deletes the directory MyDir after the
build.

rccbuild… –it
temp/temp1/foo.c

When you omit the –l option, the server creates a
temporary directory path that is relative to the
directory where you start the server. The name of
the temporary directory varies.
For example, you start the server in the directory
RemoteBuild. The server creates a subdirectory
beneath it, such as tmp0001.
Given the example rccbuild command, the server
then creates the directory path temp/temp1
beneath tmp0001. The file foo.c is copied to the
directory temp1.
The full path is:
/RemoteBuild/tmp0001/temp/temp1/foo.c
Chapter 4 - Sending a Build Request 39

Specifying Output Files

For output files, the client and server work similarly.

Output File Examples

rccbuild… –it
temp/temp1(foo.c

The client interprets the left parenthesis as a slash
(/) and finds the appropriate directory. You can use
the left parenthesis in place of a slash anywhere in
the path.

On the server, the left parenthesis forces the file
foo.c to be created in the current directory, not in a
subdirectory.

command Description

rccbuild… –o foo.obj The server reads the file from the build location
and returns it to the client. The client places the file
in its current directory.

rccbuild… –o
c:\output\foo.obj

The server reads the output \foo.obj relative to the
build location. The client creates the file
C:\output\foo.obj.

rccbuild… –o c:\output(foo.obj The server reads the file foo.obj relative to the
build location. The client creates the file
C:\output\foo.obj.

rccbuild… –o output(foo.obj The server reads foo.obj relative to the build
location, and the client creates the file
output\foo.obj in the current directory.

command Description
40 User’s Guide

5Working with Build
Scripts
This chapter describes how to create JCL build scripts for MVS builds.

For builds on the USS platform, you can use a makefile or an executable on USS.

Identifying Build Scripts at Run Time

You identify the build script with the client command rccbuild.

■ To specify a build script that is stored on the client machine:

rccbuild –ft build_script –b server_filename

where build_script is the local file and server_filename is the copy-to name when the
file is transferred to the server.

■ To specify a build script that is stored on the server machine:

rccbuild –b server_script

In MVS, the script must be stored in the PDS that is associated with the RCCPROC
DD statement of the RCCMVS member. This PDS must have the following
attributes: RECFM=FB, LRECL=80.

Understanding JCL Build Scripts

You must write JCL build scripts using pseudo JCL for Remote Build. Each file must
have an LRECL of 80 characters. Any lines with more than 80 characters are truncated
during the transfer process. Pseudo JCL syntax is similar to standard JCL, with some
extensions and restrictions. We recommend starting with an existing JCL fragment.

Understanding Coding Requirements

The key coding requirements include the following items:

■ Omit a JOB statement.
41

■ Start all statements, except in-stream data, with two slashes — //.

■ Identify the following build files using DD statements with either RCCEXT
parameter:

❑ Input source files
❑ Dependent files
❑ Output files
❑ Output listings

Testing Scripts on the Mainframe

We strongly recommend testing JCL build scripts directly on your mainframe before
submitting them remotely using Remote Build

Identifying Build Files

To identify files that Remote Build processes, you need to customize your build script
and, depending on the type and location of a file, specify a client command option. This
coordination is required to send output files, such as object modules and executables,
to the client machine where they can be checked in to a ClearCase view.

The DD statement parameter RCCEXT identifies the file extension of a build file used
in a specific I/O operation.

The following table describes JCL script and client command requirements.

Files DD statement syntax rccbuild option

Input files that reside on
the client machine

//SYSIN DD RCCEXT=ext… –i

Dependent files that
reside on the client
machine

//ddname DD RCCEXT=ext –d
42 User’s Guide

Sample Scenarios

This section describes several build scenarios.

Input File on Client Machine

The input file BANNER.CBL resides in a Windows directory.

Sample rccbuild Command

Use the –i option to specify the input file.

rccbuild -h… –i C:\MYCOBOL\BANNER.CBL –b… –f…

Sample DD Statement

//SYSIN DD RCCEXT=CBL,DISP=(NEW,DELETE),
// UNIT=VIO,SPACE=(TRK,(10,10)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)

Dependent File on Client Machine

The dependent file BANNER.LED resides in a Windows directory.

Sample rccbuild Command

Use the –d option to specify the dependent file.

rccbuild -h… –d C:\MYHEADERS\BANNER.LED –b… –f…

Sample DD Statement

Output files to be sent to
the client machine

After a compile step:
//SYSLIN DD RCCEXT=ext…

After a link-edit step:

//SYSLMOD DD
RCCEXT=ext…

–o (Required)

Output listings to be sent
to the client machine

//SYSPRINT DD
RCCEXT=RCCOUT

(Not applicable)

Files DD statement syntax rccbuild option
Chapter 5 - Working with Build Scripts 43

//SYSLIN DD RCCEXT=LED,DISP=(NEW,DELETE),
// UNIT=VIO,SPACE=(TRK,(10,10)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)

Output File, Link-Edit Step

The generated executable BANNER is sent to the client as BANNER.LOD.

Sample rccbuild Command

Use the –o option to specify the output file.

rccbuild -h… –i C:\MYCOBOL\BANNER.CBL –o BANNER.LOD –b… –f…

Sample DD Statement

//SYSLMOD DD RCCEXT=LOD,DISP=(NEW,DELETE),
// UNIT=VIO,SPACE=(CYL,(10,10)),
// DCB=(RECFM=U,LRECL=0,BLKSIZE=6233)

Coding the EXEC Statement

Use the EXEC statement for these purposes:
■ To define a new job step
■ To specify the name of a load module or build script
■ To define parameters whose values you pass from the client

Syntax:

//stepname EXEC [PGM=program_name | proc_name] [PARM=’parm_string |
COND=(code,operator[,stepname])

where:

program_name Specifies a load module.

proc_name Specifies a build script whose location is
identified by the RCCPROC DD statement in the
RCCMVS JCL member.
44 User’s Guide

PARM='parm_string' Specifies a parameter string or variable. To pass a
value for a user-defined variable from the client,
use the rccbuild –v option.
A parameter string can contain imbedded blanks
and quotes. To imbed a single quote, concatenate
two single quotes.

Imbedded Quote Example
Your build script has the parameter:

PARM='&X''s'

You enter the following client command:

rccbuild ... -v X=it

The script value expands to:

PARM='it's'

Variables Example

To specify a variable, type an ampersand (&)
followed by the variable name.

For example:
'&X'

COND=(code,operator[,stepname])) Specifies a condition to test before executing the
current step. You can code multiple conditions
per EXEC statement.

The parameter code is the value to test against the
return code from a previous job step.
The parameter operator is the comparison
operator.

The parameter stepname identifies the job step that
issues the return code.

For example:

//STEP1 EXEC PGM=ONE
...

//STEP2 EXEC PGM=TWO
...

//STEP3 EXEC
PGM=THRE,COND=(4,LE,STEP1)
Chapter 5 - Working with Build Scripts 45

Coding the DD Statement

Use the DD statement to describe datasets, including source, dependent, and output
files.

Syntax:

//ddname DD DISP=(status,normal_termination_value,abnormal_termination_
value)|DCB=(LRECL=record_length,
BLKSIZE=block_size,RECFM=record_format)|DSN=dataset_name,|
DSORG=dataset_organization|SPACE=(allocation_unit,(primary[,secondary][,directory_b
locks]) [,RLSE] [,CONTIG])|UNIT=unit_type|VOL=SER=volume_name] |
[RCCEXT=ext | RCCEXT=(ext1,ext2,…) | RCCEXT=RCCOUT | RCCEXT=RCCSTD
| RCCEXT=RCCERR] | *

where the following standard JCL variables must be adapted for use with Remote
Build:

Note: Parameters not defined above are considered self explanatory.

ddname Specifies the DD name.

status Valid Remote Build values include: NEW, OLD,
DELETE, SHR

normal_termination_value

abnormal_termination_ value

Valid Remote Build values: DELETE, KEEP,
CATLG, UNCATLG. Specify the appropriate
disposition based upon normal or abnormal
termination.

dataset_organization Valid values include: PS, PO.

record_format Valid value include FB, VB.

allocation_unit Valid values include TRK, CYL, BLK.

primary Primary space allocation units

secondary Secondary extent allocation units

directory_blocks Number of directory blocks allocated (for PDS
only)

unit_type The default is VIO.
46 User’s Guide

For more information about the RCCEXT parameter, see Identifying Files Using
RCCEXT DD Parameters on page 47.

Identifying Files Using RCCEXT DD Parameters

You must identify input files, dependent files, output files, and output listings with a
DD statement and a RCCEXT parameter.

Identifying Input Files

Include a SYSIN DD statement for each input file that you pass using the –i option.

Change

//SYSIN DD DSN=

to

//SYSIN DD RCCEXT=ext

where ext is the file extension for the input file, such as CBL or C.

Identifying Dependent Files

Include one DD statement for one or more dependent files, such as header files and
COBOL copybooks. Use one of the following formats:

■ //ddname DD RCCEXT=ext

■ //ddname DD RCCEXT=(ext1,ext2,…extN)

The following DD statement specifies that all dependent files with extension .h and
.hpp (case- insensitive) are placed in the dataset allocated to the ddname USERLIB.
The same extension can appear only once in the JCL script.

//USERLIB DD DSN=MY.HEADERS,DISP=SHR,RCCEXT=(H,HPP)

Sending Output Messages to a Client File

Use the RCCOUT extension to send output messages to the client, in a file called
prefix.stepname.ddname.

where:

prefix The value, if any, specified with the rccbuild –P option.
Chapter 5 - Working with Build Scripts 47

In a build script run that omits the –P option, Remote Build overwrites an existing
SYSOUT file called stepname.ddname. By using the –P option, you can create and keep
message files from multiple build script runs. This is useful when more than one source
program (-i) uses the same build script. For example, you might use the program name
as the –P option.

When you use the RCCOUT extension with the SYSOUT ddname, COBOL DISPLAY
messages are included.

In the following example, after the program CBCDRVR executes, the contents of
SYSOUT are transferred to the client as file COMPILE.SYSOUT. This assumes that the
–P option is omitted.

//COMPILE EXEC PGM=CBCDRVR,..
//SYSIN…
//SYSOUT DD RCCEXT=RCCSTD,DISP=(NEW,DELETE),SPACE=(32000,(30,30)),
// DCB=(RECFM=VB,LRECL=137,BLKSIZE=882)

//SYSOUT DD RCCEXT=RCCOUT,DISP=(NEW,DELETE),SPACE=(32000,(30,30)),
// DCB=(RECFM=VB,LRECL=137,BLKSIZE=882)

Sysout to RCCSTD is directed to the client screen.

Sysout to RCCOUT is directed to the client file.

Sending Output Messages to the Client’s Screen and a File

Use the RCCERR or RCCSTD extension to send output messages to the client console
and in a file called prefix.stepname.ddname.

where:

In a build script run that omits the –P option, Remote Build overwrites an existing
SYSOUT file called stepname.ddname. By using the –P option, you can create and keep
message files from multiple build script runs. This is useful when more than one source

stepname The step name in the EXEC statement.

ddname The DD name in the DD statement.

prefix The value, if any, specified with the rccbuild –P option.

stepname The step name in the EXEC statement.

ddname The DD name in the DD statement.
48 User’s Guide

program (-i) uses the same build script. For example, you might use the program name
as the –P option.

In the following example, after the program CBCDRVR executes, the contents of
SYSOUT are transferred to the client as file COMPILE.SYSOUT. This assumes that the
rccbuild –P option is omitted.

//COMPILE EXEC PGM=CBCDRVR,..
//SYSIN…
//SYSOUT DD RCCEXT=RCCSTD,DISP=(NEW,DELETE),SPACE=(32000,(30,30)),
// DCB=(RECFM=VB,LRECL=137,BLKSIZE=882)

Using Variables

The parameters of a DD statement can have variables similar to standard JCL. Variable
names must start with an ampersand (&) and contain alphanumeric characters. They
are terminated by a nonalphanumeric character or a period (.), if needed. Variable
names are limited to 30 characters.

The pseudo JCL supports predefined and user-defined variables.

Using Predefined Variables

The following variables are predefined:

&INPUT
Returns the names of input files, passed by the rccbuild –i option. The path
and file extensions are discarded, and names are converted to
MVS-compatible names.

Example:

If the input files include src/hello.obj hello1.obj, the &INPUT variable returns
HELLO HELLO1.

&OUTPUT
Returns the names of output files, passed by the rccbuild –o option.

Example:

If the output file is src/hello.obj, the &OUTPUT variable returns HELLO.

&DEP
Returns the names of dependent files, passed by the rccbuild –d option.
Chapter 5 - Working with Build Scripts 49

Example:

If the dependent file is header/stdout.h, the &DEP variable returns STDOUT.

&PARM
Returns the value of a parameter, passed by the rccbuild –p option. This string
is passed as is (without folding). In the EXEC statement, the &PARM variable
must be enclosed in single quotes.

Example:

The command issued on the client machine:

rccbuild ... –p TYPERUN=DEBUG

The corresponding command located in the build script:

//COMPILE EXEC PGM=COMPILER,PARM='&PARM'

The server performs the variable substitution and changes the EXEC
statement:

//COMPILE EXEC PGM=COMPILER,PARM='TYPERUN=DEBUG'

&COMMA
Returns a comma.

&SP
Returns a single space.

The following behavior is associated with in-stream statements that contain predefined
variables &INPUT, &OUTPUT, and &DEP:

The statement that contains the variable is repeated for each file associated with the
variable.

Example:

Your build script has this DD statement:

//SYSLIN DD *

INCLUDE OBJ(&INPUT)

/*

You enter the following client command:
50 User’s Guide

rccbuild ... –i hello.obj hello1.obj

The server expands the input stream to this:

//SYSLIN DD *

INCLUDE OBJ(HELLO)

INCLUDE OBJ(HELLO1)

/*

Using User-Defined Variables

To pass user-defined variables, use the rccbuild –v option.

Example:

Your build script has the DD statement:

//OBJ DD DISP=SHR,DSN=&USERID..OBJ

You enter the following client command:

rccbuild ... –v USERID=QEORD1

The script value expands to:

//OBJ DD DISP=SHR,DSN=QUEORD1.OBJ

Setting Defaults for User-Defined Variables

Using a VARS statement, you can set default values for user-defined variables. The
VARS statement defines a comma-delimited list of name-value pairs.

//label VARS name1=value1,…nameN=valueN

where:

Example:

In the following example, default values are set for two variables.

//PRODVAR VARS USER=USER01,HLQ=V40021

label Specifies a label for the statement. The label has the same constraints
as a DD name.

name1 Specifies the name of a user-defined variable.

value1 Specifies the default value of the variable.
Chapter 5 - Working with Build Scripts 51

File Name Conversions for MVS

Client file names must conform to these rules:

■ Names must contain the following valid MVS characters:

0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ$@#

■ Names must begin with an alphabetic character.

The server makes the following transformations:

■ The directory path of a file name is not used. All characters of a file name up to and
including the rightmost slash (/ or \) are discarded.

■ Lowercase characters are converted to uppercase characters.

■ The file extension is stripped from the right, up to and including the separating
period. The extension, minus the period, is used by the MVS server to direct the
file to particular datasets according to RCCEXT parameters in the JCL build
scripts.

■ The remaining name is truncated from the left, to a maximum of eight characters.

■ Underscore characters (_) in a file name are converted to at signs (@).

Conversion Examples

The following examples demonstrate file name conversions:

■ File name src\build\fhbldobj.C converts to FHBLDOBJ.

■ File name src/build/fhbtruncate.c converts to FHBTRUNC.
52 User’s Guide

6Using Remote Build
with clearmake
The clearmake utility is the Rational ClearCase variant of the UNIX make utility. Using
clearmake, you can audit remote builds and trigger future build events.

During the process of building executables and load modules, ClearCase tracks the
following actions:

■ One or more source files that are under source control in a VOB are opened, read,
and sent to the Remote Build server.

■ Other files are created or updated as a result of the processes running.

An audit record indicates that the updated files are dependent upon files that were
read. When source files change and you reprocess the makefile, clearmake knows
which derived objects need to be recompiled.

Creating a makefile for a Remote Build

To create a makefile that integrates with Remote Build, replace build script commands
with a rccbuild command string.

In the following example, the file banner.cbl is compiled to generate the object module
BANNER. The object file is link-edited, and the generated load module returns to the
client as banner.pro. Only the link-edit step needs to be reflected in the first statement.

banner.pro: banner.cbl
rccbuild -h os390@3604 -b cobcomp -ft cobcomp.jcl -k IBM-850 \
-r IBM-037 -it banner.cbl -dt banner.led -o banner.pro -v MBR=BANNER \
COBCOMP=IGY210.SIGYCOMP LERUN=CEE150.SCEELKED HLQ=SMITH \
SYSTEM=MVSCICS -V -V -V

The following Windows example shows the versioned files that are used to generate
the load module BANNER.
53

Figure 5 Build Files in ClearCase Explorer

Running the makefile

To run the makefile, use a clearmake command. For example:

clearmake –f makefile

After the makefile is run, the clearmake utility creates an audit record that indicates
that banner.pro depends upon the three files read: banner.cbl, banner.jcl, and
banner.led. When you rerun the makefile, the build is executed again only if one or
more dependent files have changed. If all of them remain unchanged, the build request
is not submitted to the mainframe.

Returning Derived Objects to the Client

To return a derived object to the client:

1 Specify the derived object using the rccbuild –o option. The default format is
binary. If the file is in text format, specific the –ot option.

2 Include the file extension of the derived object using the RCCEXT extension
parameter in your build script. For more information about extension parameters,
see Identifying Build Files on page 42.

The following Windows example shows the derived object, load module
BANNER.PRO, and three other files: log file rccbuild.log, and two SYSPRINT
message listings.
54 User’s Guide

Figure 6 Derived Objects in ClearCase Explorer

The SYSPRINT and log files are sent to the directory from which you run the rccbuild
command. If you run the rccbuild command from a directory other than the view that
contains the source files, direct the derived object and other output files to the view by
specifying an output path (–o path).
Chapter 6 - Using Remote Build with clearmake 55

56 User’s Guide

7SSL Security Proxy
and Secure Password
Protection
Introduction

This chapter describes two new security enhancements for Remote Build: SSL Security
Proxy and Secure Password Protection.

Using these two new enhancements is optional. You can continue to use the Remote
Build feature with its existing username and password encryption functionality or you
can choose to use Remote Build with either or both of these new enhancements.

SSL Security Proxy allows for encryption of data passed between Remote Build clients
and servers. It makes use of stunnel on the Remote Build client and rccSSLProxy on
the Remote Build server.

A SSL key database, containing the SSL encryption certificate, is created during the
installation of this Remote Build release. The password for this database can be stored
as an environment variable, which allows you to use the Remote Build server proxy to
retrieve it, instead of requiring you to specify the password in start up scripts
(rccSSLMVSServerProxy.sh and rccSSLUSSServerProxy.sh). See Setting the Environment
Variable for the Remote Build Proxy for more information.

Secure Password Protection uses the new rccMKSecure command to store encrypted
mainframe passwords for use by the Remote Build client.

With this functionality, it is no longer necessary to specify a mainframe user password
when running the Remote Build client command (rccbuild). By using rccMKSecure, the
user can now create an encrypted password file that is read by the client. See Creating
a Secure Password for the Remote Build Client for instructions about how to do this.

Process Overview

To set up secure passwords and SSL security proxy:

1 Create a secure password file for the Remote Build client.

2 Set the environment variable for the Remote Build proxy (rccSSLProxy).

3 Set up SSL for Remote Build.
57

c Create a SSL key database.

d Set up the Remote Build server proxy.

e Set up the Remote Build client proxy.

f Execute Remote Build client.

An example of setting up SSL for Remote Build is included for reference.

Note: The set up of secure password protection and SSL Security proxy server are not
dependent on each other and can be implemented separately or together.

Creating a Secure Password for the Remote Build Client

Creating a secure password file provides additional security to the Remote Build
environment by providing encrypted storage of the mainframe password on the client.
To do this, execute rccMKSecure. Without using this feature, you will either enter the
password by hand into the Remote Build request or provide the unencrypted
password in a shell script.

Note: rccMKSecure creates a secure password file called .rccSecure. On UNIX systems,
the file resides in the directory defined by the system environment variable HOME. On
Windows, the file resides in the directory defined by the system environment variable
USERPROFILE. These system environment variables should not be modified.

Executing rccMKSecure

Execute rccMKSecure:

1 Execute rccMKSecure and provide the following information, when prompted:

❑ For System, enter the system that the Remote Build server is running on. This is
also the system your user name and password are valid for.

❑ For User Name, enter the MVS or USS user name under which you submit
remote builds.

❑ For Password, enter and confirm the user password.

2 Specify –au in your Remote Build client scripts.

Note: Do not specify –ap on Remote Build client commands.
58 User’s Guide

When Your Password Expires

When your password expires, follow the procedure in Executing rccMKSecure. The
password file will be updated.

Removing a User and Password

To remove a user and password for a particular system, do the following:

1 Execute rccMKSecure -d.

2 When prompted, provide the system, user name that you want to delete. After you
enter this information, the user is removed.

Note: Using the rccMKSecure tool to add, change, and remove users, systems, and
passwords for other users has no effect on your passwords and system privileges.

Setting the Environment Variable for the Remote Build
Proxy

To set the environment variable for the Remote Build proxy:

1 Log on to USS as the user who is installing or starting the servers.

2 Edit the .profile file of this user. The profile exists in the user’s home directory.

3 Supply the password for the SSL key database by entering RCC_SSL_DB_PWD =
password.

4 Enter export RCC_SSL_DB_PWD.

5 Save and close the .profile.

6 Cancel and restart the RCCSESM and RCCSESU jobs under MVS.

Setting Up SSL for Remote Build

To set up SSL for Remote Build, you must do the following:

■ Understand the function of the Remote Build proxies

■ Learn how to use the Remote Build proxy server parameters

■ Set up the Remote Build proxy server
Chapter 7 - SSL Security Proxy and Secure Password Protection 59

What Is a Proxy?

A proxy acts as an intermediary between two parties. Remote Build has two proxies,
one on the server side and one on the client side.

The Remote Build client communicates to the Remote Build client proxy (stunnel). The
Remote Build client proxy communicates to the Remote Build server proxy
(rccSSLProxy). The Remote Build server proxy passes the data to the Remote Build
server.

On the server side, the proxy resides in the HFS directory on USS. In addition, two USS
shell scripts call rccSSLProxy with the appropriate arguments
(rccSSLMVSServerProxy.sh and rccSSLUSSServerProxy.sh). These scripts must be
modified before they can be used, as explained in Setting Up the Remote Build Proxy
Server. stunnel on the client side also has two configuration files (stunnnelMVS.conf and
stunnelUSS.conf); both must be configured before you can run them. There are USS and
MVS configuration files on both the client side and the server side. There must be one
server proxy (MVS or USS) for each Remote Build server that has been started. Each
client machine requires its own client proxy for each Remote Build server that it
connects to.

How stunnel Works

stunnel is a program that is based on openssl technology. On startup, stunnel uses a
configuration file as input. The Remote Build samples directory contains two
configuration files: stunnelMVS.conf and stunnelUSS.conf. These files are used to
configure stunnel for the Windows and UNIX clients. Setting Up the Remote Build Proxy
Server explains how this is done.

Remote Build Proxy Server Parameters

Use these parameters to configure the Remote Build Proxy Server shell scripts:

rccSSLProxy

 -server (positional parameter)

-h ServerProxyHostName@ServerProxyListeningPort

-p localhost@RemoteBuildServerPort

-SSLdb SSLDataBasePath

-SSLdbpwd SSLDataBasePassword
60 User’s Guide

SSLDataBasePassword is an optional parameter; if it is not specified,
RCC_SSL_DB_PWD must be defined (see Setting the Environment Variable for the Remote
Build Proxy).

The localhost keyword represents the local host name. For details see OPTIONS AND
ARGUMENTS on page 29.

The parameters and associated variables are defined in the table below.

Setting Up the Remote Build Proxy Server

Use the following procedure to set up a Remote Build proxy server.

1 Create a SSL key database using the gskkyman tool on USS:

a Create the RACF group RCCBLD for your Remote Build users.

b Add all your Remote Build users to the RACF group you just created. Add any
additional users that start the Remote Build servers.

c Log on to USS and create a directory, whose owner is RCCBLD, where your SSL
key database is to reside.

d In the directory you created in Step c, type the command export
STEPLIB=GSK.SGSKLOAD.

Table 3 rccSSLProxy Parameters and Variables

Parameter or variable Definition

-server The required, first parameter

ServerProxyHostName The name of the machine the Remote Build server
proxy is running on

ServerProxyListeningPort The port that the Remote Build server proxy is
listening on

RemoteBuildServerHostPort The port that the Remote Build server is listening on

SSLDataBasePath The USS path to the SSL key database created by the
gskkyman tool

SSLDataBasePassword The password to the SSL key database
Chapter 7 - SSL Security Proxy and Secure Password Protection 61

Note: Verify with your system administrator that GSK.SGSKLOAD is where
your GSKSSL support exists.

e Type the command gskkyman to start the Key Database tool.

f Select 1 to create a new SSL key database and enter the key database name and
password. You may then be given the choice to expire the password. If you
choose to have the password expire, you must update the
rccSSLMVSServerProxy.sh and rccSSLUSSServerProxy.sh scripts each time the
password expires.

g After you create the database, you are prompted to continue. Select Yes.

h Select 5 to select the Create a Self-Signed Certificate option.

i Enter a meaningful key label, such as RCCKEY. Select the default value when
possible.

j At the prompt Do you want to set the key as the default in your key database?
answer yes.

k Continue to select defaults where appropriate; when you are returned to the
main menu, select 0 to exit.

2 Set up the Remote Build server proxy:

a Add the –localHost flag to the PARM card of the RCCRUNM (MVS Server) and
RCCRUNU (USS server) JCL.

b Restart the Remote Build MVS and USS Servers.

c Edit the rccSSLMVSServerProxy.sh and rccSSLUSSServerProxy.sh as stated in the
Example: Setting Up SSL for Remote Build. These scripts reside in the HFS
directory on the USS server.

d Make sure that RCCSESM and RCCSESU point to rccSSLMVSServerProxy.sh and
rccSSLUSSServerProxy.sh, respectively, and that these two jobs execute at a
dispatching priority high enough to prevent them from being swapped out.

e Submit the jobs to start the Remote Build server proxies.

3 Set up the Remote Build client proxies:

a Edit stunnelMVS.conf and stunnel.USS.conf to point to Remote Proxy Server
Proxy. These files are in the same directory as the Remote Build client (see
Example: Setting Up SSL for Remote Build).
62 User’s Guide

b Execute the scripts by typing stunnel stunnelMVS.conf and stunnel
stunnel.USS.conf.

4 Execute Remote Build client:

Important If you are using a sysplex environment, you must add the following
JOBPARM statement to your JCL to force the RCCRUNM/RCCRUNU jobs,
RCCMVS/RCCUSS jobs, and RCCSESM/RCCSESU jobs to run on the same
LPAR:

/*JOBPARM S=sysid

where sysid is the name of the LPAR where you want the JCL to execute.

a Execute a Remote Build client test by entering the command

rccbuild –h localhost@RemoteBuildClientProxyPort -testServer

where RemoteBuildClientProxyPort is the port you have chosen for the Remote
Build client proxy (stunnel). The localhost keyword represents the local host
name.

This test should return the Remote Build server’s version and system
information (see Example: Setting Up SSL for Remote Build).

b Change the –h parm in your Remote Build client scripts to point to your Remote
Build client proxy, rather then the Remote Build server.

c When running your Remote Build client from the command line, change your
–h parameter to localhost@RemoteBuildClientProxyPort, where
RemoteBuildClientProxyPort is the port you have chosen for the Remote Build
client proxy (stunnel). The localhost keyword represents the local host name.
See Example: Setting Up SSL for Remote Build.

Caution: Do not use the Remote Build server host name and port.

Example: Setting Up SSL for Remote Build

This example sets up a MVS server to use the Remote Build proxy. To set up a USS
server, follow the same procedure using the USS scripts and servers. It is not necessary
to create another SSL key database for USS; use the same one for multiple servers.

1 Create SSL key database with the gskkyman tool (See step 1 of Setting Up the
Remote Build Proxy Server).
Chapter 7 - SSL Security Proxy and Secure Password Protection 63

❑ SSL key database path = /key/key.kdb

❑ SSL key database password = mypassword [Remote Build Proxy Server Parameters]

Note: The SSL key database password parameter is optional.

2 Select ports for servers and proxies.

❑ Remote Build MVS port = 6004

❑ Remote Build MVS server proxy port (rccSSLProxy) = 6003

❑ Remote Build MVS client proxy port (stunnel) = 9090

3 Determine machine names for servers and proxies.

❑ Remote Build server proxy = myz800

4 Add –localHost to the PARM= card in RCCRUNM JCL. For example,
PARM=(parm names -localHost).

5 Restart the RCCRUNM job by canceling (c) or purging (p) it. Submit the
RCCRUNM JCL again.

6 Ensure RCCSESM points to rccSSLMVSServerProxy.sh by verifying that the HFS
path to rccSSLMVSServerProxy.sh is correct.

7 Configure the rccSSLMVSServerProxy.sh script.

❑ In the script set HOST_MACHINE_NAME = ‘localhost’

❑ In the script set PROXY_ HOST_MACHINE_NAME = myz800

❑ In the script set REMOTE_BUILD_SERVER_PORT = 6004

❑ In the script set REMOTE_BUILD_PROXY_PORT = 6003

❑ In the script set GSK_SSL_DATABASE_PATH = /key/key.kdb

❑ In the script set GSK_SSL_DATABASE_PASSWORD = mypassword (optional)

8 Submit the RCCSESM JCL.

9 Alter stunnelMVS.conf on the client.

❑ In the script, replace STUNNEL_PORT with 9090.

❑ In the script, replace REMOTE_BUILD_PROXY_HOST_NAME with myz800.

❑ In the script, replace REMOTE_BUILD_PROXY_PROT with 6003.
64 User’s Guide

❑ If the file .rnd is installed in other than the default location, and/or
stunnelMVW.conf/stunnelUSS.conf are not also present in and started from this
new location, update the RNDfile= parameter to point to this new location.

Note: If installing as link or mount install, copy the file specified by RNDfile to
the local home directories of each userID.

10 Execute the command stunnel stunnelMVS.conf to start the Remote Build client
Proxy.

11 Run the Remote Build test command.

❑ Enter the command rccbuild –h localhost@9090 -testServer

12 Run all commands with –h localhost@9090.

For More Information

For additional information about openssl visit http://www.openssl.org.

For additional information about stunnel visit http://www.stunnel.org.
Chapter 7 - SSL Security Proxy and Secure Password Protection 65

66 User’s Guide

ASample Build Files
This appendix demonstrates how to submit two types of remote requests using the
client command rccbuild:

■ Building a COBOL load module.
■ Running the COBOL load module.

Each process generates output files that are returned to the client machine.

About the Sample Files

Table 1 describes the sample files.

Submitting the COBOL Build Request

This section describes the following:

■ Editing the rccbuild command within the batch file cobcomp.bat.

Table 1 Sample Files

Sample File Description

banner.cbl Source code for a sample COBOL program that displays the Rational
logo.

banner.led Linkage Editor control statements. This file is passed as a dependent file
to the rccbuild command.

cobcomp.bat Batch file that runs the rccbuild command to submit a build request to
MVS.

cobcomp.jcl JCL script that invokes the COBOL compiler and Linkage Editor in MVS.

runscr.bat Batch file that runs the rccbuild command to submit the JCL file
runscr.jcl.

runscr.jcl JCL script that executes the BANNER load module.
67

■ Running the batch file on the client machine.

Editing the Batch File

The batch file cobcomp.bat contains the following rccbuild command:

rccbuild –h servername@portno –b cobcomp –ft cobcomp.jcl –k IBM-850 –r IBM-037
–it banner.cbl –dt banner.led –v MBR=BANNER COBCOMP=cobol_lib
LERUN=langenv_lib HLQ=hlqname SYSTEM=hlq2name –V –V –V

This rccbuild command passes a JCL script, COBOL source, Linkage Editor
statements, and values for user-defined variables to the server.

Edit the batch file:

UNIX users, remove these codepage parameters:

–k IBM-850 –r IBM-037

Understanding the User-Defined Variables in the Build Script

The –v option in the sample rccbuild command supplies values for user-defined
variables that are declared in the build script cobcomp.jcl. The variables are
highlighted in the following example.

//COBC EXEC PGM=IGYCRCTL,REGION=4096K,
…
//STEPLIB DD DISP=SHR,DSN=&COBCOMP
…
//SYSLIN DD DISP=SHR,DSN=&HLQ..&SYSTEM..OBJECT(&MBR)
…
// DD DISP=SHR,DSN=&LERUN
…

Running the Batch File

To run the batch file on the client:

Change To

servername@portno The MVS server name, followed by the at sign and the
listening port for the Remote Build server.

cob_lib Your COBOL library name.

langenv_lib Your Language Environment library name.

hlqname The high-level qualifier for your object and load libraries.

hlq2name The second-level qualifier for your object and load libraries.
68 User’s Guide

1 Update your system search path, if needed, to include the directory that contains
the executable rccbuild.

2 Make the directory that contains the sample files the current directory.

3 At the command prompt, enter the following:

cobcomp.bat

The build server returns two output files, whose names are derived from information
in the COBCOMP JCL:

■ COBC.SYSPRINT contains COBOL compiler messages. COBC is the step name
on the EXEC statement that calls the COBOL compiler.

■ LKED.SYSPRINT contains Linkage Editor messages. LKED is the step name on
the EXEC statement that calls the Linkage Editor.

These files are returned to the client because COBCOMP JCL also has SYSPRINT DD
statements that include the extension parameter RCCEXT=RCCOUT.

Running the COBOL Load Module

To execute the COBOL module in MVS, you can run the rccbuild command.This
section describes the following:

■ Editing the rccbuild command within the batch file runscr.bat.

■ Running the batch file on the client machine.

Editing the Batch File

The batch file runscr.bat contains the following rccbuild command:

rccbuild –h servername@port –b runscr –ft runscr.jcl –k IBM-850 –r IBM-037 –v
HLQ=hlqname SYSTEM=hlq2name

This rccbuild command passes JCL and values for user-defined variables to the server.

Edit the batch file:

Change To

servername@portno The MVS server name, followed by the at sign and the listening
port for the Remote Build server.

hlqname The high-level qualifier for your object and load libraries.

hlq2name The second-level qualifier for your object and load libraries.
A - Sample Build Files 69

UNIX users, remove these codepage parameters:

–k IBM-850 –r IBM-037

Running the Batch File

To run the batch file on the client:

1 Update your system’s search path, if needed, to include the directory that contains
the executable rccbuild.

2 Make the directory that contains the sample files the current directory.

3 At the command prompt, enter the following:

runscr.bat

The build server returns two output files, whose names are derived from information
in the RUNSCR JCL:

■ RUNLOG.SYSPRINT is an empty file. RUNLOG is the stepname on the EXEC
statement that calls BANNER, the COBOL load module.

■ RUNLOG.SYSOUT contains the Rational logo, as shown below.

These files are returned to the client because RUNSCR JCL also has SYSPRINT and
SYSOUT DD statements that include the extension parameter RCCEXT=RCCOUT.
70 User’s Guide

B1Sample rccbuild
Commands
This appendix describes several sample rccbuild commands. It also demonstrates that
command options are not positional. For more information on rccbuild command
options, see Chapter 4, Sending a Build Request.

Sample Commands

■ Ping a Remote Build server called os390. No build request is passed.

rccbuild –testServer –h os390@42310

■ Return the version of the client executable rccbuild.

rccbuild –version

■ Send local files (JCL and COBOL program) to the server for processing.

rccbuild –b rcccomp –ft rcccomp.jcl –i banner.cob –h os390@42310

■ Set a time-out factor of one minute for starting the previous build request.

rccbuild –h os390@42310 –T 1 –ft rcccomp.jcl –i banner.cob –b rcccomp

■ Send TSO login details to the server. If the login details are valid and the user has
access to the required libraries and directories, the makefile is processed.

rccbuild –h prodserv@24434 –au BOSMA01 –ap DEL34 –ft helpux.mak –b hlp

■ Point to an MVS-based library that contains thebuild script INVMAIN.

rccbuild –h prodserv@24434 –proclib ACPDEV.LONDON.JCL –b INVMAIN

■ Pass values for user-defined variables for a script through the –v option. The
command also identifies input (–i) and dependent (–d) files.

rccbuild –h os390@55323 –b cobcomp –ft cobcomp.jcl –it banner.cbl –dt
banner.led –v MBR=BANNER COBCOMP=MYCOB.LIB LERUN=MY.LE.LIB
HLQ=HAZLTON SYSTEM=INVENT

■ Set up a line prefix for messages that are recorded in the client log (rccbuild.log)
during an MVS build run.
71

rccbuild –h os390@47123 –b rcccomp –ft rcccomp.jcl –i banner.cob
–P MONDAYJSMITH

■ Set the maximum verbosity for messages recorded in the file rccbuild.log.

rccbuild –h prodserv@24434 –proclib ACPDEV.LONDON.JCL –b INVMAIN
–V –V –V

■ Use the –c and –n options to set a test for continuing processing. It also
demonstrates overlaying the two options with new values.

rccbuild –h os390@4602 –b cob –ft cobcomp.jcl –it banner.cbl –dt banner.led
–c GT –c EQ –n 10 –n 0
72 User’s Guide

Index
&COMMA variable 50

&DEP variable 49

&INPUT variable 49

&OUTPUT variable 49

&PARM variable 50

&SP variable 50

&USERID 17

@ 52

@ signs in filenames 52

A

absolute directory paths 38

APF-authorized libraries 16

auditing remote builds 53
authenticating users

in TSO 16

authentication users
setting level for 16

B

BPXBATCH utility
running Remote Build script with 23

build environment

passing variables to 37

build job ownership 17
build requests

handling multiple MVS 14

handling multiple USS 14

queuing 15

build scripts

data set location 22

indicating build files in 42

passing parameters to 37

remote 31

specifying 41

specifying local 31

build server

passing login information 35

pinging 30

builds 33

codepages for 35

dependent files for 32

input files for 32

setting timeout factor 37

working directory for (USS) 34

C

ccase-home-dir directory xviii

ClearCase Explorer (Windows) 55
clearmake utility

makefile example 53

overview 53

client command
repeating options 29

submitting 41
73

client command (rccbuild) 27

client command examples 71

client software 3
client version 30

COBOL build example 67

codepages 35

command syntax, rccbuild 27

concurrency considerations 15

configuring MVS server 20

configuring USS server 23

conventions, typographical xviii

cquest-home-dir directory xviii

customer support xx

D

DD statements

user-defined variables for 37

deliverables

MVS only 4
USS 5

dependent files 32

USS 38

derived objects, sample output 24
documentation

Help description xix

E

EBCDIC conversions 29
EXEC statement

build requirements 44

F

filename issues 52

H

Help, accessing xix

I

imbedding rccbuild in makefile 53

input files 32

MVS 32

USS 38

installing 3
Remote Build client 3
Remote Build server 3

Installing Remote Build server
overview 3

IVP 24

J

JCL build scripts

overview 41

JCL members
customization requirements 21

JOB statement

in build scripts 41
74 Name of Manual

L

listening port 21
Log files

rccbldc 15

log files
ccubldc 54

logging server messages 19

logging trace entries 19

login details 35

lower-case names 29

LRECL consideration, build scripts 41

M

makefile

running 54

makefile example 53

message line prefix 38

mixed-case names 29

multithreaded server 1
MVS deliverables 4
MVS server

running 11

N

national language messages 4

O

operators
in conditon code comparisons 36

output files

returning to client 33

USS 38

output messages 48

overriding JCL PDS 32

Ownership of build jobs 17

P

passing build script parameters 37

passing options to script 38

passing variables to build server 37

PDS locations 32

pinging server 30
port number

selecting 23

setting 21, 24–26

predefined variables
&COMMA 50

&DEP 49

&INPUT variable 49

&OUTPUT 49

&SP 50
Index 75

prefix, message line prefix 38

prefixing server messages 38

prerequisites, server installation 5
proclib location, for JCL scripts 31

Q

queue size, setting 15

queuing build requests 15

R

RACF authentication 16

RCCBLDS module 4
RCCBLDW module 4
rccbldw script 23

rccbuild command options 30, 35

-ap 35

-au 35

-b 31

-c 36

-d 32

-f 31

-h 30

-i 32

-k 35

-l 34

-n 36

-o 33

-P 38

-p 37

-proclib 32

-r 35

-T 37

-testServer 30

-V 36

-v 37

-version 30

rccbuild command syntax 27

rccbuild commands, samples 71

RCCDLL module 4
RCCEXT extension parameters

examples 42

overview 18

RCCMAIN module 4
RCCMSENU module 4
RCCMSG module 4
RCCMVS JCL 22

RCCMVS member 21

customizing 22

RCCRUNM

customizing 21

RCCRUNM JCL 21

RCCRUNM member 21

RCCRUNU member (USS) 23
RCCUSS member

editing 24

RCCUSS member (USS) 23

relative directory paths 38
Remote Build

processing overview 11

Remote Build client

requirements 2
remote build jobs

ownership of 17

Remote Build queues

sizing 21

remote build script 31
Remote Build server

installing 3
requirements 2
76 Name of Manual

repeating rccbuild options 29

required rccbuild options 27
requirements

client 2
Remote Build server 2

return codes
logic for processing 36

returning derived objects to client 54

returning output to client 33

running MVS server 11

running USS server 11

S

sample input file 24

sample output file 24

sample rccbuild commands 71

sample.out file 25
security

for MVS objects 16

server machine 30
server messages

logging 19

server port 30

server timeout 37

Sizing server queue 21
SMP/E for MVS installation

RECEIVE-APPLY-ACCEPT 9
spawning build processes 14

starting the MVS server 22

starting the USS server 24
stopping

MVS server 22

USS server 24

submitting local build scripts 31

submitting the startup job (MVS) 22

submitting the startup job (USS) 24

Synopsis (rccbuild command) 27

T

TCP/IP

sockets 15

TCP/IP requirement 2
timeout factor for builds 37
trace entries

logging 19

tracing
activating 21

truncating MVS bound filenames 52

typecase conversions 29

typographical conventions xviii

U

underscores
converted to ampersand (@) 52

underscores in filenames 52

UNIX working directories 38

uppercase conversion (MVS) 52

user-defined variables 51

USS deliverables 5
USS server

configuring 23

installing 9
running 11
Index 77

V

variables, user-defined 51

verbosity (messaging) 36
verbosity level

setting 21

verifying client/server communication 24

MVS 24

USS 25

version, client 30

W

working directories (UNIX) 38
78 Name of Manual

	User’s Guide
	Contents
	Figures
	Tables
	Preface
	About This Manual
	ClearCase Documentation Roadmap
	ClearCase Integrations with Other Rational Products
	Typographical Conventions
	Online Documentation
	Customer Support

	Overview
	Remote Build Components
	About the Remote Build Server
	Starting a Remote Build Request

	Hardware and Software Requirements for Remote Build
	Client Requirements
	Server Requirements
	Connectivity
	Supported Hardware and Operating Systems

	Installing Remote Build Client and Server Components
	Installing the Client Component
	Setting Up the Server Component
	About Installing Remote Build Server
	About Remote Build Server Files
	MVS Deliverables
	USS Deliverables

	Installation Prerequisites
	Preparing to Upload RCCOS390 To a PDS
	Uploading RCCOS390 From a Remote Build Client
	Running the RCCOS390 EXEC

	Setting Up the Servers
	Setting up Run-Time Parameters

	Configuring the Remote Build Server
	About Processing Build Requests
	Running a Build Server in MVS
	Running a Build Server in USS
	Processing Multiple Requests
	Queuing Requests
	Setting Queue Size

	Authenticating Users
	Understanding Server Authentication Modes

	Making MVS Users Owners of Their Remote Build Jobs
	Overriding the Default Job Name

	Returning MVS Output Files to the Client Machine
	Returning USS Output Files to the Client Machine
	Logging Server Messages and Traces
	Activating Server Tracing
	Activating Build Request Tracing
	MVS Builds
	USS Builds
	Determining the USS Trace File Location

	Configuring the Server Under MVS
	Modifying JCL
	Editing the RCCRUNM Member
	Editing the RCCMVS Member

	Starting the Server
	Stopping the Server

	Configuring the Server Under USS
	Modifying JCL
	Editing the RCCRUNU Member
	Editing the RCCUSS Member

	Starting and Stopping the Server

	Verifying Client/Server Communication (MVS)
	Verifying Client/Server Communication (USS)
	Running the Sample Executable

	Sending a Build Request
	Using the Client Command (rccbuild)
	Synopsis
	DESCRIPTION
	Repeating Command Options
	EBCDIC Translation (MVS Only)
	Sending User IDs and Passwords

	OPTIONS AND ARGUMENTS
	Obtaining the Remote Build Client Version
	Specifying a Remote Build Server
	Pinging a Remote Build Server
	Specifying a Local Build Script
	Specifying a Server-Side Build Script
	Specifying a Server-Side Build Script in a Nondefault PDS
	Specifying Client-Based Source Files
	Returning Output Files to Client Machine
	Keeping Output Files on the Server
	Specifying the Directory for a USS Build
	Specifying TSO Login Details
	Specifying Codepages for ASCII to EBCDIC Conversion
	Setting Message Verbosity
	Setting the Condition for Valid Return Codes
	Specifying a Time-out Factor
	Setting Environment Variables
	Passing Variables to Build Scripts
	Specifying Prefix for Messages Returned to Client Log File

	Using the –i, –o and –d Options with USS Builds
	Specifying Input and Dependent Files
	Input File Examples

	Specifying Output Files
	Output File Examples

	Working with Build Scripts
	Identifying Build Scripts at Run Time
	Understanding JCL Build Scripts
	Understanding Coding Requirements
	Testing Scripts on the Mainframe

	Identifying Build Files
	Sample Scenarios
	Input File on Client Machine
	Dependent File on Client Machine
	Output File, Link-Edit Step

	Coding the EXEC Statement
	Coding the DD Statement
	Identifying Files Using RCCEXT DD Parameters
	Identifying Input Files
	Identifying Dependent Files
	Sending Output Messages to a Client File
	Sending Output Messages to the Client’s Screen and a File

	Using Variables
	Using Predefined Variables
	Using User-Defined Variables
	Setting Defaults for User-Defined Variables

	File Name Conversions for MVS
	Conversion Examples

	Using Remote Build with clearmake
	Creating a makefile for a Remote Build
	Running the makefile
	Returning Derived Objects to the Client

	SSL Security Proxy and Secure Password Protection
	Introduction
	Process Overview
	Creating a Secure Password for the Remote Build Client
	Executing rccMKSecure
	When Your Password Expires
	Removing a User and Password

	Setting the Environment Variable for the Remote Build Proxy
	Setting Up SSL for Remote Build
	What Is a Proxy?
	How stunnel Works

	Remote Build Proxy Server Parameters
	Setting Up the Remote Build Proxy Server

	Example: Setting Up SSL for Remote Build
	For More Information

	Sample Build Files
	About the Sample Files
	Submitting the COBOL Build Request
	Editing the Batch File
	Understanding the User-Defined Variables in the Build Script
	Running the Batch File

	Running the COBOL Load Module
	Editing the Batch File
	Running the Batch File

	Sample rccbuild Commands
	Sample Commands

	Index

