
Rational Software Corporation®

support@rational.com
http://www.rational.com

Rational® ClearCase MultiSite®

Administrator’s Guide

VERSION: 2003.06.00 AND LATER

PART NUMBER: 800-026169-000

UNIX/WINDOWS EDITION

Legal Notices
Copyright ©1992-2003, Rational Software Corporation. All Rights Reserved.
Part Number: 800-026169-000
Version Number: 2003.06.00 and later

This manual (the "Work") is protected under the copyright laws of the United States and/or other
jurisdictions, as well as various international treaties. Any reproduction or distribution of the Work is
expressly prohibited without the prior written consent of Rational Software Corporation.

The Work is furnished under a license and may be used or copied only in accordance with the terms of
that license. Unless specifically allowed under the license, this manual or copies of it may not be
provided or otherwise made available to any other person. No title to or ownership of the manual is
transferred. Read the license agreement for complete terms.

Rational Software Corporation, Rational, Rational Suite, Rational Suite ContentStudio, Rational Apex,
Rational Process Workbench, Rational Rose, Rational Summit, Rational Unified process, Rational Visual
Test, AnalystStudio, ClearCase, ClearCase Attache, ClearCase MultiSite, ClearDDTS, ClearGuide,
ClearQuest, PerformanceStudio, PureCoverage, Purify, Quantify, Requisite, RequisitePro, RUP,
SiteCheck, SiteLoad, SoDa, TestFactory, TestFoundation, TestMate and TestStudio are registered
trademarks of Rational Software Corporation in the United States and are trademarks or registered
trademarks in other countries. The Rational logo, Connexis, ObjecTime, Rational Developer Network,
RDN, ScriptAssure, and XDE, among others, are trademarks of Rational Software Corporation in the
United States and/or in other countries. All other names are used for identification purposes only and
are trademarks or registered trademarks of their respective companies.

Portions covered by U.S. Patent Nos. 5,193,180 and 5,335,344 and 5,535,329 and 5,574,898 and 5,649,200
and 5,675,802 and 5,754,760 and 5,835,701 and 6,049,666 and 6,126,329 and 6,167,534 and 6,206,584.
Additional U.S. Patents and International Patents pending.

U.S. Government Restricted Rights
Licensee agrees that this software and/or documentation is delivered as "commercial computer
software," a "commercial item," or as "restricted computer software," as those terms are defined in
DFARS 252.227, DFARS 252.211, FAR 2.101, OR FAR 52.227, (or any successor provisions thereto),
whichever is applicable. The use, duplication, and disclosure of the software and/or documentation
shall be subject to the terms and conditions set forth in the applicable Rational Software Corporation
license agreement as provided in DFARS 227.7202, subsection (c) of FAR 52.227-19, or FAR 52.227-14, (or
any successor provisions thereto), whichever is applicable.

Warranty Disclaimer
This document and its associated software may be used as stated in the underlying license agreement.
Except as explicitly stated otherwise in such license agreement, and except to the extent prohibited or
limited by law from jurisdiction to jurisdiction, Rational Software Corporation expressly disclaims all
other warranties, express or implied, with respect to the media and software product and its
documentation, including without limitation, the warranties of merchantability, non-infringement, title
or fitness for a particular purpose or arising from a course of dealing, usage or trade practice, and any
warranty against interference with Licensee's quiet enjoyment of the product.

Third Party Notices, Code, Licenses, and Acknowledgements
Portions Copyright ©1992-1999, Summit Software Company. All rights reserved.

Microsoft, the Microsoft logo, Active Accessibility, Active Client, Active Desktop, Active Directory,
ActiveMovie, Active Platform, ActiveStore, ActiveSync, ActiveX, Ask Maxwell, Authenticode,
AutoSum, BackOffice, the BackOffice logo, bCentral, BizTalk, Bookshelf, ClearType, CodeView,
DataTips, Developer Studio, Direct3D, DirectAnimation, DirectDraw, DirectInput, DirectX, DirectXJ,
DoubleSpace, DriveSpace, FrontPage, Funstone, Genuine Microsoft Products logo, IntelliEye, the
IntelliEye logo, IntelliMirror, IntelliSense, J/Direct, JScript, LineShare, Liquid Motion, Mapbase,
MapManager, MapPoint, MapVision, Microsoft Agent logo, the Microsoft eMbedded Visual Tools logo,
the Microsoft Internet Explorer logo, the Microsoft Office Compatible logo, Microsoft Press, the
Microsoft Press logo, Microsoft QuickBasic, MS-DOS, MSDN, NetMeeting, NetShow, the Office logo,
Outlook, PhotoDraw, PivotChart, PivotTable, PowerPoint, QuickAssembler, QuickShelf, RelayOne,
Rushmore, SharePoint, SourceSafe, TipWizard, V-Chat, VideoFlash, Visual Basic, the Visual Basic logo,
Visual C++, Visual C#, Visual FoxPro, Visual InterDev, Visual J++, Visual SourceSafe, Visual Studio, the
Visual Studio logo, Vizact, WebBot, WebPIP, Win32, Win32s, Win64, Windows, the Windows CE logo, the
Windows logo, Windows NT, the Windows Start logo, and XENIX, are either trademarks or registered
trademarks of Microsoft Corporation in the United States and/or in other countries.

Sun, Sun Microsystems, the Sun Logo, Ultra, AnswerBook 2, medialib, OpenBoot, Solaris, Java, Java 3D,
ShowMe TV, SunForum, SunVTS, SunFDDI, StarOffice, and SunPCi, among others, are trademarks or
registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

Licensee shall not incorporate any GLOBEtrotter software (FLEXlm libraries and utilities) into any
product or application the primary purpose of which is software license management.

BasicScript is a registered trademark of Summit Software, Inc.

Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma, Richard Helm,
Ralph Johnson and John Vlissides. Copyright © 1995 by Addison-Wesley Publishing Company, Inc. All
rights reserved.

Copyright ©1997 OpenLink Software, Inc. All rights reserved.

This software and documentation is based in part on BSD Networking Software Release 2, licensed from
the Regents of the University of California. We acknowledge the role of the Computer Systems Research
Group and the Electrical Engineering and Computer Sciences Department of the University of California
at Berkeley and the Other Contributors in its development.

This product includes software developed by Greg Stein <gstein@lyra.org> for use in the mod_dav
module for Apache (http://www.webdav.org/mod_dav/).

Additional legal notices are described in the legal_information.html file that is included in your Rational
software installation.

Contents
Preface. xix
About This Manual . xix

ClearCase Documentation Roadmap . xx

ClearCase Integrations with Other Rational Products. xxi

Typographical Conventions. xxiii

Online Documentation . xxiv

Customer Support . xxv

MultiSite Overview

Introduction to MultiSite. .1
Understanding the Architecture of MultiSite . 1

Replicated VOB Databases . 1
MultiSite Terminology . 2

VOBs and VOB Replicas . 2

Synchronizing Replicas in a Family . 3

Enabling Independent Development: Mastership . 5

Supporting Serial Development in VOB Replicas . 5

MultiSite Operation. .7
Information Propagated Among VOB Replicas. 7

VOB Objects and VOB Replica Objects . 8

Mastership . 9
Replica Mastership . 9
Branch Mastership . 9

Creation of the main Branch of an Element . 12
Synchronizing Development on Different Branches. 12
Default and Explicit Branch Mastership . 15

Type Object Mastership . 16
Unshared Type Objects . 16
Shared Type Objects . 16
Additional Restrictions for Shared Global Types . 17
Creating an Instance of a Type . 18
Example . 18
v

Mastership Restrictions for VOB Objects . 18

Conflict Resolution . 21
Resolving Conflicts Among Type Objects . 21

The Operation Log . 22
Tracking Operations for Each Replica . 23
Oplog IDs and Epoch Numbers . 26

Indirect Synchronization. 27

Planning a MultiSite Implementation . 31
MultiSite Installation . 31

MultiSite Licensing . 32

Shipping Server Use with ClearCase and ClearQuest . 33

ClearCase Use Model . 34
Branching and Mastership . 34
Use of Attributes, Labels, and Hyperlinks. 36
Use of Triggers . 36
Use of Multiple Replicas of the Same VOB at a Site . 36
Text Mode for Replicas. 36
Use of Administrative VOBs . 36
Use of UCM . 37

MultiSite Use Model . 37
Type of Administration . 38
MultiSite, Time, and Time Zones . 39
Time Rules in Config Specs . 39
Mastership Strategy . 39
Identities and Permissions Strategy for VOB Replicas. 39

Identities- and Permissions-Preserving Replicas. 40
Permissions-Preserving Replicas . 40
Nonpreserving Replicas . 41
Synchronization of Identities and Permissions Information 41
Requirements for Replicas That Preserve Identities and Permissions 42
Gathering Identities Information . 43
Running protectvob on Identities-Preserving Replicas 44

Synchronization Transport Method. 45
Synchronization Pattern . 45

Directions of Exchange . 47
One-to-One and Ring Synchronization . 47
One-to-Many Synchronization . 48
Many-to-Many Synchronization . 50
vi Administrator’s Guide: Rational ClearCase MultiSite

Synchronization Schedule . 50
Use of MultiSite for VOB Backups . 52
Scrubbing Parameters for Replicas . 52

Oplog Scrubbing . 53
export_sync Scrubbing . 54

Handling Pathnames That Contain Spaces . 54

Responsibilities of MultiSite Administrators . 55

MultiSite Command Set . 57
Location of MultiSite Programs. 57

multitool Use. 57

Descriptions of Subcommands. 58
Replica Creation, Synchronization, and Management Commands 58
Object Mastership Commands. 59
Failure Recovery Commands. 59
multitool Utility Commands. 60

Additional MultiSite Commands . 60

ClearCase Commands Related to MultiSite . 61

View Contexts and VOB Mounts . 63

Specifying VOBs in Commands . 63

MultiSite Configuration

Choosing a Transport Method . 67
File-Based Methods . 67

Using Electronic Mail . 67
Using FTP . 68
Using Physical Media. 69

Store-and-Forward . 69
Directories for Packets . 70
Packet Transport . 70
Store-and-Forward Issues . 70

Communication Between Replica Hosts . 71
Limiting the Size of a Packet . 71

Configuring the Store-and-Forward Facility . 71
Submitting Packets to Store-and-Forward . 71
Differentiating Packets with Storage Classes . 72
Contents vii

Setting Up an Indirect Shipping Route . 72
Retries, Expirations, and Returned Data . 73

Setting a Timeout Period for Unreachable Hosts. 75
Error Notification in a Mixed Environment . 75

Sending Files That Are Not Packets. 75

Using Store-and-Forward Through a Firewall (UNIX only) . 76
Firewall Issues . 77
Configuring Your Firewall to Limit Access . 78
Installing the Shipping Server on an Exposed Host 78
Controlling Ports Used by albd_server and shipping_server 79
Specifying Port Values . 79
Checklist for Using Store-and-Forward Through a Firewall 80

Feature Levels . 83
Overview of Feature Levels . 83

Raising the Replica Feature Level . 84

Raising the VOB Family Feature Level . 85
VOB Families with Bidirectional Synchronization . 85
VOB Families with Unidirectional Synchronization. 85

Displaying Feature Levels. 87

Feature Levels Error Message . 87

Replication and Synchronization

Creating VOB Replicas . 91
Overview of Replica Creation . 91

Timing of Replica Creation . 91

Replica-Creation Scenario for a VOB . 92
Planning the Rules of the Road . 92
Prerequisites. 94
Export Phase . 95
Transport Phase . 97
Import Phase . 97

Replicating a VOB Between UNIX and Windows . 101
viii Administrator’s Guide: Rational ClearCase MultiSite

Synchronizing Replicas . 103
Assumption of Successful Synchronization . 103

Manual Synchronization . 103
Export Phase . 104
Transport Phase. 104
Import Phase . 104

Automated Synchronization . 105
Using the ClearCase Scheduler. 106
Export Phase . 106
Transport Phase. 107
Import Phase . 108

Defining Receipt Handlers on UNIX . 109
Defining Receipt Handlers on Windows . 109
Scheduling Import Jobs . 110

Listing Synchronization History . 110

Synchronizing VOB Replicas More Efficiently . 110
Example of Increased Efficiency . 110
Example of Decreased Efficiency . 111

MultiSite Management

Managing Replicas . 115
Displaying Properties of a VOB Replica . 115

Listing the Synchronization History of a VOB Replica . 116

Changing Preservation Mode for a VOB Family. 117

Changing the Host Name for a VOB Replica . 120

Setting the Connectivity Property for a VOB Replica . 120

Renaming a VOB Replica. 121

Moving a VOB Replica . 121

Changing Mastership of a VOB Replica . 122

Deleting a Replica . 122

Managing Mastership. 125
Mastership Commands for VOB Objects . 125

Displaying Mastership Information for VOB Objects . 125
Listing an Object’s Master Replica. 126
Contents ix

Listing Objects Mastered by a Replica . 127
Listing the History of Mastership Changes for an Object 127
Displaying Mastership Request Settings . 127

Assigning Branch Mastership During Element Creation . 128

Changing Mastership of VOB Objects . 130
Transferring Mastership of a Type Object . 131
Transferring Mastership of a Replica Object . 132
Transferring Mastership of a VOB . 134
Transferring Mastership of an Element . 135
Transferring Mastership of a Branch . 136

Transferring Branch Mastership. 136
Removing Explicit Mastership of a Branch. 136

Transferring Mastership of a Stream . 138
Transferring Mastership of All Objects Mastered by a Replica. 138

Fixing an Accidental Mastership Change . 139

Working with Type Objects . 140
Creating a Shared Type Object . 140
Determining Whether a Type Object Is Shared or Unshared 140
Converting a Type Object from Unshared to Shared . 141

Implementing Requests for Mastership. 143
Overview of a Request for Mastership . 143

Requirements and Recommendations . 145

Planning Your Implementation . 146
To Hide Request for Mastership Features . 147

Enabling Requests for Mastership . 147
Prerequisites. 147
Adding Developers to the Access Control List . 148
Denying Requests for Specific Objects . 149
Enabling Requests at the Replica Level . 149

Customizing Synchronization Updates for Mastership Requests 150

Displaying Mastership Request Settings. 151

Troubleshooting Mastership Requests . 152
Troubleshooting Commands . 152
Status Messages . 154

Serial Development Scenario . 158
Planning the Implementation . 159
Setting Up Access Controls . 159
x Administrator’s Guide: Rational ClearCase MultiSite

Writing Config Specs . 161
Requesting Mastership . 161

Serial Development of a File That Cannot Be Merged 161
Serial Development of a File That Can Be Merged 162
Requesting Mastership of a Branch Type . 163

Using MultiSite for VOB Backup and Interoperability. 165
Backing Up VOBs with MultiSite. 165

Using a Backup Replica . 165
Handling Objects That Are Not Replicated . 166
Designing Synchronization Strategy . 166

Using Replicas with Incremental Backup . 166
Restoring a Replica from Backup. 167

Using MultiSite for Interoperability . 167
Advantages and Disadvantages . 167
Restrictions on Multiple Replicas in a LAN . 167
Setting Up Multiple Replicas at One Site . 169

Troubleshooting

Troubleshooting MultiSite Operations . 173
Troubleshooting Tips . 173

Replica Export Problems . 176

Replica Import Problems . 176
Permissions Problems . 176
Conflict in Object Registry . 176
Conflict in Tag Registry . 177

Synchronization Export Problems . 178
Cannot Find Oplog Entry . 178

chepoch –actual Method . 179
lsepoch and chepoch Method . 179

Oplog Gap Detected During Creation of Update Packet 180
Export Failure During Version Construction. 180
Packets Accumulate in Outgoing Storage Bay . 180
Replica Cannot Update Itself . 181

Transport Problems . 181
Error Messages . 181
Invalid Destination . 183
Contents xi

Delivery Fails . 183
Shipping Server Fails to Start or Connection Is Refused 183
Shipping Order Expires . 184

Synchronization Import Problems . 184
Packets Accumulate in Incoming Storage Bay. 184
Packet Is Not Applicable to Any Local Replicas . 185
Read from Input Stream Fails. 186
Element Changes During Operation. 186
rmreplica Operation Cannot Be Imported. 187
Database Limit Is Exceeded. 187
Replica Incarnation Is Old . 188
Warning on Receipt of Packet from Earlier MultiSite Version 189
Miscellaneous Problems. 190
Recovering from Lost Packets . 190

Lost Replica-Creation Packet. 191
Lost Update Packet . 191

Inconsistent Changes to Replica . 193
Preservation Mode . 194
Object Mastership . 195

Automatic Renaming of Type Objects and Replica Objects 196

Running epoch_watchdog. 197

Restoring and Replacing VOB Replicas . 198
Restoring a Replica from Backup . 199
Replacing an Existing Replica . 201

Saving Views from the Replaced Replica . 203

Cleaning Up After Accidental Deletion of a Replica . 204

MultiSite Reference Pages

MultiSite Reference Pages . 209
apropos . 211

chepoch. 213

chmaster . 218

chreplica . 225

epoch_watchdog. 228

lsepoch . 230

lsmaster. 234
xii Administrator’s Guide: Rational ClearCase MultiSite

lspacket . 240

lsreplica . 244

mkorder . 248

mkreplica . 253

MultiSite Control Panel . 268

multitool . 274

recoverpacket . 279

reqmaster . 284

restorereplica . 292

rmreplica. 296

shipping.conf . 298

shipping_server . 304

sync_export_list . 308

sync_receive. 317

syncreplica . 323

Index . 335
Contents xiii

xiv Administrator’s Guide: Rational ClearCase MultiSite

Figures
Figure 1 Replica Synchronization . 4
Figure 2 Branch Mastership. 11
Figure 3 Resolving Conflicts in Names of Type Objects 22
Figure 4 History of Changes to a Database. 23
Figure 5 State of a Family . 24
Figure 6 Out-of-Date Replicas . 25
Figure 7 Updates Between Two Replicas . 25
Figure 8 Peer-to-Peer Synchronization Pattern . 46
Figure 9 Hierarchical Synchronization Pattern. 46
Figure 10 Unidirectional and Bidirectional Updating . 47
Figure 11 One-to-One Synchronization Pattern. 47
Figure 12 Ring Synchronization Pattern . 48
Figure 13 Single-Hub Synchronization Pattern . 48
Figure 14 Multiple-Hub Synchronization Pattern . 48
Figure 15 Tree Synchronization Pattern. 49
Figure 16 Many-to-Many Synchronization Pattern. 50
Figure 17 A Synchronization Schedule . 52
Figure 18 Store-and-Forward Configuration . 77
Figure 19 Partial Synchronization Export Pattern and Schedule. 111
xv

xvi Administrator’s Guide: Rational ClearCase MultiSite

Tables
Table 1 VOB Data Propagated Among Replicas . 7
Table 2 Mastership Restrictions for VOB Objects . 18
Table 3 Two-Row Epoch Number Matrix at Replica boston_hub 26
Table 4 Three-Row Epoch Number Matrix at Replica boston_hub 28
Table 5 Disk Space Needed for Storage Bay . 32
Table 6 Family Information . 56
Table 7 Replica Creation, Synchronization, and Management Commands 59
Table 8 Object Mastership Commands . 59
Table 9 Failure-Recovery Commands . 60
Table 10 multitool Utility Commands . 60
Table 11 Additional MultiSite Commands. 61
Table 12 ClearCase Commands Related to MultiSite . 61
Table 13 Choosing a Packet Transport Method . 67
Table 14 Import Methods . 108
Table 15 Error Messages from Mastership Request

Management Operations . 154
Table 16 Error Messages from Mastership Requests . 156
Table 17 Shipping Error Messages . 181
Table 18 MultiSite Releases and Packet Protocols . 190
xvii

xviii Administrator’s Guide: Rational ClearCase MultiSite

Preface
Rational ClearCase MultiSite (abbreviated to “MultiSite” in this manual) is a layered
product option to Rational ClearCase. It supports parallel software development and
software reuse across project teams distributed geographically and provides
automated, error-free replication of versioned object bases (VOBs). You can also use
MultiSite as a VOB interoperation solution in a mixed UNIX and Windows network or
as a VOB backup mechanism.

About This Manual

This manual is for all MultiSite administrators. It assumes you have experience with
ClearCase. The manual provides an overview of MultiSite, describes how to set up and
use it, and gives troubleshooting suggestions.
xix

ClearCase Documentation Roadmap

More Information
Command Reference
Online documentation

Help files

Installation Guide

Administrator’s Guide
(Rational ClearCase/

Rational ClearCase LT)

Administrator’s Guide
(Rational ClearCase MultiSite)

Platforms Guide
(See online documentation)

Project
Management

Orientation

Software
Development

Build
Management Administration

Managing Software Projects

Introduction

Release Notes
(See online documentation)

Online tutorials

Developing Software

Building Software

OMAKE Guide
(Windows platforms)
xx Administrator’s Guide: Rational ClearCase MultiSite

ClearCase Integrations with Other Rational Products

Integration Description Where it is documented

Base ClearCase-
ClearQuest

Associates change requests
with versions of ClearCase
elements.

ClearCase: Developing Software

ClearCase: Managing Software
Projects

ClearQuest: Administrator’s Guide

Base ClearCase-Apex Allows Apex developers to
store files in ClearCase.

Installing Rational Apex (UNIX)

Base ClearCase-
ClearDDTS

Associates change requests
with versions of ClearCase
elements.

ClearCase ClearDDTS Integration

Base ClearCase-
PurifyPlus

Allows developers to invoke
ClearCase from PurifyPlus.

PurifyPlus Help

Base ClearCase-
RequisitePro

Archives RequisitePro projects
in ClearCase.

RequisitePro User’s Guide

RequisitePro Help

Base ClearCase-Rose Stores Rose models in
ClearCase.

Rose Help

Base ClearCase-
Rose RealTime

Stores Rose RealTime models in
ClearCase.

Rose RealTime Toolset Guide

Rose RealTime Guide to Team
Development

Base ClearCase-SoDA Collects information from
ClearCase and presents it in
various report formats.

Using Rational SoDA for Word

Using Rational SoDA for Frame

SoDA Help

Base ClearCase-XDE Stores XDE models in
ClearCase

XDE Help

UCM-ClearQuest Links UCM activities to
ClearQuest records.

ClearCase: Developing Software

ClearCase: Managing Software
Projects

ClearQuest: Administrator’s Guide

UCM-PurifyPlus Allows developers to invoke
ClearCase from PurifyPlus.

PurifyPlus Help
Preface xxi

UCM-RequisitePro Allows RequisitePro
administrators to create
baselines of RequisitePro
projects in UCM, and to create
RequisitePro projects from
baselines.

RequisitePro User’s Guide

RequisitePro Help
Using UCM with Rational Suite

UCM-Rose Stores Rose models in
ClearCase.

Rose Help
Using UCM with Rational Suite

UCM-Rose RealTime Associates activities with
revisions.

Rose RealTime Toolset Guide

Rose RealTime Guide to Team
Development

UCM-SoDA Collects information from
ClearCase and presents it in
various report formats.

Using Rational SoDA for Word

Using Rational SoDA for Frame

SoDA Help

UCM-TestManager Stores test assets in ClearCase. Rational TestManager User’s Guide

TestManager Help
Using UCM with Rational Suite

UCM-XDE Stores XDE models in
ClearCase

XDE Help

UCM-XDE Tester Stores XDE Tester Datastores in
ClearCase

XDE Tester Help

Integration Description Where it is documented
xxii Administrator’s Guide: Rational ClearCase MultiSite

Typographical Conventions

This manual uses the following typographical conventions:

■ ccase-home-dir represents the directory into which the ClearCase Product Family
has been installed. By default, this directory is /opt/rational/clearcase on UNIX and
C:\Program Files\Rational\ClearCase on Windows.

■ cquest-home-dir represents the directory into which Rational ClearQuest has been
installed. By default, this directory is /opt/rational/clearquest on UNIX and
C:\Program Files\Rational\ClearQuest on Windows.

■ Bold is used for names the user can enter; for example, command names and
branch names.

■ A sans-serif font is used for file names, directory names, and file extensions.

■ A sans-serif bold font is used for GUI elements; for example, menu names and
names of check boxes.

■ Italic is used for variables, document titles, glossary terms, and emphasis.

■ A monospaced font is used for examples. Where user input needs to be
distinguished from program output, bold is used for user input.

■ Nonprinting characters appear as follows: <EOF>, <NL>.

■ Key names and key combinations are capitalized and appear as follows: SHIFT,
CTRL+G.

■ [] Brackets enclose optional items in format and syntax descriptions.

■ { } Braces enclose a list from which you must choose an item in format and syntax
descriptions.

■ | A vertical bar separates items in a list of choices.

■ ... In a syntax description, an ellipsis indicates you can repeat the preceding item
or line one or more times. Otherwise, it can indicate omitted information.

Note: In certain contexts, you can use “...” within a pathname as a wildcard, similar
to “*” or “?”. For more information, see the wildcards_ccase reference page.

■ If a command or option name has a short form, a “medial dot” (⋅) character
indicates the shortest legal abbreviation. For example:

lsc⋅heckout
Preface xxiii

Online Documentation

The ClearCase Product Family (CPF) includes online documentation, as follows:

Help System: Use the Help menu, the Help button, or the F1 key. To display the contents
of the online documentation set, do one of the following:

■ On UNIX, type cleartool man contents

■ On Windows, click Start > Programs > Rational Software > Rational ClearCase >
Help

■ On either platform, to display contents for Rational ClearCase MultiSite, type
multitool man contents

■ Use the Help button in a dialog box to display information about that dialog box or
press F1.

Reference Pages: Use the cleartool man and multitool man commands. For more
information, see the man reference page.

Command Syntax: Use the –help command option or the cleartool help command.

Tutorial: Provides a step-by-step tour of important features of the product. To start the
tutorial, do one of the following:

■ On UNIX, type cleartool man tutorial

■ On Windows, click Start > Programs > Rational Software > Rational ClearCase >
ClearCase Tutorial

PDF Manuals: Navigate to:

■ On UNIX, ccase-home-dir/doc/books

■ On Windows, ccase-home-dir\doc\books
xxiv Administrator’s Guide: Rational ClearCase MultiSite

Customer Support

If you have any problems with the software or documentation, please contact Rational
Customer Support by telephone, fax, or electronic mail as described below. For
information regarding support hours, languages spoken, or other support
information, click the Support link on the Rational Web site at www.rational.com.

Your
location

Telephone Facsimile Electronic mail

North
America

800-433-5444
toll free or
408-863-4000
Cupertino, CA

408-863-4194
Cupertino, CA
781-676-2460
Lexington, MA

support@rational.com

Europe,
Middle
East, and
Africa

+31-(0)20-4546-200
Netherlands

+31-(0)20-4546-201
Netherlands

support@europe.rational.com

Asia Pacific 61-2-9419-0111
Australia

61-2-9419-0123
Australia

support@apac.rational.com
Preface xxv

xxvi Administrator’s Guide: Rational ClearCase MultiSite

MultiSite Overview

1Introduction to
MultiSite
Rational ClearCase MultiSite adds a powerful capability to Rational ClearCase. With
MultiSite, developers at different locations can use the same versioned object base
(VOB). Each location (site) has its own copy (replica) of the VOB. At any time, changes
made in one replica can be sent in update packets to other replicas. The update process
can be automated or can be started manually with a command.

An organization can use MultiSite to distribute independent, but related, development
efforts across multiple cities, nations, or continents. For example, a company in the
United States has development and testing sites in India, Argentina, Japan, and
Australia. Because it is not practical for all engineers to access the VOBs in the United
States, the company uses MultiSite to distribute the development.

MultiSite can also be used at a single geographical location to allow independent
groups to work with the same development data, to enable VOB interoperation in a
mixed environment, or to be a backup mechanism. For example, a company that is
moving some development to Windows from UNIX can create replicas on Windows
instead of accessing UNIX VOBs from Windows.

This chapter gives an overview of the major features in MultiSite. Chapter 2, MultiSite
Operation, contains more details about how the features work.

Understanding the Architecture of MultiSite

The following sections describe the MultiSite architecture.

Replicated VOB Databases

A VOB provides permanent storage for an entire directory tree: directories, files, and
links. The historical versions of the files in the VOB are stored in data container files in
storage pool directories. The VOB database records the evolution of the
version-controlled file system objects and stores the associated metadata, including
version labels, hyperlinks, configuration records, and so on. For more information
about VOB data structures, see the ClearCase documentation set.

If MultiSite is not used, each VOB has a single set of data containers and a single
database. With MultiSite, some or all VOBs are replicated. A replicated VOB is located
1

at multiple sites; at each site is a copy of the VOB, called a VOB replica. Collectively, the
set of replicas of a VOB is called a VOB family. Each replica includes a full set of data
containers and a complete copy of the VOB database. At its site, a replica appears to be
a regular VOB; developers can check out, edit, and check in; build software; attach
metadata annotations to objects; and so on. Regular ClearCase use models apply to use
of replicas, but there are some coordination issues that administrators must consider.
(For more information, see Chapter 3, Planning a MultiSite Implementation.) Also,
MultiSite features allow simultaneous development to occur at different replicas
without conflicts. Enabling Independent Development: Mastership on page 5 describes
how conflict avoidance works.

For more information, see VOBs and VOB Replicas, VOB Objects and VOB Replica Objects
on page 8 and ClearCase Commands Related to MultiSite on page 61.

MultiSite Terminology

MultiSite documentation uses the following terms.

VOBs and VOB Replicas

Each replica has a replica name in addition to a VOB tag. You specify both the replica
name and the VOB tag when you create the replica. For each replica, the VOB database
contains a replica object that records the name of the replica. The VOB database also
tracks the location of each replica by host name. This tracking enables MultiSite
administrators to specify replicas at other sites with short, mnemonic identifiers,
without needing to know their exact locations.

Each replica is a copy of the VOB, including both file system data (data containers) and
metadata (VOB database). At each replica, developers can see all VOB elements and all
versions of each element.

Term Definition

Replica A copy of a VOB. To refer to a VOB replica, use its replica name and
VOB tag.

Family All the replicas of a VOB. The family name of a VOB family is the VOB
tag.

Site The collection of clients and servers known to a registry host. Each site
can contain at most one replica of a VOB.

Host The LAN name or IP address of the network node that contains the
database of the VOB replica.
2 Administrator’s Guide: Rational ClearCase MultiSite

The replicas are not necessarily exact copies of each other. MultiSite features
accommodate typical differences among sites:

■ Different sites may have different user spaces defined by the local password and
group databases. You can configure particular replicas to ignore identities and
permissions differences or to propagate changes to identities and permissions
from site to site. For more information, see Identities and Permissions Strategy for
VOB Replicas on page 39.

■ Disk configurations and capacities may vary. Accordingly, you can manage VOB
storage pools independently at each site.

■ Different sites may have different development policies and can use site-specific
scripts to enforce them. For this reason, ClearCase triggers are not propagated
among sites.

Most, but not all, of the information stored in a VOB is replicated. All changes that
create new data, remove old data, and move or rename existing data are propagated
among the replicas in the VOB family. However, information stored in views is not
propagated. For example, a replica update includes the fact that an element has been
checked out, because the checkout is recorded in the VOB; but the update does not
include the contents of the checked-out version.

For more information, see Information Propagated Among VOB Replicas on page 7.

The biggest difference among replicas reflects the basic capability of MultiSite:
enabling development work to proceed independently at different locations. For more
information, see Enabling Independent Development: Mastership on page 5.

Synchronizing Replicas in a Family

Because information in a replicated VOB is modified concurrently at different replicas,
the contents of each replica in a family tend to diverge. In fact, the contents of a
particular replica may never be identical to the contents of any other replica. To keep
the replicas from diverging too much, each replica sends updates to one or more other
replicas. Updating a VOB replica changes both its database and its storage pools to
reflect the development activity that has taken place in one or more other replicas.

Information is exported from a replica in packets. A logical packet includes all the
information required to create a new replica (replica-creation packet) or to update one
or more existing replicas (update packet). For flexibility, and to accommodate
limitations of data-transport facilities, each logical packet can be created as a set of
physical packets.
Chapter 1 - Introduction to MultiSite 3

After a logical packet is created with a mkreplica or syncreplica command invoked
with the –export option and sent to a replica, it is processed at that replica by a
mkreplica or syncreplica command invoked with the –import option. The changes
that occurred originally at the sending replica (and perhaps at some other replicas, too)
are added to the database and storage pools of the importing replica. If the logical
packet includes several physical packets, the import commands always process the
physical packets in the correct order. No error occurs if the same packet is imported
two or more times at a replica, unless the imports occur simultaneously.

Figure 1 illustrates the three phases of synchronization: export, transport, and import.
At Site 1, a syncreplica –export command places records of operations from R1 into a
packet. The packet is sent to Site 2. At Site 2, a syncreplica –import command imports
the contents of the packet into R2. Note that each synchronization is one-way. If two
replicas update each other, two synchronizations are required.

Figure 1 Replica Synchronization

You can match the synchronization strategy for each family to its particular use
patterns, your organization’s needs, and the level of connectivity among the host
machines. For one family, you can update replicas every hour, using a high-speed
network; for another family, you can send updates only once or twice a month, using
electronic mail or disk files as the delivery mechanism. For information about planning
synchronization, see MultiSite Use Model on page 37. For information about creating
and synchronizing replicas, see Chapter 7 and Chapter 8. The Operation Log on page 22
describes the mechanism that supports replication and synchronization.

Site 1

R1
Export

Import

Site 2

R2

= Packet

Transport
4 Administrator’s Guide: Rational ClearCase MultiSite

Enabling Independent Development: Mastership

Because changes are made independently at multiple replicas, these changes may
conflict. In a MultiSite environment, tracking changes and preventing data corruption
are accomplished with an exclusive-right-to-modify scheme called mastership.
Mastership determines when a user of a replica is allowed to modify data.

If the work done in different replicas were truly independent, the result would be
chaos. Suppose version 17 of an element is created on the main branch in three replicas
at the same time. Which is the real version 17, and what happens to the other versions?

Certain objects are assigned a master replica (or master). The initial master of an object
is the replica where the object is created, and mastership can be changed subsequently
(see Chapter 10, Managing Mastership). In general, an object can be modified or deleted
only at its master replica.

For example, each branch type has a master replica. By default, you can create or
modify a branch only if your current replica masters the branch type. In this example,
the command fails because the current replica does not master the main branch type:

cleartool checkout –c "add new feature" v3.0plan.doc
cleartool: Error: Unable to perform operation "checkout" in replica
"sanfran_hub" of VOB "/vobs/doc".
cleartool: Error: Master replica of branch "/main" is "boston_hub".
cleartool: Error: Unable to check out "v3.0plan.doc".

Replicas, VOBs, and most objects in a VOB have a master replica. For more information
about how mastership prevents conflicting changes, see Mastership on page 9.

Some conflicts are unavoidable. For example, objects with the same name can be
created at two or more VOB replicas during the same time period between
synchronizations. You can minimize such conflicts by establishing naming
conventions for objects, but if a conflict does occur, it is handled during import of an
update packet. For more information, see Conflict Resolution on page 21.

Supporting Serial Development in VOB Replicas

The standard ClearCase development model is to use branches to develop software in
parallel, and the standard MultiSite model is to master different branch types at
different replicas so that development can proceed concurrently at different replicas.
These models require you to merge changes from branch to branch.

However, sometimes sites must use serial development (for example, to make changes
to elements whose versions cannot be merged). To support serial development, there
are two models for changing mastership:
Chapter 1 - Introduction to MultiSite 5

■ Push Model

The developer who needs to work on a branch asks the administrator of the master
replica to transfer mastership of the branch and send an update packet containing
the change.

■ Pull Model

The developer who needs to work on a branch requests mastership of the branch.
This model is not enabled by default, and it requires the MultiSite administrator to
enable requests and authorize developers to request mastership. However, after
the setup is complete, the administrator does not need to be involved in the
mastership request process.

Note: The developer can also request mastership of branch types. For more
information, see Chapter 11, Implementing Requests for Mastership.

There are two ways to use requests for mastership:

❑ If you cannot merge versions of the element, you must request mastership, and
after your current replica receives mastership, you can perform a reserved
checkout and do your work.

❑ If you can merge versions of the element, you can perform a nonmastered checkout
of the element and do your work. At any time, request mastership. When your
current replica receives mastership, merge your work (if required) and check in
the element.

For more information about enabling requests for branch mastership, see Chapter 11,
Implementing Requests for Mastership. For more information about the use models for
requesting mastership, see Working On a Team in Developing Software.
6 Administrator’s Guide: Rational ClearCase MultiSite

2MultiSite Operation
This chapter provides more detail about the topics introduced in Chapter 1.

Information Propagated Among VOB Replicas

Some information is not replicated; in general, site-specific information is not
replicated. Table 1 shows the information that is, and is not, propagated among
replicas.

Table 1 VOB Data Propagated Among Replicas (Part 1 of 2)

Data propagated Data not propagated

Elements, branches, versions (including
derived object versions).

Derived objects (DOs) that have not been
checked in as versions.
DOs tend to be large and short-lived;
transmitting them among multiple replicas is
likely to be less efficient than rebuilding them
at each replica.

Most kinds of type objects. Trigger type objects. Triggers are usually used
to implement local policies, and trigger type
definitions often include pathnames that do
not exist at other sites.

Metadata annotations: version labels,
attributes, hyperlinks (including merge
arrows and hyperlinks to administrative
VOBs).

Individual “attached” triggers.

UCM objects: activities, baselines,
components, folders, projects, streams

Permanent locks (those created with the
–obsolete option).

Temporary locks (those created without the
–obsolete option).
7

VOB Objects and VOB Replica Objects

Each replica is a VOB, but the VOB object and VOB-replica object are different objects
in the VOB database:

■ VOB object. The database has a single VOB object. This object’s UUID is listed as
the VOB family uuid in a lsvob –long listing.

■ VOB-replica object (or replica object). The database has a VOB-replica object for
each of the VOB’s replicas. This object’s UUID is listed as the Vob replica uuid
in a lsvob –long listing.

For example:

cleartool lsvob –long /vobs/dev
Tag: /vobs/dev
...
Vob family uuid: 87f6265b.72d911d4.a5cd.00:01:80:c0:4b:e7
Vob replica uuid: 87f6265f.72d911d4.a5cd.00:01:80:c0:4b:e7

Use describe vob: to list details about the VOB object; use describe replica: to list
details about the VOB-replica object (the replica). For example:

Checkout records of elements and changes in
checked-out directories.
Note: The lscheckout –areplicas command
lists checkouts in other replicas.

Contents of checked-out versions.

Event records.

Mastership information. (See Mastership on
page 9.)

Mastership request settings. See Chapter 11,
Implementing Requests for Mastership.

Custom type managers.

Changes to text mode property. When you
create a new replica, it has the same text mode
property as its parent replica, but subsequent
changes are not propagated.

Table 1 VOB Data Propagated Among Replicas (Part 2 of 2)

Data propagated Data not propagated
8 Administrator’s Guide: Rational ClearCase MultiSite

cleartool describe vob:/vobs/dev replica:boston_hub@/vobs/dev
versioned object base "/vobs/doc"
created 15-Aug-01.14:19:48 by susan.user
"Main source VOB for development."
master replica: boston_hub@/vobs/dev
replica name: boston_hub
VOB family feature level: 3
VOB storage host:pathname "goldengate:/vobstg/dev.vbs"
VOB storage global pathname "/net/goldengate/vobstg/dev.vbs"

...
replica "boston_hub"

created 15-Aug-01.14:19:48 by susan.user
replica type: unfiltered
master replica: boston_hub@/vobs/dev
request for mastership: enabled

...

All replicas of a VOB record the same VOB object and set of VOB-replica objects. When
a new replica is created, it takes some time for the change (creation of a new
VOB-replica object) to be propagated to all the replica’s databases.

Mastership

The following sections describe how mastership applies to objects in databases.

Replica Mastership

When you create a new replica, its replica object (the database object that records the
replica’s existence) is mastered by the creating replica. Therefore, you can modify or
delete the replica object only at the creating replica, unless you transfer mastership to
another replica.

To facilitate replica maintenance, we recommend that each replica be self-mastering,
which means that it masters its own replica object. For more information, see
Transferring Mastership of a Replica Object on page 132.

Note: To perform certain procedures on a replica object, you must make the replica
self-mastering. This requirement is noted in the documentation for those procedures.

Branch Mastership

Branch mastership is the scheme that supports independent development work at
different VOB replicas. Every branch type defined in a VOB (including the main
branch type) has a master replica.

Mastership restrictions allow you to create a branch only if its creation will not conflict
with an attempt to create a branch of that type at the replica that masters the type:
Chapter 2 - MultiSite Operation 9

■ Branches can be created only at the replica that masters the branch type, unless
you are creating a new element. For more information, see Creation of the main
Branch of an Element on page 12.

■ By default, branches can be modified only at the replica that masters the branch
type. Checking out a version is considered a branch modification. However, you
can change mastership of an individual branch to another replica. You can also
check out a version nonmastered, which means that the checkout succeeds even if
your current replica does not master the branch. In order to check in the new
version, you must request mastership of the branch and (if necessary) do a merge.
For more information, see Chapter 11, Implementing Requests for Mastership.

Note: Remember that a branch is an instance of a branch type. For example, main is a
branch type, and acc.c@@/main and resource.h@@\main are branches.

The branch mastership strategy works with the strategy of using branches to isolate
changes for particular development tasks. (For example, fixing a defect may require
changes to five elements, in which each change is made on a branch of type
v1.0_bugfix.) With Rational ClearCase MultiSite, work on various tasks can be done at
different replicas, each using its own branch type. The work on different branches can
be propagated among replicas, and then merged, as often as required by an
organization’s development strategy. Because the branches of an element are
independent, changes made at different replicas do not conflict.

Figure 2 shows a sample version tree. Each replica masters a branch type and
developers using that replica can create versions only on the branch of that type. For
example, the boston_hub replica masters the main branch type, the sanfran_hub
replica masters the v1.0_integration branch type, and the bangalore replica masters
the v1.0_bugfix branch type.
10 Administrator’s Guide: Rational ClearCase MultiSite

Figure 2 Branch Mastership

Branch mastership is implemented at both the branch type level and the branch level:

■ By default, the replica at which a branch type is created masters the branch type
and all instances of that branch type. For example, the sanfran_hub replica
masters the branch type object named v1.0_integration and owns the right to
create and modify v1.0_integration branches in all of the elements in the VOB.

■ An administrator or developer can transfer the mastership of an individual branch
(an instance of a branch type) to another replica. This feature enables serial
development. For example, if a developer at the Boston site needs to work on a
branch of type v1.0_integration in the element main.c, the San Francisco
administrator can transfer mastership of the branch
main.c@@/main/v1.0_integration to boston_hub, or the developer can request
mastership of the branch.

For more information about supporting serial development with MultiSite, see
Supporting Serial Development in VOB Replicas on page 5.

v1.0_integration

v1.0_bugfix

main
Chapter 2 - MultiSite Operation 11

Creation of the main Branch of an Element

There is an exception to the rule that a branch can be created only at the master replica
of the branch type. When you add a file to source control or create a new directory
element, the main branch is created even if your current replica does not master the
main branch type. By default, the main branch of a new element is mastered by the
replica that masters the main branch type, and you cannot create new versions on the
branch. During element creation, you can specify an option to have your current
replica master all newly created branches. For more information, see Assigning Branch
Mastership During Element Creation on page 128.

Synchronizing Development on Different Branches

Development of an element with multiple branches can take place in different replicas
concurrently, with occasional synchronizations. (The more frequently you update, the
easier it is to track and reconcile the changes on different branches of elements. To
reconcile changes, you use the ClearCase version-comparison and merge facilities.)

For example, before the Boston site starts using MultiSite, the element cmdsyn.c has two
branches, cmdsyn.c@@/main and cmdsyn.c@@/main/v1.0_integration:

When the Boston site starts using MultiSite, the administrator creates a new replica for
the San Francisco site. Because integration for Version 1.0 will be done at the San
Francisco site, the sanfran_hub replica must master the v1.0_integration branch type.
The administrator transfers mastership of the v1.0_integration branch type to the
sanfran_hub replica.

Developers in San Francisco can now create versions on existing branches of type
v1.0_integration and can create new instances of that branch type. Work continues on
the main branch in Boston:

v1.0_integration

main
12 Administrator’s Guide: Rational ClearCase MultiSite

The administrators at the Boston and San Francisco sites decide to merge some of the
work on the v1.0_integration branch with the work done on the main branch. The San
Francisco administrator sends an update packet to the boston_hub replica, and the
Boston administrator imports it:

v1.0_integration

boston_hub

main

v1.0_integration

sanfran_hub

main
Chapter 2 - MultiSite Operation 13

The Boston administrator then merges from the v1.0_integration branch to the main
branch by checking out the latest version on the main branch, merging from the latest
version on the v1.0_integration branch, and checking in the result of the merge:

v1.0_integration

sanfran_hub

main

v1.0_integration

boston_hub

main
14 Administrator’s Guide: Rational ClearCase MultiSite

Default and Explicit Branch Mastership

Branches can have default mastership or explicit mastership. When a branch is created,
it is mastered by the replica that masters the branch type (default mastership). When
you transfer mastership of a branch to another replica, that replica masters the branch
explicitly. The output of describe shows which replica masters a branch and whether
mastership is explicit or default.

For example, the branch type v2.0_port was created at, and is mastered by, the
sanfran_hub replica. The test2.txt@@/main/v2.0_port branch has default mastership, as
shown by the (defaulted) annotation:

multitool describe test2.txt@@/main/v2.0_port
branch “test2.txt@@/main/v2.0_port”

created 18-Aug-00.10:50:34 by John Cole (jcole.user@goldengate)
branch type: v2.0_port
master replica: sanfran_hub@/vobs/dev (defaulted)

...

The administrator at the sanfran_hub replica transfers mastership of this branch to the
boston_hub replica:

multitool chmaster –nc boston_hub test2.txt@@/main/v2.0_port
Changed mastership of branch "/vobs/dev/test2.txt@@/main/v2.0_port" to
"boston_hub"
Chapter 2 - MultiSite Operation 15

The output of describe shows that this branch is now mastered explicitly by the
boston_hub replica; the (defaulted) annotation is not present:

multitool describe test2.txt@@/main/v2.0_port
branch “test2.txt@@/main/v2.0_port”

created 18-Aug-00.10:50:34 by John Cole (jcole.user@goldengate)
branch type: v2.0_port
master replica: boston_hub@/vobs/dev

...

When you transfer mastership of a branch type, mastership is transferred for all
branches of that type with default mastership. Mastership of branches with explicit
mastership is not transferred.

For more information, see the chmaster reference page and Transferring Mastership of a
Branch on page 136.

Type Object Mastership

By default, you can create an instance of a type only in the replica that masters the type
object. For example, if the sanfran_hub replica masters the TESTED_BY attribute
type, you can create a TESTED_BY attribute only in the sanfran_hub replica.

Often, however, developers at different sites must create instances of the same type.
For example, quality engineers at the bangalore replica may also need to use the
TESTED_BY attribute. Therefore, you can create two kinds of attribute type, hyperlink
type, and label type objects: unshared and shared.

Unshared Type Objects

Instances of an unshared type object can be created only in its master replica. (The
instances are propagated to and seen in all replicas.) Thus, there are no issues with
conflicting changes made in different replicas. By default, attribute types, hyperlink
types, and label types are created as unshared. An unshared type object can be
converted to shared.

Shared Type Objects

Instances of a shared type object can be created in multiple replicas. To prevent
cross-replica conflicts, the following restrictions apply:

■ The instance restrictions (if any) on the type object must allow creation of the
instance.

■ For all objects except versions and branches, the current replica must master the
object to which the instance is being attached.
16 Administrator’s Guide: Rational ClearCase MultiSite

❑ For a version, the current replica must master the branch on which the version
is located.

Note: When you apply a label whose instance restriction is one per branch, your
current replica must master the branch. When you apply a label whose instance
restriction is one per element, your current replica must master the element.

❑ For a branch with default mastership, the current replica must master the branch
type.

❑ For a branch with explicit mastership, the current replica must master the
branch object.

Note: If a hyperlink type is shared, you can create a hyperlink of that type between any
two objects, at any replica. If the type is global, the restrictions on creation of the local
copy apply.

Restrictions that prevent instance creation in an unreplicated VOB also prevent
instance creation in a replica; for example, if there is a lock on the type object, instance
creation fails. However, because locks are not replicated (except for locks created with
–obsolete), a lock on a shared type object in one replica does not prevent instance
creation in another replica.

A shared type cannot be converted to unshared. Instance restrictions (for example,
once-per-branch use of a label type) for a shared type object cannot be changed.

Additional Restrictions for Shared Global Types

Additional mastership restrictions exist when you use an administrative VOB
hierarchy and its global types. If a global type is shared, you can create instances of the
type in a replica only if one of the following conditions exists:

■ The replica contains a local copy of the type.

■ The replica does not contain a local copy of the type, but the type is mastered by
the administrative VOB replica at the current site. (If the type is not mastered by
the administrative VOB replica, a local copy of the type cannot be created in the
replica.)

These restrictions apply even if your current replica masters the object to which you
are attaching the instance. These restrictions prevent conflicting, simultaneous creation
of a given type with a given name at multiple sites. For more information about global
types, see the Administrator’s Guide for Rational ClearCase.

For more information about changing type mastership, see Chapter 10, Managing
Mastership.
Chapter 2 - MultiSite Operation 17

Creating an Instance of a Type

In summary, you can create an instance of a type in the following cases:

■ The type is unshared, your current replica masters the type, and no instance
restrictions exist.

■ The type is shared, your current replica masters the target object, and no instance
restrictions exist. If the type is global, a local copy of the type must exist in the
replica, or the current administrative VOB replica must master the type.

Example

The administrator at the boston_hub replica creates an attribute type with the
following command:

cleartool mkattype –shared –vpbranch –nc TESTED

This attribute type is defined to be shared across replicas, with the restriction that at
most one instance can be created on each branch of an element. You can create an
attribute of that type on a version if both of the following things are true:

■ Your current replica masters that version’s branch.

■ No attribute of that type already exists on a version on that branch (assuming no
other instance restrictions).

Mastership Restrictions for VOB Objects

Table 2 describes the restrictions for VOB objects.

Table 2 Mastership Restrictions for VOB Objects

Object Action Object your current replica must master

Activity Change (chactivity)
Remove (rmactivity)
Set (setactivity)

Activity

Attribute Create (mkattr) Type (if the attribute’s type is unshared)
Object to which attribute is being applied (if
the attribute’s type is shared)

Remove (rmattr) Type (if the attribute’s type is unshared)
Object from which attribute is being
removed (if the attribute’s type is shared)
18 Administrator’s Guide: Rational ClearCase MultiSite

Baseline Create (mkbl) Stream where you make the baseline. For an
imported baseline created from a pre-UCM
label, your current replica must master the
component and label type.

Label (mklabel) Stream’s branch type (in each VOB where
you have made changes)

Change (chbl)
Remove (rmbl)

Baseline

Branch Change type (chtype) New branch type and the branch you are
changing

Create (mkbranch) Branch type

Remove (rmbranch) Branch

Checked-out
version

Reserve (reserve) Branch on which the version is checked out

Component Remove (rmcomp) Component

Element Check in (checkin) Branch on which you are checking in the
version

Check out (checkout) Branch on which you are checking out the
version (unless you use –unreserved
–nmaster)

Change type (chtype)
Relocate (relocate)
Remove (rmelem)

Element

Event record Change (chevent) For a version, the branch containing the
version. For any other object, the object.

Folder Change (chfolder)
Remove (rmfolder)

Folder

Hyperlink Create (mkhlink) Hyperlink type (for unshared types)

Remove (rmhlink) Hyperlink

Table 2 Mastership Restrictions for VOB Objects

Object Action Object your current replica must master
Chapter 2 - MultiSite Operation 19

Label Create (mklabel)
Remove (rmlabel)

If the label’s type is unshared, your current
replica must master the label type. If the
label’s type is shared, the following
restrictions apply:
➤ If the label type is one per branch, your

current replica must master the branch
containing the version.

➤ If the label type is one per element, your
current replica must master the version’s
element.

Merge arrow Remove (rmmerge) Merge hyperlink

Object Change event (chevent)
Change mastership
(chmaster)
Change name (rename)
Lock obsolete (lock
–obsolete)
Unlock (unlock)

Object

Change protection
(protect)

Object (if current replica preserves identities
or permissions)

Project Change (chproject)
Remove (rmproject)

Project

Project VOB Change list of promotion
levels (setplevel)

PromotionLevel attribute type

Replica Change host (chreplica)
Change preservation
properties (chreplica)
Enable requests for
mastership (reqmaster)
Remove (rmreplica)

Replica

Stream Change (chstream)
Rebase (rebase)
Remove (rmstream)

Stream

Symbolic link Remove (rmelem) Symbolic link

Table 2 Mastership Restrictions for VOB Objects

Object Action Object your current replica must master
20 Administrator’s Guide: Rational ClearCase MultiSite

Conflict Resolution

Mastership restrictions prevent most inconsistent changes in different replicas, but
some are unavoidable. To avoid many naming conflicts, the administrators for a family
must create and enforce naming rules for objects. A use model that is enforced
consistently across sites reduces the potential for conflicts. For example, the
administrators for a family follow these rules:

■ All location-specific objects must include a location identifier.
■ Objects that will be used at multiple replicas are all created at one replica.

Resolving Conflicts Among Type Objects

Two objects of the same type in the same VOB cannot have identical names.
Accordingly, the syncreplica –import command detects a conflict when an update
packet includes an operation that would create a type object with the same name as an
existing object at the current replica. It resolves the conflict by creating the new type
object with a different name.

For example, in Figure 3, two types created at two different replicas have the same
name but are different objects. When the type created at the boston_hub replica is
imported at the bangalore replica, it is not renamed because the bangalore replica does

Type Copy (cptype) The replica containing the original type must
master that type.

Remove (rmtype)
Replace (mkobjecttype
–replace)

Type

Version Check in (checkin)
Check out (checkout)
Remove (rmver)

Branch
With checkout –unreserved –nmaster, there
are no mastership restrictions.

VOB Change feature level
(chflevel)

The replica to be changed must be
self-mastering.

Set up snapshots
(vob_snapshot_setup)

The replica must be self-mastering.

VOB family Change feature level
(chflevel)

VOB object

Table 2 Mastership Restrictions for VOB Objects

Object Action Object your current replica must master
Chapter 2 - MultiSite Operation 21

not contain a type with that name. However, when the type created at the sanfran_hub
replica is imported at the bangalore replica, it is renamed because the bangalore
replica already has a type with that name.

Figure 3 Resolving Conflicts in Names of Type Objects

syncreplica generates a warning message when it renames an object during import. To
resolve the conflict, the Bangalore administrator must inform the Boston and San
Francisco administrators of the name conflict, and they must take one of the following
actions:

■ Rename both label types. For example, at Boston:

multitool rename lbtype:V2.0 V2.0_boston_hub

At San Francisco:

multitool rename lbtype:V2.0 V2.0_sanfran_hub

The Boston and San Francisco administrators must then send updates to the
bangalore replica.

■ Rename one of the label types. The administrator who renames the label type
sends an update to the other replicas.

For more information, see Automatic Renaming of Type Objects and Replica Objects on
page 196.

The Operation Log

This section describes the mechanism that supports synchronization. This information
is not required to use MultiSite, but is helpful when you want to deepen your
understanding of the error-recovery facilities described in Chapter 13, Troubleshooting
MultiSite Operations.

V3.0 V3.0

replica: bangalore

replica: boston_hub replica: sanfran_hub

V3.0 sanfran_hub:V3.0
22 Administrator’s Guide: Rational ClearCase MultiSite

Most changes made to a VOB are recorded as event records in the VOB database. Each
event record describes a change. Most changes to a replicated VOB are recorded as
entries in an operation log (oplog). These entries store all the information required to
replay the changes in another replica:

■ The identity of the replica in which the change originated.

■ The change to the VOB database; for example, creation of a new element, checkin
of a new version, attachment of an attribute, and so on.

■ The change to the storage pool, if any; for example, the contents of a new version.

Note: Version information is not stored in the oplog. When version information is
required by syncreplica, it is retrieved from the pools.

■ The event record generated for the change.

■ An integer sequence number: 1 for the first change originating at a particular
replica, 2 for the next change, and so on. This is called the oplog ID of the oplog
entry.

The exact kind and amount of information varies with the specific operation. For
example, an oplog entry for the removal of a label has different, and less, information
than an oplog entry for a checkout command.

Note: You can delete a replica’s oplog entries after they have been used to update other
replicas. For more information, see Scrubbing Parameters for Replicas on page 52.

Tracking Operations for Each Replica

The history of an unreplicated VOB is a linear sequence of operations (Figure 4).

Figure 4 History of Changes to a Database

Within a replica family, changes are tracked for each replica. This is why an oplog entry
includes the identity of the replica where the operation originated. Thus, the history of

3

2

1

changes to database

tim
e

Chapter 2 - MultiSite Operation 23

a replica family can be viewed as several stacks of oplog entries. Each stack is
represented by a linear sequence of oplog IDs for the operations that originate in that
replica.

Figure 5 shows the state of two replicas in a family:

■ Operations with oplog IDs 1–950 have occurred at replica boston_hub.

■ Operations 1–702 have occurred at replica sanfran_hub.

Figure 5 State of a Family

A replica has accurate data only about its own operations. Until it receives update
packets, its information about other replicas is out of date. For example, replica
boston_hub records 950 local operations, but has received update packets for only 504
sanfran_hub operations. Similarly, replica sanfran_hub records 702 local operations,
but has received update packets for only 791 boston_hub operations.

Figure 6 illustrates this scenario, in which each replica is out of date with respect to the
operations originating at the other replica.

sanfran_hubboston_hub

950

001

702

001
24 Administrator’s Guide: Rational ClearCase MultiSite

Figure 6 Out-of-Date Replicas

Picturing a replica family as a set of oplog stacks, shown in Figure 6, makes it easy to
understand the synchronization process. For example, an update packet sent from
replica boston_hub to replica sanfran_hub consists of increments to the stack for
replica boston_hub (operations 792–950). Figure 7 shows the two increments. Because
sanfran_hub knows its own state, it needs updates only for operations originating at
other replicas. (In certain error-recovery situations, you must reset a replica’s data
about its own operations. See Chapter 13, Troubleshooting MultiSite Operations.)

Figure 7 Updates Between Two Replicas

Note: By the time the packet is imported at sanfran_hub, additional changes may have
been made at boston_hub. Those changes are not included in the update packet.

sanfran_hubboston_hub

950

001

504

001

boston_hub replica

sanfran_hubboston_hub

791

001

702

001

sanfran_hub replica

sanfran_hubboston_hub

950

001

504

702
505

001

boston_hub replica

sanfran_hubboston_hub

791

001

702

001

sanfran_hub replica

950
792
Chapter 2 - MultiSite Operation 25

Oplog IDs and Epoch Numbers

An epoch number is the total number of operations that originated at a particular
replica. In Figure 5, the epoch number for boston_hub is 950.

The MultiSite synchronization scheme attempts to minimize the amount of data
transmitted among replicas. Each replica keeps track of these epoch numbers:

■ Changes made in the current replica. The number of operations that originated at
the current replica.

■ Changes at sibling replicas that have been imported to the current replica. When
syncreplica writes an operation from an update packet to the current replica, it
increments the epoch number that records the number of operations originating at
the sibling replica that have been imported at the current replica.

■ Estimates of the states of other replicas. For each other replica, an estimate of its
own changes and other replicas’ changes. The current replica keeps track of the
operations it has sent to other replicas, and assumes that these operations are
imported successfully.

Table 3 shows how these epoch numbers fall into an epoch number matrix. Each
replica maintains its own such matrix, revising its rows as work occurs locally and as
it exchanges update packets with other replicas:

■ When work occurs in the boston_hub replica, its own epoch number is
incremented.

■ When the boston_hub replica receives an update from sanfran_hub, it revises its
own row (boston_hub) and the sanfran_hub row in its epoch number matrix.

■ When the boston_hub replica generates an update packet to be sent to
sanfran_hub, it revises the sanfran_hub row in its epoch number matrix.

Note that a syncreplica –export command updates epoch numbers immediately. It
does not wait for acknowledgment from the importing replica that the packet has
been received and applied correctly. During normal MultiSite processing, no
manual intervention is required to maintain the accuracy of the epoch number
matrices for the various replicas. However, failure to apply a packet may require
manual intervention, as described in Lost Update Packet on page 191.

Table 3 Two-Row Epoch Number Matrix at Replica boston_hub

Operations originated
at boston_hub

Operations originated
at sanfran_hub

boston_hub’s record of its own
state

950 504
26 Administrator’s Guide: Rational ClearCase MultiSite

The contents of this matrix are reported by the lsepoch command at the boston_hub
replica:

multitool lsepoch
For VOB replica "/vobs/dev":
Oplog IDs for row "boston_hub" (@ minuteman):
oid:87f6265f.72d911d4.a5cd.00:01:80:c0:4b:e7=950 (boston_hub)
oid:0eaa6fc3.737d11d4.adbe.00:01:80:c0:4b:e7=504 (sanfran_hub)
Oplog IDs for row "sanfran_hub" (@ goldengate):
oid:87f6265f.72d911d4.a5cd.00:01:80:c0:4b:e7=912 (boston_hub)
oid:0eaa6fc3.737d11d4.adbe.00:01:80:c0:4b:e7=504 (sanfran_hub)

A syncreplica –export command entered at boston_hub uses this matrix as follows to
generate an update destined for sanfran_hub:

1 At the boston_hub replica, the number of local operations is 950 (number in upper
left corner of matrix), and the estimate is that the sanfran_hub replica has
imported all operations through oplog ID 912 (number in lower left corner).

2 The update packet that the boston_hub replica sends to the sanfran_hub replica
includes boston_hub oplog entries 913-950. After the Boston administrator
invokes syncreplica –export, the sanfran_hub row is updated:

multitool lsepoch
For VOB replica "/vobs/dev":

Oplog IDs for row "boston_hub" (@ minuteman):

oid:87f6265f.72d911d4.a5cd.00:01:80:c0:4b:e7=950 (boston_hub)

oid:0eaa6fc3.737d11d4.adbe.00:01:80:c0:4b:e7=504 (sanfran_hub)

Oplog IDs for row "sanfran_hub" (@ goldengate):

oid:87f6265f.72d911d4.a5cd.00:01:80:c0:4b:e7=950 (boston_hub)

oid:0eaa6fc3.737d11d4.adbe.00:01:80:c0:4b:e7=504 (sanfran_hub)

Indirect Synchronization

If a family includes more than two replicas, synchronization can occur indirectly. A
replica can include nonlocal changes in update packets. For example, if the
boston_hub replica exchanges updates with the sanfran_hub and bangalore replicas,
it sends bangalore oplog entries that it has received previously from sanfran_hub.
These entries may or may not bring replica bangalore up to date on sanfran_hub’s

boston_hub’s estimate of
sanfran_hub’s state

912 504

Table 3 Two-Row Epoch Number Matrix at Replica boston_hub

Operations originated
at boston_hub

Operations originated
at sanfran_hub
Chapter 2 - MultiSite Operation 27

changes. (An update sent from sanfran_hub to bangalore does bring bangalore up to
date.)

Note: If a replica does not receive packets directly from some replicas in its family, its
rows for those replicas may contain zeros. This is expected behavior.

Table 4 shows replica boston_hub’s epoch number matrix.

The contents of this matrix are reported by the lsepoch command:

multitool lsepoch
For VOB replica "/vobs/dev":
Oplog IDs for row "boston_hub" (@ minuteman):
oid:87f6265f.72d911d4.a5cd.00:01:80:c0:4b:e7=950 (boston_hub)
oid:7ag3b0bc.defa11d0.ba57.00:01:72:73:3c:94=653 (bangalore)
oid:0eaa6fc3.737d11d4.adbe.00:01:80:c0:4b:e7=504 (sanfran_hub)

Oplog IDs for row "bangalore" (@ ramohalli):
oid:87f6265f.72d911d4.a5cd.00:01:80:c0:4b:e7=709 (boston_hub)
oid:7ag3b0bc.defa11d0.ba57.00:01:72:73:3c:94=653 (bangalore)
oid:0eaa6fc3.737d11d4.adbe.00:01:80:c0:4b:e7=221 (sanfran_hub)

Oplog IDs for row "sanfran_hub" (@ goldengate):
oid:87f6265f.72d911d4.a5cd.00:01:80:c0:4b:e7=912 (boston_hub)
oid:7ag3b0bc.defa11d0.ba57.00:01:72:73:3c:94=653 (bangalore)
oid:0eaa6fc3.737d11d4.adbe.00:01:80:c0:4b:e7=504 (sanfran_hub)

A syncreplica –export command at the Boston site uses this matrix to export an update
for the bangalore replica:

1 At the boston_hub replica, there are 950 local operations (number in upper left
corner of matrix), and the estimate is that the bangalore replica has imported all
operations through oplog ID 709 (lower left corner).

2 For operations that originated at the sanfran_hub replica, boston_hub has
imported all operations up to oplog ID 504 and estimates that bangalore has
imported all operations through oplog ID 221.

Table 4 Three-Row Epoch Number Matrix at Replica boston_hub

Operations
originated at
boston_hub

Operations
originated at
bangalore

Operations
originated at
sanfran_hub

boston_hub’s record
of its own state

950 653 504

boston_hub’s estimate
of sanfran_hub’s state

912 653 504

boston_hub’s estimate
of bangalore’s state

709 653 221
28 Administrator’s Guide: Rational ClearCase MultiSite

3 The update packet that boston_hub sends to bangalore includes boston_hub
operations 710-950 and sanfran_hub operations 222-504. The output of an lsepoch
command at the boston_hub replica now looks like this:

multitool lsepoch
For VOB replica "/vobs/dev":

Oplog IDs for row "boston_hub" (@ minuteman):

oid:87f6265f.72d911d4.a5cd.00:01:80:c0:4b:e7=950 (boston_hub)

oid:7ag3b0bc.defa11d0.ba57.00:01:72:73:3c:94=653 (bangalore)

oid:0eaa6fc3.737d11d4.adbe.00:01:80:c0:4b:e7=504 (sanfran_hub)

Oplog IDs for row "bangalore" (@ sushi):

oid:87f6265f.72d911d4.a5cd.00:01:80:c0:4b:e7=950 (boston_hub)

oid:7ag3b0bc.defa11d0.ba57.00:01:72:73:3c:94=653 (bangalore)

oid:0eaa6fc3.737d11d4.adbe.00:01:80:c0:4b:e7=504 (sanfran_hub)

Oplog IDs for row "sanfran_hub" (@ goldengate):

oid:87f6265f.72d911d4.a5cd.00:01:80:c0:4b:e7=912 (boston_hub)

oid:7ag3b0bc.defa11d0.ba57.00:01:72:73:3c:94=653 (bangalore)

oid:0eaa6fc3.737d11d4.adbe.00:01:80:c0:4b:e7=504 (sanfran_hub)
Chapter 2 - MultiSite Operation 29

30 Administrator’s Guide: Rational ClearCase MultiSite

3Planning a MultiSite
Implementation
Before you install and use Rational ClearCase MultiSite, you need to plan your
implementation. The plan should include the following items:

■ MultiSite installation

■ MultiSite licensing

■ ClearCase use model

■ MultiSite use model

■ Responsibilities of MultiSite administrators

This chapter describes these issues in more detail. We recommend that you document
your plan and implement your design decisions in a set of test replicas before changing
your development environment.

MultiSite Installation

For MultiSite installation instructions, see the Installation Guide.

You must install MultiSite on all VOB server hosts where replicated VOBs will reside;
replica creation and synchronization imports must occur on the host where the replica
resides. You do not need to install MultiSite on your computer to manage mastership,
because the MultiSite object mastership commands are available in cleartool.
However, you may want to install MultiSite on your computer so you have convenient
access to other MultiSite commands. You do not need to install MultiSite on ClearCase
client hosts or on server hosts that will not host replicated VOBs.

Each host where replicas will reside or where the shipping server will be used must
have enough disk space for the MultiSite storage bay directories. The storage bays hold
MultiSite packets, along with their corresponding shipping order files. Table 5
describes the amount of available disk space needed on the disk partition where the
storage bay is located.
31

There is no formula for determining how large your update packets will be. The
general rule is that synchronizing more frequently usually results in smaller packets.
Yet even if you synchronize every hour, a large amount of development activity or
release activity can occur in an hour and a large packet will be generated. If you are not
sure that the available disk space can accommodate an unexpectedly large packet, you
can configure MultiSite to limit the size of an update packet. For more information, see
the syncreplica and sync_export_list reference pages.

For more information about specifying storage bays, see the shipping.conf (UNIX)
and MultiSite Control Panel (Windows) reference pages.

MultiSite Licensing

A MultiSite license is required for any access to an object in a replica—by a MultiSite
command or GUI, by a ClearCase command or GUI, or by a standard operating system
command. You can calculate the number of MultiSite licenses you need by determining
how many developers will access replicated VOBs. If all developers will access these
VOBs, you need the same number of MultiSite licenses as ClearCase licenses. If some
developers will not access replicated VOBs, you can purchase fewer MultiSite licenses.

For example, a company has two sites, with 20 developers at site A and 5 developers
at site B. The company has three VOBs at site A; two will be replicated to site B and one
will not be replicated. Five developers at site A will access only the unreplicated VOB,
and the other 15 will work in all VOBs. Therefore, the company needs to purchase the
following numbers of licenses:

Table 5 Disk Space Needed for Storage Bay

Type of packet Disk space needed

Replica-creation Size of VOB database and VOB source pools.

Update On Windows, twice the size of the largest packet to be
stored in the bay. The reason is that there may be two
instances of the same packet in the bay at one time: one
on its way to another destination, and another waiting
to be applied to the replica on the current host.

On UNIX, size of largest packet to be stored in the bay.
32 Administrator’s Guide: Rational ClearCase MultiSite

Note: This example assumes that you purchase one ClearCase license for each
developer. If you have fewer ClearCase licenses than developers, you can purchase a
proportionate number of MultiSite licenses. For example, if the company purchased
three ClearCase licenses for site B, it would also purchase three MultiSite licenses for
site B.

For more information about acquiring and setting up licenses, see the Installation Guide
for the ClearCase Product Family.

Shipping Server Use with ClearCase and ClearQuest

If you use both Rational ClearCase MultiSite and Rational ClearQuest MultiSite, you
use the same shipping server for both products. The shipping server is installed when
you install ClearCase MultiSite.

Note: If you use ClearQuest MultiSite and ClearCase, or ClearQuest MultiSite alone,
you must install the shipping server. For more information, see the installation
information for Rational ClearQuest.

The following restrictions apply when you use both ClearCase MultiSite and
ClearQuest MultiSite:

■ You must use different storage classes for VOB replica packets and ClearQuest
database replica packets. You can create multiple storage classes and use the
–sclass option to specify a particular class. If you do not use the –sclass option, the
default class is used:

❑ For ClearCase MultiSite, the default storage class is –default. It is created when
you install ClearCase MultiSite.

❑ For ClearQuest MultiSite, the default storage class for multiutil commands that
use the –sclass option is cq_default. The shipping_server and mkorder
commands use –default as the default class.

The cq_default class is not created during installation. If you plan to use this
class, you must create the class and its shipping and return bays. For more

Site Number of ClearCase licenses Number of MultiSite licenses

A 20 15

B 5 5
Chapter 3 - Planning a MultiSite Implementation 33

information, see the shipping.conf (UNIX) and MultiSite Control Panel
(Windows) reference pages.

If you do not create the cq_default storage class, you must create another class
for use with ClearQuest MultiSite, and use the –sclass option in multiutil
commands to specify that storage class. If the cq_default storage class does not
exist and you do not specify the –sclass option in a multiutil command, the
packet is placed in the storage bay associated with the –default class, which can
cause problems at the importing site.

■ You must use different bays for ClearQuest MultiSite storage classes and
ClearCase MultiSite storage classes.

■ If you uninstall one product, the other one may stop working. You must uninstall
both products and then reinstall the one you want to continue using.

We recommend that you follow these guidelines when you use both ClearCase
MultiSite and ClearQuest MultiSite:

■ When you export a packet for a ClearQuest replica, use the –sclass option and
specify a storage class.

■ Enable e-mail notification for shipping server operations and specify an address to
use only for messages originating from ClearQuest MultiSite operations. For more
information, see the control_panel reference page in the Administrator’s Guide for
Rational ClearQuest MultiSite.

ClearCase Use Model

Before development work is started in any VOB, the project manager and
administrator must define the ClearCase use model. For example, the project manager
must specify the branches, labels, and triggers that are used for development and
integration work. The following sections describe the ways in which MultiSite use
affects this planning.

Branching and Mastership

Mastership restrictions affect the choices you make about branching and merging:

■ A common branching strategy is to use a single release branch (or integration
branch) and multiple development branches. The project manager or developer
merges changes from the development branch to the integration branch. You can
use this strategy with MultiSite, but the merges to the integration branch must
occur at the replica that masters the integration branch.
34 Administrator’s Guide: Rational ClearCase MultiSite

Another approach is to use a single release integration branch, multiple site
integration branches, and multiple developer branches. Developers or project
managers at a replica merge to the site integration branch, and the project manager
at the replica that masters the release integration branch merges to that branch
from the site integration branches.

You may need to allow developers to transfer and request mastership of branches
and branch types. Developers at different sites may have to use the same branch
type (for example, because an element’s versions can’t be merged, or because each
site must merge its own work to the integration branch). A branch or branch type’s
mastership cannot be shared by multiple replicas; instead, there are two models
for transferring mastership between replicas:

Model 1. Create a schedule that determines when each replica masters the branch
or branch type. Create scripts to transfer mastership.

Model 2. Give the developers at the sites the ability to request mastership of the
branch or branch type. For more information about this model, see Chapter 11,
Implementing Requests for Mastership.

Note: Do not use mastership transfer models as substitutes for good branching and
merging rules. Enabling requests for mastership involves more planning and
setup than implementing a strategy for branching and merging. Also, if you can
develop in parallel, planned branching and merging is safer than allowing
developers to request mastership and merge their own work randomly.

■ You can use auto-make-branch rules in config specs only if the current replica
masters the branch type in the rule. For example, if your current replica masters
the v1.0_bugfix branch type but not the v1.0 branch type, this config spec is
incorrect because the v1.0 branch cannot be created at this replica:

element * CHECKEDOUT

element * .../v1.0_bugfix/LATEST

element * .../v1.0/LATEST -mkbranch v1.0_bugfix

element * /main/0 -mkbranch v1.0

■ By default, when you create an element in a replicated VOB, mastership of the
branch main is assigned to the replica that masters the branch type main. If this
replica is not your current replica, you cannot create new versions on the main
branch. Also, if your config spec contains mkbranch rules and your current replica
does not master the branch types, the branches cannot be created during element
creation.

You can assign mastership of a new element’s main branch and other branches
created during element creation to your current replica. For more information, see
Assigning Branch Mastership During Element Creation on page 128.
Chapter 3 - Planning a MultiSite Implementation 35

Use of Attributes, Labels, and Hyperlinks

Mastership restrictions affect the way you use ClearCase attributes, labels, and
hyperlinks. You need to decide whether these types must be shared. You can create
instances of an unshared type only in the replica that masters it. You can create
instances of a shared type only in the replica that masters the object to which you are
attaching the instance, with additional restrictions if you are using global types. For
more information, see Type Object Mastership on page 16.

Use of Triggers

Trigger types and triggers are not replicated. If a trigger is in use at one replica and
needs to be used at other replicas, you must send the appropriate information (for
example, the output of a describe trtype: command and the contents of any associated
scripts) to the administrators at the other sites.

Use of Multiple Replicas of the Same VOB at a Site

It is important to prevent two or more replicas of the same VOB from being mounted
on the same host—one host can belong to only one region and each region can contain
only one replica. Do not assign public VOB tags in the same ClearCase registry region
to multiple replicas of the same VOB.

For information about how VOBs and VOB replicas are listed in the ClearCase storage
registry, see VOB Objects and VOB Replica Objects on page 8. For information about
using multiple replicas at one site, see Chapter 12, Using MultiSite for VOB Backup and
Interoperability.

Text Mode for Replicas

When you create a new replica, it has the same text mode as the replica from which it
was exported. However, changes to a replica’s text mode are not propagated to the
other replicas in the family; so if you make a text mode change that needs to occur at
all replicas in the family, you and the other MultiSite administrators must change the
text mode at each replica. For more information about text modes, see the
Administrator’s Guide for Rational ClearCase.

Use of Administrative VOBs

If replicated VOBs use global types, the administrative VOBs must be replicated. For
more information about global types, see the Administrator’s Guide for Rational
ClearCase.
36 Administrator’s Guide: Rational ClearCase MultiSite

Additional mastership restrictions exist when you use an administrative VOB
hierarchy and its global types. If a global type is shared, you can create instances of the
type in a replica only if one of the following conditions exists:

■ The replica contains a local copy of the type.

■ The replica does not contain a local copy of the type, but the type is mastered by
the administrative VOB replica at the current site. (If the type is not mastered by
the administrative VOB replica, a local copy of the type cannot be created in the
replica.)

These restrictions apply even if your current replica masters the object to which you
are attaching the instance. These restrictions prevent conflicting, simultaneous creation
of a given type with a given name at multiple sites.

Use of UCM

When you use ClearCase UCM and MultiSite, some developer and project manager
tasks are different. A project’s integration stream is mastered by one of the replicas in
the VOB family, and developers at other replicas must do a remote deliver of their
work to the stream. The project manager at the master replica completes the deliver
operations. The Developing Software and Managing Software Projects manuals describe
this scenario in more detail.

The following restrictions apply to use of UCM and MultiSite:

■ You cannot request mastership of branches or branch types that are associated
with streams.

■ If you replicate a UCM component, you must replicate its associated UCM project
VOB (PVOB).

■ You must synchronize a UCM component and its associated PVOB at the same
time.

■ UCM projects enabled for ClearQuest can be replicated and synchronized. In
addition to using ClearCase MultiSite to replicate and synchronize UCM project
and component VOBs, you can use ClearQuest MultiSite to replicate and
synchronize associated ClearQuest user databases. You must synchronize a UCM
PVOB and its associated ClearQuest user database at the same time.

MultiSite Use Model

The following sections describe the different aspects of your MultiSite use model.
Chapter 3 - Planning a MultiSite Implementation 37

Type of Administration

You must decide how much control the individual sites will have over their replicas.
Your choices are centralized administration, individual administration, or some
combination of the two.

■ With centralized administration, there is a hub site. For each family, all its replicas
are mastered by a replica at the hub site. Administrators at the hub site maintain
all replicas and all synchronization patterns and schedules. These administrators
have permission to access the replica servers at all sites.

Advantages of this scheme:

❑ Your company does not have to hire a MultiSite administrator for each site.

❑ It is easier to ensure that schedules do not conflict.

Disadvantages:

❑ Some administrative procedures require a replica to be self-mastering.

❑ If ClearCase administration is done at a local level, the MultiSite administrators
must have knowledge of all local administrative procedures (for example,
backups and server maintenance).

❑ Remote access to all sites is required.

■ With individual administration, each replica is self-mastering and there is an
administrator at each site. Administrators are responsible for creating and
maintaining replicas, synchronization patterns, and synchronization schedules at
their sites.

Advantages of this scheme:

❑ No mastership changes are required when an administrator needs to change
replica properties.

❑ Administrators can ensure that MultiSite administrative procedures do not
conflict with ClearCase administration.

Disadvantages:

❑ A MultiSite administrator is needed at each site.

❑ Communication among administrators can be difficult if the company has sites
in multiple time zones.

You can also have semi-centralized administration. For example, sites with major
development efforts have local MultiSite administrators, and responsibility for
administering smaller sites is distributed among the MultiSite administrators.
38 Administrator’s Guide: Rational ClearCase MultiSite

MultiSite, Time, and Time Zones

In MultiSite, time stamps are stored in Universal Coordinated Time (UTC) and are
printed to reflect the local time. For example, if a developer in Bangalore, India, checks
in a version at 14:33 Bangalore time, the creation time is stored as 09:03UTC. When a
developer in San Francisco looks at the version, the time is displayed as 01:03 San
Francisco time.

When you automate synchronization, you must adjust schedules for time zone
differences. For an example, see Synchronization Schedule on page 50.

Time Rules in Config Specs

Time rules in config specs are not absolute. The version selected by a time rule can
change after an update packet is imported at your replica. For example, your config
spec has the following time rule, which selects the latest version on the main branch as
of July 10 at 7:00 P.M.:

element /vobs/dev/plan.txt /main/LATEST –time 10-Jul.19:00

When you put this rule in the config spec, the latest version on the main branch was
17. However, a developer at another replica created version 18 on July 10 at 6:00 P.M.
your time, but this change has not been propagated to your replica. After the update
packet that contains the change is imported at your replica, your time rule selects
version 18.

Mastership Strategy

The choices you make for your ClearCase use model and MultiSite administration
model determine your mastership strategy. Your plan should state which replicas will
master branch types, label types, elements, and other objects. After you create the
replicas in the family, you can change mastership of objects. For more information, see
Enabling Independent Development: Mastership on page 5 and Changing Mastership of VOB
Objects on page 130.

Identities and Permissions Strategy for VOB Replicas

When you import a replica-creation packet, you must specify a preservation mode for
the new replica. A replica can preserve identities and permissions, preserve
permissions only, or preserve neither identities nor permissions. In most cases, your
replicas must be permissions preserving or nonpreserving.

The following sections describe the three modes.
Chapter 3 - Planning a MultiSite Implementation 39

Identities- and Permissions-Preserving Replicas

Identities- and permissions-preserving replicas maintain the same user and group
identities and permissions on elements, and changes to identities or permissions are
synchronized among them. The owner and group of the original VOB are not
preserved; the user who enters the mkreplica –import command becomes the owner
of the new VOB. That user’s group is the primary group of the VOB, and the user’s
group list becomes the VOB’s group list. The user must be a member of all the groups
that are used for elements in the replica.

To create a replica that preserves identities and permissions, you should run mkreplica
–export at an identities- and permissions-preserving replica.

Note: You may need to run cleartool protectvob on the new VOB replica to ensure that
the owner, group, and group list of the new VOB match the values in the other
identities- and permissions-preserving replicas in the VOB family. Make sure that you
update the VOB owner’s group list. When you run mkreplica –import, you may want
to run the command as the VOB owner of the other identities- and
permissions-preserving replicas in the family. If the VOB owner account has the same
group list at the exporting and importing sites, you do not need to run protectvob.

Permissions-Preserving Replicas

Permissions-preserving replicas maintain the same permissions on elements, and
changes to permissions are synchronized among the other replicas in the family that
preserve permissions, including those that preserve both identities and permissions.

Read, write, and execute permissions for user, group, and other are preserved. The
set-UID bit, set-GID bit, and sticky bit are not preserved.

Caution: If you need to restrict read or execute permissions to certain subgroups, we
recommend that you do not use permissions-preserving replicas. It is possible for a
malicious user at one site to change the permissions on an element in order to grant
read access to a user at another site who is not the element owner or in the element’s
group. If you choose to use permissions-preserving replicas, you may want to define a
trigger that informs you when a cleartool protect command is run. Also, when you run
mkreplica –import and create a permissions-preserving replica, make sure that your
primary group is appropriate.

In order for you to change a replica to be permissions preserving or to create a new
permissions-preserving replica, the VOB family feature level of the replica must be 4.
Also, the cleartool protect command fails if you use the –chmod option, specify an
object in a permissions-preserving replica, and your client host is running a version of
ClearCase associated with feature level 3 or lower.
40 Administrator’s Guide: Rational ClearCase MultiSite

Permissions-preserving replicas ignore changes to identities made at other replicas
and maintain their own identities information for elements. For
permissions-preserving replicas:

■ The user who enters the mkreplica –import command becomes the owner of the
new VOB and of all elements in it. When you import an update packet containing
oplogs for new elements, the VOB owner becomes the owner of the new elements.

■ The primary group of the user who enters the mkreplica –import command
becomes the VOB’s primary group and the group for all elements. When you
import an update packet containing oplogs for new elements, the VOB’s primary
group is the group for the new elements.

■ Changes to identities are not propagated to other replicas. Identities changes made
at replicas that preserve identities are ignored at permissions-preserving replicas.

To create a replica that preserves permissions, you should run mkreplica –export at an
identities- and permissions-preserving replica or a permissions-preserving replica.

Nonpreserving Replicas

Nonpreserving replicas ignore identities and permissions changes made at other
replicas and maintain their own identities and permissions information for elements.
For nonpreserving replicas:

■ The user who enters the mkreplica –import command becomes the owner of the
new VOB and of all elements in it. When you import an update packet containing
oplogs for new elements, the VOB owner becomes the owner of the new elements.

■ The primary group of the user who enters the mkreplica –import command
becomes the VOB’s primary group and the group for all elements. When you
import an update packet containing oplogs for new elements, the VOB’s primary
group is the group for the new elements.

■ The initial permissions of the elements are the same as their values in the replica at
which the mkreplica –export or syncreplica –export command is entered.

■ Changes to identities and permissions are not propagated to other replicas.
Changes made at replicas that preserve identities and permissions or permissions
only are ignored at nonpreserving replicas.

Synchronization of Identities and Permissions Information

When an update packet is imported at a permissions-preserving replica, identities
information is ignored. When an update packet is imported at a nonpreserving replica,
identities and permissions information is ignored. At both kinds of replicas, the
Chapter 3 - Planning a MultiSite Implementation 41

information remains in the oplog entries so that it can be transmitted to replicas that
preserve identities and permissions or permissions only. For example:

1 A new element is created at replica A, which preserves identities and permissions.

2 Replica A sends an update packet to replica B, which is nonpreserving.

3 The new element is created at replica B. Its owner is the VOB owner of replica B
and its group is the VOB’s primary group.

4 Replica B sends an update packet to replica C, which preserves identities and
permissions.

5 The new element is created at replica C. Its owner is the original creator and its
group is the original creator’s group.

Elements created at a nonpreserving or permissions-preserving replica always get the
importing VOB’s owner and group when they are imported, regardless of whether the
importing replica preserves identities.

Requirements for Replicas That Preserve Identities and
Permissions

The sites of replicas that preserve both identities and permissions must support the
same set of user and group accounts (at least for the accounts that can be assigned to
VOB elements). The user and group names and numerical IDs must be the same across
sites. For example, on UNIX, the sites must share the same NIS map. On Windows, the
replicas must be in the same Windows domain.

On UNIX, you can maintain separate but identical user/group databases across
domains. On Windows, ownership modes (UIDs and GIDs) are not consistent across
domains.

Therefore, the entire set of replicas cannot preserve identities in either of the following
cases:

■ All replicas in a VOB family are not in the same Windows domain.

■ Some replicas in a VOB family are located on UNIX machines, and others are
located on Windows machines.

You can preserve identities in a subset of replicas in a VOB family. For example:

■ A VOB family consists of the replicas bangalore and tokyo, hosted on Windows,
and the replicas boston_hub, sanfran_hub, buenosaires, and sydney, hosted on
UNIX. The VOB hosts for boston_hub and sanfran_hub are in domains that have
the same user/group databases, so boston_hub and sanfran_hub are created as
identities-preserving replicas.
42 Administrator’s Guide: Rational ClearCase MultiSite

■ A VOB family consists of five replicas on Windows: seattle, aloha, troy, boston,
and boston_backup. All replicas except boston and boston_backup are located in
different Windows domains. The replica boston_backup is used as a backup
replica for boston, and the hosts for these replicas are in the same Windows
domain (but registered on two different ClearCase registry hosts). boston and
boston_backup are created as identities-preserving replicas.

Note: There can be only one subset of identities- and permissions-preserving replicas
in a VOB family, even if some replicas do not exchange update packets with all other
replicas in the family.

Gathering Identities Information

If you plan to create one or more identities- and permissions-preserving VOB replicas,
follow these steps:

1 At the exporting site, gather the current VOB owner and group information and
send it along with the packets created by mkreplica –export.

a Get the name of the VOB owner and VOB groups, using the cleartool describe
command on the VOB object. In this example, the owner is ccadm and the
group is user:

b Translate the symbolic names to numbers.

On UNIX, as the VOB owner, issue the id command. For example:

On Windows, as the VOB owner, issue the ccase-home-dir\etc\utils\creds
command. For example:

cleartool describe vob:/vobs/dev
versioned object base "/vobs/dev"

created 15-Aug-00.14:19:03 by CC Admin (ccadm.user@minuteman)
VOB family feature level: 1
VOB storage host:pathname "minuteman:/vobstg/dev.vbs"
VOB storage global pathname "/net/minuteman/vobstg/dev.vbs"
database schema version: 53
VOB ownership:

owner purpledoc.com/ccadm
group purpledoc.com/user

su ccadm
Password: xxxxxx
id
uid=1083(ccadm) gid=20(user)

C:\> "Program Files\Rational\ClearCase\etc\utils\creds"
Chapter 3 - Planning a MultiSite Implementation 43

2 At each importing site, ensure that the importing user’s user ID, primary group,
and secondary groups match the information from the exporting site, in name and
number.

If they do not match, you must modify the user and group information to prevent
import failures due to permissions problems. (These kinds of import failures are
described in Preservation Mode on page 194.)

If the names are the same and the numbers are different, you must create
nonpreserving or permissions-preserving replicas.

Running protectvob on Identities-Preserving Replicas

If you run protectvob on a VOB replica that preserves identities, you must follow these
steps to prevent metadata divergence or synchronization problems among replicas in
the VOB family:

1 Stop synchronization among identities-preserving replicas in the family. Make
sure that all update packets have been imported.

2 Run the protectvob command on all identities-preserving VOB replicas in the
family. You must use the same options and arguments in each command.

3 Restart synchronization.

If you do not change the owner or group at all identities-preserving VOB replicas at the
same time, metadata divergence can occur for the owner or group of new elements
created at nonpreserving replicas. When the oplog entry for the new element is
imported at an identities-preserving replica, the element’s owner or group is the owner
or group of the VOB at the time the entry is imported. If a change to the VOB owner or
group has been made at other identities-preserving replicas, the element’s owner or
group will be different at the different replicas.

If you do not add a group to all identities-preserving VOB replicas at the same time,
synchronization failures can occur for elements with the new group. The failures occur
during import at the replicas where the group was not added.

When you remove a group from the group list of a VOB replica, the group cannot be
used for new elements created in the VOB, but existing elements with that group are
not changed. (To find these elements, use the find command with the –group option.)
If you do not remove the group from all identities-preserving replicas at the same time,
synchronization import failures can occur for new elements created with the deleted
group. (You can fix the synchronization failure by running protectvob –add_group on
the importing VOB replica.) An alternative to using protectvob –delete_group is to
leave the group in the VOB’s group list and create a trigger that checks the primary
44 Administrator’s Guide: Rational ClearCase MultiSite

group of the user and prevents creation of the element if the user’s primary group is
one of the obsolete groups.

Synchronization Transport Method

There are several methods for transporting update and replica-creation packets. The
method you choose depends on how your sites are connected, how quickly you must
transfer packets, and how important security is. For more information, see Chapter 5,
Choosing a Transport Method.

Synchronization Pattern

The synchronization pattern for a family defines which replicas exchange update
packets and the direction of exchange. Figure 1 on page 4 shows a simple
synchronization pattern, involving one point-to-point update. All updates need not be
point to point, however, because they are cumulative. Suppose that the following
updates take place among three replicas:

Update 1: Replica 1 sends changes to Replica 2
Update 2: Replica 2 sends changes to Replica 3

There is no need for Replica 1 to update Replica 3 directly, because the changes from
Update 1 are included in Update 2. This feature gives you flexibility in devising update
strategies and patterns. For efficiency, a single update can be targeted at multiple
replicas, for example, all other replicas in a family.

In general, you can implement any update topology, as dictated by organizational
structures, communications/transportation costs, and so on. Figure 8 shows a simple
peer-to-peer synchronization pattern, and Figure 9 shows a double-hub hierarchical
pattern.
Chapter 3 - Planning a MultiSite Implementation 45

Figure 8 Peer-to-Peer Synchronization Pattern

Figure 9 Hierarchical Synchronization Pattern

Your choice of pattern depends on the following factors:

■ Bandwidth between sites

■ Network topology

■ Latency of changes: how quickly changes made at one replica need to be received
at another replica in the family

■ Failure tolerance

The following sections describe unidirectional and bidirectional exchanges and the
most common synchronization patterns.

Boston

San Francisco

Bangalore

Tokyo

Buenos Aires

Bangalore

Boston

San Francisco

Sydney
46 Administrator’s Guide: Rational ClearCase MultiSite

Directions of Exchange

Synchronization can be unidirectional or bidirectional, as shown in Figure 10.

Figure 10 Unidirectional and Bidirectional Updating

In most cases, you will use bidirectional synchronization. Unidirectional
synchronization is suitable in situations like these:

■ You use a replica as a backup.

■ Your company supplies information to another site (or company) for read-only
use.

■ A high-security development project uses the same data as a more open project. In
this case, the open project sends updates to the high-security project, but no
updates are sent in the other direction.

Unidirectional updates carry some risk. For example, an accidental change of
mastership cannot be fixed, and restoring from a replica that does not exchange
updates directly with the broken replica involves extra work. Also, you must ensure
that no work is done accidentally in a read-only replica; you can do this by creating
triggers or locking the VOB.

One-to-One and Ring Synchronization

Figure 11 One-to-One Synchronization Pattern

R1 R2 R3

R1 R2 R3

Unidirectional

Bidirectional
Chapter 3 - Planning a MultiSite Implementation 47

Figure 12 Ring Synchronization Pattern

The one-to-one and ring (or round-robin) patterns in Figure 11 and Figure 12 are
simple patterns that are most suitable for small numbers of replicas. As the number of
replicas increases, so does the amount of time for changes originating at one replica to
be received at a replica at the other side of the ring.

One-to-Many Synchronization

Figure 13 Single-Hub Synchronization Pattern

Figure 14 Multiple-Hub Synchronization Pattern
48 Administrator’s Guide: Rational ClearCase MultiSite

Figure 15 Tree Synchronization Pattern

In the hub patterns (Figure 13 and Figure 14), the hub replicas exchange packets with
all spoke replicas. In the tree pattern (Figure 15), the root replicas exchange packets
with branch replicas.

Advantages:

■ More efficient for the spoke and branch replicas, which send to and receive from
only one other replica.

Disadvantages:

■ If the hub or root site goes down, all spoke/branch sites must reconfigure their
pattern to continue communication.

■ If you change the synchronization pattern so that replicas that did not synchronize
directly now exchange packets, the first packets that are generated may be too
large for the system. To avoid this problem in VOB replica families, you can run
chepoch –actual regularly among the spoke or branch replicas. For more
information, see the chepoch and sync_export_list reference pages.
Chapter 3 - Planning a MultiSite Implementation 49

Many-to-Many Synchronization

Figure 16 Many-to-Many Synchronization Pattern

In the many-to-many synchronization pattern (Figure 16), each replica exchanges
packets with all other replicas

Advantages:

■ For companies with few sites, this pattern keeps each replica’s epoch table the
most accurate for all siblings.

■ If one site is unavailable, the other sites do not have to change their patterns to
continue synchronizing.

Disadvantages:

■ Each administrator must maintain more synchronization jobs and spend more
time keeping track of packets.

Synchronization Schedule

The synchronization schedule for a family defines when replicas in the family send and
receive updates. The schedule is affected by many factors, including the rate of
development at different sites, the connections among sites, and whether you use
MultiSite as a backup strategy.

Consider the following issues when planning your synchronization strategy:

■ Rate of development

If you schedule synchronizations frequently, you lose less work if a replica is
deleted accidentally and you must restore it from backup. Also, merging is simpler
because fewer changes have been made.

Make sure that synchronizations do not overlap with backups. VOBs must be
locked while they are being backed up, and the syncreplica command fails if the
VOB is locked.

■ Time zone differences
50 Administrator’s Guide: Rational ClearCase MultiSite

Take different time zones into account when you send an update or set up
automated updates. Figure 17 illustrates synchronization among replicas in
multiple time zones.

■ Use of administrative VOBs

Because local type objects in VOBs are linked to global type objects in the
administrative VOB, we recommend that you synchronize VOBs and their
administrative VOB at the same time.

For example, at the Boston site, the VOB /vobs/dev is linked to administrative VOB
/vobs/admin, and both VOBs are replicated to San Francisco and Bangalore. You
export update packets to replicas sanfran_hub@/vobs/dev and
sanfran_hub@/vobs/admin at 11:00 P.M. local time and export update packets to
replicas bangalore@/vobs/dev and bangalore@/vobs/admin at 5:00 A.M. local
time. The administrator at San Francisco imports both packets at the same time, as
does the administrator at Bangalore.

If you do not synchronize VOBs and their administrative VOBs at the same time,
users may have trouble accessing type objects.

■ Use of ClearCase UCM

We recommend that you synchronize a component VOB and its PVOB at the same
time. If you do not, users may have trouble accessing baselines and activities and
the versions associated with those objects.

For example, the administrators for the family in Figure 9 make the following
decisions:

■ The hub replicas, which undergo rapid development, synchronize every hour.

■ Each hub replica synchronizes daily with its spoke replicas. Each spoke replica
sends an update packet to the hub replica, and then the hub replica sends update
packets back to the spoke replicas. Because these packets may be large and take a
long time to import, the synchronization must not take place during working
hours or during backups.

■ All replica hosts use receipt handlers to import packets as soon as they are
received.

Figure 17 shows the synchronization timeline for the hub-spoke updates (but not the
hourly hub-to-hub updates). This timeline accounts for time zone differences and
includes extra time to make sure that each synchronization phase completes before
another begins.
Chapter 3 - Planning a MultiSite Implementation 51

Figure 17 A Synchronization Schedule

Use of MultiSite for VOB Backups

You can use MultiSite as part of your VOB backup strategy. For more information, see
Chapter 12, Using MultiSite for VOB Backup and Interoperability.

Scrubbing Parameters for Replicas

When a command makes a change to a replica, an entry is recorded in the replica’s
operation log. For more information about this mechanism, see The Operation Log on

GMT 21:00 00:00 03:00 06:00 09:00 12:00

Monday Tuesday

Bangalore
GMT +5:30

Buenos Aires
GMT -3

Boston
GMT -5

San Francisco
GMT -8

Tokyo
GMT +9

Sydney
GMT +10

= work hours
 backup hours

= Export

= Import

Key
52 Administrator’s Guide: Rational ClearCase MultiSite

page 22. Also, when you export an update packet, an export_sync record is created for
each target replica. These records are used by the recoverpacket command to reset a
replica’s epoch number matrix.

You can scrub oplog entries and export_sync records to reclaim disk space and
database records, but you must keep them long enough to ensure that you can recover
from replica failures and packet losses. The following sections give guidelines for
configuring scrubbing frequency.

For more information about VOB scrubbing, see the vob_scrubber reference page.

Oplog Scrubbing

Oplog entries must be kept for a significant period of time. They are required when the
replica generates update packets. Oplog entries also may be required to help other
replicas recover from catastrophic failures. If no replica can supply these entries, the
replica being restored must be re-created. (See Restoring a Replica from Backup on
page 199.) Because of the need to use oplog entries during synchronization, your
synchronization strategy determines how often oplogs can be scrubbed.

By default, an oplog entry is never scrubbed. Do not change this setting until you
establish the synchronization pattern in the family and verify that packets are being
exported and imported successfully.

When it is safe to delete oplog entries for a replica:

1 Coordinate with other administrators to decide how long you must keep oplog
entries.

Each replica must keep entries for as long as necessary to allow restorereplica
operations to complete successfully. The frequency with which you scrub oplog
entries depends on the following factors:

❑ The pattern of synchronization among replicas in the family

❑ How often the replicas are synchronized

Frequency of synchronization refers to both how often updates are exported and
how often they are imported at other replicas. Also, consider setting up a
verification scheme to ensure that packets are processed successfully at other
replicas before any oplog entries are scrubbed.

❑ How often you back up the replicas

For example, if a replica is backed up weekly at all sites and you want to be able
to restore to the backup from two weeks ago, each replica must keep three weeks
of oplog entries. If replicas synchronize weekly, you must assume that the
weekly packet hasn’t been sent to the other replica, and add another week.
Chapter 3 - Planning a MultiSite Implementation 53

Finally, for extra security, add another month. The result is a scrubbing time of
two months.

2 Create a scrubber parameter file specific to your VOB by copying
ccase-home-dir/config/vob/vob_scrubber_params (UNIX) or
ccase-home-dir\config\vob\vob_scrubber_params (Windows) to the VOB storage
directory of the replica.

3 Make this new file writable.

4 Edit the oplog line in this file. For example, to keep oplog entries for two months
(62 days):

oplog –keep 62

Caution: If a replica’s oplog entries are scrubbed before they are included in an update
packet, you cannot export update packets from the replica. This is a serious error and
compromises the integrity of the entire family.

export_sync Scrubbing

export_sync records are not necessary for normal synchronization operation. They are
different from export event records, which also record synchronization exports and are
included in output from the lshistory command and the History Browser.

export_sync records are date-based records used by the recoverpacket command to
reset a replica’s epoch number matrix. If you do not use this packet recovery method
(because you use chepoch –actual or lsepoch/chepoch), you can scrub these records
aggressively. If you use the recoverpacket command, you must keep export_sync
records for the number of days that elapse between backups. (See Recovering from Lost
Packets on page 190.)

By default, the vob_scrubber_params file has no entry for export_sync records, and
these records are scrubbed with the same frequency as oplog entries. If you want to
scrub export_sync records at a different frequency than oplog entries, you can set the
export_sync parameter in the vob_scrubber_params file. For more information, see
the vob_scrubber reference page.

Handling Pathnames That Contain Spaces

On Windows, if the pathname of a receipt handler or a shipping order contains spaces,
DOS “short name” resolution must be enabled for the file system on which the receipt
handler or shipping order is located. This property is enabled by default. If this
property is not enabled, the shipping server cannot invoke the receipt handler or
process the shipping order.
54 Administrator’s Guide: Rational ClearCase MultiSite

Responsibilities of MultiSite Administrators

A MultiSite administrator must do the following:

■ Help determine and implement the ClearCase and MultiSite use models

When a new project is set up, the administrator works with project managers to
determine which replicas master various objects. The administrator also changes
mastership when necessary, schedules merges, copies triggers from replica to
replica, and monitors label creation.

■ Monitor MultiSite replica creation and synchronization

Administrators must check the storage bays to make sure that packets are not
accumulating. Include the administrator’s e-mail address in the
ADMINISTRATOR entry in the shipping.conf file (UNIX) or in the MultiSite
Control Panel (Windows).

■ Monitor ClearCase and system log files

Error and status messages are written to the shipping_server_log file on UNIX
and the Event Viewer on Windows. For more information about error logs, see
Troubleshooting Tips on page 173.

■ Install new versions of ClearCase and MultiSite and new patches

Patches and information about new versions are available on the Rational
Software Web site. Install the mandatory and recommended patches for your
architecture.

Compatibility issues for versions of ClearCase and MultiSite are described in the
Installation Guide for the ClearCase Product Family.

■ Coordinate issues with all other MultiSite administrators

After initial setup and synchronization of replicas, administrators also must
coordinate recovery efforts, which may involve exchanges of update packets, and
changes of mastership, which require the administrator at the master replica to
transfer mastership to the replica that needs to master the objects.

We recommend that you create a representation of your MultiSite deployment and
record information about a family. Table 6 shows an example of information that
may be useful. You may also want to draw a picture of the family’s
synchronization pattern.
Chapter 3 - Planning a MultiSite Implementation 55

■ Ensure that replicas receive any necessary special handling

Restoring a replica from backup is a significant event. Failure to follow the
procedure described in the section Restoring a Replica from Backup on page 199 leads
to irreparable inconsistencies among the replicas in a family.

There are no special requirements for backing up a replica. Use the backup
instructions in the Administrator’s Guide for Rational ClearCase. Other ClearCase
administrative procedures require special steps for replicas. The procedures in the
Administrator’s Guide describe these steps.

Table 6 Family Information

Replica name Replica host Administrator
E-mail,
phone
number

Location
Time zone
offset

sanfran_hub goldengate John Cole jcole,
x1462

San
Francisco,
CA, USA

GMT-8

boston_hub minuteman Susan Goechs susan,
x3742

Boston,
MA, USA

GMT-5

tokyo shinjuku Masako Ito masako,
x7761

Tokyo,
Japan

GMT+9

sydney taronga Bruce Fife bfife,
x5080

Sydney,
Australia

GMT+10

bangalore ramohalli Sonia Kumar kumar,
x2347

Bangalore
, India

GMT+5:30

buenosaires mardelplata Juan Fangio fangio,
x4300

Buenos
Aires,
Argentina

GMT-3
56 Administrator’s Guide: Rational ClearCase MultiSite

4MultiSite Command
Set
This chapter summarizes the commands for Rational ClearCase MultiSite and Rational
ClearCase that display MultiSite information. Reference pages for the MultiSite
commands are available in Chapter 14, MultiSite Reference Pages, and are also available
online:

■ On UNIX, the MultiSite multitool man command displays MultiSite reference
pages in either ASCII or HTML format.

■ On Windows, the MultiSite multitool man command displays reference pages in
HTML format.

■ On both platforms, the MultiSite Help includes the MultiSite reference pages in
this manual.

Location of MultiSite Programs

The MultiSite installation places programs and configuration files in the ClearCase
installation area on a host. (ccase-home-dir refers to both the ClearCase and MultiSite
installation directory).

On UNIX, MultiSite programs are located in the ccase-home-dir/bin, ccase-home-dir/etc,
and ccase-home-dir/config/scheduler/tasks directories. On Windows, MultiSite programs
are located in ccase-home-dir\bin and ccase-home-dir\config\scheduler\tasks.

multitool Use

The multitool command is used to perform operations on VOB replicas. The command
has the following features:

■ It has a set of subcommands that perform product functions, such as replica
creation, synchronization, and management; mastership changes of objects; and
failure recovery.

■ Some subcommands and command options can be truncated, as indicated in the
reference pages.
57

■ You can use multitool in single-command mode. For example:

multitool lspacket

Also in interactive mode:

multitool
multitool> lspacket
multitool> quit

■ Commands and options are case sensitive and must be typed in lowercase.

■ The help command displays syntax summaries.

multitool help chreplica
Usage: chreplica [-c comment | -cfile pname | -cq | -cqe | -nc]

[-host hostname] [-preserve | -perms_preserve | -npreserve]

[-isconnected | -nconnected] replica-selector

■ The man command displays reference pages:

multitool man chreplica
...on Windows, the reference page is displayed in a Web browser

chreplica

==========

Changes the properties of a replica

APPLICABILITY

...

■ With the contents argument, the multitool man command displays the HTML
table of contents for the MultiSite Help system:

multitool man contents

Descriptions of Subcommands

The following sections describe the different kinds of multitool subcommands.

Replica Creation, Synchronization, and Management Commands

The commands in Table 7 create new replicas, change replica characteristics, and
synchronize replicas.
58 Administrator’s Guide: Rational ClearCase MultiSite

Object Mastership Commands

To avoid introducing conflicting changes at different replicas, certain objects are
assigned a master replica (master). The initial master of an object is the replica where
the object is created. For more information about mastership, see Enabling Independent
Development: Mastership on page 5. Table 8 lists the commands you can use to manage
mastership.

Failure Recovery Commands

Each replica uses an epoch number matrix to track its own state and the state of all
other replicas. (Because replicas are always changing, a replica knows what changes
have been made to itself, but it has only an estimate of the states of other replicas.) Each
time a replica sends an update packet, it updates its own epoch number matrix, under
the assumption that the packet will be delivered to its destinations and applied to the
appropriate replicas. For more information, see The Operation Log on page 22.

Use the failure-recovery commands in Table 9 when this assumption of successful
delivery does not hold true.

Table 7 Replica Creation, Synchronization, and Management Commands

Command Description

chreplica Changes the properties of a replica

lspacket Lists one or more packet files created by mkreplica or syncreplica

lsreplica Lists one or more replicas

mkreplica Creates a new replica

rmreplica Removes a replica

syncreplica Synchronizes a replica with one or more replicas in its family

Table 8 Object Mastership Commands

Command Description

chmaster Transfers mastership of an object

lsmaster Lists objects mastered by a replica

reqmaster Requests mastership or set access controls for mastership requests
Chapter 4 - MultiSite Command Set 59

multitool Utility Commands

The commands in Table 10 are also cleartool commands and are documented only in
the Command Reference, except for apropos, which is also documented in this manual.

Additional MultiSite Commands

The MultiSite commands that are not multitool subcommands are listed in Table 11.

Table 9 Failure-Recovery Commands

Command Description

chepoch Changes a replica’s epoch number matrix

lsepoch Lists a replica’s epoch number matrix

recoverpacket Resets a replica’s epoch number matrix so lost packets are resent
(required when a packet is lost or unusable)

restorereplica Restores a replica from backup. This command places a replica in a
special state, in which it sends epoch number matrix corrections to
other replicas. The replica cannot be used for normal development
work until it receives special updates that inform it of the current
states of other replicas.

Table 10 multitool Utility Commands

Command Description

apropos (UNIX) Displays multitool command information

cd Changes current working directory

describe Describes a replica’s VOB database object

help Displays multitool command syntax

man Displays a MultiSite reference page

pwd Prints working directory

quit Ends interactive multitool session

rename Renames a replica

shell Creates subprocess to run shell or program
60 Administrator’s Guide: Rational ClearCase MultiSite

ClearCase Commands Related to MultiSite

The ClearCase commands in Table 12 manage or display MultiSite information.

Table 11 Additional MultiSite Commands

Command
Location under
ccase-home-dir

Description

epoch_watchdog config/scheduler/tasks Checks whether a replica’s epoch
numbers have rolled back when the
replica is not in restoration mode; for
use in schedule commands

mkorder etc (UNIX)
bin (Windows)

Creates shipping order for use by
store-and-forward

notify bin Mail program for store-and-forward

shipping_server etc (UNIX)
bin (Windows)

Store-and-forward packet transport
server

sync_export_list config/scheduler/tasks Replica-update script using
store-and-forward; for use in schedule
commands

sync_receive config/scheduler/tasks Replica-update script using
store-and-forward; for use in schedule
commands and as the receipt handler

Table 12 ClearCase Commands Related to MultiSite

Command Description

checkout –unreserved –nmaster Performs a nonmastered checkout, which is an
unreserved checkout on a branch not mastered
by your current replica

lscheckout –areplicas Lists checked-out versions in all replicas of a
VOB (Default: lists your current replica’s
checkouts)

mkattype –shared
mkhltype –shared
mklbtype –shared

Creates a shared type object (For more
information, see Shared Type Objects on page 16)
Chapter 4 - MultiSite Command Set 61

In general, all ClearCase commands obey MultiSite mastership restrictions in a
replicated VOB. In addition, the following commands work differently in replicated
VOBs:

describe
Lists the master replica of an object. For replicas, branch types, and branches,
lists the mastership request setting.

describe vob:pname-in-vob
Lists the replica name and the VOB family feature level.

ln
mkelem
rmname

You can change a directory only in the master replica of the branch on which
the directory is checked out. Changes to directories include

mkobjecttype –replace
If a type object is shared, you cannot change its instance restrictions. For
example, you cannot replace a one-per-element branch type with a
one-per-branch branch type.

mkeltype –replace
You cannot change the definition of an element type in a replicated VOB.

rmtype eltype:type-name
You cannot delete an element type in a replicated VOB.

mkelem –master
mkdir –master

Assigns mastership of the main branch of the
element to the replica in which you create the
element. Also, if your config spec contains
mkbranch rules and you do not specify the
–nco option, mkelem or mkdir assigns
mastership of these branches to the replica in
which you create the element.

vob_scrubber Scrubs oplog entries and export_sync records

➤ Creating a VOB hard link or VOB symbolic link (ln)
➤ Creating a new element (mkelem)
➤ Removing a reference to an element or VOB symbolic link (rmname)

Table 12 ClearCase Commands Related to MultiSite

Command Description
62 Administrator’s Guide: Rational ClearCase MultiSite

View Contexts and VOB Mounts

Most MultiSite commands do not require a view context or mounting of the VOB
replicas being processed. However, there are some advantages to running MultiSite
commands in a view, with the VOB mounted:

■ Simpler command syntax. If your current working directory is within a VOB,
many commands process that VOB, eliminating the need to use the @vob-selector
suffix in command arguments.

■ Better diagnostics. If a syncreplica –import command fails when running in a
view, it produces diagnostics that include pathnames, which makes
troubleshooting easier.

The following multitool commands require a view context:

■ describe
■ chmaster (for file system objects)
■ lsmaster
■ reqmaster

Specifying VOBs in Commands

multitool commands use the vob-selector argument to specify a VOB family. vob-selector
is also used as a suffix in object selectors. In most cases, if you do not specify a
vob-selector, the command uses the VOB containing the current working directory.
Chapter 4 - MultiSite Command Set 63

64 Administrator’s Guide: Rational ClearCase MultiSite

MultiSite Configuration

5Choosing a Transport
Method
This chapter describes the methods for transporting packets between replicas. The
method you choose depends on connectivity between replicas. If your replicas do not
have IP connectivity, you must use a file-based method. If your replicas have
connectivity, you can use the store-and-forward facility of Rational ClearCase
MultiSite.

Table 13 lists the recommended methods for various situations.

File-Based Methods

These transport methods include e-mail, ftp, and physical media (like CDs, magnetic
tapes, and diskettes).

Using Electronic Mail

You can use an existing electronic mail mechanism as the transport method for packets.
On the sending end, compress and encode the packet; then send the resulting data to
a specific mail alias at the receiving site. On the receiving end, redirect the mail alias to
a script that decodes and decompresses the incoming information. To ensure that a
mail message is not too large to be delivered, you can specify the maximum size for a
packet by using the –maxsize option, the shipping.conf file (UNIX), or the MultiSite
Control Panel (Windows).

Table 13 Choosing a Packet Transport Method

Your situation Recommended methods

Sites are connected with high-speed lines Store-and-forward

One or more sites have firewalls File-based methods (e-mail, ftp, physical
media), store-and-forward

Must transfer packets quickly File-based methods (e-mail, ftp),
store-and-forward

No electronic connection between sites File-based methods (physical media)
67

Advantages:

■ Transport mechanism is well understood and widely available.
■ Little effort is required from the system administrator.

Disadvantages:

■ No control over routing of data.
■ Possibility that messages can be intercepted or lost without notification.
■ Less efficient than ftp or store-and-forward.

Notes:

■ You can write scripts to automate e-mail transport. The sending script creates the
packets, compresses and encodes them, and divides them into multiple small
packets so they are not too big for the e-mail process. The script must mark the
multiple packets with the correct sequencing. The script then sends the packets to
an address at the target location or replica.

At the target location, the account that receives the packets redirects or pipes them
to a process that reassembles, decodes, and uncompresses them and places them in
the replica’s storage bay.

MultiSite import commands handle out-of-sequence and missing packet
problems, so your scripts do not have to address these issues.

■ Using ssh and scp (secure shell and secure copy) provides a secure way to move
files through firewalls.

■ For security, you must encrypt the packets.

Using FTP

The ftp utility can transport packets between replicas. On the sending end, the
MultiSite administrator or a script creates and compresses the packet, and uses ftp to
transfer the file to a location that is accessible by MultiSite administrators at other sites.
Scripts at receiving sites poll the drop site, looking for any new files. When new files
arrive, the scripts retrieve them using ftp, decompress them, and process them.

Advantages:

■ Transport mechanism is well understood and widely available.
■ More reliable and efficient than electronic mail.
68 Administrator’s Guide: Rational ClearCase MultiSite

Disadvantages:

■ Use of a drop site is required.
■ Polling of the drop site is required.
■ More complicated to implement, because of the interactive nature of the ftp utility.
■ More administration is required because a third system (the drop site) is used.

Using Physical Media

You can create packets as files, write them to a CD, magnetic tape, or diskette, and then
send the media to another site. The mkreplica and syncreplica commands include the
–out option, which places packets in physical files.

When you use the –tape option (UNIX) or a file-based method for transport, you may
need to use the –maxsize option to prevent the tape from filling up or to ensure that
the file is a manageable size. In this example, the administrator writes the
replica-creation packet to tape, using the –maxsize option. The mkreplica command
prompts for additional tapes if necessary.

MINUTEMAN% multitool mkreplica –export –work /usr/tmp/wk –tape /dev/tape
–maxsize 75m goldengate:sanfran_hub@/vobs/dev
Enabling replication in VOB.
Comments for "sanfran_hub":
First time replication for dev VOB; Creating new replica, sanfran_hub, on host
goldengate
.

Please insert a tape to hold packet number 1.
When ready, enter ‘proceed’ (proceed/abort) [proceed] <RETURN>
Generating packet number 1...
Dumping database...

. . .
Dumper done.

Store-and-Forward

The MultiSite store-and-forward facility (the shipping server) is a file-transfer service
that automates the transport phase of replica creation and synchronization. It can
handle packets of any size, can route files through a series of MultiSite hosts (one hop
at a time), and includes support for handling data-communications failures. This is
how the store-and-forward process works:

1 During the export phase, a packet file and a shipping order file are created. The
shipping order file contains delivery instructions for the packet.

2 The packet and shipping order are stored in one of the storage bay directories on
the VOB replica host.
Chapter 5 - Choosing a Transport Method 69

If the packet is associated with a storage class, the packet is stored in the storage
bay specified by the storage class. You can define storage classes in the shipping.conf
file on UNIX and the MultiSite Control Panel on Windows.

3 The shipping server uses the instructions in the shipping order to transfer the
packet file from the storage bay at the local site to the corresponding bay on a host
at another site.

4 If necessary, the shipping server on the receiving host sends the packet to its next
destination.

Directories for Packets

Each storage class has storage bays and return bays, which are directories that hold
packets. Storage bays are used for normal shipping operations, and return bays are
used for packets that could not be delivered successfully.

Each storage bay and return bay directory contains two subdirectories, incoming and
outgoing, which hold the packets and their corresponding shipping order files.
Shipping operations look in these directories for packets.

Note: On Windows, the amount of available space on the disk partition where the bays
are located must be at least twice the size of the largest packet that will be stored in the
bays. There may be two copies of the same packet in the bay at one time: one on its way
to another destination and another waiting to be applied to the replica on the host.

When you install MultiSite on a host, the –default storage class is created, along with
its storage and return bays. The storage bay is named ms_ship and the return bay is
named ms_rtn. The incoming and outgoing directories in each bay are also created. When
you use the MultiSite Control Panel (Windows) to create a new storage or return bay,
the bay and its subdirectories are created. On UNIX, you must create the bays and their
incoming and outgoing subdirectories and then specify the bays in the shipping.conf file.

Packet Transport

An explicit command, manual or automated, invokes the shipping server on the
sending host. The shipping server process contacts the albd_server process on the
receiving host, which in turn invokes the shipping server on the receiving host in
receive mode. After a TCP/IP connection has been established between the sending
and receiving invocations of the shipping server, the file is transferred.

Store-and-Forward Issues

The following sections describe issues to consider when you use the store-and-forward
method.
70 Administrator’s Guide: Rational ClearCase MultiSite

Communication Between Replica Hosts

The hosts must be able to communicate with each other. If your network uses host
names, the sending host must be able to resolve the receiving host’s name to an IP
address. To accomplish this, you may have to update the hosts file, hosts NIS map, or
Domain Name Service. To verify TCP/IP access, use rcp on each sending host to copy
a file to the receiving hosts or use store-and-forward to send a packet (see Submitting
Packets to Store-and-Forward on page 71).

Note: If hosts in your network are known only by their IP addresses, you can use the
IP addresses instead of host names, and no resolution is necessary.

Limiting the Size of a Packet

The mkreplica and syncreplica commands fail if they try to create a packet larger than
the size supported by your system. To prevent this problem and improve reliability,
use the –maxsize option to divide the packet into multiple packets:

multitool mkreplica –export –maxsize 1g ...

multitool syncreplica –export –maxsize 500m ...

You can also specify maximum packet sizes in the shipping.conf file (UNIX) or MultiSite
Control Panel (Windows).

For information about default packet size limits, see the mkreplica reference page.

Configuring the Store-and-Forward Facility

The settings for the store-and-forward facility are host specific. You can specify
locations of storage and return bays, routing information to support multihop packet
delivery, specifications to handle failure-to-deliver situations, receipt handlers, and so
on.

Before you use store-and-forward, verify that you have the appropriate disk space, and
configure the shipping.conf file or the MultiSite Control Panel and create storage classes
for packets.

For more information about specifying settings, see the shipping.conf reference page
on UNIX or the MultiSite Control Panel reference page on Windows.

Submitting Packets to Store-and-Forward

When you generate a replica-creation or update packet, you can specify that the
store-and-forward facility must deliver it. Both mkreplica and syncreplica support the
following options:
Chapter 5 - Choosing a Transport Method 71

■ The –fship option places the packet files and shipping order files in one of the
host’s storage bays and runs the shipping server to send the packet files to their
destination host or to route them to an intermediate host.

■ The –ship option places the packet files and shipping order files in a storage bay,
but does not invoke the shipping server. The packet files are sent the next time the
shipping server polls the bay. For information about running the shipping server
automatically, see Automated Synchronization on page 105.

Differentiating Packets with Storage Classes

You can configure the store-and-forward facility to handle packets in different ways.
Each packet can be assigned to a storage class, and each storage class can have its own
storage bay, return bay, and expiration period.

Note: On UNIX, a storage class can be assigned several storage and return bays; in this
case, the shipping server uses the size of the packet to select one of the bays.
Conversely, several storage classes can share one or more bays.

You can use multiple storage classes to segregate the packets for VOBs that belong to
different groups. By adjusting the operating system permissions on the storage bay
and return bay directories, you can protect the packets from unauthorized use. You can
also use a separate storage class when you use the store-and-forward facility to transfer
non-MultiSite files between sites.

If you are using the store-and-forward facility to transport packets from VOB replicas
and from ClearQuest database replicas, you must use different storage classes.

For more information about storage classes, see the shipping.conf and MultiSite
Control Panel reference pages.

Setting Up an Indirect Shipping Route

The shipping order for a packet includes the host name of the packet’s final destination
or several such host names. By default, the store-and-forward facility sends the packet
directly to its destination host. You can specify that the packet must be sent to an
intermediate host by associating it with a routing hop in the shipping.conf file (UNIX) or
in the MultiSite Control Panel (Windows).

For example:

■ On a UNIX host, the shipping.conf file includes this line:

ROUTE sydney_fw sanfran_hub boston_hub tokyo
72 Administrator’s Guide: Rational ClearCase MultiSite

■ On a Windows host, the Routing Information section in the MultiSite Control
Panel specifies host sydney_fw in the Next Routing Hop box and hosts
sanfran_hub, boston_hub, and tokyo in the Destination Hostnames box.

Any packet whose final destination is host sanfran_hub, boston_hub, or tokyo is
forwarded to host sydney_fw. At this point, the local host has completed its task, and
responsibility for delivering the packet now belongs to sydney_fw. Host sydney_fw
can transmit the packet to its final destination directly, or send it to yet another
intermediate host, depending on the settings in its shipping.conf file or in the MultiSite
Control Panel.

Note: In a multihop transmission, using the –fship option on the original host causes
the first hop to occur immediately. Subsequent hops occur when the shipping server is
invoked on the intermediate hosts, which may not be immediately after the packets are
received.

Retries, Expirations, and Returned Data

The shipping server makes one attempt to transmit a packet to another host. If the
packet cannot be transmitted (for example, because the receiving host is unavailable),
the shipping server generates an error message and log file entry and exits. You can set
up a retry scheme to control its frequency:

■ After successful transmission of a packet, the shipping server deletes the packet
and its shipping order. After a failure, the packet and shipping order remain in the
storage bay.

■ shipping_server –poll transmits all packets it finds in one or more storage bays.
Thus, any packets that remain after a transmission failure are sent (if possible) by
the next invocation of shipping_server –poll.

The following job definition in the Scheduled Jobs for ClearCase performs this
operation every hour:
Chapter 5 - Choosing a Transport Method 73

Job.Begin

Job.Id: 16

Job.Name: "Shipping Server Poll"

Job.Description.Begin:

Every hour, run the shipping server to send out any outstanding

orders.

Job.Description.End:

Job.Schedule.Daily.Frequency: 1

Job.Schedule.FirstStartTime: 00:00:00

Job.Schedule.StartTimeRestartFrequency: 01:00:00

Job.DeleteWhenCompleted: FALSE

Job.Task: 13

Job.Args: -quiet 1 -poll

Job.End

See the cleartool schedule reference page in the Command Reference for Rational
ClearCase and Automated Synchronization on page 105.

Attempts to transmit an undelivered packet can continue indefinitely, through
repeated invocations of the shipping_server command. However, you usually want to
fix problems with failed transmissions instead of letting the attempts continue.
Accordingly, each shipping order can include an expiration date-time, specified with
one of the following:

■ The command option –pexpire

■ (UNIX) An EXPIRATION entry in the shipping.conf file on the sending host

■ (Windows) A Packet Expiration value in the MultiSite Control Panel on the sending
host

By default, shipping orders expire 14 days after they are created.

When the shipping server encounters a shipping order that has expired, it does not
attempt to transmit the corresponding packet to its destination. Instead, it does the
following:

■ It modifies the shipping order to return the packet to the original sending host,
where it is placed in a return bay.

■ It sends an electronic mail message to one or more addresses on the original
sending host. (Another message is sent when the returned packet arrives at the
original sending host.)

The return trip may involve multiple hops, as described in Setting Up an Indirect
Shipping Route on page 72. During such a trip, a packet is placed in the return bay of
each intermediate host. Each hop is handled by shipping_server –poll, which
processes a host’s return bay in addition to its storage bays. The expiration time for a
74 Administrator’s Guide: Rational ClearCase MultiSite

packet’s return trip is 14 days; a packet that cannot be returned in that interval is
deleted.

Setting a Timeout Period for Unreachable Hosts

If the shipping server tries to send a packet to a target host and determines that the host
is unreachable, it creates a file in the /var/adm/rational/clearcase/shipping/ms_downhost
directory (UNIX) or the ccase-home-dir\var\shipping\ms_downhost directory (Windows).
The name of the file is the name of the unreachable host.

If one of the following parameters is set, the shipping server checks the directory for
target hosts during future shipping operations:

■ (Windows) Timeout for Unreachable Host (minutes) value in the MultiSite Control
Panel

■ (UNIX) DOWNHOST-TIMEOUT setting in the shipping.conf file or the
SHP_DOWNHOST_TIMEOUT_RETRY environment variable (If both parameters are
set, the shipping server uses DOWNHOST-TIMEOUT.)

If the target host is found in the ms_downhost directory, and the difference between the
current time and the last modification time of the file is less than the timeout setting on
the shipping server host, the shipping server does not try to send packets to the target
host. If the difference is equal to or greater than the timeout setting, the shipping server
tries to send packets to the target host. If the timeout setting is not set, the shipping
server attempts to send the packet to the target host. (Each attempt to send a packet to
an unreachable host takes about 30 seconds.)

Error Notification in a Mixed Environment

If a packet is delivered through a Windows host on which e-mail notification is not
enabled, a failure on that Windows host means that no notification message is sent by
electronic mail. Instead, a message is written to the event log; this message contains a
request that the appropriate users be informed of the failure. For information about
enabling e-mail notification, see the MultiSite Control Panel reference page.

Sending Files That Are Not Packets

You can use the store-and-forward facility to send any file if you create a shipping
order for the file with the mkorder utility. You can send the file immediately or wait for
the shipping server to send it.

■ To send a file immediately, use the –fship option with mkorder:

/opt/rational/clearcase/etc/mkorder –data /usr/rptgen/brdcst.0702 –fship
–copy boston_hub tokyo
Chapter 5 - Choosing a Transport Method 75

■ To store the file in a shipping bay so that the shipping server will send the file the
next time it runs, use the –ship option:

/opt/rational/clearcase/etc/mkorder –data /usr/rptgen/brdcst.0702 –ship
–copy boston_hub tokyo

Note: The shipping order must be located in the same directory as the file.

After you invoke the mkorder command, you can delete the original file.

If a file with the same name already exists on the receiving host, the file you send is
renamed to filename_1. If you transmit another file with the same name, it is renamed
to filename_2, and so on.

Using Store-and-Forward Through a Firewall (UNIX only)

By default, the store-and-forward facility (the shipping server) cannot operate through
a firewall. Passing through a firewall is usually accomplished by granting access to
specific ports for certain IP addresses. Because the shipping server picks any available
port number on the sending and receiving replica hosts to make the connection, there
is no single port number (or even small range of port numbers) to which special access
can be granted.

If your site uses a firewall, you can set up an “exposed host,” a host that you configure
to communicate through the firewall and on which you install the shipping server
software. You configure the shipping servers on the replica hosts at your site to send
packets to the exposed host, and the shipping server on the exposed host forwards the
packets to hosts on the other side of the firewall. To maximize security on the exposed
host, you must specify the range of port numbers that the shipping server can use.

Note: To enhance site security, we recommend that you install the shipping server on
an exposed host only if other transport methods are unsuitable for your site. This
method is not available for Windows. For information about other methods, see
File-Based Methods on page 67.

Figure 18 is an example of an exposed host configuration. The exposed hosts
communicate through the firewall. The store-and-forward software is installed on
them, but ClearCase software is not installed on them. Rational ClearCase and
MultiSite are installed on the replica server hosts (labeled RA and RB).
76 Administrator’s Guide: Rational ClearCase MultiSite

Figure 18 Store-and-Forward Configuration

Firewall Issues

Before installing the shipping server on an exposed host, consider the following issues:

■ Shipping bays can be filled.

Using the shipping server on an exposed host enables anyone coming in from the
network to fill shipping bays on the local network, on any machine where a
shipping server is available. To avoid full disks and the related problems:

❑ Create all shipping bays in the local network on their own partitions, so that
filling the bays does not degrade system performance.

❑ Install the shipping server only on machines that need it: servers with replicas
and machines used by administrators.

RA RB

FIREWALL FIREWALL

Site A Site B
Chapter 5 - Choosing a Transport Method 77

■ Packets are susceptible to snooping.

In normal update packets, information is not encoded. Therefore, anyone shipping
packets across an unsecured network must encrypt the packets. Also, the format of
an update packet is not very complicated; a dedicated programmer could figure
out the format and create a packet with operations that damage a VOB. Encrypting
the data makes this kind of attack much more difficult.

■ Other servers can be accessible.

Allowing shipping server access also allows access to all servers created by the
albd_server. Because the albd_server assigns port numbers in the allowed range
to other servers running locally, programs from the outside network can connect to
all of those servers. Therefore, the exposed host that runs the shipping server must
not run other ClearCase servers.

Configuring Your Firewall to Limit Access

We recommend that you specify the ports to which programs can connect and the IP
addresses that are allowed to access the firewall. Limiting the allowed port numbers
and IP addresses limits the possibility that unauthorized machines can breach the
firewall.

You must allow access to the following ports on the exposed host:

■ TCP port 371 (albd_server port)

■ The range of ports that you specified with the CLEARCASE_MIN_PORT and
CLEARCASE_MAX_PORT environment variables (see Controlling Ports Used by
albd_server and shipping_server on page 79)

You must allow access through the firewall for IP addresses of hosts that send packets
through the firewall to the exposed host at your site.

For information about configuring your firewall, see the documentation for your
firewall.

Installing the Shipping Server on an Exposed Host

On UNIX, the ClearCase Product Family installation includes an option to install only
the shipping server software. Follow the instructions in the Installation Guide for the
ClearCase Product Family and select only the ClearCase MultiSite Shipping Server-only
Installation option. Do not install ClearCase on the exposed host.

On Windows, there is no option to install only the shipping server software on an
exposed host.
78 Administrator’s Guide: Rational ClearCase MultiSite

Controlling Ports Used by albd_server and shipping_server

The environment variables CLEARCASE_MIN_PORT and CLEARCASE_MAX_PORT
specify the range of port numbers that the albd_server and the shipping server can
allocate for communication purposes. When the shipping server needs to assign a port
number, it starts with the value of CLEARCASE_MIN_PORT and continues through the
range until it reaches CLEARCASE_MAX_PORT. If a port in the range cannot be
allocated, the shipping server sleeps and tries the ports again.

When the shipping server on the sending host detects that the port environment
variables are set, it tries to use TCP to make the connection with the albd_server on the
receiving host. If this connection fails, the shipping server tries UDP. Therefore, if you
have TCP connectivity, you do not have to enable UDP or open UDP ports on the
exposed host.

Running an individual shipping server does not require more than two ports at a time.
When there are multiple requests to be sent, the shipping server forks. Child processes
handle individual requests. The shipping server starts no more than 10 child processes
(and starts that many only if there are 10 requests to process simultaneously), so the
maximum range is 20 ports. If the range is smaller, it may result in failed attempts,
which can be retried later.

Specifying Port Values

The value range for CLEARCASE_MIN_PORT is 1024 through 65534, and the value range
for CLEARCASE_MAX_PORT is 1025 through 65535. The value of
CLEARCASE_MAX_PORT must be greater than the value of CLEARCASE_MIN_PORT.

Note: We recommend that you use the range 49152 through 65535, which is the
Dynamic/Private Port Range.

To specify minimum and maximum port values, set the CLEARCASE_MIN_PORT and
CLEARCASE_MAX_PORT environment variables in the following places:

■ The shipping.conf file on the exposed host. For more information, see the
shipping.conf reference page.

■ The clearcase script on the exposed host:

a Edit the file ccase-home-dir/etc/clearcase.
Chapter 5 - Choosing a Transport Method 79

b Add the following lines, replacing min-port and max-port with your minimum
and maximum port values. These lines must precede the section that starts the
albd_server.

Checklist for Using Store-and-Forward Through a Firewall

This checklist summarizes the steps you must follow to use store-and-forward through
a firewall.

1 Determine the port ranges that the shipping server can use and the IP addresses of
the hosts that will send packets to your site’s exposed host.

2 Configure your firewall to limit the allowed port numbers and IP addresses.
Remember that you must allow access to TCP port 371 in addition to the port
ranges.

3 Install the shipping server software on the exposed host.

4 Set the CLEARCASE_MIN_PORT and CLEARCASE_MAX_PORT environment
variables.

5 On each replica server host at your site, specify the exposed host as the next-hop
host for packets sent to other sites. For example, your company has three sites
(SiteA, SiteB, SiteC), each with one exposed host running the shipping server
(SSA, SSB, SSC), and three replica server hosts.

On UNIX, edit the shipping.conf file and add ROUTE options. For example, on each
replica server host at SiteA:

ROUTE SSA SiteB_host1 SiteB_host2 SiteB_host3 SiteC_host1

SiteC_host2 SiteC_host3

On Windows, open the MultiSite Control Panel and set the appropriate values in
the Routing Information section. For example, on each replica server host at SiteA,
the Next Routing Hop is SSA and the Destination Hostnames are SiteB_host1,
SiteB_host2, SiteB_host3, SiteC_host1, SiteC_host2, and SiteC_host3.

6 On the exposed host, edit the shipping.conf file and add ROUTE options for the
next destination of the packets.

#
Set values for minimum and maximum port numbers
#
CLEARCASE_MIN_PORT=min-port
CLEARCASE_MAX_PORT=max-port
export CLEARCASE_MIN_PORT
export CLEARCASE_MAX_PORT
80 Administrator’s Guide: Rational ClearCase MultiSite

Using the same example as in Step 5, on the exposed host at SiteA, you add the
following ROUTE options to the shipping.conf file:

ROUTE SSB SiteB_host1 SiteB_host2 SiteB_host3

ROUTE SSC SiteC_host1 SiteC_host2 SiteC_host3

On the exposed host at SiteB, you add the following ROUTE options to the
shipping.conf file:

ROUTE SSA SiteA_host1 SiteA_host2 SiteA_host3

ROUTE SSC SiteC_host1 SiteC_host2 SiteC_host3

On the exposed host at SiteC, you add the following ROUTE options to the
shipping.conf file:

ROUTE SSA SiteA_host1 SiteA_host2 SiteA_host3

ROUTE SSB SiteB_host1 SiteB_host2 SiteB_host3
Chapter 5 - Choosing a Transport Method 81

82 Administrator’s Guide: Rational ClearCase MultiSite

6Feature Levels
This chapter describes feature levels and how to raise the feature level of a replica and
a VOB family.

Overview of Feature Levels

Feature levels allow different replica hosts in a VOB family to run different versions of
Rational ClearCase. New versions of ClearCase may introduce features that are
incompatible with old versions, but you may not be able to upgrade all replica hosts at
the same time. Feature level control enables you to upgrade replica hosts at different
times and to prevent developers at sites running later versions of ClearCase from using
new features that are not meaningful to replicas on hosts running earlier versions.

Each version of ClearCase, each VOB family, and each replica has a feature level. Thus,
each VOB family has one family feature level and possibly several replica feature
levels. The family feature level determines which ClearCase features can be used by all
of the replicas in the family. The following constraints are enforced:

■ The replica feature level is less than or equal to the feature level of the version of
ClearCase installed on the replica’s server host.

Different replicas on the same server host can have different feature levels.

■ The family feature level is less than or equal to the lowest replica feature level
found among replicas in the VOB family. For example:

❑ In a VOB family, two replicas are at feature level 1 and the third replica is at
feature level 2. The VOB family feature level must be equal to or less than 1.

❑ In another VOB family, all replicas in the family are at feature level 2. The VOB
family feature level must be equal to or less than 2.

The general procedure for raising a family's feature level is as follows:

1 Install the new version of ClearCase on the server hosts of replicas in the VOB
family.

2 Raise the feature level of each replica in the VOB family. See Raising the Replica
Feature Level.
83

3 Raise the feature level of the VOB family. See Raising the VOB Family Feature Level
on page 85.

You can complete these steps incrementally and over a period of days or weeks, if
necessary. Variations are possible; for example, if a VOB family has replicas R1 and R2
on servers S1 and S2, respectively, you can install a new version of ClearCase on S1
and raise R1's replica feature level before installing the new version on S2. However,
you can complete Step 3 only after you have raised all replicas in the family to the new
feature level.

For information about the feature level associated with the current version of
ClearCase and the list of features that are disabled until the VOB family feature level is
raised, see the Release Notes for Rational ClearCase and ClearCase MultiSite.

Raising the Replica Feature Level

There are two important rules related to raising a replica's feature level:

■ The replica must be self-mastering.

■ If the current family feature level is less than or equal to 1, the first replica in a VOB
family whose feature level is raised must be the replica that masters the VOB
object.

To raise the replica feature level:

1 After installing the new version of ClearCase on a server host, determine which
replica masters the VOB object:

cleartool describe vob:vob-tag

If the replica whose feature level you want to raise first does not master the VOB
object, you must transfer mastership of the VOB object:

a Change mastership of the VOB object:

b Export an update packet to the replica whose feature level you want to raise:

c At the receiving replica, import the packet:

multitool chmaster replica-name vob:vob-tag

multitool syncreplica –export –fship replica-name@vob-tag

multitool syncreplica –import –receive
84 Administrator’s Guide: Rational ClearCase MultiSite

2 Determine whether the replica is self-mastering:

cleartool describe replica:replica-name@vob-tag

3 If the replica is not self-mastering, convert it to a self-mastering replica. See
Transferring Mastership of a Replica Object on page 132.

4 Raise the feature level of the replica. Enter this command on the replica host:

cleartool chflevel –replica feature-level replica:replica-name@vob-tag

5 Export update packets to all other replicas in the VOB family to inform them about
the feature level change.

6 (optional) Change mastership of the replica back to the original master replica.

Raising the VOB Family Feature Level

There are two variants of the procedure for raising the family feature level:

■ Raising the feature level of a VOB family in which all replicas send update packets
(bidirectional synchronization). See VOB Families with Bidirectional Synchronization.

■ Raising the feature level of a VOB family in which one or more replicas receive
update packets, but do not send them (unidirectional synchronization). See VOB
Families with Unidirectional Synchronization.

VOB Families with Bidirectional Synchronization

After raising the feature level of all replicas in the VOB family:

1 Raise the family feature level. Enter this command at the replica that masters the
VOB object:

cleartool chflevel –family feature-level vob:vob-tag

2 Export update packets to all other replicas in the VOB family to inform them about
the feature level change.

VOB Families with Unidirectional Synchronization

In some VOB families, one or more replicas may be one-way replicas. These replicas
import packets, but they do not export packets to any other replicas in the family, and
therefore cannot communicate changes in feature level. Because other replicas in the
family do not know the current feature level of the one-way replicas, the chflevel
–family command fails.
Chapter 6 - Feature Levels 85

For example, consider the case of two replicas, R1 and R2, that constitute a VOB family.
R1 sends update packets to R2, but R2 does not send update packets to R1.

R1 is at replica feature level 2, and R2 is at replica feature level 1. Therefore, the family
feature level is 1 and cannot be raised. Now suppose R2’s replica feature level is raised
to 2. R2 cannot communicate the change in feature level to R1 because it does not
export update packets.

Because both replicas are now at feature level 2, the VOB family feature level can be
raised to 2. However, if the R1 administrator issues the command chflevel -family 2
vob-selector, the change fails because R1 doesn’t know that the replica feature level at
R2 has been raised.

In this case, the R2 administrator must inform the R1 administrator of the change in
R2’s replica feature level. The R1 administrator then uses a special form of the chflevel
command to raise the VOB family feature level. The general procedure is as follows:

1 The administrator of a one-way replica notifies other replica administrators in the
VOB family of a change in replica feature level at the one-way replica.

2 At the replica that masters the VOB object, the administrator enters the following
command:

cleartool chflevel –force –override –family feature-level vob:vob-tag

Caution: This form of the chflevel command bypasses the constraint that the
family feature level is no higher than the lowest known feature level of the replicas
in the VOB family. Use it only when you are certain that all replicas in the VOB
family are at the same feature level. If you use this command inappropriately,
synchronization will fail.

3 At the replica that masters the VOB object, export update packets to all replicas in
the family.

R1 R2
86 Administrator’s Guide: Rational ClearCase MultiSite

Displaying Feature Levels

To display the feature level of a replica:

■ Use the command cleartool describe replica:replica-name@vob-tag. For example:

cleartool describe replica:tokyo@\dev
replica "tokyo"

created 20-Aug-00.13:35:37 by John Cole (jcole@goldengate)

replica type: unfiltered

master replica: sanfran_hub@\dev

...

feature level: 4

...

■ On Windows, start the Properties Browser for the replica.

To display the feature level of a VOB family, use the command cleartool describe
vob:vob-tag. For example:

cleartool describe vob:/vobs/dev
versioned object base "/vobs/dev"

created 15-Aug-02.14:19:03 by Susan Goechs (susan.user@minuteman)
master replica: boston_hub@/vobs/dev
replica name: boston_hub
VOB family feature level: 4

...

Note: Before you set the feature level for a newly created replica, its value is recorded
as unknown. For example, if you use the describe command to show the properties of
a new replica, the output looks like this:

cleartool describe replica:sanfran_hub@/vobs/dev
...

feature level: unknown

Feature Levels Error Message

The following error message is printed when a user attempts to use a feature that is not
meaningful to sibling replicas:

The feature level of the VOB family is not high enough to permit this
operation.
Chapter 6 - Feature Levels 87

88 Administrator’s Guide: Rational ClearCase MultiSite

Replication and Synchronization

7Creating VOB
Replicas
This chapter describes how to plan and create VOB replicas. Before creating a replica,
you must make decisions about branching, mastership, identities and permissions
preservation, and method of packet delivery. Be sure to read ClearCase Use Model on
page 34 and MultiSite Use Model on page 37.

Overview of Replica Creation

You use this three-phase procedure to create a new replica:

1 Export: At one site, enter a mkreplica –export command, which creates a new
replica object and a replica-creation packet.

2 Transport: Send the packet to one or more other sites.

3 Import: At the other sites, enter a mkreplica –import command, which imports the
replica-creation packet.

The procedure is similar for different methods of packet delivery and for different
platforms. The example in this chapter assumes that you have a high-speed connection
between hosts, and that all replicas are located on UNIX machines. The procedure is
the same if all replicas are located on Windows machines or if one replica is on a
Windows machine; only the VOB tags and pathnames are different.

If some replicas in a family will be located on UNIX machines and others will be on
Windows machines, be sure to read Replicating a VOB Between UNIX and Windows on
page 101.

Timing of Replica Creation

During the export phase, the mkreplica command locks the VOB and dumps the VOB
database. The VOB is locked for the entire length of time the command runs. While the
VOB is locked, read-only operations can occur in the VOB, but write operations cannot.
(For example, these operations fail: checkins and checkouts, chepoch –actual
commands, label creation, builds, imports of update packets, VOB snapshots, and
scheduled backups.)
91

Therefore, you need to schedule the export phase of replica creation during
nonbusiness hours for your site. You must also cancel any scheduled exports, imports,
VOB snapshots, and backups for the duration of the export phase.

Replica-Creation Scenario for a VOB

For the example in this section, the company’s software development takes place in
Boston, Massachusetts and in a new development office in San Francisco, California.
Work is about to begin on a new release.

Planning the Rules of the Road

The company uses the following development strategy:

■ Individual subprojects, and often individual developers, use separate
subbranches. The auto-make-branch facility is used in all config specs, to place
changes on the appropriate branches. For example:

element * CHECKEDOUT

element * .../sanfran_main/LATEST

element * SANFRAN_BASE –mkbranch sanfran_main
element * V1.0 –mkbranch sanfran_main
element * /main/0 –mkbranch sanfran_main

■ The v2.0_integration branch type is reserved for integration of the work done at
the various sites. To prepare for an internal baseline or an external release, the
project manager merges selected development subbranches into the
v2.0_integration branch.

■ When necessary, developers merge changes from the v2.0_integration branch to
their subbranches, to bring themselves up to date with changes occurring on the
integration branch.

With Rational ClearCase MultiSite, the organization can continue to use this strategy.
The Boston replica masters the v2.0_integration branch type. The San Francisco replica
masters a branch type named sanfran_main, as well as any additional branch types
that may be needed to organize the work there. The project manager at the Boston site
merges changes from the sanfran_main and boston_main branches into the
v2.0_integration branch, so that the release engineers can build the product using the
latest changes.
92 Administrator’s Guide: Rational ClearCase MultiSite

Relevant characteristics of the two replicas:

The company has not yet merged its user/group databases, so the two replicas cannot
preserve identities. Because the administrators want to preserve changes to
permissions, they decide to make the replicas permissions preserving. There is IP
connectivity between the two offices, so the Boston administrator can use the MultiSite
store-and-forward facility to create the new replica.

Boston replica

Host name minuteman (UNIX)

Replica name boston_hub

VOB storage directory /vobstg/dev.vbs

VOB tag /vobs/dev

Config spec for
development

element * CHECKEDOUT
element * .../boston_main/LATEST
element * BOSTON_BASE –mkbranch boston_main
element * V1.0 –mkbranch boston_main
element * /main/0 –mkbranch boston_main

Config spec for
integration

element * CHECKEDOUT
element * .../v2.0_integration/LATEST
element * BOSTON_BASE –mkbranch v2.0_integration
element * V1.0 –mkbranch v2.0_integration
element * /main/0 –mkbranch v2.0_integration

San Francisco replica

Host name goldengate (UNIX)

Replica name sanfran_hub

VOB storage directory /vobstg/dev.vbs

VOB tag /vobs/dev

Config spec for
development

element * CHECKEDOUT
element * .../sanfran_main/LATEST
element * SANFRAN_BASE –mkbranch sanfran_main
element * V1.0 –mkbranch sanfran_main
element * /main/0 –mkbranch sanfran_main
Chapter 7 - Creating VOB Replicas 93

Prerequisites

Before you create a new VOB replica, you must perform these steps at the original site:

1 Make sure MultiSite licenses are installed.

After you enter the mkreplica –export command, developers who use the original
VOB cannot access it without a MultiSite license (in addition to a ClearCase
license).

clearlicense –product MultiSite
Licensing information for MultiSite.

License server on host "cclicense".

Running since Thursday 07/01/00 12:27:28.

LICENSES:

Max-Users Expires Password [status]

300 none 34ms5678.901234c5.67 [Valid]

...

2 Apply a version label, from which development work at the new replica will
branch.

In the standard ClearCase manner, a consistent set of source versions (a baseline) is
identified by a version label. The VOB administrator creates label type
SANFRAN_BASE and attaches it to the appropriate versions in the original VOB.
The changes at sanfran_hub are made on sanfran_main branches; all these
branches are created at SANFRAN_BASE versions.

3 Rename the original replica appropriately.

Even though the original VOB has not yet been replicated, its VOB database has a
VOB replica object, named original:

MINUTEMAN% cleartool lsreplica –invob /vobs/dev
For VOB replica "/vobs/dev":

15-Aug.14:19 susan replica "original"

The administrator renames the VOB replica object to boston_hub:

MINUTEMAN% multitool rename replica:original boston_hub
Renamed replica from "original" to "boston_hub".

MINUTEMAN% cleartool lsreplica –invob /vobs/dev
For VOB replica "/vobs/dev":

15-Aug.14:19 susan replica "boston_hub"

4 Make sure the VOB is not locked.

Step 6 locks the VOB; an error occurs if the VOB is already locked.
94 Administrator’s Guide: Rational ClearCase MultiSite

MINUTEMAN% cleartool lslock vob:/vobs/dev
MINUTEMAN% (null output indicates VOB is not locked)

5 Determine the size of the VOB database and source pools.

The directory you specify with the –workdir option in the mkreplica command
must be on a partition that has enough free space to hold the VOB database and
the VOB source pools. You must have write permission on its parent directory, and
the directory you specify must not exist.

To determine the size of the VOB database and source pools, use the cleartool
space command:

cleartool space /vobs/dev
Use(Mb) %Use Directory

...

1429.0 17% VOB database /vobstg/dev.vbs/db

...

189.5 2% source pool /vobstg/dev.vbs/s/sdft

...

In this example, the combined size of the VOB database and source pool is 1.62 GB,
so the work directory must have at least 1.62 GB of free space.

Export Phase

These steps take place at the original site.

6 Enter the export form of the mkreplica command. For information about
restrictions on the command, see the mkreplica reference page.

In this example, the administrator uses the –fship option to send the packet
immediately.
Chapter 7 - Creating VOB Replicas 95

MINUTEMAN% multitool mkreplica –export –workdir /tmp/ms_wkdir
–fship goldengate:sanfran_hub@/vobs/dev
Enabling replication in VOB.

Comments for "sanfran_hub":

First time replication for dev VOB
Creating new replica, sanfran_hub, on host goldengate
.
Generating replica creation packet

/opt/rational/clearcase/shipping/ms_ship/outgoing/repl_boston_hub_1

6-Aug-00.09.49.36_14075_1

- shipping order file is

/var/adm/rational/clearcase/shipping/ms_ship/outgoing/sh_o_repl_bos

ton_hub_16-Aug-00.09.49.36_14075_1

Dumping database...

...

Dumper done.

Attempting to forward/deliver generated packets...

-- Forwarded/delivered packet

/opt/rational/clearcase/shipping/ms_ship/outgoing/repl_boston_hub_1

6-Aug-00.09.49.36_14075_1

7 Back up the original VOB.

This backup records the fact that the VOB is replicated. If you have to restore a
VOB replica from a backup copy that was made before the VOB was replicated, the
MultiSite replica restoration procedure fails. (Although the restorereplica
command may succeed, you will not be able to import update packets from other
replicas because the original VOB is marked as unreplicated.)

8 (optional) Verify the replica-related changes.

These commands show the work you’ve done so far. The mkreplica command
creates a new replica object in the VOB database. This object is similar to the VOB
object that represents the entire VOB in the database, and its properties are listed
by the lsreplica command.

MINUTEMAN% multitool lsreplica –invob /vobs/dev
For VOB replica "/vobs/dev":

15-Aug.14:19 susan replica "boston_hub"

16-Aug.09:49 susan replica "sanfran_hub"

MultiSite commands process replica objects similarly to the way that ClearCase
commands process type objects. The rename command renames a replica object, as
described in Step 3. The cleartool lshistory command lists events associated with
replica objects.
96 Administrator’s Guide: Rational ClearCase MultiSite

MINUTEMAN% cleartool lshistory replica:boston_hub@/vobs/dev
16-Aug.09:45 susan rename replica "boston_hub"

"Changed name of replica from "original" to "boston_hub"."

15-Aug.14:19 susan make attribute "FeatureLevel" on replica

"boston_hub"

"Added attribute "FeatureLevel" with value 2."

...

Caution: Do not modify any properties of the new replica at this point. If you must
change any properties, you must first import the replica-creation packet at the new site,
export an update packet from the new replica, and import the packet at the original
replica.

Transport Phase

9 Send the replica-creation packet to the new site. This process differs depending on
the options you used in Step 6:

❑ If you used –fship, the packet was sent to the new site immediately.

❑ If you used –ship, you must run shipping_server to send the packet to the new
site. For example:

❑ If you used –tape or wrote the packet to a file, you must transport the tape or file
to the new site.

Import Phase

Complete these steps at the new replica’s site.

10 Verify the packet’s arrival by running lspacket on the receiving host.

By default, lspacket searches all the MultiSite storage bays for packets. For
example, if host goldengate is the receiving host:

GOLDENGATE% multitool lspacket
Packet is:

/opt/rational/clearcase/shipping/ms_ship/incoming/repl_boston_hub_1

6-Aug-00.09.49.36_14075_1

Packet type: Replica Creation

VOB family identifier is: 12a3456b.78c901d2.e3ab.45:67:89:c0:1d:e2

Comment supplied at packet creation is:

Packet intended for the following targets:

sanfran_hub

The packet sequence number is 1

MINUTEMAN% /opt/rational/clearcase/etc/shipping_server –poll
Chapter 7 - Creating VOB Replicas 97

11 Enter the import form of the replica-creation command.

Notes on the import phase of replica creation:

❑ This replica is permissions preserving, so the user who executes this command
becomes the owner of the new VOB replica and all elements in it. This user’s
primary group is the group for all elements. Typically, administration is easier if
this user is not the root user or a member of the ClearCase administrators group.

❑ As described in Step 5, the work directory must have at least 1.62 GB of free
space.

❑ You can bypass the Should I create this replica? prompt during replica
creation by specifying the –vreplica option with the new replica’s name. This
example does not specify that option.

❑ If you create a permissions-preserving replica, you can bypass the prompt
during replica creation by specifying the –nprompt option with the
–perms_preserve option. This example does not specify that option.

❑ You must specify the pathname of the incoming packet as listed by the lspacket
command.

GOLDENGATE% multitool mkreplica –import –perms_preserve –work /tmp/wk
–tag /vobs/dev –public –password 1234xyz –vob /vobstg/dev.vbs
/opt/rational/clearcase/shipping/ms_ship/incoming/repl_boston_hub_16-Aug-00
.09.49.36_14075_1
multitool: Warning: In a permissions-preserving replica, cleartool

protect operations will fail on client machines running ClearCase

versions associated with feature level 3 or lower.

Should I create a permissions-preserving replica? [no] yes
The packet can only be used to create replica "sanfran_hub"

- VOB family is 87f6265b.72d911d4.a5cd.00:01:80:c0:4b:e7

- replica OID is 0eaa6fc3.737d11d4.adbe.00:01:80:c0:4b:e7

Should I create this replica? [no] yes
Comments for "sanfran_hub":

replica of /vobs/dev from Boston
.

98 Administrator’s Guide: Rational ClearCase MultiSite

Processing packet

/opt/rational/clearcase/shipping/ms_ship/incoming/repl_boston_hub_1

6-Aug-00.09.49.36_14075_1...

Loading database...

Dumped schema version is 53

55 events loaded.

77 pass 2 actions performed.

Loader done.

Registering VOB mount tag "/vobs/dev"...

VOB replica successfully created.

Host-local path: goldengate:/vobstg/dev.vbs

Global path: /net/goldengate/vobstg/dev.vbs

VOB ownership:

owner purpledoc.com/jcole

group purpledoc.com/user

12 Delete the replica-creation packet. (Update packets are deleted automatically.)

13 (If new replica preserves identities and permissions) Make sure that the owner,
group, and group list of the new VOB are the same as the owner, group, and group
list of the other identities- and permissions-preserving replicas in the VOB family.
To change these values, run the cleartool protectvob command on the new VOB
replica.

14 (If new replica preserves identities and permissions or permissions only) Send an
update packet to all other replicas in the VOB family.

If you create a preserving replica, inform other replicas in the VOB family of this
property. For example, sanfran_hub preserves permissions, so the San Francisco
administrator enters this command:

GOLDENGATE% multitool syncreplica –export –c "permissions preserving" –fship
boston_hub
...

15 Make the new replica self-mastering. See Transferring Mastership of a Replica Object
on page 132 for the procedure.

You must complete this step before you can set the new replica’s feature level or
enable requests for branch mastership at the replica.

16 Set the feature level of the new replica to the feature level of the version of Rational
ClearCase running on the replica host.

To determine the feature level of the version of ClearCase, enter the cleartool –ver
command on the replica host to display the ClearCase version. Then consult the
Release Notes for the feature level associated with the version.
Chapter 7 - Creating VOB Replicas 99

To set the new replica’s feature level, enter a chflevel command on the replica host:

cleartool chflevel –replica feature-level replica-selector

For example:

cleartool chflevel –replica 4 sanfran_hub@/vobs/dev
Replica feature level raised to 4.

17 Send an update packet to all other replicas in the VOB family, to inform them of
the new replica’s feature level. For example:

GOLDENGATE% multitool syncreplica –export –c "new feature level" –fship
boston_hub
...

18 Create a branch type for work in the new replica.

The San Francisco developers use branches of type sanfran_main.

GOLDENGATE% cleartool mkbrtype sanfran_main
Comments for "sanfran_main":

sanfran branch for work on dev project
.
Created branch type "sanfran_main".

Subbranches named sanfran_main are created as necessary. The following config
spec automates the creation of the sanfran_main branches:

element * CHECKEDOUT

element * .../sanfran_main/LATEST

element * SANFRAN_BASE –mkbranch sanfran_main
element * V1.0 –mkbranch sanfran_main
element * /main/0 –mkbranch sanfran_main

This config spec is defined in terms of a branch type (sanfran_main), which is
mastered by replica sanfran_hub, and label types (SANFRAN_BASE and V1.0),
which are mastered by replica boston_hub. The San Francisco developers cannot
create instances of the SANFRAN_BASE label type or move any existing
SANFRAN_BASE labels, but there is no reason for them to do so.

19 Verify the mastership of the new branch type.

GOLDENGATE% cleartool describe brtype:sanfran_main@/vobs/dev
branch type "sanfran_main"

created 16-Aug-00.18:12:23 by John Cole (jcole.user@goldengate)

"sanfran branch for work on dev project"

master replica: sanfran_hub@/vobs/dev

...
100 Administrator’s Guide: Rational ClearCase MultiSite

20 (For IP-connected replicas) At each site, mark any sibling replicas that have IP
connectivity to the current replica. For more information, see Setting the
Connectivity Property for a VOB Replica on page 120.

At the boston_hub replica:

multitool chreplica –isconnected sanfran_hub@/vobs/dev
Updated replica information for "sanfran_hub".

At the sanfran_hub replica:

multitool chreplica –isconnected boston_hub@/vobs/dev
Updated replica information for "boston_hub".

21 Begin development.

Developers in San Francisco can access the new replica in the same way they
access an unreplicated VOB.

Replicating a VOB Between UNIX and Windows

This section describes issues involved in setting up UNIX and Windows replicas at
different sites. If you plan to use MultiSite at a single site for interoperability between
UNIX and Windows, see Chapter 12, Using MultiSite for VOB Backup and
Interoperability.

If your sites do not have an IP connection, you must use electronic mail, CDs, tapes, or
diskettes to transfer packets. You may have to solve compatibility problems if you
choose to use tapes or diskettes. With electronic mail, you can use compatible encoding
and compression methods. However, differences between UNIX and Windows VOBs
are handled automatically during packet import.

The most important problems you must prevent are file names that differ only in how
they are capitalized and differences in use of line terminators. If case-sensitive file
names are used at one replica and case-insensitive file names are used at another
replica, errors can occur during synchronization. Differences in use of line terminators
between UNIX and Windows editors cause unexpected behavior during file
comparisons and merges. Even if the contents of the files are identical, different line
terminators indicate differences in the files and require a merge.

The Administrator’s Guide for Rational ClearCase describes these problems and their
solutions in detail. Be sure to read it before setting up UNIX and Windows replicas.
Chapter 7 - Creating VOB Replicas 101

102 Administrator’s Guide: Rational ClearCase MultiSite

8Synchronizing
Replicas
This chapter describes the process of synchronization. Synchronization uses the same
export-transport-import procedure that is used during replica creation:

1 Export: At one replica, a syncreplica (synchronize replica) command is invoked
with the –export option. This creates a packet of data.

2 Transport: The packet is sent to one or more other replicas.

3 Import: At the other replicas, a syncreplica command is invoked with the –import
option. This applies the changes in the packet to an existing replica.

The syncreplica command is optimized for performance; it creates a packet that
contains only the information required to update the target replicas specified on the
command line.

Assumption of Successful Synchronization

The export and import phases of synchronization always occur at different times. A
sending replica does not require acknowledgment from a sibling replica that a packet
has been received and processed successfully. Instead, the sending replica assumes
success. This assumption enables an optimization: subsequent updates from a replica
do not include the data sent in previous updates.

If a failure does occur (for example, a packet is lost in transit or a CD is unreadable at
the sibling replica), you must adjust the epoch numbers at the sending replica to enable
the lost data to be resent. For more information, see Chapter 13, Troubleshooting
MultiSite Operations.

Manual Synchronization

This section describes how to synchronize replicas by entering explicit syncreplica
commands.
103

Export Phase

1 Create an update packet at the sending host. Use the syncreplica –export
command with the appropriate transport option.

If your sites are connected electronically, you can use store-and-forward to send
the packet (–fship) or place it in a storage bay (–ship).

The following example uses the –fship option to send the packet immediately:

multitool syncreplica –export –maxsize 1m –fship boston_hub@\dev
Generating synchronization packet C:\Program

Files\Rational\ClearCase\var

\shipping\ms_ship\outgoing\sync_bangalore_30-Oct-02.14.35.49_2468_1

- shipping order file is C:\Program

Files\Rational\ClearCase\var\shipping

\ms_ship\outgoing\sh_o_sync_bangalore_30-Oct-02.14.35.49_2468_1

Attempting to forward/deliver generated packets...

-- Forwarded/delivered packet C:\Program

Files\Rational\ClearCase\var

\shipping\ms_ship\outgoing\sync_bangalore_30-Oct-02.14.35.49_2468_1

The following example uses the –out option to save the packet as an output file
and includes the –maxsize option to divide the logical packet into appropriately
sized physical packets. The packet files can then be sent by electronic mail or
copied onto diskettes, CDs, or tape.

multitool syncreplica –export –maxsize 1m –out c:\packets\update1
boston_hub@\dev
Generating synchronization packet c:\packets\update1

Transport Phase

If you did not use the –fship option, send the packets:

■ If you used syncreplica –export –ship, invoke shipping_server in either of the
following ways:

shipping_server –poll
shipping_server shipping-order-pathname

■ If you did not use –fship or –ship, send the packets using electronic mail, regular
mail, or your preferred delivery method.

Import Phase

2 (If you used diskettes, CDs, tape, or electronic mail) Copy the packet files into a
directory on the receiving replica’s host.
104 Administrator’s Guide: Rational ClearCase MultiSite

3 Use the lspacket command to verify that the packet has arrived.

multitool lspacket
Packet is:

/opt/rational/clearcase/shipping/ms_ship/incoming/sync_bangalore_30

-Oct-02.14.35.49_2468_1

Packet type: Update

VOB family identifier is: 12a3456b.78c901d2.e3ab.45:67:89:c0:1d:e2

Comment supplied at packet creation is:

Packet intended for the following targets:

boston_hub

The packet sequence number is 1

4 Apply the packet at the receiving replica. Use the syncreplica –import command
to apply the changes in the packet to the replica.

This example specifies the –receive option; syncreplica imports any packets it
finds in the incoming shipping directories.

multitool syncreplica –import –receive
Applied sync. packet

/opt/rational/clearcase/shipping/ms_ship/incoming/sync_bangalore_30

-Oct-02.14.35.49_2468_1 to VOB /net/minuteman/vobstg/dev.vbs

This example specifies a directory pathname as an argument. syncreplica –import
looks in this directory for update packets and applies them to the replica on the
host.

multitool syncreplica –import c:\msite\packets
Applied sync. packet c:\msite\packets\update1 to VOB

\\servo\vobs\dev.vbs

Automated Synchronization

You can use scripts and utilities to automate all phases of synchronization:

■ Export phase. A script exports update packets from one or more replicas on a host
to one or more siblings.

■ Transport phase. The store-and-forward facility sends packets between sites. You
can invoke store-and-forward as part of the export phase, or automate packet
transport separately.

■ Import phase. A receipt handler imports packets when they are received at a
replica, and you can also schedule import of packets to occur periodically.

Use scheduled jobs to automate the export and transport phases, and use receipt
handlers or scheduled jobs to automate the import phase. You can run the scripts that
Chapter 8 - Synchronizing Replicas 105

are shipped with Rational ClearCase MultiSite at any time and with any frequency, and
you can vary the strategy for different families by using multiple jobs.

By default, the synchronization scripts place packets and shipping orders in the
incoming and outgoing directories in the default storage bay,
ccase-home-dir/shipping/ms_ship (UNIX) or ccase-home-dir\var\shipping\ms_ship
(Windows). This bay is defined in the shipping.conf template file on UNIX and the
MultiSite Control Panel on Windows.

The scripts log their activity to files in the /var/adm/rational/clearcase/log/sync_logs
directory on UNIX and the ccase-home-dir\var\log directory on Windows.

Using the ClearCase Scheduler

ClearCase installation adds three preconfigured jobs to the scheduler: Daily MultiSite
Export, Daily MultiSite Shipping Poll, and Daily MultiSite Receive. These jobs use the
predefined MultiSite tasks: MultiSite Sync Export and MultiSite Sync Receive.

These jobs are disabled; to enable them, use the schedule –edit –schedule command or
the graphical interface (Windows) and set the run times and other parameters
appropriately:

■ (Using cleartool schedule) Delete the line Job.Schedule.LastDate: StartDate
and set the value of Job.NotifyInfo.Recipients to the appropriate user names.

■ (Using the scheduler graphical interface) On the Schedule tab, set the Run
parameters to the appropriate values. On the Settings tab, in the Notifications
section, change the value of Recipients to the appropriate user names.

Note: If you decide to use receipt handlers (see Import Phase on page 108), you do not
need to enable the Daily MultiSite Receive job.

For information about creating new tasks and jobs and the prerequisites for using the
scheduler, see the schedule reference page in the Command Reference and the scheduler
information in the Administrator’s Guide for Rational ClearCase.

Export Phase

The script sync_export_list creates update packets. You can select the replicas to be
updated, configure the script to send the packets immediately or place them in storage
bays, and set other shipping options. For more information about the shipping options,
see the sync_export_list reference page.

This job runs sync_export_list to generate and send updates to all other replicas in the
VOB family at midnight local time:
106 Administrator’s Guide: Rational ClearCase MultiSite

Job.Begin
Job.Id: 17
Job.Name: "Sync Export Force ALL"
Job.Description.Begin:

Every midnight, for each replica on this host, export update packets to
all sibling replicas.

Job.Description.End:
Job.Schedule.Daily.Frequency: 1
Job.Schedule.FirstStartTime: 00:00:00
Job.DeleteWhenCompleted: FALSE
Job.Task: 13
Job.Args: -quiet 1 -all

Job.End

To put the packets in a storage bay, use the –ship option. Packets in storage bays are
sent by the shipping server. For example, this job runs sync_export_list to generate an
update every day at 21:00 local time:

Job.Begin
Job.Id: 18
Job.Name: "Sync Export Store ALL"
Job.Description.Begin:

Every night at 9PM, for each replica on this host, generate update
packets for all sibling replicas and store the packets in the storage
bay.

Job.Description.End:
Job.Schedule.Daily.Frequency: 1
Job.Schedule.FirstStartTime: 21:00:00
Job.DeleteWhenCompleted: FALSE
Job.Task: 13
Job.Args: -quiet 1 -ship -all

Job.End

For information about running shipping_server, see Transport Phase.

Transport Phase

If sync_export_list or syncreplica puts packets in storage bays (–ship option), you must
run shipping_server to process these packets. If you do not use –ship, but want to
implement a retry-on-failure capability, you must schedule regular invocations of
shipping_server. The shipping server attempts to retransmit any outgoing packets
that remain in any of the storage bays because one or more previous attempts have
failed.

With the –poll option, sync_export_list invokes shipping_server –poll to process
shipping orders located in all storage bays defined in the shipping.conf file (UNIX) or in
the MultiSite Control Panel (Windows).
Chapter 8 - Synchronizing Replicas 107

For example, this job invokes shipping_server every day at 04:00 local time:

Job.Begin
Job.Id: 19
Job.Name: "Shipping Server Poll"
Job.Description.Begin:

Every night at 4AM, run the shipping server to send any outstanding
orders.

Job.Description.End:
Job.Schedule.Daily.Frequency: 1
Job.Schedule.FirstStartTime: 04:00:00
Job.DeleteWhenCompleted: FALSE
Job.Task: 13
Job.Args: -quiet 1 -poll

Job.End

The following job implements a more aggressive retry-on-failure capability. The
shipping server is run every half hour from midnight to 04:00 local time:

Job.Begin
Job.Id: 20
Job.Name: "Shipping Server Poll"
Job.Description.Begin:

Every half hour from midnight to 4AM, run the shipping server to send
any outstanding orders.

Job.Description.End:
Job.Schedule.Daily.Frequency: 1
Job.Schedule.FirstStartTime: 00:00:00
Job.Schedule.StartTimeRestartFrequency: 00:30:00
Job.Schedule.LastStartTime: 04:00:00
Job.DeleteWhenCompleted: FALSE
Job.Task: 13
Job.Args: -quiet 1 -poll

Job.End

Import Phase

To automate packet import, use one of the methods described in Table 14.

Table 14 Import Methods

Import
method

Description Advantages Disadvantages

Receipt
handlers

When a packet is received,
the receipt handler imports
it.

Packets are imported
immediately.

Constant load
on VOB server.
108 Administrator’s Guide: Rational ClearCase MultiSite

Defining Receipt Handlers on UNIX

You can define receipt handlers in the shipping.conf file for different shipping classes. By
default, no receipt handler is defined, but you can specify the sync_receive script as a
receipt handler in the shipping.conf file:

RECEIPT-HANDLER -default
/opt/rational/clearcase/config/scheduler/tasks/sync_receive

For details about defining receipt handler entries, see the section Receipt Handler in the
shipping.conf reference page.

Defining Receipt Handlers on Windows

You can define receipt handlers in the MultiSite Control Panel for different shipping
classes. By default, no receipt handler is defined, but you can specify
ccase-home-dir\config\scheduler\tasks\sync_receive.bat in the MultiSite Control Panel. To
customize sync_receive.bat, copy it to a directory outside the ClearCase installation
directory, edit the copy, and specify it in the MultiSite Control Panel.

For details about defining receipt handler entries, see the section Receipt Handler Path
in the MultiSite Control Panel reference page.

Scheduled jobs When a packet is received
at a replica, it is stored in a
shipping bay. When the
scheduled job runs, the
packet is imported.

You can schedule
import to minimize
server load.

Changes are not
applied to the
VOB
immediately.

Receipt
handlers and
scheduled jobs

See descriptions above. You can use scheduled
jobs and receipt
handlers to implement a
retry-on-failure
capability. For example,
if packets are delivered
out of order and the
receipt handler cannot
import them, the job
retries the import.

Table 14 Import Methods

Import
method

Description Advantages Disadvantages
Chapter 8 - Synchronizing Replicas 109

Scheduling Import Jobs

The script sync_receive imports update packets. For more information about the script’s
options, see the sync_receive reference page.

This job runs sync_receive to import all packets in the incoming shipping bays of the
current host at midnight local time:

Job.Begin
Job.Id: 15
Job.Name: "Sync Import ALL"
Job.Description.Begin:

Every midnight, import all update packets in incoming bays.
Job.Description.End:
Job.Schedule.Daily.Frequency: 1
Job.Schedule.FirstStartTime: 00:00:00
Job.DeleteWhenCompleted: FALSE
Job.Task: 14

Job.End

Listing Synchronization History

The lshistory command and the History Browser list the history of a VOB replica,
including synchronization information. For more information, see Listing the
Synchronization History of a VOB Replica on page 116.

Synchronizing VOB Replicas More Efficiently

You can configure synchronization updates to send only the necessary operations to
another replica. Although sending an operation multiple times does no harm, packet
creation and transmission is more efficient if you exclude operations that have already
been imported at the receiving replica.

The chepoch –actual and sync_export_list –update commands contact a remote
replica and update your current replica’s record of the state of the remote replica. The
primary use of these commands is to resend lost packets, but you can also use them to
increase synchronization efficiency. However, depending on your synchronization
pattern and schedule, these commands can decrease efficiency. The following sections
describe two examples: one in which efficiency is increased, and one in which it is
decreased.

Example of Increased Efficiency

You have three replicas in a VOB family, and a subset of the synchronization pattern
and schedule is shown in Figure 19. All replicas use receipt handlers, so incoming
110 Administrator’s Guide: Rational ClearCase MultiSite

packets are imported immediately. First, replica sanfran_hub sends a packet to replica
boston_hub. Next, boston_hub sends a packet to bangalore. This packet includes
operations from sanfran_hub.

Figure 19 Partial Synchronization Export Pattern and Schedule

At 8:00 GMT, sanfran_hub sends a packet to bangalore. This packet contains
operations originating at sanfran_hub that bangalore has already received from
boston_hub. In this case, use the command chepoch –actual bangalore at
sanfran_hub before generating an update packet for bangalore. When you generate
the packet, the operations already imported at bangalore are excluded from the packet.

Example of Decreased Efficiency

In this example, two replicas in a VOB family, sanfran_hub and sydney, exchange
update packets every 15 minutes. At some point during the day, packets may start
accumulating at one of the replicas because the imports are taking a long time. For
example, there is a lot of development activity in the sydney VOB, and four packets are
waiting to be imported.

In this case, if you run chepoch –actual at sanfran_hub before generating a packet for
sydney, the update packet will contain all the operations that are already in the packets
waiting to be imported at sydney. You can use the chepoch –actual –raise_only
command to avoid sending operations multiple times. With –raise_only, chepoch does
not lower epoch numbers for sibling replicas.

sanfran_hub

bangalore

8:00 GMT 7:00 GMT

6:00 GMT
boston_hub
Chapter 8 - Synchronizing Replicas 111

112 Administrator’s Guide: Rational ClearCase MultiSite

MultiSite Management

9Managing Replicas
This chapter describes how to manage existing replicas, including how to delete a
replica. For information about creating a replica, see Chapter 7, Creating VOB Replicas.
For information about enabling requests for mastership in a VOB replica, see
Chapter 11, Implementing Requests for Mastership.

Displaying Properties of a VOB Replica

The describe command, which is available in cleartool and multitool, displays the
properties of a VOB replica. Use the –fmt option to customize the output from the
command. See the fmt_ccase reference page in the Command Reference.

For example, to display the name, master replica, and replica host of a replica:

cleartool describe –fmt "%n\t%[master]p\t%[replica_host]p\n"
replica:boston_hub@/vobs/dev
boston_hub boston_hub@/vobs/dev minuteman

You can also display properties of a replica by using a replica-uuid-selector instead of a
replica-selector argument. For example (note that the replica-uuid-selector must be
entered on a single line):

cleartool describe –fmt "%n\n%[master]p\n%[replica_host]p\n"
oid:87f6265f.72d911d4.a5cd.00:01:80:c0:4b:e7@replicauuid:87f6265f.72d911d4.a5cd.0
0:01:80:c0:4b:e7
boston_hub
boston_hub@/vobs/dev
minuteman

On Windows, the Properties Browser displays the properties of a replica. Start the
Properties Browser in one of the following ways:

■ From Windows Explorer:

a Navigate to the VOB.

b Right-click the VOB and click ClearCase > Properties of VOB.

c Click the Replicas tab.

d Select the replica and click Replica Properties.
115

■ From ClearCase Administration Console:

a Navigate to All VOBs.

b Click View > List.

c Right-click the VOB and click Properties.

d Click the Replicas tab.

e Select the replica and click Replica Properties.

■ At a command prompt:

cleardescribe replica:replica-selector

cleartool describe –graphical replica:replica-selector

For example:

cleardescribe replica:boston_hub@\dev

cleartool describe –graphical replica:sanfran_hub@\tests

Listing the Synchronization History of a VOB Replica

The lshistory command and the History Browser (lshistory –graphical) list the
synchronization history of a replica. The output differs for your current replica and its
sibling replicas:

■ When you list the history of your current replica, the output includes import
events.

■ When you list the history of a sibling replica, the output includes export events
from your current replica to the sibling replica.

To list the import history of your current replica (boston_hub):

cleartool lshistory replica:boston_hub@/vobs/dev
17-Aug.11:05 susan import sync from replica "sanfran_hub" to
replica "boston_hub"

"Imported synchronization information from replica "sanfran_hub".
Row at import was: boston_hub=34 sanfran_hub=0"

...
116 Administrator’s Guide: Rational ClearCase MultiSite

To list all exports from your current replica to the sanfran_hub replica:

cleartool lshistory replica:sanfran_hub@/vobs/dev
17-Aug.11:11 susan export sync from replica "boston_hub" to
replica "sanfran_hub"
"Exported synchronization information for replica "sanfran_hub".
Row at export was: boston_hub=34 sanfran_hub=10"

17-Aug.10:54 susan export sync from replica "boston_hub" to
replica "sanfran_hub"

"Exported synchronization information for replica "sanfran_hub".
Row at export was: boston_hub=0 sanfran_hub=0"

16-Aug.09:49 susan create replica "sanfran_hub"

Changing Preservation Mode for a VOB Family

Any subset of replicas in a VOB family can preserve identities and permissions. Within
this set of replicas, the owner, group, and access mode of an object are kept the same
across all the replicas. Adding a replica to or deleting it from the set has no immediate
effect on the replica’s objects. However, future changes to identities are propagated
among all of the replicas in the VOB family that preserve identities and permissions.
Future changes to permissions are propagated among all of the replicas that preserve
identities and permissions or permissions only.

Note: On UNIX, preserving changes to identities across all sites is possible only if all
sites support the same user-group accounts. On Windows, ownership modes (UIDs
and GIDs) are not consistent across domains. Therefore, if all replicas in a VOB family
are not in the same Windows domain, the entire set of replicas cannot preserve
identities and permissions. You can preserve identities and permissions in a subset of
replicas in the same domain. In a mixed environment, you cannot preserve identities
and permissions on the entire set of replicas. For more information, see Identities and
Permissions Strategy for VOB Replicas on page 39.

You can change a replica in the following ways:

■ Identities and permissions preserving to nonpreserving or permissions preserving.
For example, if a replica was created incorrectly as identities and permissions
preserving, you may need to change it.

■ Permissions preserving to identities and permissions preserving.

■ Permissions preserving to nonpreserving.

■ Nonpreserving to identities and permissions preserving. The replica will receive
future changes to identities and permissions, but the original information is not
restored.

■ Nonpreserving to permissions preserving. The replica will receive future changes
to permissions, but the original information is not restored.
Chapter 9 - Managing Replicas 117

To change a replica’s preservation property:

1 At the master replica, change the replica property.

On UNIX or Windows, you can use the chreplica command.

To change from identities and permissions preserving or permissions preserving
to nonpreserving:

multitool chreplica –npreserve boston_hub@/vobs/dev
Updated replica information for "boston_hub".

To change from identities and permissions preserving to permissions preserving:

multitool chreplica –perms_preserve boston_hub@/vobs/dev
multitool: Warning: Although replica now preserves only permissions,

existing objects may still reflect previous identities- and

permissions-preserving state.

multitool: Warning: In a permissions-preserving replica, cleartool

protect operations will fail on client machines running ClearCase

versions associated with feature level 3 or lower.

Updated replica information for "boston_hub".

To change from permissions preserving to identities and permissions preserving:

multitool chreplica –preserve boston_hub@/vobs/dev
multitool: Warning: Although replica now preserves identities and

permissions, existing objects may still reflect previous

permissions-preserving state.

Updated replica information for "boston_hub".

To change from nonpreserving to identities and permissions preserving:

multitool chreplica –preserve boston_hub@/vobs/dev
multitool: Warning: Although replica now preserves identities and

permissions, existing objects may still reflect previous

non-preserving state.

Updated replica information for "boston_hub".

To change from nonpreserving to permissions preserving:

multitool chreplica –perms_preserve boston_hub@/vobs/dev
multitool: Warning: Although replica now preserves permissions,

existing objects may still reflect previous non-preserving state.

multitool: Warning: In a permissions-preserving replica, cleartool

protect operations will fail on client machines running ClearCase

versions associated with feature level 3 or lower.

Updated replica information for "boston_hub".
118 Administrator’s Guide: Rational ClearCase MultiSite

On Windows, you can use the Properties Browser to change this property:

a Display properties of the replica. See Displaying Properties of a VOB Replica on
page 115.

b Select the appropriate preservation mode.

c Click OK or Apply.

If you change the replica to permissions preserving or identities and
permissions preserving, the appropriate warning is displayed (see the chreplica
output above).

For restrictions, see the chreplica reference page.

2 If the changed replica is not self-mastering, export an update packet from the
master replica to the changed replica.

3 At the changed replica, import the update packet. If the import fails because the
VOB group lists are different, use the cleartool protectvob command to add the
missing groups to the importing VOB replica, and then try the import again.

If the import succeeds, you can use the protectvob command to undo the group
changes you made.

4 (If the replica was changed to identities- and permissions-preserving) At the
changed replica, use the cleartool protectvob command to set the owner, group,
and group list of the VOB to be the same as the owner, group, and group list of the
other identities- and permissions-preserving replicas in the VOB family.

5 (If the replica was changed to nonpreserving) At the changed replica, use the
cleartool protect command to change the ownership of all elements in the replica
to the VOB owner at your site.

For example, on UNIX, the following command finds all file and directory
elements in /vobs/dev and executes the protect command:

cleartool find /vobs/dev -all -type fd –exec ’cleartool protect –chown vobowner
–chgrp vobgrp $CLEARCASE_PN’

On Windows, the following command finds all file and directory elements in \dev
and executes the protect command:

cleartool find \dev -all -type fd –exec "cleartool protect –chown vobowner
–chgrp vobgrp %CLEARCASE_PN%"
Chapter 9 - Managing Replicas 119

Changing the Host Name for a VOB Replica

When you move a VOB replica’s storage directory to a different host or when you
rename a replica’s host, you must update the host name in the replica’s VOB database.
The database keeps track of the hosts on which the replicas in a VOB family reside so
that the store-and-forward facility can determine how to route updates to the replicas.

To change the host name, use the chreplica command or the Properties Browser
(Windows). The change is not propagated to other replicas in the VOB family until you
export an update packet from the current replica and the packet is imported at the
other replicas. For restrictions, see the chreplica reference page.

To change a host name using the chreplica command:

multitool chreplica –host mardelplata buenosaires@/vobs/dev
Updated replica information for "buenosaires".

To change a host name using the Properties Browser:

1 Display properties of the replica. See Displaying Properties of a VOB Replica on
page 115.

2 On the General tab, type the new host name in the Host box.

3 Click OK or Apply.

Setting the Connectivity Property for a VOB Replica

To indicate whether a sibling replica has IP connectivity to your current replica, use the
chreplica command with the –isconnected or –nconnected option. This property is
stored locally and is checked when you enter a command that requires connectivity to
a sibling replica (for example, lsepoch –actual or chepoch –actual). The command fails
quickly if the sibling replica is marked as not connected.

You can also use the Properties Browser on Windows. When you display properties of
a sibling replica, the General tab indicates whether the replica has IP connectivity to the
current replica. You can change this property by setting or clearing the check box.

To use the chreplica command to set the connectivity property to connected for the
sanfran_hub replica:

multitool chreplica –isconnected sanfran_hub
Updated replica information for "sanfran_hub".
120 Administrator’s Guide: Rational ClearCase MultiSite

Use the describe command to verify that the property is set:

multitool describe replica:sanfran_hub
replica "sanfran-hub”
...

connectivity: connected

For more information, see the chreplica reference page.

Renaming a VOB Replica

To change the name of a replica, use the rename command or the Properties Browser
(Windows). When you rename a replica, the change is made immediately at the current
replica. The change is not propagated to other replicas in the family until you export
an update packet from the current replica and the packet is imported at the other
replicas.

You must make the change at the replica’s master replica. For other restrictions, see the
rename reference page in the Command Reference.

To rename a replica using the rename command:

multitool rename –c "site name" replica:original@/vobs/dev
replica:boston_hub@/vobs/dev
Renamed replica from "original" to "boston_hub".

To rename a replica using the Properties Browser:

1 Display properties of the replica. See Displaying Properties of a VOB Replica on
page 115.

2 Enter a new value in the Name box.

3 Click OK or Apply.

Moving a VOB Replica

See the information about moving a VOB in the Administrator’s Guide for Rational
ClearCase.

There are some special considerations when you move a replicated VOB:

■ Rational ClearCase MultiSite must be installed on the new VOB server host.

■ If you automated the synchronization process on the old host, you must set up
synchronization export and import scripts on the new VOB server host.
Chapter 9 - Managing Replicas 121

■ After moving the VOB replica, change the host name associated with the replica by
using multitool chreplica –host. You must enter this command at the master
replica of the replica that you moved.

■ After moving the VOB replica, export update packets to all sibling replicas.

Changing Mastership of a VOB Replica

For information about changing mastership of a VOB replica, see Chapter 10, Managing
Mastership.

Deleting a Replica

This section describes how to remove a replica. You must complete all steps; if you do
not, synchronization and mastership problems can occur in other replicas in the family.

When you remove a replica, the replicas in its family stop tracking epoch numbers for
that replica. Removing a replica does not delete the VOB database.

Removing a replica requires two synchronization cycles: one to transfer mastership of
all of the replica’s objects to another replica, and one to inform all other replicas that
the removed replica is no longer participating in the update process. Because this
information can be communicated only through the synchronization process, you
cannot remove a replica at its own site, because doing so prevents the replica from
creating update packets.

After a replica is removed from a family, it no longer participates in synchronization
activities and MultiSite information is not tracked. The replica no longer updates its
oplog, and you cannot transfer mastership of any object in that replica.

Note: If a VOB replica is deleted mistakenly and you want to restore it from backup, see
Restoring and Replacing VOB Replicas on page 198. If a VOB replica’s storage directory
is lost and there is no backup, see Cleaning Up After Accidental Deletion of a Replica on
page 204.

In this scenario, the replica tokyo in the VOB family \tests is being removed.

1 At the site of the replica to be removed, complete all development work in the
replica and use lscheckout or the Find Checkouts tool (Windows) to verify that all
checkouts are resolved in the replica to be removed:

SHINJUKU> cleartool lscheckout –all \tests
(no output means no checkouts)
122 Administrator’s Guide: Rational ClearCase MultiSite

2 Transfer mastership of all objects to another replica.

At the site of the decommissioned replica, transfer mastership of all objects it
masters to another replica. If the decommissioned replica is not self-mastering,
transfer mastership to its master replica. If the replica is self-mastering, you can
choose any replica.

In this example, the administrator determines which replica masters tokyo, and
then transfers mastership to the master replica (in this example, sanfran_hub):

SHINJUKU> cleartool describe –fmt "%[master]p\n" replica:tokyo@\tests
sanfran_hub@\tests

SHINJUKU> multitool chmaster –all –long sanfran_hub@\tests
Changed mastership of versioned object base \tests

...

Changed mastership of all objects

The replica that receives mastership can later transfer mastership to other replicas.

If mastership is not transferred for all objects, you must fix the problem and
reenter the chmaster –all –long command. For an example, see Transferring
Mastership of All Objects Mastered by a Replica on page 138. If there are problems you
cannot fix, another replica can recover from the error by assuming mastership of
the objects. For a description of this procedure, see Cleaning Up After Accidental
Deletion of a Replica on page 204.

3 Export and send an update packet from the decommissioned replica.

The decommissioned replica must send its final changes, including checkins and
mastership changes, to the replica receiving mastership. The decommissioned
replica can broadcast its final changes to all other replicas, but it must update its
master replica (sanfran_hub in this example).

SHINJUKU> multitool syncreplica –export –fship sanfran_hub@\tests
Generating synchronization packet c:\Program

Files\Rational\ClearCase\var

\shipping\ms_ship\outgoing\sync_tokyo_23-Dec-02.09.33.02_3447_1

 - shipping order file is c:\Program

Files\Rational\ClearCase\var\shipping\ms_ship\outgoing\sh_o_sync_to

kyo_23-Dec-02.09.33.02_3447_1

Attempting to forward/deliver generated packets...

 -- Forwarded/delivered packet c:\Program

Files\Rational\ClearCase\var

\shipping\ms_ship\sync_tokyo_23-Dec-02.09.33.02_3447_1
Chapter 9 - Managing Replicas 123

4 Import the update packet at the replica that is (or will become) the master of the
decommissioned replica.

GOLDENGATE% multitool syncreplica –import –receive
Applied sync. packet

/opt/rational/clearcase/shipping/ms_ship/incoming/sync_tokyo_23-Dec

-02.09.33.02_3447_1

to VOB /net/goldengate/vobstg/tests.vbs

5 At the master replica, remove the decommissioned replica.

GOLDENGATE% multitool rmreplica tokyo@/vobs/tests
Deleted replica "tokyo".

6 At the master replica, export and send an update packet to the remaining replicas
in the VOB family.

This update packet notifies the other replicas of the replica removal.

GOLDENGATE% multitool syncreplica –export –fship replica-names
Generating synchronization packet ...

7 At the removed replica, remove the VOB storage directory of the removed replica.

SHINJUKU> cleartool rmvob \\shinjuku\vobs\tests.vbs
Remove versioned object base "\\shinjuku\vobs\tests.vbs"? [no] yes
Removed versioned object base "\\shinjuku\vobs\tests.vbs".

If you decommission and remove all replicas, the one remaining VOB replica is a
regular VOB, and developers no longer need a MultiSite license to access it.
124 Administrator’s Guide: Rational ClearCase MultiSite

10Managing Mastership
This chapter describes how to manage the mastership of objects in a replica. Before
reading this chapter, you should read the information in Enabling Independent
Development: Mastership on page 5.

Mastership Commands for VOB Objects

The following commands are used to manage mastership of VOB objects:

■ chmaster (cleartool and multitool)
■ describe (cleartool and multitool)
■ lsmaster (cleartool and multitool)
■ mkelem –master (cleartool only)
■ mkdir –master (cleartool only)
■ reqmaster (cleartool and multitool)

For more information about the commands, see their reference pages in this manual or
in the Command Reference for Rational ClearCase.

On Windows, you can use the describe and chmaster commands or the Properties
Browser to display and change mastership.

The reqmaster command requests mastership of branches and branch types and sets
controls for mastership requests. On Windows, you can use the Request Mastership
graphical interface and the Properties Browser to request mastership and set controls.
These interfaces are described in Chapter 11, Implementing Requests for Mastership.

Displaying Mastership Information for VOB Objects

The following sections describe how to list the master replica of an object, list all objects
mastered by a particular replica, list the mastership changes for an object, and display
settings for mastership requests.
125

Listing an Object’s Master Replica

To list an object’s master replica, use one of the following methods:

Command examples:

■ To list a replica object’s master replica:

cleartool describe replica:boston_hub@\dev
replica "boston_hub"

created 15-Aug-00.14:19:03 by susan.user

replica type: unfiltered

master replica: boston_hub@\dev

...

■ To list an element’s master replica:

cleartool describe –fmt "%n\t%[master]p\n" cmdsyn.c@@
cmdsyn.c@@ bangalore@/vobs/dev

■ To list a type object’s master replica:

cleartool describe lbtype:V1.0@/vobs/dev
label type "V1.0"

created 25-Aug-00.12:14:52 by Susan Goechs (susan.user@minuteman)

master replica: boston_hub@/vobs/dev

...

Method Description

Mastership page in the Properties Browser (Windows) This page lists the object’s
master replica.

cleartool describe object-selector This command lists general
information about the
object, including its master
replica.

cleartool describe –fmt "%[master]p\n" object-selector This command lists only
the master replica of the
object. For more
information about the –fmt
option, see the fmt_ccase
reference page in the
Command Reference.
126 Administrator’s Guide: Rational ClearCase MultiSite

■ To list a branch’s master replica:

cleartool describe –fmt "%n\t%[master]p\n" cmdsyn.c@@\main\v3_bugfix
cmdsyn.c@@\main\v3_bugfix boston_hub@\dev

Listing Objects Mastered by a Replica

The lsmaster command lists the objects mastered by a VOB replica. The command uses
the information at your current replica unless you use the –inreplicas option, which
retrieves information from sibling replicas.

■ To list all objects mastered by the current replica (boston_hub), using information
at the current replica:

multitool lsmaster boston_hub@/vobs/dev

■ To list all label types mastered by replica sanfran_hub, using information at the
current replica:

multitool lsmaster –kind lbtype sanfran_hub@/vobs/dev

■ To display information from all replicas in the VOB family about the objects
mastered by replica bangalore:

multitool lsmaster –inreplicas –all bangalore@\tests

For more information and examples, see the lsmaster reference page.

Listing the History of Mastership Changes for an Object

The lshistory –minor command and the History Browser (with the Include minor
events toolbar icon selected) list mastership changes for an object. For example, to list
the history of a replica:

cleartool lshistory –minor replica:bangalore@/vobs/dev
20-Sep.17:43 susan change master to "bangalore" of replica
"bangalore"
"Changed master replica from "boston_hub" to "bangalore"."
...

Displaying Mastership Request Settings

The settings for mastership requests controls whether developers at other replicas can
request mastership of branches or branch types mastered by the replica. The describe
command and (on Windows) the Mastership page in the Properties Browser display
mastership request settings for replicas, branch types, and branches. For more
information about mastership requests, see Chapter 11, Implementing Requests for
Mastership.
Chapter 10 - Managing Mastership 127

Assigning Branch Mastership During Element Creation

By default, when you create an element in a replicated VOB, mastership of the branch
main is assigned to the replica that masters the branch type main. If this replica is not
your current replica, you cannot create new versions on the main branch. Also, if your
config spec contains mkbranch rules and your current replica does not master the
branch types, the branches cannot be created during element creation.

To assign mastership of a new element’s main branch, and all other branches created
during element creation, to your current replica, do one of the following things:

■ Use the command cleartool mkelem –master.

■ Use the command cleartool mkdir –master.

■ (Windows; file elements only) In the Add to Source Control dialog box, select Make
current replica the master of all newly created branches.

For example, suppose your view has the following config spec:

element * CHECKEDOUT
element * .../v1.0_bugfix/LATEST
element * V1.0 -mkbranch v1.0_bugfix
element * /main/0 -mkbranch v1.0_bugfix

Use the following procedure to assign mastership of new branches to your current
replica:

1 Create a new element with mkelem –master and check out the file:

cleartool mkelem –master –nc cmdsyn.c
Created element "cmdsyn.c" (type "text_file").

Created branch "v1.0_bugfix" from "cmdsyn.c" version "/main/0".

Note: Branch "v1.0_bugfix" explicitly mastered by replica

"boston_hub".

Branch type "v1.0_bugfix" mastered by replica "sanfran_hub".

Checked out "cmdsyn.c" from version "/main/v1.0_bugfix/0".
128 Administrator’s Guide: Rational ClearCase MultiSite

2 Use the describe command to confirm that the new branches are mastered by your
current replica:

cleartool describe cmdsyn.c@@/main cmdsyn.c@@/main/v1.0_bugfix
branch "cmdsyn.c@@/main"

created 02-Sep-00.13:17:21 by Gail Smith (gail.user@boston30)

branch type: main

master replica: boston_hub@/vobs/dev

...

branch "cmdsyn.c@@/main/v1.0_bugfix"

created 02-Sep-00.13:17:21 by Gail Smith (gail.user@boston30)

branch type: v1.0_bugfix

master replica: boston_hub@/vobs/dev

...

If you make your current replica the master of newly created branches, but do not
check out the file (that is, you use the –nco option), only the main branch is mastered
by your current replica, because it is the only branch that is created. For example:

1 Create a new element with mkelem –nco –master:

cleartool mkelem –nco –master –c "syntax file" cmdsyn.c
Created element "cmdsyn.c" (type "text_file").

2 Use the describe command to confirm that the main branch is mastered by your
current replica:

cleartool describe cmdsyn.c@@/main
branch "cmdsyn.c@@/main"

created 02-Sep-00.13:21:21 by Gail Smith (gail.user@boston30)

branch type: main

master replica: boston_hub@/vobs/dev

...

3 List the element’s history to confirm that no other branches except main were
created:

cleartool lshistory cmdsyn.c
02-Sep.13:21 gail create version "cmdsyn.c@@/main/0"

02-Sep.13:21 gail create branch "cmdsyn.c@@/main"

02-Sep.13:21 gail create file element "cmdsyn.c@@"
Chapter 10 - Managing Mastership 129

Changing Mastership of VOB Objects

When you create an object in a replicated VOB, your current replica is the new object’s
master replica. To transfer mastership of the object to another replica, use the chmaster
command or the Properties Browser (Windows). Some examples of when this is
appropriate:

■ If responsibility for product integration is shifted to a different site, you must
transfer mastership of the integration branch types or branches to the replica at
that site.

■ Before you decommission a replica, you must transfer mastership of each object
mastered by that replica to one of the remaining replicas. (See Deleting a Replica on
page 122.)

Mastership changes are communicated among replicas by the standard
synchronization mechanism. The general procedure for changing mastership is as
follows:

1 Change mastership of one or more objects to another replica or request mastership
of a branch or branch type.

2 Export and send an update packet from the old master replica to the new master
replica. (The reqmaster command does this automatically.)

3 Import the update packet at the new master replica.

Until the update packet containing the mastership change is imported at the new
master replica, mastership is “in the packet” and the replicas in the VOB family have
different information about which replica masters the object.

For example, the administrator at the sanfran_hub replica transfers mastership of the
bugfix branch to the bangalore replica, and then exports an update packet. At this
point, before the packet is imported at the bangalore replica:

■ The sanfran_hub replica considers the branch to be mastered by bangalore.
■ The bangalore replica considers the branch to be mastered by sanfran_hub.
■ No one at any replica can create new versions on the branch.

When you complete the mastership transfer by importing the update packet at
bangalore, developers at bangalore are able to create new versions on the branch.
130 Administrator’s Guide: Rational ClearCase MultiSite

Notes on mastership changes:

■ The chmaster command requires a view context.

■ If your family includes any read-only or one-way replicas (replicas that import
update packets but do not export them), be careful about transferring mastership
to these replicas. After you give mastership of an object to a read-only or one-way
replica, you cannot change the object’s mastership again unless you change the
VOB family’s synchronization pattern.

■ You cannot undo a mastership change made at your site by making the opposite
change at your site. See Fixing an Accidental Mastership Change on page 139.

■ You can use triggers to prevent developers from changing mastership of objects.
For more information, see Implementing Project Development Policies in Managing
Software Projects.

The following sections describe how to change mastership of objects. These procedures
use the command line. For information about using the Properties Browser on
Windows to transfer mastership of a ClearCase object, see the MultiSite Help.

Transferring Mastership of a Type Object

When you create a type object, it is mastered by the replica where you create it. Except
for elements, instances of an unshared type can be created only at the master replica.
Elements can be created at any replica, regardless of which replica masters the element
type. Instances of shared types can be created at any replica if the replica masters the
target object. (For more information, see Type Object Mastership on page 16; there are
additional restrictions if the type is a global type.)

Note: If you change mastership of a branch type to another replica, mastership is not
changed for explicitly mastered branches of that type, even if the same replica masters
the branch type and the branch. Mastership is changed for branches of that type with
default mastership. To change explicitly mastered branches to have default
mastership, see Removing Explicit Mastership of a Branch on page 136.

To transfer mastership of a type object:

1 Determine which replica masters the type object:

multitool describe lbtype:TOKYO_BASE@/vobs/dev
label type "TOKYO_BASE"

created 15-Aug-00.14:20:26 by Susan Goechs (susan.user@minuteman)

master replica: boston_hub@/vobs/dev

...
Chapter 10 - Managing Mastership 131

2 At the master replica, enter a chmaster command:

MINUTEMAN% multitool chmaster –c "transfer to sanfran_hub"
sanfran_hub@/vobs/dev lbtype:TOKYO_BASE@/vobs/dev
Changed mastership of label type "TOKYO_BASE" to

"sanfran_hub@/vobs/dev"

3 At the old master replica, export and send an update packet to the new master
replica:

MINUTEMAN% multitool syncreplica –export –fship sanfran_hub@/vobs/dev
Generating synchronization packet

/opt/rational/clearcase/shipping/ms_ship/outgoing/sync_boston_hub_2

6-Aug-02.18.15.57_7430_1

- shipping order file is

/opt/rational/clearcase/shipping/ms_ship/outgoing/sh_o_sync_boston_

hub_26-Aug-02.18.15.57_7430_1

Attempting to forward/deliver generated packets...

-- Forwarded/delivered packet

/opt/rational/clearcase/shipping/ms_ship/outgoing/sync_boston_hub_2

6-Aug-02.18.15.57_7430_1

4 At the new master replica, import the packet:

BAGUETTE% multitool syncreplica –import –receive
Applied sync. packet

/opt/rational/clearcase/shipping/ms_ship/incoming/sync_boston_hub_2

6-Aug-02.18.15.57_7430_1 to VOB /net/goldengate/vobstg/dev.vbs

5 At the new master replica, verify that mastership has been received:

BAGUETTE% multitool describe lbtype:TOKYO_BASE@/vobs/dev
label type "TOKYO_BASE"

created 15-Aug-02.14:20:26 by Susan Goechs (susan.user@minuteman)

master replica: sanfran_hub@/vobs/dev

...

Transferring Mastership of a Replica Object

When you create a new replica, its replica object is mastered by the replica at which you
enter the mkreplica –export command. Mastership of the replica object affects
replica-modification activities (renaming the replica, changing its properties, or
deleting it). You must perform these activities at the replica that masters the replica
object.

A self-mastering replica masters its own replica object. A replica must be
self-mastering for you to perform some administrative operations on it (for example,
raising the feature level). If each site has its own administrator for Rational ClearCase
MultiSite, self-mastering replicas simplify replica maintenance because each one can
132 Administrator’s Guide: Rational ClearCase MultiSite

be maintained at its own site. However, you may want to master all replica objects at a
hub replica. In this case, you can transfer mastership to individual sites at the request
of the site administrator, and transfer mastership back to the hub replica after the
administrative operation has been completed.

To transfer mastership of a replica object:

1 Determine which replica masters the replica object, and the host name of the
replica’s VOB server:

multitool describe replica:sanfran_hub@/vobs/dev
replica "sanfran_hub"

created 16-Aug-00.09:49:36 by Susan Goechs (susan.user@minuteman)

replica type: unfiltered

master replica: boston_hub@/vobs/dev

owner: susan

group: user

host: "goldengate"

...

2 At the master replica, enter a chmaster command:

MINUTEMAN% multitool chmaster –c "make sanfran_hub replica self-mastering"
sanfran_hub@/vobs/dev replica:sanfran_hub@/vobs/dev
Changed mastership of replica "sanfran_hub" to

"sanfran_hub@/vobs/dev"

3 At the old master replica, export an update packet to the new master replica:

MINUTEMAN% multitool syncreplica –export –fship sanfran_hub@/vobs/dev
Generating synchronization packet

/opt/rational/clearcase/shipping/ms_ship/outgoing/sync_boston_hub_1

6-Aug-00.16.15.57_6389_1

- shipping order file is

/opt/rational/clearcase/shipping/ms_ship/outgoing/sh_o_sync_boston_

hub_16-Aug-00.16.15.57_6389_1

Attempting to forward/deliver generated packets...

-- Forwarded/delivered packet

/opt/rational/clearcase/shipping/ms_ship/outgoing/sync_boston_hub_1

6-Aug-00.16.15.57_6389_1

4 At the new master replica, import the packet:

GOLDENGATE% multitool syncreplica –import –receive
Applied sync. packet

/opt/rational/clearcase/shipping/ms_ship/incoming/sync_boston_hub_1

6-Aug-00.16.15.57_6389_1 to VOB /net/goldengate/vobstg/dev.vbs

5 At the new master replica, verify that mastership has been received:
Chapter 10 - Managing Mastership 133

GOLDENGATE% multitool describe replica:sanfran_hub@/vobs/dev
replica "sanfran_hub"

created 16-Aug-00.09:49:36 by Susan Goechs (susan.user@minuteman)

replica type: unfiltered

master replica: sanfran_hub@/vobs/dev

...

Transferring Mastership of a VOB

When you replicate a VOB for the first time, the VOB is mastered by the original
replica. If you need to lock the VOB with the obsolete option, you must do it at the
VOB’s master replica.

To transfer mastership of a VOB to another replica, follow these steps:

1 At the master replica, enter a chmaster command:

MINUTEMAN% multitool chmaster sanfran_hub vob:/vobs/dev
Changed mastership of versioned object base "/vobs/dev" to

"sanfran_hub".

2 At the old master replica, export and send an update packet to the new master
replica:

MINUTEMAN% multitool syncreplica –export –fship sanfran_hub@/vobs/dev
Generating synchronization packet

/opt/rational/clearcase/shipping/ms_ship/outgoing/sync_boston_hub_2

0-Sep-02.17.35.45_22513_1

- shipping order file is

/opt/rational/clearcase/shipping/ms_ship/outgoing/sh_o_sync_boston_

hub_20-Sep-02.17.35.45_22513_1

Attempting to forward/deliver generated packets...

-- Forwarded/delivered packet

/opt/rational/clearcase/shipping/ms_ship/outgoing/sync_boston_hub_2

0-Sep-02.17.35.45_22513_1

3 At the new master replica, import the packet:

GOLDENGATE% multitool syncreplica –import –receive
Applied sync. packet

/opt/rational/clearcase/shipping/ms_ship/incoming/sync_boston_hub_2

0-Sep-02.17.35.45_22513_1 to VOB /net/goldengate/vobstg/dev.vbs

4 At the new master replica, verify that mastership has been received:

GOLDENGATE% multitool describe –fmt "%n\t%[master]p\n" vob:/vobs/dev
/vobs/dev sanfran_hub@/vobs/dev
134 Administrator’s Guide: Rational ClearCase MultiSite

Transferring Mastership of an Element

When you create a new element, it is mastered by the replica in which you create it. You
must perform the following element operations at the element’s master replica:

■ Changing identities or permissions on the element (for replicas that preserve
identities and permissions).

■ Changing permissions on the element (for replicas that preserve permissions).

■ Locking the element with the obsolete option.

■ Removing the element.

To transfer mastership of an element to another replica:

1 At the master replica, enter a chmaster command:

MINUTEMAN% multitool chmaster bangalore tests.txt@@
Changed mastership of file element "tests.txt@@" to "bangalore"

2 At the old master replica, export and send an update packet to the new master
replica:

MINUTEMAN% multitool syncreplica –export –fship bangalore@/vobs/dev
Generating synchronization packet

/opt/rational/clearcase/shipping/ms_ship/outgoing/sync_boston_hub_0

7-Dec-02.18.15.57_5978_1

- shipping order file is

/opt/rational/clearcase/shipping/ms_ship/outgoing/sh_o_sync_boston_

hub_07-Dec-02.18.15.57_5978_1

Attempting to forward/deliver generated packets...

-- Forwarded/delivered packet

/opt/rational/clearcase/shipping/ms_ship/outgoing/sync_boston_hub_0

7-Dec-02.18.15.57_5978_1

3 At the new master replica, import the packet:

RAMOHALLI> multitool syncreplica –import –receive
Applied sync. packet C:\Program

Files\Rational\ClearCase\var\shipping\ms_ship\incoming\sync_boston_

hub_07-Dec-02.18.15.57_5978_1 to VOB \\ramohalli\vobs\dev.vbs

4 At the new master replica, verify that mastership has been received:

RAMOHALLI> multitool describe –fmt "%n\t%[master]p\n" tests.txt@@
tests.txt@@ bangalore@\dev
Chapter 10 - Managing Mastership 135

Transferring Mastership of a Branch

This section describes how to change mastership of a branch using the chmaster
command. For information about enabling use of the reqmaster command, see
Chapter 11, Implementing Requests for Mastership.

Transferring Branch Mastership

To transfer mastership of a branch to another replica:

1 At the master replica, enter a chmaster command:

MINUTEMAN% multitool chmaster –c "bugfix at bangalore" bangalore
Makefile@@/main
Changed mastership of branch "Makefile@@/main" to "bangalore"

2 At the old master replica, export an update packet to the new master replica:

MINUTEMAN% multitool syncreplica –export –fship bangalore@/vobs/dev
Generating synchronization packet

/opt/rational/clearcase/shipping/ms_ship/outgoing/sync_boston_hub_1

0-Dec-02.18.15.57_3056_1

- shipping order file is

/opt/rational/clearcase/shipping/ms_ship/outgoing/sh_o_sync_boston_

hub_10-Dec-02.18.15.57_3056_1

Attempting to forward/deliver generated packets...

-- Forwarded/delivered packet

/opt/rational/clearcase/shipping/ms_ship/outgoing/sync_boston_hub_1

0-Dec-02.18.15.57_3056_1

3 At the new master replica, import the packet:

RAMOHALLI> multitool syncreplica –import –receive
Applied sync. packet C:\Program

Files\Rational\ClearCase\var\shipping

\ms_ship\incoming\sync_boston_hub_10-Dec-02.18.15.57_3056_1 to VOB

\\ramohalli\vobs\dev.vbs

4 At the new master replica, verify that mastership has been received:

RAMOHALLI> multitool describe –fmt "%n\t%[master]p\n" Makefile@@\main
Makefile@@\main bangalore@\dev

Removing Explicit Mastership of a Branch

As described in Default and Explicit Branch Mastership on page 15, a branch can have
default or explicit mastership. After you follow the steps in Transferring Branch
Mastership on page 136, the branch has explicit mastership. When you transfer
136 Administrator’s Guide: Rational ClearCase MultiSite

mastership of a branch type to another replica, mastership is transferred for all
branches with default mastership, but not for branches with explicit mastership.

To return mastership of a branch to the replica that masters the branch type:

1 At the replica that masters the branch, enter a chmaster –default command:

RAMOHALLI> multitool chmaster –default Makefile@@\main
Changed mastership of branch "Makefile@@\main" to "default"

2 Determine which replica masters the branch type:

RAMOHALLI> multitool describe –fmt "%n\t%[master]p\n" brtype:main
main boston_hub@\dev

If your current replica masters the branch type, stop here. If another replica
masters the branch type, continue with Step 3.

3 Export an update packet to the replica that masters the branch type:

RAMOHALLI> multitool syncreplica –export –fship boston_hub@\dev
Generating synchronization packet C:\Program

Files\Rational\ClearCase\var\shipping\ms_ship\outgoing\sync_bangalo

re_11-Dec-02.18.15.57_9476_1

- shipping order file is

/opt/rational/clearcase/shipping/ms_ship/outgoing/sh_o_sync_bangalo

re_11-Dec-02.18.15.57_9476_1

Attempting to forward/deliver generated packets...

-- Forwarded/delivered packet

/opt/rational/clearcase/shipping/ms_ship/outgoing/sync_bangalore_11

-Dec-02.18.15.57_9476_1

4 At the replica that masters the branch type, import the packet:

MINUTEMAN% multitool syncreplica –import –receive
Applied sync. packet

/opt/rational/clearcase/shipping/ms_ship/incoming/sync_bangalore_11

-Dec-02.18.15.57_9476_1 to VOB /net/minuteman/vobstg/dev.vbs

5 At the replica that masters the branch type, verify that the branch has default
mastership:

MINUTEMAN% multitool describe Makefile@@/main
branch "Makefile@@/main"

created 27-Aug-00.13:41:21 by Gail Smith (gail.user@boston20)

branch type: main

master replica: boston_hub@/vobs/dev (defaulted)
Chapter 10 - Managing Mastership 137

The other form of the chmaster –default command applies to branches that are
explicitly mastered by the replica that masters the branch type. To give these branches
default mastership, enter a chmaster –default command and specify the branch type:

MINUTEMAN% multitool chmaster –default brtype:main
Changed mastership of branch type "main" to "default"

Transferring Mastership of a Stream

The chmaster –stream command transfers mastership of a stream and its associated
objects. For example, to transfer mastership of the stream v2.1.bl5 and its associated
objects to the boston_hub replica:

multitool chmaster –stream boston_hub@/vobs/dev stream:v2.1.bl5@/vobs/dev

In some cases, you must manually change mastership of branch types or activities
associated with a stream. The output of the chmaster command includes a list of these
objects. The output may also include an instruction to run the chmaster –stream
command with the –override option. This option transfers mastership of objects whose
mastership was not transferred during the original invocation of the command.

Caution: Do not use –override unless the output of chmaster –stream indicates that you
should do so.

Transferring Mastership of All Objects Mastered by a Replica

Before removing a replica, you must transfer mastership of all objects mastered by that
replica. For instructions, see Deleting a Replica on page 122.

The following example shows a partially successful chmaster –all command and
describes how to fix it. In this example, the administrator at replica bangalore is
transferring mastership to boston_hub.

RAMOHALLI> multitool chmaster –all –long boston_hub@\dev
Changed mastership of versioned object base \dev\
Changed mastership of directory element \dev\.@@
Changed mastership of directory element \dev\lost+found@@
...
multitool: Error: Branch type "bangalore_main" has branches (with
default mastership) that have outstanding checkouts.
Changed mastership of branch type v1.0_bugfix
...
multitool: Error: Lock on label type "V1.0_BUGFIX" prevents operation
"change master".
Changed mastership of label type BANGALORE_V2.0
...
Changed mastership of replica bangalore
multitool: Warning: Not all objects had mastership changed.
138 Administrator’s Guide: Rational ClearCase MultiSite

These errors prevent the successful completion of this chmaster command:

■ There are checkouts on the bangalore_main branch.
■ There is a lock on a label type.

To fix these problems:

1 Find the checkouts and either check in the files or cancel the checkouts:

H:\dev> cleartool lscheckout –all
03-Jun.17:28 jk checkout version "\dev\cmdsyn.c" from

\main\bangalore_main\83 (unreserved)

08-Jun.12:45 singh checkout version "\dev\etc\util\tool.c" from

\main\bangalore_main\22 (unreserved)

...

See the checkin, checkout, and uncheckout reference pages.

2 Unlock the type object.

cleartool unlock lbtype:V1.0_BUGFIX@\dev
Unlocked label type "V1.0_BUGFIX".

Alternatively, enter a lock –replace –nusers command and add yourself to the
–nusers list.

cleartool lock –replace –nusers ms_admin lbtype:V1.0_BUGFIX@\dev
Locked label type "V1.0_BUGFIX".

3 Reenter the chmaster command.

RAMOHALLI> multitool chmaster –all –long boston_hub@\dev
Changed mastership of branch type bangalore_main

Changed mastership of label type V1.0_BUGFIX

Changed mastership of all objects.

Fixing an Accidental Mastership Change

If a mastership change is made in your replica by mistake, follow these steps:

1 At your replica, send an update packet to the new master replica.

2 At the new master replica:

a Import the packet.

b Change mastership back to your replica.

c Export and send an update packet to your replica.

3 At your replica, import the packet.
Chapter 10 - Managing Mastership 139

Working with Type Objects

When you create an attribute type, a hyperlink type, or a label type, you can make the
type shared or unshared. By default, the type is unshared, which means that instances
of the type can be created only at the replica that masters the type object. If you define
the type object to be shared, instances of the type can be created at any replica in the
VOB family, with some restrictions if you are using global types (see Additional
Restrictions for Shared Global Types on page 17).

For more information about type objects, see Type Object Mastership on page 16.

Creating a Shared Type Object

To create a shared type object, use the –shared option with the mkattype, mkhltype,
or mklbtype command. For example, to create a shared attribute type:

cleartool mkattype –shared –c "testing status" TESTED
Created attribute type "TESTED".

Determining Whether a Type Object Is Shared or Unshared

On Windows, the Properties Browser displays the kind of mastership on the
Mastership tab.

The describe command includes the kind of mastership in its output:

cleartool describe attype:TESTED
attribute type "TESTED"
created 15-Aug-00.14:23:27 by Susan Goechs (susan.user@minuteman)
master replica: boston_hub@/vobs/dev
instance mastership: shared
...

You can also use the –fmt option to display only the kind of mastership. For example,
to list the mastership kind of a single type object:

cleartool describe –fmt "%n\t%[type_mastership]p\n" attype:TESTED
TESTED shared

To list the mastership kind of all label types in a VOB replica:

cleartool lstype –fmt "%n\t%[type_mastership]p\n" –kind lbtype
BACKSTOP shared
BANGALORE_BASE unshared
BUENOSAIRES_BASE unshared
CHECKEDOUT shared
LATEST shared
BOSTON_BASE unshared
SANFRAN_BASE unshared
V1.0 unshared
V2.0 unshared
140 Administrator’s Guide: Rational ClearCase MultiSite

Converting a Type Object from Unshared to Shared

You can convert an unshared attribute type, hyperlink type, or label type to be shared.
For example, if a project manager at the San Francisco site creates an unshared attribute
type called TESTED_BY and the Bangalore project manager also needs to use it, you
can convert the type to shared.

Note: You cannot convert a shared type object to unshared. To restrict instance creation
of a type to one replica, you must remove all instances of the type, remove the type,
and create a new unshared type.

For information about using the Properties Browser on Windows to convert an
unshared type object to a shared type object, see the MultiSite Help.

To use the command line to convert an unshared type object to a shared type object:

1 Determine which replica masters the type object:

cleartool describe attype:TESTED_BY@/vobs/stage
attribute type "TESTED_BY"

created 03-Oct-00.10:29:06 by John Cole (jcole.user@goldengate)

master replica: sanfran_hub@/vobs/dev

instance mastership: unshared

...

2 At the master replica, enter a mkobjecttype –replace –shared command to replace
the definition of the type:

cleartool mkattype –replace –shared –c "needed at multiple sites" TESTED_BY
Replaced definition of attribute type "TESTED_BY".

3 Export and send an update packet to the other replicas that must use the type:

multitool syncreplica –export –fship bangalore boston_hub
...

4 At the receiving replicas, import the update packet:

multitool syncreplica –import –receive
...

5 At the receiving replicas, confirm that the type object is shared:

cleartool describe –fmt "%n\t%[type_mastership]p\n"
attype:TESTED_BY@/vobs/dev
TESTED_BY shared
Chapter 10 - Managing Mastership 141

142 Administrator’s Guide: Rational ClearCase MultiSite

11Implementing
Requests for
Mastership
To support development of VOB elements that cannot be merged, you can give
developers the ability to request mastership of branches and branch types. This chapter
describes how these requests work, the requirements and recommendations for
enabling requests, the planning you must do, and the procedure for enabling requests.

Before reading this chapter, read the information about branch mastership in
Chapter 1, Introduction to MultiSite, and Branching and Mastership on page 34.

Overview of a Request for Mastership

When a developer requests mastership of a branch, the branch’s mastership is
transferred to the developer’s current replica. When a developer requests mastership
of a branch type, mastership of the branch type, along with mastership of all the
instances of the branch type that have default mastership, is transferred to the
developer’s current replica.

The procedure for requesting mastership is as follows:

1 A developer makes a request for mastership.

2 The developer’s client host determines which replica masters the branch or branch
type and sends a request for mastership to that replica. This request is made
directly to the VOB server, not by sending an update packet.

3 Authorization checking occurs at the sibling replica. The checks are different for a
branch and a branch type.

For a request for mastership of a branch, authorization checking determines the
following:

a Whether the developer is allowed to request mastership.

b Whether requests for mastership of the branch are allowed at the replica level,
the branch type level, and the branch level.

c Whether the replica masters the branch. If the replica does not master the
branch, the mastership request fails.
143

The process in Step 2 uses the information available from the client host’s
current replica. If the sibling replica has transferred mastership of the branch to
another replica, but the current replica has not received an update packet with
the change, the information at the current replica is not up to date.

d Whether the branch, its branch type, or VOB is locked. If one or more of these
objects are locked, the request fails (even if the developer is on the –nusers list).

e Whether there are any checkouts on the branch, except for nonmastered
checkouts. A reserved or unreserved checkout on the branch causes the request
to fail.

f Whether the branch is associated with a stream. You cannot request mastership
of a branch associated with a stream.

For a request for mastership of a branch type, authorization checking determines
the following:

a Whether the developer is allowed to request mastership.

b Whether requests for mastership of the branch type are allowed at the replica
level and the branch type level. Also, whether requests are allowed for all of the
branch type’s instances that have default mastership. If requests are denied at
the replica or branch type level, or for any instances that have default
mastership, the request fails.

c Whether the replica masters the branch type. If the replica does not master the
branch type, the mastership request fails.

The process in Step 2 uses the information available from the client host’s
current replica. If the sibling replica has transferred mastership of the branch
type to another replica, but the current replica has not received an update packet
with the change, the information at the current replica is not up to date.

d Whether any of the following objects are locked: the branch type, the VOB, or
any of the branch type’s instances that have default mastership. If one or more
of these objects are locked, the request fails (even if the developer is on the
–nusers list).

e Whether there are any checkouts (except for nonmastered checkouts) on any of
the branch type’s instances that have default mastership.

f Whether the branch type is associated with a stream. You cannot request
mastership of a branch type associated with a stream.

If the request passes the authorization checks, the process continues with Step 4. (If
the developer requests mastership of multiple branches or branch types, error
messages are printed for the failures and processing continues.)
144 Administrator’s Guide: Rational ClearCase MultiSite

4 The server process for the sibling replica assigns mastership of the branch or
branch type to the developer’s current replica.

The event record for this operation includes the user name of the requesting
developer as part of the comment.

At this point, the sibling replica is the only replica in the family that has
information about the mastership change. At all other replicas in the family,
including the developer’s current replica, the current mastership information
shows that the sibling replica masters the branch or branch type. The developer’s
current replica is updated when the packet created in Step 5 is imported. The other
replicas in the family are not updated until they are synchronized with either of
the two replicas that has information about the change.

5 The server at the sibling replica starts an export process to create and send an
update packet containing the mastership change to the developer’s current replica.

This packet also contains other changes made since the last synchronization
export.

6 The mastership request operation completes its processing.

After the update packet is imported successfully at the developer’s current replica, the
branch or branch type is mastered by the current replica. Developers using that replica
can create new versions on the branch or create new instances of the branch type.

Note: A request for mastership does not initiate a syncreplica –import command. If the
replica’s host uses a receipt handler (the recommended procedure), the import begins
as soon as the packet arrives. Otherwise, the import occurs at the scheduled import
time for the replica or when an administrator imports the packet manually.

Requirements and Recommendations

In order for you to enable requests for mastership in one or more replicas, the following
conditions must apply:

■ The VOB family is at feature level 2 or higher. (All replicas in the VOB family must
be at feature level 2 or higher, even if you are not going to enable requests in all of
the replicas.) For more information about feature levels, see Chapter 6, Feature
Levels.

■ The replica hosts have high-speed connections (LAN, WAN, T1).

A request for mastership makes remote procedure calls (RPCs) directly to remote
servers and fails if the hosts are not connected. If a site has a firewall, developers at
that site cannot request mastership from replicas at other sites, and developers at
Chapter 11 - Implementing Requests for Mastership 145

other sites cannot request mastership of any branches mastered by a replica at a
site with a firewall.

■ Each replica masters its own replica object.

If a replica does not master its own replica object, you cannot enable or disable
mastership requests at the replica level. For information about reassigning
mastership of the replica object, see Transferring Mastership of a Replica Object on
page 132.

For mastership requests to work efficiently, the following conditions must apply:

■ There is no contention for branches or branch types among the sites. That is, only
one person at a time requests mastership of a branch or branch type.

If two or more developers at different sites compete for mastership of objects,
mastership will always be in flux. In this situation, the project leaders and
administrators must determine whether the branch sharing strategy needs to be
changed. Using requests for mastership is not a substitute for using good
branching and merging practices.

■ The replicas exchange update packets frequently.

Each replica needs current information about object mastership. If a replica is not
up to date, requests for mastership from that replica cannot determine which
replica masters the requested object. Also, if replicas exchange packets
infrequently, a mastership request may cause the generation of a large update
packet, which will take longer to generate and import.

■ You use receipt handlers to import packets at each replica host.

You can schedule scripts to import packets regularly. However, to import a packet
as soon as it arrives at the replica host, you must use a receipt handler. For more
information, see Defining Receipt Handlers on UNIX on page 109 and Defining
Receipt Handlers on Windows on page 109.

Planning Your Implementation

Before enabling requests for mastership, the project managers and administrators at
the different sites must make these decisions:

■ Which replicas must be enabled to allow requests for mastership. By default, a
replica does not allow requests for mastership. You can enable one replica,
multiple replicas, or all replicas in a VOB family.
146 Administrator’s Guide: Rational ClearCase MultiSite

■ Which developers must be authorized to request mastership. By default, no one is
authorized. You can authorize individual developers, everyone in a specific group,
everyone in a specific domain, or everyone in your network.

■ The branch types and branches (if any) for which mastership requests are always
denied. By default, requests are allowed.

Although you can enable requests for mastership in components, you cannot
request mastership of a branch or branch type associated with a stream.

To Hide Request for Mastership Features

If you do not implement requests for mastership at particular sites, you can hide
request for mastership features in the graphical interface for Rational ClearCase
MultiSite on Windows. The display of these features is controlled by the site-wide
setting rfm_gui_visibility.

To use the setsite command to hide request for mastership features:

cleartool setsite rfm_gui_visibility=FALSE

To use the ClearCase Administration Console to hide request for mastership features:

1 Navigate to the ClearCase Registry node in the ClearCase Administration Console.

2 Click Action > Properties.

3 Click Help and follow the instructions.

Enabling Requests for Mastership

The procedures in this section use the command line. On Windows, you can use the
ACL editor and the Properties Browser.

Prerequisites

1 Verify that the replica is self-mastering. See Transferring Mastership of a Replica
Object on page 132.

2 Verify that the feature level of each replica in the VOB family is the correct value,
and that the VOB family’s feature level is the correct value. For instructions, see
Chapter 6, Feature Levels.
Chapter 11 - Implementing Requests for Mastership 147

Adding Developers to the Access Control List

3 At each replica, add the appropriate people to the replica’s access control list.

multitool reqmaster –acl –edit vob-selector

A replica’s access control list (ACL) contains a list of users at other sites who are
allowed to request mastership of branches and branch types mastered by that
replica. To modify this file, you must be VOB owner, root (on UNIX), a member of
the ClearCase administrators group (on Windows), or have write permissions on
the ACL.

The vob-selector specifies a VOB family, and the ACL for your current replica is
changed.

An access control list contains lines of the following form:

identity-specification access-level,...

identity-specification is one of the following:

On Windows, domain is the name of a Windows domain (for example, purpledoc).
On UNIX, domain is an NIS domain name (for example, purpledoc.com). If
someone who can request mastership has user names in multiple domains, you
must specify all the identities in the ACL.

access-level is one or more of the following:

Separate multiple access levels with a comma and no white space. The identity
specification and associated access levels must appear on the same line.

Everyone Everyone in all domains.

Domain:domain Everyone in the specified domain.

Group:domain/group Everyone in the specified group in domain. You can use a
slash (/) or backslash (\) between domain and group.

User:domain/username A specific user in a particular domain. You can use a slash
(/) or backslash (\) between domain and username.

Read Allow read access on ACL

Write Allow write access on ACL

Change Allow requests for mastership

Full Allow requests for mastership and read/write access on ACL
148 Administrator’s Guide: Rational ClearCase MultiSite

For example, the following ACL specifies that susan can modify the ACL, and
jcole and kumar can request mastership:

User:purpledoc.com/susan Read,Write

User:purpledoc/susan Read,Write

User:purpledoc.com/jcole Change

User:purpledoc/jcole Change

User:purpledoc.com/kumar Change

User:purpledoc/kumar Change

The following ACL gives msadm full permissions and allows everyone to request
mastership:

User:purpledoc.com/msadm Full

User:purpledoc/msadm Full

Everyone Change

Denying Requests for Specific Objects

4 (optional) At each replica, deny requests for mastership of specific objects. By
default, requests are allowed for all branches and branch types.

For you to allow or deny mastership requests for a branch or branch type, your
current replica must master it. You can allow or deny mastership requests for all
instances of a branch type even if your current replica does not master the type.

If the branch type is a global type, its mastership request setting is stored in the
administrative VOB and applies to all local copies of the branch type.

Enabling Requests at the Replica Level

5 At each replica, enable requests for mastership at the replica level.

multitool reqmaster –enable vob-selector

The vob-selector specifies a VOB family, and your current replica is enabled for
mastership requests. You must enter this command on the VOB server host.

multitool reqmaster –deny branch-pname Denies requests for
mastership of the specified
branch.

multitool reqmaster –deny branch-type-selector Denies requests for
mastership of the specified
branch type.

multitool reqmaster –deny –instances
branch-type-selector

Denies requests for
mastership of all instances of
the specified branch type.
Chapter 11 - Implementing Requests for Mastership 149

To enable or disable permission at the replica level, you must be the VOB owner,
root (UNIX), or a member of the ClearCase administrators group (Windows). Also,
the replica must master its own replica object.

In an administrative VOB hierarchy, you enable requests for mastership in the
VOB replicas linked to the administrative VOB. You do not have to enable requests
in the administrative VOB replica unless it contains elements that are developed
serially.

After you enable requests for mastership, inform the appropriate developers about
mastership requests and how and when to use them. Working On a Team in the Working
in Base ClearCase part of Developing Software describes the procedures developers must
use to request mastership.

Note: The reqmaster command is a cleartool subcommand as well as a multitool
subcommand; developers who will request mastership do not have to install MultiSite
software on their client hosts. On Windows, developers can request mastership from
the Find Checkouts window, the Merge Manager, and the Version Tree Browser.

Customizing Synchronization Updates for Mastership
Requests

After a mastership request is processed at the master replica, sync_export_list is
invoked to export an update packet to the replica at the requester’s site. You can
customize the export by specifying one or more of the options and arguments that are
valid for sync_export_list, except for –replicas, which is always the replica at the
requester’s site.

To specify options and arguments for the export:

1 On the VOB server host of the exporting replica, edit the file
/var/adm/rational/clearcase/config/rfm_shipping.conf (UNIX) or
ccase-home-dir\var\config\rfm_shipping.conf (Windows).

2 Add the options and arguments to the following line:

RFM_OPTIONAL_ARGUMENTS =

For example, to compress update packets:

RFM_OPTIONAL_ARGUMENTS = -compress

To suppress informational messages, use a specific shipping class (in this example,
reqmaster), and compress update packets:

RFM_OPTIONAL_ARGUMENTS = -quiet 1 -compress -sclass reqmaster
150 Administrator’s Guide: Rational ClearCase MultiSite

On UNIX, MultiSite installation creates the file
ccase-home-dir/config/services/rfm_shipping.template. If
/var/adm/rational/clearcase/config/rfm_shipping.conf does not exist, the installation creates
it by copying the template file. If /var/adm/rational/clearcase/config/rfm_shipping.conf
exists, a note is printed in the installation log advising you to compare the existing file
to the template and make any necessary changes.

On Windows, MultiSite installation creates the file
ccase-home-dir\config\services\rfm_shipping.template. If
ccase-home-dir\var\config\rfm_shipping.conf does not exist, the installation creates it by
copying the template file. If ccase-home-dir\var\config\rfm_shipping.conf exists, you must
compare the existing file to the template and make any necessary changes.

Displaying Mastership Request Settings

To display the mastership request setting for a replica, branch type, or branch, use the
describe command or the Mastership tab in the Properties Browser (Windows). These
settings are also displayed in the Request Mastership dialog box on Windows.

Mastership request settings are not replicated, so the describe command and the
Mastership tab display the current replica’s settings. On Windows, the Request
Mastership dialog box has an option to display the settings at the master replica.

By default, the output from describe shows the mastership request setting. You can
also use the –fmt option and specify %[reqmaster]p to display only the mastership
request setting. For example:

■ To display a replica’s mastership request setting:

cleartool describe replica:boston_hub@/vobs/doc
replica "boston_hub"

created 15-Aug-00.14:19:03 by Susan Goechs (susan.user@minuteman)

replica type: unfiltered

master replica: boston_hub@/vobs/doc

request for mastership: enabled

owner: susan

group: user

host: "minuteman"

identities: preserved

permissions: preserved

feature level: 2

connectivity: connected

Attributes:

FeatureLevel = 2
Chapter 11 - Implementing Requests for Mastership 151

cleartool describe –fmt "%[reqmaster]p\n" replica:sanfran_hub@/vobs/dev
disabled

■ To display a branch type’s mastership request setting:

cleartool describe brtype:main@/vobs/doc
branch type "main"

created 15-Aug-00.14:19:03 by Susan Goechs (susan.user@minuteman)

"Predefined branch type used to represent the main branch of

elements."

master replica: boston_hub@/vobs/doc

request for mastership: allowed for branch type

request for mastership: allowed for all instances

...

cleartool describe –fmt "%[reqmaster]p\n" brtype:boston_main@/vobs/dev
denied for branch type

denied for all instances

■ To display a branch’s mastership request setting:

cleartool describe /vobs/doc/admin/setup.doc@@/main
branch "/vobs/doc/admin/setup.doc@@/main"

...

request for mastership: allowed

...

cleartool describe –fmt "%[reqmaster]p\n" /vobs/doc/plans/v3.0.doc@@/main
denied

Troubleshooting Mastership Requests

This section describes commands you can use to troubleshoot failed mastership
requests, and lists error messages and their meanings.

Troubleshooting Commands

To determine which replica masters a branch or branch type:

■ Use the cleartool describe command. For example:

cleartool describe –fmt "%[master]p\n" file1.txt@@\main
boston_hub@\dev

cleartool describe –fmt "%[master]p\n" brtype:main@/vobs/doc
boston_hub@/vobs/doc

■ (Windows) Display properties of the branch or branch type and click the
Mastership tab.
152 Administrator’s Guide: Rational ClearCase MultiSite

To determine whether a mastership request will succeed:

■ Use reqmaster –list (see Status Messages on page 154 for descriptions of the
output):

multitool reqmaster –nc –list file1.txt@@/main
multitool: Error: The following errors will be encountered

multitool: Error: file1.txt@@/main

Request Mastership remote "reqmaster" operation (host "taronga")

would fail:

You do not have permission to request mastership from the sibling

replica.

■ (Windows) In the Request Mastership dialog box, click Preview Request for
Mastership.

To list the event history of a branch or branch type and determine who has requested
its mastership, use the lshistory –minor –fmt command:

cleartool lshistory –min –fmt "%n\t%o\n%c" file.fm@@/main
file.fm@@/main chmaster
Reqmaster changed master replica from "boston_hub" to "buenosaires".
Requester: user "PURPLEDOC\fangio" in domain "PURPLEDOC" on host
"mardelplata"
file.fm@@/main chmaster
Reqmaster changed master replica from "tokyo" to "boston_hub".
Requester: user "PURPLEDOC\susan" in domain "PURPLEDOC" on host
"minuteman"
file.fm@@/main chmaster
Reqmaster changed master replica from "bangalore" to "tokyo".
Requester: user "PURPLEDOC\masako" in domain "PURPLEDOC" on host
"shinjuku"
file.fm@@/main chmaster
Reqmaster changed master replica from "sanfran_hub" to "bangalore".
Requester: user "PURPLEDOC\kumar" in domain "PURPLEDOC" on host
"ramohalli"
...

cleartool lshistory –min –fmt "%n\t%o\n%c" brtype:main@/vobs/doc
main chmaster
Reqmaster changed master replica from "sanfran_hub" to "boston_hub".
Requester: user "PURPLEDOC\susan" in domain "PURPLEDOC" on host
"minuteman"
main chmaster
Reqmaster changed master replica from "tokyo" to "sanfran_hub".
Requester: user "PURPLEDOC\jcole" in domain "PURPLEDOC" on host
"goldengate"
main chmaster
Reqmaster changed master replica from "bangalore" to "tokyo".
Requester: user "PURPLEDOC\masako" in domain "PURPLEDOC" on host
"shinjuku"
...
Chapter 11 - Implementing Requests for Mastership 153

Status Messages

Table 15 describes error messages you may see when you enable or disable requests at
the replica level, work with the ACL, and allow or deny requests at the branch type or
branch level. Table 16 describes error messages associated with mastership requests.

Errors that occur during the mastership request process, including errors that occur
during the synchronization export, are written to the msadm log file. To view it, use the
cleartool getlog command or the ClearCase Administration Console (Windows).

Table 15 Error Messages from Mastership Request Management Operations (Part 1 of 3)

Message Meaning of message and action to take

Could not check Request for
Mastership permissions.

The process that checks the ACL could not
determine whether you have read or write
permissions on the ACL. Check the msadm and
albd log files on the client and server hosts and
try the command again later.

Could not edit Request Mastership
ACL.

You do not have permission to edit the ACL.
To edit the ACL, you must be VOB owner, root
(UNIX), a member of the ClearCase
administrators group (Windows), or have write
permission on the ACL.

Could not get Request Mastership
ACL.

Your client computer could not retrieve the ACL
from the VOB server host. There may be a
network connection problem. Check the msadm
and albd log files on the client and server hosts
and try the command again later.

Could not resolve object
'object-identifier'.

The command could not find the object. Check
the spelling and syntax of the object selector. In
a dynamic view context, mount the VOB and try
the command again.

Object must be a branch or branch
type.

Specify a branch or branch type.
Examples of branch specifications:
/vobs/dev/acc.c@@/main (UNIX)
\doc\stage.pl@@\main\debug (Windows)
Examples of branch type specifications:
brtype:main
brtype:boston_main@/vobs/dev (UNIX)
brtype:v1.0_bugfix@\tests (Windows)
154 Administrator’s Guide: Rational ClearCase MultiSite

Request for mastership ACL
operations on multiple replicas are
not allowed.

Specify only one VOB selector.

The specified selector must be a
VOB selector.

Specify a VOB selector. For example:
vob:/vobs/dev (UNIX)
vob:\tests (Windows)Request for mastership ACL

operations require a VOB-selector
argument.

The VOB family feature level is too
low to enable requests for
mastership.

The VOB family feature level is less than 2.
If all replicas in the VOB family are at feature
level 2 or greater, raise the family feature level.
If any replica in the VOB family has a feature
level less than 2, ask the administrator of that
replica to upgrade to a newer version of
Rational ClearCase (if necessary), raise the
feature level of the replica, and send an update
packet to the sibling replicas. Then raise the
family feature level.

This replica does not master its
replica object.

A replica must be self-mastering for you to
enable requests for mastership in that replica.
See Transferring Mastership of a Replica Object on
page 132.

This replica does not master the
branch.

For you to allow or deny mastership requests
for a branch, your current replica must master
the branch.
Determine which replica masters the branch
and ask the administrator of the replica to
change mastership of the branch to your replica.

This replica does not master the
branch type.

For you to allow or deny mastership requests
for a branch type, your current replica must
master the branch type.
Determine which replica masters the branch
type and ask the administrator of the replica to
change mastership of the branch type to your
replica.

Table 15 Error Messages from Mastership Request Management Operations (Part 2 of 3)

Message Meaning of message and action to take
Chapter 11 - Implementing Requests for Mastership 155

You cannot specify -instances with
the -enable option.

To enable requests at the replica level, use the
–enable option and specify a VOB selector. To
deny or allow requests for all instances of a
branch type, use the –deny or –allow option
with the –instances option and specify a branch
type selector.

Table 16 Error Messages from Mastership Requests (Part 1 of 3)

Message Meaning of message and action to take

An error at the sibling replica
prevented the request for
mastership.

The error cannot be specified. Try the request
again later. If the request continues to fail, ask
the administrator of the master replica to check
the ClearCase and MultiSite log files.

At least one checkout prevents the
request.

There is a blocking checkout on the branch
being requested or on an instance of the branch
type being requested. Try the request again
later. If the request continues to fail, ask the user
at the sibling replica to check in the element.

Could not resolve object
'object-identifier'.

The command could not find the object. Check
the spelling and syntax of the object selector.

Incompatible versions of ClearCase
software and/or databases

Your client host is running a later major version
of ClearCase than the replica that masters the
branch or branch type. Regular ClearCase
client/server compatibility rules apply to
mastership requests.

Locks at the sibling replica
prevented the request for
mastership.

A request for mastership fails if the branch or
branch type is locked at the master replica. Ask
the administrator of the master replica to unlock
the branch or branch type.
Note: The reqmaster command does not check
the –nusers list associated with the lock, so a
request for mastership will fail even if you are
on the –nusers list.

Requests are denied for all objects
mastered by the sibling replica.

Mastership requests are not enabled for the
replica. Ask the administrator of the master
replica of the branch or branch type to enable
mastership requests at the replica level.

Table 15 Error Messages from Mastership Request Management Operations (Part 3 of 3)

Message Meaning of message and action to take
156 Administrator’s Guide: Rational ClearCase MultiSite

Requests are denied for all objects
of the given type.

Mastership requests are denied for all instances
of the branch type. Ask the administrator of the
master replica of the branch to use reqmaster
–allow –instances or the Properties Browser
(Windows) to allow requests for all instances.

Requests are denied for the object. Mastership requests are denied for the branch
or branch type. Ask the administrator of the
master replica to use reqmaster –allow or the
Properties Browser (Windows) to allow
requests for the branch or branch type.

Requests for mastership can be made
only for branches and branch types.

You must specify a branch or branch type in the
reqmaster command.
Examples of branch specifications:
/vobs/dev/acc.c@@/main (UNIX)
\doc\stage.pl@@\main\debug (Windows)
Examples of branch type specifications:
brtype:main
brtype:boston_main@/vobs/dev (UNIX)
brtype:v1.0_bugfix@\tests (Windows)

Requests for mastership of UCM
objects are not supported.

You cannot request mastership of a branch or
branch type associated with a UCM stream.

The object is not a branch or a
branch type.

You must specify a branch or branch type in the
reqmaster command.
Examples of branch specifications:
/vobs/dev/acc.c@@/main (UNIX)
\doc\stage.pl@@\main\debug (Windows)
Examples of branch type specifications:
brtype:main
brtype:boston_main@/vobs/dev (UNIX)
brtype:v1.0_bugfix@\tests (Windows)

The object is already mastered by
replica 'replica-selector'.

Your current replica already masters the
requested object.

Table 16 Error Messages from Mastership Requests (Part 2 of 3)

Message Meaning of message and action to take
Chapter 11 - Implementing Requests for Mastership 157

Serial Development Scenario

This section describes an example of serial development using requests for mastership.

The object was not found at the
sibling replica. This may indicate
that the replicas are not in sync.

Your current replica has more up-to-date
information than other replicas in the VOB
family. Ask the administrator of the current
replica to do both of the following things:
➤ Verify that no update packets are waiting to

be imported at other replicas in the VOB
family.

➤ Send update packets more frequently. (Fre-
quent exchange of packets means that repli-
cas have up-to-date information about the
state of other replicas.)

The sibling replica does not master
the object.

Your current replica has out-of-date information
about the mastership of the object. Ask the
administrator of the current replica to do both of
the following things:
➤ Verify that no update packets are waiting to

be imported at your current replica or the
sibling replica.

➤ Send update packets more frequently. (Fre-
quent exchange of packets means that repli-
cas have up-to-date information about the
state of other replicas.)

You do not have permission to
request mastership from the sibling
replica.

You are not included on the replica’s access
control list. Ask the administrator of the sibling
replica to use reqmaster –acl –get to display the
access control list and check the following
things:
➤ Spelling of user and domain names
➤ All variants of the domain name are

included
➤ User’s access level

Table 16 Error Messages from Mastership Requests (Part 3 of 3)

Message Meaning of message and action to take
158 Administrator’s Guide: Rational ClearCase MultiSite

Planning the Implementation

The company PurpleDoc develops documentation at three sites. There are two VOB
families:

■ /vobs/doc contains binary files. This VOB has three replicas: boston_hub, tokyo,
and sanfran_hub.

The writers working in /vobs/doc use serial development because the files are in
binary format. However, a team of writers in Boston needs control of a certain set
of files at all times.

■ /vobs/html contains HTML files and scripts. This VOB has three replicas:
boston_hub, tokyo, and sanfran_hub.

The writers working on HTML files in /vobs/html use site-specific branch types:
boston_main, tokyo_main, and sanfran_main. Writers at a particular site cannot
use branch types mastered by replicas at other sites.

The tool developers working on scripts use the main branch. Because the scripts
can be merged, the developers can use nonmastered checkouts to do their work.

Setting Up Access Controls

The administrators and project managers at the Boston, San Francisco, and Tokyo sites
make the following decisions:

■ Writers are allowed to request mastership of all branches in /vobs/doc, except for
the branches v3.0.doc@@/main, schedule.doc@@/main, and
roadmap.doc@@/main.

■ Writers are not allowed to request mastership of any branches of type
boston_main, tokyo_main, or sanfran_main in /vobs/html.

■ Tool developers are allowed to request mastership of all branches of type main in
/vobs/html.

Each administrator completes the following steps on the replica’s VOB server host.
(This example takes place at the Boston site.)

1 Add writers at other sites to the ACL for /vobs/doc.

a Place the following lines in the file /tmp/doc_acl:

Replica boston_hub@/vobs/doc

Request for Mastership ACL:

User:boston.purpledoc.com/msadm Full
Chapter 11 - Implementing Requests for Mastership 159

b Use the file to set the replica’s ACL:

2 Add tool developers at other sites to the ACL for /vobs/html.

a Place the following lines in the file /tmp/html_acl:

b Use the file to set the replica’s ACL:

Note: After you set the ACL, you can delete the temporary ACL files you created.

3 Deny mastership requests for specific branches and branch types:

multitool reqmaster –deny /vobs/doc/plans/v3.0.doc@@/main
/vobs/doc/plans/schedule.doc@@/main /vobs/doc/plans/roadmap.doc@@/main

multitool reqmaster –deny –instances brtype:boston_main@/vobs/html

multitool reqmaster –deny brtype:boston_main@/vobs/html

4 Enable requests for mastership at the replica level.

multitool reqmaster –enable vob:/vobs/doc vob:/vobs/html

User:tokyo.purpledoc.com/masako Change

User:tokyo.purpledoc.com/sato Change

User:tokyo.purpledoc.com/ito Change

User:sf.purpledoc/jcole Change

User:sf.purpledoc/marni Change

User:sf.purpledoc/david Change

multitool reqmaster –acl –set /tmp/doc_acl vob:/vobs/doc

Replica boston_hub@/vobs/html

Request for Mastership ACL:

User:boston.purpledoc.com/ccadmin Full

User:tokyo.purpledoc.com/masako Change

User:sf.purpledoc/david Change

multitool reqmaster –acl –set /tmp/html_acl vob:/vobs/html
160 Administrator’s Guide: Rational ClearCase MultiSite

Writing Config Specs

In this scenario, the writers use the config specs listed below. Each location has rules
for creating site-specific branches in /vobs/html and selecting the latest version on that
branch. The /main/LATEST rule is used in all the config specs for development in
/vobs/doc and all other VOBs.

Boston config spec
element * CHECKEDOUT
element /vobs/html/scripts/... /main/LATEST
element /vobs/html/files/... /main/boston_main/LATEST
element /vobs/html/files/... /main/LATEST -mkbranch boston_main
element * /main/LATEST

San Francisco config spec
element * CHECKEDOUT
element /vobs/html/scripts/... /main/LATEST
element /vobs/html/files/... /main/sanfran_main/LATEST
element /vobs/html/files/... /main/LATEST -mkbranch sanfran_main
element * /main/LATEST

Tokyo config spec
element * CHECKEDOUT
element /vobs/html/scripts/... /main/LATEST
element /vobs/html/files/... /main/tokyo_main/LATEST
element /vobs/html/files/... /main/LATEST -mkbranch tokyo_main
element * /main/LATEST

Requesting Mastership

The following sections describe how the writers use mastership requests to do their
work.

Serial Development of a File That Cannot Be Merged

1 Masako, in Tokyo, tries to check out the file \doc\ref\update.fm, but the checkout fails
because the Tokyo replica doesn’t master the main branch:

cleartool checkout –c "new command options" update.fm
cleartool: Error: Unable to perform operation "checkout" in replica

"tokyo" of VOB "\doc".

cleartool: Error: Master replica of branch "\main" is "boston_hub".

cleartool: Error: Unable to check out "update.fm".

2 She requests mastership of branch update.fm@@\main:

cleartool reqmaster –c "Tokyo needs mastership" update.fm@@\main
update.fm@@\main: Change of mastership at sibling replica

"boston_hub" was successful.

Mastership is in transit to the new master replica.
Chapter 11 - Implementing Requests for Mastership 161

3 Periodically, she retries the checkout or displays properties of the branch to
determine whether mastership has been received. After mastership is received at
her replica, the describe command shows that her replica masters the branch and
her checkout succeeds:

cleartool describe –fmt "%[master]p\n" update.fm@@\main
tokyo@\doc

cleartool checkout –c "new command options" update.fm
Checked out "update.fm" from version "\main\30".

Serial Development of a File That Can Be Merged

1 John, in San Francisco, needs to change a script. He can’t check out the file using a
reserved checkout because the branch is mastered by the Boston replica:

cleartool checkout –c "option to suppress status msgs"
/vobs/html/scripts/conv_fm.pl
cleartool: Error: Unable to perform operation "checkout" in replica

"sanfran_hub" of VOB "/vobs/html".

cleartool: Error: Master replica of branch "/main" is "boston_hub".

cleartool: Error: Unable to check out

"/vobs/html/scripts/conv_fm.pl".

2 He requests mastership of the branch:

cleartool reqmaster –c "SF: add new option"
/vobs/html/scripts/conv_fm.pl@@/main
/vobs/html/scripts/conv_fm.pl@@/main: Change of mastership at

sibling replica "boston_hub" was successful.

Mastership is in transit to the new master replica.

3 He checks out the file with the –unreserved and –nmaster options and proceeds to
edit the file:

cleartool checkout –c "option to suppress status msgs" –unreserved
–nmaster /vobs/html/scripts/conv_fm.pl
Checked out "/vobs/html/scripts/conf_fm.pl" from version

"/main/15".

4 Until mastership is received at the San Francisco replica, he cannot check in his
changes:

cleartool checkin –nc conv_fm.pl
cleartool: Error: Unable to perform operation "checkin" in replica

"sanfran_hub" of VOB "/vobs/html".

cleartool: Error: Master replica of branch "/main" is "boston_hub".

cleartool: Error: Unable to check in "conv_fm.pl".
162 Administrator’s Guide: Rational ClearCase MultiSite

5 When mastership is received at the San Francisco replica, he attempts to check in
the file, but finds that he must perform a merge:

cleartool checkin –nc conv_fm.pl
cleartool: Error: The most recent version on branch "/main" is not

the predecessor of this version.

cleartool: Error: Unable to check in "conv_fm.pl".

6 He performs the merge, and checks in the file:

cleartool merge –to conv_fm.pl –c "merging from LATEST" –version
/main/LATEST

<<< file 1: /vobs/html/conv_fm.pl@@/main/15

>>> file 2: /vobs/html/conv_fm.pl@@/main/16

>>> file 3: conv_fm.pl

. . .

Moved contributor "conv_fm.pl" to "conv_fm.pl.contrib".

Output of merge is in "conv_fm.pl".

Recorded merge of "conv_fm.pl".

cleartool checkin –nc conv_fm.pl
Checked in "conv_fm.pl" version "/main/17".

Requesting Mastership of a Branch Type

The Boston developers have been using nonmastered checkouts to work on scripts,
and their project leader decides that all the changes need to be checked in. In order to
reduce the number of mastership requests for individual branches, the project leader
requests mastership of the main branch type.

1 She requests mastership of the branch type:

cleartool reqmaster –c "merging party in Boston" brtype:main@/vobs/html
brtype:main@/vobs/html: Change of mastership at sibling replica

"sanfran_hub" was successful.

Mastership is in transit to the new master replica.

2 Periodically, she displays properties of the branch type to determine whether
mastership has been received. After mastership is received at her replica, the
describe command shows that her replica masters the branch type.

cleartool describe –fmt "%[master]p\n" brtype:main@/vobs/html
boston_hub@/vobs/html

All of the branches that had default mastership are now mastered by the Boston
replica. If any of the branches were explicitly mastered by the San Francisco or Tokyo
Chapter 11 - Implementing Requests for Mastership 163

replicas, their mastership was not changed. Developers must request mastership for
those specific branches.

The developers in Boston can perform necessary merges and check in their changes.
164 Administrator’s Guide: Rational ClearCase MultiSite

12Using MultiSite for
VOB Backup and
Interoperability
This chapter describes how to use Rational ClearCase MultiSite to back up a VOB and
to provide access to VOBs in a heterogeneous network.

Backing Up VOBs with MultiSite

There are two ways to use MultiSite as a backup strategy:

■ Using a replica as a backup to avoid locking a VOB
■ Using multiple replicas to provide incremental backups

Using multiple replicas in a local area network may help with reliability, availability,
performance, and backup strategy. However, recovery issues limit how easily and
rapidly clients may be switched from one replica to another. The details of the recovery
process are described in Restoring and Replacing VOB Replicas on page 198.

Using MultiSite for backups means that the backup replica needs to remain online so
that it can be updated frequently from the original. Almost twice as much disk space
is required (you do not need exactly twice as much space, because derived objects are
not replicated and the cleartext pool for the backup replica is smaller or nonexistent).
Also, you need a MultiSite license as well as a Rational ClearCase license for each
developer who accesses the replicated VOB.

Using a Backup Replica

To back up a VOB consistently, the ClearCase administrator must lock the VOB.
However, many administrators cannot find convenient times to lock the VOB so that
the lock does not interfere with development work. One solution is to use MultiSite to
create a replica of a VOB in the same local area network as the original. Updates from
the original VOB to the backup replica are scheduled to match the recovery
characteristics desired, that is, how much development work you can afford to lose. At
backup time, the backup replica is locked and backed up, thereby not interfering with
development work at the original VOB.
165

Handling Objects That Are Not Replicated

The most important thing to note is that some objects in a VOB are not replicated. The
following objects are not replicated, and therefore are not restored from backup:

■ Derived objects

After a recovery from backup, developers must rebuild derived objects associated
with the VOB. Checked-in derived objects are replicated, so they are backed up.

■ Triggers

To ensure that you can re-create triggers after a restoration from backup, you must
record information about all triggers in a VOB replica. For example, use the
command lstype –kind trtype to list all triggers in a VOB, use the describe trtype:
command to list details about each trigger, and then save that information
somewhere outside the VOB.

■ Nonobsolete locks

As with triggers, you must record information about nonobsolete locks. You can
write scripts that capture and re-create the trigger and lock information.

Also, pool assignments are specific to a replica, so re-creating the replica from a backup
replica can undo changes made to them. If you make major changes to a VOB’s pool
structure, use the chpool command to duplicate these changes at the backup replica.
(At replica creation, you can also use the –pooltalk option with mkreplica –import to
make pool assignments.)

Designing Synchronization Strategy

You must determine the frequency and direction of synchronization. Typically,
synchronization occurs in one direction only; that is, the backup replica never sends
packets to the development replica, except during restoration.

Frequency of synchronization depends on your development environment. Some
replicas synchronize every 24 hours, but replicas with rapid development may
synchronize every 15 minutes.

Using Replicas with Incremental Backup

When you use a replica as an incremental backup of a VOB, you still back up the
original VOB. You set up a replica of the original VOB in the same local area network,
and schedule frequent unidirectional synchronizations. If you restore the original VOB
from backup, the replica serves as an incremental backup by supplying changes made
since the last backup.
166 Administrator’s Guide: Rational ClearCase MultiSite

This strategy reduces the frequency of backups at the original replica. It avoids some
of the procedures described in Restoring a Replica from Backup on page 199, but still
requires saving information about triggers, locks, and major pool changes. It also has
the same limitations as unreplicated recovery from backup: a view and a VOB may not
be consistent with each other after ClearCase recovery. It can, however, reduce the
frequency of backups enough to fit into normal maintenance schedules.

The backup replica must be registered with a different registry host.

Restoring a Replica from Backup

Use the procedure described in Restoring a Replica from Backup on page 199.

Using MultiSite for Interoperability

You can use multiple replicas in local area networks to provide native access to VOBs
in a heterogeneous network. The following sections describe MultiSite support for
multiple replicas in a LAN and give setup instructions.

Advantages and Disadvantages

Advantages of using MultiSite for interoperability:

■ You do not need to purchase or maintain NFS or SMB software.
■ Replicas can be used in backup strategies.
■ User and group IDs do not have to match across platforms.

Disadvantages of using MultiSite for interoperability:

■ You must configure and maintain MultiSite synchronization.
■ VOB servers are needed on both UNIX and Windows systems.
■ Each replica must master its own branch; alternatively, mastership can be

transferred.
■ Changes made on each platform must be imported and merged on the other.
■ Replicas cannot preserve identities.

Restrictions on Multiple Replicas in a LAN

You must observe these restrictions when you create multiple replicas in a LAN:

■ Do not register multiple replicas of a VOB family on a single registry host.

This restriction prevents multiple replicas from being mounted on a host and
prevents developers from accessing multiple replicas of a VOB family with a
single view.
Chapter 12 - Using MultiSite for VOB Backup and Interoperability 167

■ Locate cross-VOB symbolic links in branched directories.

Note: If the leaf name of the UNIX VOB tag is the same as the Windows VOB tag
(for example, /vobs/dev and \dev), this restriction does not apply.

Cross-VOB symbolic links point to particular replicas. To make it possible for
clients to use a different replica, you can branch the directory that contains the
symbolic link. Branching the directory may lead to partitioning replica use based
on projects.

For example, assume a project uses the branch v2.0_integration as the integration
branch and the directory vob_links contains all the symbolic links that cross VOBs.
The project manager creates a v2.0_integration branch of the directory vob_links,
and then adjusts any symbolic links to point to the VOB tag of the replica in use for
that project. For example, on UNIX:

ls –l
tests -> ../../tests

gui_src -> ../../gui_src

design -> ../../design

On Windows:

cleartool ls
tests -> ../../tests

gui_src -> ../../gui_src

design -> ../../design

The leaf name of the VOB tag of the local replica is gui_src_replica2, so the project
manager adjusts the symbolic links as follows:

cleartool checkout –nc .
cleartool rmname gui_src
cleartool ln –s ../../gui_src_replica2 gui_src
cleartool checkin .

This ensures that the correct replica is referenced during a build of this project.

You can also use one symbolic link that refers to another VOB and have other
symbolic links refer to it. For example:

rational_install -> ../../vobs/rational/install

release_list -> rational_install/release_list

This limits the number of duplicate links that must be maintained. We also
recommend that you avoid cross-VOB symbolic links as much as possible.

■ Make sure case-sensitivity and text mode settings are correct.

You must make sure that case-sensitivity and the text mode are handled properly.
If there are case conflicts among files at different replicas, errors occur during
168 Administrator’s Guide: Rational ClearCase MultiSite

synchronization. The text mode controls the use of line terminators in files;
differences in use of line terminators between UNIX and Windows editors cause
unexpected behavior during file comparisons and merges.

The Administrator’s Guide for Rational ClearCase describes how to handle
case-sensitivity and text mode setup. Be sure to read it carefully before creating
UNIX and Windows replicas.

Caution: Do not use MultiSite to create multiple copies of a VOB in a single ClearCase
region. Because the VOB UUID is identical for all replicas in a VOB family and is stored
in many structures in a VOB, there is no way to make the copy of the VOB unique.
Creating and mounting multiple copies of a VOB in a single region causes clearmake
and views to exhibit unpredictable behavior, may cause data loss, and is not supported
by Rational Software.

Setting Up Multiple Replicas at One Site

This section describes the process of creating multiple replicas at one site.

Creating a replica of an existing VOB doesn’t split the storage. On the contrary, the new
replica requires additional disk space to accommodate another complete copy of the
VOB’s database and storage pools. For information about relocating VOB data, see the
Administrator’s Guide for Rational ClearCase.

If both replicas are on UNIX hosts or in the same Windows domain, they can preserve
identities. Any change in the owner, group, or access mode of an element at one of the
replicas is propagated to the other replica.
Chapter 12 - Using MultiSite for VOB Backup and Interoperability 169

The following procedure creates a Windows replica from a UNIX replica:

1 On the UNIX host:

multitool mkreplica –export –work /tmp/ms_wkdir –fship
–c "create replica for Windows use" aquarium:boston_windows
Generating replica creation packet

/opt/rational/clearcase/shipping/ms_ship/outgoing/repl_boston_hub_2

3-Dec-02.13.16.43_21767_1

- shipping order file is

/opt/rational/clearcase/shipping/ms_ship/outgoing/sh_o_repl_boston_

hub_23-Dec-02.13.16.43_21767_1

Dumping database...

. . .

Dumper done.

Attempting to forward/deliver generated packets...

 -- Forwarded/delivered packet

/opt/rational/clearcase/shipping/ms_ship/outgoing/repl_boston_hub_2

3-Dec-02.13.16.43_21767_1

2 On the Windows host:

multitool lspacket –short
c:\Program Files\Rational\ClearCase\var\shipping\ms_ship\incoming\r

epl_boston_hub_23-Dec-02.13.16.43_21767_1

multitool mkreplica –import –npreserve –work c:\tmp\msite
-tag \dev –public –vob \\aquarium\vobs\dev.vbs
c:\Program Files\Rational\ClearCase\var\shipping\ms_ship\incoming\repl
_boston_hub_23-Dec-02.13.16.43_21767_1
The packet can only be used to create replica "boston_windows"

 - VOB family is ecf68c58.90fe11cd.a393.08:00:09:49:29:cd

 - replica OID is 9947c591.912d11cd.a4b1.08:00:09:49:29:cd

Should I create this replica? [no] yes
Comments for "boston_windows":

provide native Windows access to VOB
.
Processing packet

c:\Program Files\Rational\ClearCase\var\shipping\ms_ship\incoming\r

epl_boston_hub_23-Dec-02.13.16.43_21767_1

...
170 Administrator’s Guide: Rational ClearCase MultiSite

Troubleshooting

13Troubleshooting
MultiSite Operations
This chapter describes common situations in which running a Rational ClearCase
MultiSite command produces an unexpected result, sometimes accompanied by a
warning or error message. The situations fall into these categories:

■ Expected conditions occur because certain inconsistent changes at different
replicas cannot be avoided. In many cases, a MultiSite operation resolves the
inconsistency, so you need not take any action.

■ Recoverable errors are user errors, hardware problems, and other problems that
you resolve by performing a recovery procedure.

■ Serious errors are problems that may require assistance from Rational Customer
Support.

The organization of the descriptions follows the general MultiSite data flow from
replica creation through the phases of replica synchronization—export, transport, and
import.

For information about changing mastership, see Chapter 10, Managing Mastership. For
information about mastership request errors, see Chapter 11, Implementing Requests for
Mastership.

Troubleshooting Tips

Use the following files and commands to help diagnose MultiSite problems:

■ Log files. To view log files, use the cleartool getlog command or the ClearCase
Administration Console (Windows).

❑ MultiSite log files

Export/import
problems

Files in directory
/var/adm/rational/clearcase/log/sync_logs (UNIX)
ccase-home-dir\var\log (Windows)

Transport problems shipping
173

❑ ClearCase log files. If Rational ClearCase problems affect MultiSite operation
(for example, a MultiSite operation fails when the ClearCase db_server cannot
process the VOB database), useful information appears in these log files.

■ Install the latest product patches.

■ Most MultiSite commands do not require a view context or a mounted VOB
replica. If a command such as syncreplica –import fails, you can produce better
diagnostics by following the steps below.

On UNIX:

a Set a dynamic view or change to a directory within a snapshot view.

b Mount the VOB replica (dynamic view) or load a single file in the VOB (snapshot
view).

c Change into a directory in the replica. If you used a snapshot view, this must be
the directory containing the file you loaded.

d Enter the command again.

On Windows:

a Change to a view drive or to a directory within a snapshot view.

b Mount the VOB replica (dynamic view) or load a single file in the VOB (snapshot
view).

c Change into a directory below the root directory. If you used a snapshot view,
this must be the directory containing the file you loaded.

d Enter the command again.

■ The commands listed below provide valuable information, especially if you are
sending data to Rational Customer Support:

multitool –version
multitool lsreplica –long
multitool lsepoch
uname –a (UNIX)
cleartool –version

Mastership request
problems

msadm

Other errors Command window
Event Viewer (Windows)
174 Administrator’s Guide: Rational ClearCase MultiSite

On Windows, look for applicable messages in the Event Viewer’s application log
and system log, and in the ClearCase MVFS log files (c:\mvfslogs).

■ You can list the history of exports and imports at your replica.

To list the exports from your current replica to a sibling replica, use the following
command:

cleartool lshistory replica:sibling-replica-name@vob-selector

For example, to list exports from your current replica in the family /vobs/dev to
the replica sanfran_hub:

cleartool lshistory replica:sanfran_hub@/vobs/dev
12-Jul.16:13 root export sync from replica "boston_hub" to replica

"sanfran_hub"

"Exported synchronization information for replica "sanfran_hub".

Row at export was: boston_hub=149 sanfran_hub=115"

29-Jun.16:19 smg change epoch of replica "sanfran_hub"

"Changed epoch row for replica

Old row was: boston_hub=152 sanfran_hub=115

New row is: boston_hub=149 sanfran_hub=115

epoch row set by special connected epoch tool."

29-Jun.10:12 smg export sync from replica "boston_hub" to replica

"sanfran_hub"

"Exported synchronization information for replica "sanfran_hub".

Row at export was: boston_hub=149 sanfran_hub=115"

...

To list the imports at your current replica, use the following command:

cleartool lshistory replica:current-replica-name@vob-selector

For example, to list imports at the replica boston_hub in the family /vobs/dev:

cleartool lshistory replica:boston_hub@/vobs/dev
25-Jun.11:46 smg import sync from replica "sanfran_hub" to

replica "boston_hub"

"Imported synchronization information from replica "sanfran_hub".

Row at import was: boston_hub=149 sanfran_hub=112"

10-Jun.12:36 smg import sync from replica "sanfran_hub" to

replica "boston_hub"

"Imported synchronization information from replica "sanfran_hub".

Row at import was: boston_hub=136 sanfran_hub=111"
Chapter 13 - Troubleshooting MultiSite Operations 175

Replica Export Problems

If the mkreplica –export command finds that a replica with the specified name exists
in the family (Replica replica-name already exists), select another name for the new
replica, and reenter the mkreplica –export command.

If mkreplica –export –fship fails while it is transporting the packet, it does not remove
the new replica’s replica object at the creating replica. To complete the replica creation,
use shipping_server to transfer the replica-creation packet.

Replica Import Problems

The following sections describe how to fix problems that occur during import of a
replica-creation packet.

Permissions Problems

When you use the –preserve option with mkreplica –import, import of a
replica-creation packet fails if the identity of the user importing the packet does not
have rights to create source container files with particular groups. To fix this problem,
do one of the following things:

■ Add the missing group to the user’s group list.

■ Run mkreplica –import with the –ignoreprot option. With this option, the import
will be completed even if protection failures occur. After the import is done, you
must run checkvob to find and fix protection problems.

Conflict in Object Registry

A recoverable error occurs if the mkreplica –import command detects a conflict at the
registry level because an entry exists in the object registry:

Replica replica-name already exists

A conflict in the registry can occur if a mkreplica –import commands fails and removes
the VOB storage directory but not the registry entry. Verify that cleartool lsvob does
not report any VOB storage directory at the location you specified with the –vob
option. In this case, the object registry contains an entry with no corresponding VOB
tag. For example:
176 Administrator’s Guide: Rational ClearCase MultiSite

cleartool lsvob –storage /net/goldengate/vobstg/dev.vbs
cleartool: Error: Unable to access "/net/goldengate/vobstg/dev.vbs":
No such file or directory.
cleartool: Error: Versioned object base not found:
"/net/goldengate/vobstg/dev.vbs".
cleartool: Error: No vob tags found for vob
"/net/goldengate/vobstg/dev.vbs".

Restore the registry to a consistent state by following these steps:

1 In the VOB object registry file, find the incorrect entry for the VOB storage
directory pathname you specified. This file is located on the network’s registry
server host in /var/adm/rational/clearcase/rgy/vob_object on UNIX or
ccase-home-dir\var\rgy\vob_object on Windows.

2 Using the UUID in this entry, enter a cleartool unregister –vob –uuid command to
remove the incorrect entry.

Caution: Do not edit the information in the registry file directly.

3 With the registry restored to a consistent state, reenter the mkreplica –import
command.

4 After the mkreplica command succeeds, delete the replica-creation packet from
disk storage (if appropriate).

Conflict in Tag Registry

A recoverable error occurs if the mkreplica –import command detects a conflict at the
registry level because an entry exists in the tag registry:

Replica replica-name already exists

mkreplica –import may be able to create and register the VOB storage directory, but
may find that the specified VOB tag is already in use. In this case, create another VOB
tag for the new VOB storage directory with a cleartool mktag command or with the
ClearCase Administration Console (available on Windows).

You do not have to reenter the mkreplica –import command in this case. You can
delete the replica-creation packet from disk storage (if appropriate).
Chapter 13 - Troubleshooting MultiSite Operations 177

Synchronization Export Problems

This section describes problems that can occur during the export phase of
synchronization.

Cannot Find Oplog Entry

syncreplica –export can fail with the following warning message:

Can not find oplog from replica replica-name with id oplog-ID
Gap in oplog entries may indicate missing oplog entries

(For more information about oplog entries, see The Operation Log on page 22 and
Scrubbing Parameters for Replicas on page 52.)

This error occurs when the sending replica’s epoch number matrix does not match its
set of oplog entries. For example:

■ Before sending an update from sydney to buenosaires, syncreplica checks the
epoch number matrix for sydney. It determines that the last sydney operation sent
to buenosaires was 3620.

■ syncreplica finds that oplog scrubbing in the sydney database has removed some
of the operations that follow 3620. The earliest sydney operation remaining in the
oplog is 5755.

This discrepancy may be an expected condition. For example, when you change the
synchronization pattern for a family, replicas that have not communicated with each
other in the past start exchanging update packets. Synchronizing two replicas
(syncreplica –export followed by syncreplica –import) updates epoch number matrix
rows for the sending and receiving replicas, but it does not revise the row for any other
replica. If two replicas rarely (or never) send updates to each other directly, the relevant
rows in their epoch number matrices are out of date (possibly consisting of all zeros).
This is not a problem, as long as the replicas receive operations indirectly, for example,
through a hub replica.

In this case, you must inform sydney about the true state of buenosaires, information
that is not reflected in sydney’s epoch number matrix. This information enables
sydney to determine which oplog entries must be sent to buenosaires.

If the sites have an IP connection, use the procedure in chepoch –actual Method.
Otherwise, use the procedure in lsepoch and chepoch Method.
178 Administrator’s Guide: Rational ClearCase MultiSite

chepoch –actual Method

At sydney, use the chepoch –actual command to contact buenosaires, retrieve its
actual state, and reset the epoch row for buenosaires.

multitool chepoch –actual replica:buenosaires@/vobs/tests

lsepoch and chepoch Method

Proceed as follows:

1 At buenosaires (destination replica), run lsepoch to determine the actual state of
buenosaires:

multitool lsepoch buenosaires@/vobs/tests
For VOB replica "/vobs/tests":

Oplog IDs for row "buenosaires" (@ mardelplata):

oid:ac93e6cf.14a311d5.bbcc.00:01:80:c0:4b:e7=4000 (buenosaires)

oid:c6b8c9b0.038d11d1.b083.00:60:97:98:42:69=5927 (sydney)

2 Send the lsepoch command output back to the sending site, where the
administrator of sydney uses this data in a chepoch command to inform sydney
about the actual state of buenosaires.

cd /vobs/dev
multitool chepoch buenosaires
Enter specifications for epochs to change in row "buenosaires" (one

per line)

oid:ac93e6cf.14a311d5.bbcc.00:01:80:c0:4b:e7=4000
oid:c6b8c9b0.038d11d1.b083.00:60:97:98:42:69=5927
.
Change oplog IDs in row "buenosaires" [no] yes
Epoch row successfully set.

3 At sydney, enter the original syncreplica –export command.

❑ If the command fails, buenosaires is in jeopardy. Have other replicas in the
family perform Step 1 through Step 3, taking the role of sydney to exchange
update packets with buenosaires. The hope is that some other replica has not
yet scrubbed its copies of the missing oplog entries. If no other replica has the
missing oplog entries, you must create a new replica. See Replacing an Existing
Replica on page 201.

❑ If the command succeeds and the packet is imported successfully at
buenosaires, buenosaires is up to date.

Note: Have all administrators review their oplog scrubbing procedures. See Scrubbing
Parameters for Replicas on page 52.
Chapter 13 - Troubleshooting MultiSite Operations 179

Oplog Gap Detected During Creation of Update Packet

syncreplica –export can fail with the following warning message:

Gap in oplog detected for replica replica-name.
Wanted oplog id: oplog-ID. Got oplog id: oplog-ID.

This error message can indicate a serious error, involving an unrecoverable data loss.
If the procedures described in Cannot Find Oplog Entry on page 178 do not work,
contact Rational Customer Support.

Export Failure During Version Construction

An export operation can fail with a message like the following:

multitool: Error: Type manager "z_text_file_delta" failed
construct_version operation.
multitool: Error: Could not get statistics of the version data file for
this operation.
multitool: Error: Synchronization update terminated prematurely due to
error -- aborting.

This situation can occur when an export operation tries to access an element that is
being modified by a user. In this case, retry the export.

Packets Accumulate in Outgoing Storage Bay

Problems with packet delivery are recoverable errors. In many cases, the MultiSite
automatic-retry capability recovers from errors.

A replica-creation or update packet submitted to the store-and-forward facility for
transport to one or more other hosts is accompanied by a shipping order file. (A logical
packet can include multiple physical packets, each with its own shipping order.) The
shipping order typically has an expiration time, determined by one of the following:

■ A date-time specified with the –pexpire option in the syncreplica or mkreplica
command that generated the packet (or the mkorder command that submits an
arbitrary file to the store-and-forward facility)

■ On UNIX, the EXPIRATION value in the store-and-forward configuration file
(shipping.conf) on the sending host

■ On Windows, the Packet Expiration value specified in the MultiSite Control Panel
on the sending host

Any number of delivery attempts may take place before the shipping order expires.
180 Administrator’s Guide: Rational ClearCase MultiSite

Replica Cannot Update Itself

You can receive the following message during export if you specify the sending replica
as a destination:

A replica cannot update itself

If the sending replica is the only replica you specified, the syncreplica –export
command fails. If you specified other replicas, this message is printed as a warning,
and the syncreplica –export command continues its processing.

Transport Problems

This section describes problems that can occur during the transport phase of
synchronization.

Error Messages

The messages in Table 17 are generated by the mkorder, mkreplica, shipping_server,
and syncreplica commands.

Table 17 Shipping Error Messages (Part 1 of 2)

Error message Meaning

cannot find a storage bay for class
class-name: no such bay specified

No storage bay is assigned to storage class
class-name in the shipping.conf file or the
MultiSite Control Panel.

cannot find a storage bay for class
class-name: all applicable bays are
either inaccessible or do not contain
byte-count free bytes

Lack of permission or lack of free disk space
prevents use of storage bays for class
class-name.

cannot process potential order file
shipping-order-pname: user username (UID
uid) is not the owner

(UNIX) The shipping server is not running
as root, and username does not own the
shipping order file.
Chapter 13 - Troubleshooting MultiSite Operations 181

cyclic delivery route detected to host
hostname (via next-hop-hostname) for
order shipping-order-pname

The shipping order lists next-hop-hostname as
a previous hop in the packet’s delivery route.
If the packet is sent to next-hop-hostname
(which is specified in a ROUTE entry in the
shipping.conf file or in the Routing Information
section in the MultiSite Control Panel), it will
eventually come back to the current host.
Check the routing information on the hosts
in the delivery path and fix any circular
routes.

file file-pname does not contain a valid
shipping order

The shipping server attempted to process a
file that is not a shipping order.

for security reasons, shipping order
shipping-order-pname cannot be processed:
data file file-pname must be in the same
directory as the shipping order

A shipping order and its associated packet
file must be in the same directory.

giving up trying to return order
shipping-order-pname to host hostname
(original data file was file-pname)

The shipping server cannot return a packet
or other file to its original sending host (for
example, because its shipping order expired)
and has deleted the shipping order and data
file.

ignoring shipping bay storage-bay-pname:
reason

The storage bay directory specified in the
shipping.conf file or MultiSite Control Panel
doesn’t exist or is inaccessible.

shipping order shipping-order-pname not
found (perhaps previously sent?)

During receipt handler processing, the
shipping server cannot find the shipping
order of a packet that is to be forwarded to
another host. A shipping_server –poll
invocation may have sent the packet already.
(If the packet is to be applied to replicas on
the host, the imports occur before the packet
is forwarded. This leaves a window of
opportunity for a scheduled polling
operation to send the packet.)

Table 17 Shipping Error Messages (Part 2 of 2)
182 Administrator’s Guide: Rational ClearCase MultiSite

Invalid Destination

The local host’s hosts file, hosts NIS map, or Domain Name Service must list one of the
following hosts:

■ Destination host

■ Next-hop host corresponding to the destination host (on UNIX, defined in a
ROUTE entry in the host’s shipping.conf file; on Windows, defined in the Routing
Information section in the host’s MultiSite Control Panel.)

Note: If hosts in your network are known only by their IP addresses, you can use the IP
addresses instead of host names.

In the absence of such entries, the shipping server fails, because it cannot determine
where to deliver the packet. In this case, it writes error messages to its log file (UNIX)
or the Windows Event Viewer.

If the destination host name was misspelled, use the mkorder command to create a
new shipping order with the correct host name. If a host name is misspelled in a
mkreplica –export command, the incorrect host name is recorded. Verify the error with
lsreplica –long, and correct the spelling with chreplica.

In other cases, you may have to revise the host’s database of remote hosts. The sending
host must be able to communicate with the receiving hosts through TCP/IP channels.
Use the rcp command on the sending host to copy a file to the receiving host. If it fails,
you have a setup or networking problem with your host. If the command succeeds,
contact Rational Customer Support.

Delivery Fails

Each time the shipping server cannot deliver a packet to a valid destination host, it logs
error messages:

■ (UNIX) In file /var/adm/rational/clearcase/log/shipping_server_log and writes a
message to the terminal device, if there is one.

■ (Windows) In the Windows Event Viewer. You can use the cleartool getlog
shipping command to view shipping_server messages from the Event Viewer.

If the problem is temporary (remote host is down, network connections are down, and
so on), a subsequent invocation of shipping_server –poll will transmit the packet
successfully. If the problem is not temporary, the shipping order may expire eventually.

Shipping Server Fails to Start or Connection Is Refused

If the shipping server at the receiving replica does not start or the connection is refused,
check the albd_server log on the receiving host for an explanation of the failure.
Chapter 13 - Troubleshooting MultiSite Operations 183

A syntax error in the shipping.conf file on UNIX can cause the connection to be refused.
For example, if there is an incorrect e-mail address in the file, the albd_server log
displays an error like this:

Error: shipping_server(9951): Error: syntax error in configuration
file (line 60)

Shipping Order Expires

If the shipping server finds that a shipping order has expired, it attempts to return the
packet to the originating host. Also, it sends a mail message to one or more
administrators on the original sending host, and sends another mail message when the
packet is returned to the original sending host. On Windows, if e-mail notification is
not enabled, the shipping server writes a message to the Windows Event Viewer.

Use the lspacket command to check the return bays on your host. The packet files may
have been returned by store-and-forward. If so, try again to deliver the packet:

■ Fix the store-and-forward packet-delivery mechanism (for example, by fixing the
network connection). Then, use mkorder to create a new shipping order for each
physical packet file in the return bay.

■ If you cannot fix the store-and-forward mechanism, deliver the packet by some
other means. For example, copy the packet file to a CD, and mail the CD to the
remote sites.

If the packet files are not in your host’s return bays, they may be in transit. Search for
the files immediately, because a packet that cannot be returned to its home host within
14 days is deleted.

Synchronization Import Problems

This section describes problems that can occur during the import phase of
synchronization.

Packets Accumulate in Incoming Storage Bay

A recoverable error occurs when an update packet is lost and is not applied to your
replica. These are the symptoms:

■ One or more replicas at your site are not being updated on their regular schedules.

■ An lspacket command shows unprocessed packets accumulating in the storage
bay. These packets depend on the missing packet and cannot be processed.
184 Administrator’s Guide: Rational ClearCase MultiSite

To verify that a packet is missing and determine which operations are needed:

1 Enter a syncreplica –import –receive command, which processes all incoming
packets in the storage bay in the correct order. If syncreplica fails to process any of
them, a packet is missing.

2 Enter a syncreplica –import command that specifies the oldest packet in the
storage bay:

multitool syncreplica –import packet-pathname
Sync. packet packet-pathname was not applied to VOB ...
- packet depends on changes not yet received

Packet requires changes up to 872; VOB has only 756 from replica:

sanfran_hub

Packet requires changes up to 605; VOB has only 500 from replica:

bangalore

In this example, one or more update packets are missing, containing operations
757–872 originally occurring at replica sanfran_hub and operations 501-605 from
bangalore. In general, a packet can contain operations from several replicas; the
syncreplica –import command fails if operations are missing from any replica.

Locate the missing packets. They may be on media that you forgot to process or in
packet files that were not processed because the shipping.conf file on UNIX or the
MultiSite Control Panel on Windows specifies the wrong storage bay. If you locate the
missing packets, do one of the following things:

■ Process the missing packets by naming them in a syncreplica –import command.
(Multiple packet files are imported in the correct order, regardless of the order of
the command-line arguments.)

■ Process all the update packets that have accumulated in the storage bay by
entering a single syncreplica –import –receive command.

If you cannot locate the missing packets, see Recovering from Lost Packets on page 190.

Packet Is Not Applicable to Any Local Replicas

Import can fail with the following message:

multitool: Error: Sync. packet pathname is not applicable to any local
VOB replicas.

This error can occur when a replica has been moved and the host-name property has
not been updated with the chreplica command.
Chapter 13 - Troubleshooting MultiSite Operations 185

■ To verify that the host-name property of a VOB replica is wrong, enter the
following command:

cleartool describe –fmt "%[replica_host]p\n"
replica:importing-replica-name@VOB-tag

For example:

cleartool describe –fmt "%[replica_host]p\n" replica:newyork@/vobs/tests
manhattan

If the host name is incorrect, use the chreplica command to change it. At the master
replica of the importing replica, enter a chreplica command:

multitool chreplica –c "comment" –host new-host
replica:importing-replica-name@VOB-tag

For example:

multitool chreplica –c "change host name" –host brooklyn
replica:newyork@/vobs/tests
Updated replica information for "newyork".

Send an update packet to the other replicas in the family.

Read from Input Stream Fails

If a syncreplica –import command fails with a message like this one, the packet is
corrupted:

Error: Read from input stream failed: No such file or directory

Delete the packet and ask the administrator at the sending replica to re-create the
packet and send it again (see Recovering from Lost Packets on page 190). Then import it.

Element Changes During Operation

If a syncreplica –import command fails with one of the following messages, restart the
import:

Element changed during operation
Element changed during checkin

The messages report that multitool was trying to import an operation for an element
while another process (for example, a developer using cleartool) was operating on the
same element.

If possible, run syncreplica –import from within a view. If it fails again, you see more
information about what element it is failing on, and you can look through output from
the lshistory command to try to find the conflict.
186 Administrator’s Guide: Rational ClearCase MultiSite

rmreplica Operation Cannot Be Imported

Import of an rmreplica operation fails if the importing replica records that the removed
replica still masters objects. The import fails with an error like the following:

multitool: Error: There are still objects mastered by this replica.
multitool: Error: Unable to replay oplog entry 565632: error detected
by ClearCase subsystem.
565632:
12 op= rmreplica
13 replica_oid= 48abc01d.123456a7.b890.06:00:08:c4:73:84
(boston_hub.mstr)
14 oplog_id= 23456
15 op_time= 08/07/02 12:35:46 create_time= 08/07/02 12:35:46
16 event comment= "Destroyed replica "boston_hub".

This situation can occur if two replica hosts do not have the same patch level or if an
upgrade had problems.

You can use the lsmaster command to determine which objects are believed to be
mastered by the removed replica. In this example, the administrator at importing
replica sanfran_hub uses the lsmaster command to list the objects replica sanfran_hub
believes to be mastered by replica boston_hub:

multitool lsmaster –view admin_view boston_hub@/vobs/dev
master replica: boston_hub@/vobs/dev "label type" V2.0
master replica: boston_hub@/vobs/dev "label type" V1.1

In this example, the administrator at replica sanfran_hub uses the lsmaster command
to contact all replicas in the VOB family and list the objects they believe to be mastered
by replica boston_hub:

multitool lsmaster –view admin_view –inreplicas –all boston_hub@/vobs/dev
In replica "bangalore"
master replica: boston_hub@/vobs/dev "label type" V2.0
In replica "sanfran_hub"
master replica: boston_hub@/vobs/dev "label type" V2.0
master replica: boston_hub@/vobs/dev "label type" V1.1

To resolve this problem, contact Rational Customer Support.

Database Limit Is Exceeded

ClearCase versions 4.0 and later include support for a new VOB database schema. If
you update one or more replicated VOBs in a family to the new schema (version 54),
you do not have to update the other replicas in the VOB family immediately. However,
you must update all replicas before one of the updated replicas exceeds the database
limit of the previous schema (version 53). If you do not, replicas that have not been
updated cannot import synchronization update packets from the updated replica.

When this type of import failure occurs, syncreplica output includes a VOB database
error, and an error is written to the db log.
Chapter 13 - Troubleshooting MultiSite Operations 187

The syncreplica output includes an error like the following:

multitool: Error: Error from VOB database: ’’\\vob.setup’’.

The db log includes an error like the following:

09/20/96 10:40:49 db_server(19528): Error: DBMS error in
"../db__lock.c" line 79
*** db_VISTA database error -909 - file record limit exceeded
09/20/96 10:40:49 db_server(19528): Error: DBMS error
09/20/96 10:40:49 db_server(19528): Error: db_VISTA error -909

To fix this problem, you must convert all replicas in the family to schema version 54. To
display the schema version for a VOB replica, use the cleartool describe vob:vob-tag
command. To display the schema version of the version of ClearCase installed on your
computer, use the cleartool –ver command.

Replica Incarnation Is Old

The following error can occur during packet import:

Error: Replica incarnation for "REPLICA_NAME" is old: old-timestamp
should be new-timestamp

The replica incarnation is the last time the replica was restored (with the restorereplica
command). The incarnation is set to 0 when the replica is created and remains 0 until a
restoration occurs.

Each replica keeps a record of the incarnation of each other replica in its family. During
packet export, the incarnations of the target replicas are recorded in the packet. The
syncreplica –import command at the importing replica checks the incarnation in the
packet. If the incarnation in the packet is earlier than the importing replica’s own
record of its incarnation, the packet is not imported.

If the incarnations are different, the exporting replica does not have a record of the
importing replica undergoing restoration. This situation may occur for the following
reasons:

■ The update packet was created before the restoration information arrived at the
exporting replica.

■ The restoration information was not sent to the exporting replica. For example,
consider the following synchronization setup:

Replicas A and B synchronize every day, replicas B and C synchronize once a
week, and replicas A and C synchronize once a month.

Replica A is restored from backup and the administrator runs restorereplica.
Because replica A’s last synchronization was with replica B, the administrator
optimizes the process to require an update packet only from replica B. After the
188 Administrator’s Guide: Rational ClearCase MultiSite

packet is received from replica B, the restoration is complete and replica A
resumes normal synchronization.

Because neither replica A nor replica B synchronized with replica C during the
restoration process, replica C does not have any information about the restoration,
and its record of replica A’s incarnation is not updated.

The next time replica C sends an export packet to replica A, the incarnation in the
packet is earlier than replica A’s actual incarnation, and the import fails.

To determine which reason applies to your situation:

1 At the exporting replica, display the incarnation time for the importing replica.

cleartool dump replica:name-of-importing-replica@VOB-tag

In the output, look for a line beginning with incarnation=. This line displays the
incarnation time. For example:

cleartool dump replica:boston_hub@/vobs/dev
...

incarnation=01-Apr-02.22:40:54UTC

...

2 Compare this value to the value in the import error message.

❑ If the values are the same after you adjust for time zone differences, the packet
was created before the exporting replica received the restoration information.
Delete the packet and follow the instructions in Recovering from Lost Packets on
page 190.

❑ If the values are different, contact Rational Customer Support.

Warning on Receipt of Packet from Earlier MultiSite Version

Different versions of MultiSite have different packet protocols. When multitool with a
newer protocol reads a packet with the older protocol, it prints this message:

multitool: Warning: Version mismatch, software:new-protocol,
packet:old-protocol

This message does not indicate a problem. It means one of the following things:

■ The feature level of the family is lower than the feature level of the receiving
replica.

■ The feature level of the family is the same as the feature level of the sending and
receiving replicas. However, when the sending replica created the update packet,
it had not yet received a packet containing the information about the new family
feature level.
Chapter 13 - Troubleshooting MultiSite Operations 189

Table 18 lists the packet protocols for MultiSite versions.

Miscellaneous Problems

Processing of an incoming replica-creation or update packet may fail because of these
conditions:

■ Disk partition is full.
■ Receiving replica is locked.
■ Licensing failure.
■ Multiple imports occur simultaneously.

Make sure that multiple syncreplica –import commands do not run in the same replica
simultaneously. Check the timing of schedule tasks, and adjust them if necessary. (An
invocation of the sync_receive script fails if another sync_receive process is running.)

In such cases, fix the problem and reenter the syncreplica –import command.

Recovering from Lost Packets

There are several circumstances in which a replica-creation or update packet is
generated but is never applied at one or more of its destinations:

■ The packet is stored on media that is destroyed or is not readable at the destination
host.

■ A packet file is lost when a hard disk fails.

■ The packet is intact, but cannot be applied because another packet has been lost.
(See Packets Accumulate in Incoming Storage Bay on page 184.)

Table 18 MultiSite Releases and Packet Protocols

MultiSite version Packet protocol

3.2, 3.2.1 1.2

4.0, 4.1, 4.2 3

2002.05.00 4

2003.06.00 5
190 Administrator’s Guide: Rational ClearCase MultiSite

Lost Replica-Creation Packet

To recover a lost replica-creation packet:

1 At the replica where mkreplica –export was run, rename the new replica:

cleartool rename bangalore@/vobs/dev bangalore-old@/vobs/dev
Renamed replica from "bangalore" to "bangalore-old".

2 Reenter the original mkreplica command.

3 After synchronization between the exporting replica and the new replica is
working, remove the renamed replica:

multitool rmreplica bangalore-old@/vobs/dev
Deleted replica "bangalore-old".

The following procedure is simpler, but the rmreplica command may take a long time
if you have a large VOB:

1 At the replica where mkreplica –export was run, use rmreplica to remove the new
replica.

2 Reenter the mkreplica command.

Lost Update Packet

The syncreplica –export command assumes successful delivery of the update packet it
generates. For example, when replica boston_hub sends an update to replica
sanfran_hub, the syncreplica command assumes that the operations originating at
boston_hub are imported to the sanfran_hub replica. For simplicity, this example does
not reflect the fact that the update packet can also contain operations that originated at
other replicas in the VOB family.

But, if the packet is lost, this assumption is invalid, and boston_hub must reset its
estimate of the state of replica sanfran_hub. After this correction is made, the next
update packet sent from boston_hub to sanfran_hub contains the operations
sanfran_hub needs.

To reset the epoch row, use one of the methods described here.

Method 1: Connected Method

1 At the sending replica, use sync_export_list –update or chepoch –actual to set the
epoch row to match the actual state of the receiving replica. These commands
contact the receiving replica and retrieve its epoch row (the receiving replica’s
record of its own state). The sync_export_list –update command sends an update
packet after it updates the epoch row in the sending replica. The sending and
receiving sites must have an IP connection.
Chapter 13 - Troubleshooting MultiSite Operations 191

For example, use one of the following commands:

/opt/rational/clearcase/config/scheduler/tasks/sync_export_list –update
–replicas sanfran_hub@/vobs/dev

multitool chepoch –actual sanfran_hub@/vobs/dev
Entry for bangalore changed from: 985 to 950

Entry for boston_hub changed from: 1400 to 1300

Entry for sanfran_hub changed from: 2562 to 2000

Method 2: lsepoch and chepoch Method

1 At the receiving replica, use the lsepoch command to display the replica’s epoch
number matrix:

multitool lsepoch sanfran_hub@/vobs/dev
For VOB replica "/vobs/dev":

Oplog IDs for row "sanfran_hub" (@ goldengate):

oid:7ag3b0bc.defa11d0.ba57.00:01:72:73:3c:94=950 (bangalore)

oid:87f6265f.72d911d4.a5cd.00:01:80:c0:4b:e7=1300 (boston_hub)

oid:0eaa6fc3.737d11d4.adbe.00:01:80:c0:4b:e7=2000 (sanfran_hub)

2 Use this output in a chepoch command at the sending replica:

multitool chepoch sanfran_hub bangalore=950 boston_hub=1300
sanfran_hub=2000
Change oplog IDs in row "sanfran_hub" [no] yes
Epoch row successfully set.

Method 3: lshistory and chepoch Method

1 At the sending replica, use lshistory to determine the epoch numbers when the
packet was generated:

cleartool lshistory –long replica:sanfran_hub
30-Jul.14:42:50 Susan Goechs (susan.user@minuteman)

export sync from replica “boston_hub” to replica “sanfran_hub”

“Exported synchronization information for replica “sanfran_hub”.

Row at export was: bangalore=950 boston_hub=1300

sanfran_hub=2000”

23-Jul.17:36:46 Susan Goechs (susan.user@minuteman)

export sync from replica “boston_hub” to replica “sanfran_hub”

“Exported synchronization information for replica “sanfran_hub”.

Row at export was: bangalore=900 boston_hub=800 sanfran_hub=1500”

...
192 Administrator’s Guide: Rational ClearCase MultiSite

2 At the sending replica, use this output in a chepoch command:

multitool chepoch sanfran_hub bangalore=950 boston_hub=1300
sanfran_hub=2000
Change oplog IDs in row "sanfran_hub" [no] yes
Epoch row successfully set.

Method 4: lshistory and recoverpacket Method

1 At the replica that failed to apply the lost packet, use the lshistory command to
determine the time of the last successful import of an update packet from the
replica that sent the lost packet.

GOLDENGATE> cleartool lshistory replica:sanfran_hub
01-Aug.07:08 jcole import sync from replica “boston_hub” to replica

“sanfran_hub”

“Imported synchronization information from replica “boston_hub”.

Row at import was: sanfran_hub=2000 boston_hub=1300 bangalore=950”

...

2 At the sending replica, use this time in a recoverpacket command. recoverpacket
looks through epoch rows to find an event that occurred prior to the specified
time. When it finds a matching row, it resets the epoch row for the receiving
replica.

susan@minuteman% multitool recoverpacket –since 01-Aug.01:00 sanfran_hub

Note: With this method, you must adjust the time from the lshistory output for time
zone differences and the amount of time elapsed between export and import.

If there are no saved epoch rows for the receiving replica that are as old as the time
specified, you must use one of the chepoch procedures.

Inconsistent Changes to Replica

A recoverable error occurs if syncreplica –import detects that an incoming change is
inconsistent with another change that has already been applied to the replica.

Note: In some cases, an inconsistency is resolved by syncreplica –import. For example,
a replica receives an update that deletes an element, and then receives an update from
another replica that creates a new version on a branch of that element. The
create-version operation in the second update is discarded because the element no
longer exists.
Chapter 13 - Troubleshooting MultiSite Operations 193

Preservation Mode

If two replicas preserve identities and permissions or permissions only, the OS-level
permissions of their individual elements are synchronized. However, synchronizing
the VOB group lists of the replicas is a manual task that you must perform using
cleartool protectvob –add_group.

syncreplica –import generates the following identities-related error messages:

Can't create object with group that is not in the VOB's group list
Can’t change to a group that is not in the VOB’s group list

These messages indicate that a group was added to the sending replica’s VOB group
list, and someone created a new element in that group or reassigned an existing
element to that group. Then, the change was sent to a replica whose VOB group list has
not been updated.

These messages may also indicate that the sending replica and/or receiving replica
were created incorrectly as identities and permissions preserving.

If the replicas are intended to be identities and permissions preserving, follow these
steps to recover from this kind of error:

1 (If necessary) Set a view, change to a directory within the replica, and reenter the
syncreplica –import command. This produces diagnostics that include pathnames
within VOB directories. For example:

elem_fstat= ino: 0; type: 2; mode: 0444; uid: 1037; gid: 20

.

.

name_p= "aux_util.c"

nsdir_ver_oid= ed2549e2.97f411cd.b3c8.08:00:69:06:4d:f6

 (/vobs/dev/src@@/main/ev2/CHECKEDOUT.572)

These lines indicate that the element’s pathname in the sending replica is
/vobs/dev/src/aux_util.c. Note also that its group ID (GID) is 20.

2 Use the cleartool protectvob command to add the new group to your replica’s
VOB group list:

cleartool protectvob –add_group 20 /vobstg/dev.vbs

3 Reenter the syncreplica –import command.

Note: If the administrators at the sites of identities- and permissions-preserving
replicas have not informed one another of changes in the shared user/group
namespace, you may need to adjust the password and group databases before entering
the protectvob command.
194 Administrator’s Guide: Rational ClearCase MultiSite

If one or both of the replicas should not be identities and permissions preserving,
follow these steps:

1 Use the multitool chreplica command to change the receiving replica to
permissions preserving or nonpreserving.

multitool chreplica –npreserve boston_hub@/vobs/dev
Updated replica information for "boston_hub".

2 Import the packet.

multitool syncreplica –import –receive
Applied sync. packet

/opt/rational/clearcase/shipping/ms_ship/incoming/sync_sanfran_hub_

18-Jan-02.16.54.14_386_1 to VOB /net/minuteman/vobstg/dev.vbs

3 Change the status of the replicas.

❑ If the sending replica should be nonpreserving or permissions-preserving,
change it.

❑ If you want to retain preservation of identities and permissions in the receiving
replica, change it back to identities and permissions preserving.

4 Export update packets from the sending and receiving replicas to all siblings.

To avoid this problem in the future, use the procedure described in the section
Gathering Identities Information on page 43.

Object Mastership

An object mastered by one replica can depend on an object mastered by another
replica. For example, an element and one of its branches are dependent objects, but
these objects can be mastered by different replicas. As a result, certain kinds of
inconsistent changes can be made at different replicas. The inconsistency is detected by
syncreplica –import, causing it to fail with a recoverable error.

For example, if a type object is deleted in another replica, your replica may refuse to
import this change because a trigger type in your replica depends on the deleted type
object. During import, the following error message is displayed:

Can’t delete attribute type type-name because of references to it in
trigger type restriction lists

1 If the trigger at your replica is useful only if the deleted type object exists, use
cleartool rmtype trtype:type-name to delete the trigger type. Otherwise, replace the
trigger type (cleartool mktrtype –replace) with a revised definition that does not
depend on the deleted type object.

2 Reenter the syncreplica –import command.
Chapter 13 - Troubleshooting MultiSite Operations 195

Automatic Renaming of Type Objects and Replica Objects

The syncreplica –import command resolves naming conflicts among type objects or
replica objects created at two or more replicas. For example, a branch type object
named v1.0_bugfix is created at two different replicas. At some point, an invocation of
syncreplica –import detects the conflict. (This may occur at one of the replicas that
created the branch types, or at some other replica.)

syncreplica –import resolves the conflict by renaming the incoming object. In this
example, branch type v1.0_bugfix is renamed to boston_hub:v1.0_bugfix, indicating
that boston_hub was the replica at which the type was created. syncreplica –import
displays the following message:

multitool: Warning: To avoid name conflict,
generated name "boston_hub:v1.0_bugfix" ...

Intervention is not required at this point unless branch types or replicas are renamed.
(Renaming of branch types affects config specs, and renaming of replicas affects
synchronization scripts.) However, if you do not rename the objects, different replicas
have different names for the same object. In this example, the boston_hub replica calls
a branch type v1.0_bugfix, but at least one other replica calls the same type object
boston_hub:v1.0_bugfix.

The administrators of the various replicas involved in such a conflict must coordinate
the renaming of all the objects involved, to guarantee that all objects have the same
name in all replicas. Here is a general procedure:

1 The administrators at the replicas decide how to rename the objects.

2 At the master replica of each type object or replica object, the administrator
renames the type object or replica object.

a The Boston administrator renames the branch type that was created at the
boston_hub replica:

b The San Francisco administrator renames the branch type that was created at the
sanfran_hub replica:

c The Bangalore administrator renames the branch type that was created at the
bangalore replica:

3 All replicas exchange update packets to propagate the name changes.

cleartool rename brtype:v1.0_bugfix v1.0_bugfix-boston_hub

cleartool rename brtype:v1.0_bugfix v1.0_bugfix-sanfran_hub

cleartool rename brtype:v1.0_bugfix v1.0_bugfix-bangalore
196 Administrator’s Guide: Rational ClearCase MultiSite

Note: The name that caused the original conflict can be reused. One replica (and
only one) can change the name to its original value:

cleartool rename brtype:boston_hub:v1.0_bugfix v1.0_bugfix

When this change is propagated to other replicas, it undoes any previous
conflict-avoidance name changes, for example, by renaming
boston_hub:v1.0_bugfix to v1.0_bugfix. (The propagation of this change must
wait until after the other rename commands have been run in the other replicas
and propagated throughout the VOB family, to make the name v1.0_bugfix
available again.)

Running epoch_watchdog

If a replica is restored improperly from backup, divergence can occur in the VOB
family. When you restore a replica from backup, its epoch row is rolled back. If you do
not run the restorereplica command on the replica before resuming development in
the replica, divergence can occur.

For example, operations 1-700 are created in a replica and exported to sibling replicas.
The replica is then restored from backup and its epoch number becomes 600
(operations 601-700 occurred after the backup copy was created). If the administrator
does not run the restorereplica command, development resumes and new operations
are recorded in the oplog starting with ID 601. These operations have the same ID as
the operations that were exported to other replicas before the restoration, but the
operations themselves are different. The restored replica has diverged from the other
replicas.

The epoch_watchdog script checks whether a replica’s epoch numbers have rolled
back without a restorereplica command being run. We recommend that you run this
script regularly as a scheduled job on all replica server hosts. For example, the
following job runs epoch_watchdog every three hours for all replicas on the host:
Chapter 13 - Troubleshooting MultiSite Operations 197

Job.Begin
Job.Id: 20
Job.Name: "epoch_watchdog"
Job.Description.Begin:
Run epoch_watchdog for each replica on this host.
Job.Description.End:
Job.Schedule.Daily.Frequency: 1
Job.Schedule.StartDate: 3-Sep-2001
Job.Schedule.FirstStartTime: 20:00:00
Job.Schedule.StartTimeRestartFrequency: 03:00:00
Job.DeleteWhenCompleted: FALSE
Job.Task: 105
Job.Args: -all
Job.NotifyInfo.OnEvents: JobEndOKWithMsgs,JobEndFail
Job.NotifyInfo.Using: email
Job.NotifyInfo.Recipients: ms_admin

Job.End

This job uses the MultiSite Epoch Watchdog task, which is defined as follows:

UNIX task:

Task.Begin
Task.Id: 105
Task.Name: "MultiSite Epoch Watchdog"
Task.Pathname: epoch_watchdog

Task.End

Windows task:

Task.Begin
Task.Id: 105
Task.Name: "MultiSite Epoch Watchdog"
Task.Pathname: epoch_watchdog.bat

Task.End

For more information about creating tasks and scheduling jobs, see the schedule
reference page in Command Reference and the scheduler information in the
Administrator’s Guide for Rational ClearCase.

Restoring and Replacing VOB Replicas

Occasionally, a VOB storage directory is lost. This can occur because of a hardware
failure (for example, disk crash), a software failure (for example, OS-level file system
corruption), or a human error (for example, an rm –fr or del command). If an
unreplicated VOB storage directory is lost, you can restore a recent copy from backup
and resume development work. The changes made between the time of the backup
and the time of the failure are not recoverable.
198 Administrator’s Guide: Rational ClearCase MultiSite

Similarly, if you lose the storage directory of a replicated VOB (that is, the storage for
the replica used by developers at your site), you can restore a recent copy from backup.
But matters are more complicated:

■ Some of the work done between the time of the backup and the time of the failure
may be recoverable. If some of the operations were sent to other replicas in update
packets, these operations must be retrieved and imported.

■ The restored copy of the replica is out of date. You must make this replica
consistent with the other replicas in the VOB family before development can
proceed in the replica. Failure to reestablish consistency can lead to irreparable
damage.

Because this procedure involves substantial effort, it is intended for situations where
serious damage has occurred. (For example, the disk containing a replica is unusable.)

The method you use to restore the replica depends on how you back it up:

■ If you lock your primary replica to back it up, you must restore it from the backup
medium and perform the restorereplica procedure. See Restoring a Replica from
Backup.

■ If you never lock your primary replica and rely solely on a replica at your site as
backup, you must replace the replica completely. See Replacing an Existing Replica
on page 201.

Restoring a Replica from Backup

To restore a replica from backup:

1 Follow the procedure in the Administrator’s Guide for Rational ClearCase to load
the backup copy of the VOB storage directory.

2 Run the command to restore the replica:

multitool restorereplica –invob vob-selector

This places a special lock on the VOB object, which is separate from the ClearCase
lock created during the backup process. Between this point and the completion of
Step 7, the syncreplica –import command adjusts the ClearCase lock temporarily
to permit application of the update, then restores the full lock. During this time,
only syncreplica –import can modify the replica.

3 Verify that all update packets have been processed at their destination replicas.

4 (Applicable only if the replica you are restoring was used to create one or more
new replicas between the time of the backup and the time of the failure, and the
other replicas in the family do not have information about the new replicas) The
Chapter 13 - Troubleshooting MultiSite Operations 199

new replicas are unknown to your restored replica and all other replicas in the
family, and lsreplica does not list them. If this is the case:

a At each new replica, set the estimated states of the siblings to their actual states.
(Use chepoch –actual or lsepoch/chepoch. See Recovering from Lost Packets on
page 190.)

b At each new replica, export update packets to all other replicas in the family
except the restored replica.

c Import the packets exported in Step b.

5 At the restored replica, generate update packets for all other replicas, and send the
packets to the sibling replicas.

You can send the packets using your standard synchronization method. To recover
the replica more quickly, create the packets with syncreplica –export –fship.

Because your replica is in the special restoration state, each outgoing update
packet includes a special request for a return acknowledgment. It also includes
your replica’s old epoch numbers, which are now its current epoch numbers, by
virtue of the restoration backup in Step 1. Each destination replica uses these
numbers to roll back its row for your replica.

6 Wait for each other replica in the family to send an update packet to the restored
replica. As in Step 5, you can accelerate the creation and delivery of the update
packets.

Collectively, these update packets include all the operations that occurred between
the time of the backup and the last update that your replica sent out before its
storage was lost—even operations that originated at your replica. (The packets
also include more recent operations that originated at other replicas.) In addition,
each incoming packet includes the requested return acknowledgment from the
sending host.

7 Process the incoming update packets with syncreplica –import. When your replica
has received return acknowledgments from all other replicas in the VOB family,
syncreplica –import reports that restoration of the replica is complete:

VOB has completed restoration: ...

8 (Applicable only if you had to perform Step 4) At one of the replicas that did not
have information about the new replicas before the restoration procedure, export
update packets to all of the new replicas and import the packets at the new
replicas. (Do not perform this export from the restored replica.)
200 Administrator’s Guide: Rational ClearCase MultiSite

9 Unlock the VOB object in the restored replica.

cleartool unlock vob:pname-in-vob
Unlocked versioned object base "VOB-tag".

Development work in the replica can now resume.

Replacing an Existing Replica

If you must replace an existing replica, you can re-create it from one of the other
replicas in the family. For example, if you use MultiSite as your only backup
mechanism and you must restore from a backup replica, you have to replace the
working replica.

In this procedure, “backup replica” refers to the replica from which you restore the lost
or deleted replica. If you have multiple replicas in the family and you use more than
one as a backup, use the replica that has most recently imported an update packet from
the lost replica.

Caution: Do not use this procedure to fix import failures unless you have tried all other
solutions, and Rational Customer Support advises you to follow these steps.

To replace a replica, use the following procedure (assume the boston_hub replica on
host minuteman is to be replaced, and sanfran_hub and bangalore are the other
replicas in the family):

1 For all views that use boston_hub, use the lsprivate command to list view-private
and checked-out files. (To list views for which the VOB holds objects, use the
cleartool describe vob: command.)

2 Check in all files (if possible) and save copies of view-private files out of the view.
If you plan to save the views, use the procedure in Saving Views from the Replaced
Replica on page 203 at this point.

3 If boston_hub can export update packets:

a On host minuteman, send update packets to sanfran_hub and bangalore from
boston_hub:

b On the hosts where sanfran_hub and bangalore physically reside, import the
packet from boston_hub:

4 Back up boston_hub’s VOB storage to a storage medium.

multitool syncreplica –export –fship sanfran_hub bangalore

multitool syncreplica –import –receive
Chapter 13 - Troubleshooting MultiSite Operations 201

5 At sanfran_hub, create a new replica, boston_hub2.

multitool mkreplica –export –workdir /tmp/create –nc –fship
minuteman:boston_hub2

6 If you did not use the –fship option in Step 5, transport the replica-creation packet
to the host minuteman.

7 Create the new replica. On host minuteman:

a Unregister and remove the VOB tag for boston_hub:

b Import the packet you created in Step 5 (include any special options you need):

c Mount dev2:

8 Make sure that boston_hub2 can synchronize successfully:

a Set a view, change to a directory in /vobs/dev2, and generate a new label or
attribute type. (Use a new view, not an old one that may have been used in
boston_hub.)

b Create and send update packets to sanfran_hub and bangalore:

c At sanfran_hub and bangalore, import the update packet:

d At sanfran_hub and bangalore, list the new type created in Step a:

9 Transfer mastership of all objects in boston_hub to boston_hub2.

a Determine which replica masters boston_hub.

cleartool umount /vobs/dev
cleartool unregister –vob /net/minuteman/vobstg/dev.vbs
cleartool rmtag –vob /vobs/dev

multitool mkreplica –import –workdir /tmp/ms_wkdir –tag /vobs/dev2 –vob
/net/minuteman/vobstg/dev2.vbs –nc –preserve –vrep boston_hub2
/var/adm/rational/clearcase/shipping/ms_ship/incoming/sh_o_repl_sanfran_
hub_18-May-02.15:50:00_1

cleartool mount /vobs/dev2

multitool syncreplica –export –fship sanfran_hub bangalore

multitool syncreplica –import -receive

cleartool lstype type-selector
202 Administrator’s Guide: Rational ClearCase MultiSite

b If boston_hub mastered itself, run the following command at boston_hub2; if
another replica masters boston_hub, run the following command at that replica:

c If boston_hub did not master itself, send an update packet from the master
replica to boston_hub2 and import it.

10 Make sure that sanfran_hub, bangalore, and boston_hub2 can export and import
update packets successfully.

11 At the replica that masters boston_hub, remove the replica object for boston_hub:

multitool rmreplica boston_hub

12 Synchronize all replicas in the family.

13 Remove the physical storage for boston_hub with standard operating system
commands.

14 Remove the views that were used in boston_hub. (If you want to keep these
views, use the procedure in Saving Views from the Replaced Replica.)

Saving Views from the Replaced Replica

To save the views used in the replaced replica:

1 Move all view-private files into the view’s lost+found directory (replica-uuid is
boston_hub’s UUID):

cleartool recoverview –vob replica-uuid –tag view-tag

2 List view-private files in each of the views:

cleartool lsprivate –tag view-tag –invob vob-selector

3 Use the uncheckout command to cancel all checkouts in the replica to be replaced;
use the –keep option to save copies of the files.

4 Copy the .keep files to temporary directories outside the view. You can refer to
these files when the new replica is available and you’ve checked out the elements
again.

5 Use the rmdo command to remove all derived objects associated with the VOB to
be replaced.

6 Remove all .cmake.state files.

7 Decide whether any valuable information is in any of the other view-private files
associated with the VOB to be replaced.

multitool chmaster –all –obsolete_replica boston_hub boston_hub2
Chapter 13 - Troubleshooting MultiSite Operations 203

After the replacement replica is back online, complete these additional steps:

1 Rebuild all derived objects.

2 Reconcile view-private files.

Because view-private files are associated with a particular replica, restoration from
backup makes them inaccessible. To continue work on checkouts, you must
identify all checkouts, capture the related files, and place them in the correct
location.

You can do this by implementing a view backup procedure for files that cannot be
re-created easily. For example, write a script that uses the lsprivate command to
find all view-private objects (except for derived objects) and back them up to a
backup tree. If the structure of this tree mirrors the VOB structure, it is easier to put
the files back in their correct locations.

3 Run the recoverview command to free space associated with view-private files for
the replica you removed.

An alternative method is based on recoverview. After letting recoverview move
private files to the view’s lost+found directory, the moved files are captured and
placed into a location appropriate for the new replica. The main problem with this
method is that the file names recoverview generates are leaf names; any directory
structure is lost.

4 Redo changes to pool assignments.

Pool assignments are local to a replica, so re-creating the original replica may undo
changes made to them. Major changes to pool structure must be duplicated
manually at the backup replica.

Cleaning Up After Accidental Deletion of a Replica

This situation is a more catastrophic variation of the problem described in Restoring a
Replica from Backup on page 199: a replica’s storage directory is lost, and there is no
backup to be restored. The procedure for handling this situation is similar to that in
Deleting a Replica on page 122.

Perform this procedure in the replica that masters the deleted replica. (If the replica
was its own master, perform this procedure in the replica that will master the deleted
replica’s objects.) It is also important that the replica know about all the objects that
were mastered by the deleted replica.
204 Administrator’s Guide: Rational ClearCase MultiSite

1 Transfer mastership of all the objects mastered by the deleted replica. For example,
if the tokyo replica is deleted, enter this command at the sanfran_hub replica:

multitool chmaster –all –obsolete_replica tokyo@/vobs/dev –long sanfran_hub

Caution: Incorrect use of –all –obsolete_replica can lead to irreparable
inconsistencies among the replicas in a family.

2 Remove the VOB-replica object for the deleted replica.

multitool rmreplica tokyo@/vobs/dev

3 Send an update packet to all other replicas in the family, to inform them of the
mastership changes and the replica deletion.

multitool syncreplica –export ...
Chapter 13 - Troubleshooting MultiSite Operations 205

206 Administrator’s Guide: Rational ClearCase MultiSite

MultiSite Reference Pages

14MultiSite Reference
Pages
This section of the Administrator’s Guide contains MultiSite reference pages.
209

210 Administrator’s Guide: Rational ClearCase MultiSite

apropos
Displays MultiSite command information

Applicability

Synopsis

apr⋅opos topic ...

Description

This command displays information about MultiSite commands. Use apropos as you
use the standard UNIX whatis(1) or apropos(1) command.

Restrictions

None.

Options and Arguments

topic ...
apropos searches for each topic character string in the standard MultiSite whatis
file. The string can occur anywhere in the line.

Examples
■ Search for lines with the string epoch number in the standard MultiSite whatis file.

multitool apropos "epoch number"
chepoch Changes epoch number estimates

epoch_watchdog Checks whether a replica’s epoch numbers

have rolled back when the replica is not in restoration mode

Product Command type

MultiSite multitool subcommand

Platform

UNIX
apropos 211

■ Search for lines with the word epoch in the standard MultiSite whatis file.

multitool apropos epoch
chepoch Changes epoch number estimates

epoch_watchdog Checks whether a replica’s epoch numbers

have rolled back when the replica is not in restoration mode

lsepoch Lists epoch information

recoverpacket Resets epoch row table so changes in lost

packets are resent

Files

ccase-home-dir/doc/man/ms_whatis

See Also

In the Command Reference: help, man
212 Administrator’s Guide: Rational ClearCase MultiSite

chepoch
Changes epoch number estimates

Applicability

Synopsis

chepoch [–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery
| –cqe⋅ach | –nc⋅omment]
{ [–f⋅orce] replica-selector [replica-selector=value ...] [oid=value ...]
| –actual [–raise_only] sibling-replica-selector ... }

Description

This command changes a replica’s epoch number estimates for other replicas. You
cannot change a replica’s own epoch numbers because they record the actual state of
the replica.

With –actual, chepoch contacts sibling replicas, retrieves their own epoch rows, and
changes their rows in the current replica’s epoch number matrix. This brings the
current replica’s epoch number matrix up to date with changes made at the sibling
replicas. chepoch –actual works only between sites that have IP connections. If
chepoch cannot contact a sibling replica, it prints an error and tries to contact the next
replica you specified.

chepoch –actual detects whether the sibling replica or the current replica is missing
oplog entries. If oplog entries are missing, the command prints one of the following
messages:

Your replica ("replica-name") has fewer oplog entries for itself than
"replica-selector" has for your replica.
To avoid permanent data loss, your VOB administrator must initiate the
documented replica restoration procedure.

Product Command type

MultiSite multitool subcommand

Platform

UNIX

Windows
chepoch 213

The replica "replica-name" has more oplog entries for "replica-selector" than
"replica-selector" has for itself.
To avoid permanent data loss, its administrator must initiate the
documented replica restoration procedure.

For more information about epoch numbers, see The Operation Log on page 22. For
descriptions of scenarios using chepoch, see Cannot Find Oplog Entry on page 178 and
Lost Update Packet on page 191.

Restrictions

Identities: You must have one of the following identities:

■ VOB owner
■ root (UNIX)
■ Member of the ClearCase administrators group (Windows)

Locks: An error occurs if one or more of these objects are locked: VOB.

Mastership: No mastership restrictions.

Options and Arguments

Event Records and Comments

Default
Creates one or more event records, with commenting controlled by the
standard ClearCase user profile (default: –nc). See Event Records and Comments
in the multitool reference page. To edit a comment, use cleartool chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the specified comment option.

Suppressing Interactive Prompts

Default
Unless you specify –actual, you must confirm each epoch number change.

–f⋅orce
Suppresses confirmation steps.

Specifying the Row to Be Changed

Default
None. You must specify a replica. If you do not specify a vob-selector, the
command uses the current VOB.

replica-selector
Specifies the replica whose estimated epoch numbers are to be changed; that
214 Administrator’s Guide: Rational ClearCase MultiSite

is, changes the current replica’s estimate of the state of replica-selector. Specify
replica-selector in the form [replica:]replica-name[@vob-selector]

Specifying the Changes

Default
chepoch reads a set of replica-selector=value or oid=value pairs, one per line,
from standard input. You can copy and paste lsepoch output, or type the data
in the format described below. Extra white space is allowed. To terminate
input, type a period character (.) and a carriage return (<CR>) at the beginning
of a line.

replica-selector=value
oid=value

One or more arguments, where

Setting a Row Using the Replica’s Actual State

Default
None. You must specify a replica.

–actual [–raise_only] sibling-replica-selector ...
Contacts sibling-replica-selector, retrieves its actual state, and changes its row in
the epoch number matrix of the current replica. Specify sibling-replica-selector
in the form [replica:]replica-name[@vob-selector] (see the description of
replica-selector).

replica-name Name of the replica (displayed with lsreplica)

vob-selector VOB family of the replica; can be omitted if the current
working directory is within the VOB.
Specify vob-selector in the form [vob:]pname-in-vob

pname-in-vob Pathname of the VOB tag (whether or
not the VOB is mounted) or of any file
system object within the VOB (if the
VOB is mounted)

replica-selector Column of the epoch number matrix. This argument, along
with the preceding replica-selector argument, specifies a
particular location in the matrix.

oid Object identifier for the replica. lsepoch prints OIDs in its
output.

value New epoch number to be entered at the specified matrix
location.
chepoch 215

With –raise_only, chepoch raises epoch numbers for the sibling replica but
does not lower any of them. This option optimizes synchronization when
packets have been sent from the current replica to the sibling replica but have
not yet been imported.

For example, replica sanfran_hub has received but not imported a packet from
replica boston_hub. At replica boston_hub, the administrator uses chepoch
–actual to reset the epoch row for sanfran_hub and then sends another update
packet to sanfran_hub. This packet contains all the operations in the packet
waiting to be imported at sanfran_hub, plus any new operations. If the
administrator uses chepoch –actual –raise_only instead, the new packet
includes only the new operations.

Examples
■ Change two columns in the current replica’s row for the bangalore replica.

multitool chepoch bangalore boston_hub=950 sanfran_hub=2000
Change oplog IDs in row "bangalore" [no] yes
Epoch row successfully set.

■ Make the same change as in the preceding example, but bypass the confirmation
steps.

multitool chepoch –force bangalore boston_hub=950 sanfran_hub=2000
Epoch row successfully set.

■ Make the same change as in the preceding examples, specifying the changes as
terminal input instead of as command-line arguments.

multitool chepoch bangalore
Enter specifications for epochs to change in row "bangalore"

(one per line)

oid:87f6265f.72d911d4.a5cd.00:01:80:c0:4b:e7=950
oid:0eaa6fc3.737d11d4.adbe.00:01:80:c0:4b:e7=2000
.
Change oplog IDs in row "bangalore" [no] yes
Epoch row successfully set.

■ Change an item in a replica’s estimate of the state of the sydney replica, specifying
the VOB family of the replica whose matrix is to be changed.

multitool chepoch –force sydney@\vob3 buenosaires=800
Epoch row successfully set.
216 Administrator’s Guide: Rational ClearCase MultiSite

■ Set the current replica’s estimate of the state of the tokyo replica to its actual state.

multitool chepoch –actual tokyo@/vobs/tromba
Entry for boston_hub changed from: 1400

to 1300

Entry for sanfran_hub changed from: 985

to 950

Entry for tokyo changed from: 2562

to 2000

■ Update the current replica’s epoch numbers for replicas boston_hub and
sanfran_hub.

multitool chepoch –actual boston_hub@/vobs/dev sanfran_hub@/vobs/dev
Entry for boston_hub changed from: 1400

to 1300

Entry for sanfran_hub changed from: 985

to 1000

■ Make the same change as in the previous example, but do not lower any of the
numbers.

multitool chepoch –actual –raise_only boston_hub@/vobs/dev
sanfran_hub@/vobs/dev
Entry for boston_hub unchanged from: 1400

Entry for sanfran_hub changed from: 985

to 1000

See Also

lsepoch, recoverpacket, restorereplica
chepoch 217

chmaster
Transfers mastership of an object

Applicability

Synopsis

chmaster [–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery
| –cqe⋅ach | –nc⋅omment]
{ master-replica-selector object-selector ...
| [–pname] master-replica-selector branch-or-element-pname ...
| –str⋅eam [–ove⋅rride] master-replica-selector stream-selector ...
| –def⋅ault [–pname] branch-pname ...
| –def⋅ault brtype-selector ...
| –all [–obsolete_replica old-replica-selector]
[–l⋅ong] [–vie⋅w view-tag] master-replica-selector
}

Description

This command transfers the mastership of one or more objects from one replica to
another. Only the current replica is affected immediately; other replicas are notified of
the mastership transfers through the normal exchange of update packets.

To limit use of this command to a certain set of users, you can create triggers. For more
information, see Managing Software Projects.

Product Command type

ClearCase cleartool subcommand

MultiSite multitool subcommand

Platform

UNIX

Windows
218 Administrator’s Guide: Rational ClearCase MultiSite

Specifying a View Context

The chmaster command requires a view context. If you are not in a set view or working
directory view on UNIX or in a view drive on Windows, you can specify a view on the
command line, as shown in the following table. If you specify a dynamic view, it must
be active on your host.

Note: A view you specify in the chmaster command takes precedence over your
current set view, working directory view, or view drive.

Restrictions

Identities: For all UCM objects except baselines, no special identity is required. For
baselines and all non-UCM objects, you must have one of the following identities:

■ Object creator (except for replicas)
■ Object owner (except for replicas)
■ VOB owner
■ root (UNIX)
■ Member of the ClearCase administrators group (Windows)

Argument How to specify a view

object-selector
brtype-selector

Use a view-extended pathname as the vob-selector
portion of the argument. For example:
lbtype:LABEL1@/view/jtg/vobs/dev
brtype:v1.0_bugfix@/view/jtg/vobs/dev
lbtype:LABEL1@s:\dev
brtype:v1.0_bugfix@s:\dev

branch-pname
element-pname

Specify branch-pname or element-pname as a
view-extended pathname. For example:
/view/jtg/vobs/dev/cmd.c@@
/view/jtg/vobs/dev/cmd.c@@/main
s:\dev\cmd.c@@
s:\dev\cmd.c@@\main

master-replica-selector (for
the chmaster –all variant)

Use the –view option or use a view-extended pathname
as the vob-selector portion of the argument. For example:
–view jtg replica:boston_hub@\dev
replica:boston_hub@/view/jtg/vobs/dev
replica:boston_hub@s:\dev
chmaster 219

Locks: Restrictions depend on the kind of object:

Mastership: Your current replica must master the object. Using both –all and
–obsolete_replica overrides this restriction, but you must not use the
–obsolete_replica option except in special circumstances. (See the description of the
–all option.)

Other: You cannot transfer mastership of a branch if either of these conditions exist:

■ There are reserved checkouts on that branch.

■ There are unreserved checkouts on that branch made without the –nmaster option.

Options and Arguments

Event Records and Comments

Default
Creates one or more event records, with commenting controlled by the
standard ClearCase user profile (default: –nc). See Event Records and Comments
in the multitool reference page. To edit a comment, use cleartool chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the specified comment option.

Specifying the Objects

Default
None.

Object whose
mastership is
changing

Locks on these objects cause the chmaster command to fail

Element Element, element type, VOB

Branch Branch, branch type, VOB

Type object Type object, VOB

Hyperlink Hyperlink type, VOB

Baseline Baseline, VOB, replica, components associated with the baseline

Stream Stream, activity

Component Component, VOB, replica
220 Administrator’s Guide: Rational ClearCase MultiSite

master-replica-selector object-selector ...
Transfers mastership of objects specified with object-selector to the replica
specified with master-replica-selector. Specify master-replica-selector in the form
[replica:]replica-name[@vob-selector]

Specify object-selector in one of the following forms:

[–pname] master-replica-selector branch-or-element-pname ...
Transfers mastership of the specified branches or elements to the replica
specified with master-replica-selector. A branch pathname takes the form
element-name@@/branch..., for example, cmdsyn.c@@/main/bugfix, and an
element pathname takes the form element-name@@, for example, cmdsyn.c@@.

replica-name Name of the replica (displayed with lsreplica)

vob-selector VOB family of the replica; can be omitted if the current
working directory is within the VOB.
Specify vob-selector in the form [vob:]pname-in-vob

pname-in-vob Pathname of the VOB tag (whether or
not the VOB is mounted) or of any file
system object within the VOB (if the
VOB is mounted)

vob-selector vob:pname-in-vob

where pname-in-vob Pathname of the VOB tag
(whether or not the VOB is
mounted) or of any file system
object within the VOB (if the
VOB is mounted)

attribute-type-selector [attype:]type-name[@vob-selector]

branch-type-selector [brtype:]type-name[@vob-selector]

element-type-selector [eltype:]type-name[@vob-selector]

hyperlink-type-selector [hltype:]type-name[@vob-selector]

label-type-selector [lbtype:]type-name[@vob-selector]

hlink-selector [hlink:]hlink-id[@vob-selector]

oid-obj-selector oid:object-oid[@vob-selector]

replica-selector [replica:]replica-name[@vob-selector]

baseline-selector [baseline:]baseline-name[@vob-selector]

component-selector [component:]component-name[@vob-selector]
chmaster 221

If branch-or-element-pname has the form of an object selector, you must include
the –pname option to indicate that pname is a pathname.

–str⋅eam [–ove⋅rride] master-replica-selector stream-selector ...
Transfers mastership of the specified streams and their associated objects to
the replica specified with master-replica-selector. Specify stream-selector in the
following form:

Use the –override option only if the chmaster –stream command fails. With
–override, chmaster attempts to transfer mastership of objects whose
mastership was not transferred during the original invocation of the
command. For more information, see Transferring Mastership of a Stream on
page 138.

–a⋅ll [–obsolete_replica old-replica-selector] [–l⋅ong] [–vie⋅w view-tag]
master-replica-selector
Caution: Incorrect use of the –obsolete_replica form of the command can lead
to divergence among the replicas in a family.

Transfers to master-replica-selector mastership of all objects that are located in
and mastered by the current replica. (The chmaster command determines the
current replica by using the vob-selector you specify as part of
master-replica-selector. If you do not include a vob-selector, chmaster uses the
replica containing the current working directory.) If errors occur, the command
continues, but after finishing, it reports that not all mastership changes
succeeded.

With –long, chmaster lists the objects whose mastership is changing.

With –view, chmaster uses the specified view as the view context.

With –obsolete_replica, chmaster transfers mastership of all objects in the
replica specified with old-replica-selector. Also, chmaster associates
nonmastered checkouts with the new replica. Use this form of chmaster only
when replica old-replica-selector is no longer available (for example, was
deleted accidentally). Before entering this command, you must make sure that
old-replica-selector masters itself or is mastered by the replica that it last
updated. Then, enter the chmaster command at the last-updated replica. You
must also send update packets from the last-updated replica to all other
remaining replicas in the family. For more information, see the rmreplica
reference page.

stream-selector [stream:]stream-name[@vob-selector]
222 Administrator’s Guide: Rational ClearCase MultiSite

Returning Mastership of Branches to Default State

Default
None.

–def⋅ault [–pname] branch-pname ...
Transfers mastership of branch-pname to the replica that masters the branch
type. If branch-pname has the form of an object selector, you must include the
–pname option to indicate that branch-pname is a pathname.

–def⋅ault brtype-selector ...
Removes explicit mastership of branches that are mastered explicitly by the
current replica and are instances of the type specified by brtype-selector.

Note: You can use this command only at the replica that masters the branch
type.

Examples
■ At replica boston_hub, transfer mastership of label type V1.0_BUGFIX to the

sanfran_hub replica.

multitool chmaster sanfran_hub lbtype:V1.0_BUGFIX
Changed mastership of "V1.0_BUGFIX" to "sanfran_hub"

■ At replica sanfran_hub, transfer mastership of element list.c to the sydney replica.

multitool chmaster sydney list.c@@
Changed mastership of "list.c" to "sydney"

■ At replica sanfran_hub, transfer mastership of the stream v2.1.bl5 and its
associated objects to the boston_hub replica.

multitool chmaster –stream boston_hub@/vobs/dev stream:v2.1.bl5@/vobs/dev

■ At the replica that is the master of replica sanfran_hub, make sanfran_hub
self-mastering.

multitool chmaster sanfran_hub replica:sanfran_hub
Changed mastership of "sanfran_hub" to "sanfran_hub"

■ At replica buenosaires, transfer mastership of branch cache.c@@/main/v3_dev to
boston_hub.

multitool chmaster boston_hub cache.c@@/main/v3_dev
Changed mastership of branch "/vobs/dev/cache.c@@/main/v3_dev" to

"boston_hub"

■ For all objects mastered by the current replica, transfer mastership to sanfran_hub.

multitool chmaster –all sanfran_hub
Changed mastership of all objects
chmaster 223

■ Same as the preceding example, but have chmaster list each object whose
mastership is changing, and specify a view context.

multitool chmaster –all –long sanfran_hub@/view/jtg/vobs/dev
Changed mastership of branch type sydney_main

Changed mastership of label type SYDNEY_V2.0

Changed mastership of replica sydney

Changed mastership of all objects

■ Return mastership of a branch to the replica that masters the branch type and then
remove its explicit mastership.

At the replica that masters the branch:

multitool describe –fmt "%[master]p\n" brtype:v3_bugfix
boston_hub@\dev

multitool chmaster boston_hub@\dev \dev\acc.c@@\main\v3_bugfix
Changed mastership of branch "\dev\acc.c@@\main\v3_bugfix" to

"boston_hub@\dev"

multitool syncreplica –export –fship boston_hub@\dev
Generating synchronization packet c:\Program

Files\Rational\ClearCase\var

\shipping\ms_ship\outgoing\sync_bangalore_19-Aug-02.09.33.02_3447_1

...

At the replica that masters the branch type:

multitool syncreplica –import –receive
Applied sync. packet

/var/adm/rational/clearcase/shipping/ms_ship/incoming/sync_bangalor

e_19-Aug-02.09.33.02_3447_1

to VOB /net/minuteman/vobstg/dev.vbs

multitool chmaster –default brtype:v3_bugfix
Changed mastership of branch type "v3_bugfix" to "default"

See Also

reqmaster, syncreplica
Chapter 10, Managing Mastership
224 Administrator’s Guide: Rational ClearCase MultiSite

chreplica
Changes the properties of a replica

Applicability

Synopsis

chrep⋅lica [–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery
| –cqe⋅ach | –nc⋅omment] [–hos⋅t hostname]
[–pre⋅serve | –per⋅ms_preserve | –npr⋅eserve]
[–isconn⋅ected | –nconn⋅ected] replica-selector

Description

This command changes the properties of a replica. For more information, see Changing
the Host Name for a VOB Replica on page 120, Changing Preservation Mode for a VOB
Family on page 117, and Setting the Connectivity Property for a VOB Replica on page 120.

Restrictions

Identities: You must have one of the following identities:

■ Creator of the replica where you enter the command
■ Owner of the replica where you enter the command
■ VOB owner
■ root (UNIX)
■ Member of the ClearCase administrators group (Windows)

Locks: An error occurs if one or more of these objects are locked: VOB object, replica
object.

Product Command type

MultiSite multitool subcommand

Platform

UNIX

Windows
chreplica 225

Mastership: With –isconnected and –nconnected, there are no mastership restrictions.
With all other options, your current replica must master the replica being changed.

Options and Arguments

Event Records and Comments

Default
Creates one or more event records, with commenting controlled by the
standard ClearCase user profile (default: –nc). See Event Records and Comments
in the multitool reference page. To edit a comment, use cleartool chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the specified comment option.

Specifying the Change

Default
None. You must specify at least one of the options described in this section.

–hos⋅t hostname
Changes the host name associated with the specified replica. hostname must be
usable by hosts in different domains.

hostname can be either the IP address of the host or the computer name, for
example, minuteman. You may have to append an IP domain name, for
example, minuteman.purpledoc.com.

On UNIX, use the uname –n command to display the computer name. On
Windows NT, the computer name is displayed in the Network Settings dialog
box, which is accessible from the Network icon in Control Panel. On Windows
2000, the computer name is displayed on the Network Identification tab in the
System Properties dialog box, which is accessible from the System icon in
Control Panel.

–pre⋅serve
Makes the specified replica identities- and permissions-preserving.

–per⋅ms_preserve
Makes the specified replica permissions-preserving.

–npr⋅eserve
Makes the specified replica nonpreserving.

–isconn⋅ected | –nconn⋅ected
Indicates whether the replica has IP connectivity to the current replica. You
must specify a sibling replica; you cannot set this property for your current
replica.
226 Administrator’s Guide: Rational ClearCase MultiSite

Specifying the Replica

Default
None.

replica-selector
Specifies the replica to be changed. Specify replica-selector in the form
[replica:]replica-name[@vob-selector]

Examples
■ Associate replica bangalore with host ramohalli in the database of the current

replica.

multitool chreplica –host ramohalli bangalore
Updated replica information for "bangalore".

■ Make replica tokyo a nonpreserving replica.

multitool chreplica –npreserve tokyo@/vobs/doc
Updated replica information for "tokyo".

■ Mark replica sydney as not connected.

multitool chreplica –nconnected sydney@\doc
Updated replica information for "sydney".

See Also

chmaster, syncreplica

replica-name Name of the replica (displayed with lsreplica)

vob-selector VOB family of the replica; can be omitted if the current
working directory is within the VOB.
Specify vob-selector in the form [vob:]pname-in-vob

pname-in-vob Pathname of the VOB tag (whether or
not the VOB is mounted) or of any file
system object within the VOB (if the
VOB is mounted)
chreplica 227

epoch_watchdog
Checks whether a replica’s epoch numbers have rolled back when the replica is not in
restoration mode

Applicability

Synopsis
■ Check for rollback of epoch numbers:

epoch_watchdog { –all | –vobs VOB-tag,... | list-file }

■ Print help on command options:

epoch_watchdog –help

On UNIX, epoch_watchdog is located in ccase-home-dir/config/scheduler/tasks. On
Windows, epoch_watchdog is located in ccase-home-dir\config\scheduler\tasks.

Description

epoch_watchdog checks whether a replica’s epoch numbers have rolled back without
a restorereplica command being run. If the epoch numbers have rolled back and the
replica is not in restoration mode, the replica may have been improperly restored from
backup. This script is intended to be run regularly by the ClearCase scheduler. For
more information, see the schedule reference page in the Command Reference.

epoch_watchdog writes a replica’s epoch number to a log file in
/var/adm/rational/clearcase/log/epoch_logs on UNIX or ccase-home-dir\var\log\epoch_logs on
Windows. The next time the script is run, it compares the current epoch number to the
logged number. If the current number is lower than the logged number,
epoch_watchdog checks to see if the replica is in restoration mode. If the replica is not
being restored, epoch_watchdog attempts to lock the affected VOB, and optionally

Product Command Type

MultiSite MultiSite command

Platform

UNIX

Windows
228 Administrator’s Guide: Rational ClearCase MultiSite

sends e-mail notification. You must specify e-mail addresses in the scheduled job. In
this situation, you must contact Rational Support before unlocking the VOB or
attempting any repair procedures.

Note: If you do not schedule epoch_watchdog to run frequently, the activity level in the
replica can be high enough that a rollback may not be detected if restorereplica is not
performed.

If an error occurs, epoch_watchdog creates an entry in
/var/adm/rational/clearcase/log/error_log on UNIX or the Event Viewer on Windows. This
entry references the epoch_logs file.

Restrictions

You must be root on UNIX or a member of the ClearCase administrators group on
Windows.

Options and Arguments

–h⋅elp
Prints help on command options.

–all
Checks all replicated VOBs on the current computer.

–vobs VOB-tag,...
VOB tags of replicated VOBs to be checked. Specify multiple VOB tags in a
comma-separated list with no white space.

list-file
Path to file containing a list of VOBs to check. Specify one VOB on each line,
with no white space, in the form vob:VOB-tag

Examples

For an example of the command, see Running epoch_watchdog on page 197.

Files

/var/adm/rational/clearcase/log/epoch_logs (UNIX)
/var/adm/rational/clearcase/log/error_log (UNIX)
ccase-home-dir\var\log\epoch_logs (Windows)

See Also

schedule (in the Command Reference)
epoch_watchdog 229

lsepoch
Lists epoch information

Applicability

Synopsis

lsepoch [–invob vob-selector | [–actual] replica-selector ...]

Description

This command displays the epoch number matrix for a replica. The replica’s own
epoch row represents its actual state. The other rows represent the replica’s best
estimate of other replicas’ states.

Note: lsepoch output includes rows for deleted replicas, in addition to the rows for
replicas still in use. Oplog records for deleted replicas are saved in case a replica
undergoing restoration must receive operations from the deleted replica. (For example,
a replica may be restored from a backup created before the deleted replica was
removed.)

With –actual, lsepoch contacts sibling replicas and retrieves their epoch rows. These
epoch rows reflect the replicas’ actual states. lsepoch –actual works only between sites
with IP connections. If lsepoch cannot contact a sibling replica, it prints an error and
tries to contact the next replica you specified. lsepoch –actual detects whether the
sibling replica or the current replica is missing oplog entries. If oplog entries are
missing, the command prints one of the following messages:

Your replica ("replica-name") has fewer oplog entries for itself than
"replica-selector" has for your replica.
To avoid permanent data loss, your VOB administrator must initiate the
documented replica restoration procedure.

Product Command type

MultiSite multitool subcommand

Platform

UNIX

Windows
230 Administrator’s Guide: Rational ClearCase MultiSite

The replica "replica-name" has more oplog entries for "replica-selector" than
"replica-selector" has for itself.
To avoid permanent data loss, its administrator must initiate the
documented replica restoration procedure.

Restrictions

None.

Options and Arguments

Default
Displays the epoch number matrix of the replica containing the current
working directory.

–invob vob-selector
Displays the epoch number matrix of the current replica in the family specified
by vob-selector. Specify vob-selector in the form [vob:]pname-in-vob

–actual
Retrieves epoch rows from sibling replicas.

replica-selector ...
Without –actual, displays the current replica’s row for each specified replica.
With –actual, contacts each specified replica and displays the replica’s own
epoch row. Specify replica-selector in the form
[replica:]replica-name[@vob-selector]

pname-in-vob Pathname of the VOB tag (whether or not the VOB is mounted)
or of any file system object within the VOB (if the VOB is
mounted)

replica-name Name of the replica (displayed with lsreplica)

vob-selector VOB family of the replica; can be omitted if the current
working directory is within the VOB.
Specify vob-selector in the form [vob:]pname-in-vob

pname-in-vob Pathname of the VOB tag (whether or
not the VOB is mounted) or of any file
system object within the VOB (if the
VOB is mounted)
lsepoch 231

Examples
■ Display the epoch number matrix for the current replica in the family /vobs/dev.

cd /vobs/dev
multitool lsepoch
For VOB replica "/vobs/dev":

Oplog IDs for row "bangalore" (@ ramohalli):

oid:7ag3b0bc.defa11d0.ba57.00:01:72:73:3c:94=0 (bangalore)

oid:87f6265f.72d911d4.a5cd.00:01:80:c0:4b:e7=950 (boston_hub)

oid:0eaa6fc3.737d11d4.adbe.00:01:80:c0:4b:e7=10 (sanfran_hub)

Oplog IDs for row "boston_hub" (@ minuteman):

oid:7ag3b0bc.defa11d0.ba57.00:01:72:73:3c:94=0 (bangalore)

oid:87f6265f.72d911d4.a5cd.00:01:80:c0:4b:e7=1 (boston_hub)

oid:0eaa6fc3.737d11d4.adbe.00:01:80:c0:4b:e7=10 (sanfran_hub)

Oplog IDs for row "sanfran_hub" (@ goldengate):

oid:7ag3b0bc.defa11d0.ba57.00:01:72:73:3c:94=0 (bangalore)

oid:87f6265f.72d911d4.a5cd.00:01:80:c0:4b:e7=1 (boston_hub)

oid:0eaa6fc3.737d11d4.adbe.00:01:80:c0:4b:e7=16 (sanfran_hub)

■ Display the epoch number matrix for the current replica in the family \doc.

multitool lsepoch –invob \doc
For VOB replica "\doc":

Oplog IDs for row "boston_hub" (@ minuteman):

oid:fb4d4850.093022d1.b033.00:50:98:97:24:76=836 (boston_hub)

oid:lw5b4639.039011d1.b083.00:60:97:98:42:69=580 (sanfran_hub)

Oplog IDs for row "sanfran_hub" (@ goldengate):

oid:fb4d4850.093022d1.b033.00:50:98:97:24:76=600 (boston_hub)

oid:lw5b4639.039011d1.b083.00:60:97:98:42:69=785 (sanfran_hub)

■ List the current replica’s estimate of the state of replica sydney.

multitool lsepoch sydney@/vobs/dev
For VOB replica "/vobs/dev":

Oplog IDs for row "sydney" (@ sanfran_hub):

oid:87f6265f.72d911d4.a5cd.00:01:80:c0:4b:e7=0 (boston_hub)

oid:0eaa6fc3.737d11d4.adbe.00:01:80:c0:4b:e7=1 (sanfran_hub)

oid:c6b8c9b0.038d11d1.b083.00:60:97:98:42:69=16 (sydney)
232 Administrator’s Guide: Rational ClearCase MultiSite

■ List the actual state of the bangalore and buenosaires replicas.

multitool lsepoch –actual bangalore@/vobs/dev buenosaires@/vobs/dev
Contacting remote replica...

bangalore:

oid:7ag3b0bc.defa11d0.ba57.00:01:72:73:3c:94=0 (bangalore)

oid:87f6265f.72d911d4.a5cd.00:01:80:c0:4b:e7=20 (boston_hub)

oid:ac93e6cf.14a311d5.bbcc.00:01:80:c0:4b:e7=950 (buenosaires)

Contacting remote replica...

buenosaires:

oid:7ag3b0bc.defa11d0.ba57.00:01:72:73:3c:94=0 (bangalore)

oid:87f6265f.72d911d4.a5cd.00:01:80:c0:4b:e7=16 (boston_hub)

oid:ac93e6cf.14a311d5.bbcc.00:01:80:c0:4b:e7=950 (buenosaires)

See Also

chepoch, recoverpacket, restorereplica
lsepoch 233

lsmaster
Lists objects mastered by a replica

Applicability

Synopsis

lsmaster [–kind object-selector-kind [,...]] [–fmt format-string] [–view view-tag]
[–inr⋅eplicas { –all | replica-name [,...] }] master-replica-selector ...

Description

This command lists objects mastered by a replica. By default, the command uses only
the information known to your current replica. If you list objects mastered by a sibling
replica, changes that have not been imported at your current replica are not included
in the output. For example, a label type is added at replica sanfran_hub, but replica
boston_hub has not imported the update packet containing the change. If you enter
the command multitool lsmaster sanfran_hub at the boston_hub replica, the output
does not include the new type.

To retrieve information from a sibling replica, use –inreplicas. This form of the
command contacts the sibling replicas and works only between sites that have IP
connections. If lsmaster cannot contact a replica, it prints an error and tries to contact
the next replica you specified.

Object Name Resolution

If you have a view context, lsmaster uses the view to resolve object identifiers (OIDs)
of file system objects to the names of the objects. If you do not have a view context,

Product Command type

ClearCase cleartool subcommand

MultiSite multitool subcommand

Platform

UNIX

Windows
234 Administrator’s Guide: Rational ClearCase MultiSite

lsmaster prints OIDs for file system objects. You can specify a view context with the
–view option.

When you specify –inreplicas, lsmaster prints OIDs for objects whose creation
operations have not yet been imported at your current replica.

Restrictions

None.

Options and Arguments

Specifying the Object Kinds

Default
lsmaster lists all objects mastered by the replica.

–kind object-selector-kind[,...]
Limits the listing to the specified object kinds. The list of object kinds must be
comma-separated, with no spaces. object-selector-kind can have the following
values:

Values for ClearCase:

Values for ClearCase UCM:

activity
baseline
component
folder
project
stream

Values for MultiSite:

replica

attype hlink

branch hltype

brtype lbtype

delem (directory element) slink

eltype vob

felem (file element)
lsmaster 235

Report Format

Default
For file system objects, the master replica, object kind, and OID of each object
are listed. For example:

master replica: boston_hub@/vobs/dev file
element:oid:40e022a3.241d11ca ...

For non-file system objects, the master replica, object kind, and name of each
object are listed. For example:

master replica: boston_hub@/vobs/dev brtype:main

–fmt format-string
Lists information using the specified format string. For details about using this
option, see the fmt_ccase reference page .

Specifying a View Context

Default
The command uses your current view context.

–view view-tag
Specifies a view.

Specifying the Replica from Which to Retrieve Information

Default
The command uses the information in your current replica.

–inr⋅eplicas { –all | replica-name[,...] }
With –all, retrieves information from all replicas in the VOB family (except
deleted replicas). Otherwise, retrieves information from the sibling replicas
you specify. The list of replicas must be comma-separated, with no spaces.

Specifying the Replica Whose Mastered Objects Are Displayed

Default
No default; you must specify a replica.

master-replica-selector ...
Lists objects mastered by the specified replica. Specify master-replica-selector in
the form [replica:]replica-name[@vob-selector]

replica-name Name of the replica

vob-selector VOB family of the replica; can be omitted if the current
working directory is within the VOB.
Specify vob-selector in the form [vob:]pname-in-vob
236 Administrator’s Guide: Rational ClearCase MultiSite

Examples

In these examples, the lines are broken for readability. You must enter each command
on a single physical line.

■ List all objects mastered by the replica sanfran_hub.

multitool lsmaster –view v4.1 –fmt "%m:%n\n" sanfran_hub@/vobs/dev
directory element:/vobs/dev.@@

...

file element:/vobs/dev/lib/file.c@@

...

symbolic link:/vobs/dev/doc

...

hyperlink:Merge@2@/vobs/dev

...

■ List all label types mastered by the replica boston_hub.

cleartool lsmaster –fmt "%m:%n\n" –kind lbtype boston_hub@\doc
label type:LATEST

label type:CHECKEDOUT

label type:BACKSTOP

label type:REL1

...

■ List all element types, label types, and branch types mastered by the replica
sanfran_hub.

cleartool lsmaster –kind eltype,lbtype,brtype sanfran_hub
master replica: sanfran_hub@\dev "element type" file_system_object

master replica: sanfran_hub@\dev "element type" file

master replica: sanfran_hub@\dev "element type" directory

...

master replica: sanfran_hub@\dev "branch type" sanfran_main

master replica: sanfran_hub@\dev "branch type" v1.0_bugfix

...

master replica: sanfran_hub@\dev "label type" LATEST

master replica: sanfran_hub@\dev "label type" SANFRAN_V2.0

master replica: sanfran_hub@\dev "label type" V1.0_BUGFIX

master replica: sanfran_hub@\dev "label type" TOKYO_BASE

master replica: sanfran_hub@\dev "label type" SYDNEY_BASE

...

pname-in-vob Pathname of the VOB tag (whether or
not the VOB is mounted) or of any file
system object within the VOB (if the
VOB is mounted)
lsmaster 237

■ List the name and creation comment of each element type mastered by the replica
boston_hub. Contact the boston_hub replica to retrieve the data.

multitool lsmaster –inreplicas boston_hub –fmt "%n\t%c\n"
–kind eltype boston_hub@/vobs/dev
In replica "boston_hub"

binary_delta_file Predefined element type used to represent a

file in binary delta format.

...

■ List information from all replicas in the VOB family about the objects mastered by
the replica sanfran_hub. Do not use a view context.

multitool lsmaster –inreplicas –all sanfran_hub@/vobs/dev
In replica "boston_hub"

master replica: sanfran_hub@/vobs/dev "versioned object base"

/vobs/dev

master replica: sanfran_hub@/vobs/dev "directory element"

(oid:40e0000b.241d23ca.b3df.08:00:69:02:05:33)

master replica: sanfran_hub@/vobs/dev "directory element"

(oid:40e0000b.241d23ca.b3df.08:00:69:02:05:33)

...

Use a view context:

multitool lsmaster –view v4.1 –inreplicas –all sanfran_hub@/vobs/dev
In replica "boston_hub"

master replica: sanfran_hub@/vobs/dev "versioned object base"

/vobs/dev

master replica: sanfran_hub@/vobs/dev "directory element"

/view/v4.1/vobs/dev/.@@

master replica: sanfran_hub@/vobs/dev "directory element"

/view/v4.1/vobs/dev/lib@@

...

■ List information from the sanfran_hub replica about the objects mastered by the
replica boston_hub.

multitool lsmaster –view v4.1 –inreplicas sanfran_hub boston_hub@\doc
238 Administrator’s Guide: Rational ClearCase MultiSite

■ List all projects, baselines, and streams mastered by the replica boston_hub.
Contact the boston_hub replica to retrieve the data.

multitool lsmaster –inreplicas boston_hub –kind project,baseline,stream
boston_hub@/vobs/projects
In replica "boston_hub"
master replica: boston_hub@/vobs/projects "project" V4.5.BL3
master replica: boston_hub@/vobs/projects "project" doc_localize
master replica: boston_hub@/vobs/projects "stream" 4.5.bl2_int
master replica: boston_hub@/vobs/projects "project" V4.5.BL2
master replica: boston_hub@/vobs/projects "stream" 4.5.bl2
master replica: boston_hub@/vobs/projects "stream"
stream000317.160434
master replica: boston_hub@/vobs/projects "stream"
stream000317.173156
master replica: boston_hub@/vobs/projects "baseline"
V4.5.BL2.011005.12820
master replica: boston_hub@/vobs/projects "baseline"
V4.5.BL2.011005.12890
master replica: boston_hub@/vobs/projects "baseline"
V4.5.BL2.011005.17408
master replica: boston_hub@/vobs/projects "baseline"
V4.5.BL2.011005.17695
master replica: boston_hub@/vobs/projects "baseline"
V4.5.BL2.011005.19614
...

See Also

chmaster, describe, reqmaster
Introduction to MultiSite and Managing Mastership
lsmaster 239

lspacket
Describes contents of a packet

Applicability

Synopsis

lspacket [–l⋅ong | –s⋅hort] [pname ...]

Description

This command lists a summary of the contents of one or more files that contain
replica-creation or update packets. By default, the lspacket output includes this
information:

■ Pathname of each packet

■ Type of each packet (Replica Creation or Update)

■ VOB family to which the packet applies

■ Creation comment for the packet

■ Replicas for which the packet is intended; if the VOB tag is available, lspacket
displays it.

An asterisk after a replica name indicates that the packet can be imported
immediately because it does not depend on any other packet. (This applies only
for replicas listed in the host’s ClearCase registry.) For example, if there are two
packets waiting to be imported at a replica, the first packet has an asterisk and the
second doesn’t, because the second packet depends on the first.

■ Packet sequence number (for one part of a logical packet with multiple physical
packets)

Product Command type

MultiSite multitool subcommand

Platform

UNIX

Windows
240 Administrator’s Guide: Rational ClearCase MultiSite

Restrictions

None.

Options and Arguments

Listing Format

Default
Includes the information listed in the Description section.

–l⋅ong
In addition to the default information, lists the following information:

–s⋅hort
Lists only the pathname of a packet.

Specifying the Packets to Be Listed

Default
Lists all packets in all storage bays on the current host.

pname ...
One or more pathnames of files and/or directories.

Each file you specify is listed if it contains a physical packet. For each directory
you specify, lspacket lists packets stored in that directory.

Examples

In these examples, the lines are broken for readability. You must enter each command
on a single physical line.

■ Name or OID of the replica where the packet was created

■ Oplog IDs that indicate the contents of the packet

■ Recovery incarnation of the sending replica (an internal value used by
MultiSite)

■ Major and minor packet versions (internal values used by MultiSite)
lspacket 241

■ List a single replica-creation packet.

multitool lspacket
/opt/rational/clearcase/shipping/ms_ship/incoming/repl_boston_15-Aug-00.17.0
7.20_7865_1
Packet is:

/opt/rational/clearcase/shipping/ms_ship/incoming/repl_boston_15-Au

g-00.17.07.20_7865_1

Packet type: Replica Creation

VOB family identifier is: 94be56a1.0dd611d1.a0df.00:01:80:7b:09:69

Comment supplied at packet creation is:

Packet intended for the following targets:

buenosaires

The packet sequence number is 1

■ List a single update packet.

multitool lspacket /usr/tmp/packet1
Packet is: /usr/tmp/packet1

Packet type: Update

VOB family identifier is: c3f47cf3.71b111cd.a4f2.00:01:80:31:7a:a7

Comment supplied at packet creation is:

Packet intended for the following targets:

 sanfran_hub [local to this network] tag: /vobs/tests

The packet sequence number is 1

■ List all packets in all of the local host’s storage bays.

multitool lspacket
Packet is: c:\Program Files\Rational\ClearCase\var\shipping

\ms_ship\incoming\packet1

...

Packet is: c:\Program Files\Rational\ClearCase\var\shipping

\ms_ship\incoming\packet2

■ List all packets in a specific storage bay.

multitool lspacket "c:\Program
Files\Rational\ClearCase\var\shipping\to_boston"
Packet is: c:\Program Files\Rational\ClearCase\var\shipping

\to_boston\outgoing\packet1

Packet type: Update

...
242 Administrator’s Guide: Rational ClearCase MultiSite

■ List an update packet in long format.

multitool lspacket –long /usr/tmp/packet1
Packet is: /usr/tmp/packet1

Packet type: Update

VOB family identifier is: c3f47cf3.71b111cd.a4f2.00:01:80:31:7a:a7

Comment supplied at packet creation is:

Packet intended for the following targets:

 sanfran_hub [local to this network] * tag: /vobs/tests

Originating replica is: sydney

The following replicas are referenced by this packet:

f3b1cd51.04b111d3.b2f0.00:c0:4f:96:17:d8

first oplog id is 10

incarnation is 06/29/95 12:18:09

3f370590.04b211d3.b2f0.00:c0:4f:96:17:d8

first oplog id is 0

incarnation is 0

8b354320.04c218k3.b5r0.00:c0:4f:99:27:f7

first oplog id is 1

incarnation is 07/21/95 11:45:20

The major packet version is 4, the minor packet version is 0

The packet sequence number is 1

See Also

mkreplica, MultiSite Control Panel, syncreplica, shipping.conf
lspacket 243

lsreplica
Lists VOB replicas

Applicability

Synopsis

lsrep⋅lica [–l⋅ong | –s⋅hort | –fmt format]
[–sib⋅lings
| [–sib⋅lings] –invob vob-selector
| replica-selector ...
]

Description

This command lists information about all VOB-replica objects recorded in the VOB
database of the current replica (except for deleted replicas). Other replicas may exist,
but the packets that contain their creation information have not yet been imported at
the current replica.

Restrictions

None.

Options and Arguments

Listing Format

Default
Includes creation event information for each replica.

Product Command type

ClearCase cleartool subcommand

MultiSite multitool subcommand

Platform

UNIX

Windows
244 Administrator’s Guide: Rational ClearCase MultiSite

–l⋅ong
Lists each replica’s creation information, master replica, mastership request
setting, ownership information, and host. If the current replica is in the process
of restoration, this option annotates the listings of other replicas from which
restoration updates are required. (See the restorereplica reference page.)

–s⋅hort
Lists only replica names.

–fmt format
Lists information using the specified format string. For details about using this
report-writing facility, see the fmt_ccase reference page in the Command
Reference.

–sib⋅lings
Lists the family members of the current replica, but does not list the current
replica itself. Use this option in scripts that process only sibling replicas.

Specifying the VOB Family

Default
Lists family members of the replica containing the current working directory.

–invob vob-selector
Lists the replicas in the specified family. Specify vob-selector in the form
[vob:]pname-in-vob

Specifying the Replica

Default
Lists all known replicas in the family.

replica-selector ...
Restricts the listing to one or more replicas. Specify replica-selector in the form
[replica:]replica-name[@vob-selector]

pname-in-vob Pathname of the VOB tag (whether or not the VOB is mounted)
or of any file system object within the VOB (if the VOB is
mounted)

replica-name Name of the replica

vob-selector VOB family of the replica; can be omitted if the current
working directory is within the VOB.
Specify vob-selector in the form [vob:]pname-in-vob

pname-in-vob Pathname of the VOB tag (whether or
not the VOB is mounted) or of any file
system object within the VOB (if the
VOB is mounted)
lsreplica 245

Examples

In these examples, the lines are broken for readability. You must enter each command
on a single physical line.

■ List the names of all replicas of the VOB containing the current working directory.

multitool lsreplica –short
bangalore

boston_hub

buenosaires

sanfran_hub

■ List the names of all siblings of the VOB containing the current working directory.

multitool lsreplica –short –siblings
bangalore

buenosaires

sanfran_hub

■ Display a long listing of the current VOB’s replicas.

multitool lsreplica –long
replica "bangalore"

15-Aug-00.15:48:39 by Susan Goechs (susan.user@minuteman)

replica type: unfiltered

master replica: boston_hub@/vobs/dev

request for mastership:enabled

owner: susan

group: user

host: "ramohalli"

replica "boston_hub"

19-May-99.15:47:13 by Susan Goechs (susan.user@minuteman)

replica type: unfiltered

master replica: boston_hub@/vobs/dev

request for mastership:enabled

owner: susan

group: user

host: "minuteman"

replica "buenosaires"
246 Administrator’s Guide: Rational ClearCase MultiSite

15-Aug-00.15:48:44 by Susan Goechs (susan.user@minuteman)

replica type: unfiltered

master replica: boston_hub@/vobs/dev

request for mastership:enabled

owner: susan

group: user

host: "mardelplata"

replica "sanfran_hub"

19-May-99.15:49:46 by Susan Goechs (susan.user@minuteman)

replica type: unfiltered

master replica: sanfran_hub@/vobs/dev

request for mastership:enabled

owner: susan

group: user

host: "goldengate"

■ List all replicas of the VOB whose VOB tag is \doc.

multitool lsreplica –invob \doc
For VOB replica “\doc”:

11-Mar.13:42 jcole replica "boston_hub"

11-Mar.13:45 jcole replica "sanfran_hub"

11-Mar.13:48 jcole replica "tokyo"

■ List the name, master replica, and replica host of all replicas in the family
/vobs/doc.

cmd-context lsreplica –fmt
"Name: %n\n\tMaster replica: %[master]p\n\tReplica host:
%[replica_host]p\n"
-invob /vobs/doc
Name: boston_hub

Master replica: boston@/vobs/doc

Replica host: minuteman

Name: sanfran_hub

Master replica: sanfran_hub@/vobs/doc

Replica host: goldengate

Name: tokyo

Master replica: sanfran_hub@/vobs/doc

Replica host: shinjuku

See Also

mkreplica
lsreplica 247

mkorder
Creates a shipping order for use by the store-and-forward facility

Applicability

Synopsis

mkorder –dat⋅a packet-pname [–scl⋅ass storage-class-name]
[–pex⋅pire date-time] [–not⋅ify e-mail-address]
[–c comment | –cq | –cqe | –nc]
[–shi⋅p –cop⋅y | –fsh⋅ip [–cop⋅y] | –out order-pname] destination ...

This command is located in ccase-home-dir/etc on UNIX and ccase-home-dir\bin on
Windows.

Description

This command creates a shipping order file for an existing packet file or any other file.
The shipping order is used by the shipping server to send the file to one or more
destinations.

mkorder submits to the shipping server a packet that was created with mkreplica –out
or syncreplica –out. You can also use mkorder to resubmit packets whose shipping
orders have expired, and to transfer other files among sites. A shipping order must be
located in the same directory as its associated packet or file.

Note: The shipping server deletes a packet after delivering it successfully (except when
the destination is the local host). If you use this command to process a file that must be
preserved at your site even after it is delivered to another site, you must specify the
–copy option.

Product Command type

MultiSite MultiSite command

Platform

UNIX

Windows
248 Administrator’s Guide: Rational ClearCase MultiSite

Restrictions

None.

Options and Arguments

Specifying the Packet File

Default
None.

–dat⋅a packet-pname
The pathname of the packet or file.

Note: If packet-pname contains a colon character (:), mkorder changes the colon
to a period character (.) during processing. This change allows packets to be
delivered to Windows machines, which do not allow colons in file names.

Specifying Where to Place the Shipping Order

Default
Creates a shipping order in the directory where the packet-pname file is located.

–scl⋅ass class-name
Specifies the storage class of the packet and shipping order. If you also use
–ship or –fship, mkorder looks up the storage class in the shipping.conf file on
UNIX or in the MultiSite Control Panel on Windows to determine the location
of the storage bay to use.

If you omit this option but use –ship or –fship, mkorder places the shipping
order in the storage bay location specified for the –default class in the
shipping.conf file or the MultiSite Control Panel.

–shi⋅p –cop⋅y
–fsh⋅ip [–cop⋅y]

Creates a shipping order for packet-pname. Using –fship invokes
shipping_server to send the packet. Using –ship places the shipping order in
a storage bay. To send the packet, run shipping_server or set up invocations of
sync_export_list –poll with the schedule command. (See the schedule
reference page in the Command Reference.)

–copy is required with –ship, and optional with –fship:

■ With –copy, mkorder copies the packet-pname file to one of the
store-and-forward facility’s storage bays and places the shipping order in
the bay. The copy is deleted after it is delivered successfully to all the
destinations specified in the shipping order.
mkorder 249

–out order-pname
Places the shipping order in the specified file instead of in a storage bay. An
error occurs if the file already exists.

Handling Packet-Delivery Failures

Default
If a packet cannot be delivered, it is sent through the store-and-forward facility
to the administrator at the site of the originating replica. A mail message is sent
to the store-and-forward administrator. This occurs after repeated attempts to
deliver the packet have failed and the allotted time has expired; it can also
occur when the destination host is unknown or a data file does not exist. The
store-and-forward configuration settings specify the expiration period, the
e-mail address of the administrator, and the notification program.

–pex⋅pire date-time
Specifies the time at which the store-and-forward facility stops trying to
deliver the packet and generates a failure mail message instead. This option
overrides the expiration period specified for the storage class in the
shipping.conf file (UNIX) or MultiSite Control Panel (Windows).

The date-time argument can have any of the following formats:

date.time | date | time | now
where:

Specify the time in 24-hour format, relative to the local time zone. If you omit
the time, the default value is 00:00:00. If you omit the date, the default value is
today. If you omit the century, year, or a specific date, the most recent one is
used. Specify UTC if you want the time to be resolved to the same moment in
time regardless of time zone. Use the plus (+) or minus (-) operator to specify
a positive or negative offset to the UTC time. If you specify UTC without hour

■ Without –copy, mkorder does not copy packet-pname; mkorder places the
shipping order in the directory where the file is located. packet-pname is
deleted after it is delivered successfully to all the destinations specified
in the shipping order.

date := day-of-week | long-date

time := h[h]:m[m][:s[s]] [UTC [[+ | -]h[h][:m[m]]]]

day-of-week := today |yesterday |Sunday | ... |Saturday |Sun | ... |Sat

long-date := d[d]–month[–[yy]yy]

month := January |... |December |Jan |... |Dec
250 Administrator’s Guide: Rational ClearCase MultiSite

or minute offsets, the default setting is Greenwich Mean Time (GMT). (Dates
before January 1, 1970 Universal Coordinated Time (UTC) are invalid.)

Examples:

22-November-2002
sunday
yesterday.16:00
8-jun
13:00
today
9-Aug.10:00UTC

–not⋅ify e-mail-address
The delivery-failure message is sent to the specified e-mail address.

If a failure occurs on a Windows host that does not have e-mail notification
enabled, a message appears in the Windows Event Viewer. The message
includes the e-mail-address value specified with this option and a note
requesting that this user be informed of the status of the operation. For
information about enabling e-mail notification, see the MultiSite Control
Panel reference page.

Event Records and Comments

Default
–nc (no comment).

–c comment | –cq | –cqe | –nc
Specifies a comment to be placed in the shipping order. With –c, the comment
string must be a single command-line token; typically, you must enclose it in
double quotes. With –cq and –cqe, the command prompts you for a comment.
With –nc, no comment is placed in the shipping order.

Specifying the Destination

Default
None.

destination ...
One or more host names (which must be usable by hosts in different domains)
or IP addresses. When sending a MultiSite packet, you must specify the host
where the replica resides or is to be created.

Examples

In these examples, the lines are broken for readability. You must enter each command
on a single physical line.
mkorder 251

■ Create a shipping order for file p1, which is located in the default storage bay. Store
the shipping order in the same storage bay as p1, and specify that the file is to be
sent to host goldengate.

mkorder –data "c:\Program
Files\Rational\ClearCase\var\shipping\ms_ship\outgoing\p1"
–out "c:\Program Files\Rational\ClearCase\var\shipping\ms_ship\p1_order"
goldengate
Shipping order "c:\Program Files\Rational\ClearCase\var

\shipping\ms_ship\outgoing\p1_order" generated.

■ Create a shipping order in the default storage bay for a specified file that is to be
delivered to host goldengate. Specify that admin must be notified if the file is not
delivered successfully.

/opt/rational/clearcase/etc/mkorder –data /usr/tmp/to_goldengate
–ship –copy –notify admin goldengate
Shipping order

"/var/adm/rational/clearcase/shipping/ms_ship/outgoing/sh_o_to_gold

engate" generated.

■ Create a shipping order for the same file, but place it in the storage bay for a
particular storage class. Attempt immediate delivery (–fship), and allow delivery
attempts to continue until the beginning of May 18.

mkorder –data c:\tmp\to_goldengate –fship –copy –sclass ClassA –pexpire
18-May goldengate
Shipping order "c:\tmp\sclass\ClassA\sh_o_to_goldengate" generated.

Attempting to forward/deliver generated packets...

-- Forwarded/delivered packet
c:\tmp\sclass\ClassA\sh_o_to_goldengate

Files

ccase-home-dir/config/services/shipping.conf

See Also

mkreplica, MultiSite Control Panel, shipping.conf, shipping_server, syncreplica
Chapter 13, Troubleshooting MultiSite Operations
252 Administrator’s Guide: Rational ClearCase MultiSite

mkreplica
Creates a replica

Applicability

Synopsis
■ Duplicate a VOB, generating a new replica object and a replica-creation packet:

mkrep⋅lica –exp⋅ort –wor⋅kdir temp-dir-pname [–max⋅size size]
[–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery | –cqe⋅ach |
–nc⋅omment]
{ { –sh⋅ip | –fshi⋅p } [–scl⋅ass storage-class] [–pex⋅pire date-time] [–not⋅ify
e-mail-addr]

| –tape raw-device-pname
| –out packet-file-pname

}
hostname:replica-selector ...

■ Import a replica-creation packet to create a new VOB replica:

mkrep⋅lica –imp⋅ort –wor⋅kdir temp-dir-pname –tag vob-tag
{ –vob vob-stg-pname [–hos⋅t hostname –hpa⋅th host-stg-pname –gpa⋅th
global-stg-pname]
| –stgloc { stgloc-name | –auto } }
{ –pre⋅serve | –per⋅ms_preserve [–nprompt] | –npr⋅eserve }
[–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery | –cqe⋅ach |
–nc⋅omment]
[–tco⋅mment tag-comment] [–nca⋅exported]
[–reg⋅ion region-name] [–opt⋅ions mount-options]
[–pub⋅lic [–pas⋅sword tag-registry-password]] [–ign⋅oreprot]
[–poo⋅ltalk] [–vre⋅plica replica-name]
{ –tap⋅e raw-device-pname | packet-file-pname [search-dir-pname ...] }

Product Command type

MultiSite multitool subcommand

Platform

UNIX

Windows
mkreplica 253

Note: The –tape and –ncaexported options are valid only on UNIX.

Description

The creation of a new VOB replica is a three-phase process:

1 The mkreplica –export command duplicates the contents of the current VOB (the
originating replica). This generates a single logical replica-creation packet for
transmission to one or more other sites. As described in Replica-Creation Packets on
page 255, it may be divided into multiple physical packets. (If you use –fship or
–ship, mkreplica also generates a shipping order file for each physical packet.)

This command also creates a new replica object in the VOB database.

The VOB is locked for the entire length of time the mkreplica –export command
runs.

Note: Creating multiple replicas in one mkreplica –export command is more
efficient than using multiple mkreplica –export commands.

2 The packet is sent to one or more other sites.

3 At each receiving site, a mkreplica –import command uses the replica-creation
packet to create a new VOB replica.

When a VOB is replicated for the first time, creating a second replica, the VOB’s
operation log (oplog) is enabled. All operations to be replicated are recorded in the
oplog. Logging of operations continues until all but one of the replicas are deleted.
Note that creation of additional replicas is recorded in oplog entries. Existing replicas
learn about a new replica through the standard synchronization mechanism. (See the
syncreplica reference page.)

Note: Before entering a mkreplica –export command, verify that MultiSite licenses are
installed at the original site. After you enable replication in the original VOB,
developers cannot access the VOB without a MultiSite license (in addition to a
ClearCase license).

Preservation Mode

When you enter a mkreplica –import command, you must choose the preservation
mode. In any case, the user who enters the mkreplica –import command becomes the
owner of the new replica. That user’s group is the primary group of the VOB, and the
user’s group list becomes the VOB’s group list. Preservation affects only element
ownership and permissions. For more information about preservation modes, see
Identities and Permissions Strategy for VOB Replicas on page 39.
254 Administrator’s Guide: Rational ClearCase MultiSite

Restrictions:

■ You can create a replica that preserves identities and permissions only if its site
supports the same user and group accounts as the originating site. On Windows, if
all replicas in a family are not in the same Windows domain, the entire family
cannot preserve identities and permissions. However, you can maintain identities
and permissions preservation on the subset of replicas in the same domain.

Note: There are no restrictions on creating permissions-preserving replicas.

■ On Windows, the primary group of the user who enters the mkreplica –import
command must be the same as the originating replica’s group assignment.

■ On UNIX, the user who enters the mkreplica –import command must belong to all
the groups on the originating replica’s group list.

To create a replica that preserves identities and permissions, you should run mkreplica
–export at an identities- and permissions-preserving replica. To create a replica that
preserves permissions, you should run mkreplica –export at an identities- and
permissions-preserving replica or a permissions-preserving replica.

Note: After you create a new replica with mkreplica –import –preserve or mkreplica
–import –perms_preserve, we recommend that you run syncreplica –export to inform
other replicas in the VOB family about the preservation mode of the new replica.

Replica-Creation Packets

Each invocation of mkreplica –export creates a single logical replica-creation packet.
(This is true even if you create several new replicas with one mkreplica command.)
Each packet includes one or more replica specifications, each of which indicates the
new replica’s name and the host on which a new replica is to be created.

The –maxsize option divides the single logical packet into multiple physical packets to
conform to the limitations of the transfer medium.

Cleaning Up Used Packets

Replica-creation packets are not deleted after import. After you import a
replica-creation packet with mkreplica –import, you must delete the packet.

Replication of VOBs Linked to Administrative VOBs

If the VOB you are replicating is linked to an administrative VOB, mkreplica –export
prints a reminder that you must replicate all administrative VOBs in the hierarchy
above the VOB you are replicating. The output lists the administrative VOBs. The
command does not check whether these administrative VOBs are replicated, so you
can ignore the message if you have already replicated them.
mkreplica 255

Restrictions

Identities: For mkreplica –export, you must have one of the following identities:

■ VOB owner
■ root (UNIX)
■ Member of the ClearCase administrators group (Windows)

Locks: An error occurs if one or more of these objects are locked: VOB.

Mastership: No mastership restrictions.

Other:

■ You must run mkreplica –export on the host where the VOB storage directory
resides.

■ You can replicate a VOB replica to a host running an earlier major version of
ClearCase only if the feature level of the exporting replica’s VOB family is the
same as the feature level of the ClearCase release on the target host. (You can
always replicate a VOB to a host running a later major version of ClearCase.)

Options and Arguments — Export Phase

Specifying Temporary Workspace

Default
None.

–wor⋅kdir temp-dir-pname
Directory used as a temporary workspace; it is deleted when mkreplica
finishes. This directory must not already exist. You must specify a location in
a disk partition that has enough free space (at least the size of the VOB
database directory plus its source pools; use cleartool space to display VOB
disk space use).

Specifying the Replica-Creation Packet Size

Default
When you do not specify –maxsize, the default packet size depends on the
shipping method you use:

■ Packets created with –ship or –fship are no larger than the maximum
packet size specified in the shipping.conf file (UNIX) or the MultiSite
Control Panel (Windows).

■ Packets created with –out are no larger than 2 GB.
■ Packets created with –tape have no default size limit.
256 Administrator’s Guide: Rational ClearCase MultiSite

The mkreplica command fails if it tries to create a packet larger than the size
supported by your system or by the tape.

–max⋅size size
The maximum size for a physical packet, expressed as a number followed by
a single letter; for example:

Event Records and Comments

Default
Creates one or more event records, with commenting controlled by the
standard ClearCase user profile (default: –cqe). See Event Records and
Comments in the multitool reference page. To edit a comment, use cleartool
chevent.

–c⋅omment comment-string | –cfi⋅le comment-file-pname | –cq⋅uery | –cqe⋅ach |
–nc⋅omment
Overrides the default with the specified comment option.

Disposition of the Replica-Creation Packet

Default
None. You must specify how the replica-creation packet created by mkreplica
–export is to be stored and/or transmitted to other sites.

–shi⋅p
–fsh⋅ip

Stores the replica-creation packet in one or more files in a store-and-forward
storage bay. A separate shipping order file accompanies each physical packet,
indicating how and where it is to be delivered.

–fship (force ship) invokes shipping_server to send the replica-creation
packet. –ship places the packet in a storage bay. To send the packet, invoke
shipping_server or set up invocations of sync_export_list –poll with the
schedule command. (See the schedule reference page in the Command
Reference.)

Note: The disk partition where the storage bay is located (on the sending host
and the receiving host) must have available space equal to or greater than the
size of the VOB database and source pools.

–scl⋅ass class-name
Specifies the storage class of the packet and shipping order. mkreplica looks
up the storage class in the MultiSite Control Panel (Windows) or the file

500k
20m
1.5g

500 kilobytes
20 megabytes
1.5 gigabytes
mkreplica 257

ccase-home-dir/config/services/shipping.conf (UNIX) to determine the location of
the storage bay to use.

If you omit this option, mkreplica places the packet in the storage bay location
specified for the –default class.

–tap⋅e raw-device-pname (UNIX)
Writes the replica-creation packets to the specified tape device, which must be
local to the VOB server host. You are prompted to load a separate tape for each
physical packet. Use the –maxsize option to ensure that syncreplica does not
exceed the capacity of the tapes you are using. Only one physical packet can
be placed on each tape, regardless of packet size.

–out packet-file-pname
The name of the first physical replica-creation packet. Additional packets are
placed in files named packet-file-pname_2, packet-file-pname_3, and so on.

The replica-creation packets are not delivered automatically; use an
appropriate method to deliver them. You can create a packet using –out, and
subsequently deliver it using the store-and-forward facility. See the mkorder
reference page.

Handling Packet-Delivery Failures

Default
If a packet cannot be delivered, it is sent through the store-and-forward facility
to the administrator at the site of the originating replica. A mail message is sent
to the store-and-forward administrator. This occurs after repeated attempts to
deliver the packet have all failed and the allotted time has expired; it can also
occur when the destination host is unknown or a data file does not exist. The
store-and-forward configuration settings specify the expiration period, the
e-mail address of the administrator, and the notification program.

–pex⋅pire date-time
Specifies the time at which the store-and-forward facility stops trying to
deliver the packet and generates a failure mail message instead. This option
overrides the expiration period specified for the storage class in the
shipping.conf file (UNIX) or MultiSite Control Panel (Windows).

The date-time argument can have any of the following formats:

date.time | date | time | now
where:

date := day-of-week | long-date

time := h[h]:m[m][:s[s]] [UTC [[+ | -]h[h][:m[m]]]]
258 Administrator’s Guide: Rational ClearCase MultiSite

Specify the time in 24-hour format, relative to the local time zone. If you omit
the time, the default value is 00:00:00. If you omit the date, the default value is
today. If you omit the century, year, or a specific date, the most recent one is
used. Specify UTC if you want the time to be resolved to the same moment in
time regardless of time zone. Use the plus (+) or minus (-) operator to specify
a positive or negative offset to the UTC time. If you specify UTC without hour
or minute offsets, the default setting is Greenwich Mean Time (GMT). (Dates
before January 1, 1970 Universal Coordinated Time (UTC) are invalid.)

Examples:

22-November-2002
sunday
yesterday.16:00
8-jun
13:00
today
9-Aug.10:00UTC

–not⋅ify e-mail-address
The delivery-failure message is sent to the specified e-mail address.

If a failure occurs on a Windows host that does not have e-mail notification
enabled, a message appears in the Windows Event Viewer. The message
includes the e-mail-address value specified with this option and a note
requesting that this user be informed of the status of the operation. For
information about enabling e-mail notification, see the MultiSite Control
Panel reference page.

Replica Specifications

Default
None.

hostname:replica-selector...
One or more arguments, each of which indicates one new replica to be created
from this packet at another site.

day-of-week := today |yesterday |Sunday | ... |Saturday |Sun | ... |Sat

long-date := d[d]–month[–[yy]yy]

month := January |... |December |Jan |... |Dec
mkreplica 259

Specify replica-selector in the form [replica:]replica-name[@vob-selector]

Options and Arguments — Import Phase

Specifying Temporary Workspace

Default
None.

hostname The machine where the new replica’s storage directory will be
created. hostname must be usable by hosts in different domains. It
is used by the store-and-forward mechanism to determine how to
route update packets to the replica. However, keep this
information accurate even if your site does not use
store-and-forward. (See the chreplica reference page.)
hostname can be either the IP address of the host or the computer
name, for example, minuteman. You may have to append an IP
domain name, for example, minuteman.purpledoc.com.
On UNIX, use the uname –n command to display the computer
name. On Windows NT, the computer name is displayed in the
Network Settings dialog box, which is accessible from the
Network icon in Control Panel. On Windows 2000, the computer
name is displayed on the Network Identification tab in the System
Properties dialog box, which is accessible from the System icon in
Control Panel.

replica-name Name of the replica
You must compose the name according to these rules:
■ It must contain only letters, digits, and the special

characters underscore (_), period (.), and hyphen (-). A
hyphen cannot be used as the first character of a name.

■ It must not be a valid integer or real number. (Be careful
with names that begin with “0x”, “0X”, or “0”, the
standard prefixes for hexadecimal and octal integers.)

■ It must not be one of the special names “ . “, “ .. “, or
“ ... “.

vob-selector VOB family of the replica; can be omitted if the current
working directory is within the VOB.
Specify vob-selector in the form [vob:]pname-in-vob

pname-in-vob Pathname of the VOB tag (whether
or not the VOB is mounted) or of any
file system object within the VOB (if
the VOB is mounted)
260 Administrator’s Guide: Rational ClearCase MultiSite

–wor⋅kdir temp-dir-pname
A directory for use by mkreplica as a temporary workspace; it is deleted when
mkreplica finishes. This directory must not already exist. Make sure to specify
a location in a disk partition that has enough free space. (See the description of
–workdir in Options and Arguments — Export Phase on page 256.)

Specifying VOB-Creation Parameters

Default
Because mkreplica –import executes a cleartool mkvob command, you can
use many of the options used with mkvob. The –tag option is required, and
one of –vob or –stgloc is required. For more information, see the mkvob
reference page in the Command Reference.

–tag vob-tag
The VOB tag (mount point) of the new VOB replica.

–vob vob-stg-pname
Location for the storage directory of the new VOB replica. On Windows,
vob-stg-pname must be a UNC name.

–hos⋅t hostname | –hpa⋅th host-stg-pname | –gpa⋅th global-stg-pname
Sets the new VOB replica’s registry information. In most cases, mkreplica
derives this information from the vob-storage-pname argument, but if your
network topology is unusual or the network interface is not standard, you may
have to use these options. If you have to use these options when creating a new
VOB at the site, you have to use them when importing a replica-creation
packet.

–stgloc { stgloc-name | –auto }
Specifies the name of a storage location for the new replica’s VOB storage
directory. stgloc-name must be located on the same host on which you invoke
mkreplica, and it must be one of the registered storage locations. To list
registered locations, use cleartool lsstgloc. With –auto, mkreplica selects a
location automatically.

–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery | –cqe⋅ach | –nc⋅omment
Standard comment options.

–tco⋅mment tag-comment
A comment string to be included in the VOB tag registry entry for the new
replica.

–nca⋅exported (UNIX)
Marks the new VOB replica for NFS export.

–reg⋅ion region-name
Specifies a registry region for the new replica’s VOB tag.
mkreplica 261

–opt⋅ions mount-options
Mount options for the new replica.

–pub⋅lic [–pas⋅sword tag-registry-password]
Creates a public VOB tag for the new replica.

Protection Failures on Containers

Default
During import, if any data containers have a group that is not the primary
group of the VOB, a failure occurs when mkreplica tries to set the protection
of those containers. The import fails if protection failures occur.

–ign⋅oreprot
Completes the import even if protection failures occur. mkreplica prints a
warning that the protection problems may make the replica unusable. You
must run checkvob to find and fix any problems after creating a replica with
this option.

Note: Instead of using this option, you can add the nonprimary groups to the
group list of the user importing the packet.

Preservation Mode

Default
None.

–pre⋅serve
Creates a replica that preserves identities and permissions. The user who
enters the mkreplica –import command becomes the owner of the new VOB,
and identities and permissions are preserved for all the elements in the new
VOB.

–per⋅ms_preserve [–nprompt]
Creates a replica that preserves permissions. The user who enters the
mkreplica –import command becomes the owner of the new VOB, and
permissions are preserved for all the elements in the new VOB. The –nprompt
option suppresses the prompt.

–npr⋅eserve
Creates a replica that is nonpreserving. The user who enters the mkreplica
–import command becomes the owner of the new VOB and of all the elements
in the new VOB.

Pool Creation for the New Replica

Default
The new replica is created with the same set of storage pools as the originating
replica, and the assignments of elements to pools are preserved. The new
262 Administrator’s Guide: Rational ClearCase MultiSite

replica’s storage pools are created within its storage directory, even if some of
the originating replica’s pools are remote; the new pools have the default
scrubbing parameters.

–poo⋅ltalk
Prompts you to specify locations and scrubbing specifications for the new
replica’s storage pools.

Name of VOB Replica

Default
If the replica-creation packet includes one replica specification, you are
prompted to confirm the replica name. If the packet includes multiple replica
specifications, you are prompted to select one of the replica names.

–vre⋅plica replica-name
Specifies the replica name, bypassing the prompt step.

Specifying the Location of the Replica-Creation Packet

Default
None.

–tap⋅e raw-device-pname (UNIX)
Reads a replica-creation packet from the specified tape device, which must be
local to the host on which you enter the mkreplica –import command. Before
entering the command, place the tape in the tape drive. If a logical packet
spans multiple tapes, you can start with any of them in the drive. You are
prompted to switch tapes.

packet-file-pname [search-dir-pname ...]
Specifies a pathname of a replica-creation packet. For a logical packet that
spans multiple disk files, mkreplica scans the directory containing
packet-file-pname for related physical packets.

If you also specify one or more search-dir-pname arguments, mkreplica
searches for additional packets in these directories.

Examples

In these examples, the lines are broken for readability. You must enter each command
on a single physical line.
mkreplica 263

Exports

■ Generate a replica-creation packet, which will be used at remote host goldengate
to create a new replica named sanfran_hub. Place the packet in a file in /tmp.

multitool mkreplica –export –workdir /tmp/ms_workdir –c "make a new replica
for sanfran_hub" –out /tmp/sanfran_hub_packet goldengate:sanfran_hub
Generating replica creation packet /tmp/sanfran_hub_packet

Dumping database...

...

Dumper done.

■ Generate a replica-creation packet and place it in a storage bay.

multitool mkreplica –export –c "make a new replica for sanfran_hub"
–workdir /tmp/ms_workdir –ship goldengate:sanfran_hub
Generating replica creation packet

/opt/rational/clearcase/shipping/ms_ship/outgoing/repl_boston_hub_1

8-May-99.15:50:00_1

 - shipping order file is

/opt/rational/clearcase/shipping/ms_ship/outgoing/sh_o_repl_boston_

hub_18-May-99.15:50:00_1

Dumping database...

...

Dumper done.

■ Generate a replica-creation packet that can be used to create two new replicas,
bangalore and buenosaires. Ship the packet to its destinations immediately, using
store-and-forward.

multitool mkreplica –export –workdir /tmp/ms_workdir
–nc –fship ramohalli:bangalore mardelplata:buenosaires
Generating replica creation packet

/opt/rational/clearcase/shipping/ms_ship/outgoing/repl_boston_hub_1

5-Aug-00.14.26.17_6011_1

- shipping order file is

/opt/rational/clearcase/shipping/ms_ship/outgoing/sh_o_repl_boston_

hub_15-Aug-00.14.26.17_6011_1

Dumping database...

...

Dumper done.

Attempting to forward/deliver generated packets...

-- Forwarded/delivered packet

/opt/rational/clearcase/shipping/ms_ship/outgoing/repl_boston_hub_1

5-Aug-00.14.26.17_6011_1
264 Administrator’s Guide: Rational ClearCase MultiSite

Imports

■ Using a packet file in /tmp, create the storage directory for replica sanfran_hub.
Make the replica identities- and permissions-preserving, and immediately after
creating the new replica, run syncreplica –export to update the other replicas in
the VOB family.

multitool mkreplica –import –workdir /tmp/ms_workdir
–tag /vobs/dev –vob /net/goldengate/vobstg/dev.vbs
–preserve –c "create sanfran_hub replica" /tmp/sanfran_hub_packet
The packet can only be used to create replica "sanfran_hub"

 - VOB family is c3f47cf3.71b111cd.a4f2.00:01:80:31:7a:a7

 - replica OID is 0c39c3b8.727b11cd.abb5.00:01:80:31:7a:a7

Should I create this replica? [no] yes
Processing packet /tmp/sanfran_hub_packet...

Loading database...

...

Loader done.

Registering VOB mount tag "/vobs/dev"...

VOB replica successfully created.

Host-local path: goldengate:/vobstg/dev.vbs

Global path: /net/goldengate/vobstg/dev.vbs

VOB ownership:

 owner ...

 group ...

multitool syncreplica –export –c "identities and permissions preserving" –fship
boston_hub bangalore buenosaires
...

■ Similar to preceding example, but create the replica as permissions preserving.

multitool mkreplica –import –workdir /tmp/ms_workdir
–tag /vobs/dev –vob /net/goldengate/vobstg/dev.vbs
–perms_preserve –c "create sanfran_hub replica" /tmp/sanfran_hub_packet
multitool: Warning: In a permissions-preserving replica, cleartool

protect operations will fail on client machines running ClearCase

vesions associated with feature level 3 or lower.

Should I create a permissions-preserving replica? [no] yes
The packet can only be used to create replica "sanfran_hub"

 - VOB family is c3f47cf3.71b111cd.a4f2.00:01:80:31:7a:a7

 - replica OID is 0c39c3b8.727b11cd.abb5.00:01:80:31:7a:a7

Should I create this replica? [no] yes
Processing packet /tmp/sanfran_hub_packet...

...
mkreplica 265

multitool syncreplica –export –c "permissions preserving" –fship boston_hub
bangalore buenosaires
...

■ Similar to preceding example, but create the replica as a public VOB and
nonpreserving. Specify the VOB tag password and mount options on the
command line.

multitool mkreplica –import –workdir /tmp/ms_workdir
–tag /vobs/dev –vob /net/goldengate/vobstg/dev.vbs
–npreserve –c "create sanfran_hub replica" –options rw,soft
–public –password xxxxxx –vreplica sanfran_hub /tmp/sanfran_hub_packet
Processing packet /tmp/sanfran_hub_packet...

...

Registering VOB mount tag "/vobs/dev"...

VOB replica successfully created.

...

■ Create the storage directory for a new replica, using a packet that was generated
by existing replica boston_hub and sent through store-and-forward. Specify
storage pool parameters for the new replica.

multitool mkreplica –import –workdir c:\tmp\workdir –tag \dev
–vob \\ramohalli\vobs\dev.vbs –npreserve –c "create bangalore replica"
–pooltalk –vreplica bangalore "c:\Program
Files\Rational\ClearCase\var\shipping\ms_ship\incoming\repl_boston_hu
b_15-Aug-00.14.26.17_6011_1
Processing packet c:\Program

Files\Rational\ClearCase\var\shipping\ms_ship\incoming\repl_boston_

hub_15-Aug-00.14.26.17_6011_1

The initial storage pools that will be used in the replica are:

 source pool sdft

 derived pool ddft

 cleartext pool cdft

Configuration for pool "sdft" (source pool):

Full pathname of directory to which pool "sdft"

should be linked (none = not linked)? [none] <RETURN>

Configuration for pool "ddft" (derived pool):

Full pathname of directory to which pool "ddft"

should be linked (none = not linked)? [none] <RETURN>

Maximum size (in Kbytes) for the storage directory of pool "ddft"

 (0 = no maximum)? [0] <RETURN>
Space (in Kbytes) to reclaim from pool "ddft"

during scrubbing (0 = none)? [0] <RETURN>
266 Administrator’s Guide: Rational ClearCase MultiSite

Minimum age (in hours) of objects to scrub from pool "ddft"

(0 = none)? [0] 12
Command to invoke if scrubbing does not reduce pool "ddft"

below maximum size (none = no command)? [none] <RETURN>
Comment for pool "ddft" (none = none)? [none] <RETURN>
. . . (accept defaults for cleartext pool, cdft)

Max. Reclaim Min. Link To

Pool Name Kind Size Size Age Directory

--------- ---- ---- ---- --- ---------

sdft source pool n/a n/a n/a

ddft derived pool 0K 0K 12

cdft cleartext pool 0K 0K 96

Is this the correct configuration for the pools (yes/no/abort)? [no]

yes
...

Registering VOB mount tag "\dev"...

...

See Also

chmaster, chreplica, lspacket, lsreplica, mkorder, MultiSite Control Panel,
shipping.conf, syncreplica, mkvob (in the Command Reference)
Chapter 13, Troubleshooting MultiSite Operations
mkreplica 267

MultiSite Control Panel
Configures store-and-forward facility

Applicability

Synopsis

%SystemRoot%\System32\ms.cpl

To open the MultiSite Control Panel, double-click the MultiSite icon in Control Panel.

Description

The MultiSite Control Panel controls operation of the store-and-forward facility on
each host. It provides controls for setting the configuration parameters described in the
following sections. In some cases, the corresponding operation fails if a parameter is
not defined, and in other cases there is a hard-coded default.

Maximum Packet Size

Default: 2097151 KB

Controls the splitting of logical packets into multiple physical packets. This value
specifies the maximum size for a physical packet file. Limiting the size of physical
packets can improve the reliability of packet delivery in some networks. To specify no
limit, use 0 (zero).

This value is used by the following commands (unless you also specify –maxsize):

■ mkreplica –fship
■ mkreplica –ship
■ syncreplica –fship
■ syncreplica –ship
■ sync_export_list

Product Command type

MultiSite Administrative tool

Platform

Windows
268 Administrator’s Guide: Rational ClearCase MultiSite

When you invoke mkreplica or syncreplica with –out, this value is not used, and you
must use –maxsize to limit the packet size.

Administrator E-mail

Default: None.

Specifies the electronic mail address of the user to be notified when any of these events
occur:

■ A packet (on the local host) that has expired is returned to its sending host.
■ A packet that was not delivered to its next hop is returned to its sending host.
■ syncreplica –import finds a replica-creation packet.

To enable e-mail notification:

1 Verify that the SMTP Host box in the ClearCase Control Panel specifies a valid host.
(This box is located on the Options tab.)

2 Enter an e-mail address in the Administrator Email box in the MultiSite Control
Panel. You can specify only one address.

3 (optional) Enter a different value in the Email Notification Program Path field.

Email Notification Program Path

Default: ccase-home-dir\bin\notify.exe

Specifies the electronic mail program to be invoked in the circumstances listed in
Administrator E-mail.

Timeout for Unreachable Host (minutes)

Default: None.

Specifies the number of minutes for the shipping server to wait before trying to contact
a target host that was previously identified as unreachable.

If the shipping server tries to send a packet to a target host and determines that the host
is unreachable, it creates a file in the ccase-home-dir\var\shipping\ms_downhost directory.
The name of the file is the name of the unreachable host. If the Timeout for Unreachable
Host setting is set, the shipping server checks the directory for target hosts during
future shipping operations.

If the target host is found in the ms_downhost directory, and the difference between the
current time and the last modification time of the file is less than the timeout setting on
the shipping server host, the shipping server does not try to send packets to the target
host. If the difference is equal to or greater than the timeout setting, the shipping server
tries to send packets to the target host. If the Timeout for Unreachable Host setting is not
MultiSite Control Panel 269

set, the shipping server attempts to send the packet to the target host. (Each attempt to
send a packet to an unreachable host takes about 30 seconds.)

Storage Classes

Storage Class Name

Default: MultiSite installation sets up a default storage class (–default) with
predefined values. The –default class is used when you invoke the mkorder,
mkreplica, syncreplica, or sync_export_list command with the –fship or –ship option
and do not specify a storage class. You can change the values associated with the
–default class.

Specifies the name of a storage class. For each storage class, you can specify values for
packet expiration, the storage bay, the return bay, and the receipt handler.

Note: Storage class names are case sensitive.

Packet Expiration

Default: When the Use Default Expiration check box is selected, the storage class uses
the packet expiration value associated with the –default class. (This value is not shown
in the Packet Expiration box; you must display the –default class to determine the
value.) When MultiSite is installed for the first time, the Packet Expiration value for the
–default class is set to 14 days.

Specifies the expiration period (in days) for shipping orders associated with the
specified storage class. This period begins at the time the shipping order is generated.
If a packet cannot be delivered to all its destinations in the specified number of days,
the packet is returned to the original sending host and a message is sent to the address
specified in the Administrator Email box. If e-mail notification is not enabled, a message
is written to the Windows Event Viewer.

A value of 0 (zero) specifies no expiration and delivery is reattempted indefinitely.

This setting is overridden by the –pexpire option to syncreplica or mkreplica.

The shipping_server program does not retry delivery of packets. The Packet
Expiration specification is useful only if you set up a host to periodically attempt
delivery of any undelivered packets. To set up redelivery attempts, use the schedule
command to invoke sync_export_list –poll, which invokes shipping_server –poll. For
more information, see the schedule reference page in the Command Reference.

Storage Bay Path

Default: When MultiSite is installed for the first time, the storage bay associated with
the –default storage class is ccase-home-dir\var\shipping\ms_ship. This bay contains
270 Administrator’s Guide: Rational ClearCase MultiSite

subdirectories named incoming and outgoing, which hold incoming and outgoing
packets. Shipping operations look for packets in these subdirectories.

Defines the location of the directory that holds the outgoing and incoming update
packets and shipping orders of a particular storage class.

Packets placed in a storage bay on an NTFS file system inherit the Windows ACL on
the bay. Define ACLs on the storage bays to enable successful execution of MultiSite
commands to process the packets and to guard against unauthorized access. (If you use
the schedule command to invoke sync_export_list –poll on shipping_server, the
group ClearCase must have read and write permissions on all storage directories.)
Packets stored on FAT file systems have no protections.

Before using the store-and-forward facility, verify that the disk partition where the
ccase-home-dir\var\shipping directory is created has sufficient free space for anticipated
replica-creation and update packets. For more information, see MultiSite Installation on
page 31.

Note: When you create a new storage class, the storage bay and return bay that you
specify are created. The incoming and outgoing directories in the bays are also created.

Return Bay Path

Default: When MultiSite is installed, the return bay associated with the –default
storage class is ccase-home-dir\var\shipping\ms_rtn. This bay contains subdirectories
named incoming and outgoing, which hold incoming and outgoing packets. Shipping
operations look for packets in these subdirectories.

Defines the location of the directory that holds the incoming and outgoing packets in
the process of being returned to their origin because they could not be delivered to all
specified destinations.

Packets placed in a return bay on an NTFS file system inherit the Windows ACL on the
bay. Define ACLs on the return bays to enable successful execution of MultiSite
commands to process the packets and to guard against unauthorized access. (If you use
the schedule command to invoke sync_export_list –poll on shipping_server, the
group ClearCase must have read and write permissions on all storage directories.)
Packets stored on FAT file systems have no protections.

Receipt Handler Path

Default: None.

Specifies a batch file or program for the shipping server to run when a packet is
received for the storage class. You can use this instead of scheduling executions of
sync_receive. By default, no file is specified. We recommend that you specify
ccase-home-dir\config\scheduler\tasks\sync_receive in the Receipt Handler Path box.
MultiSite Control Panel 271

For each packet that is received, shipping_server does the following:

1 Reads the entries in the MultiSite Control Panel to find the appropriate Receipt
Handler value for the packet.

❑ If the packet is associated with a storage class and there is a Receipt Handler
value for that storage class, shipping_server uses the specified batch file or
program

❑ If the packet is not associated with a storage class and there is a Receipt Handler
value for the –default storage class, shipping_server uses that value

2 Invokes the receipt handler, as follows:

script-pname [–d⋅ata packet-file-pname] [–a⋅ctual shipping-order-pname]
[–s⋅class storage-class] –o⋅rigin hostname

where

Note: If a packet is destined for both the local host and another host, both the –data
and –actual parameters are used. The packet is imported at the replica on the host,
and forwarded to its next destination.

Routing Information

The Routing Information settings control the network routing of packets.

script-pname Script specified in the RECEIPT-HANDLER
entry.

–d⋅ata packet-file-pname Location of the packet. This parameter is used
only when the packet is destined for this host.

–a⋅ctual shipping-order-pname Location of the shipping order. This parameter is
used only when the packet is destined for another
host.

–s⋅class storage-class Storage class associated with the packet. This
parameter is used only if the packet was
associated with a storage class when it was
created.

–o⋅rigin hostname Name of the host from which the packet was first
sent.
272 Administrator’s Guide: Rational ClearCase MultiSite

Next Routing Hop

Default: None.

Specifies the next destination for packets whose final destination is any of the host
names specified in the Destination Hostnames list. This host is responsible for delivery
of the packet to its destinations. You can specify a host using either its host name
(which must be usable by hosts in different domains) or its numeric IP address.

Destination Host Names

Default: None.

Packets destined for any host listed in this field are sent to the host specified in the Next
Routing Hop box. You can specify a host using either its host name (which must be
usable by hosts in different domains) or its numeric IP address. The value –default as
the Destination Hostname accommodates all hosts that are not associated with a routing
hop.
MultiSite Control Panel 273

multitool
MultiSite user-level commands

Applicability

Synopsis
■ Single-command mode:

multitool subcommand [options/args]

■ Interactive mode:

multitool [–e]

multitool> subcommand [options/args]
. . .

multitool> quit

■ Status mode:

multitool –status

multitool 1> subcommand [options/args]
. . .

multitool 5> quit

■ Display version information for multitool (and on UNIX, MultiSite):

multitool –ver⋅sion

■ Display version information for multitool and the libraries used by multitool (and
on UNIX, MultiSite):

multitool –VerAll

Product Command type

MultiSite MultiSite command

Platform

UNIX

Windows
274 Administrator’s Guide: Rational ClearCase MultiSite

Description

multitool is the principal program in MultiSite. Typically, you also use MultiSite
extensions incorporated into cleartool subcommands in ClearCase.

The different multitool subcommands are described in Descriptions of Subcommands on
page 58.

Using Interactive Mode and Status Mode

With –e, multitool enters interactive mode. It exits if an error is returned by a
command.

With –status, multitool enters interactive mode and returns the status (0 or 1) of each
multitool subcommand executed.

If you exit multitool by entering a quit command in interactive mode, the exit status
is 0. The exit status from single-command mode depends on whether the command
succeeded (zero exit status) or generated an error message (nonzero exit status).

Specifying Objects with Object Selectors

In multitool commands, you specify non-file system VOB objects (types, pools,
hyperlinks, and replicas) with object selectors.

Object selectors identify these VOB objects with a single string:

[prefix:]name[@vob-selector]

where

prefix
The kind of object. The prefix is optional if the context of the command implies
the kind of object. For example, multitool lsreplica replica:buenosaires is
equivalent to multitool lsreplica buenosaires.

If a context does not imply any particular kind of object, multitool assumes
that a name argument with no prefix is a pathname. For example, the command
multitool describe buenosaires describes a file system object named
buenosaires, while multitool describe replica:buenosaires describes the
buenosaires replica object.

name
The name of the object. See the Object Names section for the rules about
composing names.

vob-selector
VOB pathname. If you omit vob-selector, the default is the current working
directory unless the reference page specifies otherwise. Specify vob-selector in
multitool 275

the form
[vob:]pname-in-vob (for some commands, the vob: prefix is required)

Object Names

In object-creation commands, you must compose the object name according to these
rules:

■ It must contain only letters, digits, and the special characters underscore (_),
period (.), and hyphen (-). A hyphen cannot be used as the first character of a
name.

■ It must not be a valid integer or real number. (Be careful with names that begin
with “0x”, “0X”, or “0”, the standard prefixes for hexadecimal and octal integers.)

■ It must not be one of the special names “ . “, “ .. “, or “ ... “.

Event Records and Comments

Each change to a VOB is recorded in an event record in the VOB database. Many
multitool commands include options you can use to include a comment string in the
event record created by the command. Commands that display event record
information (describe, lsepoch, lspacket, lsreplica, lstype) show the comments. See
the fmt_ccase reference page in the Command Reference for a description of the
report-writing facility built in to these commands.

Commands that accept comment strings recognize one or more of the following
options:

–c⋅omment comment
Specifies a comment for all event records created by the command. The
comment string must be a single command-line token; typically, you must
enclose it in double quotes.

–cfi⋅le comment-file-pname
Specifies a text file whose contents are to be placed in all event records created
by the command.

Note: A final line terminator in this file is included in the comment.

–cq⋅uery
Prompts for one comment, to be placed in all the event records created by the
command.

pname-in-vob Pathname of the VOB tag (whether or not the VOB is mounted)
or of any file system object within the VOB (if the VOB is
mounted)
276 Administrator’s Guide: Rational ClearCase MultiSite

–cqe⋅ach
For each object processed by the command, prompts for a comment to be
placed in the corresponding event record.

–nc⋅omment
For each object processed by this command, creates an event record with no
comment string.

A –cq or –cqe comment string can span several lines. To end a comment, enter an EOF
character at the beginning of a line, by typing a period character (.) and pressing
ENTER, by typing CTRL+D on UNIX, or by typing CTRL+Z+ENTER on Windows. For
example:

cleartool checkout main.c
Checkout comments for "main.c":
This is my comment; the following line terminates the comment.
.
Checked out "main.c" from version "\main\3"

The cleartool chevent command revises the comment string in an existing event
record. For more information about event records, see the events_ccase reference page
in the Command Reference.

Specifying Comments Interactively

multitool can reuse a comment specified previously. If the environment variable
CLEARCASE_CMNT_PN specifies a file, that file is used as a comment cache:

■ When a multitool subcommand prompts for a comment, it offers the current
contents of file $CLEARCASE_CMNT_PN (UNIX) or %CLEARCASE_CMNT_PN%
(Windows) as the default comment.

■ When you specify a comment string interactively, the multitool subcommand
updates the contents of CLEARCASE_CMNT_PN with the new comment. (The
comment cache file is created if necessary.)

Note: A comment that is specified noninteractively (for example, with the command
mkreplica –export –c "new replica for buenosaires") does not update the comment
cache file.

The value of CLEARCASE_CMNT_PN can be any valid pathname. Using a simple file
name (for example, .msite_cmnt) implements a comment cache for the current working
directory; different directories can have different .msite_cmnt files. Using the full
pathname %HOME%\.msite_cmnt (on Windows) or $HOME/.msite_cmnt (on UNIX)
implements a cache of the individual user’s comments across all ClearCase VOBs.
multitool 277

Customizing Comment Handling

Each command that accepts a comment string has a comment default, which takes
effect if you enter the command without any comment option. For example, the
restorereplica command’s comment default is –cqe, so you are prompted to enter a
comment for each replica being restored. The rmreplica command’s comment default
is –nc: remove the replica without prompting for a comment.

You can define a default comment option for each multitool command with a user
profile file, .clearcase_profile, in your home directory. For example, you can establish
–cqe as the comment default for the chmaster command. See the comments and
profile_ccase reference pages in the Command Reference.
278 Administrator’s Guide: Rational ClearCase MultiSite

recoverpacket
Resets epoch number matrix so that changes in lost packets are resent

Applicability

Synopsis

recoverpacket [–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery
| –cqe⋅ach | –nc⋅omment] [–sin⋅ce date-time] replica-selector ...

Description

The recoverpacket command resets the epoch row at a sending replica to reflect the last
synchronization sent to a replica before a particular time. It scans through a list of
epoch rows saved at the time of each export, looking for an entry prior to the time
specified. When it finds an entry, it uses the associated row to reset the epoch row for
the specified receiving replica. The next packet that is exported includes the changes
that were in the lost packet.

Resetting Epoch Numbers Automatically

When you send an update packet to another replica, success of the transport and
import phases is assumed. Therefore, the sending replica’s epoch number matrix is
updated to reflect that the changes are made at the receiving replica. However, if the
packet is lost before reaching the receiving replica, the sending replica’s assumption
that the receiving replica is up to date is incorrect.

The epoch numbers at the sending replica must be returned to the values they had
before the packet was sent. Making these corrections to the sending replica’s epoch
number matrix causes it to include the same changes in the next update packet it sends
to the receiving replica.

Product Command type

MultiSite multitool subcommand

Platform

UNIX

Windows
recoverpacket 279

The administrator at the receiving replica must run an lshistory command to
determine the time of the last successful import. The administrator at the sending
replica uses this time in the recoverpacket command.

Note: If the two replicas are not in the same time zone or you do not send packets at the
same time you generate them (for example, you generate packets at midnight and send
them at 6:00 A.M.), you must adjust for the time difference.

Resetting Epoch Numbers Manually

If there are no saved epoch rows that are as old as the specified time, the recoverpacket
command fails. In this case, the administrator at the receiving replica must use the
lsepoch command to determine the correct epoch number, and the administrator at the
sending replica must run chepoch on the sending replica to reset the epoch row. See
the chepoch reference page and Lost Update Packet on page 191.

Restrictions

Identities: You must have one of the following identities:

■ VOB owner
■ root (UNIX)
■ Member of the ClearCase administrators group (Windows)

Locks: An error occurs if one or more of these objects are locked: VOB.

Mastership: No mastership restrictions.

Options and Arguments

Event Records and Comments

Default
Creates one or more event records, with commenting controlled by the
standard ClearCase user profile (default: –nc). See Event Records and Comments
in the multitool reference page. To edit a comment, use cleartool chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the specified comment option.

Specifying the Time

Default
If the time is not specified, recoverpacket uses the current time (and, therefore,
resets the epoch row so that the changes in the most recent update packet are
resent).
280 Administrator’s Guide: Rational ClearCase MultiSite

–sin⋅ce date-time
Specifies the time of the last successful processing of a packet at the receiving
replica. The date-time argument can have any of the following formats:

date.time | date | time | now
where:

Specify the time in 24-hour format, relative to the local time zone. If you omit
the time, the default value is 00:00:00. If you omit the date, the default value is
today. If you omit the century, year, or a specific date, the most recent one is
used. Specify UTC if you want the time to be resolved to the same moment in
time regardless of time zone. Use the plus (+) or minus (-) operator to specify
a positive or negative offset to the UTC time. If you specify UTC without hour
or minute offsets, the default setting is Greenwich Mean Time (GMT). (Dates
before January 1, 1970 Universal Coordinated Time (UTC) are invalid.)

Examples:

22-November-2002
sunday
yesterday.16:00
8-jun
13:00
today
9-Aug.10:00UTC

Specifying the Row to Be Modified

Default
You must specify a replica. If you do not specify a vob-selector, the command
uses the current VOB.

replica-selector
Updates the current replica’s estimate of the state of replica-selector. Specify
replica-selector in the form [replica:]replica-name[@vob-selector]

date := day-of-week | long-date

time := h[h]:m[m][:s[s]] [UTC [[+ | -]h[h][:m[m]]]]

day-of-week := today |yesterday |Sunday | ... |Saturday |Sun | ... |Sat

long-date := d[d]–month[–[yy]yy]

month := January |... |December |Jan |... |Dec

replica-name Name of the replica (displayed with lsreplica)
recoverpacket 281

Examples
■ Reset the epoch row for replica sanfran_hub so that changes sent since last

Monday are included in the next packet that is sent.

multitool recoverpacket –nc –since Monday sanfran_hub
Using epoch information from Monday 10/21/02 00:00:00

Epoch row for replica "sanfran_hub" successfully reset.

■ Reset the epoch row for replica boston_hub so that the changes included in the
most recent update packet are included in the next packet that is sent.

multitool recoverpacket –c "send latest packet" boston_hub@\dev
Using epoch information from Thursday 10/24/02 14:55:34

Epoch row for replica "boston_hub" successfully reset.

■ Determine the last successful import at replica bangalore, reset the epoch row at
replica boston_hub, and send an update packet.

At replica bangalore:

cleartool lshistory replica:bangalore@\dev
19-Oct.15:36 smg import sync from replica "boston_hub" to replica

"bangalore"

"Imported synchronization information from replica "boston_hub".

...

At replica boston_hub (remember to adjust for the time zone difference):

multitool recoverpacket –since 19-Oct.05:06 bangalore@/vobs/dev
Using epoch information from Saturday 10/19/02 05:05:45

Epoch row for replica "bangalore" successfully reset.

vob-selector VOB family of the replica; can be omitted if the current
working directory is within the VOB.
Specify vob-selector in the form [vob:]pname-in-vob

pname-in-vob Pathname of the VOB tag (whether or
not the VOB is mounted) or of any file
system object within the VOB (if the
VOB is mounted)
282 Administrator’s Guide: Rational ClearCase MultiSite

multitool syncreplica –export –fship bangalore@/vobs/dev
Generating synchronization packet

/opt/rational/clearcase/shipping/ms_ship/outgoing/sync_boston_hub_2

2-Oct-02.15.44.28_4896_1

- shipping order file is

/opt/rational/clearcase/shipping/ms_ship/outgoing/sh_o_sync_boston_

hub_22-Oct-02.15.44.28_4896_1

Attempting to forward/deliver generated packets...

-- Forwarded/delivered packet

/opt/rational/clearcase/shipping/ms_ship/outgoing/sync_boston_hub_2

2-Oct-02.15.44.28_4896_1

See Also

chepoch, lsepoch, restorereplica
The Operation Log on page 22
recoverpacket 283

reqmaster
Sets access controls for mastership requests, or requests mastership of a branch or
branch type

Applicability

Synopsis
■ Display or set the ACL for mastership requests:

reqmaster –acl [–edi⋅t | –set pname | –get] vob-selector

■ Set access controls for the replica, branches, or branch types:

reqmaster [–c⋅omment comment | –cq⋅uery | –nc⋅omment]
{ { –enable | –dis⋅able } vob-selector
| { –den⋅y | –allow } [–inst⋅ances] branch-type-selector ...
| { –den⋅y | –allow } branch-pname ...
}

■ Request mastership of a branch or branch type:

reqmaster [–c⋅omment comment | –cq⋅uery | –nc⋅omment]
[–lis⋅t] { [branch-pname ...] [branch-type-selector ...] }

Description

This command has three forms: two forms to configure access controls for mastership
requests and one form to request mastership of a branch or branch type from the
replica that masters the object. For more information, see Chapter 11, Implementing
Requests for Mastership.

Product Command type

ClearCase cleartool subcommand

MultiSite multitool subcommand

Platform

UNIX

Windows
284 Administrator’s Guide: Rational ClearCase MultiSite

Setting Access Controls

To allow requests for mastership, the MultiSite administrator must set access controls
at each replica:

■ Add developers to the replica’s access control list (ACL). Use the –acl option with
–edit or –set to edit the ACL.

■ Enable replica-level access. By default, replica-level access is not enabled. To
enable it, use the –enable option.

Also, the type and the object must allow mastership requests. By default, type-level
and object-level access are enabled. You can enable replica-level access, but deny
requests for mastership of specific branches or branch types, or all branches of a
specific type. Even if replica-level access is enabled, the reqmaster command fails if
requests are denied at the type level or object level. Use the –deny option to deny
requests at the type and object level.

Note: Mastership request settings are not replicated. The describe command and the
Mastership tab in the Properties Browser on Windows display the current replica’s
settings.

Requesting Mastership of a Branch or Branch Type

This form of the reqmaster command contacts a sibling replica and requests that the
replica transfer mastership to the current replica. You can also use reqmaster to display
information about whether a mastership request will succeed.

If you specify multiple branches or branch types and the request fails for one or more
items, reqmaster prints error messages for the failures and continues processing the
other items.

Troubleshooting

If the reqmaster command fails, the error message indicates whether the failure
occurred at the current replica or the sibling replica.

If the reqmaster command fails with the message can’t get handle, reenter the
command. If it continues to fail, ask the sibling replica’s administrator to check the
status of the VOB server.

When you request mastership, the reqmaster command may complete successfully,
but the mastership is not transferred to your current replica. In this case, verify that the
synchronization packet was sent from the sibling replica and that your current replica
imported it successfully.

Errors that occur during the mastership request process, including errors occurring
during the synchronization export, are written to the msadm log file. To view this log,
reqmaster 285

use the cleartool getlog command or the ClearCase Administration Console
(Windows).

For more information about error messages from the reqmaster command, see
Chapter 11, Implementing Requests for Mastership.

Restrictions

Setting Access Controls

Identities: To set the ACL, you must have write permission on the ACL or have one of
the following identities:

■ VOB owner
■ root (UNIX)
■ Member of the ClearCase administrators group (Windows)

To enable mastership requests at the replica level, you must have one of the following
identities:

■ VOB owner
■ root (UNIX)
■ Member of the ClearCase administrators group (Windows)

Locks: No locks apply.

Mastership: The replica must be self-mastering. For you to allow or deny mastership
requests for a branch or branch type, your current replica must master the object.

Other: You do not have to be logged on to a VOB server host to edit the mastership
request ACL for a replica on that host. However, if you are not already on the ACL,
both of the following conditions must be true in order for you to edit the ACL:

■ You must be the VOB owner or privileged user.
■ You must be logged on to a host in the same domain as the VOB server host.

Requesting Mastership of a Branch

Identities: You must be on the replica’s ACL.

Locks: An error occurs if one or more of these objects are locked (even if you are on the
–nusers list): branch, branch type, VOB.

Mastership: Your current replica must not master the branch.

Other: An error occurs in any of the following cases:

■ Mastership requests are denied at any of the following levels: replica, type object,
object.

■ There are checkouts on the branch (except for unreserved, nonmastered checkouts).
286 Administrator’s Guide: Rational ClearCase MultiSite

■ You specify a branch associated with a stream.
■ Your host is running a later major version of ClearCase than the master replica’s

host.

Requesting Mastership of a Branch Type

Identities: You must be on the replica’s ACL.

Locks: An error occurs if one or more of these objects are locked (even if you are on the
–nusers list): branch type, VOB, branch instances that have default mastership.

Mastership: Your current replica must not master the branch type.

Other: An error occurs in any of the following cases:

■ Mastership requests are denied at any of the following levels: replica, type object,
any branch type instances with default mastership.

■ There are checkouts on any branch type instances with default mastership (except
for unreserved, nonmastered checkouts).

■ You specify a branch type associated with a stream.

■ Your host is running a later major version of ClearCase than the master replica’s
host.

Options and Arguments

Event Records and Comments

Default
Creates one or more event records, with commenting controlled by the
standard ClearCase user profile (default: –nc). See Customizing Comment
Handling in the multitool reference page. To edit a comment, use chevent.

–c⋅omment comment | –cq⋅uery | –nc⋅omment
Overrides the default with the specified comment option.

Displaying or Setting Access Controls

Default
None. You must specify access controls. Specifying –acl with no other option
displays the ACL for the current replica in the VOB family specified by
vob-selector.

–acl [–edi⋅t | –set pname | –get] vob-selector
By default or with –get, displays the ACL for the current replica in the VOB
family specified by vob-selector. With –edit, opens the ACL for the current
replica in the editor specified by (in order) the WINEDITOR (UNIX), VISUAL, or
reqmaster 287

EDITOR environment variable. With –set, uses the contents of pname to set the
ACL for the current replica.

Specify vob-selector in the form vob:pname-in-vob

–enable vob-selector
Allows mastership requests to be made to the current replica in the VOB
family specified by vob-selector.

–dis⋅able vob-selector
Denies all mastership requests made to the current replica in the VOB family
specified by vob-selector.

{ –deny | –allow } [–inst⋅ances] branch-type-selector ...
Denies or allows requests for mastership of the specified branch type. With
–instances, denies or allows requests for mastership of all branches of the
specified type. Specify branch-type-selector in the form
brtype:type-name[@vob-selector]

{ –deny | –allow } branch-pname ...
Denies or allows requests for mastership of the specified branch object. Specify
branch-pname in the form file-pname@@branch. For example:

cmdsyn.c@@/main/v3.8
header.h@@\main\v1\bugfix

Requesting Mastership

Default
Sends a request for mastership to the master replica of the object.

–lis⋅t
Displays information about whether a request would succeed, but does not
send a request for mastership.

pname-in-vob Pathname of the VOB tag (whether or not the VOB is mounted)
or of any file system object within the VOB (if the VOB is
mounted)

type-name Name of the branch type

vob-selector VOB specifier; can be omitted if the current working directory
is within the VOB.
Specify vob-selector in the form [vob:]pname-in-vob

pname-in-vob Pathname of the VOB tag (whether or
not the VOB is mounted) or of any file
system object within the VOB (if the
VOB is mounted)
288 Administrator’s Guide: Rational ClearCase MultiSite

branch-pname
Branch whose mastership you are requesting. For example:

cmdsyn.c@@/main/v3.8
header.h@@\main\v1\bugfix

branch-type-selector
Branch type whose mastership you are requesting. For example:

brtype:main@/vobs/doc
brtype:v2.0_integration@vob:\tests

Examples
■ Display the ACL for the current replica in the VOB family /vobs/dev, and then

change it to give full access to ccadmin and permission to request mastership to
gail and paul.

multitool reqmaster –acl –get vob:/vobs/dev
Replica boston_hub@/vobs/dev

Request for Mastership ACL:

Everyone: Read

cat > /tmp/boston_hub_aclfile
Replica boston_hub@/vobs/dev

Request for Mastership ACL:

User:purpledoc.com/ccadmin Full

User:purpledoc/ccadmin Full

User:purpledoc.com/gail Change

User:purpledoc/gail Change

User:purpledoc.com/paul Change

User:purpledoc/paul Change

multitool reqmaster –acl –set /tmp/boston_hub_aclfile vob:/vobs/dev

multitool reqmaster –acl –get vob:/vobs/dev
Replica boston_hub@/vobs/dev

Request for Mastership ACL:

User:purpledoc.com/ccadmin Full

User:purpledoc/ccadmin Full

User:purpledoc.com/gail Change

User:purpledoc/gail Change

User:purpledoc.com/paul Change

User:purpledoc/paul Change
reqmaster 289

■ Allow requests for mastership for all branches and branch types mastered by the
current replica in VOB family \tests, except for the branch type v2.0_integration
and all branches of that type.

multitool reqmaster –enable vob:\tests
Requests for mastership enabled in the replica object for

"vob:\tests"

multitool reqmaster –deny –instances brtype:v2.0_integration@vob:\tests
Requests for mastership denied for all instances of

"brtype:v2.0_integration@vob:\tests"

multitool reqmaster –deny brtype:v2.0_integration@vob:\tests
Requests for mastership denied for

"brtype:v2.0_integration@vob:\tests"

■ Allow requests for mastership for all branches and branch types mastered by the
current replica in VOB family \dev, except for the branch
cmdsyn.m@@\main\v1.0_bugfix.

multitool reqmaster –enable vob:\dev
Requests for mastership enabled in the replica object for "vob:\dev"

multitool reqmaster –deny \dev\cmdsyn.m@@\main\v1.0_bugfix
Requests for mastership denied for branch

"\dev\cmdsyn.m@@\main\v1.0_bugfix"

■ Deny requests for mastership for all branches and branch types mastered by the
current replica.

multitool reqmaster –disable vob:/vobs/dev
Requests for mastership disabled in the replica object for

"vob:/vobs/dev"

■ Deny requests for mastership of the branch type v2.0_integration.

multitool reqmaster –deny brtype:v2.0_integration@vob:\tests
Requests for mastership denied for

"brtype:v2.0_integration@vob:\tests"

■ Display mastership information about the branches include.h@@\main\integ
and acc.c@@\main.

multitool reqmaster –list include.h@@\main\integ acc.c@@\main
multitool: Error: acc.c@@\main

The following would block the "reqmaster" operation at replica

"sydney".

At least one checkout prevents the request.
290 Administrator’s Guide: Rational ClearCase MultiSite

■ Request mastership of the branch cmdsyn.m@@/main/v2.6_dev.

multitool reqmaster cmdsyn.m@@/main/v2.6_dev
cmdsyn.m@@/main/v2.6_dev: Change of mastership at sibling replica

"boston_hub" was successful.

Mastership is in transit to the new master replica.

■ Request mastership of the branch type v2.0_integration.

multitool reqmaster brtype:v2.0_integration@vob:\tests
brtype:v2.0_integration@vob:\tests: Change of mastership at sibling

replica "sydney" was successful.

Mastership is in transit to the new master replica.

See Also

chmaster
reqmaster 291

restorereplica
Replaces missing operations in a replica that has been restored from backup

Applicability

Synopsis

restorereplica [–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery
| –cqe⋅ach | –nc⋅omment] [–f⋅orce] [–override]
[–invob vob-selector | [–rep⋅lace] replica-selector ...]

Description

Warning: Execute this command immediately after you restore a replica from backup.
Proceeding with normal development at a restored replica before executing this
command causes irreparable inconsistencies among the replicas in a family.

restorereplica replaces missing changes in a VOB replica that has been restored from
backup, as follows:

1 It causes the current replica to create special update packets that contain update
requests to other replicas.

2 It locks the current replica’s VOB object and marks the replica as being in the
process of restoration.

3 It increments the recovery incarnation for the replica.

4 It causes lsreplica –long to indicate which replicas must send restoration updates
to the current replica.

The current replica remains in the restoration state until you have received and applied
(using syncreplica –import) all the restoration updates needed to bring the replica up
to date with the state of the family. Collectively, these updates include all the changes

Product Command type

MultiSite multitool subcommand

Platform

UNIX

Windows
292 Administrator’s Guide: Rational ClearCase MultiSite

to the family since the backup was made, including changes made in the current
replica before its failure.

You cannot recover changes that were made after the last synchronization export from
your current replica. For example, if your replica was backed up on Wednesday at
12:30 P.M. and your last synchronization export was Thursday at 3:00 P.M., you can
recover all changes made until Thursday at 3:00 P.M. All changes made after that time
are lost.

During the process of restoration, the lsreplica –long command annotates its listing to
indicate which replicas must send restoration updates to the replica.

For a description of the replica restoration procedure, see Restoring and Replacing VOB
Replicas on page 198.

Locking the Replica

restorereplica locks the current replica’s VOB object. Locking it ensures that while
restoration proceeds through execution of syncreplica –export and syncreplica
–import commands, no other changes are made to the current replica.

When syncreplica applies the final required update, it displays a message indicating
that the restoration process is complete. At this point, use the cleartool unlock vob:
command to unlock the restored VOB replica, enabling normal development to
proceed.

Optimizing the Restoration Process

By default, restorereplica requires that the replica receive restoration updates from all
other replicas in its family (either directly or indirectly). Only after all the updates are
imported does the syncreplica command display the message indicating that
restoration is complete.

In some cases, you can relax this requirement without compromising the correctness of
the restoration process. The replica will be brought up to date if it receives a restoration
update from only one replica—the last one to which the replica sent an update before
it was restored from the backup version. You can specify the name of that last-updated
replica (or a list of replicas, one of which must be the last-updated one) to
restorereplica. syncreplica displays the restoration-completed message after receiving
restoration updates from all the specified replicas.

Warning: If you use this optimization incorrectly, you can make the restored replica
irreparably inconsistent with other replicas.
restorereplica 293

Restrictions

Identities: You must have one of the following identities:

■ VOB owner
■ root (UNIX)
■ Member of the ClearCase administrators group (Windows)

Locks: No locks apply.

Mastership: No mastership restrictions.

Options and Arguments

Event Records and Comments

Default
Creates one or more event records, with commenting controlled by the
standard ClearCase user profile (default: –cqe). See Event Records and
Comments in the multitool reference page. To edit a comment, use cleartool
chevent.

–c⋅omment comment-string | –cfi⋅le comment-file-pname | –cq⋅uery | –cqe⋅ach |
–nc⋅omment
Overrides the default with the specified comment option.

Suppressing Interactive Prompts

Default
restorereplica prompts you for confirmation.

–f⋅orce
Suppresses the confirmation step.

Specifying the VOB Family

Default
Processes the replica that contains the current working directory.

–invob vob-selector
Processes the current replica in the specified family. Specify vob-selector in the
form [vob:]pname-in-vob

pname-in-vob Pathname of the VOB tag (whether or not the VOB is mounted)
or of any file system object within the VOB (if the VOB is
mounted)
294 Administrator’s Guide: Rational ClearCase MultiSite

Reducing the Number of Required Updates

Default
The syncreplica command declares the replica to be restored completely only
after updates are received from all other members of the VOB family and
imported.

Warning: Incorrect use of these options allows new changes to be made to the
replica before all missing changes are received from other replicas. This may
place the entire family in an irreparably inconsistent state.

replica-selector ...
Specifies a subset of replicas from which updates are required before
syncreplica declares the replica to be restored completely. Specify
replica-selector in the form [replica:]replica-name[@vob-selector]

–rep⋅lace replica-selector ...
Changes the subset of replicas from which restoration updates are required.

–override
Overrides normal restoration processing and declares the VOB to be restored
completely. The lsreplica –long command no longer annotates any replicas as
needing to provide updates, and you can use cleartool unlock vob: to place
the replica back in normal service.

When you specify this option, the command displays a list of replicas from
which updates have not been received and prompts you to cancel the
operation or continue.

Examples

For an example of restoring a replica, see Restoring and Replacing VOB Replicas on
page 198.

See Also

chepoch, lsepoch, lsreplica, syncreplica

replica-name Name of the replica (displayed with lsreplica)

vob-selector VOB family of the replica; can be omitted if the current
working directory is within the VOB.
Specify vob-selector in the form [vob:]pname-in-vob

pname-in-vob Pathname of the VOB tag (whether or
not the VOB is mounted) or of any file
system object within the VOB (if the
VOB is mounted)
restorereplica 295

rmreplica
Deletes a VOB-replica object

Applicability

Synopsis

rmreplica [–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery
| –cqe⋅ach | –nc⋅omment] replica-selector

Description

Warning: To delete a replica, you must complete all steps described in Deleting a Replica
on page 122, or synchronization and mastership problems can occur in other replicas
in the family.

This command deletes from the current replica’s database the VOB-replica object for
another replica. Use this command to record the fact that another replica has been
deleted.

Note: If running rmreplica makes the current replica the last member of the family,
rmreplica turns off operation logging for this VOB and removes all oplogs, which may
take a long time.

Restrictions

Identities: You must have one of the following identities:

■ VOB owner
■ root (UNIX)
■ Member of the ClearCase administrators group (Windows)

Locks: An error occurs if one or more of these objects are locked: VOB, replica.

Product Command type

MultiSite multitool subcommand

Platform

UNIX

Windows
296 Administrator’s Guide: Rational ClearCase MultiSite

Mastership: Your current replica must master the replica being removed.

Other: The following restrictions apply:

■ You cannot delete your current replica’s VOB-replica object.
■ You cannot delete a replica if your current replica considers it to master one or more

objects.

Options and Arguments

Event Records and Comments

Default
Creates one or more event records, with commenting controlled by the
standard ClearCase user profile (default: –nc). See Event Records and Comments
in the multitool reference page. To edit a comment, use cleartool chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the specified comment option.

Specifying the Replica

Default
None.

replica-selector
Specifies the VOB-replica object to be deleted from the current replica’s
database. Specify replica-selector in the form
[replica:]replica-name[@vob-selector]

Examples

For an example of removing a VOB-replica object, see Deleting a Replica on page 122.

See Also

chmaster, mkreplica

replica-name Name of the replica (displayed with lsreplica)

vob-selector VOB family of the replica; can be omitted if the current
working directory is within the VOB.
Specify vob-selector in the form [vob:]pname-in-vob

pname-in-vob Pathname of the VOB tag (whether or
not the VOB is mounted) or of any file
system object within the VOB (if the
VOB is mounted)
rmreplica 297

shipping.conf
Store-and-forward configuration file

Applicability

Synopsis

/var/adm/rational/clearcase/config/shipping.conf

Description

This file controls the operation of the store-and-forward facility on each host. The file
consists of comment lines (starting with #) and one or more configuration entries, and
it can contain the configuration entries described below. In some cases, the
corresponding store-and-forward operation fails if an entry is missing; in other cases,
there is a hard-coded default.

MultiSite installation creates the file ccase-home-dir/config/services/shipping.conf.template,
in which all these entries are defined. If /var/adm/rational/clearcase/config/shipping.conf
does not exist, the installation creates it by copying the template file. If
/var/adm/rational/clearcase/config/shipping.conf exists, the installation advises you to
compare the existing file to the template and make any necessary changes.

Note: If you do not install MultiSite or the Rational Shipping Server in the default
installation directory (/opt/rational/clearcase), you must edit the shipping.conf file and
change /opt/rational/clearcase to the pathname of your installation directory.

Packet Size

MAX-DATA-SIZE size [k | m | g]

Default: 2097151 KB

Product Command type

MultiSite MultiSite data structure

Platform

UNIX
298 Administrator’s Guide: Rational ClearCase MultiSite

Controls the splitting of individual logical packets into multiple physical packets.
Limiting the size of physical packets can improve the reliability of packet delivery in
some networks. The size integer (with the optional k, m, or g suffix) specifies the
maximum size for a physical packet file. k specifies KB (kilobytes); m specifies MB
(megabytes); g specifies GB (gigabytes). Omitting the suffix specifies KB. To specify no
limit, use 0 (zero).

This value is used by the following commands (unless you also specify –maxsize):

■ mkreplica –fship
■ mkreplica –ship
■ syncreplica –fship
■ syncreplica –ship
■ sync_export_list

When you invoke mkreplica or syncreplica with –out or –tape, this value is not used
and you must use –maxsize to limit the packet size.

Notification

NOTIFICATION-PROGRAM e-mail-program-pathname

Default: /opt/rational/clearcase/bin/notify. This program is also used if no
NOTIFICATION-PROGRAM entry exists.

The electronic mail program to be invoked in these circumstances:

The mail program is invoked as follows:

e-mail-program-pathname –s subject –f message-file addr ...

Administrator Address

ADMINISTRATOR e-mail-address

Default: root

The electronic mail address of the administrator who administers the
store-and-forward facility on the local host.

■ When shipping_server finds that a shipping order it is about to process has
expired

■ When an undeliverable packet is returned to the original sending host by another
host’s shipping_server (see the description of EXPIRATION)

■ When syncreplica –import finds a replica-creation packet, which must be
processed with a mkreplica command
shipping.conf 299

A mail message is sent to the specified address in the circumstances listed in
Notification. The configuration file can contain multiple ADMINISTRATOR entries;
messages are sent to all the specified mail addresses.

Storage Bay and Return Bay

STORAGE-BAY storage-class directory-pathname
RETURN-BAY storage-class directory-pathname

Default: The –default storage class is used for packets that are not assigned to any
storage class, and for packets whose storage class is not configured. This class is
created when MultiSite is installed.

These lines define storage bay and return bay directories. A storage bay holds the
outgoing and incoming update packets and shipping orders for a storage class. A
return bay holds incoming or outgoing packets in the process of being returned to their
origin because they could not be delivered to all specified destinations.

You can use multiple STORAGE-BAY and RETURN-BAY entries to define multiple
bays for a storage class. shipping_server selects one of the bays for each packet based
on the available disk space in the bays’ disk partitions. The order in which you specify
bays does not matter.

Note: Storage class names are case sensitive.

MultiSite installation creates a default storage class named –default. The storage bay
and return bay for this class are created on the local host in the
/var/adm/rational/clearcase/shipping directory. Each bay contains subdirectories named
incoming and outgoing, which hold incoming and outgoing packets. Shipping
operations look for packets in these subdirectories. Before using the store-and-forward
facility, make sure that the disk partition where the shipping directory is created has
sufficient free space for anticipated replica-creation and update packets.

You must create directory-pathname with a standard UNIX mkdir command. You must
also create the incoming and outgoing directories in the new bay. Packets placed in a bay
are assigned the same owner, groups, and read-write permissions as the bay itself.
(Execute permission and any special permissions on the bay are ignored.) Be sure to
adjust these permissions (if necessary) to enable successful execution of MultiSite
commands to process the packets and to guard against unauthorized access.

Note: The incoming and outgoing directories must be on the same file system.

Expiration Period

EXPIRATION storage-class number-of-days
EXPIRATION –default number-of-days
300 Administrator’s Guide: Rational ClearCase MultiSite

Default: 14 days.

Specifies the expiration period (in days) for shipping orders associated with the
specified storage class. This period begins at the time the shipping order is generated.
If a packet cannot be delivered to all of its destinations in the specified number of days,
the packet is returned to the original sending host and one or more electronic mail
messages are sent (see the descriptions in the sections Administrator Address and
Notification).

Specifying –default as the storage class sets the expiration period for shipping orders
that are not assigned to any storage class and for shipping orders whose storage class
is not configured.

A value of 0 (zero) specifies no expiration and delivery is reattempted indefinitely.

This setting is overridden by the –pexpire option to syncreplica or mkreplica.

The shipping_server program does not retry delivery of a packet. The EXPIRATION
specification is useful only if you schedule periodic invocations of sync_export_list
–poll to attempt delivery of any undelivered packets.

Packet Routing

ROUTE next-hop host ...
ROUTE next-hop –default

Default: None.

Controls the network routing of packets. Packets whose final destination is any of the
host arguments are sent to the host named next-hop. This host is responsible for final
delivery of the packet to its destinations (or additional forwarding). next-hop and host
can be host names (which must be usable by hosts in different domains) or numeric IP
addresses.

You can include multiple ROUTE entries in the configuration file. The special keyword
–default accommodates all hosts that are not specified in another ROUTE entry.

Receipt Handler

RECEIPT-HANDLER storage-class script-pathname

Default: None.

Specifies a script for the shipping server to run for each packet received in a shipping
bay. We recommend that you specify the sync_receive script as the
RECEIPT-HANDLER entry. For example:

RECEIPT-HANDLER -default
/opt/rational/clearcase/config/scheduler/tasks/sync_receive
shipping.conf 301

shipping_server handles each packet that is received as follows:

1 Reads the shipping.conf file to find the appropriate RECEIPT-HANDLER entry for
the packet.

❑ If the packet is associated with a storage class and there is a
RECEIPT-HANDLER entry for that storage class, shipping_server uses the
script-pathname specified in that entry.

❑ If the packet is not associated with a storage class and there is a
RECEIPT-HANDLER value for the –default storage class, shipping_server
uses that value.

2 Invokes the receipt handler as follows:

script-pname [–d⋅ata packet-file-pname] [–a⋅ctual shipping-order-pname]
[–s⋅class storage-class] –o⋅rigin hostname

where

Note: If a packet is destined for both the local host and another host, both the –data
and –actual parameters are used. The packet is imported at the replica on the host
and then forwarded to its next destination.

Port Numbers

CLEARCASE_MIN_PORT port-number
CLEARCASE_MAX_PORT port-number

Default: None.

Caution: Set these entries only on hosts that can communicate through the firewall and
have been installed with the MultiSite shipping-server-only option. To use the
shipping server on a firewall system, you must also set the CLEARCASE_MIN_PORT

script-pname Script specified in the RECEIPT-HANDLER
entry.

–d⋅ata packet-file-pname Location of the packet. This option is used only
when the packet is destined for this host.

–a⋅ctual shipping-order-pname Location of the shipping order. This option is used
only when the packet is destined for another host.

–s⋅class storage-class Storage class associated with the packet. This
option is used only if the packet was associated
with a storage class when it was created.

–o⋅rigin hostname Name of the host from which the packet was first
sent.
302 Administrator’s Guide: Rational ClearCase MultiSite

and CLEARCASE_MAX_PORT environment variables in the clearcase script. For more
information, see Specifying Port Values on page 79.

These entries specify the range of ports for the shipping server to use on a firewall
system, and they are set as environment variables in the shipping server environment.

Guidelines for setting the values:

■ The value range for CLEARCASE_MIN_PORT is 1024 through 65534.

■ The value range for CLEARCASE_MAX_PORT is 1025 through 65535.

■ The value of CLEARCASE_MAX_PORT must be greater than the value of
CLEARCASE_MIN_PORT.

■ We recommend that you use the range 49152 through 65535, which is the
Dynamic/Private Port Range.

Timeout Period for Unreachable Hosts

DOWNHOST-TIMEOUT minutes

Default: None.

Specifies the number of minutes for the shipping server to wait before trying to contact
a target host that was previously identified as unreachable.

If the shipping server tries to send a packet to a target host and determines that the host
is unreachable, it creates a file in the /var/adm/rational/clearcase/shipping/ms_downhost
directory. The name of the file is the name of the unreachable host. If one of the
following parameters is set, the shipping server checks the directory for target hosts
during future shipping operations:

■ DOWNHOST-TIMEOUT setting in the shipping.conf file

■ SHP_DOWNHOST_TIMEOUT_RETRY environment variable

If both parameters are set, the shipping server uses DOWNHOST-TIMEOUT.

If the target host is found in the ms_downhost directory, and the difference between the
current time and the last modification time of the file is less than the timeout setting on
the shipping server host, the shipping server does not try to send packets to the target
host. If the difference is equal to or greater than the timeout setting, the shipping server
tries to send packets to the target host. If neither this setting nor the environment
variable SHP_DOWNHOST_TIMEOUT_RETRY is set, the shipping server attempts to
send the packet to the target host. (Each attempt to send a packet to an unreachable
host takes about 30 seconds.)
shipping.conf 303

shipping_server
Store-and-forward packet transport server

Applicability

Synopsis

shipping_server [–scl⋅ass storage-class-name] { –pol⋅l | sources ... }

This command is located in ccase-home-dir/etc on UNIX and ccase-home-dir\bin on
Windows.

Description

This command processes one or more shipping orders on the local host and sends the
associated packets or files to remote sites. After it delivers a file to all its destinations,
shipping_server deletes the file unless one of the destinations is the local host.

Note: When shipping_server starts processing a shipping order, it locks the order. The
lock prevents subsequent invocations of shipping_server from processing the order.

TCP/IP Connection

To transmit a file, shipping_server uses UDP to contact the albd_server process on the
receiving host, and albd_server invokes shipping_server in receive mode on the
receiving host.

If you are sending packets through a firewall (that is, the CLEARCASE_MIN_PORT and
CLEARCASE_MAX_PORT environment variables are set), shipping_server tries to use
TCP to contact the remote albd_server. If that connection fails, shipping_server uses
UDP. For more information, see Using Store-and-Forward Through a Firewall (UNIX only)
on page 76.

Product Command type

MultiSite MultiSite command

Platform

UNIX

Windows
304 Administrator’s Guide: Rational ClearCase MultiSite

On UNIX, shipping_server forks one subprocess for each packet that it sends. As
many as 10 shipping_server subprocesses, each trying to send a single packet, can be
started for each invocation of shipping_server. The same number of subprocesses are
forked on the receiving machine. As a subprocess finishes, another can be started, but
only 10 can run simultaneously.

After a TCP connection is established between the two shipping_server processes,
they transfer the file. The receiving shipping_server selects a storage bay using the
configuration settings in the shipping.conf file (UNIX) or MultiSite Control Panel
(Windows). If a storage class is assigned multiple storage bays, available disk space
determines the selection of a bay.

On UNIX, the packet file is created with the same owner and group as the storage bay
directory, and its access mode is taken from the directory’s read and write permissions.
(The execute permission and special permissions, if any, are ignored.)

On Windows, the packet file inherits permissions from the Windows ACL on the
storage bay directory.

Colon Characters in Packet Names

If a packet name contains a colon (:), shipping_server changes the colon to a period
(.) during processing. This change allows packets to be delivered to Windows
machines, which do not allow colons in file names.

Handling of File Name Conflicts

You can use the mkorder and shipping_server commands to transmit non packet files
if the files are in the same directory as their associated shipping orders. If a file with the
same name already exists on the receiving host, the new file is renamed to filename_1
(if you send another file with the same name, it is renamed to filename_2, and so on).

Setting a Timeout Period for Unreachable Hosts

You can set a timeout period during which the shipping server will not try to send
packets to hosts that it previously identified as unreachable. For more information, see
the shipping.conf (UNIX) or MultiSite Control Panel (Windows) reference page.

Log

On UNIX, shipping_server writes records of all packets sent and received, along with
all errors, to file /var/adm/rational/clearcase/log/shipping_server_log.

On Windows, shipping_server writes records of all packets sent and received,
notification messages, log messages, and all errors to the Windows Event Viewer. You
can use the cleartool getlog shipping command to view shipping_server messages
from the Event Viewer.
shipping_server 305

Restrictions

Identities: You must have write and execute permissions on the directory containing the
shipping order. On UNIX, you must own the data file or be root.

Locks: No locks apply.

Mastership: No mastership restrictions.

Other: The shipping order and the data file it specifies must be located in the same
directory.

Options and Arguments

Restricting Processing to a Storage Class

Default
With –poll, processes all shipping orders in all outgoing storage bays and
return bays on this host. With sources, processes all specified shipping orders.

–scl⋅ass storage-class-name
Processes shipping orders for the specified storage class only.

Specifying the Shipping Orders

Default
None.

–pol⋅l
Processes shipping orders located in some (if you use –sclass) or all storage
and return bays defined in the shipping.conf file on UNIX or the MultiSite
Control Panel on Windows.

Note: shipping_server processes only shipping orders whose file names start
with the characters sh_o_. If you create shipping orders, name them according
to this convention, or omit the –poll option and specify the shipping order
pathnames.

On UNIX, only shipping order files that you own are processed. However,
when root runs this program, shipping order files are processed regardless of
ownership.

sources ...
One or more pathnames of files and/or directories. Each file you specify is
processed if it contains a valid shipping order. For each directory you specify,
shipping_server processes some (if you use –sclass) or all shipping orders
stored in that directory.
306 Administrator’s Guide: Rational ClearCase MultiSite

Examples

In these examples, the lines are broken for readability. You must enter each command
on a single physical line.

■ Process all shipping orders in all MultiSite storage bays.

shipping_server –poll
<no output means command succeeded or did not find any shipping orders>

■ Process a particular shipping order. Note that the pathname argument specifies the
shipping order file, not the data file to be transmitted.

/opt/rational/clearcase/etc/shipping_server
/var/adm/rational/clearcase/shipping/ms_ship/sh_o_sync_sydney_19-May-02.09:
48:45_7660_1
<no output means command succeeded>

■ Process all shipping order files in a specified directory.

shipping_server "c:\Program
Files\Rational\ClearCase\var\shipping\ms_ship\outgoing"
<no output means command succeeded or did not find any shipping orders>

■ Process all shipping orders in the storage bays of a specified storage class.

/opt/rational/clearcase/etc/shipping_server –poll –sclass daily
<no output means command succeeded or did not find any shipping orders>

See Also

mkorder, MultiSite Control Panel, shipping.conf, syncreplica, sync_export_list
Chapter 13, Troubleshooting MultiSite Operations
shipping_server 307

sync_export_list
Generates and sends update packets

Applicability

Synopsis
■ Generate update packets:

sync_export_list [–c⋅ompress] [–lo⋅gdir log-directory]
[–f⋅ship | –sh⋅ip] [–lockwait minutes] [–q⋅uiet mode]
[–wo⋅rkdir directory] [–m⋅axsize max-packet-size]
[–sc⋅lass storage-class] [–u⋅pdate] [–li⋅mit num-packets]
[–t⋅race] [–p⋅oll] [–i⋅terate num-tries [–wa⋅it num-seconds]]
{ –a⋅ll | –r⋅eplicas replica-list [script-file] | script-file }

■ Process shipping orders in the host’s storage bays:

sync_export_list –p⋅oll [–sc⋅lass storage-class]

■ Print help about command options:

sync_export_list –h⋅elp

On UNIX, sync_export_list is located in ccase-home-dir/config/scheduler/tasks. On
Windows, sync_export_list is located in ccase-home-dir\config\scheduler\tasks.

Description

sync_export_list generates update packets for one or more replicas. You can specify
options for packet generation and transport on the command line, in a script file, or by
using a combination of the command line and a script file.

Product Command type

MultiSite MultiSite command

Platform

UNIX

Windows
308 Administrator’s Guide: Rational ClearCase MultiSite

You can run sync_export_list manually or run it automatically with the schedule
command. For more information, see the schedule reference page in the Command
Reference.

Retrying Synchronization When the VOB Is Locked

By default, synchronization exports fail if the VOB is locked. To allow sync_export_list
to retry an export when it encounters a lock, use the –lockwait option, which specifies
the amount of time (in minutes) for sync_export_list to keep trying to write to the
VOB. During that time, sync_export_list retries the write operation every minute. If
the time elapses and the VOB is still locked, sync_export_list exits with an error.

The –lockwait option sets the CLEARCASE_VOBLOCKWAIT environment variable in the
script’s environment. If –lockwait is not used, sync_export_list ignores
CLEARCASE_VOBLOCKWAIT if it is set outside the script’s environment.

Note: sync_export_list waits only if it detects the lock before it starts processing
operations. If an administrator locks the VOB during operation processing,
sync_export_list exits with an error.

Configuration File

You can modify the behavior of the sync_export_list script by creating a file named
MSimport_export.conf and setting values in it. On UNIX, create the file in the directory
/var/adm/rational/clearcase/config. On Windows, create the file in the directory
ccase-home-dir\var\config.

The file can include the following export setting:

disable_export_locking = 1
Disables use of the export lockfile, allowing multiple exports from a single
replica to run simultaneously. Setting the value to 0 (default) enables use of the
lockfile.

This setting and the –lockwait option are not related. This setting configures
use of the lock created by the sync_export_list process to prevent interference
among export processes, and the –lockwait option handles VOB locks.

Troubleshooting

sync_export_list fails if another sync_export_list process is exporting data from the
same replica, unless export locking is disabled (see Configuration File). This failure
prevents interference among export processes. To retry an export, use the –iterate and
–wait options.

To display informational messages, specify the –trace option on the command line.
sync_export_list 309

To display all debugging print statements, set the TRACE_SUBSYS environment
variable to the value sync_export_list.

sync_export_list creates a log file during execution. This log file is deleted unless
sync_export_list fails or you use –trace or set TRACE_SUBSYS.

By default, log files are stored in the /var/adm/rational/clearcase/log/sync_logs directory on
UNIX and the ccase-home-dir\var\log directory on Windows. The file name includes the
process ID of the sync_export_list command and the time (in UTC format) at which
you ran the command.

The Weekly Log Scrubbing job installed with ClearCase deletes log files in
/var/adm/rational/clearcase/log/sync_logs (UNIX) or ccase-home-dir\var\log (Windows) that
have the prefix send or recv and the suffix _log and are more than 14 days old.

Restrictions

Identities: You must have one of the following identities:

■ VOB owner
■ root (UNIX)
■ Member of the ClearCase administrators group (Windows)

With –poll, you must have write and execute permissions on the directory containing
the shipping orders, and on UNIX, you must own the shipping order files or be root.

Locks: An error occurs if one or more of these objects are locked: VOB.

Mastership: No mastership restrictions.

Options and Arguments

–h⋅elp
Prints help about command options.

–c⋅ompress
Compresses update packets using Gzip compression.

–lo⋅gdir log-directory
Writes log file to log-directory. You must have write access to log-directory.

–f⋅ship
–sh⋅ip

By default, sync_export_list ships packets immediately (–fship). To store
packets in the shipping bay, specify –ship.

–lockwait minutes
Number of minutes for the script to keep retrying to write to the VOB, if the
VOB is locked.
310 Administrator’s Guide: Rational ClearCase MultiSite

–q⋅uiet mode
Suppresses messages sent to STDOUT. mode can have the following values:

–wo⋅rkdir directory
Writes temporary files to directory. directory must exist and be writable by the
user who enters the sync_export_list command.

–m⋅axsize max-packet-size
Maximum size for a physical packet, expressed as a number followed by a
single letter. For example:

If you do not specify –maxsize, sync_export_list uses the value specified in the
shipping.conf file (UNIX) or MultiSite Control Panel (Windows). To specify no
size limit, use –maxsize 0.

–sc⋅lass storage-class
Uses the shipping parameters associated with storage-class. If you do not
specify –sclass, sync_export_list uses the parameters for the default storage
class. You can create or modify storage classes in the shipping.conf file on UNIX
or the MultiSite Control Panel on Windows.

–u⋅pdate
For each current replica, queries the sibling replicas for their actual states and
updates the current replica’s epoch table accordingly, and then generates
update packets. The sites must have IP connections.

–li⋅mit num-packets
Limits the number of packets syncreplica generates. If you also specify
–maxsize, each packet is no larger than max-packet-size; otherwise, each packet
is no larger than the value specified in the shipping.conf file (UNIX) or MultiSite
Control Panel (Windows). Use this option when the disk space for your
shipping bay or staging area is limited, or when you are creating packets to be
placed on magnetic tape (UNIX) or diskettes.

0 (default) Prints errors, warnings, and informational messages

1 Prints errors and warnings

2 Suppresses all messages

500k 500 kilobytes

20m 20 megabytes

1.5g 1.5 gigabytes
sync_export_list 311

–t⋅race
Lists command-line options you specified, displays commands as they are
executed, displays a success or failure message, and forces sync_export_list to
keep its log file.

–p⋅oll
Executes shipping_server –poll before exporting any data. If you also specify
–sclass, shipping_server –poll processes only the shipping orders for the
specified storage class.

–i⋅terate num-tries –wa⋅it num-seconds
Tries a maximum of num-tries times to complete all exports successfully, and
waits num-seconds seconds between tries. By default, sync_export_list does
not retry failed exports (–iterate 1). If you specify –iterate without –wait,
sync_export_list waits 30 seconds between tries.

–a⋅ll
Generates update packets from all replicas on the current host to all sibling
replicas in their respective families.

–r⋅eplicas replica-list
Generates update packets for the replicas you specify in replica-list. You can
specify replica-list in any of the following forms:

Examples:

You can specify only one VOB family with –replicas. To specify multiple VOB
families, use multiple replicas: lines in a script-file. You must specify at least
one replica, either on the command line, or in a script-file.

replica-name@VOB-tag Generates a packet for a
replica

replica-name@VOB-tag,replica-name,replica-name,... Generates packets for
two or more replicas in a
VOB family

VOB-tag Generates update
packets for all sibling
replicas in a VOB family

rep1@/vobs/dev (generate an update packet for a single replica)

"rep1@\dev,rep2,rep3" (generate update packets for multiple replicas in a VOB family)

\tromba (generate update packets for all replicas in a family)
312 Administrator’s Guide: Rational ClearCase MultiSite

script-file
Path to file that contains directives for sync_export_list. You must specify this
argument last on the command line. You can include the following directives:

sync_export_list processes all directives in the order listed in script-file. Rules
for directives:

compress
nocompress

Compresses or does not compress packet.

fship Ships packets immediately.

ship Stores packets in shipping bay.

maxsize:max-packet-size Sets maximum packet size.

sclass:storage-class Sets a different storage class. To unset the storage
class, do not specify a storage-class value.

update
noupdate

Controls whether epoch table is updated before
export.

limit:num-packets Sets maximum number of packets to generate
per replica.

lockwait:minutes Number of minutes to wait for VOB locks.

replicas:replica-list Exports packets from specified replicas. Specify
replica-list as described in the –replicas option.

■ You can include multiple replicas directives in script-file.

■ Each replicas directive can have different shipping directives (a shipping
directive is any directive except replicas).

■ Shipping directives must precede the replicas directive to which they
apply.

■ A shipping directive remains in effect for all subsequent replicas
directives unless you override it.

■ sync_export_list exports packets for replicas specified on the command
line, and then exports packets for replicas specified in the script file.
sync_export_list 313

For example, in the following script file the directives sclass:daily and limit:10
apply to both replicas directives.

compress
ship
maxsize:2g
sclass:daily
update
limit:10
replicas:rep1@\myvob
nocompress
fship
maxsize:1g
noupdate
replicas:rep2@\myvob,rep3

Examples

In these examples, the lines are broken for readability. You must enter each command
on a single physical line.

■ Send update packets from all replicas on the host to all their siblings.

/opt/rational/clearcase/config/scheduler/tasks/sync_export_list –all

SUCCESSFUL COMPLETION: log file removed.

■ Create a script file for the VOB families \tests and \dev. Create a job that runs
sync_export_list every night at 1:00 A.M.

Script file:

compress

fship

sclass:tests

noupdate

replicas:sanfran_hub@\tests,sydney

sclass:dev

update

replicas:\dev
314 Administrator’s Guide: Rational ClearCase MultiSite

Job definition:

Job.Begin

Job.Id: 25

Job.Name: "Sync Export tests dev"

Job.Description.Begin:

Every midnight, export update packets to replicas in VOB families

\tests and \dev.

Job.Description.End:

Job.Schedule.Daily.Frequency: 1

Job.Schedule.FirstStartTime: 01:00:00

Job.DeleteWhenCompleted: FALSE

Job.Task: 13

Job.Args: -quiet 1 \\shinjuku\scripts\sync_export_tests_dev

Job.End

■ Generate update packets for replicas in the family /vobs/dev. Store the packets in
the shipping bay, limit the packet size to 500 KB, and display messages during
processing.

/opt/rational/clearcase/config/scheduler/tasks/sync_export_list –ship
–maxsize 500k –trace –replicas /vobs/dev
command options specified or defaulted:

compress: 0

logdir:

storage-class:

workdir:

maxpacket: 500k

limit: 0

all: 0

fship: 0

ship: 1

poll: 0

lockwait: 0 minutes

retries: 1 times, wait 30 seconds

script:

CMD: bin/cleartool lsvob /vobs/dev > /dev/null

vob: /vobs/dev

replicas: bangalore buenosaires

CMD: bin/multitool syncreplica -export -maxsize 500k -ship

replica:bangalore@/vobs/dev >&2

CMD: bin/multitool syncreplica -export -maxsize 500k -ship

replica:buenosaires@/vobs/dev >&2

SUCCESSFUL COMPLETION: see log file at:

"/var/adm/rational/clearcase/log/sync_logs/send-000815-183301Z-6043

_log".
sync_export_list 315

Files

UNIX

/var/adm/rational/clearcase/log/sync_logs
/var/adm/rational/clearcase/config/shipping.conf
ccase-home-dir/config/scheduler/multisite.schedule

Windows

ccase-home-dir\var\log

See Also

mkorder, MultiSite Control Panel, shipping.conf, shipping_server, sync_receive,
syncreplica
316 Administrator’s Guide: Rational ClearCase MultiSite

sync_receive
Imports update packets

Applicability

Synopsis
■ Import update packets:

sync_receive [–v⋅ob pattern] [–wo⋅rkdir directory] [–lo⋅gdir log-directory]
[–lockwait minutes] [–t⋅race] [–q⋅uiet mode] [–d⋅ata [packet-file-pname | dir]]
[–a⋅ctual shipping-order-pname] [–s⋅class storage-class] [–o⋅rigin hostname]

■ Print help about command options:

sync_receive –h⋅elp

On UNIX, sync_receive is located in ccase-home-dir/config/scheduler/tasks. On Windows,
sync_receive is located in ccase-home-dir\config\scheduler\tasks.

Description

sync_receive imports update packets in the local host’s incoming storage bays. You can
run sync_receive from the command line, or run it with the schedule command (see
the schedule reference page in the Command Reference). For information about using
sync_receive as a receipt handler, see the shipping.conf and MultiSite Control Panel
reference pages.

If files in the incoming shipping bays have names ending with .gz, sync_receive
uncompresses the files, determines whether they are packets, and then imports the
packets.

Product Command type

MultiSite MultiSite command

Platform

UNIX

Windows
sync_receive 317

Retrying Synchronization When the VOB Is Locked

By default, synchronization imports fail if the VOB is locked. To allow sync_receive to
retry an import when it encounters a lock, use the –lockwait option, which specifies
the amount of time (in minutes) for sync_receive to keep trying to write to the VOB.
During that time, sync_receive retries the write operation every minute. If the time
elapses and the VOB is still locked, sync_receive exits with an error.

The –lockwait option sets the CLEARCASE_VOBLOCKWAIT environment variable in the
script’s environment. If –lockwait is not used, sync_receive ignores
CLEARCASE_VOBLOCKWAIT if it is set outside the script’s environment.

Note: sync_receive waits only if it detects the lock before it starts processing
operations. If an administrator locks the VOB during operation processing,
sync_receive exits with an error.

Configuration File

You can modify the behavior of the sync_receive script by creating a file named
MSimport_export.conf and setting values in it. On UNIX, create the file in the directory
/var/adm/rational/clearcase/config. On Windows, create the file in the directory
ccase-home-dir\var\config.

The file can include the following import settings:

disable_import_locking = 1
Disables use of the import lockfile, allowing multiple imports to a single
replica to run simultaneously. Setting the value to 0 (default) enables use of the
lockfile.

Note: By default, sync_receive fails if there is another sync_receive process
importing a packet into the same replica. This failure prevents interference
among import processes. Disabling import locking may cause import failures
caused by collisions. We recommend that you leave locking enabled unless
there is a large amount of lockfile contention.

This setting and the –lockwait option are not related. This setting configures
use of the lock created by the sync_receive process to prevent interference
among import processes, and the –lockwait option handles ClearCase VOB
locks.

proactive_receipt_handler = 1
Causes an active receipt handler to look for other packets that can be imported
and attempt to import them. By default, a receipt handler imports only the
packet for which it was invoked. Under high load conditions, or when packet
have been split because of maximum size restrictions, packets may arrive
before a preceding packet has been completely processed. Enabling proactive
318 Administrator’s Guide: Rational ClearCase MultiSite

mode causes the receipt handler to import packets that may otherwise be
stranded because of premature or out-of-order delivery.

Troubleshooting

To display informational messages, specify the –trace option on the command line.

To display all debugging print statements, set the TRACE_SUBSYS environment
variable to the value sync_receive.

sync_receive creates a log file during execution. This log file is deleted unless
sync_receive fails or you use –trace or TRACE_SUBSYS.

By default, the log files are stored in the /var/adm/rational/clearcase/log/sync_logs
directory (UNIX) or the ccase-home-dir\var\log directory (Windows). The name of a log
file is based on the process ID of the sync_export_list command and the time at which
you ran the command.

The Weekly Log Scrubbing job installed with ClearCase deletes log files in
/var/adm/rational/clearcase/log/sync_logs (UNIX) or ccase-home-dir\var\log (Windows) that
have the prefix send or recv and the suffix _log and are more than 14 days old.

Restrictions

Identities: You must have one of the following identities:

■ VOB owner
■ root (UNIX)
■ Member of the ClearCase administrators group (Windows)

Locks: An error occurs if one or more of these objects are locked: VOB.

Mastership: No mastership restrictions.

Options and Arguments

–h⋅elp
Prints help about command options.

–v⋅ob pattern
VOBs to which update packets are applied. By default, sync_receive applies
packets to all VOBs listed in the packet. Specify pattern as a VOB tag or as a
string that can match multiple VOB names. You cannot include wildcard
characters in pattern. For example:

–vob /vobs/dev (apply packets to /vobs/dev and any VOB whose tag contains
‘/vobs/dev’)

–vob dev (apply packets to any VOB whose tag contains the string ‘dev’)
sync_receive 319

–wo⋅rkdir directory
Writes temporary files to directory. directory must exist and be writable by the
user who enters the sync_receive command.

–lo⋅gdir log-directory
Writes log file to log-directory. You must have write access to log-directory. By
default, log files are stored in the /var/adm/rational/clearcase/log/sync_logs
directory on UNIX and the ccase-home-dir\var\log directory on Windows.

–lockwait minutes
Number of minutes for the script to keep retrying to write to a locked VOB.

–t⋅race
Lists command-line options you specified, displays commands as they are
executed, displays a success or failure message, and forces sync_receive to
keep its log file.

–q⋅uiet mode
Suppresses messages sent to STDOUT. mode can have the following values:

When sync_receive is invoked as a receipt handler, the following parameters are
passed in automatically. You can use –sclass, –data, and –actual on the command line.

–s⋅class storage-class
Imports packets in the incoming bays associated with storage-class. If
storage-class does not have incoming bays or you do not specify –sclass,
sync_receive imports packets from the shipping bay for the default storage
class.You can create and modify storage classes in the shipping.conf file on
UNIX or the MultiSite Control Panel on Windows.

–d⋅ata [packet-file-pname | dir]
Full pathname of an update packet or a storage bay. To import only a specific
packet, use –data file. To import all packets in a bay, use –data dir. You can use
–data with –vob to import packets to specific VOBs. This parameter is used
only when the packet is destined for replicas on the current host.

–a⋅ctual shipping-order-pname
Location of the shipping order; used only when the packet is destined for
another host.

0 (default when sync_receive is used on the command line) Prints
errors, warnings, and informational messages

1 (default when sync_receive is used as a receipt handler) Prints errors
and warnings

2 Suppresses all messages
320 Administrator’s Guide: Rational ClearCase MultiSite

If a packet is destined for both the local host and another host, both the –data
and –actual parameters are used. The packet is imported at the replica on the
local host, and then forwarded to its next destination.

Note: This option is not related to the –actual option for chepoch and lsepoch.

–o⋅rigin hostname
Originating host.

Examples

In these examples, the lines are broken for readability. You must enter each command
on a single physical line.

■ Import packets in the incoming storage bays for the daily storage class.

/opt/rational/clearcase/config/scheduler/tasks/sync_receive –sclass daily

■ Import a packet and apply it to all VOBs whose tags include the pattern lib.

"c:\Program Files\Rational\ClearCase\config\scheduler\tasks\sync_receive.bat"
–vob lib –d "c:\Program Files\Rational\ClearCase\var\shipping\daily\incoming\
sync_orig_09-Dec-02.18.17.54_6587_1"

■ On UNIX, specify sync_receive as the receipt handler for the daily storage class.

cp /opt/rational/clearcase/config/scheduler/tasks/sync_receive*
/var/adm/rational/clearcase/scheduler/tasks

Edit the shipping.conf file and add a receipt handler entry:

RECEIPT-HANDLER daily
/var/adm/rational/clearcase/scheduler/tasks/sync_receive

■ On Windows, specify sync_receive as the receipt handler for the daily storage
class.

a Copy the script into a directory outside the ClearCase installation area. For
example:

copy "c:\Program Files\Rational\ClearCase\config\scheduler\tasks\sync_receive.bat"
c:\scripts

b Edit the script as appropriate.

c In the MultiSite Control Panel, select the daily class in the Storage Class list.

d Click Modify Class.

e In the Receipt Handler Path box, enter the path to the script. For example:

c:\scripts\sync_receive.bat

f Click OK.
sync_receive 321

Files

UNIX

/var/adm/rational/clearcase/log/sync_logs
/var/adm/rational/clearcase/config/shipping.conf
ccase-home-dir/config/scheduler/multisite.schedule

Windows

ccase-home-dir\var\log

See Also

mkorder, MultiSite Control Panel, shipping.conf, shipping_server, sync_export_list,
syncreplica
322 Administrator’s Guide: Rational ClearCase MultiSite

syncreplica
Exports or imports update packets

Applicability

Synopsis
■ Export an update packet:

sync⋅replica –exp⋅ort [–max⋅size max-packet-size [–lim⋅it num-packets]]
[–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery | –cqe⋅ach |
–nc⋅omment]
{

{ –shi⋅p | –fsh⋅ip } [–scl⋅ass storage-class] [–pex⋅pire date] [–not⋅ify
e-mail-addr]

| –tap⋅e raw-device-pname
| –out packet-file-pname

}
replica-selector ...

■ Import an update packet:

sync⋅replica –imp⋅ort [–invob VOB-selector]
[–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery | –cqe⋅ach |
–nc⋅omment]
{ –rec⋅eive [–scl⋅ass storage-class]
| –tap⋅e raw-device-pname
| { packet-file-pname | staging-area-pname } ...
}

Note: The –tape option is valid only on UNIX.

Product Command type

MultiSite multitool subcommand

Platform

UNIX

Windows
syncreplica 323

Description

Synchronization of an existing replica with one or more sibling replicas is a three-phase
process:

1 At one site, a syncreplica –export command creates an update packet that contains
changes that have occurred in the replica at that site (and perhaps other replicas, as
well).

2 The packet is sent to one or more other sites.

3 At another site, a syncreplica –import command applies the changes in the update
packet to its replica of the same VOB.

Step 3 occurs at all sites that receive the packet.

Contents of an update packet:

■ All changes that have occurred in the current replica since the last update
generated for the destination replicas. (Changes already sent to the destination
replicas are excluded from the packet).

■ Changes that have occurred in other replicas, which the current replica has
received in previous update packets from those replicas, but has not already
passed on to the destination replicas.

In all cases, syncreplica –export creates a single logical update packet for use at all the
specified destinations; the packet can be used to update those particular replicas only.

Notes on the Export Phase

MultiSite is designed for efficient updating of replicas. syncreplica –export attempts to
exclude operations that have been sent previously. (However, there is no harm in
sending an operation multiple times to the same replica; the first operation is imported
and subsequent identical operations are ignored.)

The replica is not locked during the export phase; in fact, the syncreplica –export
command fails if the VOB is locked. Therefore, you must not schedule
synchronizations during VOB backups (when the VOB must be locked). See also
Retrying Synchronization When the VOB Is Locked on page 327.

Specifying a Directory for Temporary Files

syncreplica –export stores temporary files in the directory specified by the TMPDIR
environment variable on UNIX and the TMP environment variable on Windows. If you
use the sync_export_list script to export update packets, you can use the –workdir
option to specify the directory.
324 Administrator’s Guide: Rational ClearCase MultiSite

Notes on the Import Phase

An update packet is applied to the appropriate replica on the host on which you import
it, unless you restrict processing with the –invob argument. syncreplica consults the
VOB registry in the current region to determine the locations of these replicas’ storage
directories. Thus, you do not have to specify particular replicas or storage locations.

The import process applies update packets in the correct order. Therefore, you can
specify packets in any order on the command line.

The VOB replica is not locked during the import phase. Synchronization fails if the
VOB is locked. See also Retrying Synchronization When the VOB Is Locked on page 327.

Specifying a Directory for Temporary Files

syncreplica –import stores temporary files in the directory specified by the TMPDIR
environment variable on UNIX and the TMP environment variable on Windows. If you
use the sync_receive script to import update packets, you can use the –workdir option
to specify the directory.

Skipping Packets

syncreplica –import refuses to process an update packet in the following situations:

■ The update packet contains changes that depend on other changes that have not
yet been imported to this replica. This usually means that an update packet
destined for this replica has not been sent or was lost during transport.

■ Problems were encountered processing an earlier physical packet in a
multiple-part logical packet.

In these cases, syncreplica –import displays an explanatory message.

Update Failures / Replaying Packets

In some cases, syncreplica –import begins to apply operations to a replica, but fails
with an error message. For example, another process may have locked the VOB,
causing the import to fail. After the VOB is unlocked, you can run syncreplica –import
to process the entire update packet again.

There is no harm in importing update packets that have already been processed
successfully; the same change will not be made twice.

For more information about update failures, see Chapter 13, Troubleshooting MultiSite
Operations.
syncreplica 325

Deletion of Update Packets

If a single invocation of syncreplica –import applies a packet successfully to all target
replicas on the host, the update packet is deleted when the command completes its
work. If the packet is processed with multiple syncreplica –import –invob commands,
it is not deleted.

Preservation of Identities and Permissions

If a VOB replica preserves identities and permissions, syncreplica –import maintains
the consistency of identities and permissions information for elements mastered by the
VOB family’s identities- and permissions-preserving replicas. For each such element,
an error occurs if the element’s group is not on the group list of the importing replica
(on UNIX) or is not the same as the group of the importing replica (on Windows).

If a VOB replica preserves permissions only, syncreplica –import maintains the
consistency of permissions information for elements mastered by the VOB family’s
identities- and permissions-preserving replicas and permissions-preserving replicas.
Changes to identities for existing elements are ignored during import. New elements
are assigned to the owner of the VOB at the current site, and the group of all new
elements is the primary group of the VOB. (This is true even if the root user or a
member of the ClearCase administrators group imports the packet.)

If a VOB replica is nonpreserving, changes to identities and permissions of existing
elements are ignored during import. New elements are assigned to the owner of the
VOB at the current site, and the group of all new elements is the primary group of the
VOB. (This is true even if the root user or a member of the ClearCase administrators
group imports the packet.) Permissions set when the element is created are preserved,
but subsequent permissions changes are ignored. Identities and permissions changes
made at nonpreserving replicas are not propagated to other replicas.

Storage Pools

Data containers from the update packets are placed in storage pools according to the
standard element assignments. If the pool assignment for a new element cannot be
determined, the element is assigned to the VOB’s default source pool.

Trigger Firing

ClearCase triggers do not fire in response to changes made during packet import.

Handling Naming Conflicts

syncreplica resolves naming conflicts among objects created at different replicas. For
more information, see Conflict Resolution on page 21.
326 Administrator’s Guide: Rational ClearCase MultiSite

Delayed View Updates

syncreplica does not inform any views (not even the view from which you enter the
command) of the updates to replicas. All active views see updates within a few
seconds, through their normal VOB-polling routines. You can force a view to recognize
VOB updates by entering a cleartool setcs –current command.

Retrying Synchronization When the VOB Is Locked

By default, synchronization exports and imports fail if the VOB is locked. To allow
syncreplica to retry a synchronization when it encounters a lock, set the
CLEARCASE_VOBLOCKWAIT environment variable to the amount of time (in minutes)
for syncreplica to keep trying to write to the VOB. During that time, syncreplica retries
the write operation every minute. If the time elapses and the VOB is still locked,
syncreplica exits with an error.

Note: syncreplica waits only if it detects the lock before it starts processing operations.
If an administrator locks the VOB during processing, syncreplica exits with an error.

Restrictions

Identities: You must have one of the following identities:

■ VOB owner
■ root (UNIX)
■ Member of the ClearCase administrators group (Windows)

Locks: An error occurs if one or more of these objects are locked: VOB.

Mastership: No mastership restrictions.

Other: You must run syncreplica on the host where the VOB storage directory resides.

Options and Arguments — Export Phase

Specifying the Update Packet Size

Default
If you do not specify –maxsize, the default packet size depends on the
shipping option:

■ Packets created with –ship or –fship are no larger than the maximum
packet size specified in the shipping.conf file (UNIX) or the MultiSite
Control Panel (Windows).

■ Packets created with –out are no larger than 2 GB.

■ Packets created with –tape have no default size limit.
syncreplica 327

–max⋅size max-packet-size [–lim⋅it num-packets]
The maximum size for a physical packet, expressed as a number followed by
a single letter. For example:

The –limit option limits the number of packets syncreplica generates; each
packet is no larger than max-packet-size. Use this option when the disk space for
your shipping bay or staging area is limited.

Event Records and Comments

Default
Creates one or more event records, with commenting controlled by the
standard ClearCase user profile (default: –nc). See Event Records and Comments
in the multitool reference page. To edit a comment, use cleartool chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the specified comment option.

Disposition of the Update Packet

Default
None. You must specify how the update packets created by syncreplica
–export are to be stored and/or transmitted to other sites.

If you use –ship or –fship and omit the –sclass option, syncreplica places the
packet in the storage bay location specified for the –default class in the
shipping.conf file or MultiSite Control Panel. By default, this location is
/var/adm/rational/clearcase/shipping/ms_ship on UNIX and
ccase-home-dir\var\shipping\ms_ship on Windows.

–shi⋅p
–fsh⋅ip

Stores the update packet in one or more files in a store-and-forward storage
bay; syncreplica creates a separate shipping order for each physical packet,
indicating how and where it is to be delivered. The destinations are the host
names associated in the VOB database with the replica-name arguments.
(Replica-name/host-name associations are created with mkreplica –export
and can be changed with chreplica.)

Using –fship (force ship) invokes the shipping server to send the update
packet immediately. Using –ship does not invoke this server. To run
shipping_server to send packets in storage bays, schedule sync_export_list

500k
20m
1.5g

500 kilobytes
20 megabytes
1.5 gigabytes
328 Administrator’s Guide: Rational ClearCase MultiSite

–poll with the schedule command. (See the schedule reference page in the
Command Reference.)

–scl⋅ass class-name
Specifies the storage class of the packet and shipping order. syncreplica looks
up the storage class in the shipping.conf file on UNIX or the MultiSite Control
Panel on Windows to determine the location of the storage bay to use.

–tap⋅e raw-device-pname (UNIX)
Writes the update packets to the specified tape device, which must be local to
the host on which you enter the syncreplica command. You are prompted to
load a separate tape for each physical packet. Use the –maxsize option to
ensure that syncreplica does not exceed the capacity of the tapes you are
using. Only one physical packet can be placed on each tape, regardless of
packet size.

Caution: Be sure to deliver a packet created with –out or –tape to its specified
destinations promptly. If a replica has not yet received and applied this packet,
it may not accept any subsequently generated packets from your replica until
the first packet is received and processed.

–out packet-file-pname
The name of the first update packet. Additional physical packets, if any, are
placed in files named packet-file-pname_2, packet-file-pname_3, and so on.

The update packets are not delivered automatically; use an appropriate
method to deliver them.

You can create a packet using –out, and deliver it using the store-and-forward
facility. See the mkorder reference page.

Handling Packet-Delivery Failures

Default
If a packet cannot be delivered, it is sent through the store-and-forward facility
back to the administrator at the site of the originating replica. A mail message
is sent to the store-and-forward administrator. This occurs after repeated
attempts to deliver the packet have failed, and the allotted time has expired; it
can also occur when the destination host is unknown or a data file does not
exist. The store-and-forward configuration settings specify the expiration
period, the e-mail address of the administrator, and the notification program.

–pex⋅pire date-time
Specifies the time at which the store-and-forward facility stops attempting to
deliver the packet and generates a failure mail message instead. This option
overrides the expiration period specified for the storage class in the
shipping.conf file (UNIX) or MultiSite Control Panel (Windows).
syncreplica 329

The date-time argument can have any of the following formats:

date.time | date | time | now
where:

Specify the time in 24-hour format, relative to the local time zone. If you omit
the time, the default value is 00:00:00. If you omit the date, the default value is
today. If you omit the century, year, or a specific date, the most recent one is
used. Specify UTC if you want the time to be resolved to the same moment in
time regardless of time zone. Use the plus (+) or minus (-) operator to specify
a positive or negative offset to the UTC time. If you specify UTC without hour
or minute offsets, the default setting is Greenwich Mean Time (GMT). (Dates
before January 1, 1970 Universal Coordinated Time (UTC) are invalid.)

Examples:

22-November-2002
sunday
yesterday.16:00
8-jun
13:00
today
9-Aug.10:00UTC

–not⋅ify e-mail-address
The delivery-failure message is sent to the specified e-mail address.

If a failure occurs on a Windows host that does not have e-mail notification
enabled, a message appears in the Windows Event Viewer. The message
includes the e-mail-address value specified with this option and a note
requesting that this user be informed of the status of the operation. For
information about enabling e-mail notification, see the MultiSite Control
Panel reference page.

Specifying the Destination Replicas

Default
None.

date := day-of-week | long-date

time := h[h]:m[m][:s[s]] [UTC [[+ | -]h[h][:m[m]]]]

day-of-week := today |yesterday |Sunday | ... |Saturday |Sun | ... |Sat

long-date := d[d]–month[–[yy]yy]

month := January |... |December |Jan |... |Dec
330 Administrator’s Guide: Rational ClearCase MultiSite

replica-selector ...
Specifies the replicas to which you want to send update packets. These replicas
must be in the same VOB family. Specify replica-selector in the form
[replica:]target-replica-name[@source-vob-selector]

Options and Arguments — Import Phase

Restricting the Update to a Particular VOB

Default
Updates all replicas that are on the current host and are specified in the update
packets. With –tape, you must specify a VOB replica to be updated.

–invob vob-selector
Updates the replica in the VOB family specified by vob-selector; all other
replicas specified in the update packets are ignored. Specify vob-selector in the
form [vob:]pname-in-vob

Event Records and Comments

Default
Creates one or more event records, with commenting controlled by the
standard ClearCase user profile (default: –nc). See Event Records and Comments
in the multitool reference page. To edit a comment, use cleartool chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the specified comment option.

Specifying the Location of the Update Packets

Default
None.

target-replica-name Name of the replica to which you want to send the
packet (you can display replica names with lsreplica)

source-vob-selector VOB family of the replica; can be omitted if the current
working directory is within the VOB.
Specify vob-selector in the form [vob:]pname-in-vob

pname-in-vob Pathname of the VOB tag
(whether or not the VOB is
mounted) or of any file system
object within the VOB (if the
VOB is mounted)

pname-in-vob Pathname of the VOB tag (whether or not the VOB is mounted)
or of any file system object within the VOB (if the VOB is
mounted)
syncreplica 331

–rec⋅eive [–scl⋅ass storage-class]
Scans the current host’s storage bays. Any unprocessed update packets
intended for this host are applied to the appropriate replicas on the host. With
–sclass, syncreplica scans only the storage bays of the specified storage class.

If syncreplica finds any replica-creation packets, it sends mail to the
store-and-forward administrator. (If the current host is a Windows host and
there is no valid host specified in the SMTP Host box in the ClearCase Control
Panel, a message appears in the Windows Event Viewer.) Use mkreplica to
import these replica-creation packets.

–tap⋅e raw-device-pname (UNIX)
Reads a single packet from the tape device, and applies it to the replica of the
VOB specified with –invob. The tape device must be local to the importing
host.

packet-file-pname | staging-area-pname ...
Processes each packet-file-pname as an update packet. For each
staging-area-pname specified, locates all previously unprocessed update
packets in the directory and applies them to the appropriate replicas.

Examples

Exports

■ Generate an update packet to be sent to replica boston_hub. Store the packet in a
file in directory c:\tmp.

multitool syncreplica –export –out c:\tmp\boston_hub_packet1
boston_hub@\dev
Generating synchronization packet c:\tmp\boston_hub_packet1

■ Similar to preceding example, but place the packet file in a storage bay, for
shipping at some later time by the store-and-forward facility.

multitool syncreplica –export –ship boston_hub@\dev
Generating synchronization packet c:\Program

Files\Rational\ClearCase\var

\shipping\ms_ship\outgoing\sync_bangalore_19-May-02.09.33.02_3447_1

 - shipping order file is c:\Program

Files\Rational\ClearCase\var\shipping\ms_ship\outgoing\sh_o_sync_ba

ngalore_19-May-02.09.33.02_3447_1
332 Administrator’s Guide: Rational ClearCase MultiSite

■ Similar to preceding example, but ship the packet immediately.

multitool syncreplica –export –fship boston_hub@\dev
Generating synchronization packet c:\Program

Files\Rational\ClearCase\var

\shipping\ms_ship\outgoing\sync_bangalore_19-May-02.09.33.02_3447_1

 - shipping order file is c:\Program

Files\Rational\ClearCase\var\shipping\ms_ship\outgoing\sh_o_sync_ba

ngalore_19-May-02.09.33.02_3447_1

Attempting to forward/deliver generated packets...

 -- Forwarded/delivered packet c:\Program

Files\Rational\ClearCase\var

\shipping\ms_ship\sync_bangalore_19-May-02.09.33.02_3447_1

Imports

■ Process an incoming update packet in directory /usr/tmp.

multitool syncreplica –import /usr/tmp/boston_hub_packet1
Applied sync. packet /usr/tmp/boston_hub_packet1 to VOB

/net/minuteman/vobstg/dev.vbs

■ Process all incoming update packets in the current host’s storage bays.

multitool syncreplica –import –receive
Applied sync. packet c:\Program Files\Rational\ClearCase\var

\shipping\ms_ship\incoming\sync_boston_hub_19-May-02.09.45.01_7634_

1

to VOB \\ramohalli\vobs\dev.vbs

See Also

mkorder, mkreplica, MultiSite Control Panel, shipping.conf, sync_export_list
Chapter 13, Troubleshooting MultiSite Operations
syncreplica 333

334 Administrator’s Guide: Rational ClearCase MultiSite

Index
/opt/rational/clearcase/bin directory 57
/opt/rational/clearcase/config/services/

shipping.conf file, See shipping.conf
file

/opt/rational/clearcase/etc directory 57

/var/adm/rational/clearcase/log directory
174

A

ACLs
mastership requests 285

storage bays 271

administration
backup requirements 56

disk space for storage bays 31

list of responsibilities 55

scrubbing 52

storage registries 36

albd_server, control of ports used 79

apropos command 211

asterisks in packet listings 240

B

backup
incremental 166

nonreplicated objects 166

replica as mechanism for 165

requirements 56

bays, See return bays; storage bays

bidirectional synchronization
about 47

feature levels 85

branch mastership
See also mastership

about 9

assigning when creating elements 35, 128

conditions for enabling requests 145

default vs. explicit 15

displaying request settings 127, 151

how used 12

implementation planning issues 146

models for serial development 5

planning scenario 92

removing explicit 136

request mechanism, setup procedure 147

request mechanisms 143

request procedure 143

scope 11

serial development scenario 158

transfer models 35

transfer procedure 136

branch types, transferring mastership of 131
branches

requesting mastership of 284

C

ccase-home-dir directory xxiii

ccase-home-dir\bin directory 57

ccase-home-dir\config\scheduler\tasksdirectory
57

ccase-home-dir\var\log directory 174
335

chepoch command 213

chreplica command 225

ClearCase commands, use with replicas 62

ClearCase scheduler, synchronization jobs 106
CLEARCASE_MAX_PORT environment

variable 79

CLEARCASE_MIN_PORTenvironmentvariable
79

.clearcase_profile file 278

cleartool and multitool commands 58
commands for MultiSite

about 57

ClearCase 61

multitool 57

non-multitool 60

when view context is useful 63

connectivity property
changing 225

conventions, typographical xxiii

cquest-home-dir directory xxiii
creating replicas

about 91

command for 253

export procedure 95

import procedure 98

in mixed environment 101

scenario 92

when to schedule 91

customer support xxv

D

directories
/opt/rational/clearcase/bin 57

/opt/rational/clearcase/etc 57

ccase-home-dir\bin 57

ccase-home-dir\config\scheduler\tasks 57

changing in replicas 62

disk space
for backup replica 165

replica-creation directory 95

storage bays 31

documentation
Help description xxiv

E

element types, deleting 62
elements

assignment of mastership 128

preservation of identities and permissions

39

transfer of mastership 135

e-mail and firewalls 67

encryption of update packets 78

environment variables 79
epoch number matrix

about 26

listing contents of 27, 230

zeros in 28

epoch numbers
about 23

changing, commands for 213, 279

changing, methods for 179, 191

checking 228

gap detected during packet creation 180

gaps in 178

role in updates 25

epoch_watchdog command 228
error messages

See also troubleshooting

A replica cannot update itself 181
336 Administrator’s Guide: Rational ClearCase MultiSite

Can’t change to a group that is not in the

VOB’s group list 194

Can’t create object with group that is not in

the VOB’s group list 194

DBMS error 187

Element changed during checkin 186

Element changed during operation 186

file record limit exceeded 187

Gap in oplog detected for replica 180

Gap in oplog entries 178

Read from input stream failed 186

Replica already exists 176

Replica incarnation is old 188

Sync. packet is not applicable to any local

VOB replicas 185

syntax error in configuration file 183

transport operations, list of 181

Type manager failed construct_version

operation 180

Version mismatch 189

event records
about 23

comments in 276

export operations
automating for synchronization 106

creating update packets 308

element is checked out 180

gap in epoch numbers 180

packets accumulate in storage bay 180

replica creation 71, 91, 95

replica-creation packets, recovering lost 191

resending lost packets 279

synchronization problems 178

synchronization procedure, manual 104

update packet delivery patterns 45

export_sync records, scrubbing 54

F

feature levels
about 83

displaying 87

raising for replica 84

raising for VOB family 85

requests for branch mastership 145

firewalls
shipping_server on 76

synchronization and 76

ftp and firewalls 68

H

Help, accessing xxiv

host name of replica, changing 120, 225

hyperlink types, shared 17

I

identities-preserving replicas
about 39

behavior of syncreplica -import 326

changing properties of 225

creating 43, 254

requirements 42

troubleshooting on UNIX 194

UNIX and Windows interoperability 169

import operations
assumption of success 103

automating for synchronization 108, 110

common synchronization problems 184

conflicts in registry 176–177

corrupted packet symptoms 186
Index 337

failure of and replica replacement 201

failures, possible causes 190

lost packets 184, 190

replica creation 98

synchronization command 317

synchronization procedure, manual 104

when to restart 186

installation and licensing 31

interoperability 167

L

licenses needed for ClearCase and MultiSite 31

local-area networks, interoperability 167

log files, locations of 173

lsepoch command 230

lspacket command 240

M

man command 57

master replica, setting access control for 284
mastership

 See also branch mastership

about 5

changing 218

creating type objects 140

displaying request settings 127

elements, transferring 135

fixing accidental change in 139

management of 125

objects in removed replicas 122

of replica object 9

request failed 152

restrictions for VOB objects 18

transferring 130

transferring, replica removal 138

troubleshooting for type objects 195

type objects 16, 131

VOBs, transferring 134

mkorder 248

mkreplica command 253

MultiSite Control Panel 71, 268
multitool commands

about 57

summary 58

syntax for 274

N

nonpreserving replicas
behavior of syncreplica -import 326

changing properties of 225

O

object selectors for multitool commands 275
objects

See type objects; VOB objects
oplogs (operation logs)

about 23

gaps in epoch numbers 178

scrubbing 52

P

packets
See also replica-creation packets; update

packets

about 3
338 Administrator’s Guide: Rational ClearCase MultiSite

listing contents of 240

logical and physical 3

processing imported 4

redelivering 270, 300

routing 272, 301

splitting logical into physical 268, 298

submitting to store-and-forward facility 71

permissions-preserving replicas
about 39

behavior of syncreplica -import 326

changing properties of 225

creating 254

planning issues
about 31

branch mastership 146

design documentation 31

firewalls 77

licensing 31

synchronization strategy 50

time zones and synchronization strategy 51

ports, control of for servers 79
privileges, See mastership

R

receipt handlers, paths 271, 301

recoverpacket command 279
replica objects

about 2

deleting 296

mastership 9

transferring mastership of 132

replica-creation packets
contents and cleanup 255

how to split 71

replicas
See also creating replicas; identities-preserving

replicas; permissions-preserving
replicas; nonpreserving replicas;
synchronizing replicas

about 1

accidental deletion, recovery 204

as backup mechanism 165

backing up 56

changing connectivity property 225

changing hosts or host names 120, 225

changing preservation mode 117

checking epoch number 228

displaying details of 8

displaying properties of 115

feature levels 83–84

history of changes, how tracked 23

listing 244

listing objects mastered by 234

master, displaying 126

moving 121

multiple at one site 169

names 2

removal procedure 122

renaming 121

replacing 201

resolving name conflicts 21

restoring from backup 198–199

scrubbing oplogs 52

self-mastering 9, 132

site differences 2

transferring mastership of objects in 138

UNIX and Windows interoperability 167

where mounted 36

reqmaster command, status messages 154

restorereplica command 292
Index 339

return bays
See also storage bays

about 70

ACLs 271

paths 271, 300

rmreplica command 296

S

scrubbing 52
serial development

branch mastership models 5

branch mastership scenario 158

shipping orders
creating 248

expiration date, specifying 270, 300

expired 74, 184

processing 304, 308

shipping.conf file
about 71

modifying contents of 298

shipping_server
about 304

error handling mechanisms 73

installing on firewall 76

log 305

troubleshooting scenarios 180

shipping_server log 173
sites

about 1

differences among 2

documentation of design 31

multiple replicas at single 169

storage bays
See also return bays

about 70

ACLs 271

disk space requirements 31

packets in 180, 184

paths 270, 300

storage classes
naming 270

use in synchronization 72

storage directories, restoring lost 198

storage registries, where mounted 36
store-and-forward facility

about 69

configuring 298

creating shipping orders 248

customizing 268

deliveries attempted 73

firewalls 76

indirect shipping routes 72

notification mechanisms 299

reliability of and packet size 71

sending files with 75

storage classes 72

submitting packets 71

use with firewalls 76

sync_export_list command 308

sync_receive command 317
synchronizing replicas

about 3, 103

assumption of success 103

automating 105

common export problems 178

data included and excluded 3

deliveries attempted 73

delivery patterns 45

direction of, and feature levels 85

firewalls, methods for handling 76

history 116

inconsistent changes 193

indirect routes 27
340 Administrator’s Guide: Rational ClearCase MultiSite

manual procedure 103

planning issues 50

risks of scrubbing oplogs 54

risks of unidirectional scheme 47

role of epoch numbers 25

unidirectional vs. bidirectional 47

VOB database mechanism 22

syncreplica command
examples 103

T

time stamps, interpretation of format 39

time zones 39, 51

topology for update packets 45
transport operations

automating for synchronization 107

common problems 181

delivery failure 183

delivery mechanisms 4

firewalls 76

in mixed environment 101

indirect routes 72

invalid destinations 183

recommended methods 45

replica creation 97

shipping order expired 184

shipping_server 304

store-and-forward facility 69

synchronization procedure, manual 104

triggers
firing during synchronization 326

propagating 3

troubleshooting
about 173

accidental transfer of mastership 139

conflicts in registry entries 176–177

deliveries, reattempting 73

delivery failed 183

diagnostic tips 173

expired shipping order 184

export of checked-out element 180

export of update packets 178

gap in oplog entries 178

identities-preserving replicas 194

import failed 190

import failure and replica replacement 201

import problems 184

incoming packets accumulate 184

invalid destinations 183

log files 173

lost packets 190

names of type objects conflict 196

object mastership problems 195

packet size for store-and-forward facility 71

recovery from VOB server crash 199

replica already exists 176

replica deleted 204

requests for mastership 152

shipping_server log 305

shipping_server problems 180

storage registries 36

success of synchronization 103

synchronization and scrubbed oplogs 54

synchronization log files 106

tracing exported update packets 309

tracing imported update packets 319

transport problems 181

update packet creation 178

type objects
conversion of, restrictions 16–17

converting unshared to shared 141
Index 341

creating instances 140

creating instances of shared 62

creating shared 140

creating shared and unshared 16

displaying master replica 126

displaying mastership status 140

identical names and types 21

mastership 16

mastership problems 195

renaming 196

transferring mastership 131

typographical conventions xxiii

U

unidirectional synchronization
about 47

feature levels 85

risks 47

update packets
automating creation of 106

automating import of 110

contents of 324

creating manually 104

deleting 326

encryption 78

error notification in mixed environments 75

storage classes 72

user profile file 278

V

var\log directory 174

version information, for MultiSite 274
views

data in, synchronizing 3

saving from replaced replica 203

updating with replica changes 327

use in troubleshooting 174

VOB database, mechanism for replica
synchronization 22

VOB families
about 1

feature levels 83, 85, 145

preserving identities and permissions 39

VOB objects
displaying master replica 126

mastership restrictions 18

non-file-system 275

syntax for names 276

VOB tags
assigning public 36

duplicate 177

replica names and 2

VOBs
structure of 1

transfer of mastership 134
342 Administrator’s Guide: Rational ClearCase MultiSite

	Administrator’s Guide
	Contents
	Figures
	Tables
	Preface
	About This Manual
	ClearCase Documentation Roadmap
	ClearCase Integrations with Other Rational Products
	Typographical Conventions
	Online Documentation
	Customer Support

	MultiSite Overview
	Introduction to MultiSite
	Understanding the Architecture of MultiSite
	Replicated VOB Databases
	MultiSite Terminology

	VOBs and VOB Replicas
	Synchronizing Replicas in a Family
	Enabling Independent Development: Mastership
	Supporting Serial Development in VOB Replicas

	MultiSite Operation
	Information Propagated Among VOB Replicas
	VOB Objects and VOB Replica Objects
	Mastership
	Replica Mastership
	Branch Mastership
	Creation of the main Branch of an Element
	Synchronizing Development on Different Branches
	Default and Explicit Branch Mastership

	Type Object Mastership
	Unshared Type Objects
	Shared Type Objects
	Additional Restrictions for Shared Global Types
	Creating an Instance of a Type
	Example

	Mastership Restrictions for VOB Objects

	Conflict Resolution
	Resolving Conflicts Among Type Objects

	The Operation Log
	Tracking Operations for Each Replica
	Oplog IDs and Epoch Numbers
	Indirect Synchronization

	Planning a MultiSite Implementation
	MultiSite Installation
	MultiSite Licensing
	Shipping Server Use with ClearCase and ClearQuest
	ClearCase Use Model
	Branching and Mastership
	Use of Attributes, Labels, and Hyperlinks
	Use of Triggers
	Use of Multiple Replicas of the Same VOB at a Site
	Text Mode for Replicas
	Use of Administrative VOBs
	Use of UCM

	MultiSite Use Model
	Type of Administration
	MultiSite, Time, and Time Zones
	Time Rules in Config Specs
	Mastership Strategy
	Identities and Permissions Strategy for VOB Replicas
	Identities- and Permissions-Preserving Replicas
	Permissions-Preserving Replicas
	Nonpreserving Replicas
	Synchronization of Identities and Permissions Information
	Requirements for Replicas That Preserve Identities and Permissions
	Gathering Identities Information
	Running protectvob on Identities-Preserving Replicas

	Synchronization Transport Method
	Synchronization Pattern
	Directions of Exchange
	One-to-One and Ring Synchronization
	One-to-Many Synchronization
	Many-to-Many Synchronization

	Synchronization Schedule
	Use of MultiSite for VOB Backups
	Scrubbing Parameters for Replicas
	Oplog Scrubbing
	export_sync Scrubbing

	Handling Pathnames That Contain Spaces

	Responsibilities of MultiSite Administrators

	MultiSite Command Set
	Location of MultiSite Programs
	multitool Use
	Descriptions of Subcommands
	Replica Creation, Synchronization, and Management Commands
	Object Mastership Commands
	Failure Recovery Commands
	multitool Utility Commands

	Additional MultiSite Commands
	ClearCase Commands Related to MultiSite
	View Contexts and VOB Mounts
	Specifying VOBs in Commands

	MultiSite Configuration
	Choosing a Transport Method
	File-Based Methods
	Using Electronic Mail
	Using FTP
	Using Physical Media

	Store-and-Forward
	Directories for Packets
	Packet Transport
	Store-and-Forward Issues
	Communication Between Replica Hosts
	Limiting the Size of a Packet

	Configuring the Store-and-Forward Facility
	Submitting Packets to Store-and-Forward
	Differentiating Packets with Storage Classes
	Setting Up an Indirect Shipping Route
	Retries, Expirations, and Returned Data
	Setting a Timeout Period for Unreachable Hosts
	Error Notification in a Mixed Environment

	Sending Files That Are Not Packets

	Using Store-and-Forward Through a Firewall (UNIX only)
	Firewall Issues
	Configuring Your Firewall to Limit Access
	Installing the Shipping Server on an Exposed Host
	Controlling Ports Used by albd_server and shipping_server
	Specifying Port Values
	Checklist for Using Store-and-Forward Through a Firewall

	Feature Levels
	Overview of Feature Levels
	Raising the Replica Feature Level
	Raising the VOB Family Feature Level
	VOB Families with Bidirectional Synchronization
	VOB Families with Unidirectional Synchronization

	Displaying Feature Levels
	Feature Levels Error Message

	Replication and Synchronization
	Creating VOB Replicas
	Overview of Replica Creation
	Timing of Replica Creation

	Replica-Creation Scenario for a VOB
	Planning the Rules of the Road
	Prerequisites
	Export Phase
	Transport Phase
	Import Phase

	Replicating a VOB Between UNIX and Windows

	Synchronizing Replicas
	Assumption of Successful Synchronization
	Manual Synchronization
	Export Phase
	Transport Phase
	Import Phase

	Automated Synchronization
	Using the ClearCase Scheduler
	Export Phase
	Transport Phase
	Import Phase
	Defining Receipt Handlers on UNIX
	Defining Receipt Handlers on Windows
	Scheduling Import Jobs

	Listing Synchronization History
	Synchronizing VOB Replicas More Efficiently
	Example of Increased Efficiency
	Example of Decreased Efficiency

	MultiSite Management
	Managing Replicas
	Displaying Properties of a VOB Replica
	Listing the Synchronization History of a VOB Replica
	Changing Preservation Mode for a VOB Family
	Changing the Host Name for a VOB Replica
	Setting the Connectivity Property for a VOB Replica
	Renaming a VOB Replica
	Moving a VOB Replica
	Changing Mastership of a VOB Replica
	Deleting a Replica

	Managing Mastership
	Mastership Commands for VOB Objects
	Displaying Mastership Information for VOB Objects
	Listing an Object’s Master Replica
	Listing Objects Mastered by a Replica
	Listing the History of Mastership Changes for an Object
	Displaying Mastership Request Settings

	Assigning Branch Mastership During Element Creation
	Changing Mastership of VOB Objects
	Transferring Mastership of a Type Object
	Transferring Mastership of a Replica Object
	Transferring Mastership of a VOB
	Transferring Mastership of an Element
	Transferring Mastership of a Branch
	Transferring Branch Mastership
	Removing Explicit Mastership of a Branch

	Transferring Mastership of a Stream
	Transferring Mastership of All Objects Mastered by a Replica

	Fixing an Accidental Mastership Change
	Working with Type Objects
	Creating a Shared Type Object
	Determining Whether a Type Object Is Shared or Unshared
	Converting a Type Object from Unshared to Shared

	Implementing Requests for Mastership
	Overview of a Request for Mastership
	Requirements and Recommendations
	Planning Your Implementation
	To Hide Request for Mastership Features

	Enabling Requests for Mastership
	Prerequisites
	Adding Developers to the Access Control List
	Denying Requests for Specific Objects
	Enabling Requests at the Replica Level

	Customizing Synchronization Updates for Mastership Requests
	Displaying Mastership Request Settings
	Troubleshooting Mastership Requests
	Troubleshooting Commands
	Status Messages

	Serial Development Scenario
	Planning the Implementation
	Setting Up Access Controls
	Writing Config Specs
	Requesting Mastership
	Serial Development of a File That Cannot Be Merged
	Serial Development of a File That Can Be Merged
	Requesting Mastership of a Branch Type

	Using MultiSite for VOB Backup and Interoperability
	Backing Up VOBs with MultiSite
	Using a Backup Replica
	Handling Objects That Are Not Replicated
	Designing Synchronization Strategy

	Using Replicas with Incremental Backup
	Restoring a Replica from Backup

	Using MultiSite for Interoperability
	Advantages and Disadvantages
	Restrictions on Multiple Replicas in a LAN
	Setting Up Multiple Replicas at One Site

	Troubleshooting
	Troubleshooting MultiSite Operations
	Troubleshooting Tips
	Replica Export Problems
	Replica Import Problems
	Permissions Problems
	Conflict in Object Registry
	Conflict in Tag Registry

	Synchronization Export Problems
	Cannot Find Oplog Entry
	chepoch –actual Method
	lsepoch and chepoch Method

	Oplog Gap Detected During Creation of Update Packet
	Export Failure During Version Construction
	Packets Accumulate in Outgoing Storage Bay
	Replica Cannot Update Itself

	Transport Problems
	Error Messages
	Invalid Destination
	Delivery Fails
	Shipping Server Fails to Start or Connection Is Refused
	Shipping Order Expires

	Synchronization Import Problems
	Packets Accumulate in Incoming Storage Bay
	Packet Is Not Applicable to Any Local Replicas
	Read from Input Stream Fails
	Element Changes During Operation
	rmreplica Operation Cannot Be Imported
	Database Limit Is Exceeded
	Replica Incarnation Is Old
	Warning on Receipt of Packet from Earlier MultiSite Version
	Miscellaneous Problems
	Recovering from Lost Packets
	Lost Replica-Creation Packet
	Lost Update Packet

	Inconsistent Changes to Replica
	Preservation Mode
	Object Mastership

	Automatic Renaming of Type Objects and Replica Objects

	Running epoch_watchdog
	Restoring and Replacing VOB Replicas
	Restoring a Replica from Backup
	Replacing an Existing Replica
	Saving Views from the Replaced Replica

	Cleaning Up After Accidental Deletion of a Replica

	MultiSite Reference Pages
	MultiSite Reference Pages
	apropos
	Applicability
	Synopsis
	Description
	Restrictions
	Options and Arguments
	Examples
	Files
	See Also

	chepoch
	Applicability
	Synopsis
	Description
	Restrictions
	Options and Arguments
	Event Records and Comments
	Suppressing Interactive Prompts
	Specifying the Row to Be Changed
	Specifying the Changes
	Setting a Row Using the Replica’s Actual State

	Examples
	See Also

	chmaster
	Applicability
	Synopsis
	Description
	Specifying a View Context
	Restrictions
	Options and Arguments
	Event Records and Comments
	Specifying the Objects
	Returning Mastership of Branches to Default State

	Examples
	See Also

	chreplica
	Applicability
	Synopsis
	Description
	Restrictions
	Options and Arguments
	Event Records and Comments
	Specifying the Change
	Specifying the Replica

	Examples
	See Also

	epoch_watchdog
	Applicability
	Synopsis
	Description
	Restrictions
	Options and Arguments
	Examples
	Files
	See Also

	lsepoch
	Applicability
	Synopsis
	Description
	Restrictions
	Options and Arguments
	Examples
	See Also

	lsmaster
	Applicability
	Synopsis
	Description
	Object Name Resolution

	Restrictions
	Options and Arguments
	Specifying the Object Kinds
	Report Format
	Specifying a View Context
	Specifying the Replica from Which to Retrieve Information
	Specifying the Replica Whose Mastered Objects Are Displayed

	Examples
	See Also

	lspacket
	Applicability
	Synopsis
	Description
	Restrictions
	Options and Arguments
	Listing Format
	Specifying the Packets to Be Listed

	Examples
	See Also

	lsreplica
	Applicability
	Synopsis
	Description
	Restrictions
	Options and Arguments
	Listing Format
	Specifying the VOB Family
	Specifying the Replica

	Examples
	See Also

	mkorder
	Applicability
	Synopsis
	Description
	Restrictions
	Options and Arguments
	Specifying the Packet File
	Specifying Where to Place the Shipping Order
	Handling Packet-Delivery Failures
	Event Records and Comments
	Specifying the Destination

	Examples
	Files
	See Also

	mkreplica
	Applicability
	Synopsis
	Description
	Preservation Mode
	Replica-Creation Packets
	Cleaning Up Used Packets

	Replication of VOBs Linked to Administrative VOBs
	Restrictions
	Options and Arguments — Export Phase
	Specifying Temporary Workspace
	Specifying the Replica-Creation Packet Size
	Event Records and Comments
	Disposition of the Replica-Creation Packet
	Handling Packet-Delivery Failures
	Replica Specifications

	Options and Arguments — Import Phase
	Specifying Temporary Workspace
	Specifying VOB-Creation Parameters
	Protection Failures on Containers
	Preservation Mode
	Pool Creation for the New Replica
	Name of VOB Replica
	Specifying the Location of the Replica-Creation Packet

	Examples
	Exports
	Imports

	See Also

	MultiSite Control Panel
	Applicability
	Synopsis
	Description
	Maximum Packet Size
	Administrator E-mail
	Email Notification Program Path
	Timeout for Unreachable Host (minutes)
	Storage Classes
	Storage Class Name
	Packet Expiration
	Storage Bay Path
	Return Bay Path
	Receipt Handler Path

	Routing Information
	Next Routing Hop
	Destination Host Names

	multitool
	Applicability
	Synopsis
	Description
	Using Interactive Mode and Status Mode
	Specifying Objects with Object Selectors
	Object Names

	Event Records and Comments
	Specifying Comments Interactively
	Customizing Comment Handling

	recoverpacket
	Applicability
	Synopsis
	Description
	Resetting Epoch Numbers Automatically
	Resetting Epoch Numbers Manually

	Restrictions
	Options and Arguments
	Event Records and Comments
	Specifying the Time
	Specifying the Row to Be Modified

	Examples
	See Also

	reqmaster
	Applicability
	Synopsis
	Description
	Setting Access Controls
	Requesting Mastership of a Branch or Branch Type
	Troubleshooting
	Restrictions
	Setting Access Controls
	Requesting Mastership of a Branch
	Requesting Mastership of a Branch Type

	Options and Arguments
	Event Records and Comments
	Displaying or Setting Access Controls
	Requesting Mastership

	Examples
	See Also

	restorereplica
	Applicability
	Synopsis
	Description
	Locking the Replica
	Optimizing the Restoration Process

	Restrictions
	Options and Arguments
	Event Records and Comments
	Suppressing Interactive Prompts
	Specifying the VOB Family
	Reducing the Number of Required Updates

	Examples
	See Also

	rmreplica
	Applicability
	Synopsis
	Description
	Restrictions
	Options and Arguments
	Event Records and Comments
	Specifying the Replica

	Examples
	See Also

	shipping.conf
	Applicability
	Synopsis
	Description
	Packet Size
	Notification
	Administrator Address
	Storage Bay and Return Bay
	Expiration Period
	Packet Routing
	Receipt Handler
	Port Numbers
	Timeout Period for Unreachable Hosts

	shipping_server
	Applicability
	Synopsis
	Description
	TCP/IP Connection
	Colon Characters in Packet Names
	Handling of File Name Conflicts
	Setting a Timeout Period for Unreachable Hosts
	Log

	Restrictions
	Options and Arguments
	Restricting Processing to a Storage Class
	Specifying the Shipping Orders

	Examples
	See Also

	sync_export_list
	Applicability
	Synopsis
	Description
	Retrying Synchronization When the VOB Is Locked
	Configuration File
	Troubleshooting
	Restrictions
	Options and Arguments
	Examples
	Files
	UNIX
	Windows

	See Also

	sync_receive
	Applicability
	Synopsis
	Description
	Retrying Synchronization When the VOB Is Locked
	Configuration File
	Troubleshooting
	Restrictions
	Options and Arguments
	Examples
	Files
	UNIX
	Windows

	See Also

	syncreplica
	Applicability
	Synopsis
	Description
	Notes on the Export Phase
	Specifying a Directory for Temporary Files

	Notes on the Import Phase
	Specifying a Directory for Temporary Files
	Skipping Packets
	Update Failures / Replaying Packets
	Deletion of Update Packets
	Preservation of Identities and Permissions
	Storage Pools
	Trigger Firing
	Handling Naming Conflicts
	Delayed View Updates

	Retrying Synchronization When the VOB Is Locked
	Restrictions
	Options and Arguments — Export Phase
	Specifying the Update Packet Size
	Event Records and Comments
	Disposition of the Update Packet
	Handling Packet-Delivery Failures
	Specifying the Destination Replicas

	Options and Arguments — Import Phase
	Restricting the Update to a Particular VOB
	Event Records and Comments
	Specifying the Location of the Update Packets

	Examples
	Exports
	Imports

	See Also

	Index

