
Rational Software Corporation®
Rational® PurifyPlus
RealTime
Reference Manual

VERSION: 2003.06.00

WINDOWS AND UNIX
support@rational.com
http://www.rational.com

ii Rational Test RealTime and PurifyPlus RealTime Installation Guide

Legal Notices

©2001-2003, Rational Software Corporation. All rights reserved.

Any reproduction or distribution of this work is expressly prohibited without the
prior written consent of Rational.

Version Number: 2003.06.00

Rational, Rational Software Corporation, the Rational logo, Rational Developer
Network, AnalystStudio, , ClearCase, ClearCase Attache, ClearCase MultiSite,
ClearDDTS, ClearGuide, ClearQuest, ClearTrack, Connexis, e-Development
Accelerators, DDTS, Object Testing, Object-Oriented Recording, ObjecTime,
ObjecTime Design Logo, Objectory, PerformanceStudio, PureCoverage, PureDDTS,
PureLink, Purify, Quantify, Rational Apex, Rational CRC, Rational Process
Workbench, Rational Rose, Rational Suite, Rational Suite ContentStudio, , Rational
Summit, Rational Visual Test, Rational Unified Process, RUP, RequisitePro,
ScriptAssure, SiteCheck,SiteLoad, SoDA, TestFactory, TestFoundation, TestStudio,
TestMate, VADS, and XDE, among others, are trademarks or registered trademarks of
Rational Software Corporation in the United States and/or in other countries. All
other names are used for identification purposes only, and are trademarks or
registered trademarks of their respective companies.

Portions covered by U.S. Patent Nos. 5,193,180 and 5,335,344 and 5,535,329 and
5,574,898 and 5,649,200 and 5,675,802 and 5,754,760 and 5,835,701 and 6,049,666 and
6,126,329 and 6,167,534 and 6,206,584. Additional U.S. Patents and International
Patents pending.

U.S. GOVERNMENT RIGHTS. All Rational software products provided to the U.S.
Government are provided and licensed as commercial software, subject to the
applicable license agreement. All such products provided to the U.S. Government
pursuant to solicitations issued prior to December 1, 1995 are provided with
“Restricted Rights” as provided for in FAR, 48 CFR 52.227-14 (JUNE 1987) or DFARS,
48 CFR 252.227-7013 (OCT 1988), as applicable.

WARRANTY DISCLAIMER. This document and its associated software may be used
as stated in the underlying license agreement. Except as explicitly stated otherwise in
such license agreement, and except to the extent prohibited or limited by law from
jurisdiction to jurisdiction, Rational Software Corporation expressly disclaims all
other warranties, express or implied, with respect to the media and software product
and its documentation, including without limitation, the warranties of
merchantability, non-infringement, title or fitness for a particular purpose or arising
from a course of dealing, usage or trade practice, and any warranty against
interference with Licensee’s quiet enjoyment of the product.

Third Party Notices, Code, Licenses, and Acknowledgements

Portions Copyright ©1992-1999, Summit Software Company. All rights reserved.
Chapter - iii

Microsoft, the Microsoft logo, Active Accessibility, Active Client, Active Desktop,
Active Directory, ActiveMovie, Active Platform, ActiveStore, ActiveSync, ActiveX,
Ask Maxwell, Authenticode, AutoSum, BackOffice, the BackOffice logo, bCentral,
BizTalk, Bookshelf, ClearType, CodeView, DataTips, Developer Studio, Direct3D,
DirectAnimation, DirectDraw, DirectInput, DirectX, DirectXJ, DoubleSpace,
DriveSpace, FrontPage, Funstone, Genuine Microsoft Products logo, IntelliEye, the
IntelliEye logo, IntelliMirror, IntelliSense, J/Direct, JScript, LineShare, Liquid Motion,
Mapbase, MapManager, MapPoint, MapVision, Microsoft Agent logo, the Microsoft
eMbedded Visual Tools logo, the Microsoft Internet Explorer logo, the Microsoft
Office Compatible logo, Microsoft Press, the Microsoft Press logo, Microsoft
QuickBasic, MS-DOS, MSDN, NetMeeting, NetShow, the Office logo, Outlook,
PhotoDraw, PivotChart, PivotTable, PowerPoint, QuickAssembler, QuickShelf,
RelayOne, Rushmore, SharePoint, SourceSafe, TipWizard, V-Chat, VideoFlash,
Virtual Basic, the Virtual Basic logo, Visual C++, Visual C#, Visual FoxPro, Visual
InterDev, Visual J++, Visual SourceSafe, Visual Studio, the Visual Studio logo, Vizact,
WebBot, WebPIP, Win32, Win32s, Win64, Windows, the Windows CE logo, the
Windows logo, Windows NT, the Windows Start logo, and XENIX, are either
trademarks or registered trademarks of Microsoft Corporation in the United States
and/or in other countries.

Sun, Sun Microsystems, the Sun Logo, Ultra, AnswerBook 2, medialib, OpenBoot,
Solaris, Java, Java 3D, ShowMe TV, SunForum, SunVTS, SunFDDI, StarOffice, and
SunPCi, among others, are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

Licensee shall not incorporate any GLOBEtrotter software (FLEXlm libraries and
utilities) into any product or application the primary purpose of which is software
license management.

BasicScript is a registered trademark of Summit Software, Inc.

Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma,
Richard Helm, Ralph Johnson and John Vlissides. Copyright © 1995 by
Addison-Wesley Publishing Company, Inc. All rights reserved.

Additional legal notices are described in the legal_information.html file that is
included in your Rational software installation.
iv Rational Test RealTime and PurifyPlus RealTime Installation Guide

Reference Manual Contents

Preface ... vii
Audience ...vii
Contacting Rational Technical Publications..vii
Other Resources.. viii
Customer Support.. viii

Command Line Reference .. 1
Runtime Analysis for Ada... 3

Ada Instrumentor ...4
Ada Link File Generator...10
Ada Unit Maker ..12
Ada Metrics Calculator ..14

Runtime Analysis for Java ... 15
Java Instrumentor..16
Java Instrumentation Launcher ...22
Java Instrumentation Launcher for Ant ...25
JVMPI Agent..28

Runtime Analysis for C and C++.. 33
C and C++ Instrumentor ..34
C and C++ Instrumentation Launcher ...42

Generic Tools... 49
Graphical User Interface..50
Trace Receiver ..51
TDF Splitter..53
Code Coverage Report Generator ..54
Test Process Monitor...58
Dump File Splitter ..61
Uprint Localization Utility ...62

Appendices.. 65
GUI Macro Variables.. 65
Instrumentation Pragmas... 67

v

Table Of Contents

Environment Variables... 70
Setting Environment Variables... 72
File Types .. 73

vi

Preface

Welcome to Rational PurifyPlus RealTime.

This Reference Manual contains advanced information to help you use the product
from the command line.

Rational PurifyPlus RealTime is a complete runtime analysis solution for real-time
and embedded systems. It addresses all runtime analysis needs for the C, C++, Ada,
and Java programming languages.

General information about using the product can be found in the Pur yPlus
RealTime User Gu de.

if
i

i i
If you are using the product for the first time, please take the time to go through the
Pur fyPlus RealT me Online Tutorial.

Audience

This guide is intended for Rational software users who are using PurifyPlus
RealTime, such as application developers, quality assurance managers, and quality
assurance testers.

You should be familiar with the selected Windows or UNIX platform as well as both
the native and target development environments.

Contacting Rational Technical Publications

To send feedback about documentation for Rational products, please send e-mail to
our technical publications department at techpubs@rational.com.

Keep in mind that this e-mail address is only for documentation feedback. For
technical questions, please contact Customer Support.

vii

PurifyPlus RealTime - Reference Manual

Other Resources

All manuals are available online, either in HTML or PDF format. The online manuals
are on the CD and are installed with the product.

For the most recent updates to the product, including documentation, please visit the
Product Support section of the Web site at:

http://www.rational.com/products/testrt/pplus_rt.jsp

Documentation updates and printable PDF versions of Rational documentation can
also be downloaded from:

http://www.rational.com/support/documentation/index.jsp

For more information about Rational Software technical publications, see:

http://www.rational.com/documentation.

For more information on training opportunities, see the Rational University Web site:

http://www.rational.com/university.

Customer Support

Before contacting Rational Customer Support, make sure you have a look at the tips,
advice and answers to frequently asked questions in Rational's Solution database:

http://solutions.rational.com/solutions

Choose the product from the list and enter a keyword that most represents your
problem. For example, to obtain all the documents that talk about stubs taking
parameters of type “char”, enter "stub char". This database is updated with more
than 20 documents each month.

When contacting Rational Customer Support, please be prepared to supply the
following information:

• About you:
Name, title, e-mail address, telephone number

• About your company:
Company name and company address

• About the product:
Product name and version number (from the Help menu, select About).
What components of the product you are using

• About your development environment:
Operating system and version number (for example, Linux RedHat 8.0), target

viii

http://www.rational.com/products/testrt/pplus_rt.jsp
http://www.rational.com/documentation
http://www.rational.com/university

Preface

compiler, operating system and microprocessor. If necessary, send the Target
Deployment Port .xdp file

• About your problem:
Your service request number (if you are calling about a previously reported
problem)
A summary description of the problem, related errors, and how it was made to
occur
Please state how critical your problem is
Any files that can be helpful for the technical support to reproduce the problem
(project, workspace, test scripts, source files). Formats accepted are .zip and
compressed tar (.tar.Z or .tar.gz)

If your organization has a designated, on-site support person, please try to contact
that person before contacting Rational Customer Support.

You can obtain technical assistance by sending e-mail to just one of the e-mail
addresses cited below. E-mail is acknowledged immediately and is usually answered
within one working day of its arrival at Rational. When sending an e-mail, place the
product name in the subject line, and include a description of your problem in the
body of your message.

Note When sending e-mail concerning a previously-reported problem, please
include in the subject field: "[SR#<number>]", where <number> is the service
request number of the issue. For example:
Re:[SR#12176528] New data on PurifyPlus RealTime install issue

Sometimes Rational support engineers will ask you to fax information to help them
diagnose problems. You can also report a technical problem by fax if you prefer.
Please mark faxes "Attention: Customer Support" and add your fax number to the
information requested above.

Location Contact

North America

Rational Software,
18880 Homestead Road,
Cupertino, CA 95014

voice: (800) 433-5444
fax: (408) 863-4001

e-mail: support@rational.com

Europe, Middle East,
and Africa

Rational Software,
Beechavenue 30,
1119 PV Schiphol-Rijk,
The Netherlands

voice: +31 20 454 6200
fax: +31 20 454 6201

e-mail: support@europe.rational.com

ix

PurifyPlus RealTime - Reference Manual

Asia Pacific Rational Software Corporation Pty Ltd,
Level 13, Tower A, Zenith Centre,
821 Pacific Highway,
Chatswood NSW 2067,
Australia

voice: +61 2-9419-0111
fax: +61 2-9419-0123

e-mail: support@apac.rational.com

x

Command Line Reference

This section provides reference information to help you use PurifyPlus RealTime
runtime analysis features from a command line. This can be useful in complex
development environments to perform most major tasks in the command line
interface under UNIX or Windows operating systems.

1

Runtime Analysis
for Ada

3

PurifyPlus RealTime - Reference Manual

Ada Instrumentor

Purpose

The source code insertion (SCI) Instrumentor for Ada inserts functions from a Target
Deployment Port library into the Ada source code under test. The Ada Instrumentor
is used for Code Coverage only.

Syntax
attolada <src> <instr> [<options>]

where:

• <src> is the source file (input)

• <instr> is the instrumented output file

Description

The Instrumentor builds an output source file from an input source file, by adding
special calls to the Target Deployment Port function definitions.

The Ada Instrumentor (attolada) supports Ada83 and Ada95 standard source code
without distinction.

You can select one or more types of coverage at the instrumentation stage (see the
User Guide for more information).

When you generate reports, results from some or all of the subset of selected
coverage types are available.

Options
-PROC [=RET]

-PROC alone instruments procedure, function, package, and task entries. This is the
default setting.

The -PROC=RET option instruments both entries and exits.

-CALL

Instruments Ada functions or procedures.

-BLOCK [=IMPLICIT | DECISION | LOGICAL | ATC]

This option specifies how blocks are to be instrumented.

4

Command Line Reference

• The -BLOCK option alone instruments simple blocks only.

• Use the IMPLICIT or DECISION option to instrument implicit blocks
(unwritten else instructions), as well as simple blocks.

• Use the LOGICAL parameter to instrument logical blocks (loops), as well as the
simple and implicit blocks.

• Use the ATC parameter to extend the instrumentation to asynchronous transfer
control (ATC) blocks.

By default, the Instrumentor instruments implicit blocks.

-COND [=MODIFIED | COMPOUND | FORCEEVALUATION]

When -COND is used with no parameter, the Instrumentor instruments basic
conditions.

• MODIFIED or COMPOUND are equivalent settings that allow measuring the
modified and compound conditions.

• FORCEEVALUATION instruments forced conditions.
-NOPROC

Disables instrumentation of procedure inputs, outputs, or returns, etc.

-NOCALL

Disables instrumentation of calls.

-NOBLOCK

Disables instrumentation of simple, implicit, or logical blocks.

-NOCOND

Disables instrumentation of basic conditions.

-UNIT=<name>[{,<name>}] | -EXUNIT=<name>[{,<name>}]

-UNIT specifies Ada units whose bodies are to be instrumented, where <name> is an
Ada unit which is to be explicitly instrumented. All other functions are ignored.

-EXUNIT specifies the units that are to be excluded from the instrumentation. All
other Ada units are instrumented.

-UNIT and -EXUNIT cannot be used together.

5

PurifyPlus RealTime - Reference Manual

-LINK=<filename>[{,<filename>]]

Provides a set of link files to the Instrumentor.

-STDLINK=<filename>

Provides a standard link file to the Instrumentor.

-FDCDIR=<directory>

Specifies the destination <directory> for the .fdc correspondence file, which is
generated for Code Coverage after the instrumentation for each source file.
Correspondence files contain static information about each enumerated branch and
are used as inputs to the Code Coverage Report Generator. If <directory> is not
specified, each .fdc file is generated in the directory of the corresponding source file.
If you do not use this option, the default .fdc files directory is the working directory
(the attolccl execution directory). You cannot use this option with the -FDCNAME
option.

-FDCNAME=<name>

Specifies the .fdc correspondence file name <name> to receive correspondence
produced by the instrumentation. You cannot use this option with the -FDCDIR
option.

-DUMPINCOMING=<name>[{,<name>}]
-DUMPRETURNING=<name>[{,<name>}]

These options allow you to explicitly define upon which incoming or returning
function(s) the trace dump must be performed. Please refer to General Runtime
Analysis Settings in the User Guide for further details.

-COMMENT=<comment>

Associates the text from either the Code Coverage Launcher (preprocessing
command line) or from you with the source file and stores it in the FDC file to be
mentioned in coverage reports. In Code Coverage Viewer, a magnifying glass is put
in front of the source file. Clicking on this magnifying glass, shows this text in a
separate window.

-NOMETRICS

Saves the metrics basic data calculation time.

6

Command Line Reference

-RESTRICTION =NOEXCEPTION|NOGENERIC|CSMART

Use this option to set a restriction.

• NOEXCEPTION deactivates instrumentation of exception block branches
encountered in the source file. When this option is active, no coverage
information is available on exception blocks or on instructions contained in
exception blocks.

• NOGENERIC deactivates the instrumentation using a generic Target
Deployment Port call. When this option is active, the generated source code
may contain uninstrumentable calls. If used with the -CALL option, this can
generate compilation errors depending on your application if, for example, you
use private packages as well as private sub-packages.

• CSMART generates CSMART compliant code.
-NOSOURCE

Replaces the generation of the colorized viewer source listing by a colorized viewer
pre-annotated report containing line number references.

-NOCVI

Disables generation of a Code Coverage report that can be displayed in the Code
Coverage Viewer.

-METRICS

Provides static metric data for compatibility with old versions of the product. Use the
static metrics features of the Test Script Compiler tools instead. By default no static
metrics are produced by the Instrumentors.

-GENERATEDNAME = CHECKSUM | <filename>
-USERNAME = <NAME>

Use these options to add a package to the header of the generated file to store
coverage traces. You can specify the name of the generated package using one of the
following three options:

• -GENERATEDNAME=CHECKSUM uses a checksum calculated on the
instrumented file to create a package name under the form ATC_<checksum>,
where <checksum> has a maximum of four letters.

• -GENERATEDNAME=<filename> uses the name of the file to be instrumented,
this name is transformed into an Ada identifier and prefixed by ATC_.

• -USERNAME=<username>: A name you choose freely by the user and provide
on the command line.

7

PurifyPlus RealTime - Reference Manual

<File> is used without checking whether it is a valid Ada identifier.

By default, the -GENERATEDNAME=<FILE> option is used.

-PREFIX=<prefix>

You can prefix some instrumentations (name of the generated package, variables,
etc.) if there are any semantic ambiguities. Thus, packages generated by attolada can
be recognized by giving them a known prefix.

By default, no prefix is used.

Note The prefix you provide is used, without checking whether it is a valid
Ada identifier.

-SPECIFICATION

Extends instrumentation of calls and conditions to source code inside package
specifications.

-MAIN=<unit>[{,<unit>}]

Forces a trace dump at the end of the main unit of your application.

-EXCALL=<unit>[{,<unit>}]

Excludes from call instrumentation the calls to specified units or to functions or
procedures inside the specified units.

-ADA83 | -ADA95

Choose specifies the Ada language used by the Instrumentor. This language is
applied to the analyzed and generated file.

-INSTRUMENTATION=[COUNT|INLINE]

Specifies the Instrumentation Mode:

• COUNT: Default Pass mode, each branch generates in 32 bits for profiling
purposes. This offers the best compromise between code size and speed
overhead.

• INLINE: Compact mode. functionally equivalent to Pass mode, except that each
branch needs only one bit of storage instead of one byte. This implies a smaller
requirement for data storage in memory, but produces a noticeable increase in
code size (shift/bits masks) and execution time.

8

Command Line Reference

By default, count mode is used, which is a compromise between the flow mode
(everything is a call to the Target Deployment Package) and the inline mode (when
possible, the code is directly inserted into the generated file).
-NOINFO

Asks the Instrumentor not to generate the identification header. This header is
normally written at the beginning of the instrumented file, to strictly identify the
instrument used.

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

7 End of execution because of fatal error

9 End of execution because of internal error

All messages are sent to the standard error output device.

9

PurifyPlus RealTime - Reference Manual

Ada Link File Generator

Purpose

The Ada Link File Generator (attolalk) feature automatically generates link files. It
uses file name extensions that you allow or disallow, and on the file list found in the
specified directories.

Syntax
attolalk [<options>] <link file name> <directory> [<directory>
... <directory>]

where:

• <link file name> is the name of the generated link file. If attolalk cannot write
this file a fatal error is generated.

• <directory> is a directory name. If attolalk cannot read file from this directory, a
fatal error is generated.

• <options> is a set of optional command line parameters as specified in the
following section.

Description

The Link File Generator requires that the LD_LIBRARY_PATH environment variable
is set to the /lib directory in the product installation directory.

File Extensions

A file extension is a character string of unconstrained positive length (greater than
zero). A file name matches an extension if its length is greater than the length of
extension, and if the N last characters of the file name are identical to the characters
of the extension (N is the length of the extension). For example, source.ada matches
the .ada extension but not .1.ada extension.

Permitted and Forbidden Extensions:

Permitted and forbidden file extensions for the Link File Generator are specified by
the ATTOLALK_EXT and ATTOLALK_NOEXT environment variables and are
separated by the ':' character on UNIX systems and ';' on Windows. For example:

ATTOLALK_EXT=".ada:.a:.am"
ATTOLALK_NOEXT=".1.ada"

By default, the allowed extension list is ".ada:.ads:.adb" and the forbidden extension
list is empty.

10

Command Line Reference

Link File Generation

For each given directory, the contained file name list is loaded. Each file name is
compared with the allowed extensions. If a match is found, the file name is compared
with forbidden extension. If there is no match, the file is taken as an Ada source file.
Each Ada source file is analyzed and may produce one or more lines in the generated
link file (with the syntax described above).

Command Line Parameters

Options can be in any order. They may be upper or lowercase and can be abbreviated
to their shortest unambiguous number of characters.

-r

Relative paths. With the -r option, all filenames are generated with relative paths.

-s

Silent mode. With the -s option, only errors are displayed.

-f

Force all Ada files. By default, the Link File Generator only analyzes Ada source files
that were changed since the last analysis. Use the -f option to force the analysis of all
Ada source files, regardless of when they were modified.

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

3 End of execution with one or more warning messages

5 End of execution with one or more errors

7 End of execution because of fatal error

9 End of execution because of internal error

All messages are sent to the standard error output device.

11

PurifyPlus RealTime - Reference Manual

Ada Unit Maker

Purpose

The Instrumentor generates several compilation units in the same file. Some
compilers require a separate file for each compilation unit.

To achieve this, the Ada Unit Maker feature generates one file for each compilation
unit found in a specified Ada source file as the gnatchop command, provided with
the GNAT Ada compiler, does. You can choose the name of the generated files from
several naming conventions.

Syntax
attolchop [<options>] <source file name>

where:

• <source file name> is the source file name to analyze. If this file cannot be read
or contains lexical or syntax errors, a fatal error is generated.

• <options> is a set of optional command line parameters as specified in the
following section.

Description

The Ada Unit Maker feature can generate file names for Rational Apex or Gnat
naming standards. To choose the naming standard, either set the ATTOLCHOP
environment variable to GNAT or APEX or use the -n command line parameter. By
default, the Ada Unit Maker uses the Gnat naming convention.

Gnat Naming

The full compilation unit name is set to lower case and all dot characters (".") are
replaced with hyphens ("-"). The feature appends the .ads extension to the name if the
unit is an extension or the .adb extension if the unit is a body. The Krunch Gnat short
name mode is not supported by the Ada Unit Maker. Please refer to your Gnat
documentation for further information.

Rational Apex Naming

The full compilation unit name is set to lower case; then the feature appends a .1.ada
extension to the filename if the unit is a specification, or a .2.ada extension if the unit
is a body. Please refer to your Apex documentation for further information.

12

Command Line Reference

Options

Options can be in any order. They may be upper or lowercase and can be abbreviated
to their shortest unambiguous number of characters.
-l

This option must be placed first if it is used. This tells the Ada Unit Maker feature to
send the name of the generated file, and no other messages, to the standard output.

-w

Overwrite. By default, the Ada Unit Maker produces an error if a filename already
exists. Use the -w option to overwrite any existing files.

-n APEX|GNAT

Naming standard. Use the -n option to select either the Rational Apex or Gnat
naming convention. This parameter overrides the default setting (Gnat) as well as the
ATTOLCHOP environment variable if set.

Return Codes

After execution, the program exits with the following return codes:

Code Description

0 End of execution with no errors

3 End of execution with one or more warning messages

5 End of execution with one or more errors

7 End of execution because of a fatal error

9 End of execution because of an internal error

All messages are sent to the standard error output device.

13

PurifyPlus RealTime - Reference Manual

Ada Metrics Calculator

Purpose

The Ada Metrics Calculator produces .met static metric files for the specified source
files.

Syntax
metada <source_file> [-output_dir=<output_directory>]
metada @<options_file>

where:

• <source_file> is the name of the source file to be analyzed.

• <output direc ory> is the absolute path of the location where the .met static
metric file is to be generated.

t

• <options_file> points to a plain text file containing a list of options.

Description

The Ada Metrics Calculator analyzes a specified Ada source file and produces a .met
static metric file, which can be opened with the PurifyPlus RealTime GUI.

Note For other languages, the .met static metric files are produced by the C,
C++ and Java Source Code Parsers.

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

3 End of execution with one or more warning messages

5 End of execution with one or more errors

7 End of execution because of fatal error

9 End of execution because of internal error

All messages are sent to the standard error output device.

14

Runtime Analysis
for Java

15

PurifyPlus RealTime - Reference Manual

Java Instrumentor

Purpose

The SCI Instrumentor for Java inserts methods from a Target Deployment Port
library into the Java source code under test. The Java Instrumentor is used for:

• Performance Profiling

• Code Coverage

• Runtime Tracing

Memory Profiling for Java uses the JVMPI Agent instead of source code insertion
(SCI) technology as for other languages.

Syntax
javi <src> {[,<src>]} [<options>]

where:

• <src> is one or several Java source files (input)

Description

The SCI Instrumentor builds an output source file from each input source file by
adding specific calls to the Target Deployment Port method definitions. These calls
are used by the product's runtime analysis features when the Java application is built
and executed.

The Runtime Analysis tools are activated by selecting the command line options:

• -MEMPRO for Memory Profiling

• -PERFPRO for Performance Profiling

• -TRACE for Runtime Tracing

• -PROC and -BLOCK for Code Coverage (code coverage levels).

Note that there is no -COVERAGE option; the following rules apply for the Code
Coverage feature:

• If no code coverage level is specified, nor Runtime Tracing, Memory Profiling,
or Performance Profiling, then the default is to have code coverage analysis at
the -PROC and -BLOCK=DECISION level.

• If no code coverage level is specified while one or more of the aforementioned
features are selected, then code coverage analysis is not performed.

16

Command Line Reference

Detailed information about command line options for each feature are available in
the sections below.

The Java Instrumentor creates the output files in a javi.jir directory, which is located
inside the current directory. By default, this directory is cleaned and rewritten each
time the Instrumentor is executed.

Although the Java Instrumentor can take several input source files on the command
line, you only need to provide the file containing a main method for the Instrumentor
to locate and instrument all dependencies.

When using the Code Coverage feature, you can select one or more types of coverage
at the instrumentation stage (see the User Guide for more information). When you
generate reports, results from some or all of the subset of selected coverage types are
available.

Options
-FILE=<filename>[{,<filename>}] | -
EXFILE=<filename>[{,<filename>}]

-FILE specifies the only files that are to be explicitly instrumented, where <filename>
is a Java source file. All other source files are ignored.

-EXFILE explicitely specifies the files that are to be excluded from the
instrumentation, where <filename> is a Java source file. All other source files are
instrumented.

<filename> may contain a path (absolute or relative from the current working
directory). If no path is provided, the current working directory is used.

-FILE and -EXFILE cannot be used together.

-CLASSPATH=<classpath>

The -CLASSPATH option overrides the $CLASSPATH and $EDG_CLASSPATH
environment variables -in that order- during instrumentation.

In <classpath>, each path is separated by a colon (":") on UNIX systems and a
semicolon (";") in Windows.

-OPP=<filename>

The -OPP option allows you to specify an optional definition file. The <filename>
parameter is a relative or absolute filename.

-DESTDIR=<directory>

17

PurifyPlus RealTime - Reference Manual

The -DESTDIR option specifies the location where the javi.jir output directory
containing the instrumented Java source files is to be created. By default, the output
directory is created in the current directory.

-PROC [=RET]

The -PROC option alone causes instrumentation of all classes and method entries.
This is the default setting.

The -PROC=RET option instruments procedure inputs, outputs, and terminal
instructions.

-BLOCK=IMPLICIT | DECISION | LOGICAL

The -BLOCK option alone instruments simple blocks only.

Use the IMPLICIT or DECISION (these are equivalent) option to instrument implicit
blocks (unwritten else instructions), as well as simple blocks.

Use the LOGICAL parameter to instrument logical blocks (loops), as well as the
simple and implicit blocks.

By default, the Instrumentor instruments implicit blocks.

-NOTERNARY

This option allows you to abstract the measure from simple blocks. If you select
simple block coverage, those found in ternary expressions are not considered as
branches.

-NOPROC

Specifies no instrumentation of procedure inputs, outputs, or returns, and so forth.

-NOBLOCK

Specifies no instrumentation of simple, implicit, or logical blocks.

-COUNT

Specifies count mode. By default, the Instrumentor uses pass mode. See the User
Guide.

-COMPACT

18

Command Line Reference

Specifies compact mode. By default, the Instrumentor uses pass mode. See the User
Guide.

-UNIT=<name>[{,<name>}] | -EXUNIT=<name>[{,<name>}]

-UNIT specifies Java units whose bodies are to be instrumented, where <name> is an
Java package, class or method which is to be explicitly instrumented. All other units
are ignored.

-EXUNIT specifies the units that are to be excluded from the instrumentation. All
other Java units are instrumented.

-UNIT and -EXUNIT cannot be used together.

-DUMPINCOMING=<service>[{,<service>}]
-DUMPRETURNING=<service>[{,<service>}]
-MAIN=<service>

These options allow you to precisely specify where the SCI dump must occur. -MAIN
is equivalent to -DUMPRETURNING.

-COMMENT=<comment>

Associates the text from either the Code Coverage Launcher (preprocessing
command line) or from you with the source file and stores it in the FDC file to be
mentioned in coverage reports. In Code Coverage Viewer, a magnifying glass is put
in front of the source file. Clicking this magnifying glass shows this text in a separate
window.

-NOCVI

Disables generation of a Code Coverage report that can be displayed in the Code
Coverage Viewer.

-NOCLEAN

When this option is set, the Instrumentor does not clear the javi.jir directory before
generating new files.

-FDCDIR=<directory>

Specifies the destination <directory> for the .fdc correspondence file, which is
generated for Code Coverage after the instrumentation for each source file.
Correspondence files contain static information about each enumerated branch and
are used as inputs to the Code Coverage Report Generator. If <directory> is not

19

PurifyPlus RealTime - Reference Manual

specified, each .fdc file is generated in the directory of the corresponding source file.
If you do not use this option, the default .fdc files directory is the current working
directory. You cannot use this option with the -FDCNAME option.

-FDCNAME=<name>

Specifies the .fdc correspondence file name <name> to receive correspondence
produced by the instrumentation. You cannot use this option with the -FDCDIR
option.

-NO_UNNAMED_TRACE

With this option, anonymous classes are not instrumented.

-PERFPRO

This option activates Performance Profiling instrumentation. This produces output
for a Performance Profile report.

-TRACE

This option activates Runtime Tracing instrumentation. This produces output for a
UML sequence diagram.

-TSFDIR=<directory>

Specifies the destination <directory> for the .tsf static trace file, which is generated
for Code Coverage after the instrumentation of each source file. If <directory> is not
specified, each .tsf static trace file is generated in the directory of the corresponding
source file. If you do not use this option, the default .tsf static trace file directory is
the current working directory. You cannot use this option with the -TSFNAME
option.

-TSFNAME=<filename>

Specifies the <name> of the .tsf static trace file that is to be produced by the
instrumentation. You cannot use this option with the -TSFDIR option.

-INSTRUMENTATION=[FLOW|COUNT|INLINE]

Choose specifies the instrumentation mode. By default, count mode is used, which is
a compromise between the flow mode (everything is a call to the Target Deployment
Package) and the inline mode (when possible, the code is directly inserted into the
generated file).

20

Command Line Reference

Warning: Inline mode must be used only in pass mode. Do not use this option if you
want to know how many times a branch is reached.

-NOINFO

Asks the Instrumentor not to generate the identification header. This header is
normally written at the beginning of the instrumented file.

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

7 End of execution because of fatal error

9 End of execution because of internal error

All messages are sent to the standard error output device.

21

PurifyPlus RealTime - Reference Manual

Java Instrumentation Launcher

Purpose

The Instrumentation Launcher instruments and compiles Java source files. The
Instrumentation Launcher is used by Performance Profiling, Runtime Tracing and
Code Coverage.

Syntax
javic [<options>] -- <compilation_command>

where:

• <compilat on_command> is the standard compiler command line that you
would use to launch the compiler if you are not using the product

i

i

• "--" is the command separator preceded and followed by spaces

• <options> is a series of optional parameters for the Java Instrumentor.

Description

The Instrumentation Launcher (javic) fits into your compilation sequence with
minimal changes.

The Instrumentation Launcher is suitable for use with only one compiler and only
one Target Deployment Port. To view information about the driver, run javic with no
parameters.

The javic (or javic.exe) binary is located in the cmd subdirectory of the Target
Deployment Port.

The Java Instrumentation Launcher automatically sets the $ATLTGT environment
variable if it is not already set.

The Instrumentation Launcher accepts all command line options designed for the
Java Instrumentor.

Command line options can be abbreviated to their shortest unambiguous number of
characters and are not case-sensitive.

Customization

The javic (or javic.exe) binary is a copy of the perllauncher (or perllauncher.exe)
binary located in <InstallD r>/bin/<platform>/<os>.

22

Command Line Reference

The launcher runs the javic.pl perl script which is located in the cmd subdirectory
and produces the products.java file that contains the default configuration settings.
These are copied from <Ins allDir>/lib/scripts/BatchJavaDefault.pl. t

The javic.pl included with the product is for the Sun JDK 1.3.1 or 1.4.0 compiler. This
script can be changed in the TDP Editor, allowing you to customize the default
settings, which are based on the BatchJavaDefault.pl script, before the call to
PrepareJavaTargetPackage.

Options

The Launcher accepts the following settings:
 --atl_threads_max=<number>

Sets the maximum number of threads at the same time. The default value is 64.

 --atl_buffer_size=<bytes>

Sets the size of the Dump Buffer in bytes. The default value is 16384.

 --address=<IPaddress>

Address of the Socket Trace Receiver Host. The default address is 127.0.0.1.

 --uploader_port=<port number>

Port number listened to by the Socket Trace Receiver Host. The default port number
is 7777.

 --atl_run_gc_at_exit=0|1

Set this setting to 1 to run finalizers invoking the Garbage Collector upon exit. 0
disables the option. Default is 1.

 --att_on_the_fly=0|1

If set to 1, implies that each tdf lines are flushed immediately in order to be read on-
the-fly by Runtime Tracing. Default is 1.

 --att_partial_dump=0|1

Partial Message Dump is on if set to 1 in Runtime Tracing. Default is 0.

 --att_timestamp=0|1

If 1 record and display Time Stamp in Runtime Tracing. Default is 1.

23

PurifyPlus RealTime - Reference Manual

 --att_heap_size=0|1

Record and Display Current Heap Size in Runtime Tracing. Default is 1.

 --att_thread_info=0|1

Record and Display Thread Information in Runtime Tracing. Default is 1.

 --att_record_max_stack=0|1

Record and Display Max Stack in a note in Runtime Tracing. Default is 1.

Example

The following command launches Runtime Tracing instrumentation of
program1.java and its dependencies, then compiles the instrumented classes in the
java.jir directory.

javic -trace -- javac program1.java

The following command launches Code Coverage instrumentation of program2.java
and program3.java, as well as their dependencies, and generates the instrumented
classes in the tmpclasses directory.

javic -proc=r -block=l -- javac program1.java program2.java -d
tmpclasses

In this example, tmpclasses will contain the compiled TDP classes only if they are not
already in the TDP directory. The -d option creates these TDP .class files in the same
location as the source files. Make sure that you set a correct CLASSPATH when
running the application.

24

Command Line Reference

Java Instrumentation Launcher for Ant

Purpose

The Java Instrumentation Launcher (javic) for Ant provides integration of the Java
Instrumentor with the Apache Jakarta Ant build utility.

Description

This adapter allows automation of the instrumented build process for Ant users by
providing an Ant CompilerAdapter implementation called
com.rational.testrealtime.Javic.

The Java Instrumentation Launcher for Ant provided with the product supports
version 1.4.1 of Ant, but is delivered as source code, so that you can adapt it to any
release of Ant. Source code for the Javic class is available at:

<InstallDir>/lib/java/ant/com/rational/testrealtime/Javic.java

Javic uses the build.actual.compiler property to obtain the name of your Java
compiler. When using JDK 1.4.0, this name is modern. Please refer to Ant
documentation for other values.

In some cases -opp=<file> and -destdir=<dir> can not be set in the Javi.options
property:

• The .opp instrumentation file is automatically set in the -opp=<file> option by
the Javic class if and only if $ATLTGT/ana/atl.opp exists.

• The instrumented file repository directory, where the javi.jir subdirectory is
created, is automatically set by the Javic class if the destdir attribute is set in the
javac task.

-classpath=<classpath> cannot be set in the Javi.options property.

The classpath used by the Java Instrumentor is a merge of the classpath attribute of
the javac task with the $CLASSPATH and $EDG_CLASSPATH contents.

$ATLTGT must point to the Java TDP directory, for example:
<InstallDir>/targets/jdk_1.4.0. On Windows platforms, this path must be provided
in short-name DOS format.

Options

The Launcher accepts the following settings:
 --atl_threads_max=<number>

Sets the maximum number of threads at the same time. The default value is 64.

25

PurifyPlus RealTime - Reference Manual

 --atl_buffer_size=<bytes>

Sets the size of the Dump Buffer in bytes. The default value is 16384.

 --address=<IPaddress>

Address of the Socket Trace Receiver Host. The default address is 127.0.0.1.

 --uploader_port=<port number>

Port number listened to by the Socket Trace Receiver Host. The default port number
is 7777.

 --atl_run_gc_at_exit=0|1

Set this setting to 1 to run finalizers invoking the Garbage Collector upon exit. 0
disables the option. Default is 1.

 --att_on_the_fly=0|1

If set to 1, implies that each tdf lines are flushed immediately in order to be read on-
the-fly by Runtime Tracing. Default is 1.

 --att_partial_dump=0|1

Partial Message Dump is on if set to 1 in Runtime Tracing. Default is 0.

 --att_timestamp=0|1

If 1 record and display Time Stamp in Runtime Tracing. Default is 1.

 --att_heap_size=0|1

Record and Display Current Heap Size in Runtime Tracing. Default is 1.

 --att_thread_info=0|1

Record and Display Thread Information in Runtime Tracing. Default is 1.

 --att_record_max_stack=0|1

Record and Display Max Stack in a note in Runtime Tracing. Default is 1.

26

Command Line Reference

 To install the Javic class for Ant:

• Download and install Ant v1.4.1 from http://jakarta.apache.org/ant/

• Set ANT_HOME to the installation directory, for example: /usr/local/jakarta-
ant-1.4.1.

• Add $ANT_HOME/bin in your PATH

• Compile and install the Javic class. In the ant directory, type:
ant

This adds the javic.jar to the $ANT_HOME/lib directory.

Example

The files for the following example are located in
<InstallDir>/lib/java/ant/example.

The following command performs a standard build based on the build.xml file
ant

This produces the following output:
Buildfile: build.xml
clean:
cc:
 [javac] Compiling 1 source file
all:
BUILD SUCCESSFUL
Total time: 2 seconds

To perform an instrumented build of the same build.xml, without modifying that file:
ant -DATLTGT=$ATLTGT -
Dbuild.compiler=com.rational.testrealtime.Javic -
Dbuild.actual.compiler=modern -Djavi.options=-trace -
Djavi.settings=--att_on_the_fly=0

This produces the following output:
Buildfile: build.xml
clean:
 [delete] Deleting: Sample.class
cc:
 [javac] Compiling 1 source file
 [javi] Instrumenting 1 source file
 [javac] Compiling 1 source file
all:
BUILD SUCCESSFUL
Total time: 4 seconds

27

PurifyPlus RealTime - Reference Manual

JVMPI Agent

Purpose

The JVMPI Agent is a dynamic library that is part of the J2SE and J2ME virtual
machine distributions. The Agent ensure the memory profiling functionality when
using the Memory Profiling feature for Java.

Syntax
java -Xint -Xrunpagent[:<options>] <configuration>

where:

• <options> are the command line options of the JVMPI agent

• <configuration> is the configuration required to run the application

Description

Because of the garbage collector concept used in Java, Performance Profiling for Java
uses the JVMPI agent facility delivered by the JVM. This differentiates Memory
Profiling for Java from the SCI instrumentation technology used with other
languages.

To run the JVMPI Agent from the command line, add the -Xrunpagent option to the
Java command line.

The JVMPI Agent analyzes the following internal events of the JVM:

• Method entries and exits

• Object and primitive type allocations

The JVMPI Agent retrieves source code debug information during runtime. When the
Agent receives a snapshot trigger request, it can either execute an instantaneous
JVMPI dump of the JVM memory, or wait for the next garbage collection to be
performed.

Note Information provided by the instantaneous dump includes actual
memory use as well as intermediate and unreferenced objects that are
normally freed by the garbage collection.

The actual trigger event can be implemented with any of the following methods:

• A specified method entry or exit used in the Java code

• A message sent from the Snapshot button or menu item in the graphical user
interface

• Every garbage collection

28

Command Line Reference

The JVMPI Agent requires that the Java code is compiled in debug mode, and cannot
be used with Java in just-in-time (JIT) mode.

Options

The following parameters can be sent to the JVMPI Agent on the command line.
-H_Cx=<size>
-H_Ox=<size>

Specifies the size of hashtables for classes (-H_Cx) or objects (-H_Ox) where <size>
 must be 1, 3, 5 or 7, corresponding respectively to hashtables of 64, 256, 1024 or 4096
values.

-JVM <prefix>

By default, the Agent waits for the virtual machine (VM) to be fully initialized before
it starts collecting data. This usually relates to the spawning of the first user thread.
With the -JVM option, data collection starts on the first memory allocation, even if the
VM is not fully initialized.

-N_O

With the -N_O option, the Agent only counts the number of allocated objects and
ignores any further object data. The existence of the objects after garbage collection
cannot be verified. Use this option to reduce Performance Profiling overhead or to
obtain a quick summary.

-D_O_N

Delete Object No. By default, the Agent only collects and presents method data on
the latest call to that method. Any further calls to the method replaces existing call
data.

Use the -D_O_N option to display all referenced objects.

-D_GC

This option requests a JVMPI dump after each garbage collection

-D_PGC

When using a dump request method, this option makes the Agent wait until the next
garbage collection before performing the dump.

-D_M[[<method>,<class>,<mode>],[,<method>,<class>,<mode>]]

29

PurifyPlus RealTime - Reference Manual

Activates "Dump Method" mode.

Use this option to perform a snapshot on entry or exit of the specified methods,
where <mode> may be 0 or 1:

• 0 performs the method dump upon exit

• 1 performs the method dump on entry

<class> must be the fully qualified name of a class, including the entire package
name.

-O_M[[<method>,<class>],[<method>,<class>]]

Activates "Observe Method" mode.

Use this option to store the call stack when the specified methods are called. The
stack is loaded from 0 to 10 (max).

-U_S=[<name>]

User name

This option adds the name of the user to the JVMPI dump data. The name must be
specified between brackets ("[]").

-D_U=[<string>]

This option specifies a start date that is used by the JVMPI dump data. The stringr
must be specified between brackets ("[]").

-F_M[[<method>,<class>],[<method>,<class>]]

Filter mode.

Use this option to produce JVMPI data only on the specified method(s). All other
methods are ignored.

-H_N=[<hostname>]

Hostname.

Use this option to specify a hostname for the JVMPI Agent to communicate with the
graphical user interface on the local host. The hostname must be specified between
brackets ("[]").

-P_T=[<port_number>]

30

Command Line Reference

Port number. Use this option to specify a port number for the JVMPI Agent to
communicate with the graphical user interface on the local host. The port number
must be specified between brackets ("[]").
-OUT=[<filename>]

Output filename.

This option specified the name of the trace dump file produced by the JVMPI Agent.
Use the Dump File Splitter on this output file to produce a .tsf static trace file for the
GUI Memory Profiling Viewer.

Example

The following example launches the JVMPI Agent by dumping the expor values and
expor values2 methods of the com.rational.Th class:

t
t
java -Xint -Xrunpagent:-JVM-
D_M[[exportvalues,com.rational.Th,0],[exportvalues2,com.rational.
Th,0]] -classpath $CLASSPATH Th

31

Runtime Analysis
for C and C++

33

PurifyPlus RealTime - Reference Manual

C and C++ Instrumentor

Purpose

The two SCI Instrumentors for C and C++ insert functions from a Target Deployment
Port library into the C or C++ source code under test. The C and C++ Instrumentors
are used for:

• Memory Profiling

• Performance Profiling

• Code Coverage

• Runtime Tracing

Syntax
attolcc1 <src> <instr> <def> [<options>]
attolccp <src> <instr> <hpp> <opp> [<options>]

where:

• <src> Preprocessed source file (input)

• <instr> Instrumented file (output)

• <def> Standard definitions file the C Instrumentor only

• <hpp> and <opp> are the definition files for the C++ Instrumentor only

The <src> input file must have been preprocessed beforehand (with macro
definitions expanded, include files included, #if and directives processed).

When using the C Instrumentor, all arguments are functions. When using the C++
Instrumentor, arguments are qualified functions, methods, classes, and namespaces,
for example: void C::B::f(int).

Description

The SCI Instrumentor builds an output source file from an input source file, by
adding special calls to the Target Deployment Port function definitions.

The Runtime Analysis tools are activated by selecting the command line options:

• -MEMPRO for Memory Profiling

• -PERFPRO for Performance Profiling

• -TRACE for Runtime Tracing

34

Command Line Reference

• -PROC , -CALL, -COND and -BLOCK for Code Coverage (code coverage
levels).

Note that there is no -COVERAGE option; the following rules apply for the Code
Coverage feature:

• If no code coverage level is specified, nor Runtime Tracing, Memory Profilingor
Performance Profiling, then the default is to have code coverage analysis at the -
PROC and -BLOCK=DECISION level.

• If no code coverage level is specified while one or more of the aforementioned
features are selected, then code coverage analysis is not performed.

Detailed information about command line options for each feature are available in
the sections below.

The C Instrumentor (attolcc1) supports preprocessed ANSI 89 or K&R C standard
source code without distinction. The ANSI 99 standard is not supported.

The C++ Instrumentor (attolccp) accepts preprocessed C++ files compliant with the
ISO/IEC 14882:1998 standard. Depending on the Target Deployment Port, attolccp
can also accept the C ISO/IEC 9899:1990 standard and other C++ dialects.

Both C and C++ versions of the Instrumentor accept either C or C++-style comments.

Attol pragmas start with the # character in the first column and end at the next line
break.

The <def> and <header> parameters must not contain absolute or relative paths. The
Code Coverage Instrumentor looks for these files in the directory specified by the
ATLTGT environment variable, which must be set.

You can select one or more types of coverage at the instrumentation stage.

When you generate reports, results from some or all of the subset of selected
coverage types are available.

General Options
-FILE=<filename>[{,<filename>}] | -
EXFILE=<filename>[{,<filename>}]

-FILE specifies the only files that are to be explicitly instrumented, where <filename>
is a C/C++ source file. All other source files are ignored. Use this option with
multiple /C++files that can be found in a preprocessed file (#includes of files
containing the bodies of C/C++ functions, lex and yacc outputs, and so forth).

-EXFILE explicitely specifies the files that are to be excluded from the
instrumentation, where <filename> is a C source file. All other source files are
instrumented. You cannot use this option with the option -FILE.

35

PurifyPlus RealTime - Reference Manual

<filename> may contain a path (absolute or relative from the current working
directory). If no path is provided, the current working directory is used.

-FILE and -EXFILE cannot be used together.

-UNIT=<name>[{,<name>}] | -EXUNIT=<name>[{,<name>}]

-UNIT specifies code units (functions, procedures, classes or methods) whose bodies
are to be instrumented, where <name> is a unit which is to be explicitly
instrumented. All other functions are ignored.

-EXUNIT specifies the units that are to be excluded from the instrumentation. All
other units are instrumented.

-UNIT and -EXUNIT cannot be used together.

Note These options replace the -SERVICE and -EXSERVICE options from
previous releases of the product.

-RENAME=<function>[,<function>]

For the C Instrumentor only. The -RENAME option allows you to change the name of
C functions <func on> defined in the file to be instrumented. Doing so, the f function
will be changed to _atw_stub_f. Only definitions are changed, not declarations
(prototypes) or calls.

ti

-REMOVE=<name>[,<name>]

This option removes the definition of the function (or method) <name> in the
instrumented source code. This allows you to replace one or several functions (or
methods) with specialized custom functions (or methods) from the TDP.

-NOINSTRDIR=<directory>[,<directory>]

Specifies that any C/C++ function found in a file in any of the <directories> or a sub-
directory are not instrumented.

Note You can also use the attol incl_std pragma with the same effect in the
standard definitions file.

-INSTANTIATIONMODE=ALL

C++ only. When set to ALL, this option enables instantiation of unused methods in
template classes. By default, these methods are not instantiated by the C++
Instrumentor.

36

Command Line Reference

-DUMPCALLING=<name>[{,<name>]]
-DUMPINCOMING=<name>[{,<name>}]
-DUMPRETURNING=<name>[{,<name>}]

These options allow you to explicitly define upon which incoming, returning or
calling function(s) the trace dump must be performed. The -DUMPCALLING
function is for the C language only. Pleaser refer to General Runtime Analysis
Settings in the User Guide for further details.

-NOPATH

Disables generation of the path to the Target Deployment Package directory in the
#include directive. This lets you instrument and compile on different computers.

-NOINFO

Prohibits the Instrumentor from generating the identification header. This header is
normally written at the beginning of the instrumented file, to strictly identify the
instrument used.

-NODLINE

Prohibits the Instrumentor from generating #line statements which are not supported
by all compilers. Use this option if you are using such a compiler.

-TSFDIR[=<directory>]

Not applicable to Code Coverage (see FDCDIR). Specifies the destination <directory>
for the .tsf static trace file which is generated following instrumentation for each
 source code file. If <directory> is not specified, each .fdc file is generated in the
corresponding source file's directory. If you do not use this option, the .tsf files
directory is the working directory (the attolccl execution directory). You cannot use
this option with the -FDCNAME option.

-TSFNAME=<name>

Not applicable to Code Coverage (see FDCNAME). Specifies the .tsf file name
<name> to receive the static traces produced by the instrumentation. You cannot use
this option with the -TSFDIR option.

-NOINCLUDE

This option excludes all included files from the instrumentation process. Use this
option if there are too many excluded files to use the -EXFILE option.

37

PurifyPlus RealTime - Reference Manual

Code Coverage Options

The following parameters are specific to the Code Coverage runtime analysis feature.

-PROC[=RET]

-PROC instruments procedure inputs (C/C++ functions). This is the default setting.

The -PROC=RET option instruments procedure inputs, outputs, and terminal
instructions.

-CALL

Instruments C/C++ function calls.

-BLOCK=IMPLICIT | DECISION | LOGICAL

The -BLOCK option alone instruments simple blocks only.

Use the IMPLICIT or DECISION (these are equivalent) option to instrument implicit
blocks (unwritten else instructions), as well as simple blocks.

Use the LOGICAL parameter to instrument logical blocks (loops), as well as the
simple and implicit blocks.

By default, the Instrumentor instruments implicit blocks.

-NOTERNARY

This option allows you to abstract the measure from simple blocks. If you select
simple blocks coverage, those found in ternary expressions are not considered as
branches.

-COND[=MODIFIED | =COMPOUND | =FORCEEVALUATION]

MODIFIED or COMPOUND are equivalent settings that allow measuring the
modified and compound conditions.

FORCEEVALUATION instruments forced conditions.

When -COND is used with no parameter, the Instrumentor instruments basic
conditions.

-NOPROC

Specifies no instrumentation of procedure inputs, outputs, or returns, and so forth.

38

Command Line Reference

-NOCALL

Specifies no instrumentation of calls.

-NOBLOCK

Specifies no instrumentation of simple, implicit, or logical blocks.

-NOCOND

Specifies no instrumentation of basic conditions.

-COUNT

Specifies count mode.

-COMPACT

Specifies compact mode.

-EXCALL=<filename>

For C only. Excludes calls to the C functions whose names are listed in <filename>
from being instrumented. The names of functions (identifiers) must be separated by
space characters, tab characters, or line breaks. No other types of separator can be
used.

-FDCDIR=<directory>

Specifies the destination <directory> for the .fdc correspondence file, which is
generated for Code Coverage after the instrumentation for each source file.
Correspondence files contain static information about each enumerated branch and
are used as inputs to the Code Coverage Report Generator. If <directory> is not
specified, each .fdc file is generated in the directory of the corresponding source file.
If you do not use this option, the default .fdc files directory is the working directory
(the attolccl execution directory). You cannot use this option with the -FDCNAME
option.

-FDCNAME=<name>

Specifies the .fdc correspondence file name <name> to receive correspondence
produced by the instrumentation. You cannot use this option with the -FDCDIR
option.

39

PurifyPlus RealTime - Reference Manual

-NOCVI

Disables generation of a Code Coverage report that can be displayed in the Code
Coverage Viewer.

-METRICS

Provides static metric data for compatibility with old versions of the product. Use the
static metrics features of the Test Script Compiler tools instead. By default no static
metrics are produced by the Instrumentors.

-NOSOURCE

Replaces the generation of the colorized viewer source listing by a colorized viewer
pre-annotated report containing line number references.

-COMMENT=<comment>

Associates the text from either the Instrumentation Launcher (preprocessing
command line) or from the source file under analysis and stores it in the .fdc
correspondence file to be mentioned in Code Coverage reports. In the Code Coverage
Viewer, a magnifying glass appears next to the source file, allowing you to display
the comments in a separate window.

Memory Profiling Specific Options

The following parameters are specific to the Memory Profiling runtime analysis
feature.
-MEMPRO

Activates instrumentation for the Runtime Tracing analysis feature.

-NOINSPECT=<variable>[,<variable>]

Specifies global variables that are not to be inspected for memory leaks. This option
can be useful to save time and instrumentation overhead on trusted code.

Performance Profiling Specific Options

The following parameters are specific to the Performance Profiling runtime analysis
feature.
-PERFPRO[=<os>|<process>]

Activates instrumentation for the Runtime Tracing analysis feature.

40

Command Line Reference

The optional <os> parameter allows you to specify a clock type. By default the
standard operating system clock is used.

The <process> parameter specifies the total CPU time used by the process.

The <os> and <process> options depend on target availability.

Runtime Tracing Specific Options

The following parameters are specific to the Runtime Tracing analysis feature.
-TRACE

Activates instrumentation for the Runtime Tracing analysis feature.

-NO_UNNAMED_TRACE

For the C++ Instrumentor only. With this option, unnamed structs and unions are not
instrumented.

-NO_TEMPLATE_NOTE

For the C++ Instrumentor only. With this option, the UML/SD Viewer will not
display notes for template instances for each template class instance.

-BEFORE_RETURN_EXPR

For the C Instrumentor only. With this option, the UML/SD Viewer displays calls
located in return expressions as if they were executed sequentially and not in a
nested manner.

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

7 End of execution because of fatal error

9 End of execution because of internal error

All messages are sent to the standard error output device.

41

PurifyPlus RealTime - Reference Manual

C and C++ Instrumentation Launcher

Purpose

The Instrumentation Launcher instruments and compiles C and C++ source files. The
Instrumentation Launcher is used by Memory Profiling, Performance Profiling,
Runtime Tracing and Code Coverage.

Syntax
attolcc [-<options>] [--<settings>] -- <compilation_command>
attolcc --help

where:

• <compilat on_command> is the standard compiler command line that you would
use to launch the compiler if you are not using the product

i

• "--" is the command separator preceded and followed by spaces

• <options> is a series of optional parameters

• <settings> is a series of optional instrumentation settings

Description

The Instrumentation Launcher fits into your compilation sequence with minimal
changes.

The Instrumentation Launcher is suitable for use with only one compiler and only
one Target Deployment Port. To view information about the driver, run attolcc with
no parameters.

The attolcc binary is located in the /cmd directory of the Target Deployment Port.

Note Some Target Deployment Ports do not have an attolcc binary. In this
case, you must manually run the instrumentor, compiler and linker.

General Options

The Instrumentation Launcher accepts all command line parameters for either the C
or C++ Instrumentor, including runtime analysis feature options. This allows the
Instrumentation Launcher to automatically compile the selected Target Deployment
Port.

In addition to Instrumentor parameters and Code Coverage parameters, the
following options are specific to the Instrumentation Launcher. Command line
options can be abbreviated to their shortest unambiguous number of characters and
are not case-sensitive.

42

Command Line Reference

--HELP

Type attolcc --help to list a comprehensive list of options, including those of the
instrumentor, for use with the instrumentation launcher.

-VERBOSE | -#

The -VERBOSE option shows commands and runs them. The "-#" option shows
commands but does not execute them.

-TRACE
-MEMPRO
-PERFPRO

These options activate specific instrumentation for respectively the Runtime Tracing,
Memory Profiling and Performance Profiling runtime analysis feature.

-FORCE_TDP_CC

This option forces the Instrumentation Launcher to attempt to compile the Target
Deployment Port even if the link phase has not yet been reached before the TP.o or
TP.obj is built.

-NOSTOP

This option forces the initial command to resume when a failure occurs during
preprocessing, instrumentation, compilation or link. This means that the build chain
is not interrupted by errors, but the resulting binary may not be fully instrumented.
Use this option when debugging instrumentation issues on large projects.

Each error is logged in an attolcc.log file located in the directory where the error
occurred.

Code Coverage Options

The following parameters are specific to the Code Coverage runtime analysis feature.
These options do not activate Code Coverage. To activate Code Coverage, use the
Code Coverage Level options (-PROC, -CALL, -COND and -BLOCK).
-PASS | -COUNT | -COMPACT

Pass mode only indicates whether a branch has been hit. The default setting is pass
mode.

Count mode keeps track of the number of times each branch is exercised. The results
shown in the code coverage report include the number of hits as well as the pass
mode information.

43

PurifyPlus RealTime - Reference Manual

Compact mode is equivalent to pass mode, but each branch is stored in one bit,
instead of one byte as in pass mode. This reduces the overhead on data size.

-COMMENT | -NOCOMMENT

The comment option lets the user associate a comment string with the source in the
code coverage reports and in Code Coverage Viewer.

By default, the Instrumentation Launcher sends the preprocessing command as a
comment. This allows you to distinguish the source file that was preprocessed and
compiled more than once with distinct options.

Use -NOCOMMENT to disable the comment setting.

Instrumentation Settings

The instrumentation settings apply to the compilation of the Target Deployment Port
Library.

The 0 or 1 values for many conditional settings mean false for 0 and 1 for true.

Compiler Settings
--cflags=<compilation flags>
--cppflags=<preprocessing flags>
--include_paths=<comma separated list of include paths>
--defines=<comma separated list of defines>

Enclose the flags with quotes ("") if you specify more than one. These flags are used
while compiling the Target Deployment Port Library

By default, the corresponding DEFAULT_CPPFLAGS, DEFAULT_CFLAGS,
DEFAULT_INCLUDE_PATHS and DEFAULT_DEFINES from the <ATLTGT>/tp.ini
or <ATLTGT>/tpcpp.ini file are used

General Settings
--atl_multi_threads=0|1

To be set to 1 if your application is multi-threads (default 0).
--atl_threads_max=<number>

Maximum number of threads at the same time (default 64).
--atl_multi_process=0|1

To be set to 1 if your application uses fork/exec to run itself or another instrumented
application (default 0). Traces files are named atlout.<pid>.spt.
--atl_buffer_size=<bytes>

44

Command Line Reference

Size of the Dump Buffer in bytes (default 16384).
--atl_traces_file=<file-name>

Name of the file that is flushed by execution and to be split (default atlout.spt).

Memory Profiling Settings
--atp_call_stack_size=<number of frames>

Number of functions from the stack associated to any tracked memory block or to
any error (default 6).
--atp_reports_fiu=0|1

File In Use detection and reporting (default 1)
--atp_reports_sig=0|1

POSIX Signal detection and reporting (default 1).
--atp_reports_miu=0|1

Memory In Use detection and reporting, ie: not leaked memory blocks (default 0).
--atp_reports_ffm_fmwl=0|1

Freeing Freed Memory and Late Detect Free Memory Write detection and reporting
 (default 1).
--atp_max_freeq_length=<number of tracked memory blocks>

Free queue length, ie: maximum number of tracked memory blocks whom actual free
is delayed (default 100).
--atp_max_freeq_size=<bytes number>

Sets the free queue size, ie: the maximum number of bytes actually unfreed (default
1048576 = 1Mb)
--atp_reports_abwl=0|1

Late Detect Array Bounds Write detection and reporting (default 1).
--atp_red_zone_size=<bytes number>

Size of each of the two Red Zones placed before and after the user space of the
tracked memory blocks (default 16).

Performance Profiling Settings
--atq_dump_driver=0|1

Enable the Performance Profiling Dump Driver API atqapi.h (default 0).

Code Coverage Settings
--atc_dump_driver=0|1

Enablesthe Coverage Dump Driver API apiatc.h (default 0).

45

PurifyPlus RealTime - Reference Manual

Runtime Tracing Settings
--att_on_the_fly=0|1

If set to 1, implies that each tdf lines are flushed immediatly in order to be read on-
the-fly by the UML/SD Viewer in Studio (default 0).
--att_item_buffer=0|1

Enable Trace Buffer (not Dump Buffer) if set to 1 (default 0).
--att_item_buffer_size=<bytes>

Maximum number of recorded Trace elements before Trace Buffer flush (default 100).
--att_partial_dump=0|1

Partial Message Dump is on if set to 1 (default 0).
--att_signal_action=0|1|2

• 0 means no action when handling a signal (default)

• 1 means toggling dump of messages

• 2 means only flushing the current call stack
--att_record_max_stack=0|1

Display largest call stack length in a note (default 1).
--att_timestamp=0|1

If enabled, record and display time stamp (default 0).
--att_thread_info=0|1

If 1 record and display thread information (default 1).

Component Testing for C++ Contract Check Settings
--atk_stop_on_error=0|1

Call breakpoint function on assertion failure (default 0).
--atk_dump_success=0|1

By default (0), only failed assertions are reported. If enabled, both failed and passed
assertions are reported.
--atk_report_reflexive_states=0|1

Trace unchanged states (default 1).

Example
attolcc -- cc -I../include -o appli appli.c bibli.c -lm
attolcc -TRACE -- cc -I../include -o appli appli.c bibli.c -lm

46

Command Line Reference

Return codes

The return code from the Instrumentation Launcher is either the first non-zero code
received from one of the commands it has executed, or 0 if all commands ran
successfully. Due to this, the Instrumentation Launcher is fully compatible with the
make mechanism.

If an error occurs while the Instrumentation Launcher - or one of the commands it
handles - is running, the following message is generated:

ERROR : Error during C preprocessing

All messages are sent to the standard error output device.

47

Generic Tools

49

PurifyPlus RealTime - Reference Manual

Graphical User Interface

Purpose

The PurifyPlus RealTime Graphical User Interface (GUI) is an integrated
environment that provides access to all of the capabilities packaged with the product.

Syntax
studio [-r <node>] [<filename>{ <filename>}]

where:

• <filename> can be an .rtp project or .rtw workspace file, as well as source files
(.c, .cpp, .h, .ada, .java) or any report files that can be opened by the GUI, such
as .tdf, .tsf, .tpf, .tqf, .xrd files.

• <node> is a project node to be executed.

Description

The studio command launches the GUI.

The -r option launches the GUI and automatically executes the specified node. Use
the following syntax to indicate the path in the Project Explorer to the specified node:

<workspace_node>{[.<child_node>]}

Nodes in the path are separated by period ('.') symbols. If no node is specified, the
GUI executes the entire project.

When using the -r option, an .rtp project file must be specified.

Example

The following command opens the project.rtp project file in the GUI, and runs the
app_2 node, located in app_group_1 of user_workspace:

studio -r user_workspace.app_group_1.app_2 project.rtp

The following example opens a UML sequence diagram created by Runtime Tracing.
studio my_app.tsf my_app.tdf

50

Command Line Reference

Trace Receiver

Purpose

The Trace Receiver is a graphical client that receives and splits trace dump data
through a socket.

Syntax
trtpd [<options>] [<file> [,<file>]]

where:

• <file> is one or several dynamic trace output files

• <options> is a set of optional parameters

Description

If a set of user-defined I/O functions uses sockets in a customized Target
Deployment Port (TDP), the Trace Receiver can be used to receive the dump data and
to split the trace files on-the-fly. Use the Target Deployment Port Editor to customize
the TDP.

The Trace Receiver uses its own graphical user interface to display reception and
split progression.

To use the Trace Receiver, you must:

• Customize the TDP to produce trace buffer output through a socket by setting
the SOCKET_UPLOAD setting of the TDP to True

• Specify a delimiter character in the SOCKET_UPLOAD_DELIMITER setting of
the TDP

The Runtime Trace Receptor uses the delimiter to find useful trace data and directs
the output to the trace file formats. If no filenames are provided, the following files
are produced:

Options
-p|--port <number>

Port number. Specifies the decimal number of the port. The default port number is
7777.
-d|--delimiter <delimiter-byte>

Delimiter byte. Specified the decimal number of the delimiter byte. The default
number is 94 ("^" in ASCII).

51

PurifyPlus RealTime - Reference Manual

-o|--oneshot

Oneshot. Exits the Trace Receiver when the first client closes.

Example

The following trace dump is sent to the socket, using the "^" character as a delimiter:
...
^TU "ms"
SF 1 1dch 9527b66bh
TI 1 1 5
TM 726h
HS 95fch
ME 3 1
NI 6 1
SF 2 10edh 72cbacbch
TM b68h
HS bea4h
^ ...

Use the following command line to receive and split the trace dump into the correct
output file formats.

trtpd --port 7778 --delimiter 95 -o c:\\temp\\coverage.tio
c:\\temp\\trace.tdf c:\\temp\\profiling.tqf

You can also launch the Trace Receiver with no parameters. In this case, default
parameters are assumed:

trtpd

52

Command Line Reference

TDF Splitter

Purpose

For use with Runtime Tracing. The .tdf splitter (attsplit) tool allows you to separate
large .tdf dynamic trace files into smaller—more manageable—files.

Syntax
attsplit [<options>] <tcf file> <tsf_file> <tdf file>

where:

• <tcf_file> is always $TESTRTDIR/lib/tracer.tcf

• <tsf_file> is the name of the generated .tsf static trace file

• <tdf file> is the name of the original .tdf dynamic trace file

Description

Trace .tdf files that contain loops cannot be split.

Options
-p <prefix>

Specifies the filename prefix for the split .tdf files. By default, split .tdf filenames start
with att.
-s <bytes>

Sets the maximum file size for the split .tdf files. By default, the original .tdf dynamic
trace file is split into 1000 byte split .tdf files

Specifies
-v | -vw

Activates verbose mode (-v) or verbose mode for written files only (-vw).
-nt

Disables the writing of time information. By default, time information is written to
the split .tdf files.
-fopt <filename>

Uses a text file to pass options to the attsplit command line.

53

PurifyPlus RealTime - Reference Manual

Code Coverage Report Generator

Purpose

The Report Generator creates Code Coverage reports from the coverage data
gathered during the execution of the application under analysis.

Syntax
attolcov {<fdc file>} {<traces>} [<options>]

where:

• <fdc files> The list of correspondence files for the application under test, with
one file generated for each source file during instrumentation

• <traces> is a list of trace files. (default name attolcov.tio)

• <options> represents a set of options described below.

Parameters can use wild-card characters ('*' and '?') to specify multiple files. They can
also contain absolute or relative paths.

Description

Trace files are generated when an instrumented program is run. A trace file contains
the list of branches exercised during the run.

You can select one or more coverage types at the instrumentation stage.

All or some of the selected coverage types are then available when reports are
generated.

The Report Generator supports the following coverage type options:

-PROC[=RET]

The -PROC option, with no parameter, reports procedure inputs.

Use the RET parameter to reports procedure inputs, outputs, and terminal
instructions.
-CALL

Reports call coverage.

-BLOCK[=IMPLICIT | DECISION | LOGICAL | ATC]

The -BLOCK option, with no parameter, reports statement blocks only.

• IMPLICIT or DECISION (equivalent) reports implicit blocks (unwritten else and
default blocks), as well as statement blocks.

54

Command Line Reference

• LOGICAL Reports logical blocks (loops, as well as statement and implicit
blocks.

• ATC Reports asynchronous transfer control (ATC) blocks, as well as statement
blocks, implicit blocks, and logical blocks.

-COND[=MODIFIED|COMPOUND]

The -COND option, with no parameter, reports basic conditions only.

MODIFIED reports modified conditions as well as basic conditions.

COMPOUND reports compound conditions as well as basic and modified
conditions.

Explicitly Excluded Options

Each coverage type can also be explicitly excluded.

-NOPROC

Procedure inputs, outputs, or returns are not reported.

-NOCALL

Calls are not reported.

-NOBLOCK

Simple, implicit, or logical blocks are not reported.

-NOCOND

Basic conditions are not reported.

Additional Options

The following options are also available:

-FILE=<file>{[,<file>]} | -EXFILE=<file>{[,<file>]}

Specifies which files are reported or not. Use -FILE to report only the files that are
explicitly specified or -EXFILE to report all files except those that are explicitly
specified. Both -FILE and -EXFILE cannot be used together.

-SERVICE=<service>{[,<service>]} | -
EXSERVICE=<service>{[,<service>]}

Specifies which functions, methods, and procedures are to be reported or not. Use -
SERVICE to report only the functions, methods and procedures that are explicitly

55

PurifyPlus RealTime - Reference Manual

specified or -EXSERVICE to report all functions, methods, and procedures except
those that are explicitly specified. Both -SERVICE and -EXSERVICE cannot be used
together.

-TEST=<test>{[,<test>]} | -EXTEST=<test>{[,<test>]}

Specifies which tests are reported or not. Use -TEST to report only the tests that are
explicitly specified or -EXTEST to report all tests except those that are explicitly
specified. Both -TEST and -EXTEST cannot be used together.

-OUTPUT=<file>

Specifies the name of the report file (<file>) to be generated. You can specify any
filename extension and can include an absolute or relative path.

-LISTING[=<directory>]

This option requires annotated listings to be generated from the source files.
Annotated listings carry the same name as their corresponding source files, but with
the extension .lsc. The optional parameter <directory> is the absolute or relative path
to the directory where the listings are to be generated. By default, a listing file is
generated in the directory where its corresponding source file is located.

-NOGLOBAL

Reports the results of each test found in the trace file, followed by a conclusion
summarizing all the tests. If a test has no name, it is identified as "#" in the report. A
test is an execution of an instrumented application or a dump-on-signal. By default,
the report is not structured in terms of tests.

-BRANCH=COV

Reports branches covered rather than branches not covered. It does not affect listings,
where only branches not covered are indicated with the source code line where they
appear.

-SUMMARY=CONCLUSION | FILE | SERVICE

This option sets the verbosity of the summary:

• CONCLUSION reports only the overall conclusion.

• FILE reports only the conclusion for each source file, and the overall conclusion.

• SERVICE reports only the levels of coverage for each source file, each C
function, and overall. The list of branches covered or not covered is not
included.

Return Codes

After execution, the program exits with the following return codes

56

Command Line Reference

Code Description

0 End of execution with no errors

7 End of execution because of fatal error

9 End of execution because of internal error

All messages are sent to the standard error output device.

57

PurifyPlus RealTime - Reference Manual

Test Process Monitor

Purpose

Use the Test Process Monitor tool (tpm_add) to create and update Test Process
Monitor databases from a command line.

Syntax
tpm_add -metric=<metric> [-file=<filename>] [-user=<user>]
{[<value_field>]}

where:

• <metric> is the name of the metric.

• <filename> contains the name of the file under test to which the metric applies.
This allows metrics for several files to be saved within the same database.

• <user> is the name of the product user who performed the measured value.

• <value_field> are the values attributed to each field

Description

The Test Process Monitor (TPM) provides an integrated monitoring feature that helps
project managers and test engineers obtain a statistical analysis of the progress of
their development effort.

Metrics generated by a test or runtime analysis feature are stored in their own
database. Each database is actually a three-dimensional table containing:

• Fields: Each database contains a fixed number of fields. For example a typical
Code Coverage database records.

• Values: Each field contains a series of values.

• Filenames: Values can be attributed to a filename, such as the name of the file
under analysis. This way, the TPM Viewer can display result graphs for any
single filename as well as for all files, allowing detailed statistical analysis.

Each field contains a set of values.

Note Although you specify a filename for the file under analysis, the TPM Viewer
currently only displays a unique FileID number for each file.

The TPM database is made of two files that use the following naming convention:
<metric>.<user>.<nb_fields>.idx
<metric>.<user>.<nb_fields>.tpm

58

Command Line Reference

where <nb_fields> is the number of fields contained in the database.

In the GUI, the Test Process Monitor gathers the statistical data from these database
file and generates a graphical chart based on each field.

There are 3 steps to using TPM:

• Creating a database for the metric

• Updating the database

• Viewing the results in the GUI

Creating a Database

Before opening the Test Process Monitor in the product, you must create a database.

Database files are created by using the tpm_add command line tool.

If you are using Code Coverage from the GUI, it automatically creates and updates a
TPM code-coverage database.

If you are using the product in the command line interface you can invoke tpm_add
from your own scripts.

 To create a new metric database with tpm_add:

1. Type the following command:
tpm_add -metric=<name> -file=<filename> <value1>[{<value2>... }]

where <name> is the name of the new metric and <value> represents the initial
value of each field in the database. <filename> is the name of the source file to which
these values are related.

Updating a Database

The Test Process Monitor adds a record to the database each time it encounters an
existing database.

 To add a new record to this database:

1. Type the tpm_add command:
tpm_add -metric=<name> <value1>[{<value2>... }]

where <name> is the name of the new metric and <value> represents the initial
value of each field in the database. The number of values must be the consistent with
the number of fields in the table.

59

PurifyPlus RealTime - Reference Manual

Note It is important to remain consistent and supply the correct number of fields
for your database. If you run the tpm_add command on an existing metric, but with
a different number of fields, the feature creates a new database.

tpm_add -metric=stats 5 -6 5.4 3 0

Viewing TPM Reports

Use the Test Process Monitor menu in the product to display database. Please refer to
the User Guide for further information.

Examples

The following command creates a user metric called stats, made up of five fields,
containing initial values 1, 0.03, 0, 3 and -4.7.

tpm_add -metric=stats -file=/project/src/myapp.c 1 0.03 0 3 -4.7

The new database is contained in the following files:
stats.user.5.idx
stats.user.5.tpm

The following line adds a new record to the stats database, pertaining to the myapp.c
source file:

tpm_add -metric=stats -file=/project/src/myapp.c 5 -6 5.4 3 0

The following line adds a new set of values to the stats database, this time related to
the mylib.c source file:

tpm_add -metric=stats -file=/project/src/mylib.c 5 -6 5.4 3 0

The metrics related to myapp.c and mylib.c are stored in the same database and can
be viewed either jointly or separately in the product Test Process Monitor Viewer.

If the following command is issued:
tpm_add -metric=stats -file=myapp.c 5 -6 3 0

A new database is created with four fields:
stats.user.4.idx
stats.user.4.tpm

60

Command Line Reference

Dump File Splitter

Purpose

The dump file splitter (atlsplit) tool separates the unique multiplexed trace data file
generated by the runtime analysis command line tools into specific trace files that can
be processed by the runtime analysis and test feature Report Generators.

Syntax
atlsplit <trace_file>

where:

• <trace_file> is the name of the generated trace file (atlout.spt)

Description

The dump file splitter actually launches a perl script. You must therefore have a
working perl interpreter such as the one provided with the product in the /bin
directory.

Alternatively, you could use the following command line:
perl -I<installdir>/lib/perl
<installdir>/lib/scripts/BatchSplit.pl atlout.spt

where <install_dir> is the installation directory of the product.

The script automatically detects which test or runtime analysis feature were used to
generate the file and produces as many output files.

After the split, depending on the selected runtime analysis feature, the following file
types are generated:

61

PurifyPlus RealTime - Reference Manual

Uprint Localization Utility

Purpose

The Uprint is a utility that can prove useful if you are experiencing localization issues
with PurifyPlus RealTime.

Syntax
uprint
uprint <hex_min>..<hex_max>
uprint --mimename
uprint --utf8 <string>

where:

• <hex_min> and <hex_max> specify a range of 16-bit unicode characters
expressed in hexadecimal notation.

• <string> is a character string encoded in the current locale.

Description

When used with no argument, uprint returns the following information about the
current locale:

• Mib name

• mimeName

• Locale name

When used with a <hex_min>..<hex_max> argument, uprint also returns a list of
locale-encoded characters from <hex_m n> to <hex_max>. i

When used with the --utf8 option, uprint translates a specified locale-encoded
<string> into a UTF-8 compliant backslashed hexadecimal string for use in C or C++
source code.

When used with the --mimename option, uprint returns the name of the Unicode
Mime encoding.

Examples

The following command returns information about the current locale:
>uprint
Mib:111 mimeName:"ISO-8859-15" locale:"fr_FR@euro"

The following command translates the word "éric" into a UTF-8 compliant string:

62

Command Line Reference

>uprint --utf8 éric
\xc3\xa9\x72\x69\x63

63

Appendices

This section provides extra reference information that may be necessary when using
the product.

GUI Macro Variables

Some parts of the graphical user interface (GUI) allow you to specify command lines,
such as in the Tools menu or in User Command nodes.

To enhance the usability of this feature, the product includes a macro language,
allowing you to pass system and application variables to the command line.

Usage

Macro variables are preceded by $$ (for example: $$WSPNAME).

Macro functions are preceded by @@ (for example: @@PROMPT).

Environment variables are also accessible, and start with $ (for example: $DISPLAY).

When specifying a command line, variables and functions are replaced with their
value.

In Windows, when long filenames are involved, it is necessary to add double quotes
(" ") around filename variables. For example:

"C:\Program Files\Internet Explorer\IEXPLORE.EXE" "$$NODEPATH"

Node variables are context-sensitive: the variable returned relates to the node
selected in the File or Test Browser. Multiple selections are supported. If a node
variable is invoked when there is no selection, no value is returned by the variables.

Macro variables and functions are case-insensitive. For clarity, they are represented
in this document in upper case characters.

Language Reference

• Global variables: not node-related, include Workspace and application
parameters.

65

PurifyPlus RealTime - Reference Manual

• Node attribute variables: general attributes of a node.

• Functions: return a value to the command line after an action has been
performed.

Functions

Functions process an input value and return a result. Input values are typically a
global or node variable.

Environment Variable Description

@@PROMPT('<message>') Opens a prompt dialog box, allowing the user to enter a line
of text.

The optional <message> parameter allows you to define a
prompt message, surrounded by single quotes (').

@@EDITOR(<filename>) Opens the product Text Editor.

@@OPEN(<filename>) Opens <fi ename>. <fi ename> must be a file type l l
recognized by the product. This is the equivalent of selecting
Open from the File menu.

Global Variables

Global variables always return the same value throughout the Workspace.

Environment Variable Description

$$PRJNAME Returns the name of the current .rtp Project file

$$PRJDIR Returns the directory name of the current .rtp Project file

$$PRJPATH Returns the absolute path of the current .rtp Project file

$$VCSDIR Returns the local repository for files retrieved from Rational
ClearCase, as specified in the ClearCase Preferences dialog
box

$$CPPINCLUDES Returns the directory of C and C++ include files, as specified
in the Directories Preferences dialog box

$$PERL Returns the full command-line to run the PERL interpreter
included with the product

$$CLIPBOARD Returns the text content of the clipboard

$$VCSITEMS Returns a list of installed configuration management system
(CMS) tools

66

Appendices

Node Attribute Variables

These variables represent the attributes of a selected node. If no node is selected,
these variables return an empty string.

Environment Variable Description

$$NODENAME Returns the name of the node. In the case of files, this is the node's
short filename

$$NODEPATH Returns the absolute path and filename of the selected node

$$CFLAGS Returns the compilation flags

$$LDLIBS Returns the filenames of link definition libraries

$$LDFLAGS Returns the flags used for link definition

$$ARGS Returns all arguments sent to the command line

$$OUTDIR Returns the name of the product features output directory

$$REPORTDIR Returns name of the text report output directory

$$TARGETDIR Returns the absolute path to the current Target Deployment Port

$$BINDIR Returns the binary directory where the product is installed

$$OBJECTS Returns a list of .o or .obj object files generated by the compiler

$$TIO Returns the name of the current .tio trace file generated by Code
Coverage

$$TSF Returns the name of the current UML/SD .tsf static file generated
by Runtime Tracing

$$TDF Returns the name of the current UML/SD .tdf dynamic file
generated by Runtime Tracing

$$TDC Returns the name of the current Code Coverage .tdc
correspondence file

$$ROD Returns the name of the current .rod report file

$$FDC Returns the name of the current .fdc correspondence files for
Code Coverage

Instrumentation Pragmas

The Runtime Tracing feature allows the user to add special directives to the source
code under test, known as pragma directives. When the source code is instrumented,
the Instrumentor replaces pragma directives with dedicated code.

67

PurifyPlus RealTime - Reference Manual

Usage
#pragma attol <pragma name> <directive>

Example:
int f (int a)
{
#pragma attol att_insert if (a == 0) _ATT_DUMP_STACK
 return a;
}

This code will be replaced, after instrumentation, with the following line:
/*#pragma attol att_insert*/ if (a == 0) _ATT_DUMP_STACK

Note Pragma directives are implemented only if the routine in which it is
used is instrumented.

Instrumentation Pragma Names
#pragma attol insert <directive>

replaced by the instrumentation to be:
/*#pragma attol insert*/ <directive>

if any of Code Coverage, Runtime Tracing, Memory Profiling or Performance
Profiling is/are selected.

#pragma attol atc_insert <directive>

replaced by the instrumentation to be:
/*#pragma attol atc_insert*/ <directive>

if Code Coverage is selected.

#pragma attol att_insert <directive>

replaced by the instrumentation to be:
/*#pragma attol att_insert*/ <directive>

if Runtime Tracing is selected.

#pragma attol atp_insert <directive>

replaced by the instrumentation to be:
/*#pragma attol atp_insert*/ <directive>

68

Appendices

if Memory Profiling is selected.

#pragma attol atq_insert <directive>

replaced by the instrumentation to be:
/*#pragma attol atq_insert*/ <directive>

if Performance Profiling is selected.

Code Coverage, Memory Profiling and Performance Profiling Directives
_ATCPQ_DUMP(<reset>)

where <reset> is 1 if internal tables reset is wanted or 0 if not.

This macro ATCPQ_DUMP does nothing if Code Coverage, Memory Profiling, or
Performance Profiling are not selected.

Runtime Tracing Directives

When using this mode, the Target Deployment Package only sends messages related
to instance creation and destruction, or user notes. All other events are ignored. See
Partial message dump for more information about this feature.
_ATT_START_DUMP
_ATT_STOP_DUMP

These directives activate and deactivate the partial message dump mode.

_ATT_TOGGLE_DUMP

This directive toggles the dump mode on and off. _ATT_TOGGLE_DUMP can be
used instead of _ATT_START_DUMP and _ATT_STOP_DUMP.

_ATT_DUMP_STACK

When invoked, this directive dumps the contents of the call stack at that moment.

_ATT_FLUSH_ITEMS

When in Target Deployment Package buffer mode, this directive flushes the buffer.
All buffered trace information is dumped. Flushing the buffer be useful before
entering a time-critical phase of the trace.

_ATT_USER_NOTE(<text>)

69

PurifyPlus RealTime - Reference Manual

This directive associates a text note to the function or method instance. <text> is a
user-specified alphanumeric string containing the note text of type char*. The length
of <text> must be within the maximum note length specified in the Runtime Tracing
Settings dialog box.

Environment Variables

Mandatory Environment Variables

The following environment variables MUST be set to run the product:

• TESTRTDIR for the graphical user interface

• ATLTGT in the command line interface

Environment Variable List

Environment Variable Description

TESTRTDIR A mandatory environment variable that points to the
installation directory of the product.

ATTOLSTUDIO_VERBOSE

Setting this variable to 1 forces the product GUI to display
verbose messages, including file paths, in the Build Message
Window.

Runtime Analysis Features

The Runtime Analysis Features use the following environment variables:

Environment Variable Description

ATLTGT A mandatory environment variable that points to the Target
Deployment Port directory when you are using the product in
the command line interface.

When you are using the Instrumentation Launcher or the
product GUI, you do not need to set ATLTGT manually, as it is
calculated automatically.

ATL_TMP_DIR

Indicates the location for temporary files. By default, they are
placed in /tmp for UNIX or the current directory for Windows.

ATL_EXT_SRC This variable allows you to instrument additional files with
filename extensions other than the defaults (.c and .i). The .c

70

Appendices

 extension is reserved for C source files that require
preprocessing, while .i is for already preprocessed files. All
other extensions supported by this variable are assumed to be
of source files that need to be preprocessed.

ATL_EXT_OBJ Lets you specify an alternative extension to .o (UNIX) or .obj
(DOS) for object files.

ATL_EXT_ASM Lets you specify more than .s extension for assembler source
files when the compiler offers an option to generate an
assembler listing without compiling it to the object file.

ATL_EXT_TMP_CMD Windows only. Lets you specify an alternative extension to the
Windows temporary options file. Defaults to ._@@.

ATL_EXT_SRCCP The variable lets you add C++ source file extensions (defaults
are .C, .cpp, .c++, .cxx, .cc, and .i) to specify the C++ source
files to be instrumented. Extensions .C to .cc in the list are
reserved for source files under analysis. The .i extension is
reserved for those to be processed, if the
ATL_FORCE_CPLUSPLUS variable is set to ON. Any other
extension implies that pre-processing is to be performed.

ATL_FORCE_CPLUSPLUS If set to ON, this variable allows you to force C++
instrumentation whether the file extension is .c, .i, or any
added extension.

C and C++ Instrumentation Launcher

The Instrumentation Launcher uses the following additional variables:

Environment
Variable

Description

ATTOLBIN If set, this variable must contain the path to the Instrumentor
binaries. If not, this path is determined automatically from the PATH
variable. This variable can be useful if the Target Deployment Port
has been moved to a non-standard location.

ATTOLOBJ If set, this variable points to a valid directory where the products.h
file is generated and the Target Deployment Port (TP.o or TDP.obj) is
compiled. By default, these files are generated in the current
directory.

ATL_OVER_SET This variable must indicate the path to a copy of the
BatchCCDefaults.pl file if you want to change any Target
Deployment Port compilation flags contained in that file.

ATL_EXT_LIB Lets you specify additional alternative extensions for library files. By
default .a or .lib are used.

ATL_FORCE_C_TDP If set to ON, the tp.ini file is used instead of the tpcpp.ini file (used

71

PurifyPlus RealTime - Reference Manual

for C++ language). If the Target Deployment Port supports only C
language, the tp.ini file is always used.

ATL_OVER_SET As an alternative to using the --settings of the Instrumentation
Launcher, you can copy and modify the
<InstallDir>/lib/scripts/BatchCCDefaults.pl file. In this case, set
ATL_OVER_SET to the directory and filename of the new copy of
this file.

Ada Tools

The Ada Link File Generator and Ada Unit Maker use the following additional
variables:

Environment
Variable

Description

ATTOLCHOP Selects the default naming convention. The following values can be
used:

ATTOLCHOP="APEX" : for Rational Apex naming

ATTOLCHOP="GNAT" : for Gnat naming

All other values end with a fatal error. By default, Gnat naming is
used.

ATTOLALK_EXT Specifies allowed extensions separated by the semicolon (':')
character on UNIX systems and (';') on Windows.

By default, the allowed extension list is ".ada:.ads:.adb"

ATTOLALK_NOEXT Specifies forbidden extensions separated by the ':' character on UNIX
systems and ';' on Windows.

By default, the forbidden extension list is empty.

LD_LIBRARY_PATH Specifies the location of libraries required by the Ada Link File
Generator. By default, these libraries are located in the /lib directory
of the installation directory.

Setting Environment Variables

Solaris, Linux or HP-UX Platforms

 To set an environment variable with a csh shell:

1. Open a shell window

72

Appendices

2. Type the following command:
setenv <variable> <value>

 To set an environment variable with a sh, ksh, or Bourne shell:

1. Open a shell window

2. Type the following commands:
<variable>=<value>
export <variable>

Windows Platforms

 To set an environment variable under Windows NT, 2000 or XP:

1. From the Start menu, select Parameters, Control Panel, and double-click System.

2. Select the Advanced tab and click Environment variables.

3. Click the New... button to add the new environment variable.

4. Click OK.

File Types

This table summarizes all the file types generated and used by PurifyPlus RealTime.

File Type Default
Extension

Generated By Used By

Code Coverage
Correspondence File

.fdc
Instrumented
application (Code
Coverage)

Code Coverage
Report Generator

Static Metrics File .met

C++ Source code Parser

C Source Code Parser

Ada Source Code Parser

Java Source Code Parser

GUI Metrics Viewer

Project File .rtp GUI GUI

Workspace File .rtw GUI GUI

System Testing for C
Supervision Script

.spv

User (through CLI only)
or
Virtual Tester
Deployment Wizard

System Testing for C
Supervisor

73

PurifyPlus RealTime - Reference Manual

Target Output File .spt Target Deployment Port GUI

UML/SD
Dynamic Trace File

.tdf

Instrumented
application (Runtime
Tracing, Component
Testing for C++ and
Java)

GUI UML/SD Viewer

Code Coverage
Intermediate File

.tio
Instrumented
application (Code
Coverage)

Code Coverage
Report Generator

Memory Profiling for
C and C++
Dynamic Trace File

.tpf
Instrumented
application (Memory
Profiling)

GUI Memory Profiling
Viewer

Performance
Profiling
Dynamic Trace File

.tqf
Instrumented
application
(Performance Profiling)

GUI Performance
Profiling Viewer

Static Trace File .tsf

C++ Test Script
Compiler

C and C++ Instrumentor

Java Test Report
Generator

GUI UML/SD Viewer

Memory Profiling for
Java
Dynamic Trace File

.txf
Java Instrumented
application (Memory
Profiling)

GUI Memory Profiling
Viewer

Target Deployment
Port Customization
File

.xdp TDP Editor TDP Editor

XML Report File .xrd Code Coverage
Report Generator

GUI Report Viewer

74

	Rational® PurifyPlus RealTime
	Reference Manual
	Preface
	Audience
	Contacting Rational Technical Publications
	Other Resources
	Customer Support

	Command Line Reference
	Runtime Analysis for Ada
	Ada Instrumentor
	Ada Link File Generator
	Ada Unit Maker
	Ada Metrics Calculator

	Runtime Analysis for Java
	Java Instrumentor
	Java Instrumentation Launcher
	Java Instrumentation Launcher for Ant
	JVMPI Agent

	Runtime Analysis for C and C++
	C and C++ Instrumentor
	C and C++ Instrumentation Launcher

	Generic Tools
	Graphical User Interface
	Trace Receiver
	TDF Splitter
	Code Coverage Report Generator
	Test Process Monitor
	Dump File Splitter
	Uprint Localization Utility

	Appendices
	GUI Macro Variables
	Instrumentation Pragmas
	Environment Variables
	Setting Environment Variables
	File Types

