
Rational Software Corporation®
Rational® PurifyPlus for
Linux
User Guide

VERSION: 2003.06.00

UNIX
support@rational.com
http://www.rational.com

ii Rational Test RealTime and PurifyPlus RealTime Installation Guide

Legal Notices

©2001-2003, Rational Software Corporation. All rights reserved.

Any reproduction or distribution of this work is expressly prohibited without the
prior written consent of Rational.

Version Number: 2003.06.00

Rational, Rational Software Corporation, the Rational logo, Rational Developer
Network, AnalystStudio, , ClearCase, ClearCase Attache, ClearCase MultiSite,
ClearDDTS, ClearGuide, ClearQuest, ClearTrack, Connexis, e-Development
Accelerators, DDTS, Object Testing, Object-Oriented Recording, ObjecTime,
ObjecTime Design Logo, Objectory, PerformanceStudio, PureCoverage, PureDDTS,
PureLink, Purify, Quantify, Rational Apex, Rational CRC, Rational Process
Workbench, Rational Rose, Rational Suite, Rational Suite ContentStudio, , Rational
Summit, Rational Visual Test, Rational Unified Process, RUP, RequisitePro,
ScriptAssure, SiteCheck,SiteLoad, SoDA, TestFactory, TestFoundation, TestStudio,
TestMate, VADS, and XDE, among others, are trademarks or registered trademarks of
Rational Software Corporation in the United States and/or in other countries. All
other names are used for identification purposes only, and are trademarks or
registered trademarks of their respective companies.

Portions covered by U.S. Patent Nos. 5,193,180 and 5,335,344 and 5,535,329 and
5,574,898 and 5,649,200 and 5,675,802 and 5,754,760 and 5,835,701 and 6,049,666 and
6,126,329 and 6,167,534 and 6,206,584. Additional U.S. Patents and International
Patents pending.

U.S. GOVERNMENT RIGHTS. All Rational software products provided to the U.S.
Government are provided and licensed as commercial software, subject to the
applicable license agreement. All such products provided to the U.S. Government
pursuant to solicitations issued prior to December 1, 1995 are provided with
“Restricted Rights” as provided for in FAR, 48 CFR 52.227-14 (JUNE 1987) or DFARS,
48 CFR 252.227-7013 (OCT 1988), as applicable.

WARRANTY DISCLAIMER. This document and its associated software may be used
as stated in the underlying license agreement. Except as explicitly stated otherwise in
such license agreement, and except to the extent prohibited or limited by law from
jurisdiction to jurisdiction, Rational Software Corporation expressly disclaims all
other warranties, express or implied, with respect to the media and software product
and its documentation, including without limitation, the warranties of
merchantability, non-infringement, title or fitness for a particular purpose or arising
from a course of dealing, usage or trade practice, and any warranty against
interference with Licensee’s quiet enjoyment of the product.

Third Party Notices, Code, Licenses, and Acknowledgements

Portions Copyright ©1992-1999, Summit Software Company. All rights reserved.
Chapter - iii

Microsoft, the Microsoft logo, Active Accessibility, Active Client, Active Desktop,
Active Directory, ActiveMovie, Active Platform, ActiveStore, ActiveSync, ActiveX,
Ask Maxwell, Authenticode, AutoSum, BackOffice, the BackOffice logo, bCentral,
BizTalk, Bookshelf, ClearType, CodeView, DataTips, Developer Studio, Direct3D,
DirectAnimation, DirectDraw, DirectInput, DirectX, DirectXJ, DoubleSpace,
DriveSpace, FrontPage, Funstone, Genuine Microsoft Products logo, IntelliEye, the
IntelliEye logo, IntelliMirror, IntelliSense, J/Direct, JScript, LineShare, Liquid Motion,
Mapbase, MapManager, MapPoint, MapVision, Microsoft Agent logo, the Microsoft
eMbedded Visual Tools logo, the Microsoft Internet Explorer logo, the Microsoft
Office Compatible logo, Microsoft Press, the Microsoft Press logo, Microsoft
QuickBasic, MS-DOS, MSDN, NetMeeting, NetShow, the Office logo, Outlook,
PhotoDraw, PivotChart, PivotTable, PowerPoint, QuickAssembler, QuickShelf,
RelayOne, Rushmore, SharePoint, SourceSafe, TipWizard, V-Chat, VideoFlash,
Virtual Basic, the Virtual Basic logo, Visual C++, Visual C#, Visual FoxPro, Visual
InterDev, Visual J++, Visual SourceSafe, Visual Studio, the Visual Studio logo, Vizact,
WebBot, WebPIP, Win32, Win32s, Win64, Windows, the Windows CE logo, the
Windows logo, Windows NT, the Windows Start logo, and XENIX, are either
trademarks or registered trademarks of Microsoft Corporation in the United States
and/or in other countries.

Sun, Sun Microsystems, the Sun Logo, Ultra, AnswerBook 2, medialib, OpenBoot,
Solaris, Java, Java 3D, ShowMe TV, SunForum, SunVTS, SunFDDI, StarOffice, and
SunPCi, among others, are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

Licensee shall not incorporate any GLOBEtrotter software (FLEXlm libraries and
utilities) into any product or application the primary purpose of which is software
license management.

BasicScript is a registered trademark of Summit Software, Inc.

Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma,
Richard Helm, Ralph Johnson and John Vlissides. Copyright © 1995 by
Addison-Wesley Publishing Company, Inc. All rights reserved.

Additional legal notices are described in the legal_information.html file that is
included in your Rational software installation.
iv Rational Test RealTime and PurifyPlus RealTime Installation Guide

User Guide Contents

Preface .. ix
Audience ..ix
Contacting Rational Technical Publications...ix
Other Resources...x
Customer Support...x

Product Overview.. 13
Source Code Insertion ... 13

Estimating Instrumentation Overhead ...13
Reducing Instrumentation Overhead...16
Generating SCI Dumps ...16

Target Deployment Ports ... 18
Launching the TDP Editor ...18
Reconfiguring a TDP for a Compiler or JDK ...18

Unified Modeling Language ... 19
Model Elements and Relationships in Sequence Diagrams20
Activations ...20
Classifier Roles..21
Destruction Markers ..22
Lifelines..23
Messages ..24
Objects...26
Stimuli ..28
Actions ...30
Exceptions ...30
Actors...31
Loops ...31
Synchronizations ...32
Notes ...33

Runtime Analysis .. 35
Using Runtime Analysis Features.. 35
Code Coverage.. 36

v

User Guide Contents

How Code Coverage Works ..36
Information Modes...36
Coverage Types ..37
Code Coverage Viewer ...55
Code Coverage Dump Driver ..60

Static Metrics ... 60
Viewing Static Metrics ...60
Halstead Metrics..65
V(g) or Cyclomatic Number ...66
Metrics Viewer Preferences...67

Memory Profiling for C and C++ .. 67
How Memory Profiling for C and C++ Works ..68
Memory Profiling Results for C and C++...68
Memory Profiling Error Messages ...69
Memory Profiling Warning Messages..71
Memory Profiling User Heap in C and C++ ...73
Using the Memory Profiling Viewer ...77
Memory Profiling Viewer Preferences ...78

Memory Profiling for Java .. 78
How Memory Profiling for Java Works ..79
Memory Profiling Results for Java...79
JVMPI Technology ..81

Performance Profiling .. 82
Performance Profiling Results ...83
Performance Profiling SCI Dump Driver..84
Using the Performance Profiling Viewer..84
Applying Performance Profile Filters ...85
Editing Performance Profile Filters..86
Performance Profiling Viewer Preferences ...87

Runtime Tracing... 87
How Runtime Tracing Works...88
Understanding Runtime Tracing UML Sequence Diagrams88
Advanced...90

Graphical User Interface... 95
GUI Philosophy .. 95
Discovering the GUI... 95

Start Page..96
Output Window ..96
Project Explorer ...97
Properties Window ..98
Report Explorer..100
Standard Toolbars ...100

vi

User Guide Contents

GUI Components and Tools .. 102
Report Viewer ..102
Text Editor ...104
Tools Menu..108
Test Process Monitor...110
UML/SD Viewer ...114

Configurations and Settings... 125
General Settings..127
Runtime Analysis Settings...131
Selecting Configurations..140
Modifying Configurations ...140

Working with Projects .. 141
Working with Projects ..141
Understanding Projects ...141
Creating a Group ...143
Manually Creating an Application Node ..143
Creating an External Command Node ..144
Importing Files from a Makefile ...144
Refreshing the Asset Browser ...145
Deleting a Node...146
Renaming a Node..146
Viewing File Properties..147
Excluding a Node from a Build ..147
Excluding a Node from Instrumentation ..147
Adding Files to the Project...148
Selecting Build Options ...149
Building and Running a Node..149
Cleaning Up Generated Files ..150
Creating a Source File Folder..150
Opening a Report ..150
Troubleshooting a Project..151
Debug Mode ..152
Editing Preferences ...152
Project Preferences ...152
Connection Preferences ..153

Activity Wizards.. 153
New Project Wizard ...153
Runtime Analysis Wizard...154

Command Line Interface .. 157
Running a Node from the Command Line.. 158

Example...158
Command Line Runtime Analysis for C and C++ .. 158

vii

User Guide Contents

Command Line Runtime Analysis for Java .. 159
Command Line Examples.. 160

Runtime Analysis using the Instrumentation Launcher161
Calculating Metrics ..162

Command Line Tasks .. 163
Setting Environment Variables ..163
Preparing a Products Header File ...164
Instrumenting and Compiling the Source Code...165
Linking the Application...166
Running the Application...166
Splitting the Trace Dump File ..167
Troubleshooting Command Line Usage..167

Working with Other Development Tools ... 171
Working with Configuration Management .. 171

Working with Rational ClearCase..171
Working with Rational ClearQuest...172
CMS Preferences ..173
ClearQuest Preferences ..173
Customizing Configuration Management ..174

Glossary... 175

Index... 185

viii

Preface

Welcome to Rational PurifyPlus for Linux.

This User Guide contains extensive information on a broad range of subjects that will
help you enhance your software development experience with Rational PurifyPlus
RealTime.

PurifyPlus for Linux is a complete solution for runtime analysis on Linux platforms:
it delivers memory leak detection, memory and performance profiling as well as code
coverage and runtime tracing.

Advanced usage of the product is described in the PurifyPlus for L nux Reference
Manual.

i

i
If you are using the product for the first time, please take the time to go through the
Pur fyPlus for Linux Online Tutorial.

Audience

This guide is intended for Rational software users who are using PurifyPlus for
Linux, such as application developers, quality assurance managers, and quality
assurance testers.

You should be familiar with the selected Linux platform as well as your C, C++ or
Java development environment.

Contacting Rational Technical Publications

To send feedback about documentation for Rational products, please send e-mail to
our technical publications department at techpubs@rational.com.

Keep in mind that this e-mail address is only for documentation feedback. For
technical questions, please contact Customer Support.

ix

Rational PurifyPlus for Linux - User Guide

Other Resources

All manuals are available online, either in HTML or PDF format. The online manuals
are on the CD and are installed with the product.

For the most recent updates to the product, including documentation, please visit the
Product Support section of the Web site at:

http://www.rational.com/products/pqc/pplus_lx.jsp

Documentation updates and printable PDF versions of Rational documentation can
also be downloaded from:

http://www.rational.com/support/documentation/index.jsp

For more information about Rational Software technical publications, see:

http://www.rational.com/documentation.

For more information on training opportunities, see the Rational University Web site:

http://www.rational.com/university.

Customer Support

Before contacting Rational Customer Support, make sure you have a look at the tips,
advice and answers to frequently asked questions in Rational's Solution database:

http://solutions.rational.com/solutions

Choose the product from the list and enter a keyword that most represents your
problem. For example, to obtain all the documents that talk about stubs taking
parameters of type “char”, enter "stub char". This database is updated with more
than 20 documents each month.

When contacting Rational Customer Support, please be prepared to supply the
following information:

• About you:
Name, title, e-mail address, telephone number

• About your company:
Company name and company address

• About the product:
Product name and version number (from the Help menu, select About).
What components of the product you are using

x

http://www.rational.com/products/pqc/pplus_lx.jsp
http://www.rational.com/documentation
http://www.rational.com/university

Preface

• About your development environment:
Operating system and version number (for example, Linux RedHat 8.0), target
compiler, operating system and microprocessor.

• About your problem:
Your service request number (if you are calling about a previously reported
problem)
A summary description of the problem, related errors, and how it was made to
occur
Please state how critical your problem is
Any files that can be helpful for the technical support to reproduce the problem
(project, workspace, test scripts, source files). Formats accepted are .zip and
compressed tar (.tar.Z or .tar.gz)

If your organization has a designated, on-site support person, please try to contact
that person before contacting Rational Customer Support.

You can obtain technical assistance by sending e-mail to just one of the e-mail
addresses cited below. E-mail is acknowledged immediately and is usually answered
within one working day of its arrival at Rational. When sending an e-mail, place the
product name in the subject line, and include a description of your problem in the
body of your message.

Note When sending e-mail concerning a previously-reported problem, please
include in the subject field: "[SR#<number>]", where <number> is the service
request number of the issue. For example:
Re:[SR#12176528] New data on PurifyPlus for Linux install issue

Sometimes Rational technical support engineers will ask you to fax information to
help them diagnose problems. You can also report a technical problem by fax if you
prefer. Please mark faxes "Attention: Customer Support" and add your fax number to
the information requested above.

Location Contact

North America

Rational Software,
18880 Homestead Road,
Cupertino, CA 95014

voice: (800) 433-5444
fax: (408) 863-4001

e-mail: support@rational.com

Europe, Middle East,
and Africa

Rational Software,
Beechavenue 30,
1119 PV Schiphol-Rijk,
The Netherlands

voice: +31 20 454 6200

xi

Rational PurifyPlus for Linux - User Guide

fax: +31 20 454 6201

e-mail: support@europe.rational.com

Asia Pacific Rational Software Corporation Pty Ltd,
Level 13, Tower A, Zenith Centre,
821 Pacific Highway,
Chatswood NSW 2067,
Australia

voice: +61 2-9419-0111
fax: +61 2-9419-0123

e-mail: support@apac.rational.com

xii

Product Overview

PurifyPlus for Linux is a complete solution for runtime analysis on Linux platforms:
it delivers memory leak detection, memory and performance profiling as well as code
coverage and runtime tracing.

With one mouse-click, your application is equipped with the robust functionality of
these features:

• Memory Profiling: Providing memory leak detection for all of your C, C++ and
Java code

• Performance Profiling: Providing function-level performance profiling for all of
your C, C++ and Java code

• Code Coverage: Providing full code coverage and metrics for C, C++ and Java
in a color-coded source-code graphical user interface (GUI)

• Runtime Tracing: Providing runtime-generated UML sequence diagrams of
interactions between C, C++ or Java modules, classes, and instances

Discover the power of runtime analysis capabilities of Rational PurifyPlus for Linux.
Know your code inside and out without having to change the way you work.

Source Code Insertion

Rational's Source Code Insertion (SCI) technology uses instrumentation techniques
that automatically adds special code to the source files under analysis. After
compilation, execution of the code produces SCI dump data for the selected runtime
analysis features.

Rational PurifyPlus for Linux makes extensive use of SCI technology to transparently
produce analysis reports on both native and embedded target platforms.

Estimating Instrumentation Overhead

Instrumentation overhead is the increase in the binary size or the execution time of
the instrumented application, which is due to Source Code Insertion (SCI) generated
by the Runtime Analysis features.

13

Rational PurifyPlus for Linux - User Guide

Rational's SCI technology is designed to reduce both types of overhead to a bare
minimum. However, this overhead may still impact your application.

The following table provides a quick estimate of the overhead generated by the
product.

Code Coverage Overhead

Overhead generated by the Code Coverage feature depends largely on the coverage
types selected for analysis.

A 48-byte structure is declared at the beginning of the instrumented file.

Depending on the information mode selected, each covered branch is referenced by
an array that uses

• 1 byte in Default mode

• 1 bit in Compact mode

• 4 bytes in Hit Count mode

The actual size of this array may be rounded up by the compiler, especially in
Compact mode because of the 8-bit minimum integral type found in C and C++.

See Information Modes for more information.

Other Specifics:

• Loops, switch and case statements: a 1-byte local variable is declared for each
instance

• Modified/multiple conditions: one n-byte local array is declared at the
beginning of the enclosing routine, where n is the number of conditions
belonging to a decision in the routine

I/O is either performed at the end of the execution or when the end-user decides
(please refer to Coverage Snapshots in the documentation).

As a summary, Hit Count mode and modified/multiple conditions produce the
greatest data and execution time overhead. In most cases you can select each
coverage type independently and use Pass mode by default in order to reduce this
overhead. The source code can also be partially instrumented.

Memory and Performance Profiling and Runtime Tracing

Any source file containing an instrumented routine receives a declaration for a 16
byte structure.

Within each instrumented routine, a n byte structure is locally declared, where n is:

• 16 bytes

14

Product Overview

• +4 bytes for Runtime Tracing

• +4 bytes for Memory Profiling

• +3*t bytes for Performance Profiling, where t is the size of the type returned by
the clock-retrieving function

For example, if t is 4 bytes, each instrumented routine is increased of:

• 20 bytes for Memory Profiling only

• 20 bytes for Runtime Tracing only

• 28 bytes for Performance Profiling only

• 36 bytes for all Runtime Analysis features together

Memory Profiling Overhead

This applies to Memory Profiling for C and C++. Memory Profiling for Java does not
use source code insertion.

Any call to an allocation function is replaced by a call to the Memory Profiling
Library. See the Target Deployment Guide for more information.

These calls aim to track allocated blocks of memory. For each memory block, 16+12*n
bytes are allocated to contain a reference to it, as well as to contain link references
and the call stack observed at allocation time. n depends on the Call Stack Size
Setting, which is 6 by default.

If ABWL errors are to be detected, the size of each tracked, allocated block is
increased by 2*s bytes where s is the Red Zone Size Setting (16 by default).

If FFM or FMWL errors are to be detected, a Free Queue is created whose size
depends on the Free Queue Length and Free Queue Size Settings. Queue Length is
the maximum number of tracked memory blocks in the queue. Queue Size is the
maximum number of bytes, which is the sum of the sizes of all tracked blocks in the
queue.

Performance Profiling Overhead

For any source file containing at least one observed routine, a 24 byte structure is
declared at the beginning of the file.

The size of the global data storing the profiling results of an instrumented routine is
4+3*t bytes where t is the size of the type returned by the clock retrieving function.
See the Target Deployment Guide for more information.

Runtime Tracing Overhead

15

Rational PurifyPlus for Linux - User Guide

Implicit default constructors, implicit copy constructors and implicit destructors are
explicitly declared in any instrumented classes that permits it. Where C++ rules
forbid such explicit declarations, a 4 byte class is declared as an attribute at the end of
the class.

Reducing Instrumentation Overhead

Rational's Source Code Insertion (SCI) technology is designed to reduce both
performance and memory overhead to a minimum. Nevertheless, for certain cross-
platform targets, it may need to be reduced still further. There are three ways to do
this.

Limiting Code Coverage Types

When using the Code Coverage feature, procedure input and simple and implicit
block code coverage are enabled by default. You can reduce instrumentation
overhead by limiting the number of coverage types.

Note The Code Coverage report can only display coverage types among
those selected for instrumentation.

Instrumenting Calls (C Language)

When calls are instrumented, any instruction that calls a C user function or library
function constitutes a branch and thus generates overhead. You can disable call
instrumentation on a set of C functions using the Selective Code Coverage
Instrumentation Settings.

For example, you can usually exclude calls to standard C library functions such as
printf or fopen.

Optimizing the Information Mode

When using Code Coverage, you can specify the Information Mode which defines
how much coverage data is produced, and therefore stored in memory.

Generating SCI Dumps

By default, the system call atexit() or on_exit() invokes the Target Deployment Port
(TDP) function that dumps the trace data. You can therefore instrument either all or a
portion of the application as required.

When instrumenting embedded or specialized applications that never terminate, it is
sometimes impractical to generate a dump on the atexit() or on_exit() functions. If
you exit such applications unexpectedly, traces may not be generated.

In this case, you must either:

16

Product Overview

• Specify one or several explicit dump points in your source code, or

• Use an external signal to call a dump routine, or

• Produce an snapshot when a specific function is encountered.

Explicit Dump

Code Coverage, Memory Profiling and Performance Profiling allow you to explicitly
invoke the TDP dump function by inserting a call to the _ATCPQ_DUMP(1) macro
definition (the parameter 1 is ignored).

Explicit dumps should not be placed in the main loop of the application. The best
location for an explicit dump call is in a secondary function, for example called by the
user when sending a specific event to the application.

The explicit dump method is sometimes incompatible with watchdog constraints. If
such incompatibilities occur, you must:

• Deactivate any hardware or software watchdog interruptions

• Acknowledge the watchdog during the dump process, by adding a specific call
to the Data Retrieval customization point of the TDP.

Dump on Signal

Code Coverage allows you to dump the traces at any point in the source code by
using the ATC_SIGNAL_DUMP environment variable.

When the signal specified by ATC_SIGNAL_DUMP is received, the Target
Deployment Port function dumps the trace data and resets the signal so that the same
signal can be used to perform several trace dumps.

Before starting your tests, set ATC_SIGNAL_DUMP to the number of the signal that
is to trigger the trace dump.

The signal must be redirectable signal, such as SIGUSR1 or SIGINT for example.

Instrumentor Snapshot

The Instrumentor snapshot option enables you to specify the functions of your
application that will dump the trace information on entry, return or call.

In snapshot mode, the Runtime Tracing feature starts dumping messages only if the
Partial Message Dump setting is activated. Code Coverage, Memory Profiling and
Performance Profiling features all dump their internal trace data.

17

Rational PurifyPlus for Linux - User Guide

Target Deployment Ports

Rational's Target Deployment Technology is a versatile, low-overhead technology
that allows Rational PurifyPlus for Linux to accommodate your compiler, linker and
debugger. Your project is independent of the TDP, so you don't need to reconfigure it
when you change your development environment.

Launching the TDP Editor

The TDP Editor provides a user interface designed to help you customize and create
unified Target Deployment Ports (TDP).

Please refer to the Target Deployment Guide, accessible from the Help menu of the
Target Deployment Port Editor, for information about customizing Target
Deployment Ports and using the editor.

 To run the TDP Editor from Windows:

1. From the Windows Tools menu, select Target Deployment Port Editor and Start.

Updating a Target Deployment Port

The Target Deployment Port (TDP) settings are read or loaded when a PurifyPlus for
Linux project is opened, or when a new TDP is used.

If you make any changes to a TDP with the TDP Editor, these will not be taken into
account until the TDP has been reloaded in the project.

 To reload the TDP in PurifyPlus for Linux :

1. From the Project menu, select Configurations.

2. Select the TDP and click Remove.

3. Click New, select the TDP and click OK.

Reconfiguring a TDP for a Compiler or JDK

During installation of Rational PurifyPlus for Linux, the user is confronted by two
interactive dialogs. These dialogs serve to clarify the location of the local GNU
compiler and (if present) local JDK. Only the GNU compiler and JDK specified
within these dialogs will be accessible within PurifyPlus for Linux.

If you would like to make a different GNU compiler or JDK accessible in PurifyPlus
for Linux, you need to rerun these dialogs. From a command prompt, execute the
applicable shell script:

• ConfigureGcc.sh to locate a GCC compiler

18

Product Overview

• ConfigureJavac.sh to locate a JDK

The two shell scripts are located in the following folders:

• <install dir>/releases/PurifyPlusForLinux.v2002R2/bin/intel/linux_redhat

• <install dir>/releases/PurifyPlusForLinux.v2002R2/bin/intel/linux_suse

These shell scripts depend on a properly configured environment. If, for some
reason, your environment is not properly configured (indicated by the interactive
dialogs):

• Set your current directory to the applicable shell script folder mentioned above

• Execute the environment configuration shell script:
. ppluslinuxinit.sh

Once finished, for any existing project within which you would like to use the newly
supported compiler or JVM, you must update the project.

 To update an existing project to use the newly supported compiler or JDK:

1. Open the project in PurifyPlus for Linux.

2. From the Project menu, select Configuration.

3. In the Configurations window, click New.

4. In the New Configuration window, select the newly supported compiler or JDK
in the dropdown list and click OK.

5. In the Configurations window, click Close.

Unified Modeling Language

A sequence diagram is a Unified Modeling Language (UML) diagram that provides a
view of the chronological sequence of messages between instances (objects or
classifier roles) that work together in an interaction or interaction instance. A
sequence diagram consists of a group of instances (represented by lifelines) and the
messages that they exchange during the interaction. You line up instances
participating in the interaction in any order from left to right, and then you position
the messages that they exchange in sequential order from top to bottom. Activations
sometimes appear on the lifelines.

A sequence diagram belongs to an interaction in a collaboration or an interaction
instance in a collaboration instance.

19

Rational PurifyPlus for Linux - User Guide

Model Elements and Relationships in Sequence Diagrams

The UML sequence diagrams produced by the UML/SD Viewer illustrate program
interactions with an emphasis on the chronological order of messages.

Activations

An activation (also known as a focus of control) is a notation that can appear on a
lifeline to indicate the time during which an instance (an actor instance, object, or
classifier role) is active. An active instance is performing an action, such as executing
an operation or a subordinate operation. The top of the activation represents the time
at which the activation begins, and the bottom represents the time at which the
activation ends.

For example, in a sequence diagram for a "Place Online Order" interaction, there are
lifelines for a ":Cart" object and ":Order" object. An "updateTotal" message points
from the ":Order" object to the ":Cart" object. Each lifeline has an activation to indicate
how long it is active because of the "updateTotal" message.

Shape

An activation appears as a thin rectangle on a lifeline. You can stack activations to
indicate nested stack frames in a calling sequence.

Activation Nested Activations

Using Activations

Activations can appear on your sequence diagrams to represent the following:

• On lifelines depicting instances (actors, classifier roles, or objects), an activation
typically appears as the result of a message to indicate the time during which an
instance is active.

• On lifelines involved in complex interactions, nested activations (also known as
stacked activations or nested focuses of control) are displayed to indicate nested
stack frames in a calling sequence, such as those that happen during recursive
calls.

20

Product Overview

• On lifelines depicting concurrent operations, the entire lifeline may appear as an
activation (thin rectangles) instead of dashed lines.

Naming Conventions

An activation is usually identified by the incoming message that initiates it.
However, you may add text labels that identify activations either next to the
activation or in the left margin of the diagram.

Classifier Roles

A classifier role is a model element that describes a specific role played by a classifier
participating in a collaboration without specifying an exact instance of a classifier. A
classifier role is neither a class nor an object. Instead, it is a model element that
specifies the kind of object that must ultimately fulfill the role in the collaboration.
The classifier role limits the kinds of classifier that can be used in the role by
referencing a base classifier. This reference identifies the operations and attributes
that an instance of a classifier will need in order to fulfill its responsibilities in the
collaboration.

Classifier roles are commonly used in collaborations that represent patterns. For
example, a subject-observer pattern may be used in a system. One classifier role
would represent the subject, and one would represent the observer. Each role would
reference a base class that identifies the attributes and operations that are needed to
participate in the subject-observer collaboration. When you use the pattern in the
system, any class that has the specified operations and behaviors can fill the role.

Shape

A classifier role appears as a rectangle. Its name is prefixed with a slash and is not
underlined. In sequence diagrams, a lifeline (a dashed, vertical line) is attached to the
bottom of a classifier role to represent its life over a period of time. For details about
lifelines, see Lifelines.

Classifier Role Classifier Role with Lifeline

Using Classifier Roles
21

Rational PurifyPlus for Linux - User Guide

Classifier roles can appear on a model to represent the following:

• In models depicting role-based interactions, a classifier role represents an
instance in an interaction. Using classifier roles instead of objects can provide two
advantages: First, a class can serve as the base classifier for multiple classifier
roles. Second, instances of a class can realize multiple classifier roles in one or
more collaborations.

• In models depicting patterns, a classifier role specifies the kind of object that must
ultimately fulfill a role in the pattern. The classifier role shows how the object will
participate in the pattern, and its reference to a base class defines the attributes
and operations that are required for participation in the pattern. When the pattern
is used in the model, classes are bound to the collaboration to identify the type of
objects that realize the classifier roles.

The classifier roles in a model are usually contained in a collaboration and usually
appear in sequence diagrams.

Naming Conventions

The name of a classifier role consists of a role name and base class name. You can
omit one of the names. The following table identifies the variations of the naming
convention.

Convention Example Description

/rolename:baseclass /courseOffering:course The courseOffering role is based on the
course class.

/rolename /courseOffering Role name. The base class is hidden or is not
defined.

:baseclass :course Unnamed role based on the course class.

Destruction Markers

A destruction marker (also known as a termination symbol) is a notation that can
appear on a lifeline to indicate that an instance (object or classifier role) has been
destroyed. Usually, the destruction of an object results in the memory occupied by
the data members of the object being freed.

For example, when a customer exits the Web site for an e-commerce application, the
":Cart" object that held information about the customer's activities is destroyed, and
the memory that it used is freed. The destruction of the ":Cart" object can be shown in
a sequence diagram by adding a destruction marker on the ":Cart" object's lifeline.

Shape

22

Product Overview

A destruction marker appears as an X at the end of a lifeline.

Naming Conventions

Destruction markers do not have names.

Lifelines

A lifeline is a notation that represents the existence of an object or classifier role over
a period of time. Lifelines appear only in sequence diagrams, where they show how
each instance (object or classifier role) participates in the interaction.

For example, a "Place Online Order" interaction in an e-commerce application
includes a number of lifelines in a sequence diagram, including lifelines for a ":Cart"
object, ":OnlineOrder" object, and ":CheckoutCart" object. As the interaction is
developed, stimuli are added between the lifelines.

Shape

A lifeline appears as a vertical dashed line in a sequence diagram.

Lifeline for an
Object

Lifeline for a Classifier Role

Using Lifelines

When a classifier role or object appears in a sequence diagram, it will automatically
have a lifeline. Lifelines indicate the following:

23

Rational PurifyPlus for Linux - User Guide

• Creation – If an instance is created during the interaction, its lifeline starts at the
level of the message or stimulus that creates it; otherwise, its lifeline starts at the
top of the diagram to indicate that it existed prior to the interaction.

• Communication – Messages or stimuli between instances are illustrated with
arrows. A message or stimulus is drawn with its end on the lifeline of the instance
that sends it and its arrowhead on the lifeline of the instance that receives it.

• Activity – The time during which an instance is active (either executing an
operation directly or through a subordinate operation) can be shown with
activations.

• Destruction – If an instance is destroyed during the interaction, its lifeline ends at
the level of the message or stimulus that destroys it, and a destruction marker
appears; otherwise, its lifeline extends beyond the final message or stimulus to
indicate that it exists during the entire interaction.

Naming Conventions

A lifeline has the name of an object or classifier role. For details, see Objects or
Classifier Roles.

Messages

A message is a model element that specifies a communication between classifier roles
and usually indicates that an activity will follow. The types of communications that
messages model include calls to operations, signals to classifier roles, the creation of
classifier roles, and the destruction of classifier roles. The receipt of a message is an
instance of an event.

For example, in the observer pattern, the instance that is the subject sends an
"Update" message to instances that are observing it. You can illustrate this behavior
by adding "Subject" and "Observer" classifier roles and then adding an "Update"
message between them.

Shape

A message appears as a line with an arrow. The direction of the arrow indicates the
direction in which the message is sent. In a sequence diagram, messages usually
connect two classifier role lifelines.

24

Product Overview

Message shapes can be adorned with names and sequence numbers.

Types of Messages

Different types of messages can be used to model different flows of control.

Type Shape Description

Procedure Call or
Nested Flow of
Control

 Models either a call to an operation or a call to a nested
flow of control. When calling a nested flow of control,
the system waits for the nested flow of control to
complete before continuing with the outer flow.

Asynchronous Flow of
Control

 Models an asynchronous message between two objects.
The source object sends the message and immediately
continues with the next step.

Return From a
Procedure Call

 Models a return from a call to a procedure. This type of
message can be omitted from diagrams because it is
assumed that every call has a return.

Using Messages

Messages can appear in a sequence diagram to represent the communications
exchanged between classifier roles during dynamic interactions.

Note Both messages and stimuli are supported. Stimuli are added to
collaboration instances, and messages are added to collaborations. For details
about stimuli, see Stimuli.

The messages in a model are usually contained in collaborations and usually appear
in sequence diagrams.

Naming Conventions

Messages can be identified by a name or operation signature.

Type Example Description

Name // Get the Password A name identifies only the name of the message. Simple

25

Rational PurifyPlus for Linux - User Guide

names are often used in diagrams developed during
analysis because the messages are identified by their
responsibilities and not operations. One convention uses
double slashes (//) to indicate that the stimulus name is
not associated with an operation.

Signature getPassword(String) When an operation is assigned to a message, you can
display the operation signature to identify the name of the
operation and its parameters. Signatures are often used in
diagrams developed during design because the provide
the detail that developers need when they code the
design.

Objects

An object is a model element that represents an instance of a class. While a class
represents an abstraction of a concept or thing, an object represents an actual entity.
An object has a well-defined boundary and is meaningful in the application. Objects
have three characteristics: state, behavior, and identity. State is a condition in which
the object may exist, and it usually changes over time. The state is implemented with
a set of attributes. Behavior determines how an object responds to requests from
other objects. Behavior is implemented by a set of operations. Identity makes every
object unique. The unique identity lets you differentiate between multiple instances
of a class if each has the same state.

The behaviors of objects can be modeled in sequence and activity diagrams. In
sequence diagrams, you can display how instances of different classes interact with
each other to accomplish a task. In activity diagrams, you can show how one or more
instances of an object changes states during an activity. For example, an e-commerce
application may include a "Cart" class. An instance of this class that is created for a
customer visit, such as "cart100:Cart." In a sequence diagram, you can illustrate the
stimuli, such as "addItem()," that the "cart100:Cart" object exchanges with other
objects. In an activity diagram, you can illustrate the states of the "cart100:Cart"
object, such as empty or full, during an activity such as a user browsing the online
catalog.

Shape

In sequence and activity diagrams, an object appears as a rectangle with its name
underlined. In sequence diagrams, a lifeline (a dashed, vertical line) is attached to the
bottom of an object to represent the existence of the object over a period of time. For
details about lifelines, see Lifelines.

Object Object with Lifeline

26

Product Overview

There are two notable variations of the object shape. First, active objects appear with
thicker borders than other types of objects. Second, multiobjects appear as two
overlapped rectangles. (These types of objects are defined later in this topic.)

Active Object Multiobject

In addition, the object shape may include adornments for properties, such as
persistence and concurrency. It may display a stereotype with an icon or the display
of the stereotype name in guillemets (« »). Finally, it may show an attribute
compartment. In activity diagrams, an object shape can display the state of the object
under the name.

Types of Objects

The following table identifies three types of objects.

Types of Objects Description

Active Owns a thread of control and may initiate control activity. Processes
and tasks are kinds of active objects.

Passive Holds data, but does not initiate control.

Multiobject Is a collections of object or multiple instances of the same class. It is
commonly used to show that a set of objects interacts with a single
stimulus.

Using Objects

Objects can appear in a sequence diagram to represent concrete and prototypical
instances. A concrete instance represents an actual person or thing in the real world.
For example, a concrete instances of a "Customer" class would represent an actual
customer. A prototypical instance represents an example person or thing. For

27

Rational PurifyPlus for Linux - User Guide

example, a prototypical instance of a "Customer" class would contain the data that a
typical customer would provide.

Naming Conventions

Each object must have a unique name. A full object name includes an object name,
role name, and class name. You may use any combination of these three parts of the
object name. The following table identifies the variations of object names.

Syntax Example Description

object/role:class cart100/storage:cart Named instance (cart100) of the cart class
that is playing the storage role during an
interaction.

object:class cart100:cart Named instance (cart100) of the cart class.

/role:class /storage:cart Anonymous instance of the cart class
playing the storage role in an interaction.

object/role cart/storage An object named cart playing the storage
role. This object is either an object that is
hiding the name of the class or an instance
that is not associated with a class.

object cart100 An object named cart100. This object is
either an instance that is hiding the name
of the class or an instance that is not
associated with a class.

/role /storage An anonymous instance playing the
storage role. This object is either an
instance that is hiding the name of the
object and class or an instance that is not
associated with an object or class.

:class :cart Anonymous instance of the customer class.

Stimuli

A stimulus is a model element that represents a communication between objects in a
sequence diagram and usually indicates that an activity will follow. The types of
communications that stimuli model include calls to operations, signals to objects, the
creation of objects, and the destruction of objects. The receipt of a stimulus is an
instance of an event.

Shape

28

Product Overview

A stimulus appears as a line with an arrow. The direction of the arrow indicates the
direction in which the stimulus is sent. In a sequence diagram, a stimulus usually
connects two object lifelines.

Stimulus shapes can be adorned with names and sequence numbers.

Types of Stimuli

Different types of stimuli can be used to model different flows of control.

Type Shape Description

Procedure Call or
Nested Flow of
Control

 Models either a call to an operation or a call to a nested
flow of control. When calling a nested flow of control,
the system waits for the nested flow of control to
complete before continuing with the outer flow.

Asynchronous Flow of
Control

 Models an asynchronous stimulus between two objects.
The source object sends the stimulus and immediately
continues with the next step.

Return from a
Procedure Call

 Models a return from a call to a procedure. This type of
stimulus can be omitted from diagrams because it is
assumed that every call has a return.

Naming Conventions

Stimuli can have either names or signatures.

Type Example Description

Name // Get the Password A name identifies only the name of the stimulus.
Simple names are often used in diagrams
developed during analysis because the stimuli are
identified by their responsibilities and not by their
operations. One convention uses double slashes
(//) to indicate that the stimulus name is not
associated with an operation.

Signature getPassword(String) When an operation is assigned to a stimulus, you
can display the operation signature to identify the

29

Rational PurifyPlus for Linux - User Guide

name of the operation and its parameters.
Signatures are often used in diagrams developed
during design because the provide the detail that
developers need when they code the design.

Actions

An action is represented as shown below:

The action box displays the name of the action.

The action is linked to its source file. In the UML/SD Viewer, click an action to open
the Text Editor at the corresponding line in the source code.

Exceptions

When tracing C++ exceptions, Runtime Tracing locates the throw point of the
exception (the throw keyword in C++) as well as its catch point.

Exceptions are displayed as a slanted red line, as shown in the example below,
generated by Runtime Tracing.

 To jump to the corresponding portion of source code:

1. Click an instance to open the Text Editor at the line in the source code where the
exception is thrown.

30

Product Overview

2. Click the catch exception or end of catch exception notes to open the Text Editor
at the line where the exception is caught.

 To filter an instance out of the UML sequence diagram:

1. Right-click an exception and select Filter instance in the pop-up menu.

Actors

An actor is a model element that describes a role that a user plays when interacting
with the system being modeled. Actors, by definition, are external to the system.
Although an actor typically represents a human user, it can also represent an
organization, system, or machine that interacts with the system. An actor can
correspond to multiple real users, and a single user may play the role of multiple
actors.

Shape

An actor usually appears as a "stick man" shape.

In models depicting software applications, actors represent the users of the system.
Examples include end users, external computer systems, and system administrators.

Naming Conventions

Each actor has a unique name that describes the role the user plays when interacting
with the system.

Loops

Loop detection simplifies UML sequence diagrams by summarizing repeating traces
into a loop symbol.

Note Loops are a Rational extension to UML Sequence Diagrams and are not
supported by the UML standard.

A loop is represented as shown below:

31

Rational PurifyPlus for Linux - User Guide

A tag displays the name of the loop and the number of executions.

The loop is linked to its source file. In the UML/SD Viewer, click a loop to open the
Text Editor at the corresponding line in the source code.

 To configure Runtime Tracing to detect loops:

1. From the Project Explorer, select the highest level node to which you want to
apply the option, such as the Workspace.

2. Right-click the node, and select Settings... from the pop-up menu.

3. In the Configuration Settings dialog, select the Runtime Tracing node, and Trace
Control.

4. From the options box, set the Automatic Loop Detection to Yes.

5. Click OK.

Synchronizations

Synchronizations are an extension to the UML standard that only apply when using
the split trace file feature of Runtime Tracing. They are used to show that all instance
lifelines are synchronized at the beginning and end of each split TDF file.

Shape

A synchronization is represented as shown below:

The synchronization box displays the name of the synchronization.

The synchronization is linked to its source file. In the UML/SD Viewer, click a
synchronization to open the Text Editor at the corresponding line in the source code.

32

Product Overview

When the Split Trace capability is enabled, the UML/SD Viewer displays the list of
TDF files generated in the UML/SD Viewer toolbar.

At the beginning of each diagram, before the Synchronization, the Viewer displays
the context of the previous file.

Another synchronization is displayed at the end of each file, to insure that all
instance lifelines are together before viewing the next file.

Notes

Notes appear as shown below and are centered on, and attached to, the element to
which they apply:

sequence diagram notes can be associated to messages and instances.

The note is linked to its source file. In the UML/SD Viewer, click a note to open the
Text Editor at the corresponding line in the source code.

33

Runtime Analysis

The runtime analysis feature set of PurifyPlus for Linux allows you to closely
monitor the behavior of your application for debugging and validation purposes.
Each feature instruments the source code providing real-time analysis of the
application while it is running, either on a native or embedded target platform.

Using Runtime Analysis Features

The runtime analysis features of Rational PurifyPlus for Linux allow you to closely
monitor the behavior of your application for debugging and validation purposes.

These features use Rational's unique SCI technology to instrument the source code
providing real-time analysis of the application while it is running, either on a native
or embedded target platform.

• Memory Profiling analyzes memory usage and detects memory leaks

• Performance Profiling provides performance load monitoring

• Code Coverage performs code coverage analysis

• Runtime Tracing draws a real-time UML Sequence Diagram of your application

Note SCI instrumentation of the source code generates a certain amount of
overhead, which can impact application size and performance. See Source
Code Insertion Technology for more information.

Here is a basic rundown of the main steps to using the runtime analysis feature set.

 How to use the runtime analysis features:

1. From the Start page, set up a new project. This can be done automatically with
the New Project Wizard.

2. Follow the Activity Wizard to add your application source files to the
workspace.

3. Select the source files under analysis in the wizard to create the application
node.

35

Rational PurifyPlus for Linux - User Guide

4. Select the runtime analysis features to be applied to the application in the Build
options.

5. Use the Project Explorer to set up the test campaign and add any additional
runtime analysis or test nodes.

6. Run the application node to build and execute the instrumented application.

7. View and analyze the generated analysis and profiling reports.

Code Coverage

Source-code coverage consists of identifying which portions of a program are
executed or not during a given test case. Source-code coverage is recognized as one of
the most effective ways of assessing the efficiency of the test cases applied to a
software application.

The Code Coverage feature brings efficient, easy-to-use robust coverage technologies
to real-time embedded systems. Code Coverage provides a completely automated
and proven solution for C, C++ and Java software coverage based on optimized
source-code instrumentation.

How Code Coverage Works

When an application node is executed, the source code is instrumented by the
Instrumentor (attolcpp, attolcc1 or javi). The resulting source code is then executed
and the Code Coverage feature outputs an .fdc and a dynamic .tio file.

These files can be viewed and controlled from the PurifyPlus for Linux GUI. Both the
.fdc and .tio files need to be opened simultaneously to view the report.

Of course, these steps are mostly transparent to the user when the application node is
executed in the PurifyPlus for Linux GUI.

Information Modes

The Information Mode is the method used by Code Coverage to code the trace
output. This has a direct impact of the size of the trace file as well as on CPU
overhead.

You can change the information mode used by Code Coverage in the Coverage Type
settings. There are three information modes:

• Default mode

• Compact mode

• Hit Count mode

36

Runtime Analysis

Default Mode

When using Default or Pass mode, each branch generates one byte of memory. This
offers the best compromise between code size and speed overhead.

Compact Mode

The Compact mode is functionally equivalent to Pass mode, except that each branch
needs only one bit of storage instead of one byte. This implies a smaller requirement
for data storage in memory, but produces a noticeable increase in code size (shift/bits
masks) and execution time.

Hit Count Mode

In Hit Count mode, instead of storing a Boolean value indicating coverage of the
branch, a specific count is maintained of the number of times each branch is executed.
This information is displayed in the Code Coverage report.

Count totals are given for each branch, for all trace files transferred to the report
generator as parameters.

In the Code Coverage report, branches that have never been executed are highlighted
with asterisk '*' characters.

The maximum count in the report generator depends on the machine on which tests
are executed. If this maximum count is reached, the report signals it with a Maximum
reached message.

Coverage Types

The Code Coverage feature provides the capability of reporting of various source
code units and branches, depending on the coverage type selected.

By default, Code Coverage implements full coverage analysis, meaning that all
coverage types are instrumented by source code insertion (SCI). However, in some
cases, you might want to reduce the scope of the Code Coverage report, such as to
reduce the overhead generated by SCI for example.

Branches

When referring to the Code Coverage feature, a branch denotes a generic unit of
enumeration. For each branch, you specify the coverage type. Code Coverage
instruments each branch when you compile the source under test.

Coverage Levels

The following table provides details of each coverage type as used in each language
supported by the product

37

Rational PurifyPlus for Linux - User Guide

Coverage Level Languages

Block Coverage C C++ Java

Call Coverage C

Condition Coverage C

Function, Unit or Method
Coverage

C C++ Java

Link Files

Templates C++

Additional statements C C++ Java

 To select a coverage level:

1. Right-click the application or test node concerned by the Code Coverage report.

2. From the pop-up menu, select Settings.

3. In the Configuration list, expand Code Coverage and select Instrumentation
Control.

4. Select or clear the coverage levels as required.

5. Click OK.

C Coverage

Block Coverage

When running the Code Coverage feature on C source code, PurifyPlus for Linux can
provide the following coverage types for code blocks:

• Statement Blocks

• Statement Blocks and Decisions

• Statement Blocks, Decisions, and Loops

Statement Blocks (or Simple Blocks)

Simple blocks are the C function main blocks, blocks introduced by decision
instructions:

• THEN and ELSE FOR IF

• FOR, WHILE and DO ... WHILE blocks

38

Runtime Analysis

• non-empty blocks introduced by switch case or default statements

• true and false outcomes of ternary expressions (<expr> ? <expr> : <expr>)

• blocks following a potentially terminal statement.
/* Power_of_10 Function */ /* -
block */
int power_of_10 (int value, int max)
{
 int retval = value, i;
 if (value == 0) return 0; /* potentially terminal statement
*/
 for (i = 0; i < 10; i++) /* start of a sequence block */
 {
 retval = (max / 10) < retval ? retval * 10 : max;
 }
 return retval;
} /* The power_of_10 function has 6 blocks */
/* Near_color function */
ColorType near_color (ColorType color)
{
 switch (color)
 {
 case WHITE :
 case LIGHT_GRAY :
 return WHITE;
 case RED :
 case PINK :
 case BURGUNDY :
 return RED;
 /* etc ... */
 }
} /* The near_color function has at least 3 simple blocks */

Each simple block is a branch. Every C function contains at least one simple block
corresponding to its main body.

Decisions (Implicit Blocks)

Implicit blocks are introduced by an IF statement without an ELSE or a SWITCH
statement without a DEFAULT.

/* Power_of_10 function */
/* -block=decision */
int power_of_10 (int value, int max)
{

int retval = value, i;
if (value == 0) return 0; else ;
for (i =0;i <10;i++)

{
retval = (max / 10) < retval ? retval * 10 : max;
}

return retval;
}
/* Near_color function */
ColorType near_color (ColorType color)
{

switch (color)

39

Rational PurifyPlus for Linux - User Guide

{
case WHITE :
case LIGHT_GRAY :
return WHITE;
case RED :
case PINK :
case BURGUNDY :
return RED;
/* etc ... with no default */
default : ;
}

}

Each implicit block represents a branch.

Because the sum of all possible decision paths includes implicit blocks as well as
statement blocks, reports provide the total number of simple and implicit blocks as a
figure and as a percentage. Code Coverage places this information in the Decisions
report.

Loops (Logical Blocks)

A typical FOR or WHILE loop can reach three different conditions:

• The statement block contained within the loop is executed zero times, therefore
the output condition is True from the start

• The statement block is executed exactly once, the output condition is Fa se, then
True the next time

l

l

l

• The statement block is executed at least twice. (The output condition is Fa se at
least twice, and becomes True at the end)

In a DO...WHILE loop, because the output condition is tested after the block has been
executed, two further branches are created:

• The statement block is executed exactly once. The output is condition True the
first time.

• The statement block is executed at least twice. (The output condition is Fa se at
least once, then true at the end)

In this example, the function try_five_times () must run several times to completely
cover the three logical blocks included in the WHILE loop:

/* Try_five_times function */
/* -block=logical */
int try_five_times (void)
{
int result,i =0;
/*try ()is afunction whose return value depends
on the availability of a system resource, for example */
while (((result = try ())!=0)&&
(++i <5));
return result;

40

Runtime Analysis

} /* 3 logical blocks */

Call Coverage

When analyzing C source code, Code Coverage can provide coverage of function or
procedure calls.

Code Coverage defines as many branches as it encounters function calls.

Procedure calls are made during program execution.

This type of coverage ensures that all the call interfaces can be shown to have been
exercised for each C function. This may be a pass or failure criterion in software
integration test phases.

You can use the -EXCALL option to select C functions whose calls you do not want to
instrument, such as C library functions for example.

Example

/* Evaluate function */
/* -call */
int evaluate (NodeTypeP node)
{
 if (node == (NodeTypeP)0) return 0;
 switch (node->Type)
 {
 int tmp;
 case NUMBER :
 return node->Value;
 case IDENTIFIER :
 return current value (node->Name);
 case ASSIGN :
 set (node->Child->Name,
 tmp = evaluate (node->Child->Sibling));
 return tmp;
 case ADD :
 return evaluate (node->Child) +
 evaluate (node->Child->Sibling);
 case SUBTRACT :
 return evaluate (node->Child) -
 evaluate (node->Child->Sibling);
 case MULTIPLY :
 return evaluate (node->Child) *
 evaluate (node->Child->Sibling);
 case DIVIDE :
 tmp = evaluate (node->Child->Sibling);
 if (tmp == 0) fatal error ("Division by zero");
 else return evaluate (node->Child) / tmp;
 }
} /* There are twelve calls in the evaluate function */

41

Rational PurifyPlus for Linux - User Guide

Condition Coverage

When analyzing C source code, PurifyPlus for Linux can provide the following
condition coverage:

• Basic Coverage

• Forced Coverage

Basic Conditions

Conditions are operands of either || or && operators wherever they appear in the
body of a C function. They are also if and ternary expressions, tests for for, while, and
do/while statements even if these expressions do not contain || or && operators.
Two branches are involved in each condition: the sub-condition being true and the
sub-condition being false.

Basic conditions also enable different case or default (which could be implicit) in a
switch to be distinguished even when they invoke the same simple block. A basic
condition is associated with every case and default (written or not).

/* Power_of_10 function */

/* -cond */
int power_of_10 (int value, int max)
{
 int result = value, i;
 if (value == 0) return 0;
 for (i = 0; i < 10; i++)
 {
 result = max > 0 && (max / value) < result ?
 result * value :
 max;
 }
 return result ;
} /* There are 4*2 basic conditions in this function */
/* Near_color function */
ColorType near_color (ColorType color)
{
 switch (color)
 {
 case WHITE :
 case LIGHT_GRAY :
 return WHITE;
 case RED :
 case PINK :
 case BURGUNDY :
 return RED;
 /* etc ... */
 }
} /* There are at least 5 basic conditions here */

Two branches are enumerated for each condition, and one per case or default.

Forced Conditions

42

Runtime Analysis

Forced conditions are multiple conditions in which any occurrence of the | | and &&
operators has been replaced in the code with | and & binary operators. Such a
replacement done by the Instrumentor enforces the evaluation of the right operands.
You can use this coverage type after modified conditions have been reached to be
sure that every basic condition has been evaluated. With this coverage type, you can
be sure that only the considered basic condition changed between the two tests.

/* User source code */ /* -
cond=forceevaluation */
 if ((a && b) || c) ...
/* Replaced with the Code Coverage feature with : */
 if ((a & b) | c) ...
/* Note : Operands evaluation results are enforced to one if
different from 0 */

Note This replacement modifies the code semantics. You need to verify that using
this coverage type does not modify the behavior of the software.

int f (MyStruct *A)
{
 if (A && A->value > 0) /* the evaluation of A-
>value will cause a program error using
 forced conditions if A
pointer
 is null */
 {
 A->value -= 1;
 }
}

Modified Conditions

A modified condition is defined for each basic condition enclosed in a composition of
| | or && operators. It aims to prove that this condition affects the result of the
enclosing composition. To do that, find a subset of values affected by the other
conditions, for example, if the value of this condition changes, the result of the entire
expression changes.

Because compound conditions list all possible cases, you must find the two cases that
can result in changes to the entire expression. The modified condition is covered only
if the two compound conditions are covered.

/* state_control function */
int state_control (void)
{
 if (((flag & 0x01) &&
 (instances_number > 10)) ||
 (flag & 0x04))
 return VALID_STATE;
 else
 return INVALID_STATE;
} /* There are 3 basic conditions, 5 compound conditions
 and 3 modified conditions :

43

Rational PurifyPlus for Linux - User Guide

 flag & 0x01 : TTX=T and FXF=F
 nb_instances > 10 : TTX=T and TFF=F
 flag & 0x04 : TFT=T and TFF=F, or FXT=T and FXF=F
 4 test cases are enough to cover all those modified
 conditions :
 TTX=T
 FXF=F
 TFF=F
 TFT=T or FXT=T
 */

Note You can associate a modified condition with more than one case, as shown in
this example for flag & 0x04. In this example, the modified condition is covered if the
two compound conditions of at least one of these cases are covered.

Code Coverage calculates matching cases for each modified condition.

The same number of modified conditions as Boolean basic conditions appears in a
composition of | | and && operators.

Multiple Conditions

A multiple (or compound) condition is one of all the available cases for the || and
&& logical operator's composition, whenever it appears in a C function. It is defined
by the simultaneous values of the enclosed Boolean basic conditions.

A multiple condition is noted with a set of T, F, or X letters. These mean that the
corresponding basic condition evaluated to true, false, or was not evaluated,
respectively. Remember that the right operand of a || or && logical operator is not
evaluated if the evaluation of the left operand determines the result of the entire
expression.

/* state_control function */
/* -cond=compound */
int state_control (void)
{
 if (((flag & 0x01) &&
 (instances_number > 10)) ||
 (flag & 0x04))
 return VALID_STATE;
 else
 return INVALID_STATE;
} /* There are 3 basic conditions
 and 5 compound conditions :
 TTX=T <=> ((T && T) || X) = T
 TFT=T
 TFF=F
 FXT=T
 FXF=F
 */

Code Coverage calculates every available case for each composition.

The number of enumerated branches is the number of distinct available cases for each
composition of || or && operators.

44

Runtime Analysis

Function Coverage

When analyzing C source code, PurifyPlus for Linux can provide the following
function coverage:

• Procedure Entries

• Procedure Entries and Exits

Procedure Entries

Inputs identify the C functions that are executed.
/* Factorial function */
/* -proc */
int factorial (int a)
{
 if (a > 0) return a * factorial (a - 1);
 else return 1;
}

One branch is defined per C function.

Procedure Entries and Exits (Returns and Terminal Statements)

These include the standard output (if coverable), and all return instructions, exits,
and other terminal instructions that are instrumented, as well as the input.

/* Factorial function */
/* -proc=ret */
int factorial (int a)
{
 if (a > 0) return a * factorial (a - 1);
 else return 1;
} /* standard output cannot be covered */
/* Divide function */
void divide (int a, int b, int *c)
{
 if (b == 0)
 {
 fprintf (stderr, "Division by zero\n");
 exit (1);
 };
 if (b == 1)
 {
 *c = a;
 return;
 };
 *c = a / b;
}

At least two branches are defined per C function.

The input is always enumerated, as is the output if it can be covered. If it cannot, it is
preceded by a terminal instruction involving returns or an exit.

45

Rational PurifyPlus for Linux - User Guide

In addition to the terminal instructions provided in the standard definition file, you
can define other terminal instructions using the pragma attol exit_instr.

Additional Statements

Terminal Statements

A C statement is term nal if it transfers program control out of sequence (RETURN,
GOTO, BREAK, CONTINUE), or stops the execution (EXIT).

i

-

By extension, a decision statement (IF or SWITCH) is terminal if all branches are
terminal; that is if the non-empty THEN ... ELSE, CASE, and DEFAULT blocks all
contain terminal statements. An IF statement without an ELSE and a SWITCH
statement without a DEFAULT are never terminal, because their empty blocks
necessarily continue program control in sequence.

Potentially Terminal Statements

The following decision statements are potentially terminal if they contain at least one
statement that transfers program control out of their sequence (RETURN, GOTO,
BREAK, CONTINUE), or that terminates the execution (EXIT):

• IF without an ELSE

• SWITCH

• FOR

• WHILE or DO ... WHILE

Non-coverable Statements in C

Some C statements are considered non coverable if they follow a terminal
instruction, a CONTINUE, or a BREAK, and are not a GOTO label. Code Coverage
detects non-coverable statements during instrumentation and produces a warning
message that specifies the source file and line location of each non-coverable
statement.

Note User functions whose purpose is to terminate execution unconditionally are
not evaluated. Furthermore, Code Coverage does not statically analyze exit
conditions for loops to check whether they are infinite. As a result, FOR ... WHILE
and DO ... WHILE loops are always assumed to be non-terminal, able to resume
program control in sequence.

C++ Coverage

46

Runtime Analysis

Block Code Coverage

When analyzing C++ source code, Code Coverage can provide the following block
coverage types:

• Statement Blocks

• Statement Blocks and Decisions

• Statement Blocks, Decisions, and Loops

Statement Blocks

Statement blocks are the C++ function or method main blocks, blocks introduced by
decision instructions:

• THEN and ELSE FOR IF, WHILE and DO ... WHILE blocks

• non-empty blocks introduced by SWITCH CASE or DEFAULT statements

• true and false outcomes of ternary expressions (<expr> ? <expr> : <expr>)

• TRY blocks and any associated catch handler

• blocks following a potentially terminal statement.
int main () /* -
BLOCK */
{
 try {
 if (0)
 {
 func ("Hello");
 }
 else
 {
 throw UnLucky ();
 }
 }
 catch (Overflow & o) {
 cout << o.String << '\n';
 }
 catch (UnLucky & u) {
 throw u;
 } /* potentially terminal statement */
 return 0; /* sequence block */
}

Each simple block is a branch. Every C++ function and method contains at least one
simple block corresponding to its main body.

Decisions (Implicit Blocks)

Implicit blocks are introduced by IF statements without an ELSE statement, and a
SWITCH statements without a DEFAULT statement.

/* Power_of_10 function */

47

Rational PurifyPlus for Linux - User Guide

/* -BLOCK=DECISION or -BLOCK=IMPLICIT */
int power_of_10 (int value, int max)
{
 int retval = value, i;
 if (value == 0) return 0; else ;
 for (i = 0; i < 10; i++)
 {
 retval = (max / 10) < retval ? retval * 10 : max;
 }
 return retval;
}
/* Near_color function */
ColorType near_color (ColorType color)
{
 switch (color)
 {
 case WHITE :
 case LIGHT_GRAY :
 return WHITE;
 case RED :
 case PINK :
 case BURGUNDY :
 return RED;
 /* etc ... with no default */
 default : ;
 }
}

Each implicit block represents a branch.

Since the sum of all possible decision paths includes implicit blocks as well as simple
blocks, reports provide the total number of simple and implicit blocks as a figure and
a percentage after the term decisions.

Loops (Logical Blocks)

Three branches are created in a for or while loop:

• The first branch is the simple block contained within the loop, and that is
executed zero times (the entry condition is false from the start).

• The second branch is the simple block executed exactly once (entry condition
true, then false the next time).

• The third branch is the simple block executed at least twice (entry condition true
at least twice, and false at the end).

Two branches are created in a DO/WHILE loop, as the output condition is tested
after the block has been executed:

• The first branch is the simple block executed exactly once (output condition true
the first time).

• The second branch is the simple block executed at least twice (output condition
false at least once, then true at the end).
/* myClass::tryFiveTimes method */ /* -

48

Runtime Analysis

BLOCK=LOGICAL */
int myClass::tryFiveTimes ()
{
 int result, i = 0;
 /* letsgo () is a function whose return value depends
 on the availability of a system resource, for example */
 while (((result = letsgo ()) != 0) &&
 (++i < 5));
 return result;
} /* 3 logical blocks */

You need to execute the method tryFiveTimes () several times to completely cover
the three logical blocks included in the while loop.

Method Code Coverage

Inputs to Procedures

Inputs identify the C++ methods executed.
/* Vector::getCoord() method */ /* -PROC
*/
int Vector::getCoord (int index)
{
if (index >= 0 && index < size) return Values[index];
else return -1;
}

One branch per C++ method is defined.

Procedure Inputs, Outputs and Returns, and Terminal Instructions

These include the standard output (if coverable), all return instructions, and calls to
exit(), abort(), or

terminate(), as well as the input.
/* Vector::getCoord() method */ /* -PROC=RET */
int Vector::getCoord (int index)
{
if (index >= 0 && index < size) return Values[index];
else return -1;
}
/* Divide function */
void divide (int a, int b, int *c)
{
if (b ==0)
{
fprintf (stderr, "Division by zero\n");
exit (1);
};
if (b ==1)
{
*c =a;
return;
};
*c =a /b;

49

Rational PurifyPlus for Linux - User Guide

}

At least two branches per C++ method are defined. The input is always enumerated,
as is the output if it can be covered. If it cannot, it is preceded by a terminal
instruction involving returns or by a call to exit(), abort(), or terminate().

Potentially Terminal Statements

The following decision statements are potentially terminal if they contain at least one
statement that transfers program control out of its sequence (RETURN, THROW,
GOTO, BREAK, CONTINUE) or that terminates the execution (EXIT).

• IF without an ELSE

• SWITCH, FOR

• WHILE or DO...WHILE

Template Instrumentation

Code Coverage performs the instrumentation of templates, functions, and methods
of template classes, considering that all instances share their branches. The number of
branches computed by the feature is independent of the number of instances for this
template. All instances will cover the same once-defined branches in the template
code.

Files containing template definitions implicitly included by the compiler (no specific
compilation command is required for such source files) are also instrumented by the
Code Coverage feature and present in the instrumented files where they are needed.

For some compilers, you must specifically take care of certain templates (for example,
static or external linkage). You must verify if your Code Coverage Runtime
installation contains a file named templates.txt and, if it does, read that file carefully.

• To instrument an application based upon Rogue Wave libraries , you must use
the -DRW_COMPILE_INSTANTIATE compilation flag that suppresses the
implicit include mechanism in the header files. (Corresponding source files are
so included by pre-processing.)

• To instrument an application based upon ObjectSpace C++ Component Series ,
you must use the -DOS_NO_AUTO_INSTANTIATE compilation flag that
suppresses the implicit include mechanism in the header files. (Corresponding
source files are so included by pre-processing.)

• Any method (even unused ones) of an instantiated template class is analyzed
and instrumented by the Instrumentor. Some compilers do not try to analyze
such unused methods. It is possible that some of these methods are not fully
compliant with C++ standards. For example, a template class with a formal
class template argument named T can contain a compare method that uses the

50

Runtime Analysis

== operator of the T class. If the C class used for T at instantiation time does not
define an == operator, and if the compare method is never used, compilation
succeeds but instrumentation fails. In such a situation, you can declare an ==
operator for the C class or use the -instantiationmode=used Instrumentor
option.

Additional Statements

Non-coverable Statements

A C++ statement is non-coverable if the statement can never possibly be executed.
Code Coverage detects non-coverable statements during instrumentation and
produces a warning message that specifies the source file and line location of each
non-coverable statement.

Java Coverage

Block Coverage

When analyzing Java source code, Code Coverage can provide the following block
coverage:

• Statement Blocks

• Statement Blocks and Decisions

• Statement Blocks, Decisions, and Loops

Statement Blocks

Statement blocks are the Java method blocks, blocks introduced by control
instructions:

• THEN for IF and ELSE for IF, WHILE and DO ... WHILE blocks

• non-empty blocks introduced by SWITCH CASE or DEFAULT statements

• true and false outcomes of ternary expressions (<expr> ? <expr> : <expr>)

• TRY blocks and any associated catch handler

• blocks following a potentially terminal statement.

Example
public class StatementBlocks
{
 public static void func(String _message)
 throws UnsupportedOperationException
 {
 throw new UnsupportedOperationException(_message);
 }

51

Rational PurifyPlus for Linux - User Guide

 public static void main(String[] args)
 throws Exception
 {
 try {
 if (false)
 {
 func("Hello");
 }
 else
 {
 throw new Exception("bad luck");
 }
 }
 catch (UnsupportedOperationException _E)
 {
 System.out.println(_E.toString());
 }
 catch (Exception _E)
 {
 System.out.println(_E.toString());
 throw _E ;
 } //potentially terminal statement
 return ; //sequence block
 }
}

Each simple block is a branch. Every Java method contains at least one simple block
corresponding to its main body.

Decisions (Implicit Blocks)

Implicit blocks are introduced by IF statements without an ELSE statement, and a
SWITCH statement without a DEFAULT statement.

Example
public class MathOp
{
 static final int WHITE=0;
 static final int LIGHTGRAY=1;
 static final int RED=2;
 static final int PINK=3;
 static final int BLUE=4;
 static final int GREEN=5;
 // power of 10
 public static int powerOf10(int _value, int _max)
 {
 int result = _value, i;
 if(_value==0) return 0; //implicit else
 for(i = 0; i < 10; i++)
 {
 result = (_max / 10) < result ? 10*result : _max ;
 }
 return result;
 }
 // Near color function
 int nearColor(int _color)
 {

52

Runtime Analysis

 switch(_color)
 {
 case WHITE:
 case LIGHTGRAY:
 return WHITE ;
 case RED:
 case PINK:
 return RED;
 //implicit default:
 }
 return _color ;
 }
}

Each implicit block represents a branch.

Since the sum of all possible decision paths includes implicit blocks as well as simple
blocks, reports provide the total number of simple and implicit blocks as a figure and
a percentage after the term decisions.

Loops (Logical Blocks)

Three branches are created in a FOR or WHILE loop:

• The first branch is the simple block contained within the loop, and that is
executed zero times (the entry condition is false from the start).

• The second branch is the simple block executed exactly once (entry condition
true, then false the next time).

• The third branch is the simple block executed at least twice (entry condition true
at least twice, and false at the end).

Two branches are created in a DO/WHILE loop, as the output condition is tested
after the block has been executed:

• The first branch is the simple block executed exactly once (output condition
false the first time).

• The second branch is the simple block executed at least twice (output condition
false at least once, then true at the end).

Example
public class LogicalBlocks
{
 public static int tryFiveTimes()
 {
 int result, i=0;
 while (((result=resourcesAvailable())<= 0)
 && (++i < 5));
 // while define 3 logical blocks
 return result;
 }
 public static int resourcesAvailable()
 {

53

Rational PurifyPlus for Linux - User Guide

 return (_free_resources_++);
 }

 public static int _free_resources_=0;
 public static void main(String[] argv)
 {
 //first call: '0 loop' block is reach
 _free_resources_=1;
 tryFiveTimes();
 //second call: '1 loop' blocks are reach
 _free_resources_=0;
 tryFiveTimes();
 //third call: '2 loops or more' blocks are reach
 _free_resources_=-10;
 tryFiveTimes();
 }
}

Method Coverage

Inputs to Procedures

Inputs identify the Java methods executed.

Example
public class Inputs
{
 public static int method()
 {
 return 5;
 }
 public static void main(String[] argv)
 {
 System.out.println("Value:"+method());
 }
}

One branch per Java method is defined.

Procedure Inputs, Outputs and Returns, and Terminal Instructions

These include the standard output (if coverable), all return instructions, and calls to
exit(), abort(), or terminate(), as well as the input.

Example
public class InputsOutputsAndReturn
{
 public static void method0(int _selector)
 {
 if (_selector < 0)
 {
 return ;
 }
 }
 public static int method1(int _selector)
 {

54

Runtime Analysis

 if(_selector < 0) return 0;
 switch(_selector)
 {
 case 1: return 0;
 case 2: break;
 case 3: case 4: case 5: return 1;
 }
 return (_selector/2);
 }
 public static void main(String[] argv)
 {
 method0(3);
 System.out.println("Value:"+method1(5));
 System.exit(0);
 }
}

At least two branches per Java method are defined. The input is always enumerated,
as is the output if it can be covered.

Potentially Terminal Statements

The following decision statements are potentially terminal if they contain at least one
statement that transfers program control out of its sequence (RETURN, THROW,
GOTO, BREAK, CONTINUE) or that terminates the execution (EXIT).

• IF without an ELSE

• SWITCH, FOR

• WHILE or DO...WHILE

Additional Statements

Non-coverable Statements in Java

A Java statement is non coverable if the statement can never possibly be executed.
Code Coverage detects non-coverable statements during instrumentation and
produces an error message that specifies the source file and line location of each non-
coverable statement.

-

Code Coverage Viewer

The Code Coverage Viewer allows you to view code coverage reports generated by
the Code Coverage feature. Select a tab at the top of the Code Coverage Viewer
window to select the type of report:

• A Source Report, showing the source code under analysis, highlighted with the
actual coverage information.

• A Rates Report, providing detailed coverage rates for each activated coverage
type.

55

Rational PurifyPlus for Linux - User Guide

You can use the Report Explorer to navigate through the report. Click a source code
component in the Report Explorer to go to the corresponding line in the Report
Viewer.

You can jump directly to the next or previous Uncovered line in the Source report by
using the Next Uncovered Line or Previous Uncovered Line buttons in the Code
Coverage feature bar.

When viewing a Source coverage report, the Code Coverage Viewer provides several
additional viewing features for refined code coverage analysis.

 To open a Code Coverage report:

1. Right-click a previously executed application node

2. If a Code Coverage report was generated during execution of the node, select
View Report and then Code Coverage.

Coverage Types

Depending on the language selected, the Code Coverage feature offers (see Coverage
Types for more information):

• Function or Method code coverage: select between function Entries, Entries and
exits, or None.

• Call code coverage: select Yes or No to toggle call coverage for C.

• Block code coverage: select the desired block coverage method.

• Condition code coverage: select condition coverage for C.

Please refer to the related topics for details on using each coverage type with each
language.

Any of the Code Coverage types selected for instrumentation can be filtered out in
the Code Coverage report stage if necessary.

 To filter coverage types from the report:

1. From the Code Coverage menu, select Coverage Type.

2. Toggle each coverage type in the menu.

Alternatively, you can filter out coverage types from the Code Coverage toolbar by
toggling the Code Coverage type filter buttons.

Reloading a Report

If a Code Coverage report has been updated since the moment you have opened it in
the Code Coverage Viewer, you can use the Reload command to refresh the display:

56

Runtime Analysis

 To reload a report:

1. From the Code Coverage menu, select Reload.

Resetting a Report

When you run a test or application node several times, the Code Coverage results are
appended to the existing report. The Reset command clears previous Code Coverage
results and starts a new report.

 To reset a report:

1. From the Code Coverage menu, select Reset.

Exporting a Report to HTML

Code Coverage results can be exported to an HTML file.

 To export results to an HTML file:

1. From the File menu, select Export.

Source Report

You can use the standards keys (arrow keys, home, end, etc.) to move about and to
select the source code.

Hypertext Links

The Source report provides hypertext navigation throughout the source code:

• Click a plain underlined function call to jump to the definition of the function.

• Click a dashed underlined text to view additional coverage information in a
pop-up window.

• Right-click any line of code and select Edit Source to open the source file in the
Text Editor at the selected line of code.

Macro Expansion

Certain macro-calls are preceded with a magnifying glass icon.

Click the magnifying glass icon to expand the macro in a pop-up window with the
usual Code Coverage color codes.

Hit Count

The Hit Count tool-tip is a special capability that displays the number of times that a
selected branch was covered.

57

Rational PurifyPlus for Linux - User Guide

Hit Count is only available when Test-by-Test analysis is disabled and when the Hit
Count option has been enabled for the selected Configuration.

 To activate the Hit Count tool-tip:

1. In the Code Coverage Viewer window, select the Source tab.

2. From the Code Coverage menu select Hit. The mouse cursor changes shape.

3. In the Code Coverage Viewer window, click a portion of covered source code to
display the Hit Count tool-tip.

Cross Reference

The Cross Reference tool-tip displays the name of tests that executed a selected
branch.

Cross Reference is only available in Test-by-Test mode.

 To activate the Cross Reference tool-tip:

1. In the Code Coverage Viewer window, select the Source tab.

2. From the Code Coverage menu select Cross Reference. The mouse cursor
changes shape.

3. In the Code Coverage Viewer window, click a portion of covered source code to
display the Cross Reference tool-tip.

Comment

You can add a short comment to the generated Code Coverage report by using the
Comment option in the Misc. Options Settings for Code Coverage. This can be useful
to distinguish different reports generated with different Configurations.

Comments are displayed as a magnifying glass symbol at the top of the source code
report. Click the magnifying glass icon to display the comment.

Rates Report

From the Code Coverage Viewer window, select the Rates tab to view the coverage
rate report.

Select a source code component in the Report Explorer to view the coverage rate for
that particular component and the selected coverage type. Select the Root node to
view coverage rates for all current files.

Code Coverage rates are updated dynamically as you navigate through the Report
Explorer and as you select various coverage types.

Code Coverage Toolbar
58

Runtime Analysis

The Code Coverage toolbar is useful for navigating through code coverage reports
generated by the Code Coverage feature of PurifyPlus for Linux .

These buttons are available when the Code Coverage Viewer is active.

• The Previous Link and Next Link buttons allow you to quickly navigate
through the Failed items.

• The Previous Uncovered Line and Next Uncovered Line buttons allow you to
quickly navigate through the Failed items.

• The Failed Tests Only or All Tests button toggles between the two display
modes.

• The F button allows you to hide or show functions

• The E button allows you to hide or show function exits

• The B button allows you to hide or show statement blocks

• The I button allows you to hide or show implicit blocks

• The L button allows you to hide or show loops.

Code Coverage Viewer Preferences

The Preferences dialog box allows you to change the appearance of your Code
Coverage reports.

 To choose Code Coverage report colors and attributes:

1. Select the Code Coverage Viewer node:

• Background color: This allows you to choose a background color for the
Code Coverage Viewer window.

• Stroud Number: This parameter modifies the results of Halstead Metrics.

2. Expand the Code Coverage Viewer node, and select Styles:

• Styles: This list allows you to select one or several styles that you want to
change. To change several styles at the same time, you can perform
multiple selections in the style list.

• Font: This allows you to change the font type and size for the selected
style.

• Text Color: This allows you to change the foreground and background
colors for the selected style. This opens a standard color palette.

• Text Attributes: This allows you to set the selected style to Bold, Italic,
Underlined or Dashed.

59

Rational PurifyPlus for Linux - User Guide

3. Click OK to apply your changes.

Code Coverage Dump Driver

In C and C++, you can dump coverage trace data without using standard I/O
functions by using the Code Coverage Dump Driver API contained in the atcapi.h
file, which is part of the Target Deployment Port

To customize the Code Coverage Dump Driver, open the Target Deployment Port
directory and edit the atcapi.h. Follow the instructions and comments included in the
source code.

Static Metrics

Source code profiling is an extremely important matter when you are planning a test
campaign or for project management purposes. The graphical user interface (GUI)
provides a Metrics Viewer, which provides detailed source code complexity data and
statistics for your C, C++ and Java source code.

Viewing Static Metrics

Use the Metrics Viewer to view static testability measurements of the source files of
your project. Source code metrics are created each time a source file is added to the
project. Metrics are updated each time a file is modified. Static metrics can be
computed each time a node is executed, but can also be calculated without executing
the application.

The metrics are stored in .met metrics files alongside the actual source files.

 To compute static metrics without executing the application:

1. In the Project Browser, select a node.

2. From the Build menu, select Options or click the Build Options button in the
toolbar.

3. Clear all build options. Select only Source compilation and Static metrics.

4. Click the Build toolbar button.

 To open the Metrics Viewer:

1. Right-click a node in the Asset Browser of the Project Explorer.

2. From the pop-up menu, select View Metrics.

60

Runtime Analysis

 To manually open a report file:

1. From the File menu, select Open... or click the Open icon in the main toolbar.

2. In the Type box of the File Selector, select the .met Metrics File file type.

3. Locate and select the metrics files that you want to open.

4. Click OK.

Report Explorer

The Report Explorer displays the scope of the selected nodes, or selected .met metrics
files. Select a node to switch the Metrics Window scope to that of the selected node.

Metrics Window

Depending on the language of the analyzed source code, different pages are
available:

• Root Page - File View: contains generic data for the entire scope

• Root Page - Object View: contains object related generic data for C++ and Java
only

• Component View: displays detailed component-related metrics for each file,
class, method, function, unit, procedure, etc...

The metrics window offer hyperlinks to the actual source code. Click the name of a
source component to open the Text Editor at the corresponding line.

Static Metrics

The Source Code Parsers provide static metrics for the analyzed C and C++ source
code.

File Level Metrics

The scope of the metrics report depends on the selection made in the Report Explorer
window. This can be a file, one or several classes or any other set of source code
components.

• Comment only lines: the number of comment lines that do not contain any
source code

• Comments: the total number of comment lines

• Empty lines: the number of lines with no content

• Source only lines: the number of lines of code that do not contain any comments

61

Rational PurifyPlus for Linux - User Guide

• Source and comment lines: the number of lines containing both source code and
comments

• Lines: the number of lines in the source file

• Comment rate: percentage of comment lines against the total number of lines

• Source lines: the total number of lines of source code and empty lines

File, Class or Package, and Root Level Metrics

These numbers are the sum of metrics measured for all the components of a given
file, class or package.

• Total statements: total number of statement in child nodes

• Maximum statements: the maximum number of statements

• Maximum level: the maximum nesting level

• Maximum V(g): the highest encountered cyclomatic number

• Mean V(g): the average cyclomatic number

• Standard deviation from V(g): deviation from the average V(g)

• Sum of V(g): total V(g) for the scope.

Root Level File View

At the top of the Root page, the Metrics Viewer displays a graph based on Halstead
data.

On the Root page, the scope of the Metrics Viewer is the entire set of nodes below the
Root node.

Halstead Graph

62

Runtime Analysis

The following display modes are available for the Halstead graph:

• VocabularySize

• Volume

• Difficulty

• Testing Effort

• Testing Errors

• Testing Time

See the Halstead Metrics section for more information.

Metrics Summary

The scope of the metrics report depends on the selection made in the Report Explorer
window. This can be a file, one or several classes or any other set of source code
components.

Below the Halstead graph, the Root page displays a metrics summary table, which
lists for for the source code component of the selected scope:

• V(g): provides a complexity estimate of the source code component

• Statements: shows the number of statements within the component

• Nested Levels: shows the highest nesting level reached in the component

• Ext Comp Calls: measures the number of calls to methods defined outside of the
component class (C++ and Java only)

• Ext Var Use: measures the number of uses of attributes defined outside of the
component class (C++ and Java only)

 To select the File View:

1. Select File View in the View box of the Report Explorer.

2. Select the Root node in the Report Explorer to open the Root page.

Note With C source code, File View is the only available view for the Root
page.

 To change the Halstead Graph on the Root page:

1. From the Metrics menu, select Halstead Graph for Root Page.

2. Select another metric to display.

Object View

63

Rational PurifyPlus for Linux - User Guide

Root Level Summary

At the top of the Root page, the Metrics Viewer displays a graph based on the sum
ofdata.

On the Root page, the scope of the Metrics Viewer is the entire set of nodes below the
Root node.

File View is the only available view with C source code. When viewing metrics for
C++ and Java, an Object View is also available.

Two modes are available for the data graph:

• Vocabulary

• Size

• Volume

• Difficulty

• Testing Effort

• Testing Errors

• Testing Time

See the Halstead Metrics section for more information.

Metrics Summary

Below the Halstead graph, the Root page displays a metrics summary table, which
lists for each source code component:

• V(g): provides a complexity estimate of the source code component

64

Runtime Analysis

• Statements: shows the total number of statements within the object

• Nested Levels: shows the highest statement nesting level reached in the object

• Ext Comp Calls: measures the number of calls to components defined outside of
the object

• Ext Var Use: measures the number of uses of variables defined outside of the
object

Note The result of the metrics for a given object is equal to the sum of the
metrics for the methods it contains.

 To select the Object View:

1. Select the Root node in the Report Explorer to open the Root page.

2. Select Object View in the View box of the Report Explorer.

 To switch the object graph mode:

1. From the Metrics menu, select Object Graph for Root Page.

2. Select ExtVarUse by ExtCompCall or Nested Level by Statement.

Halstead Metrics

Halstead complexity measurement was developed to measure a program module's
complexity directly from source code, with emphasis on computational complexity.
The measures were developed by the late Maurice Halstead as a means of
determining a quantitative measure of complexity directly from the operators and
operands in the module.

Halstead provides various indicators of the module's complexity

Halstead metrics allow you to evaluate the testing time of any C/C++ source code.
These only make sense at the source file level and vary with the following
parameters:

Parameter Meaning

n1 Number of distinct
operators

n2 Number of distinct
operands

N1 Number of operators
instances

N2 Number of operands

65

Rational PurifyPlus for Linux - User Guide

instances

When a source file node is selected in the Metrics Viewer, the following results are
displayed in the Metrics report:

Metric Meaning Formula

n Vocabulary n1 + n2

N Size N2 + N2

V Volume N * log2 n

D Difficulty n1/2 * N2/n2

E Effort V * D

B Errors V / 3000

T Testing time E / k

In the above formulas, k is the Stroud number, and has a default value of 18. You can
change the value of k in the Metrics Viewer Preferences. Adjustment of the Stroud
number allows you to adapt the calculation of T to the testing conditions: team
background, criticity level, and so on.

When the Root node is selected, the Metrics Viewer displays the total testing time for
all loaded source files.

V(g) or Cyclomatic Number

The V(g) or cyclomatic number is a measure of the complexity of a function which is
correlated with difficulty in testing. The standard value is between 1 and 10.

A value of 1 means the code has no branching.

A function's cyclomatic complexity should not exceed 10.

The Metrics Viewer presents V(g) of a function in the Metrics tab when the
corresponding tree node is selected.

When the type of the selected node is a source file or a class, the sum of the V(g) of
the contained function, the mean, the maximum and the standard deviation are
calculated.

At the Root level, the same statistical treatment is provided for every function in any
source file.

66

Runtime Analysis

Metrics Viewer Preferences

The Preferences dialog box allows you to change the appearance of your Code
Coverage reports.

 To choose Metrics Viewer report colors and attributes:

1. Select the Metrics Viewer node:

• Background color: This allows you to choose a background color for the
Metrics Viewer window.

• Stroud number: This parameter modifies the results of Halstead Metrics.

2. Expand the Metrics Viewer node, and select Styles:

• Styles: This list allows you to select one or several styles that you want to
change. To change several styles at the same time, you can perform
multiple selections in the style list.

• Font: This allows you to change the font type and size for the selected
style.

• Text Color: This allows you to change the foreground and background
colors for the selected style. This opens a standard color palette.

• Text Attributes: This allows you to set the selected style to Bold, Italic,
Underlined or Dashed.

3. Click OK to apply your changes.

Memory Profiling for C and C++

Run-time memory errors and leaks are among the most difficult errors to locate and
the most important to correct. The symptoms of incorrect memory use are
unpredictable and typically appear far from the cause of the error. The errors often
remain undetected until triggered by a random event, so that a program can seem to
work correctly when in fact it's only working by accident.

That's where the Memory Profiling feature can help you get ahead.

• You associate Memory Profiling with an application code.

• You compile and run your application.

• The application with the Memory Profiling feature, then directs output to the
Memory Profiling Viewer, which provides a detailed report of memory issues.

Memory Profiling uses Source Code Insertion Technology for C and C++.

67

Rational PurifyPlus for Linux - User Guide

Because of the different technologies involved, Memory Profiling for Java is covered
in a separate section.

How Memory Profiling for C and C++ Works

When an application node is executed, the source code is instrumented by the C or
C++ Instrumentor (attolcpp or attolcc1). The resulting source code is then executed
and the Memory Profiling feature outputs a static .tsf file for each instrumented
source file and a dynamic .tpf file.

These files can be viewed and controlled from the PurifyPlus for Linux GUI. Both the
.tsf and .tpf files need to be opened simultaneously to view the report.

Of course, these steps are mostly transparent to the user when the application node is
executed in the PurifyPlus for Linux GUI.

Memory Profiling Results for C and C++

After execution of an instrumented application, the Memory Profiling report
provides a summary diagram and a detailed report for both byte and memory block
usage.

A memory block is a number of bytes allocated with a single malloc instruction. The
number of bytes contained in each block is the actual amount of memory allocated by
the corresponding allocation instruction.

Summary diagrams

The summary diagrams give you a quick overview of memory usage in blocks and
bytes.

Where:

68

Runtime Analysis

• Allocated is the total memory allocated during the execution of the application

• Unfreed is the memory that remains allocated after the application was
terminated

• Maximum is the highest memory usage encountered during execution

Detailed Report

The detailed section of the report lists memory usage events, including the following
errors and warnings:

• Error messages

• Warning messages

Memory Profiling Error Messages

Error messages indicate invalid program behavior. These are serious issues you
should address before you check in code.

List of Memory Profiling Error Messages

• Freeing Freed Memory (FFM)

• Freeing Unallocated Memory (FUM)

• Late Detect Array Bounds Write (ABWL)

• Late Detect Free Memory Write (FMWL)

• Memory Allocation Failure (MAF)

• Core Dump (COR)

Freeing Freed Memory (FFM)

An FFM message indicates that the program is trying to free memory that has
previously been freed.

This message can occur when one function frees the memory, but a data structure
retains a pointer to that memory and later a different function tries to free the same
memory. This message can also occur if the heap is corrupted.

Memory Profiling maintains a free queue, whose role is to actually delay memory
free calls in order to compare with upcoming free calls. The length of the delay
depends on the Free queue length and Free queue threshold Memory Profiling
Settings. A large deferred free queue length and threshold increases the chances of
catching FFM errors long after the block has been freed. A smaller deferred free
queue length and threshold limits the amount of memory on the deferred free queue,
taking up less memory at run time but providing a lower level of error detection.

69

Rational PurifyPlus for Linux - User Guide

Freeing Unallocated Memory (FUM)

An FUM message indicates that the program is trying to free unallocated, or invalid,
memory.

This message can occur when the memory is not yours to free. In addition, trying to
free the following types of memory causes a FUM error:

• Memory on the stack

• Program code and data sections

Late Detect Array Bounds Write (ABWL)

An ABWL message indicates that the program wrote a value before the beginning or
after the end of an allocated block of memory. Because Memory Profiling
instrumented one or more components with minimal instrumentation, it cannot
determine the exact location of the error. Instead, Memory Profiling performs a late
detect scan after every 200 heap operations or if 10 seconds have elapsed between the
currently active heap operation and the last heap operation, whichever comes first.

This message can occur when you:

• Make an array too small. For example, you fail to account for the terminating
NULL in a string.

• Forget to multiply by sizeof(type) when you allocate an array of objects.

• Use an array index that is too large or is negative.

• Fail to NULL terminate a string.

• Are off by one when you copy elements up or down an array.

Memory Profiling actually allocates a larger block by adding a Red Zone at the
beginning and end of each allocated block of memory in the program. Memory
Profiling monitors these Red Zones to detect ABWL errors.

Increasing the size of the Red Zone helps PurifyPlus for Linux catch bounds errors
before or beyond the block.

The ABWL error does not apply to local arrays allocated on the stack.

Note Unlike Rational PurifyPlus, the ABWL error in the Rational PurifyPlus for Linux
Memory Profiling feature only applies to heap memory zones and not to global or local
tables.

Late Detect Free Memory Write (FMWL)

An FMWL message indicates that the program wrote to memory that was freed.

This message can occur when you:

70

Runtime Analysis

• Have a dangling pointer to a block of memory that has already been freed
(caused by retaining the pointer too long or freeing the memory too soon)

• Index far off the end of a valid block

• Use a completely random pointer which happens to fall within a freed block of
memory

Memory Profiling maintains a free queue, whose role is to actually delay memory
free calls in order to compare with upcoming free calls. The length of the delay
depends on the Free queue length and Free queue threshold Memory Profiling
Settings. A large deferred free queue length and threshold increases the chances of
catching FMWL errors. A smaller deferred free queue length and threshold limits the
amount of memory on the deferred free queue, taking up less memory at run time
but providing a lower level of error detection.

Memory Allocation Failure (MAF)

An MAF message indicates that a memory allocation call failed. This message
typically indicates that the program ran out of paging file space for a heap to grow.
This message can also occur when a non-spreadable heap is saturated.

After Memory Profiling displays the MAF message, a memory allocation call returns
NULL in the normal manner. Ideally, programs should handle allocation failures.

Core Dump (COR)

A COR message indicates that the program generated a UNIX core dump. This
message can only occur when the program is running on a UNIX target platform.

Memory Profiling Warning Messages

Warning messages indicate a situation in which the program might not fail
immediately, but might later fail sporadically, often without any apparent reason and
with unexpected results. Warning messages often pinpoint serious issues you should
investigate before you check in code.

List of Memory Profiling Warning Messages

• Memory in Use (MIU)

• Memory Leak (MLK)

• Potential Memory Leak (MPK)

• File in Use (FIU)

• Signal Handled (SIG)

71

Rational PurifyPlus for Linux - User Guide

Memory in Use (MIU)

An MIU message indicates heap allocations to which the program has a pointer.

Note At exit, small amounts of memory in use in programs that run for a short time
are not significant. However, you should fix large amounts of memory in use in long
running programs to avoid out-of-memory problems.

Memory Profiling generates a list of memory blocks in use when you activate the
MIU Memory In Use option in the Memory Profiling Settings.

Memory Leak (MLK)

An MLK message describes leaked heap memory. There are no pointers to this block,
or to anywhere within this block.

Memory Profiling generates a list of leaked memory blocks when you activate the
MLK Memory Leak option in the Memory Profiling Settings.

This message can occur when you allocate memory locally in some function and exit
the function without first freeing the memory. This message can also occur when the
last pointer referencing a block of memory is cleared, changed, or goes out of scope.
If the section of the program where the memory is allocated and leaked is executed
repeatedly, you might eventually run out of swap space, causing slow downs and
crashes. This is a serious problem for long-running, interactive programs.

To track memory leaks, examine the allocation location call stack where the memory
was allocated and determine where it should have been freed.

Memory Potential Leak (MPK)

An MPK message describes heap memory that might have been leaked. There are no
pointers to the start of the block, but there appear to be pointers pointing somewhere
within the block. In order to free this memory, the program must subtract an offset
from the pointer to the interior of the block. In general, you should consider a
potential leak to be an actual leak until you can prove that it is not by identifying the
code that performs this subtraction.

Memory in use can appear as an MPK if the pointer returned by some allocation
function is offset. This message can also occur when you reference a substring within
a large string. Another example occurs when a pointer to a C++ object is cast to the
second or later base class of a multiple-inherited object and it is offset past the other
base class objects.

Alternatively, leaked memory might appear as an MPK if some non-pointer integer
within the program space, when interpreted as a pointer, points within an otherwise
leaked block of memory. However, this condition is rare.

Inspection of the code should easily differentiate between different causes of MPK
messages.

72

Runtime Analysis

Memory Profiling generates a list of potentially leaked memory blocks when you
activate the MPK Memory Potential Leak option in the Memory Profiling Settings.

File in Use (FIU)

An FIU message indicates a file that was opened, but never closed. An FIU message
can indicate that the program has a resource leak.

Memory Profiling generates a list of files in use when you activate the FIU Files In
Use option in the Memory Profiling Settings.

Signal Handled (SIG)

A SIG message indicates that a system signal has been received.

Memory Profiling generates a list of received signals when you activate the SIG
Signal Handled option in the Memory Profiling Settings.

Memory Profiling User Heap in C and C++

When using Memory Profiling on embedded or real-time target platforms, you might
encounter one of the following situations:

• Situation 1: There are no provisions for malloc, calloc, realloc or free statements
on the target platform.

Your application uses custom heap management routines that may use a user
API. Such routines could, for example, be based on a static buffer that performs
allocation and free actions.

In this case, you need to customize the memory heap parameters
RTRT_DO_MALLOC and RTRT_DO_FREE in the TDP to use the custom malloc
and free functions.

In this case, you can access the custom API functions.

• Situation 2: There are partial implementations of malloc, calloc, realloc or free
on the target, but other functions provide methods of allocating or freeing heap
memory.

In this case, you do not have access to any custom API. This requires
customization of the Target Deployment Port. Please refer to the Target
Deployment Guide provided with the TDP Editor.

In both of the above situations, Memory Profiling can use the heap management
routines to detect memory leaks, array bounds and other memory-related
defects.

Note Application pointers and block sizes can be modified by Memory

73

Rational PurifyPlus for Linux - User Guide

Profiling in order to detect ABWL errors (Late Detect Array Bounds Write).
Actual-pointer and actual-size refer to the memory data handled by Memory
Profiling, whereas user pointer and user-size refer to the memory handled
natively by the application-under-analysis. This distinction is important for
the Memory Profiling ABWL and Red zone settings.

Target Deployment Port API

The Target Deployment Port library provides the following API for Memory
Profiling:

void * _PurifyLTHeapAction (_PurifyLT_API_ACTION, void *,
RTRT_U_INT32, RTRT_U_INT8);

In the function _PurifyLTHeapAction the first parameter is the type of action that
will be or has been performed on the memory block pointed by the second
parameter. The following actions can be used:

typedef enum {
 _PurifyLT_API_ALLOC,
 _PurifyLT_API_BEFORE_REALLOC,
 _PurifyLT_API_FREE
} _PurifyLT_API_ACTION;

The third parameter is the size of the block. The fourth parameter is either of the
following constants:

#define _PurifyLT_NO_DELAYED_FREE 0

#define _PurifyLT_DELAYED_FREE 1

If an allocation or free has a size of 0 this fourth parameter indicates a delayed free in
order to detect FWML (Late Detect Free Memory Write) and FFM (Freeing Freed
Memory) errors. See the section on Memory Profiling Configuration Settings for
Detect FFM, Detect FMWL, Free Queue Length and Free Queue Size.

A freed delay can only be performed if the block can be freed with RTRT_DO_FREE
(situation 1) or ANSI free (situation 2). For example, if a function requires more
parameters than the pointer to de-allocate, then the FMWL and FFM error detection
cannot be supported and FFM errors will be indicated by an FUM (Freeing
Unallocated Memory) error instead.

The following function returns the size of an allocated block, or 0 if the block was not
declared to Memory Profiling. This allows you to implement a library function
similar to the msize from Microsoft Visual 6.0.

RTRT_SIZE_T _PurifyLTHeapPtrSize (void *);

The following function returns the actual-size of a memory block, depending on the
size requested. Call this function before the actual allocation to find out the quantity
of memory that is available for the block and the contiguous red zones that are to be
monitored by Memory Profiling.

RTRT_SIZE_T _PurifyLTHeapActualSize (RTRT_SIZE_T);

74

Runtime Analysis

Examples

In the following examples, my_malloc, my_realloc, my_free and my_msize
demonstrate the four supported memory heap behaviors.

The following routine declares an allocation:
void *my_malloc (int partId, size_t size)
{
 void *ret;
 size_t actual_size = _PurifyLTHeapActualSize(size);
 /* Here is any user code making ret a pointer to a heap or
 simulated heap memory block of actual_size bytes */
 ...
 /* After comes Memory Profiling action */
 return _PurifyLTHeapAction (_PurifyLT_API_ALLOC, ret, size, 0
);
 /* The user-pointer is returned */
}

In situation 2, where you have access to a custom memory heap API, replace the "..."
with the actual malloc API function.

For a my_calloc(size_t nelem, size_t e size), pass on nelem*elsize as the third
parameter of the _PurifyLTHeapAction function. In this case, you might need to
replace this operation with a function that takes into account the alignments of
elements.

l

To declare a reallocation, two operations are required:
void *my_realloc (int partId, void * ptr, size_t size)
{
 void *ret;
 size_t actual_size = _PurifyLTHeapActualSize(size);
 /* Before comes first Memory Profiling action */
 ret = _PurifyLTHeapAction (_PurifyLT_API_BEFORE_REALLOC, ptr,
size, 0);
 /* ret now contains the actual-pointer */
 /* Here is any user code making ret a reallocated pointer to a
heap or
 simulated heap memory block of actual_size bytes */
 ...
 /* After comes second Memory Profiling action */
 return _PurifyLTHeapAction (_PurifyLT_API_ALLOC, ret, size, 0
);
 /* The user-pointer is returned */
}

To free memory without using the delay:
void my_free (int partId, void * ptr)
{
 /* Memory Profiling action comes first */
 void *ret = _PurifyLTHeapAction (_PurifyLT_API_FREE, ptr, 0, 0
);
 /* Any code insuring actual deallocation of ret */
}

75

Rational PurifyPlus for Linux - User Guide

To free memory using a delay:
void my_free (int partId, void * ptr)
{
 /* Memory Profiling action comes first */
 void *ret = _PurifyLTHeapAction (_PurifyLT_API_FREE, ptr, 0, 1
);
 /* Nothing to do here */
}

To obtain the user size of a block:
size_t my_msize (int partId, void * ptr)
{
 return _PurifyLTHeapPtrSize (ptr);
}

Use the following macros to save customization time when dealing with functions
that have the same prototypes as the standard ANSI functions:

#define _PurifyLT_MALLOC_LIKE(func) \
void *RTRT_CONCAT_MACRO(usr_,func) (RTRT_SIZE_T size) \
{ \
 void *ret; \
 ret = func (_PurifyLTHeapActualSize (size)); \
 return _PurifyLTHeapAction (_PurifyLT_API_ALLOC, ret, size, 0
); \
}
#define _PurifyLT_CALLOC_LIKE(func) \
void *RTRT_CONCAT_MACRO(usr_,func) (RTRT_SIZE_T nelem,
RTRT_SIZE_T elsize) \
{ \
 void *ret; \
 ret = func (_PurifyLTHeapActualSize (nelem * elsize)); \
 return _PurifyLTHeapAction (_PurifyLT_API_ALLOC, ret, nelem *
elsize, 0); \
}
#define _PurifyLT_REALLOC_LIKE(func,delayed_free) \
void *RTRT_CONCAT_MACRO(usr_,func) (void *ptr, RTRT_SIZE_T size
) \
{ \
 void *ret; \
 ret = func (_PurifyLTHeapAction (
_PurifyLT_API_BEFORE_REALLOC, \
 ptr, size, delayed_free), \
 _PurifyLTHeapActualSize (size)); \
 return _PurifyLTHeapAction (_PurifyLT_API_ALLOC, ret, size, 0
); \
}
#define _PurifyLT_FREE_LIKE(func,delayed_free) \
void RTRT_CONCAT_MACRO(usr_,func) (void *ptr) \
{ \
 if (delayed_free) \
 { \
 _PurifyLTHeapAction (_PurifyLT_API_FREE, ptr, 0,
delayed_free); \
 } \
 else \
 { \
 func (_PurifyLTHeapAction (_PurifyLT_API_FREE, ptr, 0,

76

Runtime Analysis

delayed_free)); \
 } \
}

Using the Memory Profiling Viewer

Memory Profiling results for C and C++ are displayed in the Memory Profiling
Viewer. Memory Profiling for Java uses the Report Viewer.

Error and Warning Filter

The Memory Profiling Viewer for C and C++ allows you to filter out any particular
type of Error or Warning message from the report.

 To filter out error or warning messages:

1. Select an active Memory Profiling Viewer window.

2. From the Memory Profiling menu, select Errors and Warnings.

3. Select or clear the type of message that you want to show or hide.

Reloading a Report

If a Memory Profiling report has been updated since the moment you have opened it
in the Memory Profiling Viewer, you can use the Reload command to refresh the
display:

 To reload a report:

1. From the View Toolbar, click the Reload button.

Resetting a Report

When you run a test or application node several times, the Memory Profiling results
are appended to the existing report. The Reset command clears previous Memory
Profiling results and starts a new report.

 To reset a report:

1. From the View Toolbar, click the Reset button.

Exporting a Report to HTML

Memory Profiling results can be exported to an HTML file.

 To export results to an HTML file:

1. From the File menu, select Export.

77

Rational PurifyPlus for Linux - User Guide

Memory Profiling Viewer Preferences

The Preferences dialog box allows you to change the appearance of your Memory
Profiling reports for C and C++.

 To choose Memory Profiling report colors and attributes:

1. Select the Memory Profiling Viewer node:

• Background color: This allows you to choose a background color for the
Memory Profiling Viewer window.

2. Expand the Memory Profiling Viewer node, and select Styles:

• Styles: This list allows you to select one or several styles that you want to
change. To change several styles at the same time, you can perform
multiple selections in the style list.

• Font: This allows you to change the font type and size for the selected
style.

• Text Color: This allows you to change the foreground and background
colors for the selected style. This opens a standard color palette.

• Text Attributes: This allows you to set the selected style to Bold, Italic,
Underlined or Dashed.

3. Click OK to apply your changes.

Memory Profiling for Java

Run-time memory problems are among the most difficult errors to locate and the
most important to correct. The symptoms of incorrect memory use are unpredictable
and typically appear far from the cause of the error. The issue often remain
undetected until triggered by a random event, so that a program can seem to work
correctly when in fact it's only working by accident.

That's where the Memory Profiling feature can help you get ahead.

• You associate Memory Profiling with an existing test node or Application code.

• You compile and run your application.

• The application with the Memory Profiling feature, then directs output to the
Memory Profiling Viewer, which provides a detailed report of memory issues.

78

Runtime Analysis

The Java version of Memory Profiling differs from other programming languages,
among other aspects, by the way memory is managed by the Java Virtual Machine
(JVM). The technique used is the JVMPI Agent technology for Java.

How Memory Profiling for Java Works

When an application node is executed, the source code is instrumented by the Java
Instrumentor (javi). The resulting source code is then executed and the Memory
Profiling for Java feature outputs a static .tsf file for each instrumented source file and
a dynamic .txf file.

These files can be viewed and controlled from the PurifyPlus for Linux GUI. Both the
.tsf and .txf files need to be opened simultaneously to view the report.

Of course, these steps are mostly transparent to the user when the application node is
executed in the PurifyPlus for Linux GUI.

Memory Profiling Results for Java

After execution of an instrumented application, the Memory Profiling report
displays:

• In the Report Explorer window: a list of available snapshots

• In the Memory Profiling window: the contents of the selected Memory Profiling
snapshot

Report Explorer

The Report Explorer window displays a Test for each execution of the application
node. Inside each test, a Snapshot report is created for each Memory Profiling
snapshot.

Method Snapshots

The Memory Profiling report displays snapshot data for each method that has
performed an allocation. If the Java CLASSPATH is correctly set, you can click blue
method names to open the corresponding source code in the Text Editor. System
methods are displayed in black and cannot be clicked.

Method data is reset after each snapshot.

For each method, the report lists:

• Method: The method name. Blue method names are hyperlinks to the source
code under analysis

• Allocated Objects: The number of objects allocated since the previous snapshot

79

Rational PurifyPlus for Linux - User Guide

• Allocated Bytes: The total number of bytes used by the objects allocated by the
method since the previous snapshot

• Local + D Allocated Objects: The number of objects allocated by the method
since the previous snapshot as well as any descendants called by the method

• Local + D Allocated Bytes: The total number of bytes used by the objects
allocated by the method since the previous snapshot and its descendants

Referenced Objects

If you selected the With objects filter option in the JVMPI Settings dialog box, the
report can display, for each method, a list of objects created by the method and
object-related data.

From the Memory Profiling menu, select Hide/Show Referenced Objects.

For each object, the report lists:

• Reference Object Class: The name of the object class. Blue class names are
hyperlinks to the source code under analysis.

• Referenced Objects: The number of objects that exist at the moment the
snapshot was taken

• Referenced Bytes: The total number of bytes used by the referenced objects

Differential Reports

The Memory Profile report can display differential data between two snapshots
within the same Test. This allows you to compare the referenced objects. There are
two diff modes:

• Automatic differential report with the previous snapshot

• User differential report

Differential reports add the following columns to the current Memory Profiling
snapshot report:

• Referenced Objects Diff AUTO: Shows the difference in the number of
referenced objects for the same method in the current snapshot as compared to
the previous snapshot

• Referenced Bytes Diff AUTO : Shows the difference in the memory used by the
referenced objects for the same method in the current snapshot as compared to
the previous snapshot

• Referenced Objects Diff USER: Shows the difference in the number of
referenced objects for the same method in the current snapshot as compared to
the user-selected snapshot

80

Runtime Analysis

• Referenced Bytes Diff USER: Shows the difference in the memory used by the
referenced objects for the same method in the current snapshot as compared to
the user-selected snapshot

 To add or remove data to the report:

1. From the Memory Profiling menu, select Hide/Show Data.

2. Toggle the data that you want to hide or display

 To sort the report:

1. In the Memory Profiling window, click a column label to sort the table on that
value.

 To obtain a differential report:

1. From the Memory Profiling menu, select Diff with Previous Referenced Objects.

 To obtain a user differential report:

1. In the Report Explorer, select the current snapshot

2. Right-click another snapshot in the same Test node and select Diff Report.

JVMPI Technology

Memory Profiling for Java uses a special dynamic library, known as the Memory
Profiling Agent, to provide advanced reports on Java Virtual Machine (JVM) memory
usage.

Garbage Collection

JVMs implement a heap that stores all objects created by the Java code. Memory for
new objects is dynamically allocated on the heap. The JVM automatically frees objects
that are no longer referenced by the program, preventing many potential memory
issues that exist in other languages. This process is called garbage collection.

In addition to freeing unreferenced objects, a garbage collector may also reduce heap
fragmentation, which occurs through the course of normal program execution. On a
virtual memory system, the extra paging required to service an ever growing heap
can degrade the performance of the executing program.

JVMPI Agent

Because of the memory handling features included in the JVM, Memory Profiling for
Java is quite different from the feature provided for other languages. Instead of
Source Code Insertion technology, the Java implementation uses a JVM Profiler

81

Rational PurifyPlus for Linux - User Guide

Interface (JVMPI) Agent whose task is to monitor JVM memory usage and to provide
a memory dump upon request.

The JVMPI Agent analyzes the following internal events of the JVM:

• Method entries and exits

• Object and primitive type allocations

The JVMPI Agent is a dynamic library —DLL or lib.so depending on the platform
used— that is loaded as an option on the command line that launches the Java
program.

During execution, when the agent receives a snapshot trigger request, it can either an
instantaneous JVMPI dump of the JVM memory, or wait for the next garbage
collection to be performed.

Note Information provided by the instantaneous dump includes actual
memory use as well as intermediate and unreferenced objects that are
normally freed by the garbage collection. In some cases, such information may
be difficult to interpret correctly.

The actual trigger event can be implemented with any of the following methods:

• A specified method entry or exit used in the Java code

• A message sent from the Snapshot button or menu item in the graphical user
interface

• Every garbage collection

The JVMPI Agent requires that the Java code is compiled in debug mode, and cannot
be used with Java in just-in-time (JIT) mode.

Performance Profiling

The Performance Profiling feature puts successful performance engineering within
your grasp. It provides complete, accurate performance data—and provides it in an
understandable and usable format so that you can see exactly where your code is
least efficient. Using Performance Profiling, you can make virtually any program run
faster. And you can measure the results.

Performance Profiling measures performance for every component in C , C++ and
Java source code, in real-time, and on both native or embedded target platforms.
Performance Profiling works by instrumenting the C, C++ or Java source code of
your application. After compilation, the instrumented code reports back to
PurifyPlus for Linux after the execution of the application.

• You associate Performance Profiling with an existing application code.

82

Runtime Analysis

• You build and execute your code in PurifyPlus for Linux .

• The application under test, instrumented with the Performance Profiling
feature, then directs output to the Performance Profiling Viewer, which a
provides a detailed report of memory issues.

Performance Profiling Results

The Performance Profiling report provides function profiling data for your program
and its components so that you can see exactly where your program spends most of
its time.

Top Functions Graph

This section of the report provides a high level view of the largest time consumers
detected by Performance Profiling in your application.

Performance Summary

This section of the report indicates, for each instrumented function, procedure or
method (collectively referred to as functions), the following data:

• Calls: The number times the function was called

• Function (F) time: The time required to execute the code in a function exclusive
of any calls to its descendants

• Function+descendant (F+D) time: The total time required to execute the code in
a function and in any function it calls.

Note that since each of the descendants may have been called by other functions, it is
not sufficient to simply add the descendants' F+D to the caller function's F. In fact, it is
possible for the descendants' F+D to be larger than the calling function's F+D. The

83

Rational PurifyPlus for Linux - User Guide

following example demonstrates three functions a, b and c, where both a and b each call
c once:

function F F+D

a 5 15

b 5 15

c 20 20

The F+D value of a is less than the F+D of c. This is because the F+D of a (15) equals the
F of a (5) plus one half the F+D of c (20/2=10).

• F Time (% of root) and F+D Time (% of root): Same as above, expressed in
percentage of total execution time

• Average F Time: The average time spent executing the function each time it was
called

Performance Profiling SCI Dump Driver

In C and C++, you can dump profiling trace data without using standard I/O
functions by using the Performance Profiling Dump Driver API contained in the
atqapi.h file, which is part of the Target Deployment Port

To customize the Performance Profiling Dump Driver, open the Target Deployment
Port directory and edit the atqapi.h. Follow the instructions and comments included
in the source code.

Using the Performance Profiling Viewer

The product GUI displays Performance Profiling results in the Performance Profiling
Viewer.

Reloading a Report

If a Performance Profiling report has been updated since the moment you have
opened it in the Performance Profiling Viewer, you can use the Reload command to
refresh the display:

 To reload a report:

1. From the View Toolbar, click the Reload button.

Resetting a Report

84

Runtime Analysis

When you run a test or application node several times, the Performance Profiling
results are appended to the existing report. The Reset command clears previous
Performance Profiling results and starts a new report.

 To reset a report:

1. From the View Toolbar, click the Reset button.

Exporting a Report to HTML

Performance Profiling results can be exported to an HTML file.

 To export results to an HTML file:

1. From the File menu, select Export

Applying Performance Profile Filters

Filters allow you to streamline a performance profile report by filtering out specific
events. Use the Filter List dialog box to specify how events are to be detected and
filtered.

The export and import facilities are useful if you want to share and re-use filters
between Projects and users.

 To access the Filter List:

1. From the Performance Profile Viewer menu, select Filters or click the Filter
button in the Perfomance Profile Viewer toolbar.

 To create a new filter:

1. Click the New button

2. Create the new filter with the Event Editor.

 To modify an existing filter:

1. Select the filter that you want to change.

2. Click the Edit button.

3. Modify the filter with the Event Editor.

 To import one or several filters:

1. Click the Import button.

2. Locate and select the .tft file(s) that you want to import.

3. Click OK.

85

Rational PurifyPlus for Linux - User Guide

 To export a filter event:

1. Select the filter that you want to export.

2. Click the Export button.

3. Select the location and name of the exported .tft file.

4. Click OK.

Editing Performance Profile Filters

Use the Filter Editor to create or modify filters that allow you to hide or show
routines in the performance profile report, based on specified filter criteria.

By default, routines that match the filter criteria are hidden in the report. Use the
Invert filter option to invert this behaviour: only routines that match the filter criteria
are displayed.

Routine filters can be defined with one or more of the following criteria:

• Name: Specifies the name of a routine as the filter criteria.

• Calls > and Calls <: The number times the function was called is greater or
lower than the specified value.

• F Time > and F Time <: Function time greater or lower than the specified value.

• F+D Time > and F+D Time <: Function and descendant time greater or lower
than the specified value.

• F Time (%) > and F Time (%) <: Function time, expressed in percentage, greater
or lower than the specified value.

• F+D Time (%) > and F+D Time (%) <: Function and descendant time, expressed
in percentage, greater or lower than the specified value.

• Average > and Average <: The average time spent executing the function
greater or lower than the specified value.

 To define a routine filter:

1. In the Name box, specify a name for the filter.

2. Click More or Fewer to add or remove a criteria.

3. From the drop-down criteria box, select a criteria for the filter, and an argument.
Arguments must reflect an exact match for the criteria. Pay particular attention
when referring to labels that appear in the sequence diagram since they may be
truncated.
You can use wildcards (*) or regular expressions by selecting the corresponding
option.

86

Runtime Analysis

4. Add or remove a criteria by clicking the More or Fewer buttons.

5. Click Ok.

Performance Profiling Viewer Preferences

The Preferences dialog box allows you to change the appearance of your Performance
Profiling reports.

 To choose Performance Profiling report colors and attributes:

1. Select the Performance Profiling Viewer node:

• Background color: This allows you to choose a background color for the
Performance Profiling Viewer window.

2. Expand the Performance Profiling Viewer node, and select Styles:

• Styles: This list allows you to select one or several styles that you want to
change. To change several styles at the same time, you can perform
multiple selections in the style list.

• Font: This allows you to change the font type and size for the selected
style.

• Text Color: This allows you to change the foreground and background
colors for the selected style. This opens a standard color palette.

• Text Attributes: This allows you to set the selected style to Bold, Italic,
Underlined or Dashed.

3. Click OK to apply your changes.

Runtime Tracing

Runtime Tracing is a feature for monitoring real-time dynamic interaction analysis of
your C, C++ and Java source code. Runtime Tracing uses exclusive Source Code
Insertion (SCI) instrumentation technology to generate trace data, which is turned
into UML sequence diagrams within the PurifyPlus for Linux GUI.

• You associate Performance Profiling with an existing test or application code.

• You build and execute your code in PurifyPlus for Linux .

• The application under test, instrumented with the Runtime Tracing feature,
then directs output to the UML/SD Viewer, which a provides a real-time UML
Sequence Diagram of your application's behavior.

87

Rational PurifyPlus for Linux - User Guide

How Runtime Tracing Works

When an application node is executed, the source code is instrumented by the C, C++
or Java Instrumentor (attolcc1, attolccp or javi). The resulting source code is then
executed and the Runtime Tracing feature outputs a static .tsf file for each
instrumented source file as well as a dynamic .tdf file.

These files can be viewed and controlled from the PurifyPlus for Linux GUI. Both the
.tsf and .tdf files need to be opened simultaneously to view the report.

Of course, these steps are mostly transparent to the user when the application node is
executed in the PurifyPlus for Linux GUI.

Understanding Runtime Tracing UML Sequence Diagrams

The lifeline of an object is represented in the UML/SD Viewer as shown below.

The instance creation box displays the name of the instance. For more information
about UML sequence diagrams, see UML Sequence Diagrams.

Example

Below is an example of object lifelines generated by Runtime Tracing from a C++
application.

88

Runtime Analysis

In this C++ example, functions and static methods are attached to the World instance.

Objects are labelled with obj<number>:<classname>

The black cross represents the destruction of the instance.

Constructors are displayed in green.

Destructors are blue.

Return messages are dotted red lines.

Other functions and methods are black.

The main() is a function of the World instance called by the same World instance.

 To jump to the corresponding portion of source code:

1. Double-click an element of the object lifeline to open the Text Editor at the
corresponding line in the source code.

 To jump to the beginning or to the end of an instance:

1. Right-click an element of the object lifeline.

89

Rational PurifyPlus for Linux - User Guide

2. Select Go to Head or Go to Destruction in the pop-up menu.

 To filter an instance out of the UML sequence diagram:

1. Right-click an element of the object lifeline.

2. Select Filter instance in the pop-up menu.

Advanced

Multi-Thread Support

Runtime Tracing can be configured for use in a multi-threaded environment such as
Posix, Solaris and Windows.

Multi-thread mode protects Target Deployment Port global variables against
concurrent access. This causes a significant increase in Target Deployment Port size
as well as an impact on performance. Therefore, select this option only when
necessary.

Multi thread settings:

These settings are ignored if you are not using a multi-threaded environment. To
change these settings, use the Runtime Tracing Control Settings dialog box.

• Maximum number of threads: This value sets the size of the thread
management table inside the Target Deployment Port. Lower values save
memory on the target platform. Higher values allow more simultaneous
threads.

• Dump note on thread creation: When selected, the UML Sequence Diagram
displays a note ("Thread Creation") each time a new thread is created.

• Dump note on thread schedule: When selected, the UML Sequence Diagram
displays a note ("Thread Schedule") each time a thread's schedule is changed.

Partial Trace Flush

When using this mode, the Target Deployment Port only sends messages related to
instance creation and destruction, or user notes. All other events are ignored. This
can be useful to reduce the output of trace.

When Partial Trace Flush mode is enabled, message dump can be toggled on and off
during trace execution.

The Partial Trace Flush settings are located in the Runtime Tracing Settings dialog
box.

90

Runtime Analysis

 To set Partial Trace Flush from the Node Settings:

1. In the Project Explorer, click the Open Settings... button.

2. Select one or several nodes in the Configuration pane.

3. Select the Runtime Analysis node and the Runtime Tracing node.

4. Select Runtime Tracing Control.

5. Set the Partial trace flush setting to Yes or No to activate or disable the mode.

6. When you have finished, click OK to validate the changes.

 To toggle message dump from within the source code:

1. To do this, use the Runtime Tracing pragma user directives:

• _ATT_START_DUMP

• _ATT_STOP_DUMP

• _ATT_TOGGLE_DUMP

• _ATT_DUMP_STACK

See the Reference Manual for more information about pragma directives.

 To control message dump through a user signal (native UNIX only):

This capability is available only when using a native UNIX target platform.

Under UNIX, the kill command allows you to send a user signal to a process.
Runtime Tracing can use this signal to toggle message dump on and off.

1. In the Project Explorer, click the Open Settings... button.

2. Select one or several nodes in the Configuration pane.

3. Select the Runtime Analysis node and the Runtime Tracing node.

4. Select Runtime Tracing Control.

5. Set the Partial trace flush setting to Yes or No to activate or disable the mode.

6. When you have finished, click OK to validate the changes.

Note By default, the expected signal is SIGUSR1, but you can change this by setting
the ATT_SIGNAL_DUMP environment variable to the desired signal number. See the
Reference Manual for more information about environment variables.

Trace Item Buffer

91

Rational PurifyPlus for Linux - User Guide

Buffering allows you to reduce formatting and I/O processing at time-critical steps
by telling the Target Deployment Port to only output trace information when its
buffer is full or at user-controlled points.

This can prove useful when using Runtime Tracing on real-time applications, as you
can control buffer flush from within the source-under-trace.

 To activate or de-activate trace item buffering:

1. In the Project Explorer, click the Open Settings... button.

2. Select one or several nodes in the Configuration pane.

3. Select the Runtime Analysis node and the Runtime Tracing node.

4. Select Runtime Tracing Control.

5. Set the Buffer trace items setting to Yes or No to activate or disable the mode.

6. Set the size of the buffer in the Items buffer size box.

7. When you have finished, click OK to validate the changes.

A smaller buffer optimizes memory usage on the target platform, whereas a larger
buffer improves performance of the real-time trace. The default value is 64.

Flushing the Trace Buffer through a User Directive

It can be useful to flush the buffer before entering a time-critical part of the
application-under-trace. You can do this by adding the _ATT_FLUSH_ITEMS user
directive to the source-under-trace.

Note See Runtime Tracing pragma directives in the Reference Manual to
control Target Deployment Port buffering from within the source code.

Splitting Trace Files

During execution, Runtime Tracing generates a .tdf dynamic file. When a large
application is instrumented, the size of the .tdf file can impact performance of
UML/SD Viewer.

Splitting trace files allows you to split the .tdf trace file into smaller files, resulting in
faster display of the UML Sequence Diagram and to optimize memory usage.
However, split trace files cannot be used simultaneously with On-the-Fly tracing.

When displaying split .tdf files, Runtime Tracing adds Synchronization elements to
the UML sequence diagram to ensure that all instance lifelines are synchronized.

 To set Split Trace mode:

1. In the Project Explorer, select the highest level node from which you want to
activate split trace mode.

92

Runtime Analysis

2. Click the Open Settings... button.

3. Select a node in the Project Explorer pane.

4. Select the Runtime Analysis node and the Runtime Tracing node.

5. Select Trace Control.

6. Set the Size (Kb) of each split .tdf. The default size is 5000 Kb.

7. Specify a File Name Prefix for the split .tdf filenames. The prefix is followed by
a 4-digit number that identifies each file.

8. Click OK.

Note The total size of split .tdf files is slightly larger than the size of a single
.tdf file, because each file contains additional context information.

93

Graphical User Interface

The graphical user interface (GUI) of PurifyPlus for Linux provides an integrated
environment designed to act as a single, unified work space for all runtime analysis
activities.

This section describes the features and capabilities included within the GUI that are
designed to make your testing effort a lot more manageable.

GUI Philosophy

In addition to acting as an interface with your usual development tools, the GUI
provides navigation facilities, allowing natural hypertext linkage between source
code, analysis reports, UML sequence diagrams. For example:

• You can click any element of an runtime analysis report to highlight and edit
the corresponding item in your application source code

• You can click a filename in the output window to open the file in the Text Editor

In addition, the GUI provides easy-to-use Activity Wizards to guide you through the
creation of your project components.

Discovering the GUI

When you launch the PurifyPlus for Linux Graphical User Interface (GUI), you are
first greeted with the Start Page and a series of windows. Click the elements below to
learn how to use them:

• The Start Page is your main starting point when you launch the GUI

• The Project Explorer is where you create, develop and execute your project
nodes

• The Properties Window provides information about node properties

• The Output Window displays the output of command line tools and compilers

95

Rational PurifyPlus for Linux - User Guide

• The Standard Toolbars provide quick and convenient access to the most
commonly used features

• The Report Explorer allows you to navigate through analysis reports

Start Page

When you launch the graphical user interface, the first element that appears is the
PurifyPlus for Linux Start Page.

The Start Page is the central location of the application. From here, you can create a
new project, start a new activity and navigate through existing project reports.

The Start Page contains the following sections:

• Welcome: General information for first-time users of the product.

• Get Started: This section lists your recent projects as well as a series le projects
provided with PurifyPlus for Linux.

• Activities: This section displays a series of new activities. Click a new activity to
launch the corresponding activity wizard. A project must be open before you
can select a new activity.

• Examples: A set of sample projects for tutorial or demonstration purposes. You
can use these projects to get familiar with the product.

• Support: Links to Customer Support and online documentation.

 To reset the recent files list:

1. Select the Start page and click the Reset button in the toolbar.

2. Click the Reload button the reload the Start page.

Output Window

The Output Window displays messages issued by product components or custom
features.

The first tab, labelled Build, is the standard output for messages and errors. Other
tabs are specific to the built-in features of the product or any user defined tool that
you may have added.

To switch from one console window to another, click the corresponding tab. When
any of the Output Window tabs receives a message, that tab is automatically
activated.

96

Graphical User Interface

When a console message contains a filename, double-click the line to open the file in
the Text Editor. Similarly when a test report appears in the Output Window, double-
click the line to view the report.

Output Window Actions

Right-click the Output Window to bring up a pop-up menu with the following
options:

• Edit Selected File: Opens the editor with the currently selected filename.

• Copy: Copies the selection to the clipboard.

• Clear Window: Clears the contents of the Output Window.

 To hide or show the Output Window:

1. From the View menu, select Other Windows and Output Window.

Project Explorer

The Project Explorer allows you to navigate, construct and execute the components of
your project. The Project Explorer organizes your workspace from two viewpoints:

• Project Browser: This tab displays your project as a tree view, as it is to be
executed.

• Asset Browser: Source code components are displayed on an object or
elementary level.

To change views, select the corresponding tab in the lower section of the Project
Explorer window.

Project Browser

The Project Browser displays the following hierarchy of nodes:

• Projects: the Project Explorer's root node. Each project can contain one or more
sub-projects.

• Results: after execution, this node can be expanded to display the resulting
report sub-nodes and files, allowing you to control those files through a CMS
system such as Rational ClearCase.

• Test groups: provide a way to group and organize application nodes into one or
more test campaigns

• Application nodes: represent your application, to which you can apply SCI
instrumentation for Memory Profiling, Performance Profiling, Code Coverage
and Runtime Tracing.

97

Rational PurifyPlus for Linux - User Guide

• External Command nodes: these allow you to add shell command lines at any
point in the Test Campaign.

After execution of an applicationnode, double-click the node to open all associated
available reports.

When you run a Build command in the Project Browser, the product parses and
executes each node from the inside-out and from top to bottom. This means that the
contents of a parent node are executed in sequence before the actual parent node.

Asset Browser

The Asset Browser displays all the files contained in your project. The product parses
the files and displays individual components of your source files, such as classes,
methods, procedures, functions, units and packages.

Use the Asset Browser to easily navigate through your source files.

In Asset Browser, you can select the type of Asset Browser in the Sort Method box at
the top of the Project Explorer window. Each view type can be more or less relevant
depending on the programming language used:

• By Files: This view displays a classic source file and dependency structure

• By Objects: Primarily for C++ and Java, this view type presents objects and
methods independently from the file structure

• By Packages: This is mostly relevant for Java and displays packages and
components

Use the Sort button to activate or disable the alphabetical sort.

Double-click a node in the Asset Browser to open the source file in the text editor at
the corresponding line.

 To switch Project Explorer views:

1. Click the Project Browser or Asset Browser tab.

 To hide or show the Project Explorer:

1. Right-click an empty area within the toolbar.

2. Select or clear the Project Window menu item.

or from the View menu, select Other Windows and Project Window.

Properties Window

The Properties Window box contains information about the node selected in the
Project Explorer. It also allows you to modify this information. The information

98

Graphical User Interface

available in the Properties Window depends on the view selected in the Project
Explorer:

• Project Browser

• Asset Browser

Project Browser

Depending on the node selected, any of the following relevant information may be
displayed:

• Name: Is the name carried by the node in the Project Explorer.

• Exclude from Build: Excludes the node from the Build process. When this
option is selected a cross is displayed next to the node in the Project Explorer.

• Execute in background: Enables the build and execution of more than one test
or application node at the same time.

• Relative path: Indicates the relative path of the file.

• Full path: Indicates the entire path of the file.

• Instrumented type: You can select either Yes or No.

Asset Browser

Select the type of Object View in the Sort Method box at the top of the Project
Explorer window: By Object, By Files, or By Packages. Depending on the sort method
selected, and the type of object or file, any of the following relevant information may
be displayed:

• Name: is the name carried of the file, object or package.

• Filters (for folders): is the file extension filter for files in that folder. See Creating
a Source File Folder.

• Name: is the name carried of the file or package.

• Relative path: indicates the relative path of the file.

• Full path: indicates the entire path of the file.

 To open the Properties window:

1. In the Project Explorer, right-click a node.

2. Select Properties... in the pop-up menu.

 To hide or show the Properties window:

1. Right-click an empty area within the toolbar.

99

Rational PurifyPlus for Linux - User Guide

2. Select or clear the <object> Property menu item.

or from the View menu, select Other Windows and <object> Property.

Report Explorer

The Report Explorer allows you to navigate through all text and graphical reports,
including:

• Memory Profiling, Performance Profiling and Code Coverage reports

• UML Sequence Diagram reports from the Runtime Tracing feature

• Metrics produced by the Metrics Viewer

The actual appearance of the Report Explorer contents depends on the nature of the
report that is currently displayed, but generally the Report Explorer offers a dynamic
hierarchical view of the items encountered in the report.

Click an item in the Report Explorer to locate and select it in the Report Viewer or
UML/SD Viewer window.

 To hide or show the Report Explorer:

1. Right-click an empty area within the toolbar.

2. Select or clear the Report Explorer menu item.

Standard Toolbars

The toolbars provide shortcut buttons for the most common tasks.

The following toolbars are available

• Main toolbar

• View toolbar

• Build toolbar

• Status bar

Main Toolbar

The main toolbar is available at all times:

• The New File button creates a new blank text file in the Text Editor.

• The Open button allows you to load any project, source file or report file
supported by the product.

• The Save File button saves the contents of the current window.

100

Graphical User Interface

• The Save All button saves the current workspace as well as all open files.

• The Cut , Copy and Paste buttons provide the standard clipboard
functionality.

• The Undo and Redo buttons allow you undo or redo the last command.

• The Find button allows you to locate a text string in the active Text Editor or
report window.

View Toolbar

The View toolbar provides shortcut buttons for the Text Editor and report viewers.

• The Choose zoom Level box and the Zoom In and Zoom Out buttons are
classic Zoom controls.

• The Reload button refreshes the current report in the report viewer. This is
useful when a new report has been generated.

• The Reset Observation Traces button clears cumulative reports such as those
from Code Coverage, Memory Profiling or Performance Profiling.

Build Toolbar

The build toolbar provides shortcut buttons to build and run the application.

• The Configuration box allows you to select the target configuration on which
the test will be based.

• The Build button launches the build and executes the node selected in the
Project Explorer. You can configure the Build Options for the workspace by
selecting the Options button.

• The Stop button stops the build or execution.

• The Clean Parent Node button removes files created by previous tests.

• The Execute Node button executes the node selected in the Project Explorer.

Status Bar

The Status bar is located at the bottom of the main GUI window. It includes a Build
Clock which displays execution time, and the Green LED which flashes when work is
in progress.

 To hide or show a toolbar:

1. Right-click an empty area within the toolbar.

2. Select and clear those toolbars you want to display or hide.

101

Rational PurifyPlus for Linux - User Guide

or from the View menu, select Toolbars and the toolbar(s) you want to display or
hide.

GUI Components and Tools

In addition to these main windows, the PurifyPlus for Linux GUI provides a
comprehensive set of tools and components that make it an efficient and
customizable development environment.

• The Text Editor is a full-featured editor for source code

• The Tools menu is a convenient way of integrating any command-line tool into
the GUI

• The Test Process Monitor provides ongoing activity statistics and metrics

• The Report Viewer displays runtime analysis reports

• The UML/SD Viewer displays UML sequence diagrams provided by Runtime
Tracing feature.

Report Viewer

The Report Viewer allows you to view Runtime Analysis reports from any of the
Runtime Analysis features

Most reports are produced as XML-based .xrd files, which are generated during the
execution of the test or application node.

 To navigate through the report:

1. You can use the Report Explorer to navigate through the report. Click an
element in the Report Explorer to go to the corresponding line in the Report
Viewer.

 To hide or show report nodes:

The Report Viewer can filter out certain elements of a report.

1. From the Report Viewer menu, select the elements that you want to hide or
show.

Understanding Reports

PurifyPlus for Linux generates Runtime Analysis reports based on the execution of
your application.

102

Graphical User Interface

Runtime Analysis Reports

• Memory Profiling

• Performance Profiling

• Code Coverage

• Runtime Tracing

Setting a Zoom Level

UML sequence diagrams and other reports can be viewed with different zoom levels.

 To set the zoom level:

1. You can directly change the zoom level in the View Toolbar by using the Zoom
In and Zoom Out buttons

Or

2. Select one of the pre-defined or custom levels from the Choose Zoom Level box
of the View Toolbar.

Report Viewer Toolbar

The Report toolbar eases report navigation with the Report Viewer.

Report Viewer commands are available when a Report Viewer window is open:

• The Previous Failed Test and Next Failed Test buttons allow you to quickly
navigate through the Failed items.

• The Failed Tests Only or All Tests button toggles between the two display
modes.

Report Viewer Style Preferences

The Preferences dialog box allows you to change the appearance of your Runtime
Analysis reports.

 To choose Report Editor colors and attributes

1. Select the Report Viewer node:

• Background color: This allows you to choose a background color for the Report
Viewer window.

2. Expand the Report Viewer node, and select Syntax Color:

103

Rational PurifyPlus for Linux - User Guide

• Styles: This list allows you to select one or several styles that you want to
change. To change several styles at the same time, you can perform multiple
selections in the style list.

• Font: This allows you to change the font type and size for the selected style.

• Text Color: This allows you to change the foreground and background colors
for the selected style. This opens a standard color palette.

• Text Attributes: This allows you to set the selected style to Bold, Italic,
Underlined or Dashed.

3. Click OK to apply your changes.

Text Editor

The product GUI provides its own Text Editor for editing and browsing source code.

The Text Editor is a fully-featured text editor with the following capabilities:

• Syntax Coloring

• Find and Replace functions

• Go to line or column

The main advantage of the Text Editor included with PurifyPlus for Linux is its tight
integration with the rest of the GUI. You can click items within the Project Explorer,
Output Window, or any Runtime Analysis report to immediately highlight and edit
the corresponding line of code in the Editor.

Creating a Text File

 To create a new text file:

1. Click the New Text File toolbar button,

2. From the Editor menu, use the Syntax Color submenu to select the language.

or

3. From the File menu, select New... and then open the Text File option

4. From the Editor menu, use the Syntax Color submenu to select the language.

Opening a Text File

The Text Editor is tightly integrated with the PurifyPlus for Linux GUI. Because of
the links between the various views of the GUI, there are many ways of opening a
text file. The most common ones are described here.

104

Graphical User Interface

 Using the Open command:

1. From the File menu, select Open... or click the Open button from the standard
toolbar.

2. Use the file selector to select the file type and to locate the file.

3. Select the file you want to open.

4. Click OK.

 Using the File Explorer:

1. Select a file in the Project Explorer. If there are recognized components in the
file, a '+' symbol appears next to it.

2. Click the '+' symbol to expand the list of references in the file.

3. Double-click a reference to open the Text Editor at the corresponding line.

You can also navigate through the source file by double-clicking other reference
points in the Project Explorer.

 Using a Test or Report Viewer:

1. With the Report Viewer open, locate an element inside the report.

2. Double-click the item to open the Text Editor at the corresponding line.

Finding Text in the Text Editor

To locate a particular text string within the Text Editor, use the Find command.

Search Options

The Search box allows you to select the search mode:

• All searches for the first occurrence from the beginning of the file.

• Selected searches through selected text only.

• Forward and Backward specify the direction of the search, starting at the
current cursor position.

Match case restricts search criteria to the exact same case.

Match whole word only restricts the search to complete words.

Use regular expression allows you to specify UNIX-like regular expressions as search
criteria.

 To find a text string in the Text Editor:

1. From the Edit menu, select Find...

105

Rational PurifyPlus for Linux - User Guide

2. The editor Find and Replace dialog appears with the Find tab selected.

3. Type the text that you want to find in the Find what: section. A history of
previously searched words is available by clicking the Find List button.

4. Change search options if required.

5. Click Find.

Replacing Text in the Text Editor

To replace a text string with another string, you use the Find and Replace command.

 To replace a text string:

1. From the Edit menu, select Replace...

2. The editor Find and Replace dialog appears with the Replace tab selected.

3. Type the text that you want to change in the Find what box. A history of
previously searched words is available by clicking the Find List button.

4. Type the text that you want to replace it with in the Replace with box. A history
of previously replaced words is available by clicking the Replace List button.

5. Change search options (see below) if required.

6. Click Replace to replace the first occurrence of the searched text, or Replace All
to replace all occurrences.

Search Options

The Search box allows you to select the search mode:

• All searches for the first occurrence from the beginning of the file.

• Selected searches through selected text only.

• Forward and Backward specify the direction of the search, starting at the
current cursor position.

• Match case restricts search criteria to the exact same case.

• Match whole word only restricts the search to complete words.

• Use regular expression allows you to specify UNIX-like regular expressions as
search criteria.

Locating a Line and Column in the Text Editor

The Go To command allows you to move the cursor to a specified line and column
within the Text Editor.

106

Graphical User Interface

 To use the Go To feature:

1. From the Edit menu, select Go To...

2. The Text Editor's Find and Replace dialog appears with the Go To tab selected.

3. Enter the number of the line or column or both.

4. Click Go to close the dialog box and to move the cursor to the specified position.

Text Editor Syntax Coloring

The Text Editor provides automatic syntax coloring for C and C++ source code. The
Text Editor automatically detects the language from the filename extension.

If the filename does not have a standard extension, you must select the language
from the Syntax Color submenu.

 To manually set the syntax coloring mode:

1. From the Editor menu, select the desired language through the Syntax Color
submenu.

Text Editor Preferences

The Preferences dialog box allows you to change the appearance of the source code
and scripts in the Text Editor.

 To choose Editor report colors and attributes:

1. Select the Editor node.

• Font: This allows you to change the general font type and size for Editor. This
parameter is overridden for defined styles by the Style font setting. This
parameter can be overridden for defined styles by the Style font settings.

• Global Colors: This is where you select background colors for text categorized
as Normal, Information or Error as well as the general background color. Click a
color to open a standard color palette.

• Autodetect parenthesis and bracket mismatch - When this option is selected, the
Error color is used when the Editor detects a missing bracket "[]" or parenthesis
"()".

• Tabulation length: This specifies the tabulation length, which is equivalent to a
number of inserted spaces.

2. Expand the Editor Viewer node, and select Styles:

• Styles: This list allows you to select one or several styles that you want to
change. To change several styles at the same time, you can perform multiple
selections in the style list.

107

Rational PurifyPlus for Linux - User Guide

• Font: This allows you to change the font type and size for the selected style.

• Text Color: This allows you to change the foreground and background colors
for the selected style. This opens a standard color palette.

• Text Attributes: This allows you to set the selected style to Bold, Italic,
Underlined or Dashed.

3. Click OK to apply your changes.

Tools Menu

About the Tools Menu

The Tools menu is a user-configurable menu that allows you to access personal tools
from the PurifyPlus for Linux graphical user interface (GUI). You can customize the
Tools menu to meet your own requirements.

Custom tools can be applied to a selection of nodes in the Project Explorer. Selected
nodes can be sent as a parameter to a user-defined tool application. A series of macro
variables is available to pass parameters on to your tool's command line.

See the section GUI Macro Variables in the Rational PurifyPlus for Linux Reference
Manual for detailed information about using the macro command language.

Using the Tools Menu

 To use a user-defined tool:

1. Select an icon from the Project Explorer pane.

2. Click the Tools menu and select the tool you want to use.

 To add a new tool to the Tools menu:

1. From the Tools menu, select Toolbox...

2. To create an entirely new tool, click Add... If you want to copy from an existing
tool, select the existing tool, click Copy and click Edit...

3. Edit the tool in the Tool Edit box.

4. Click OK and Close.

 To edit a user-defined tool:

1. From the Tools menu, select Toolbox...

2. Select the tool that you want to modify and click Edit...

3. Edit the tool in the Tool Edit box.

108

Graphical User Interface

4. Click OK and Close.

 To remove a tool from the Tools menu:

1. From the Tools menu, select Toolbox...

2. Select an existing tool from the tool list.

3. Click Remove and Close.

Tool Configuration

The Tool Configuration dialog allows you to configure a new or existing tool.

In the Tools menu, each tool appears as a submenu item, or Name, with one or
several associated actions or Captions.

Identification

In this tab, you describe how the tool will appear in the Tools menu.

• Enter the Name of the tool submenu as it will appear in the Tools menu and a
Comment that is displayed in the lower section of the Toolbox dialog box.

• Select Change Management System if the tool is used to send and retrieve from
a change management system. When Change Management System is selected,
Check In and Check Out actions are automatically added to the Action tab (see
below) and a Change Management System toolbar is activated.

• Clear the Add to Tools menu checkbox if you do not want the tool to be added
to the Tools menu.

• Select Send messages to custom tab in the Output Window if you want to view
the tool's text output in the Output Window.

• Use the Icon button to attach a custom icon to the tool that will appear in the
Tools menu. Icons must be either .xpm or .png graphic files and have a size of
22x22 pixels.

Actions

This tab allows you to describe one or several actions for the tool.

• The Actions list displays the list of actions associated with the tool. If Change
Management System is selected on the Identification tab, Check In and Check
Out tool commands will listed here. These cannot be renamed or removed.

• Menu text is the name of the action that will appear in the Tools submenu.

109

Rational PurifyPlus for Linux - User Guide

• Command is a shell command line that will be executed when the tool action is
selected from Tools menu. Command lines can include toolbox macro variables
and functions.

Click OK to validate any changes made to the Tool Edit dialog box.

 To add a new action:

1. Enter a Caption and a Command.

2. Click Add.

 To remove an action from the list:

1. Select an action in the Actions list.

2. Click Remove.

 To modify an action:

1. Select an action in the Actions list.

2. Make any changes in the Caption or Command lines.

3. Click Modify.

Test Process Monitor

About the Test Process Monitor

The Test Process Monitor provides an integrated monitoring feature that helps
project managers and test engineers obtain a statistical analysis of the progress of
their development effort.

Each generated metric is stored in its own file and consists of one or more fields.

The Test Process Monitor works by gathering the statistical data from these files and
then generating a graphical chart based on each field.

The preexistence of a file is required before running the Test Process Monitor. Files
are created either by running a runtime analysis feature that generates test process
data, or by creating and updating your own file.

Note Currently only the Code Coverage feature provides data for the Test
Process Monitor. You can, however, build your own files with the tpmadd
command-line feature. See the Reference Manual for further information.

Changing Curve Properties

The Curve Properties menu allows you to change the way a particular graph is
displayed.

110

Graphical User Interface

 To change the curve color:

1. Right-click a curve.

2. From the pop-up menu, select Change Curve Color.

3. Use the Color Palette to select a new color, and click OK.

 To hide a curve:

1. Right-click a curve.

2. From the pop-up menu, select Hide Curve.

 To set a maximum value:

Changing the maximum displayed value for a curve actually changes the scale at
which it is displayed. For instance, when a curve only reaches 100, there is no point in
displaying it at on a scale of 1000, unless you want to compare it with another curve
that uses that scale.

1. Right-click a curve.

2. From the pop-up menu, select Set Max Value.

3. Enter the scale value, and click OK.

Note Setting a maximum value lower than the actual maximum value of a
curve can result in erratic results.

 To display a scale:

For any curve, you can display a scale on the right or left-hand side of the graph.
When you display a new scale, it replaces any previously displayed one.

1. Right-click a curve.

2. From the pop-up menu, select Right Scale or Left Scale.

Custom Curves

In some cases, you may want to remove certain figures from a chart to make it more
relevant. The custom curves capability allows you to alter the chart by selecting the
records that you want to include.

Note Using the custom curves capability does not impact the actual database. If you
remove a record from the chart by using the custom curves function, the actual record
remains in the database and may impact other figures.

Custom curves create a new metric, using the name of the base metric, with a Custom
prefix.

111

Rational PurifyPlus for Linux - User Guide

 To create a custom curve:

1. Make sure a user is selected in the Report Explorer pane. If not, select a user.

2. From the Project menu, select Test Process Monitor and Custom Curves.

3. In the Custom Curves dialog box, select a metric and the start and end date of
your chart.

4. The record list displays all the records contained in the database of that metric.
Select the records that you want to use for your custom curve. Clear the records
that you do not want to use.

5. Click OK. A new metric is created.

 To change a custom curve:

1. From the Project menu, select Test Process Monitor and Custom Curves.

2. In the Custom Curves dialog box, select the Custom metric that you want to
modify.

3. Select the records that you want to use for your custom curve. Clear the records
that you do not want to use.

4. Click OK.

Event Markers

Use event markers to identify milestones or special events within your Test Process
Monitor chart. An event marker is identified by the date of the event and a marker
label.

Event markers appear as bold vertical lines in a Test Process Monitor chart.

 To create an event marker:

1. Right-click the location where you want to put the chart

2. From the pop-up menu, select Event Properties and New Event.

3. Enter the date of the event, and a marker label, and click OK.

 To remove an event marker:

1. Right-click the event marker that you want to hide.

2. From the pop-up menu, select Delete Event.

 To hide a specific event marker:

Hiding a marker does not remove it. You can still make the marker reappear.

1. Right-click the event marker that you want to hide.

112

Graphical User Interface

2. From the pop-up menu, select Hide Event.

 To hide or show all event markers:

1. In the Test Process Monitor toolbar, click the Events button to hide all event
markers.

2. Click again to show all hidden event markers.

Setting the Time Scale

The Scale capability defines the period that you want to view in the Test Process
Monitor window. This option allows you to select an annual, monthly or daily view,
as well as a user-definable time period.

 To set the time scale:

1. Select a user in the Report Explorer pane.

2. From the Project menu, select Test Process Monitor, Scale and the desired time
scale.

3. If you chose Customize, enter the start and end date of the period that you want
to monitor, and click OK.

Test Process Monitor Toolbar

The Test Process Monitor (TPM) toolbar is useful for navigating through TPM charts.

These buttons are available when a TPM window is open:

• The Clear button removes all curves from the chart.

• The Hide Event button hides the displayed event markers.

• The Floating Schedule button toggles the automatic location of new curves.

 To hide or show a toolbar:

1. Right-click an empty area within the toolbar.

2. Select and clear those toolbars you want to display or hide.

Adding a Metric

Metrics generated Code Coverage or other tools are directly available through the
Test Process Monitor. Each metric file contains one or several fields.

113

Rational PurifyPlus for Linux - User Guide

 To open a metric database a metric chart:

1. From the Project menu, select Test Process Monitor and either Project or Current
Workspace. Current Workspace applies to the user of the current workspace.
Project applies to all workspace users in the project.

2. If a new metric database is detected, you need to provide a name for the metric,
as well as a label for each field of the database.

3. In the Report Explorer, select a user.

4. From the Project menu, select Test Process Monitor, the metric and the field that
you want to display.

You can add as many curves as you want to the chart.

 To hide a curve:

1. Right-click a curve.

2. From the pop-up menu, select Hide Curve.

UML/SD Viewer

About the UML/SD Viewer

The UML/SD Viewer renders sequence diagram reports as specified by the UML
standard.

UML sequence diagram can be produced directly via the execution of the SCI-
instruction application when using the Runtime Tracing feature.

Navigating through UML Sequence Diagram

There are several ways of moving around the UML sequence diagrams displayed by
the UML/SD Viewer:

• Navigation Panel: Click and drag the Navigation button in the lower right
corner of the UML/SD Viewer window to scroll through a miniature navigation
pane representing the entire UML sequence diagram.

• Free scroll: Press the Control key and the left mouse button simultaneously.
This displays a compass icon, allowing you to scroll the UML sequence diagram
in all direction by the moving the mouse.

• Report Explorer: The Report Explorer is automatically activated when the
UML/SD Viewer is activated. The Report Explorer offers a hierarchical view of
instances. Click an item in the Report Explorer to locate and select the
corresponding UML representation in the main UML/SD Viewer window.

114

Graphical User Interface

Time Stamping

The UML/SD Viewer displays time stamping information on the left of the UML
sequence diagram. Time stamps are based on the execution time of the application on
the target.

You can change the display format of time stamp information in the UML/SD
Viewer Preferences.

The following time format codes are available:

• %n - nanoseconds

• %u - microseconds

• %m - milliseconds

• %s - seconds

• %M - minutes

• %H - hours

These codes are replaced by the actual number. For example, if the time elapsed is
12ms, then the format %mms would result in the printed value 12ms. If the number 0
follows the % symbol but precedes the format code, then 0 values are printed to the
viewer - otherwise, 0 values are not printed. For example, if the time elapsed is 10ns,
and the selected format code is %0mms %nns, then the time stamp would read 0ms
10ns .

Note To change the format code you must press the Enter key immediately
after selecting/entering the new code. Simply pressing the OK button on the
Preferences window will not update the time stamp format code.

Coverage Bar

In C, C++ and Java, the coverage bar provides an estimation of code coverage.

Note The coverage bar is unrelated to the Code Coverage feature. For
detailed code coverage reports, use the dedicated Code Coverage feature.

When using the Runtime Tracing feature, the UML/SD Viewer can display an extra
column on the left of the UML/SD Viewer window to indicate code coverage
simultaneously with UML sequence diagram messages.

The UML/SD Viewer code coverage bar is merely an indication of the ratio of
encountered versus dec ared function or method entries and potential exceptions
since the beginning of the sequence diagram.

l

If new declarations occur during the execution the graph is recalculated, therefore the
coverage bar always displays a increasing coverage rate.

115

Rational PurifyPlus for Linux - User Guide

 To activate or disable coverage tracing with a Java application:

1. Before building the node-under-analysis, open the Memory Profiling settings
box.

2. Set Coverage Tracing to Yes or No to respectively activate or disable code
coverage tracing for the selected node.

3. Click OK to override the default settings of the node

 To hide the coverage bar:

1. Right-click inside the UML/SD Viewer window.

2. From the pop-up menu, select Hide Coverage.

 To show the coverage bar:

1. Right-click inside the UML/SD Viewer window.

2. From the pop-up menu, select Show Coverage.

Memory Usage Bar

When using the Runtime Tracing feature on a Java application, the UML/SD Viewer
can display an extra bar on the left of the UML/SD Viewer window to indicate total
memory usage for each sequence diagram message event.

The memory usage bar indicates how much memory has been allocated by the
application and is still in use or not garbage collected.

In parallel to the UML sequence diagram, the graph bar represents the allocated
memory against the highest amount of memory allocated during the execution of the
application.

This ratio is calculated by subtracting the amount of free memory from the total
amount of memory used by the application. The total amount of memory is subject to
change during the execution and therefore the graph is recalculated whenever the
largest amount of allocated memory increases.

A tooltip displays the actual memory usage in bytes.

 To activate or disable coverage tracing with a Java application:

1. Before building the node-under-analysis, open the Memory Profiling settings
box.

2. Set Coverage Tracing to Yes or No to respectively activate or disable coverage
tracing for the selected node.

3. Click OK to override the default settings of the node

116

Graphical User Interface

 To hide the memory usage bar:

1. Right-click inside the UML/SD Viewer window.

2. From the pop-up menu, select Hide Memory Usage.

 To show the memory usage bar:

1. Right-click inside the UML/SD Viewer window.

2. From the pop-up menu, select Show Memory Usage.

Thread Bar

When using the Runtime Tracing feature on C, C++ and Java code, the UML/SD
Viewer can display an extra column on the left of its window to indicate the active
thread during each UML sequence diagram event.

Each thread is displayed as a different colored zone. A tooltip displays the name of
the thread.

Click the thread bar to open the Thread Properties window.

 To hide the thread bar:

1. Right-click inside the UML/SD Viewer window.

2. From the pop-up menu, select Hide Thread Bar.

 To show the thread bar:

1. Right-click inside the UML/SD Viewer window.

2. From the pop-up menu, select Show Thread Bar.

Thread Properties

The Thread Properties window displays a list of all threads that are created during
execution of the application. Threads are listed with the following properties:

• Colour tab: As displayed in the Thread Bar.

• Thread ID: A sequential number corresponding to the order in which each
thread was created.

• Name: The name of the thread.

• State: Either Sleeping or Running state.

• Priority: The current priority of the thread.

• Since: The timestamp of the moment the thread entered the current state.

Click the title of each column to sort the list by the corresponding property

117

Rational PurifyPlus for Linux - User Guide

Thread Properties Filter

By default, the Thread Properties window displays the entire list of thread states
during execution of the program.

 To switch the Thread Properties Filter:

1. Click Filter to display reduce the display to the list of threads created by the
application.

2. Click Unfilter to return the full list of thread states.

Step-by-Step mode

When tracing large applications, it may be useful to slow down the display of the
UML sequence diagram. You can do this by using the Step-by-Step mode.

 To activate Step-by-Step mode:

1. From the UML/SD Viewer menu, select Display Mode and Step-by-Step.

 To select the type of graphical element to skip over:

1. In the UML/SD Viewer toolbar, click the button.

2. Select the graphical elements that will stop the Step command. Clear the
elements that are to be ignored.

 To step to the next selected element:

1. Click the Step button in the UML/SD Viewer toolbar.

 To skip to the end of execution:

1. Click the Continue button in the UML/SD Viewer toolbar. This will
immediately display the rest of the UML sequence diagram.

 To restart the Step-by-Step display:

1. Click the Restart button in the UML/SD toolbar.

 To de-activate Step-by-Step mode

1. From the UML/SD Viewer menu, select Display Mode and All.

Applying Sequence Diagram Filters

Filters allow you to streamline a sequence diagram by filtering out specific event
types. Use the Viewer's Filter List dialog box to specify how events are to be detected
and filtered.

118

Graphical User Interface

The export and import facilities are useful if you want to share and re-use filters
between Projects and users.

 To access the Filter List:

1. From the UML/SD Viewer menu, select Filters or click the Filter button in the
UML/SD Viewer toolbar.

 To create a new filter:

1. Click the New button

2. Create the new filter with the Event Editor.

 To modify an existing filter:

1. Select the filter that you want to change.

2. Click the Edit button.

3. Modify the filter with the Event Editor.

 To import one or several filters:

1. Click the Import button.

2. Locate and select the .tft file(s) that you want to import.

3. Click OK.

 To export a filter event:

1. Select the filter that you want to export.

2. Click the Export button.

3. Select the location and name of the exported .tft file.

4. Click OK.

Using Sequence Diagram Triggers

Sequence Diagram triggers allow you to predefine automatic start and stop
parameters for the UML/SD Viewer. The trigger capability is useful if you only want
to trace a specific portion of an instrumented application.

Triggers can be inactive, time-dependent, or event-dependent.

 To access the Trigger dialog box:

1. From the UML/SD Viewer menu, select Triggers or click the Trigger button in
the UML/SD Viewer toolbar.

119

Rational PurifyPlus for Linux - User Guide

Start and End of Runtime Tracing:

The Runtime Tracing start is defined on the Start tab:

• At the beginning: Runtime Tracing starts when the application starts.

• On time: Runtime Tracing starts after a specified number of microseconds.

• On event: Runtime Tracing starts when a specified event is detected. One or
several events must be specified with the Event Editor.

The Runtime Tracing end is defined on the Stop tab:

• Never: Runtime Tracing ends when the application exits.

• On time: Runtime Tracing ends after a specified number of seconds.

• On event: Runtime Tracing ends when a specified event is detected. One or
several events must be specified with the Event Editor.

 To create a new trigger event:

1. Click the New button

2. Create the new trigger event with the Event Editor.

 To modify an existing trigger event:

1. Select the trigger event that you want to change.

2. Click the Edit button.

3. Modify the trigger event with the Event Editor.

 To import one or several trigger events:

The import facility is useful if you want to reuse trigger events created in another
Project.

1. Click the Import button.

2. Locate and select the file(s) that you want to import.

3. Click OK.

 To export a trigger event:

The export facility allows you to transfer trigger events.

1. Select the trigger event that you want to export.

2. Click the Export button.

3. Select the location and name of the exported .tft file.

120

Graphical User Interface

4. Click OK.

Editing Trigger or Filter Events

Use the Event Editor to create or modify event triggers or filters for UML sequence
diagrams:

• Filters: Specified events are hidden or shown in the UML sequence diagram.

• Start triggers: The UML/SD Viewer starts displaying the sequence diagram
when a specified event is encountered. If no event matches the output of the
application, the diagram will appear blank.

• Stop triggers: The UML/SD Viewer stops displaying the sequence diagram
when a specified event is encountered.

Events can be related to messages, instances, notes, synchronizations, actions or
loops.

 To define an event or filter:

1. Specify a name for the event.

2. Select the type of UML element you want to define for the event and select
Activate. Several types of elements can be activated for a single filter or trigger
event.

3. Click More or Fewer to add or remove line to the event criteria.

4. From the drop-down criteria box, select a criteria for the filter, and an argument.

5. Arguments must reflect an exact match for the criteria. Pay particular attention
when referring to labels that appear in the sequence diagram since they may be
truncated.

6. You can use wildcards (*) or regular expressions by selecting the corresponding
option.

7. Click the button to enable or disable case sensitivity in the criteria.

8. You can add or remove a criteria by clicking the More or Fewer buttons.

9. Click Ok.

Message Criteria

• Name: Specifies a message name as the filter criteria.

• Internal message: Considers all messages other than constructor calls coming
from any internal source, as opposed to those messages coming from the World
instance.

121

Rational PurifyPlus for Linux - User Guide

• From Instance: Considers all messages other than constructor calls prior to the
first message sent from the specified object

• To Instance: Considers out all messages other than constructor calls if any
message is sent to the specified object

• From World: Considers all messages received from the World instance

• To World: Considers all messages sent to the World instance

Instance Criteria

• Name: Specifies an instance name as the filter criteria

• Instance child of: Specifies a child instance of the specified class.

Note Criteria

• All: Considers all notes

• Name: Specifies a note name

• All message notes: Considers any note attached to a message

• All instance notes: Considers any note attached to an instance

• Instance child of: Specifies a note attached to an instance of the specified class

• Note on message named: Considers a note attached to a specified message

• With style named: Considers a note with the specified style attributes

Synchronization Criteria

• All: Considers all synchronization events

• Name: Specifies a synchronization name

Action Criteria

• All: Considers all actions

• Name: Specifies an action name

• From Instance: Considers an action performed by the specified object

• From World: Considers all actions performed by the World instance

• Instance child of: Specifies an action performed by an instance of the specified
class

• With style named: Considers an action with the specified style attributes

122

Graphical User Interface

Loop Criteria

• All: Considers all loops

• Name: Specifies a loop name

Boolean Operators

• All Except expresses a NOT operation on the criteria

• Match All performs an AND operation on the series of criteria

• Match Any performs an OR operation on the series of criteria

Finding Text in a UML Sequence Diagram

The UML/SD Viewer has an extensive search facility that allows users to locate
specific UML sequence diagram elements by searching for a text string.

 To search for a text string inside the UML/SD Viewer:

1. Click inside a UML/SD Viewer window to activate it.

2. From the Edit menu, select Find menu item. The Find dialog box opens.

3. Type your search criteria in the Find dialog box.

4. Click the Find Next button.

5. If a string corresponding to the search criteria is found in the UML/SD Viewer,
the string is highlighted and the following message is displayed: Runtime
Tracing has finished searching the document.

6. Click OK.

Search Options

• Forward and Backward specifies the direction of the search.

• The Search into option allows you to specify type of object in which you expect
to find the search string.

• The Find dialog box accepts either UNIX regular expressions or DOS-like
wildcards ('?' or '*'). Select either wildcard or reg. exp. in the Find dialog box to
select the corresponding mode.

UML/SD Viewer Toolbar

The UML/SD Viewer toolbar provides shortcut buttons to commands related to
viewing UML sequence diagrams.

123

Rational PurifyPlus for Linux - User Guide

UML/SD Viewer commands are only available when a UML sequence diagram is
open.

• The Filter button allows you to define a sequence diagram filter.

• The Trigger button sets sequence diagram triggers.

The following buttons are only available when using the Step-by-Step mode.

• The Step button moves the UML/SD Viewer to the next selected event.

• The Select button allows you to select the type of event to trace.

• The Continue button draws everything to the end of the trace diagram.

• The Restart button restarts Step-by Step mode.

• The Pause button pauses the On-the-Fly display mode. The application
continues to run.

The TDF file selector is only available when using the Split TDF File feature.

• Click the button to select a .tdf dynamic trace file from the list.

• Click the and buttons to select the previous or next file in the list.

 To hide or show a toolbar:

1. Right-click an empty area within the toolbar.

2. Select and clear those toolbars you want to display or hide.

3. Click OK.

UML/SD Viewer Preferences

The Preferences dialog box allows you to change the appearance of the UML
Sequence Diagram reports.

 To choose UML sequence diagram preferences:

1. Select the UML/SD Viewer node:

• Background: This allows you to choose a background color for the UML
sequence diagram.

• Panel: This allows you to choose a background color for panels in the UML
sequence diagram.

• Panel Background: This allows you to choose a background color for selected
panels.

• Coverage Bar: This allows you to choose a background color for the coverage
bar.

124

Graphical User Interface

• Memory Usage: This allows you to choose a background color for the memory
usage bar.

• Print Page header: Select this option to print a page header.

• Print Page footer: Select this option to print a page footer.

• Display Page Breaks: When this option is selected, the UML/SD Viewer
displays horizontal and vertical dash lines representing the page size for
printing.

• Show tooltip in UML/SD Viewer: Use this option to hide or show the
information tooltip in the UML/SD Viewer.

• Time Stamp Format: Use the editable box to select the format in which time
stamps are displayed in the UML/SD Viewer. See Time Stamping.

2. Expand the UML/SD Viewer node, and select Styles or Styles System Test:

• Styles: This list allows you to select one or several styles that you want to
change. To change several styles at the same time, you can perform multiple
selections in the style list.

• Font: This allows you to change the font type and size for the selected style.

• Text Color: This allows you to change the foreground and background colors
for the selected style. This opens a standard color palette.

• Text Attributes: This allows you to set the selected style to Bold, Italic,
Underlined or Dashed.

3. Click OK to apply your changes.

Configurations and Settings

Two major concepts of PurifyPlus for Linux are Configurations and Configuration
Settings:

• A Configuration is an instance of a Target Deployment Port (TDP) as used in
your project.

• Configuration Settings are the particular properties assigned to each node in
your project for a given Configuration.

A Configuration is not the actual Target Deployment Port. Configurations are
derived from the Target Deployment Port that you select when the project is created,
and contain a series of Settings for each individual node of your project.

This provides extreme flexibility when you are using multiple platforms or
development environments. For example:

125

Rational PurifyPlus for Linux - User Guide

• You can create a Configuration for each programming language or compiler
involved in your project.

• You can set up several Configurations based on the same TDP, but with
different libraries or compilers.

• If you are using multiple programming languages in your project, you can even
override the TDP on one or several nodes of a project.

The Configuration Settings allow you to customize runtime analysis configuration
parameters for each node or group of your project, as well as for each Configuration.
You reach the Configuration Settings for each node by right-clicking any node in the
Project Explorer window and selecting Settings.

The left-hand section of the Configuration Settings window allows you to select the
settings families related to the node, as well as the Configuration itself, to which
changes will be made. The right-hand pane lists the individual setting properties.

The right-hand section contains the various settings available for the selected node.

Propagation Behavior of Configuration Settings

The Project Explorer displays a hierarchical view of the nodes that constitute your
project.

Settings for each node are inherited by child nodes from parent nodes. For instance,
Settings of a project node will be cascaded down to all nodes in that project.

Child settings can be set to override parent settings. In this case, the overridden
settings will, in turn, be cascaded down to lower nodes in the hierarchy. Overridden
settings are displayed in bold.

Settings are changed only for a particular Configuration. If you want your changes to
a node to be made throughout all Configurations, be sure to select All Configurations
in the Configuration box.

 To change the settings for a node:

1. In the Project Explorer, click the Settings button.

2. Use the Configuration box to change the Configuration for which the changes
will be made.

3. In the left pane, select the settings family that you want to edit.

4. In the right pane, select and change the setting properties that you want to
override.

5. When you have finished, click OK to validate the changes.

126

Graphical User Interface

By default, the settings of each node are inherited from those of the parent node.
When you override the settings of a parent node, changes are propagated to all child
nodes within the same Configuration. Overridden fields are displayed in bold.

Configuration Settings Structure

The Configuration Settings provides access to the following settings families:

• General

• Build

• Runtime Analysis

The actual settings available for each node depend on the type of node and the
language of the selected Configuration.

General Settings

The General settings are part Configuration Settings dialog box, which allows you to
configure settings for each node.

By default, the settings of each node are inherited from those of the parent node.
When you override the settings of a parent node, changes are propagated to all child
nodes within the same Configuration. Overridden fields are displayed in bold.

Host Configuration

The Host Configuration area lets you override any information about the machine on
which the Target Deployment Port is to be compiled.

• Hostname: The hostname of the machine. By default this is the local host.

• Address: The IP address of the host. For the local host, use 127.0.0.1.

• Socket Uploader Port: The default value is 7777.

• Target Deployment Port: This allows you to change the Target Deployment Port
for the selected nodes. Child nodes will use the default Configuration Settings
from this Target Deployment Port, such as compilation flags.

Source File Information

The Source File Information settings are only available on the project node as they
apply to how PurifyPlus for Linux extracts source file information and dependency
files to be displayed in the Asset Browser view of the Project Explorer. These setting
apply to the entire project and cannot be overridden at the node level.

• Directories for include files: Specifies a list of include directories for the file
tagging facility.

127

Rational PurifyPlus for Linux - User Guide

• Get struct definition like a class: Extracts struct definitions and display them as
classes in the Asset Browser.

Directories

• Build: Specify an optional working directory for the Target Deployment Port.
This is where the generated application will be executed on the target host.

• Temporary: Enter the location for any temporary files created during the Build
process

• Report: Specify the directory where test results are created.

• Java Main Class (for Java only): Specifies the name of the main class for Java
programs.

Target Deployment Port

The Target Deployment Port (TDP) Settings allow you to override the TDP used for
a particular node in the current Configuration. By default, the TDP used is that of the
current Configuration.

• Name: Displays the name of the TDP.

• Directory name: Specifies the TDP directory

• Initial definition file: Indicates the default .ini file in the TDP directory.

• Source file language: Sets the current language of the TDP.

• Object file extension: Specifies the default extension for object files produced
with the current TDP.

• Binary file extension: Specifies the default extension for executable binaries
produced with the current TDP.

• Source file extension: Specifies the default extension for source files used with
the current TDP.

 To edit the General settings for a node:

1. In the Project Explorer, click the Settings button.

2. Select a node in the Project Explorer pane.

3. In the Configuration Settings list, expand General.

4. Select Host Configuration, Directories or Target Deployment Port.

5. When you have finished, click OK to validate the changes.

Build Settings

128

Graphical User Interface

The Build settings are part of the Configuration Settings dialog box, which allows
you to configure settings for each node.

By default, the settings of each node are inherited from those of the parent node.
When you override the settings of a parent node, changes are propagated to all child
nodes within the same Configuration. Overridden fields are displayed in bold.

Compiler Settings

• Preprocessor options: Specific compilation flags to be sent to the Test Compiler.

• Compiler flags: Extra flags to be sent to the compiler.

• Preprocessor macro definitions: Specify any macro definition that are to be sent
to both the compiler preprocessor (if used) and the Test Compilers. Several
generation conditions must be separated by a comma ',' with no space, as in the
following example:
WIN32,DEBUG=1

• Directories for Include Files: Click the ... button to create or modify a list of
directories for included files when the include statement is encountered in
source code and test scripts. In the directory selection box, use the Up and
Down buttons to indicate the order in which the directories are searched.

• Boot Class Path (for Java only): Click the ... button to create or modify the Boot
Class Path parameter for the JVM.

• Class Path (for Java only): Click the ... button to create or modify the Class Path
parameter for the JVM.

Linker Settings

This area contains parameters to be sent to the linker during the build of the current
node.

• Link Flags: Flags to be sent to the linker.

• Additional objects or libraries: A list of object libraries to be linked to the
generated executable. Enter the command line option as required by your
linker. Please refer to the documentation provided with your development tool
for the exact syntax.

• Directories for Libraries: Click the ... button to create or modify a list of
directories for library link files. In the directory selection box, use the Up and
Down buttons to indicate the order in which the directories are searched.

Build Target Deployment Port Settings

This area relates to the parameters of the Target Deployment Port on which is based
the Configuration:

129

Rational PurifyPlus for Linux - User Guide

• Measure time used by: Selects between a real-time Operating system clock or a
Process or task clock for time measurement, if both options are available in the
current Target Deployment Port. Otherwise, this setting is ignored.

• Maximum on-target buffer size: This sets the size of the I/O buffer. A smaller
I/O buffer can save memory when resources are limited. A larger buffer
improves performance.
The default setting for the I/O buffer is 1024 bytes.

• Multi-threads: This box, when selected, protects Target Deployment Port global
variables against concurrent access when you are working in a multi-threaded
environment such as Posix, Solaris or Windows. This can cause an increase in
size of the Target Port as-well-as an impact on performance, therefore select this
option only when necessary.

• Maximum number of threads: When the multi-thread option is enabled, this
setting sets the maximum number threads that can be run at the same time by
the application.

• Run Garbage Collector at exit (for Java only): This setting runs the JVM garbage
collection when the application terminates.

 To edit the Build settings for a node:

1. In the Project Explorer, click the Settings button.

2. Select a node in the Project Explorer pane.

3. In the Configuration Settings list, expand Build.

4. Select Compiler, Linker or Target Deployment Port.

5. When you have finished, click OK to validate the changes.

External Command Settings

The External Command settings are part of the Configuration Settings dialog box,
which allows you to configure settings for each node.

Use the External Command setting to set a command line for External Command
nodes. An External Command is a command line that can be included at any point in
your workspace. External Commands can contain PurifyPlus for Linux GUI macro
variables, making them context-sensitive. See the GUI Macro Variables chapter in the
Reference Manual.

By default, the settings of each node are inherited from those of the parent node.
When you override the settings of a parent node, changes are propagated to all child
nodes within the same Configuration. Overridden fields are displayed in bold.

130

Graphical User Interface

 To edit the External Command settings for one or several nodes:

1. In the Project Explorer, click the Settings button.

2. Select a node in the Project Explorer pane.

3. Select the External Command node and enter a Command line.

4. When you have finished, click OK to validate the changes.

Static Metric Settings

The Static Metric settings are part of the Configuration Settings dialog box, which
allows you to configure settings for each node.

Use the Static Metric settings to change any project settings related to the calculation
of static metrics.

By default, the settings of each node are inherited from those of the parent node.
When you override the settings of a parent node, changes are propagated to all child
nodes within the same Configuration. Overridden fields are displayed in bold.

• One level metrics: By default, .met static metric files are produced for source
files as well as all dependency files that are found by the Source Code Parser.
Set One level metrics to Yes to restrict the calculation of static metrics only to the
source files displayed in the Project Browser.

• Analyzed directories: This setting allows you to restrict the generation of .met
metric files only to files which are located in the specified directories.

 To edit the Static Metrics settings for one or several nodes:

1. In the Project Explorer, click the Settings button.

2. Select a node in the Project Explorer pane.

3. Select the Static Metrics node.

4. When you have finished, click OK to validate the changes.

Runtime Analysis Settings

General Runtime Analysis Settings

The General Runtime Analysis settings are part of the Configuration Settings dialog
box, which allows you to configure settings for each node.

By default, the settings of each node are inherited from those of the parent node.
When you override the settings of a parent node, changes are propagated to all child
nodes within the same Configuration. Overridden fields are displayed in bold.

131

Rational PurifyPlus for Linux - User Guide

Snapshot Settings

In some case, such as with applications that never terminate or when working with
timing or memory-sensitive targets, you might need to dump traces at specifics
points in your code.

• On Function Entry: Allows you to specify a list of function names, from your
source code, that will dump traces at the beginning of the function.

• On Function Return: Allows you to specify a list of function names, from your
source code, that will dump traces at the end of the function.

• On Function Call: Allows you to specify a list of function names, from your
source code, that will dump traces before the function is called.

For each tab, click the ... button to open the function name selection box. Use the Add
and Remove buttons to create a list of function names.

See Generating SCI Dumps for more information.

Selective Instrumentation

By default, runtime analysis features instrument all components of source code under
analysis.

The Selective Instrumentation settings allow you to more finely define which units
(classes and functions) you want to instrument and trace.

• Units excluded from instrumentation: Click the ... button to access a list of units
(classes and functions) that can be excluded from the instrumentation process.
Click a unit to select or clear a unit. Use the Select File and Clear File buttons to
select and clear all units from a source file.

• Files excluded from instrumentation: Click the ... button and use the Add and
Remove buttons to select the files to be excluded.

• Instrument inline methods: Extends instrumentation to inline methods.

• Instrument included methods or functions: Extends instrumentation to included
methods or functions.

• Directories excluded from instrumentation: Click the ... button and use the Add,
Remove buttons to select the files to be excluded.

Static File Storage

Depending on the runtime analysis feature, the product generates .tsf or .fdc
temporary static data files during source code instrumentation of the application
under analysis.

132

Graphical User Interface

• Code Coverage Static File Storage (.fdc): These settings apply to Code Coverage
.fdc static trace files:

• Build directory: Select this option to use the current directory for all generated
files.

• Other directory: Select this option to define a specific directory.

• Source directory: Select this option to use the same directory as the source
under analysis.

• Use single temporary file (.fdc): By default, Code Coverage produces one .fdc
file for each instrumented source file. Select this option to use a single .fdc file
for all instrumented source files, and specify its location.

• FDC Directory: When using the Use single temporary file (.fdc) option in the
previous setting, specify a location for the .fdc file.

• Memory Profiling, Performance Profiling, and Runtime Tracing Storage: This
setting applies to Memory Profiling, Performance Profiling and Runtime
Tracing .tsf static trace files.

• Build directory: Select this option to use the current directory for all generated
files.

• Other directory: Select this option to define a specific directory.

• Source directory: Select this option to use the same directory as the source
under analysis.

• Use single temporary file (.tsf): By default, Memory Profiling, Performance
Profiling and Runtime Tracing produces one .tsf file for each instrumented
source file. Select this option to use a single .tsf file for all instrumented source
files, and specify its location.

• TSF Directory: When using the Use single temporary file (.tsf) option in the
previous setting, specify a location for the .tsf file.

Miscellaneous Options

• Label Instrumented Files: Select this option to add an identification header to
files generated by the Instrumentor, including the command line used to
generate the file, the version of the product, date and operating system
information.

• Full template instantiation: By default unused methods are ignored by the
Instrumentor. Set this option to Yes to analyze all template methods, even if
they are not used.

• Additional Instrumentor Options: This setting allows you to add command line
options for the Instrumentor. Normally, this line should be left blank.

133

Rational PurifyPlus for Linux - User Guide

 To edit the General Runtime Analysis settings for a node:

1. In the Project Explorer, click the Settings button.

2. Select a node in the Project Explorer pane.

3. In the Configuration Settings list, expand Runtime Analysis and General.

4. Select Snapshot, Selective Instrumentation, Static File Storage or Miscellaneous.

5. When you have finished, click OK to validate the changes.

Memory Profiling Settings

The Memory Profiling Instrumentation Control and Memory Profiling Misc. Options
settings are part of the Runtime Analysis node of the Configuration Settings dialog
box, which allows you to configure settings for each node.

By default, the settings of each node are inherited from those of the parent node.
When you override the settings of a parent node, changes are propagated to all child
nodes within the same Configuration. Overridden fields are displayed in bold.

Instrumentation Control

• File in use (FIU): When the application exits, this option reports any files left
open.

• Memory in use (MIU): When the application exits, this option reports allocated
memory that is still referenced.

• Signal (SIG): This option indicates the signal number received by the application
forcing it to exit.

• Freeing Freed Memory (FFM) and Late Detect Free Memory Write (FMWL):
Select Display Message to activate detection of these errors.

• Free queue length (blocks) specifies the number of memory blocks that are kept
free.

• Free queue size (Kbytes) specifies the total buffer size for free queue blocks. See
Freeing Freed Memory (FFM) and Late Detect Free Memory Write (FMWL).

• Display Detect Array Bounds Write (ABWL): Select Yes to activate detection of
this error.

• Red zone length (bytes) specifies the number of bytes added by Memory
Profiling around the memory range for bounds detection.

• Number of functions: specifies the maximum number of functions reported
from the end of the CPU call stack. The default value is 6.

134

Graphical User Interface

Misc. Options

• Trace File Name (.tpf): This box allows you to specify a filename for the
generated .tpf trace file.

• Global variables to exclude from observation (for Java only): This box specifies a
list of global variables that are not to be inspected for memory leaks. This option
can be useful to save time and instrumentation overhead on trusted code. Use
the Add and Remove buttons to add and remove global variables.

JVMPI

• Object hashtable size: Specifies the size of hashtables for objects where <size>
must be 64, 256, 1024 or 4096 values.

• Class hashtable size: Specifies the size of hashtables for classes where <size>
must be 64, 256, 1024 or 4096 values.

• Take a Snapshot: You can select one of the following options:

• On method entry or return or dump snapshot button: Uses a specified method
to perform snapshot or the GUI snapshot button as specified in the Enable
dump Snapshot button setting.

• After each Garbage Collection: Takes a snapshot each time the JVM garbage
collector runs.

• Enable dump snapshot button and Delay Snapshot until next Garbage
Collection: Specify the trigger method.

• Host name used by dump Snapshot button: Use this option to specify a
hostname for the JVMPI Agent to communicate with the GUI.

• Port Number used by dump Snapshot button: Use this option to specify a port
number for the JVMPI Agent to communicate with the GUI.

• TPF file name (.tpf): Specifies the name of the Memory Profiling trace dump file
produced by the JVMPI Agent.

• TXF file name (.txf): Specifies the name of the Memory Profiling static trace
dump file.

• Display only listed methods: Use the Add and Remove buttons to add and
remove methods to be listed by the Java Memory Profiling report.

• Collect referenced objects: Sets the filter to be used with the Java Memory
Profiling Report.

• Display only listed packages: Use this setting to filter out of the report the
packages that do not match the specified full package name (package and class).

135

Rational PurifyPlus for Linux - User Guide

• Display only listed classes: Use this setting to filter out of the report the classes
that do not match the specified full classes.

• Display call stack for listed methods: Use this setting to list the methods for
which the call stack is to be displayed in the Java Memory Profiling report.

 To edit the Memory Profiling settings for one or several nodes:

1. In the Project Explorer, click the Settings button.

2. Select a node in the Project Explorer pane.

3. Select the Runtime Analysis node and the Memory Profiling node.

4. Select either Instrumentation Control, Misc. Options or JVMPI.

5. When you have finished, click OK to validate the changes.

Performance Profiling Settings

The Performance Profiling settings are part of the Runtime Analysis node of the
Configuration Settings dialog box, which allows you to configure settings for each
node.

By default, the settings of each node are inherited from those of the parent node.
When you override the settings of a parent node, changes are propagated to all child
nodes within the same Configuration. Overridden fields are displayed in bold.

Trace File Name (.tqf): This box allows you to specify a filename for the generated .tqf
trace file for Performance Profiling.

 To edit the Performance Profiling settings for one or several nodes:

1. In the Project Explorer, click the Settings button.

2. Select a node in the Project Explorer pane.

3. Select the Runtime Analysis node and the Performance Profiling node.

4. When you have finished, click OK to validate the changes.

Code Coverage Settings

The Code Coverage Instrumentation Control settings are part of the Runtime
Analysis node of the Configuration Settings dialog box, which allows you to
configure settings for each node.

By default, the settings of each node are inherited from those of the parent node.
When you override the settings of a parent node, changes are propagated to all child
nodes within the same Configuration. Overridden fields are displayed in bold.

136

Graphical User Interface

Instrumentation Control Settings

You can use the Coverage Type settings to declare various types of coverage.

• Coverage Level Functions or Methods: select between function Entries, With
exits, or None.

• Coverage Level Calls: select Yes or No to toggle call code coverage for C only.

• Coverage Level Blocks: select the desired block code coverage method.

• Coverage Level Conditions: select condition code coverage for C only.

Please see Selecting Coverage Types for details on using each coverage type with
each language.

You can combine, enable, or disable any of these coverage types before running the
application node. All coverage types selected for instrumentation can be filtered out
in the Code Coverage Viewer.

• Mode: This setting specifies the Instrumentation Modes to be used by Code
Coverage.

• Default (Optimized for Code Size and Speed): This setting uses one byte per
branch to indicate branch coverage.

• Compact (Optimized for Memory): This setting uses one bit per branch. This
method saves target memory but uses more CPU time.

• Report Hit Count: This adds information about the number of times each
branch was executed. This method uses one integer per branch.

Selective Code Coverage Instrumentation

• Ternary coverage (for C and C++ only): For C and C++, when this option is
selected, Code Coverage is extended to ternary expressions as statement blocks.

• Functions to Exclude from Calls Code Coverage: Specifies a list of functions to
be excluded from the call coverage instrumentation type, such as printf or
fopen. Use the Add, Remove buttons to tell Code Coverage the functions to be
excluded.

Miscellaneous Options

• Trace File Name (.tio): this allows you to specify a path and filename for the .tio
dynamic coverage trace file.

• Compute deprecated metrics: This setting is for compatibility with third party
tools designed for previous versions of the product. Set this to No in most cases.

137

Rational PurifyPlus for Linux - User Guide

• User comment: This adds a comment to the Code Coverage Report. This can be
useful for identifying reports produced under different Configurations. To view
the comment, click the a magnifying glass symbol that is displayed at the top of
your source code in the Code Coverage Viewer.

 To change the Code Coverage Instrumentation Control setting for an
application or test node.

1. In the Project Explorer, click the Settings button.

2. Select a node in the Project Explorer pane.

3. Select the Runtime Observation node, and the Coverage node.

4. Select Instrumentation Control.

5. When you have finished, click OK to validate the changes.

Runtime Tracing Settings

The Runtime Tracing Control settings are part of the Runtime Analysis node of the
Configuration Settings dialog box, which allows you to configure settings for each
node.

By default, the settings of each node are inherited from those of the parent node.
When you override the settings of a parent node, changes are propagated to all child
nodes within the same Configuration. Overridden fields are displayed in bold.

Instrumentation Control

• Trace File Name (.tdf): This allows you to force a filename and path for the
dynamic .tdf file. By default, the .tdf carries the name of the application node.

• Functions called within a return expression are sequenced: For C only. With this
option, the UML/SD Viewer displays calls located in return expressions as if
they were executed sequentially and not in a nested manner.

• Collapse unnamed classes and structures: For C++ only. With this option,
unnamed structs and unions are not instrumented.

• Display class template instantiation in a note: For C++ only. With this option,
the UML/SD Viewer will not display notes for template instances for each
template class instance.

Trace Control

• Split Trace File Enable: See Splitting trace files for more information on this
setting.

138

Graphical User Interface

• Maximum Size (Kbytes): This specifies the maximum size for a split .tdf file.
When this size is reached, a new split .tdf file is created.

• File name prefix: By default, split files are named as att_<number>.tdf, where
<number> is a 4-digit sequence number. This setting allows you to replace the
att_ prefix with the prefix of your choice.

• Automatic loop detection enable: Loop detection simplifies UML sequence
diagrams by summarizing repeating traces into a loop symbol. Loops are an
extension to the UML sequence diagram standard and are not supported by
UML.

• Options (Reserved for future use): This setting allows you to add command line
options. Normally, this line should be left blank.

• Display largest call stack length: When selected, the Target Deployment Port
records the highest level attained by the call stack during the trace. This
information is displayed at the end of the UML Sequence Diagram in the
UML/SD Viewer as Maximum Calling Level Reached.

Target Deployment Port Settings

These settings allow you to set compilation flags that define how the Runtime
Tracing feature interacts with the Target Deployment Port. These are general settings
for the Target Deployment Port.

• Disable on-the-fly mode: When selected, this setting stops on-the-fly updating
of the dynamic .tdf file. This option is primarily for Target Deployment Ports
that use printf output.

• Trace Buffer Enable and Partial Trace Flush Enable: Please see Trace Item Buffer
and Partial Trace Flush for more information about these settings.

• Maximum number of recorded Trace elements before buffer flush

• When receiving user signal: No Action, Flush Call Stack, Trace On/Off

• Record and display Time Stamp: This setting adds time stamp information to
each element in the UML sequence diagram generated by Runtime Tracing.

• Record and display Heap Size (for Java only): This setting enables the Heap Size
Bar in the UML sequence diagram produced by Runtime Tracing.

• Record and display Thread Info (for Java only): This setting enables the Thread
Bar in the UML sequence diagram produced by Runtime Tracing.

 To edit the Runtime Tracing settings for one or several nodes:

1. In the Project Explorer, click the Settings button.

2. Select a node in the Project Explorer pane.

139

Rational PurifyPlus for Linux - User Guide

3. Select the Runtime Analysis node and the Runtime Tracing node.

4. Select Instrumentation Control, Trace Control or Target Deployment Port
Settings.

5. When you have finished, click OK to validate the changes.

Selecting Configurations

Although a project can use multiple Configurations, as well as multiple TDPs, there
must always be at least one active Configuration.

The active Configuration affects build options, individual node settings and even
wizard behavior. You can switch from one Configuration to another at any time,
except during build activity, when the green LED flashes in the Build toolbar.

 To switch Configurations:

1. From the Build toolbar, select the Configuration you wish to use in the
Configuration box.

Modifying Configurations

Configurations are based on the Target Deployment Ports (TDP) that are specified
when you create a new project. In fact, a Configuration contains basic Configuration
Settings for a given TDP applied to a project, plus any node-specific overridden
settings.

Remember that although a project can use multiple Configurations, as well as
multiple TDPs, there must always be at least one active Configuration.

Configuration Settings are a main characteristic of the project and can be individually
customized for any single node in the Project Explorer.

 To create a new Configuration for a Project:

1. From the Project menu, select Configurations.

2. In the Configurations dialog box, click the New... button.

3. Enter a Name for the Configuration.

4. Select the Target Deployment Port to be used to create the Configuration.

5. Enter the Hostname, Address and Port of the machine on which the Target
Deployment Port is to be compiled.

6. Click OK.

7. Click Close.

140

Graphical User Interface

 To remove a Configuration from a Project:

If you choose to remove a Configuration, all custom settings for that Configuration
will be lost.

1. From the Project menu, select Configurations.

2. In the Configurations dialog box, select the Configuration to be removed.

3. Click the Remove button.

4. Click Yes to confirm the removal of the Configuration

 To copy an existing Configuration:

This can be useful if you want several Configurations, with different custom settings,
based on a unique Target Deployment Port.

1. From the Project menu, select Configurations.

2. In the Configurations dialog box, select an existing Configuration.

3. Click the Copy To... button

4. Enter a Name for the new Configuration.

5. Click OK.

Working with Projects

Working with Projects

The project is your main work area in PurifyPlus for Linux, as displayed in the
Project Explorer window.

A project is a tree representation that contains nodes. Projects can contain one or
more sub-projects which are actually links to other projects.

Note Previous versions of the product used Workspaces instead of sub-
projects. Workspaces are automatically converted to sub-projects when loaded
into the current version of the product.

Within the project tree, each node has its own individual Configuration Settings —
inherited from its parent node— and can be individually executed.

Understanding Projects

A project is a tree representation that contains nodes.

141

Rational PurifyPlus for Linux - User Guide

Within the project tree, each node has its own individual Configuration Settings —
inherited from its parent node— and can be individually executed.

Project Nodes

The project is your main work area in PurifyPlus for Linux.

A project is materialized as a directory in your file system, which contains everything
you need to test and analyze your code:

• Source code

• Analysis result files

In the PurifyPlus for Linux GUI, a project is organized as follows

• Project node: this node contains any of the following nodes:

• Group node: Allows you to group together several application or test nodes.

• Application node: contains a complete application.

• Results node: contains your runtime analysis result files, once the application
has been executed. Use this node to control the result files in Rational ClearCase
or any other configuration management system.

• Source node: these are the actual source files under test. They can be
instrumented or not instrumented .

• External Command node: this node allows you to execute a command line
anywhere in the project. Use this to launch applications or to communicate with
the application under test.

Application and test nodes can be moved around the project to change the order in
which they are executed. The order of files inside a Test node cannot be changed; for
example the test script must be executed before the source under test.

Sub-Projects

Projects can contain one or more sub-projects which are actually links to other project
directories. The behaviour of a sub-project is the same as a project. In fact, a sub-
project can be opened separately as a stand-alone project.

Note Previous versions of the product used Workspaces instead of sub-
projects. Workspaces are automatically converted to sub-projects when loaded
into the current version of the product.

Results Node

By default, each application node contains a Results node.

142

Graphical User Interface

Once the test or runtime analysis results have been generated, this node contains the
report files. Right-click the result node or the report files to bring up the Source
Control popup menu.

If you are not controlling result files in a configuration management system, you can
hide the Results node by setting the appropriate option in the Project Preferences.

Creating a Group

The Group node is designed to contain several application nodes. This allows you to
organize workspace by grouping applications together.

This also allows you to build and run a specific group of application nodes without
running the entire workspace.

 To create a group node:

1. In the Project Explorer, right-click the workspace node or right-click any
application node.

2. From the pop-up menu, select Add Child and Group.

3. In the New Group box, enter the name of the group.

4. Click OK.

Manually Creating an Application Node

Application nodes are the main building blocks of your workspace. An application
node typically contains the source files required to build the application.

The preferred method to create an application node is to use the Activity Wizard,
which guides you through the entire creation process.

However, if you are re-using existing components, you might want to create an
empty application node and manually add its components to the workspace.

The GUI allows you to freely create and modify test or application nodes. However,
you must follow the logical rules regarding the order of execution of the items
contained in the node.

 To manually add components to the application node.

1. In the Project Explorer, right-click a Project node or a Group node.

2. From the pop-up menu, select Add Child and Files.

3. In the File Selector, select the files that you want to add to the application node.

4. Click Ok.

Note Before running an application node created with this method, please

143

Rational PurifyPlus for Linux - User Guide

ensure that all necessary files are present in the application node and that all
Configuration Settings have been correctly set.

Creating an External Command Node

External Command nodes are custom nodes that allow you to add a user-defined
command line at any point in the project tree.

This is particularly useful when you need to run a custom command line during
execution.

 To add an external command to a workspace:

1. In the Project Explorer, right-click the node inside which you want to create the
application or external command node

2. From the pop-up menu, select Add Child and External Command.

3. To move the node up or down in the workspace, right-click the external
command node and select Move Up or Move Down .

 To specify a command line for the external node:

Once the External Command node has been created, you can specify the command
line that it will be carrying in the Configuration Settings dialog box:

1. In the Project Explorer, click the Settings button.

2. Click the External Command node.

3. Enter the command in the Command box.

4. Click OK.

Note External Commands support the GUI Macro Language so that you can send
variables from the GUI environment to your command line. See the GUI Macro
Language section in the Reference Manual for further details.

Importing Files from a Makefile

The PurifyPlus for Linux GUI offers the ability to create a project by importing source
files from an existing makefile.

Note The Import Makefile feature merely imports a list of files as referenced
in the makefile. It does not import everything you need to immediately build a
project in PurifyPlus for Linux.

The makefile import feature creates a new project, reads the makefile and adds the
source files found in the makefile to the project. The project is created with the
default Configuration Settings of the current Target Deployment Port (TDP).

144

Graphical User Interface

Any other information contained in the makefile, such as compilation options must
be entered manually in the Configuration Settings dialog box. The following
limitations apply:

• Source files must be referenced in the build line

• The makefile cannot be recursive

• Any external commands such as Unix Shell commands are not imported

• Complex operations with variables cannot be imported

Any environment variables used within the makefile must be valid.

You can also use Import Makefile feature to import any list of files contained in a
plain text file.

 To import files from a makefile:

1. Close any open projects.

2. From the File menu, select Import and Import Makefile. Use the file selector to
locate a valid makefile and click Open.

3. Enter a name for the new project and click OK.

4. Select the correct Configuration in the Configuration toolbar.

5. In the Project Explorer, click Settings .

6. Enter any specific compilation options in the Build settings and click OK.

Refreshing the Asset Browser

The Asset Browser view of the Project Explorer window analyzes source files and
extracts information about source code components (classes, methods, functions,
etc...) as well as any dependency files. This capability, known as file tagging, allows
you to navigate through your source files more easily and provides direct access to
the source code components through the Text Editor.

When the automatic file tagging option is selected, PurifyPlus for Linux refreshes the
file information whenever a change is detected. However, you can use the Refresh
Information command to update a single file or the entire project.

You can change the way files are tagged by PurifyPlus for Linux by changing the
Source File Information Configuration Settings for the current project.

Note When many files are involved in the tagging process, the Refresh
Information command may take several minutes.

145

Rational PurifyPlus for Linux - User Guide

 To manually refresh a single file in the Asset Browser:

1. In the Project Explorer, select the Asset Browser tab.

2. Right-click the file or object that you want to refresh.

3. From the pop-up menu, select Refresh Information.

 To refresh all project files:

1. From the Build menu, select Refresh Asset Browser, or press the F9 key.

 To activate or de-activate the automatic refresh:

With the automatic file tagging option, files are automatically refreshed whenever a
file is loaded into the workspace or selected in the Project Explorer.

1. From the Edit menu, select Preferences.

2. Select the Project preferences node.

3. Select or clear the Activate file tagging option, and then click OK.

 To edit the Source File Information settings for the project:

1. In the Project Explorer, click the Settings button.

2. Select the project node in the Project Explorer pane.

3. In the Configuration Settings list, expand General.

4. Select Source File Information.

5. When you have finished, click OK to validate the changes.

Deleting a Node

Removing nodes from a project does not actually delete the files, but merely removes
them from the Project Explorer's representation.

 To delete a node from the Project Explorer:

1. Select one or several nodes that you want to delete.

2. From the Edit menu, select Delete or press the Delete key.

Renaming a Node

Renaming a node in the Project Explorer involves modifying the properties of the
node.

146

Graphical User Interface

 To change the name of a node:

• In the Project Explorer, right-click the node that you want to modify.

• Select Properties in the pop-up menu.

• Change the Name of the node.

• Click OK.

Viewing File Properties

You can obtain and change file or node properties by opening the Properties
window.

 To view file properties:

1. Right-click a file in the Project Explorer.

2. Select Properties... from the pop-up menu.

Excluding a Node from a Build

In some cases, you might want to temporarily exclude one or several nodes from the
build process. This can be done directly in the Project Explorer, as described below,
or through the Properties window.

Note If you exclude a node that contains child nodes, such as an application
node, a group or even a project, none of the contents of the node are executed.

In the Project Explorer, excluded nodes are displayed with a symbol. Normally
built nodes are displayed with a symbol.

 To exclude a node from the build:

1. In the Project Explorer, select the node that you want to exclude from the build.

2. In the Properties window set the Build property to No.

 To cancel the exclusion of a node:

1. In the Project Explorer, select the node that you want to exclude from the build.

2. In the Properties window set the Build property to No.

Excluding a Node from Instrumentation

In some cases, you might want to exclude one or several source files from the
instrumentation process. This can be done directly in the Project Explorer, as
described below, or through the Properties window.

147

Rational PurifyPlus for Linux - User Guide

• Instrumented files are displayed with a blue icon

• Non-instrumented files are displayed with a white icon
You can combine both of the following methods to exclude or include a large number of files from the
instrumentation process.

 To exclude entire directories from instrumentation:

1. In the Project Explorer, click the Settings button.

2. Select Runtime Analysis, General Runtime Analysis and Selective
Instrumentation.

3. In Directories excluded from Instrumentation, add the directories to be
excluded.

4. Click Ok.

 To turn off instrumentation for an individual node:

1. In the Project Explorer, select the node that you want to exclude from the build.

2. In the Properties window set the Instrumented property to No.

Adding Files to the Project

The Project Explorer centralizes all Project files in a unique location. For PurifyPlus
for Linux to access and analyze source files, they must be accessible from the Project
Explorer.

Files are automatically added when you use the Activity Wizard.

 To add files to the Project Explorer:

1. In the Project Explorer, select the Object Browser tab

2. In the Sort Method box, select By Files.

3. From the Project menu, select Add to Current Project and New File...

4. This opens the file selector. In the file Type box, select the type of files that are to
be added.

5. Locate and select one or several files to be added, and click Open.

The selected files will appear under the Source sections of the Project Explorer.

If you have the Automatic source browsing option enabled, your source files will be
analyzed, making their components directly accessible in the Project Explorer.

148

Graphical User Interface

Selecting Build Options

The PurifyPlus for Linux GUI allows you to specify the items that will be performed
during a build.

The Stages section contains the compilation options. In most cases, you will need to
select the All option to ensure the test is up to date.

The Runtime Analysis section allows you to enable debugging and Runtime Analysis
features.

 To select build options:

1. From the Build menu, select Options.

2. Select the Runtime Analysis features (Memory Profiling, Performance Profiling,
Code Coverage and Runtime Tracing) and build options to use them on the
current node.

Building and Running a Node

You build and execute workspace nodes by using the Build button on the Build
toolbar. The build process compiles, links, deploys, executes, and then retrieves
results. However, you first have to specify the various build options.

You can use the Build command to execute any application node, as well as a
single specific source file, a group node or even the whole project.

Note When you run the Build command, all open files are saved. This
means that any unsaved changes will actually be taken into account for the
build.

 Before building a node:

1. Select the correct Configuration for your target in the build toolbar.

2. Exclude any temporarily unwanted nodes from the build.

3. Select the build options for the test.

4. If necessary, clean up files left by any previous executions by clicking the Clean
button.

 To build and execute the node:

1. From the Build toolbar, click the Build button.

2. During run-time, the Build Clock indicates the execution time and the green
LED flashes. The Project Explorer displays a check mark next to each item to
mark progression of the build process.

3. When the build process is finished, you can view the related test reports.

149

Rational PurifyPlus for Linux - User Guide

 To stop the execution:

1. If you want to stop the execution of a node before it finishes, or if the
application does not stop by itself, click the Stop Build/Execution button.

Cleaning Up Generated Files

In some cases, you might want to delete any files created by a build execution, such
as to perform the build process in a clean environment or when you are running
short of disk space.

Use the Clean All Generated Files command to do this.

 To clean your workspace:

1. From the Build toolbar, click the Clean All Generated Files button.

Creating a Source File Folder

The Project Explorer Asset Browser provides a convenient way of viewing the source
files in your project.

To make this even more convenient, you can create custom folders to accommodate
any file types. This makes navigation through your source files even easier.

Note The Asset Browser provides a virtual navigation interface. The actual files do
not change location. Use the Properties Window to view the actual file locations.

 To create a custom folder:

1. In the Asset Browser, select the By File sort method.

2. Right-click on an existing folder.

3. From the popup menu, select New Folder...

4. Enter a name for the new folder and a file filter for the desired file type.

Opening a Report

Because of the links between the various views of the GUI, there are many ways of
opening a runtime analysis report in PurifyPlus for Linux. The most common ones
are described here.

Note Some reports require opening several files. For instance, when
manually opening a UML sequence diagram, you must select at the complete
set of .tsf files as well as the .tdf file generated at the same time. A mismatch in
.tsf and .tdf files would result in erroneous tracing of the UML sequence
diagram.

150

Graphical User Interface

 To open a report from the Project Explorer:

1. Execute your test with the Build command.

2. Right-click the application node.

3. From the pop-up menu, select View Report and then the appropriate report.

Note Reports cannot be viewed before the application has been executed.

 To manually open a report made of several files:

1. From the File menu, select Browse Reports. Use the Browse Reports window to
create a list of files to be opened in a single report. For example, a .tdf dynamic
trace file with the corresponding .tsf static trace files.

2. Click the Add button. In the Type box of the File Selector, select the
appropriate file type. For example, select .tdf.

3. Locate and select the report files that you want to open. Click Open.

4. Click the Add button. In the Type box of the File Selector, select the
appropriate file type. For example, select .tsf.

5. Locate and select the report files that you want to open. Click Open.

6. In the Browse Reports window, click Open.

Report Viewers

The GUI opens the report viewer adapted to the type of report:

• The UML/SD Viewer displays UML sequence diagram reports.

• The Report Viewer displays Memory Profiling reports for Java.

• The Code Coverage Viewer displays code coverage reports.

• The Memory Profiling Viewer and Performance Profiling Viewer display
Memory Profiling for C and C++ and Performance Profiling results.

Troubleshooting a Project

When executing a node for the first time in PurifyPlus for Linux, it is not uncommon
to experience compilation issues. Most common problems are due to some common
oversights pertaining to library or include paths or Target Deployment Port settings.

To help debug such problems during execution, you can prompt the GUI to report
more detailed information in the Output window by selecting the verbose output
option.

151

Rational PurifyPlus for Linux - User Guide

 To set the verbose output option from the GUI:

1. From the Edit menu, select Preferences.

2. Select the Project preferences.

3. Select Verbose output and click OK.

 To set the verbose output option from the command line:

1. Set the environment variable $ATTOLSTUDIO_VERBOSE.

2. Rerun the command line tools.

Debug Mode

The Debug option allows you to build and execute your application under a
debugger.

The debugger must be configured in the Target Deployment Port. See the Rational
Target Deployment Guide for further information.

Note Before running in Debug mode you must change the Compilation and
Link Configuration Settings to support Debug mode. For example set the -g
option with most Linux compilers.

Editing Preferences

Rational PurifyPlus for Linux has many Preference settings that allow you to
configure various components of the graphical user interface.

 To edit product preferences:

1. From the Edit menu, select Preferences.

2. In the tree-view, select the component that you want to configure.

3. Make any changes to the preferences.

4. Click OK.

Project Preferences

The Project Preferences dialog box lets you set parameters for the PurifyPlus for
Linux project.

In the Preferences dialog box, select Project to change the project preferences.

• Automatic file tagging: Select this option to activate the Project Explorer's
automatic parsing mode, in which all source code and script components are

152

Graphical User Interface

automatically listed. If disabled, you will have to manually refresh the File View
each time you modify the structure of a file.

• Calculate static metrics: Select this option to ensure that static metrics are
recalculated whenever a file is added, modified or refreshed in the Project
Explorer window.

• Verbose output: Select this option to prompt the PurifyPlus for Linux GUI to
report detailed information to the Output Window during execution. Use this
option to debug any compilation issues.

• Show report nodes in Project Explorer: Select this option to display runtime
analysis reports in the Project Browser once they have been successfully
generated. Report nodes appear inside their application nodes.

Connection Preferences

The Preferences dialog box allows you to customize PurifyPlus for Linux.

The Connections node of the Preferences dialog box lets you set the network
parameters for the graphical user interface.

1. In the Preferences dialog box, select the General node and Connections.

• Allow remote connections: This allows external commands and tools to
send messages to the GUI over a network. For example, this enables the
Runtime Tracing on-the-fly capability on remote hosts.

• For information only, the Current TCP/IP port is automatically selected
by GUI.

2. Click OK to apply your changes.

Activity Wizards

The Start Page provides with a full set of activity wizards to help you get started with
a new project or activity.

 To start a new activity wizard:

1. From the Start Page, click New Activities

2. Select the activity of your choice.

New Project Wizard

When PurifyPlus for Linux start, the Start Page offers to either open an existing
project or create a new project. The New Project wizard creates a brand new project.

153

Rational PurifyPlus for Linux - User Guide

 To create a new project:

1. From the Start Page, select New Project.

2. In the Project Name, enter a name for the project.

3. In the Location box, change the default directory if necessary and click Next to
continue.

4. Select one or several Target Deployment Ports for the new project.

The Wizard creates a Configuration based on each selected Target Deployment
Port. Later, when working with the project, any changes are made to the
Configuration Settings, not to the Target Deployment Port itself.

5. Click the Set as Active button to set the current TDP. The active port is the
default Configuration to be used in your project.

6. Click Finish.

Once your project has been created, the wizard opens the Activities page.

Runtime Analysis Wizard

The Runtime Analysis Wizard helps you create a new application node in the Project
Explorer. Basically, an application node represents the build of your C, C++ or Java
source code, which is very similar to most other integrated development
environments (IDE). You can actually use this graphical user interface as your
primary IDE.

Once you have created your application node, you simply add the options required
to run any of the runtime analysis features:

• Memory Profiling

• Performance Profile

• Code Coverage

• Runtime Tracing

 To create an application node with the Runtime Analysis Wizard:

1. Use the Start Page or the File menu to open or create a project.

2. Ensure that the correct Configuration is selected in the Configuration box.

3. On the Start Page, select Activities and choose the Runtime Analysis activity.

4. The Application Files page opens. Use the Add and Remove buttons to build a
list of source files and header files (for C and C++) to add to your project.

The Configuration Settings button allows you to override the default
Configuration Settings.

154

Graphical User Interface

Use the Move Up and Move Down buttons to change the order in which files
appear in the application node, and subsequently are compiled.
Use the Remove button to remove files from the selection.

Click Next to continue.

5. Select the C procedures and functions, C++ or Java classes that you want to
analyze.

Use the Select File and Deselect File buttons to specify the files that contain the
components that you want to analyze. The Select All and Deselect All buttons to
select or clear all components.

Click Next to continue.

6. If you are creating a Java application node, set the basic settings that are
required for the program to compile:

• Class path: Click the "..." button to create or modify the Class Path
parameter for the JVM

• Java main class: Select the name of the main class

• Jar creation: Specifies whether to build an optional .jar file, as well as the
basic .jar related options

Click Next to continue.

7. Enter a name for the application node.

By default, the new application node inherits Configuration Settings from the
current project. If necessary, click Settings to access the Configuration Settings
dialog box. This allows you to change any particular settings for the new
application node as well as its contents.

Click Next to continue.

8. In the Summary page, check that all the parameters are correct, and click Finish.

The wizard creates an application node that includes all of the associated source files.

You can now select your build options to apply any of the runtime analysis features
to the application under analysis.

155

Command Line Interface

Rational PurifyPlus for Linux was designed ground-up to provide seamless
integration with your development process. To achieve this versatility, the entire set
of features are available as command line tools.

In most cases when a CLI is necessary, the easiest method is to develop, set up and
configure your project in the graphical user interface and to use the studio command
line to launch the GUI and run the corresponding project node.

When not using the GUI to execute a node, you must create source files that can
acquire runtime analysis data without conflicting with your native compiler and
linker.

The primary choice is whether or not you wish to perform source code insertion (SCI)
as an independent activity or as part of the compilation and linkage process. Of
course, if no runtime analysis is required, source code insertion is unnecessary and
should not be performed. To simply perform source code insertion, use the binaries:

• attolcc1 for the C language

• attolccp for the C++ language

• javi for the Java language

However, if the user would like compilation and linkage to immediately follow
source code insertion, use the binaries:

• attolcc for the C and C++ language

• javic for the Java language for standard compilation

• inclusion of the javic.jar library, and calls to javic.jar classes, as part of an ant-
facilitated build process

The complete syntax and command line reference for each of these command line
tools is covered in the Rational PurifyPlus for Linux Reference Manual.

The following sections provide details about the most common use cases.

157

Rational PurifyPlus for Linux - User Guide

Running a Node from the Command Line

Although the product contains a full series of command line tools, it is usually much
easier to create and configure your runtime analysis specifications inside the
graphical user interface (GUI). The CLI would then be used to simply launch the GUI
with a project or project node as a parameter.

By doing this, you combine the ease and simplicity of the GUI with the ability to
execute project nodes from a CLI.

Note This functionality can be used to execute any node in a project,
including group nodes, application nodes, test nodes or the entire project.

 To run a specific node from a command line:

1. Set up and configure your project in the GUI.

2. Save your project and close the GUI.

3. Type the following command :
studio -r <node>.{[.<node>]} <project_file>

where <node> is the node to be executed and <projec > is the .rtp project file. t

The <node> hierarchy must be specified from the highest node in the project
(excluding the actual project node) to the target node to be executed, with periods ('.')
separating each item:

<node>{[.<node>]}

Example

The following command opens the project.rtp project in the GUI, and runs the app2
application node, located in group1 of the sub-project subproject1:

studio -r subproject1.group1.app2 project.rtp

Command Line Runtime Analysis for C and C++

The runtime analysis features for C and C++ include:

• Memory Profiling

• Performance Profiling

• Code Coverage

• Runtime Tracing

158

Command Line Interface

These features use Source Code Insertion (SCI) technology. When analyzing C and
C++ code, the easiest way to implement SCI features from the command line is to use
the C and C++ Instrumentation Launcher.

The Instrumentation Launcher is designed to fit directly into your compilation
sequence; simply add the attolcc command in front of your usual compilation or link
command line.

Note The attolcc binary is located in the /cmd directory of the applicable
Target Deployment Port.

 To perform runtime analysis on C or C++ source code:

1. First, set up the necessary environment variables. See Setting Environment
Variables.

2. Edit your usual makefile with the following command line:
attolcc [-options] [--settings] -- <compiler command line>

Where <compiler command line> is the command that you usually invoke to build
your application.

For example:
 attolcc -- cc -I../include -o appli appli.c bibli.c -lm
 attolcc -TRACE -- cc -I../include -o appli appli.c bibli.c -lm

Please refer to the Instrumentation Launcher section of the Reference Manual for
information on attolcc options and settings, or type attolcc --help on the command line.

3. After execution of your application, in order to process SCI dump information
(i.e. the runtime analysis results), you need to separate the single output file into
separate, feature-specific, result files. See Splitting the SCI Dump File.

4. Finally, launch the Graphical User Interface to view the test reports. See the
Graphical User Interface command line section in the Rational PurifyPlus for
Linux Reference Manual.

Command Line Runtime Analysis for Java

The runtime analysis features for Java covered in this section include:

• Performance Profiling

• Code Coverage

• Runtime Tracing

159

Rational PurifyPlus for Linux - User Guide

These features use Source Code Insertion (SCI) technology. Memory Profiling for
Java relies on JVMPI instead of SCI technology. Please refer to the JVMPI Agent
section of the Reference Manual.

The easiest way to implement SCI from the command line is to use the Java
Instrumentation Launcher: javic. The product provides two methods for use of javic:

• Java Instrumentation Launcher: designed to fit directly into your compilation
sequence; simply add the javic command in front of your usual compilation or
link command line

• Java Instrumentation Launcher for Ant: this integrates javic with the Apache
Jakarta Ant utility

For details of command line usage and option syntax, see the Reference Manual.

 To perform runtime analysis on Java source code:

1. First, set up the necessary environment variables. See Setting Environment
Variables.

2. Edit your usual makefile by adding the Java Instrumentation Launcher to the
command line:
javic [-options] -- <compiler command line>

Where <compiler command line> is the command that you usually invoke to build
your application.

Please refer to the Instrumentation Launcher section of the Reference Manual for
information on the options and settings.

3. After execution, to obtain the final test results, as well as any SCI dump
information, you need to separate the output file into separate result files. See
Splitting the SCI Dump File.

4. Finally, launch the Graphical User Interface to view the test reports. See the
Graphical User Interface command line section in the Reference Manual..

Command Line Examples

This section describes two basic examples of using PurifyPlus for Linux Runtime
Analysis features through the Command Line Interface:

• Runtime Analysis using the Instrumentation Launcher

• Calculating Metrics using the Metrics

Note These examples are for UNIX platforms only.

160

Command Line Interface

Runtime Analysis using the Instrumentation Launcher

This example demonstrates using Runtime Analysis features through the attolcc
Instrumentation Launcher. The example application is the Apache Web Server, which
is widely available for most platforms.

Additionally, the Apache Web Server is a multi-process, multi-tasking application
written in C where particular attention must be paid to tracking memory leaks.

 To prepare for the example:

1. Download the apache_1.3.27.tar.gz archive of the Apache web server source
code from:

http://www.apache.org/dist/httpd/

2. Copy the archive file to the directory where you will perform the tests (for
example, /projects/Apache_Test) and untar the archive:
cp /projects/download/apache_1.3.27.tar.gz .
tar zxvf apache_1.3.27.tar.gz
cd apache_1.3.27

3. To set up the PurifyPlus for Linux environnment, type the following command:
. <install_dir>/PurifyPlusForLinux.2003.06.00/ppluslinuxinit.sh

where <install_dir> is the installation directory of the product.

Refer to the Rational PurifyPlus for Linux Installation Guide for information
about setting up and launching the product.

 To compile the application with the Runtime Analysis features

1. To configure the Apache release, type the following command:
./configure --prefix=`pwd`

2. To compile the Apache server with instrumentation, type the following
commands:
REP=`pwd`
make -C src/main gen_test_char
make CC="attolcc -mempro -perfpro -trace -proc=ret -block=l -keep
--atl_multi_process=1 --atl_traces_file=$REP/atlout.spt -- gcc"

This compiles the application with the following options:

• Memory Profiling instrumentation enabled

• Performance Profiling instrumentation enabled

• Runtime Tracing instrumentation enabled

• Instrumentation of procedure inputs, outputs, and terminal instructions

161

Rational PurifyPlus for Linux - User Guide

• Instrumentation of simple, implicit and logical blocks (loops)

• Keep instrumented files

• Multi-process support

3. To install the Apache server, type the following command:
make install

This should display a message indicating that you have successfully built and
installed the Apache 1.3 HTTP server.

 To run the application and view runtime analysis results

1. Optionally, edit the configuration file apache_1.3.27/conf/httpd.conf.

2. To start the Apache server, type the following command:
/projects/Apache_Test/apache_1.3.27/bin/apachectl start

3. To stimulate the application, start a web browser on port 8080 (see the
httpd.conf file), type the following command:
netscape <IP Address>:8080

where <IP Address> is the IP address of the machine hosting the Apache server.

4. To stop the Apache server, type the following command:
/projects/Apache_Test/apache_1.3.27/bin/apachectl stop

5. To split the results, type the following command:
atlsplit *.spt

6. To start the PurifyPlus for Linux GUI to view the results, type the following
command:
studio `find . -name "*.fdc"` `find . -name "*.tsf"` *.tio *.tpf
*.tqf *.tdf

Calculating Metrics

This example demonstrates producing static metrics of the source code contained in
the BaseStation_C example project with the metcc command line. This example is
provided in the examples directory of PurifyPlus for Linux.

 To calculate metrics using the command line:

1. Copy the BaseStation_C project to your working directory, type the following
command:
cp -r
<install_dir>/releases/PurifyPlusForLinux.2003.06.00/examples/Bas
eStation_C/src

162

Command Line Interface

where <install_dir> is the installation directory of the product.

2. To set up the PurifyPlus for Linux environnment, type the following command:
. <install_dir>/PurifyPlusForLinux.2003.06.00/ppluslinuxinit.sh

where <install_dir> is the installation directory of the product.

Refer to the Rational PurifyPlus for Linux Installation Guide for information
about setting up and launching the product.

3. To calculate metrics without a makefile, type the following command:
metcc -- gcc -c UmtsCode.c

4. To calculate metrics of all the files in your makefile, type the following
command:
make CC="metcc -- gcc" CPP="metcc -- gcc"

5. To start the PurifyPlus for Linux GUI to view the results, type the following
command:
studio *.met

Command Line Tasks

Setting Environment Variables

The command line interface (CLI) tools require several environment variables to be
set.

These variables determine, for example, the Target Deployment Port (TDP) that you
are going to use. The available TDPs are located in the product installation directory,
under targets. Each TDP is contained in its own sub-directory.

Prior to running any of the CLI tools, the following environment variables must be
set:

• TESTRTDIR indicates the installation directory of the product

• ATLTGT and ATUTGT specify the location of the current TDP:
$TESTRTDIR/targets/<tdp>, where <tdp> is the name of the TDP.

• PATH must include an entry to $TESTRTDIR/bin/<platform>/<os>, where
<platform> is the hardware platform and <os> is the current operating system.

You must also add the product installation bin directory to your PATH.

Note Some command-line tools may require additional environment variables. See the
chapters dedicated to each command in the Reference Manual section.

Library Paths

163

Rational PurifyPlus for Linux - User Guide

UNIX platforms require the following additional environment variable:

• On Solaris and Linux platforms: LD_LIBRARY_PATH points to
$TESTRTDIR/lib/<plat orm>/<os> f

f• On HP-UX platforms: SH_LIB points to $TESTRTDIR/lib/<plat orm>/<os>

• On AIX platforms: LIB_PATH points to $TESTRTDIR/lib/<platform>/<os>

where <platform> is the hardware platform and <os> is the current operating
system.

Example

The following example shows how to set these variables for PurifyPlus for Linux
with a sh shell on a Suse Linux system. The selected Target Deployment Port is
clinuxgnu.

TESTRTDIR=/opt/Rational/TestRealTime.v2002R2
ATCDIR=$TESTRTDIR/bin/intel/linux_suse
ATUDIR=$TESTRTDIR/lib
ATS_DIR=$TESTRTDIR/bin/intel/linux_suse
ATLTGT=$TESTRTDIR/targets/clinuxgnu
ATUTGT=$TESTRTDIR/targets/clinuxgnu
LD_LIBRARY_PATH=$TESTRTDIR/lib/intel/linux_suse
PATH=$TESTRTDIR/bin/intel/linux_suse:$PATH
export TESTRTDIR
export ATCDIR
export ATUDIR
export ATS_DIR
export ATLTGT
export ATUTGT
export LD_LIBRARY_PATH
export PATH

Preparing a Products Header File

Before you can compile the TDP library source files, you must set up a file named
products.h for C and C++ or Products.java for Java. This file contains the options that
describe how the TDP library files are to be compiled.

 To set up a products header file

1. For C and C++, copy the product_model.h file from the lib sub-directory of the
current Target Deployment Port to a directory of your choice, and rename it to
products.h.

The directory of your choice may be the directory where the generated source files or
instrumented source files are located.

2. For Java, copy the Products_defaults.java.txt file from the lib sub-directory of
the current Target Deployment Port to com/rational/test/Products.java.

164

Command Line Interface

3. Open products.h or Products.java in a text editor and add the following define
at the beginning of the file:

4. #define ATL_WITHOUT_STUDIO

5. Make any necessary changes by adjusting the corresponding macros in the file.

The product_model.h file is self-documented, and you can adjust every macro to one
of the values listed. Each macro is set to a default value, so you can keep everything
unchanged if you don't know how to set them.

Note Pay attention to correctly set the macros starting with USE_, because
these macros set which features of PurifyPlus for Linux you are using. Certain
combinations are not allowed, such as using several test features
simultaneously.

Ensure that the ATL_TRACES_FILE macro correctly specifies the name of the trace
file which will be produced during the execution.

Take note of the directory where this file is stored, you will need it in order to
compile the generated or instrumented source files.

Instrumenting and Compiling the Source Code

The runtime analysis features (Memory Profiling, Performance Profiling, Code
Coverage and Runtime Tracing) all use SCI instrumentation technology to insert
analysis and SCI dump routines into your source code.

Requirements

Before compiling an SCI-instrumented source file, you must make sure that:

• A working C, C++ or Java compiler is installed on your system

• If you compile on a target different from the host where the generated file has
been produced, the instrumented file must have been produced using option -
NOPATH, and the sub-directory lib of the selected Target Deployment Port
directory must be copied onto the target.

There are two alternatives to instrument and compile your source code:

• Using the Instrumentation Launcher in your standard makefile

• Using the Instrumentor and Compiler separately.

Instrumentation Launcher

The Instrumentation Launcher replaces your actual compiler command in your
makefiles. This launcher transparently takes care of source code preprocessing,
instrumentation and compiling.

165

Rational PurifyPlus for Linux - User Guide

See the command line information for the Instrumentation Launcher in the Reference
Manual.

Instrumentation and Compilation

Alternatively, you can use the actual Instrumentor command line tools to instrument
the source files.

See the command line information for each Instrumentor in the Reference Manual.

If you are compiling on a different target, you must copy the TDP /lib directory over
to that target.

Add to the include search path the /lib sub-directory that you have copied onto the
target. In C and C++, use the -I compiler option. In Java, add the directory to the
CLASSPATH.

After this, simply compile the instrumented source file with your compiler.

Linking the Application

Once you have compiled all your source files, you need to link them to build an
executable. This section describes linkage specifics when using a test or runtime
analysis feature.

Requirements

In order to compile an instrumented source file, you must check that:

• A working C, C++ linker is installed on your system

• You have compiled every source file, including any instrumented source files,
of your application under test

• You have compiled the Target Deployment Port library.

Linking

You just have to add the Target Deployment Port library object to the object files
linked together.

Running the Application

Once you have produced a binary tester or instrumented application, you want to
run it in order to obtain test or SCI analysis information.

By default, the generated SCI dump file is named atlout.spt.

166

Command Line Interface

 To run the test application binary:

1. Check that the current directory is correct, relatively to the previously specified
trace file, if the trace files was specified with a relative path.

2. Run the binary. When the application terminates, the trace file should be
available.

Splitting the Trace Dump File

When you use several features together, the executable produces a multiplexed trace
file, containing several outputs targeting different features from PurifyPlus for Linux
. By default, the trace file is named atlout.spt.

Requirements

In most cases, you must split the atlout.spt trace file into several files for use with
each particular Report Generator or the product GUI.

To do this, you must have a working perl interpreter. You can use the perl interpreter
provided with the product in the /bin directory.

 To split the trace file:

1. Use the atlsplit tool supplied in the /bin directory of PurifyPlus for Linux :
atlsplit atlout.spt

After the split, depending on the selected runtime analysis features, the following file
types are generated:

• .rio test result files: process with a Report Generator

• .tio Code Coverage report files: view with Code Coverage Viewer

• .tdf dynamic trace files: view with UML/SD Viewer

• .tpf Memory Profiling report files: view with Memory Profiling Viewer

• .tqf Performance Profiling report files: view with Performance Profiling Viewer

Troubleshooting Command Line Usage

The following information might help if you encounter any problems when using the
command line tools.

Failure Response

Compilation fails Ensure that the selected Target Deployment Port matches your

167

Rational PurifyPlus for Linux - User Guide

compiler; there may be several Target Deployment Ports for
one OS, each of which targets a different compiler. If you are
unsure, you can check the full name of a Target Deployment
Port by opening any of the .ini files located in the Target
Deployment Port directory.

Compiler reports that
options.h is missing

Ensure that you have correctly prepared the options.h file, and
that this file is located in a directory that is searched by your
compiler (this is usually specified with -I or /I option on the
compiler command line).

Compiler reports that
TP.h file is missing

If you are compiling on a target different from the host where
the generated file has been produced, double-check the above
specific requirements to compilation on a different target.

If the compiler and C/C++ Test Script Compiler are executed
on the same machine, ensure you have not used the -NOPATH
option on the test compiler command line, and that the
ATLTGT environment variable was correctly set while the test
compiler was executed.

Compilation fails Ensure that the selected Target Deployment Port matches your
compiler; there may be several Target Deployment Ports for
one OS, each of which targets a different compiler. If you are
unsure, you can check the full name of a Target Deployment
Port by opening any of the .ini files located in the Target
Deployment Port directory.

TDP compilation fails When using the -I- linker option, the TDP fails to compile. This
is because the following line is added to the instrumented file:

#include "<path to target
directory>/TP.h"

where TP.h includes other files using the #include syntax, such
as:

#include "clock.h"

where clock.h is in the same directory as "TP.h". If you use the -
I- flag, the compiler no longer searches the same directory as
the current file (TP.h) and therefore cannot find clock.h. If you
cannot remove the -I- flag, you must add a -I flag for the
compiler to find the include files required by the TDP.

Compiler reports that
options.h is missing

Ensure that you have correctly prepared the options.h file, and
that this file is located in a directory that is searched by your
compiler (this is usually specified with -I or /I option on the
compiler command line).

Compiler reports that
TP.h file is missing

If you are compiling on a target different from the host where
the generated file has been produced, double-check the above
specific requirements to compilation on a different target.

If the test compiler and C/C++ compiler are executed on the
same machine, ensure you have not used the -NOPATH option
on the test compiler command line, and that the ATLTGT
environment variable was correctly set while the test script

168

Command Line Interface

compiler was executed.

Linkage fails because of
undefined references

Ensure you have successfully compiled the Target Deployment
Port library object, and have included it in your linked files

Ensure you have correctly configured the products.h options
file.

If you are using a test feature, ensure that you are linking both
source under test and additional files. You may also want to
add some stubs in your .ptu or .otd test script.

Ensure the options set in options.h (if required) are coherent
with the options set in products.h.

Errors are reported
through #error directives

You may have selected a combination of options in products.h
which is incompatible. The error messages help you to locate
the inconsistencies.

169

Working with Other Development
Tools

Rational PurifyPlus for Linux is a versatile tool that is designed to integrate with your
existing development environment.

Working with Configuration Management

The GUI provides an interface that allows you to control your project files through a
configuration management (CM) system such as Rational ClearCase and submit
software defect report to a Rational ClearQuest system.

Note Before using any configuration management tool, you must first
configure the CMS Preferences dialog box. See Customizing Configuration
Management.

You can also set up the GUI to use a CM system of your choice.

Working with Rational ClearCase

Rational ClearCase is a configuration management system (CMS) tool providing
version control, workspace management, process configurability, and build
management. With ClearCase, your development team gets a scalable, best-practices-
based development process that simplifies change management – shortening your
development cycles, ensuring the accuracy of your releases, and delivering reliable
builds and patches for your previously shipped products.

By default, PurifyPlus for Linux offers configuration management support for
ClearCase. You can however customize the product to support different
configuration management software. When using ClearCase you can instantly
control your files from the product Tools menu.

Note Before using ClearCase commands, select Rational ClearCase as your
CMS tool in the CMS Preferences.

Source Control Commands.

171

Rational PurifyPlus for Linux - User Guide

For any file in the PurifyPlus for Linux project, ClearCase, or any other CMS tool, can
be accessed through a set of source control commands.

Source control can be applied to all files and nodes in the Project Browser or Asset
Browser. When a source control command is applied to a project, group, application,
test or results node, it affects all the files contained in that node.

The following source control commands are included for use with ClearCase:

• Add to Source Control

• Check Out

• Check In

• Undo Check Out

• Compare to Previous Version

• Show History

• Show Properties

Please refer to the documentation provided with ClearCase for more information
about these commands.

Source control commands are fully configurable from the Tools menu.

 To control files from the Tools menu:

1. Select one or several files in the Project Explorer window.

2. From the Tools menu, select Rational ClearCase and the source control
command that you want to apply.

 To control files from the Source Control popup menu:

1. Right-click one or several files in the Project Explorer window.

2. From the popup menu, select Source Control and the source control command
that you want to apply.

Working with Rational ClearQuest

Rational ClearQuest is a defect and change tracking tool designed to operate in a
client/server environment. It allows you to easily track defects and change requests,
target your most important problems or enhancements to your product. ClearQuest
helps you determine the quality of your application or component during each phase
of the development cycle and helps you track the release in which a feature,
enhancement or bug fix appears.

172

Working with Other Development Tools

By default, the product offers defect tracking support for ClearQuest. When using
ClearQuest with PurifyPlus for Linux you can directly submit a report from a
runtime analysis report.

 To submit a ClearQuest report from PurifyPlus for Linux:

1. In the Report Explorer, right-click a test.

2. From the pop-up menu, select Submit ClearQuest Report.

3. This opens the ClearQuest Submit Defect window, with information about the
Failed test.

4. Enter any other necessary useful information, and click OK.

Please refer to the documentation provided with Rational ClearQuest for more
information.

CMS Preferences

The Preferences dialog box allows you to change the settings related to the
integration of the product with Rational ClearCase or other configuration
management software (CMS).

 To change configuration management settings:

1. Select the CMS node.

• Repository directory: Use this box to specify the location of the vault directory
for the CMS tool.

• Selected Configuration Management System: Use this box to select Rational
ClearCase or a different CMS tool. Before setting this option, make sure that the
CMS system has been configured in Tools menu.

2. Click OK to apply your changes.

ClearQuest Preferences

The Preferences dialog box allows you to specify the location of the Rational
ClearQuest database.

Please refer to the documentation provided with ClearQuest for more information.

 To change ClearQuest preferences:

1. Select the ClearQuest node.

• Schema Repository: Use this box to select the schema repository you want to
use.

173

Rational PurifyPlus for Linux - User Guide

• Database: Use this box to enter the location of the ClearQuest database.

• User Name and Password: Enter the user information provided by your
ClearQuest administrator.

2. Click OK to apply your changes.

Customizing Configuration Management

Out of the box, the product offers configuration management support for Rational
ClearCase, but the product can be configured to use most other Configuration
Management Software (CMS) that uses a vault and local repository architecture and
that offers a command line interface.

 To configure the product to work with your version control software:

1. Add a new CMS tool to the Toolbox with the command lines for checking files
into and out of the configuration management software. This activates the
Check In and Check Out commands in the Project Explorer and the ClearCase
Toolbar.

2. Set up version control repository in CMS Preferences.

174

Glossary

A
ABR: Array Bounds Read

ABW: Array Bounds Write

ABWL: Late Detect Array Bound Write on the Heap

Additional Files: Source files that are required by the test script, but not actually tested.

API: Application Programmer Interface. A reusable library of subroutines or objects that
encapsulates the internals of some other system and provides a well-defined interface.
Typically, it makes it easier to use the services of a general-purpose system, encapsulates
the subject system providing higher integrity, and increases the user's productivity by
providing reusable solutions to common problems.

Application: A software program or system used to solve a specific problem or a class of
similar problems.

Application node: The main building block of your application under analysis. It
contains the source files required to build the application.

Assertion: A predicate expression whose value is either true or false.

Asynchronous: Not occurring at predetermined or regular intervals.

B
Black box testing: A software testing technique whereby the internal workings of the
item being tested are not known by the tester.

Boundary: The set of values that defines an input or output domain.

Boundary condition: An input or state that results in a condition that is on or
immediately adjacent to a boundary value.

175

Rational PurifyPlus for Linux - User Guide

Branch: When referring to the Code Coverage feature, a branch denotes a generic unit of
enumeration.For a given branch, you specify the coverage type. Code Coverage
instruments this branch when you compile the source under test.

Branch coverage: Achieved when every path from a control flow graph node has been
executed at least once by a test suite. It improves on statement coverage because each
branch is taken at least once.

Breakpoint: A statement whose execution causes a debugger to halt execution and return
control to the user.

BSR: Beyond Stack Read

BSW: Beyond Stack Write

Bug: An error or defect in software or hardware that causes a program to malfunction.

Build: The executable(s) produced by a build generation process. This process may
involve actual translation of source files and construction of binary files by e.g.
compilers, linkers and text formatters.

Build generation: The process of selecting and merging specific versions of source and
binary files for translation and linking within a component and among components.

C
Check-in: In configuration management, the release of exclusive control of a
configuration item.

Check-out: In configuration management, the granting of exclusive control of a
configuration item to a single user.

Class: A representation or source code construct used to create objects. Defines public,
protected, and private attributes, methods, messages, and inherited features. An object is
an instance of some class. A class is an abstract, static definition of an object. It defines
and implements instance variables and methods.

Class contract: The set of assertions at method and class scope, inherited assertions, and
exceptions.

Class invariant: An assertion that specifies properties that must be true of every object of
a class.

Clear box testing: A software testing technique whereby explicit knowledge of the
internal workings of the item being tested are used to select the test data. Test RealTime
leverages the power of source code analysis to initiate the creation of white box tests.

176

Glossary

Code Coverage: Test RealTime feature whose function is to measure the percentage of
code coverage achieved by your testing efforts, using a variety of powerful data displays
to ensure all portions of your code are exercised and thus verified as properly
implemented.

COM: Com API/Interface Failure

Complexity: A characteristic of software measured by various statistical models.

Component: Any software aggregate that has visibility in a development environment,
for example, a method, a class, an object, a function, a module, an executable, a task, a
utility subsystem, an application subsystem. This includes executable software entities
supplied with an API.

Component Testing: The Test RealTime feature used to automate the white box testing
of individual software components in your system, facilitating early, proactive
debugging and provided a repeatable, well-defined process for runtime analysis.

Computational complexity: The study of the time (number of iterations) and space
(quantity of storage) required by algorithms and classes of algorithms.

Configuration: It is a Target Deployment Port, applied to a Project, plus node-specific
settings.

Configuration management: A technical and administrative approach to manage
changes and control work products.

Container class: A class whose instances are each intended to contain multiple
occurrences of some other object.

COR: Core Dump

Coverage: The percentage of source code that has been exercised during a given
execution of the application.

Cyclomatic complexity: The V(g) or cyclomatic number is a measure of the complexity of
a function which is correlated with difficulty in testing. The standard value is between 1
and 10. A value of 1 means the code has no branching. A function's cyclomatic
complexity should not exceed 10.

D
Debug: To find the error or misconception that led to a program failure uncovered by
testing, and then to design and to implement the program changes that correct the error.

Debugger: A software tool used to perform debugging.

177

Rational PurifyPlus for Linux - User Guide

Defect: An incorrect or missing software component that results in a failure to meet a
functional or performance requirement.

Destructor: A method that removes an active object.

E
Embedded system: A combination of computer hardware and software, and perhaps
additional mechanical or other parts, designed to perform a dedicated function. In some
cases, embedded systems are part of a larger system or product, as is the case of an anti-
lock braking system in a car.

Equivalence class: A set of input values such that if any value is processed correctly
(incorrectly), then it is assumed that all other values will be processed correctly
(incorrectly).

Error: A human action that results in a software fault.

Event: Any kind of stimulus that can be presented to an object: a message from any
client, a response to a message sent to the virtual machine supporting an object, or the
activation of an object by an externally managed interrupt mechanism.

EXC: Continued Exception

Exception: A condition or event that causes suspension of normal program execution.
Typically it results from incorrect or invalid usage of the virtual machine.

Exception handling: The activation of program components to deal with an exception.
Exception handling is typically accomplished by using built-in features and application
code. The exception causes transfer to the exception handler, and the exception handler
returns control to the module that invoked the module that encountered the exception.

EXH: Handled Exception

EXI: Ignored Exception

EXU: Unhandled Exception

F
FFM: Freeing Freed Memory

FIM: Freeing Invalid Memory

FIU: File In Use

FMM: Freeing Mismatched Memory

178

Glossary

FMR: Freeing Memory Read

FMW: Free Memory Write

FMWL: Late Detect Free Memory Write On the Heap

FUM: Freeing Unallocated Memory

G
Garbage collector (Java): The process of reclaiming allocated blocks of main memory
(garbage) that are (1) no longer in use or (2) not claimed by any active procedure.

H
HAN: Invalid Handle Use

HIU: Handle In Use

I
ILK: Com Interface Leak

Included Files: Included files are normal source files under test. However, instead of
being compiled separately during the test, they are included and compiled with the
object test driver script.

Inheritance: A mechanism that allows one class (the subclass) to incorporate the
declarations of all or part of another class (the superclass). It is implemented by three
characteristics: extension, overriding, and specialization.

Instrumentation: The action of adding portions of code to an existing source file for
runtime analysis purposes. The product uses Rational's source code insertion technology
for instrumentation.

IPR: Invalid Pointer Read

IPW: Invalid Pointer Write

J
JUnit: JUnit is an open source testing framework for Java. It provides a means of
expressing how the application should work. By expressing this in code, you can use
JUnit test scripts to test your code.

179

Rational PurifyPlus for Linux - User Guide

M
MAF: Memory Allocation Failure

MC/DC: Modified Condition/Decision Coverage.

Memory profiling: Test RealTime feature whose function is to measure your code's
reliability as it pertains to memory usage. Applicable to both Application and Test
Nodes, the memory profiling feature detects memory leaks, monitors memory allocation
and deallocation and provides detailed reports to simplify your debugging efforts.

Method (Java, C++): A procedure that is executed when an object receives a message. A
method is always associated with a class.

MIU: Memory In Use

MLK: Memory Leak

Model: A representation intended to explain the behavior of some aspects of [an artifact
or activity]. A model is considered an abstraction of reality.

N
Node: Any item that appears in the Project Explorer. This includes test nodes, application
nodes, source files or test scripts.

NPR: Null Pointer Read

NPW: Null Pointer Write

O
ODS: Output Debug String

P
Package (ADA): Program units that allow the specification of groups of logically related
entities.

Package (Java): A group of types (classes and interfaces).

PAR: Bad System Api Parameter

Performance profiling: Test RealTime feature whose function is to measure your code's
reliability as it pertains to performance. Applicable to both Application and Test nodes,
the performance profiling feature measures each and every function, procedure or

180

Glossary

method execution time, presenting the data in a simple-to-read format to simplify your
efforts at code optimization.

PLK: Potential Memory Leak

Polymorphism: This refers to a programming language's ability to process objects
differently depending on their data type or class. More specifically, it is the ability to
redefine methods for derived classes.

Postcondition: An assertion that defines properties that must hold when a method
completes. It is evaluated after a method completes execution and before the message
result is returned to the client.

Precondition: An assertion that defines properties that must hold when a method begins
execution. It defines acceptable values of parameters and variables upon entry to a
module or method.

Predicate expression: An expression that contains a condition (conditions) that evaluates
true or false.

Procedure (C): A procedure is a section of a program that performs a specific task.

Project: The project is your main workspace as shown in the Project Explorer. The project
contains all the files required to build, analyze and test an application.

R
Requirement: A desired feature, property, or behavior of a system.

Runtime Tracing: The Test RealTime feature whose function is to monitor code s it
executes, generating an easy-to-read UML-based sequence diagram of events. Perfect for
developers trying to understand inherited code, this feature also greatly simplifies the
debugging process at the integration level.

S
Scenario: An interaction with a system under test that is recognizable as a single unit of
work from the user's point of view. This step, procedure, or input event may involve any
number of implementation functions.

SCI: Source Code Insertion. Method used to enable the runtime analysis functionality of
Test RealTime. Pre-compiled source code is modified via the insertion of custom
commands that enable the monitoring of executing code. The actual code under test is
untouched. The testing features of Test RealTime do not require SCI.

SCI dump: Data that is dumped from a SCI-instrumented application.

181

Rational PurifyPlus for Linux - User Guide

Sequence diagram: A sequence diagram is a UML diagram that provides a view of the
chronological sequence of messages between instances (objects or classifier roles) that
work together in an interaction or interaction instance. A sequence diagram consists of a
group of instances (represented by lifelines) and the messages that they exchange during
the interaction.

SIG: Signal Received

Snapshot: In Memory Profiling for Java, a snapshot is a memory dump performed by the
JVMPI Agent whenever a trigger request is received. The snapshot provides a status of
memory and object usage at a given point in the execution of the Java program.

Subsystem: A subset of the functions or components of a system.

System Testing: The Test RealTime feature dedicated to testing message-based
applications. It helps you solve complex testing issues related to system interaction,
concurrency, and time and fault tolerance by addressing the functional, robustness, load,
performance and regression testing phases from small, single threads or tasks up to very
large, distributed systems.

T
TDP: Target Deployment Port. A versatile, low-overhead technology enabling target-
independent tests and runtime analysis despite limitless target support. Its technology is
constructed to accommodate your compiler, linker, debugger, and target architecture.

Template class: A class that defines the common structure and operations for related
types. The class definition takes a parameter that designates the type.

Test driver: A software component used to invoke a component under test. The driver
typically provides test input, controls and monitors execution, and reports results.

Test harness: A system of test drivers and other tools to support test execution.

Test node: The main building block of your test campaign. It contains one or more test
scripts as well as the source code under test.

Transition: In a state machine, a change of state.

U
UMC: Uninitialized Memory Copy

UML: Unified Modeling Language. A general-purpose notational language for
specifying and visualizing complex software, especially large, object-oriented projects.

182

Glossary

UMR: Uninitialized Memory Read

Unit: Generic term referring to language specific code elements such as procedures,
classes, functions, methods, packages.

Unit Testing: See Component Testing.

W
White box testing: See Clear box testing.

183

Index

185

Rational PurifyPlus for Linux - User Guide

. Code Coverage package 129
Instrumentor 121

.prj ... 134, 146 Prefix ... 129

.rtp...150 Ada28, 30, 49, 55, 98, 121, 129

.tsf..142 ADD ... 33

.xpm..100 Add to source control 163

.xrd..94 Adding
Metric .. 105 _
Source Control 163

_ATCPQ_RESET...................................8 Adding....................................... 105, 163
Adding a metric................................ 105 A
addItem() ... 18

About Additional Statements 44, 49
Code Coverage...............................28 Address.................... 1, 2, 8, 62, 119, 132
Code Coverage Viewer49 Agent
Configuration Settings117 JVMPI .. 75
Memory Profiling...........................61 Agent.. 75
Online Documentation....................1 Agents .. 119
Performance Profiling76 Allocated.......................... 61, 63, 65, 126
PurifyPlus for Linux5 Appearance ... 53, 72, 80, 92, 95, 99, 116
Runtime Tracing81 Application................................ 158, 159
Static Metrics53 Array bounds write............................ 63
Tools Menu99 Asset Browser
UML/SD Viewer...........................106 Folders... 142

About........................ 49, 96, 99, 102, 106 Asset Browser 142
About/Projects...................................134 ASSIGN.. 33
ABWL... 63, 126 ATC
Action ...21 ATC_SIGNAL_DUMP.................... 8
Activation11, 12 ATC .. 129
Activations.....................................11, 12 ATC_SIGNAL_DUMP......................... 8
Activities ..88 atcapi.h... 53
Activity Wizard........................... 92, 146 ATL_TRACES_FILE......................... 157
Actor...11, 22 atlout.spt.. 159
Actors ...11, 22 atlsplit .. 159
Ada ATLTGT... 155

186

Index

Build/Execution button............... 141 Atqapi.h file...78
Build.......27, 61, 76, 81, 88, 89, 102, 117,
119, 121, 132, 135, 137, 139, 141, 142,
144, 146, 163

ATS_DIR ..155
att_ ..130
ATT_DUMP_STACK84

Build Toolbar 92 ATT_FLUSH_ITEMS..........................85
Build/Troubleshooting..................... 143 ATT_SIGNAL_DUMP environment 84
Byte summary..................................... 61 ATT_START_DUMP..........................84

ATT_STOP_DUMP.............................84
C ATT_SWITCH_DUMP.......................84

attol exit_instr......................................37 C
attolcc ...150 C Additional Statements............... 38
ATTOLHOME...................................155 C Function Code Coverage 37
ATUDIR ...155 instrumenting................................. 76
Autodetect ...99 C28, 30, 33, 34, 37, 38, 39, 42, 43, 44, 49,

53, 55, 66, 76, 78, 98, 107, 124, 129 Average F Time...................................77
C++.. 66, 98, 107 B CALL

Call code coverage........... 33, 49, 129 Background ...60
Call stack length................... 126, 130 Background color 53, 72, 80, 95, 99, 116

calloc... 66 Background colors........................72, 95
Calls.. 77 Bar....................................... 107, 108, 109
Cart... 18 Beechavenue 30.....................................2
cart100 Best-practices-based163

Cart .. 18 BLOCK
cart101 Block code coverage ... 30, 39, 44, 49,

129 Cart .. 18
CASE .. 38 Block summary61
Change tracking................................ 164 Blocks.... 30, 34, 38, 39, 49, 61, 63, 64,

65, 66, 126, 129, 135 Changing configurations......... 132, 165
Changing targets 132 BLOCK ...39, 44
Check In................. 62, 65, 100, 163, 166 Block Code Coverage44
Check out........................... 100, 163, 166 Blue icon...140
Classifier Role 11, 13 Branch ... 8, 28, 29, 30, 33, 34, 37, 38, 39,

42, 43, 51, 60, 129 Classifier Roles.............................. 11, 13
ClearCase BREAK 38, 42, 47

ClearCase Toolbar 166 Browse Reports142
ClearCase... 163 Buffer size ..126
ClearQuest Build

ClearQuest Preferences............... 165 Build directory119
ClearQuest................................. 164, 165 Build options141

187

Rational PurifyPlus for Linux - User Guide

Code Coverage dump driver 53 CLI
Code Coverage Dump Driver API
.. 53

Example...152
CLI .. 150, 155

Code Coverage information mode
.. 28

Client/server environment164
Clock...141

Code Coverage levels.................. 129 CM ..163
Code Coverage Metrics........... 58, 60 CMS ..163
Code Coverage toolbar 49, 52 CMS Preferences165
Code Coverage Viewer................. 49 CMS tool 163, 165, 166
Code Coverage Viewer Preferences
.. 53

Code coloring98
Code Coverage

Coverage types........... 34, 49, 52, 129 Code Coverage Toolbar52
Coverage8, 27, 28, 30, 33, 34, 37, 38, 42,
43, 49, 51, 52, 53, 55, 58, 60, 89, 102,
117, 129, 142, 146

Code Coverage. 6, 28, 29, 44, 47, 49, 51,
52, 60, 107
Color.... 30, 34, 39, 51, 53, 60, 72, 80, 95,
96, 98, 99, 102, 116, 165 Coverage Bar..................................... 107

Coverage type................................. 6, 29 Command Line 119, 150, 151, 160
CPU COMMENT ...51

CPU overhead................................ 28 Compact hit data28
CPU .. 126, 129 Compact mode........................ 8, 28, 129
Criticity .. 58 Compilation.......................................157
Cross reference tool............................ 51 Compiler Settings121
Curve properties............................... 102 Complexity ..53
Curves.. 103 Cond ...34
Custom Curves 103 Condition code coverage 34, 49, 129
Cyclomatic..................................... 49, 60 Configurability..................................163
Cyclomatic complexity 60 Configuration.... 100, 117, 126, 130, 163

Configuration Management... 146, 163,
165, 166 D
Configuration settings 117, 132 dangling pointers 64
Configurations .. 100, 119, 123, 124, 132 DCT .. 164
Connection Preferences145 Ddd... 77
Context-sensitive123 debug ... 27, 144
CONTINUE............................. 38, 42, 47 Debug Mode...................................... 144
Convention12, 13, 14, 15, 16, 18, 20, 21,
22, 23, 24

debugger.. 144
Decisions.................... 30, 38, 39, 42, 146

COR ..64 DEFAULT.......................... 30, 38, 39, 44
Core Dump..64 DEFAULT blocks................................ 38
Count mode...28 Defect tracking.................................. 164
Coverage Delete ... 138

188

Index

Event ..8, 61, 84, 104, 105, 110, 111, 112,
115

Descendants ..77
Destruction Marker11, 14

EXCALL... 33 Destruction Markers.....................11, 14
EXCEPTION.................................. 11, 21 Directories...... 53, 78, 119, 121, 146, 165
Exceptions 11, 21 Directory, build.................................119
Exclude .. 139 Display message126
Execution DIVIDE...33

Dump on End................................... 8 DO... 30, 38, 39
Execution ... 8 DO...WHILE44, 47
EXIT.. 38, 42 Documentation1
Exits ...8, 37, 38, 42, 49, 65, 111, 126, 129 Documentation Updates......................1
Exp.. 115 DOS_NO_AUTO_INSTANTIATE ...43
Explicit dump 8 DRW_COMPILE_INSTANTIATE....43
Explorer ... 87 Dump Driver API78
Expr .. 30, 39 Dump File ..159
External Command Dump on End

External Command Node........... 136 Execution...8
Settings.. 123 Dump on End..8

External Command 123, 136 Dump on end of execution..................8
Dump on signal8

F Dumps.................................. 8, 53, 64, 83
F Time .. 77 E F+D ... 77

Edit filters ..110 F+D Time ... 77
Edit triggers............................... 111, 112 Failed Test ... 95
Editor 10, 88, 95, 96, 97, 98, 99, 111, 112 Feedback.. 1
ELSE 30, 38, 39, 44, 47 FFM .. 63, 126
ELSE FOR IF............................ 30, 39, 44 File
E-mail ...2 File in use................................ 66, 126
Entries 8, 37, 49, 129 File Properties 139
Environment File tagging........................... 137, 145

Variables................................ 121, 155 File under test................................. 27
Environment..... 1, 8, 83, 84, 89, 96, 136,
142, 155, 164

File View ... 56
File .. 140, 142

Error Messages..............................62, 71 Filters
Event Performance Profiling............. 79, 80

Editor ...111 Sequence diagram 112
Event-dependent..........................111 Filters..49, 71, 80, 94, 110, 111, 112, 115,

129 Markers ...104
Find .. 97, 115

189

Rational PurifyPlus for Linux - User Guide

GUI 53, 87, 88, 133, 150, 163 FIU .. 66, 126
Flow of Control16, 20

H FMWL .. 64, 126
Folder ...142 Halstead
Font............................. 60, 80, 95, 99, 116 Halstead metrics 58
Fonts ... 53, 72, 95 Halstead............................. 49, 56, 57, 58
FOR... 30, 38, 47 Halstead Graph................................... 56
Format 76, 85, 106, 116 Header File .. 157
Fprintf...37, 42 Heap size ... 130
Free ...66 Hit count tool 51
Free memory write64 Hostname 119, 132
Free queue HTML

Free queue length 63, 64, 126 HTML file 49, 71, 78
Free queue size.............................126 HTML....................................... 49, 71, 78
Free queue threshold...............63, 64

I Free queue 63, 64, 126
Freed Memory.....................................63 IDENTIFIER.. 33
Freeing freed memory................ 63, 126 IF 30, 38, 39, 44, 47
Freeing unallocated memory63 Implicit blocks........................... 8, 30, 39
FUM..63 Import makefile 136
Func ..39 Indicators... 58
Function Information Mode 28

Function Call33, 51 Inline .. 28
Function Time77 Instantiation .. 43

Function ...77 Instantiationmode 43
FXF..34 Instrumentation
FXT..34 Instrumentation control settings129

Instrumentation overhead.......... 126 G
Instrumentation ... 5, 6, 8, 27, 28, 38, 43,
44, 49, 63, 81, 89, 117, 126, 129, 150,
151, 157

g... 49, 60, 144
Garbage Collection75
General Settings119 Instrumentation Launcher 157
Generate dumps....................................8 Instrumentation/Excluding from

instrumentation 140 Get Started ...88
GetCoord ...42 Instrumenting
Global variable..................................126 C... 76
Go To ..98 Instrumenting 76
GOTO 38, 42, 47 Instrumentor 34, 43, 124
Graphical user interface.....................87 Instrumentor Snapshot 8
Group ...135 Insturmentation Overhead.................. 6

190

Index

Log2 n .. 58 Integration
LOGICAL .. 39 with Rational ClearCase163
Login .. 165 with Rational ClearQuest164
LOOP ... 11, 23 Integration ...164
Loops................ 8, 11, 23, 30, 38, 39, 130 IP Address ...119

Isting...136
M Item buffer ...85

Macro expansion 51 J macros.........8, 51, 99, 100, 121, 123, 136
Java MAF ... 64

Memory Profiling...........................73 Main toolbar.. 92
Java 44, 47, 49, 72, 107, 151 main() ... 82
Java Method Code Coverage47 Make.....2, 58, 63, 76, 100, 103, 104, 117,

123, 136, 140, 141, 165 Java Virtual Machine....................72, 75
Java-enabled ..1 Makefile 136, 146
javic...151 malloc... 66
Javic Ant Launcher151 Markers.. 104
JIT mode...75 Maurice Halstead 58
just-in-time mode................................75 Maximum reached 28
JVM...72, 75 MDd ... 144
JVMPI Memory

Agent ...75 Allocation failure 64
Technology72, 75 Errors... 61

JVMPI 72, 75, 150, 151 In use 65, 66, 126
Leak ... 65

L Memory usage 108
Potential leak.................................. 66 Language ...29
Usage bar 108 Late detect array bounds write63

Memory ... 63 Late detect free memory write..64, 126
Memory Profiling LED... 132, 141

Java .. 72 Lifeline 11, 12, 13, 15, 18
JVMPI .. 75 Lifelines.................................... 11, 15, 18
Memory Profiling Misc............... 126 Limiting coverage types8
Memory Profiling preferences 72 Link
Memory Profiling Results 61 Link files..121
Memory Profiling settings.......... 126 Link....................................... 52, 121, 158
Memory Profiling Viewer............. 71 Linking ...158
Memory Profiling Viewer
Preferences...................................... 72

Linux ..5
Loading files......................................140
Locate ...98

191

Rational PurifyPlus for Linux - User Guide

N Memory Profiling warning
messages ...65

Naming conventions. 12, 13, 14, 15, 16,
18, 20, 21, 22, 23, 24

Memory Profiling 6, 8, 27, 61, 62, 63,
64, 65, 66, 71, 72, 89, 116, 117, 126, 142,
146, 165 Navigating... 106

Navigation Pane 106 Memory Profiling for Java.................72
Nb_instances 34 Message
Netscape Navigator 1 Message dump84
Nns ... 106 Message..11, 16
Node............133, 135, 138, 139, 141, 150 MET file..54
Node/Instrumentation..................... 140 Method
Nodes ... 134 Coverage ...42
Non-coverable statements........... 44, 49 Method...47
Non-spreadable 64 Metrics
NOT.. 112 Adding ..105
Notes .. 11, 21, 24 Viewer 54, 56, 57, 60
NULL ... 63 Metrics... 49, 53, 54, 55, 58, 60, 102, 103,

105 NUMBER... 33

Microsoft O
Microsoft Visual Studio 144, 146

O ... 39 Misc .. 117, 126
Object View 57, 89 Miscellaneous Runtime Analysis

Options...124 Objects.. 11, 18
ObjectSpace C++ 43 MIU... 65, 126
Observer 13, 15, 16 MLd ..144
On_exit... 8 MLK..65
Online Documentation 1 Mms..106
On-the-fly display 115 Modified conditions34
Options .. 141 MPK..66
options.h .. 157 MPL ..66
OR... 112 MTd ..144
Output.. 143 Multiple
Output Window 87, 88 Multiple conditions34
Overhead 6, 8, 28 Multiple..34

Multi-thread P
Support..83

Partial message dump 84 Multi-thread 83, 130
Pass mode.................................... 28, 129
Pass/fail .. 33
Performance 6, 8, 27, 76, 77, 83, 85

192

Index

Properties Window 87, 90 Performance Profiling
Filters ...80

R Performance Profiling Results77
Performance Profiling Settings ..128 Rates Report .. 52
Performance Profiling Viewer Rational

Using...78 ClearCase...................... 163, 165, 166
Performance Profiling Viewer......78 Clearquest..................... 163, 164, 165
Performance Profiling Viewer
Preferences......................................80

Rational Software Corporation...... 2
Rose RealTime.............................. 163

Performance Profiling ... 6, 8, 27, 76, 77,
78, 80, 89, 128, 142, 146

Test RealTime............... 2, 63, 99, 102
TestManager................................. 163

Png..100 Rational.2, 63, 76, 99, 102, 163, 164, 165
Pointers 34, 63, 64, 65, 66 Real-time.. 6
Posix ...83 RED .. 30, 34, 39
Potential memory leak66 Red zone 63, 126
Pragma directives84 Reg.. 115
Preferences Rename .. 139

Code Coverage Viewer53 Replace... 97
Connection....................................145 Report
Editing preferences......................144 Directory 119
Memory Profiling Viewer.............72 Explorer............................. 87, 92, 106
Static Metrics Viewer.....................60 Hit count 129

Preferences......... 53, 60, 72, 99, 144, 145 Style Preferences............................ 95
Prefix 85, 103, 129 Toolbar .. 95
Probes... 27, 146 Viewer
PROC..37, 42 Using... 94
Procedure Call...............................16, 20 Viewer 87, 94, 95, 142
product_model.h157 Report......................... 78, 92, 94, 95, 142
Products Header File........................157 Representations
products.h..157 trace ... 106
Project... 88, 133 Representations 106
Project Browser134 RET... 42
Project Explorer.... 23, 84, 85, 87, 89, 90,
96, 99, 135, 137, 138, 139, 140

RETURN.................................. 38, 42, 47
Retval ... 30, 39

Project View...89 RIO file... 159
Project Wizard...................................146 Root Level File View.......................... 56
Project/Troubleshooting143 Root Level Object View 57
Projects .. 27, 89, 102, 103, 104, 105, 110,
111, 117, 132, 134, 136, 140, 146

RTP File.. 150
running runtime analysis features ... 27

Properties............................. 90, 102, 139 Runtime Analysis

193

Rational PurifyPlus for Linux - User Guide

Standard Toolbars 87, 92 Features27, 94
Start Page....................................... 87, 88 Reports ..94
State .. 109 Wizard...146
Statement blocks................................. 30 Runtime Analysis 27, 146, 150, 151
Static metrics Runtime Tracing

Settings.. 123 Control Settings............................130
Viewer ... 60 Runtime Tracing6, 81, 82, 107, 111, 130

Static metrics 53, 54, 55, 145
S Stderr.. 37, 42

Step-by-step mode............................ 110 Scalable...163
Stimuli.. 11, 20 SCI
Stimulus... 11, 20 Dump File159
Stroud number........................ 53, 58, 60 SCI........... 5, 8, 29, 78, 150, 151, 157, 159
Styles 53, 60, 72, 80, 95, 99, 116 SCI/Excluding from instrumentation

...140 Subject .. 16
Sub-projects....................................... 134 SCM ..163
Suffix .. 129 Sequence Diagram. 11, 81, 82, 106, 107,

110, 115, 116, 130, 142 SWITCH....................... 30, 38, 39, 44, 47
SWITCH CASE 39, 44 Settings
Switching configurations 132 Build ..121
Switching targets 132 External Command......................123
Synchronization............................ 11, 24 General ..119
Synchronizations 11, 24 Static metrics.................................123
Syntax coloring 98 Settings............................... 119, 121, 123

SIG .. 66, 126 T SIGINT ...8
Signal............................ 8, 28, 66, 84, 126 Target ... 155
Signal handled66 Target Deployment Port... 8, 10, 53, 66,

78, 83, 117, 119, 130, 132, 144, 146 SIGUSR1...8, 84
Sizeof ..63 TCP/IP port 119
Solaris ...83 TDF... 24, 85, 159
Source Code.......................................157 TDF file 24, 85, 115, 142, 159
Source Code Insertion....................5, 29 TDP......................... 10, 66, 144, 155, 157
Source Control TDP Editor..................................... 10, 66

Add ..163 TDP Library....................................... 157
Source Control163 Technical Support
Source file folder...............................142 Africa... 2
Source file information137 Asia Pacific 2
Source Report51 Europe... 2
Split...159 Middle East....................................... 2

194

Index

Thread ID .. 109 North America2
Thread Properties............................. 109 USA..2
Threads .. 109 Technical Support.................................2
Through ... 106 Template Instrumentation.................43
THROW ... 42, 47 Templates.txt43
TIME Temporary directory119

Time format.......................... 106, 116 Test
Time scale 104 Test Configurations 84, 85, 123, 124,

130, 132 Time stamping 106
TIME... 106 Test feature27
Time scale .. 104 Test Files..142
Time stamp.. 130 Test ... 94, 135
Time stamping 106 Test Harness159
Timestamp... 109 Test Process Monitor . 87, 102, 103, 104,

105 TIO File .. 159
Tmp .. 33 Test RealTime... 2, 27, 30, 34, 37, 39, 43,

61, 71, 76, 78, 81, 85, 88, 89, 92, 94, 96,
98, 99, 102, 105, 106, 119, 121, 123, 124,
129, 135, 136, 140, 141, 142, 146, 163,
164, 165, 166

Tool... 100
Toolbar..................................... 24, 87, 95
Toolbars 92, 105, 115
Tools... 87
Tools Menu Test Verdict Reports...........................94

About... 99 Text
Tools Menu.. 99 Text attributes.. 53, 60, 72, 80, 95, 99,

116 Tooltip.. 116
Tpf .. 126, 159 Text Color.. 53, 60, 72, 80, 95, 99, 116
TPF file 126, 159 Text editor.. 21, 23, 24, 51, 54, 82, 88,

92, 96, 97, 98, 99, 137 Tpf trace file 126
TPM Text Editor Preferences99

TPM Metrics 105 Text File ...96
tpmadd.. 102 Text ... 97, 115

TPM.. 102, 105 Text attributes 53, 60, 72, 80, 95, 99, 116
Tqf... 128, 159 Text Color ..60
TQF file 126, 159 Text Editor 21, 23, 24, 51, 54, 82, 87, 88,

92, 96, 97, 98, 99, 137 Tqf trace file....................................... 128
Trace Text File..96

representations............................. 106 TFF..34
Trace buffer 85 TFT file 34, 110, 111
Trace dump 8, 53 THEN 30, 38, 39, 44
Trace dumps..................................... 8 Thread ..83
Trace Files 85 Thread Bar 109, 130

195

Rational PurifyPlus for Linux - User Guide

Using Trace pragma............................84, 85
Graphical User Interface............... 87 Trace triggers................................111
GUI .. 87 Trace 27, 81, 106, 110, 116
Memory Profiling Viewer............. 71 Trace File.................................... 130, 159
Performance Profiling Viewer 78 Trace Item Buffer85
Report Viewer 94 Traces 8, 28, 49, 53, 78, 81, 83, 84, 85,

89, 110, 111, 115, 117, 126, 128, 130,
142, 146

runtime analysis features 27
Runtime Tracing 85

Using .. 71, 78, 94 Traget Deployment Port155
Triggers 8, 61, 111, 112, 115

V Troubleshooting........................ 143, 160
TRY ...44 V(g)... 56, 57, 60
TRY blocks...39 Variables .. 155
tryFiveTimes ()39 Verbose output 143, 145
TTX ...34 View Toolbar....................................... 92

Viewer......54, 92, 95, 106, 107, 108, 109,
110, 115, 116, 142 U
Viewing metrics.................................. 54 UML

UML sequence diagram... 27, 81, 82,
83, 85, 92, 106, 107, 110, 115, 116,
130, 142

W
Warning messages 65, 71

UML/SD Viewer.. 21, 24, 81, 82, 107,
115, 116

Watchdogs... 8
WHILE 30, 38, 39, 44, 47

UML... 11, 21, 23, 24, 81, 82, 87, 95, 106,
107, 108, 109, 112, 115, 116, 130, 142

WHILE blocks............................... 30, 39
WHILE loops................................. 30, 38

UML Sequence Diagram............ 11, 107 WHITE 30, 34, 39
UML/SD Viewer White icon.. 140

About...106 Wildcard 112, 115
Filters ...110 WIN32,DEBUG................................. 121
Preferences....................................116 Window ... 87, 90
Toolbar ..115 Wizard 88, 133, 146
Triggers ...111 Workspace... 134

UML/SD Viewer 21, 24, 82, 87, 106,
107, 108, 109, 115, 116 Z
Undo check out163 Zoom .. 92, 95
Update..16 Zoom Level ... 95
User interface 87, 149

196

197

	Rational® PurifyPlus for Linux
	User Guide
	Preface
	Audience
	Contacting Rational Technical Publications
	Other Resources
	Customer Support

	Product Overview
	Source Code Insertion
	Target Deployment Ports
	Unified Modeling Language

	Runtime Analysis
	Using Runtime Analysis Features
	Code Coverage
	Static Metrics
	Memory Profiling for C and C++
	Memory Profiling for Java
	Performance Profiling
	Runtime Tracing

	Graphical User Interface
	GUI Philosophy
	Discovering the GUI
	GUI Components and Tools
	Configurations and Settings
	Working with Projects
	Activity Wizards

	Command Line Interface
	Running a Node from the Command Line
	Command Line Runtime Analysis for C and C++
	Command Line Runtime Analysis for Java
	Command Line Examples
	Command Line Tasks

	Working with Other Development Tools
	Working with Configuration Management

	Glossary
	Index

