
Rational Software Corporation®

support@rational.com
http://www.rational.com

Rational® PurifyPlus
Rational® Purify®

Rational® PureCoverage®

Rational® Quantify®

Installing and Getting Started

VERSION: 2003.06.00

PART NUMBER: 800-026184-000

UNIX

Legal Notices
©1992-2003, Rational Software Corporation. All rights reserved.
This manual (the "Work") is protected under the copyright laws of the United States
and/or other jurisdictions, as well as various international treaties. Any reproduction
or distribution of the Work is expressly prohibited without the prior written consent
of Rational Software Corporation.

Part Number: 800-026184-000
Version Number: 2003.06.00

Rational, Rational Software Corporation, the Rational logo, Rational Developer
Network, AnalystStudio, ClearCase, ClearCase Attache, ClearCase MultiSite,
ClearDDTS, ClearGuide, ClearQuest, ClearTrack, Connexis, e-Development
Accelerators, DDTS, Object Testing, Object-Oriented Recording, ObjecTime,
ObjecTime Design Logo, Objectory, PerformanceStudio, PureCoverage, PureDDTS,
PureLink, Purify, Quantify, Rational Apex, Rational CRC, Rational Process
Workbench, Rational Rose, Rational Suite, Rational Suite ContentStudio, Rational
Summit, Rational Visual Test, Rational Unified Process, RUP, RequisitePro,
ScriptAssure, SiteCheck, SiteLoad, SoDA, TestFactory, TestFoundation, TestStudio,
TestMate, VADS, and XDE, among others, are trademarks or registered trademarks of
Rational Software Corporation in the United States and/or in other countries. All
other names are used for identification purposes only, and are trademarks or
registered trademarks of their respective companies.

Portions covered by U.S. Patent Nos. 5,193,180 and 5,335,344 and 5,535,329 and
5,574,898 and 5,649,200 and 5,675,802 and 5,754,760 and 5,835,701 and 6,049,666 and
6,126,329 and 6,167,534 and 6,206,584. Additional U.S. Patents and International
Patents pending.

U.S. GOVERNMENT RIGHTS. All Rational software products provided to the U.S.
Government are provided and licensed as commercial software, subject to the
applicable license agreement. All such products provided to the U.S. Government
pursuant to solicitations issued prior to December 1, 1995 are provided with
“Restricted Rights” as provided for in FAR, 48 CFR 52.227-14 (JUNE 1987) or DFARS,
48 CFR 252.227-7013 (OCT 1988), as applicable.

WARRANTY DISCLAIMER. This document and its associated software may be used
as stated in the underlying license agreement. Except as explicitly stated otherwise in
such license agreement, and except to the extent prohibited or limited by law from
jurisdiction to jurisdiction, Rational Software Corporation expressly disclaims all
other warranties, express or implied, with respect to the media and software product
and its documentation, including without limitation, the warranties of
merchantability, non-infringement, title or fitness for a particular purpose or arising

from a course of dealing, usage or trade practice, and any warranty against
interference with Licensee’s quiet enjoyment of the product.

Third Party Notices, Code, Licenses, and Acknowledgements
Portions Copyright ©1992-1999, Summit Software Company. All rights reserved.

Microsoft, the Microsoft logo, Active Accessibility, Active Client, Active Desktop,
Active Directory, ActiveMovie, Active Platform, ActiveStore, ActiveSync, ActiveX,
Ask Maxwell, Authenticode, AutoSum, BackOffice, the BackOffice logo, bCentral,
BizTalk, Bookshelf, ClearType, CodeView, DataTips, Developer Studio, Direct3D,
DirectAnimation, DirectDraw, DirectInput, DirectX, DirectXJ, DoubleSpace,
DriveSpace, FrontPage, Funstone, Genuine Microsoft Products logo, IntelliEye, the
IntelliEye logo, IntelliMirror, IntelliSense, J/Direct, JScript, LineShare, Liquid Motion,
Mapbase, MapManager, MapPoint, MapVision, Microsoft Agent logo, the Microsoft
eMbedded Visual Tools logo, the Microsoft Internet Explorer logo, the Microsoft
Office Compatible logo, Microsoft Press, the Microsoft Press logo, Microsoft
QuickBasic, MS-DOS, MSDN, NetMeeting, NetShow, the Office logo, Outlook,
PhotoDraw, PivotChart, PivotTable, PowerPoint, QuickAssembler, QuickShelf,
RelayOne, Rushmore, SharePoint, SourceSafe, TipWizard, V-Chat, VideoFlash, Virtual
Basic, the Virtual Basic logo, Visual C++, Visual C#, Visual FoxPro, Visual InterDev,
Visual J++, Visual SourceSafe, Visual Studio, the Visual Studio logo, Vizact, WebBot,
WebPIP, Win32, Win32s, Win64, Windows, the Windows CE logo, the Windows logo,
Windows NT, the Windows Start logo, and XENIX, are either trademarks or registered
trademarks of Microsoft Corporation in the United States and/or in other countries.

Sun, Sun Microsystems, the Sun Logo, Ultra, AnswerBook 2, medialib, OpenBoot,
Solaris, Java, Java 3D, ShowMe TV, SunForum, SunVTS, SunFDDI, StarOffice, and
SunPCi, among others, are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

Licensee shall not incorporate any GLOBEtrotter software (FLEXlm libraries and
utilities) into any product or application the primary purpose of which is software
license management.

BasicScript is a registered trademark of Summit Software, Inc.

Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma,
Richard Helm, Ralph Johnson and John Vlissides. Copyright © 1995 by
Addison-Wesley Publishing Company, Inc. All rights reserved.

Additional legal notices are described in the legal_information.html file that is
included in your Rational software installation.

Contents
Preface. ix
What’s in this guide? . ix

Audience . x

Other resources . x

Contacting Rational technical publications . x

Contacting Rational technical support . x

1 Installing the products .1
Overview . 1

Step 1: Obtaining a license for your Rational product . 2
About licenses . 2
Information you need to obtain a license . 4
Obtaining a .upd import file using AccountLink . 5

Step 2: Installing your Rational product . 5
Information you need for rs_install . 5
Installing the products using rs_install . 15
Answers to questions about rs_install . 16

Step 3: Post-installation configuration tasks . 18

Checking and adjusting your configuration . 21

Maintaining the rational.opt options file. 22
Modifying the list of user names . 23

Removing a previous product release. 23

Requesting and installing the permanent or TLA license key 23
Requesting your permanent or TLA license key. 24
Entering a permanent or TLA license key after initial installation 24

Supplemental notes . 24
Creating an installation directory manually. 24
Mounting the CD-ROM . 25
Ejecting the CD-ROM . 26
Using rs_install commands. 27
Using the FLEXlm Software License Manager. 27

2 Using Rational Purify .31
Rational Purify: What it does. 31
v

Finding errors in Hello World. 32

Instrumenting a program. 33
Compiling and linking in separate stages . 33

Running the instrumented program. 34

Seeing all your errors at a glance . 35

Finding and correcting errors . 36
Understanding the cause of the error . 37
Correcting the ABR error . 38

Finding leaked memory . 39
Correcting the MLK error . 40
Looking at the heap analysis . 41

Comparing program runs . 42

Suppressing Purify messages . 42

Saving Purify output to a view file . 43
Saving a run to a view file from the Viewer. 44
Opening a view file . 44

Using your debugger with Purify . 44

Using Purify with PureCoverage . 45

Purify API functions. 45

Build-time options . 46

Conversion characters for filenames. 47

Runtime options . 47

Purify messages . 49

How Purify finds memory-access errors . 50
How Purify checks statically allocated memory . 51

3 Using Rational PureCoverage . 53
Rational PureCoverage: What it does. 53

Finding untested Java code . 54

Finding untested C/C++ code . 55
Instrumenting a C/C++ program . 56
Running the instrumented C/C++ program. 56
Displaying C/C++ coverage data . 57
Improving Hello World’s test coverage . 61

Viewing UNIX coverage data on Windows . 64

Using report scripts . 64

PureCoverage options. 66
vi Contents

Build-time options. 66
Runtime options . 67
Analysis-time options . 67
Analysis-time mode options . 68

4 Using Rational Quantify. 69
Rational Quantify: What it does . 69

How Quantify works: C/C++ . 69

How Quantify works: Java . 70

Collecting performance data: C/C++ . 71
Interpreting the program summary: C/C++ . 72

Collecting performance data: Java . 72
Interpreting the program summary: Java . 73

Using Quantify’s data analysis windows. 74

The Function List window . 75
Sorting the function list. 75
Restricting functions. 76

The Call Graph window . 76
Using the pop-up menu . 77
Expanding and collapsing descendants. 78

The Function Detail window . 78
Changing the scale and precision of data . 79
Saving function detail data . 79

The Annotated Source window. 80
Changing annotations . 80

Saving performance data on exit . 81

Comparing program runs with qxdiff. 81

Quantify options . 82
Build-time options. 82
qv runtime options . 83
Runtime options . 84

API functions: C/C++ . 85

API methods: Java . 86

Index . 89
Contents vii

viii Contents

Preface
What’s in this guide?

This guide is designed to help you get up and running quickly with
Rational® PurifyPlus, Purify®, PureCoverage®, and Quantify®. It
includes information about:

� Installing the products.

Note: PurifyPlus is a Rational product that includes Purify,
PureCoverage, and Quantify, and provides a unified procedure for
installing all three applications on your system at the same time.

� Using Purify to pinpoint runtime errors and memory leaks
everywhere in your C and C++ application code.

� Using PureCoverage to prevent untested C, C++, and Java
applications from reaching end users. (PureCoverage can collect
coverage data for Java applications running on a Solaris SPARC
32-bit Java virtual machine).

� Using Quantify to improve the performance of your C, C++, and
Java applications by finding and eliminating bottlenecks. (Quantify
can collect performance data for Java applications running on a
Solaris SPARC 32-bit Java virtual machine).

Purify, PureCoverage, and Quantify—the essential tools for delivering
high-performance UNIX applications—use patented Object Code
Insertion (OCI) technology to instrument your program, inserting
instructions into the program’s object code. This enables you to check
your entire program, including third-party code and shared libraries,
even when you don’t have the source code.

Starting to use Purify, PureCoverage, and Quantify is as easy as adding
the product name (purify, purecov, or quantify) to the front of your
link command line. For example:

% purify cc -g hello_world.c
ix

Audience

Read this guide if you are responsible for installing Rational PurifyPlus,
Purify, PureCoverage, or Quantify, or if you need an introduction to the
use of Purify, PureCoverage, or Quantify.

Other resources

� A complete online help system is available for each application.
Select Help > Help topics.

For help with a window, select Help > On window. For help with a
specific menu item or control button in a window, select
Help > On context, then click the menu item or control button.

Note: You can also view the help systems independently of the
products. Open the following in your Netscape browser:

❑ ‘purify -printhomedir‘/UI/html/punix.htm

❑ ‘purecov -printhomedir‘/UI/html/pcu.htm

❑ ‘quantify -printhomedir‘/UI/html/qunix.htm

� For information about Rational Software and Rational Software
products, go to http://www.rational.com.

Contacting Rational technical publications

Please send any feedback about this documentation to the Rational
technical publications department at techpubs@rational.com.

Contacting Rational technical support

You can contact Rational technical support by e-mail at
support@rational.com.

You can also reach Rational technical support over the Web or by
telephone. For contact information, as well as for answers to common
questions about Purify, PureCoverage, and Quantify, go to
http://www.rational.com/support.
x Preface

1Installing the products
Overview

The Rational® PurifyPlus for UNIX product family includes:

� Rational PurifyPlus
� Rational Purify®

� Rational PureCoverage®

� Rational Quantify®

PurifyPlus provides a license that allows you to use Purify,
PureCoverage, and Quantify, as well as a unified procedure for
installing all three applications on your system at the same time.
Individual product licenses are also available.

Installing a product includes three steps:

1 Obtaining a license for the product.

2 Installing the product using the rs_install program.

3 Performing any necessary post-installation configuration
procedures.

This chapter tells you how to gather the information you need to
perform these steps, as well as basic instructions to get you started with
each one. It also contains information about related tasks (such as
uninstalling) and administering the GLOBEtrotter FLEXlm® Software
License Manager that is included with your Rational Software product.

Note: You may be able to complete licensing and installation without
gathering any information at all. If you are 1) using a startup or evaluation
license, or a permanent license that has not expired, and 2) not setting
up a new ClearQuest integration, just go ahead and run the
rs_install program. The program will find existing licenses and
perform a Typical installation (an installation of all the products for
which you have a license, on the system where you’re logged in)
without requiring you to supply any information. Read Installing the
products using rs_install on page 15.
1

Step 1: Obtaining a license for your Rational product

About licenses

When you purchase PurifyPlus, Purify, PureCoverage, or Quantify, you
purchase a specific number of licenses for each product. The license key
can be either a permanent license key, which has no expiration date, or
a term license agreement (TLA) license key. Rational Software issues
you a license key for the product that corresponds to the number and
type of licenses you purchased. You need this license key to use the
software.

The products also come with a startup license that you can use to get
started using the product if, at the time of installation, you don’t have
the key your purchased. You can then request your key from
AccountLink, Rational Software’s license management web tool, and
install it to ensure continued use of the product. The startup license key
and other licensing information is available from the License Key
Certificate included in the product packaging.

Evaluation licenses for the products are also available. These permit
you to try the products for a limited period, ordinarily two weeks, so
that you can see the benefits of using them.

Purify, PureCoverage, and Quantify use the FLEXlm Software License
Manager from GLOBEtrotter Software, Inc. to manage product licenses.
For more information on FLEXlm, see Using the FLEXlm Software License
Manager on page 27.

The following table provides definitions of license types, and helps you
determine whether you need to perform Step 1, based on the type of
license you are setting up.
2 Chapter 1 - Installing the products

License Type Description Instructions

Permanent Allows the use of the
product without time
limits.

If you are upgrading from an earlier version of the
product and still have a valid permanent or TLA
license, go right to Step 2: Installing your Rational product
on page 5.

If you do not yet have a valid permanent or TLA
license set up, gather the information specified in
Information you need to obtain a license on page 4 and
then request a license from AccountLink, Rational
Software’s license management web tool. This
applies if you are a first-time purchaser of the Rational
PurifyPlus products.

To enter a permanent or TLA license key after you’ve
been using a startup or evaluation license, see Entering
a permanent or TLA license key after initial installation on
page 24.

Term License
Agreement (TLA)

Allows the use of the
product for a specific
period of time.

Startup Is provided to get you up
and running as soon as
you receive your
Rational product, if your
permanent or TLA
license key is not
available. Note that you
will have to enter a
permanent or TLA key
later to continue using
the product, ordinarily
within 90 days.

Go right to Step 2: Installing your Rational product on
page 5.

When you receive your permanent or TLA license, see
Entering a permanent or TLA license key after initial
installation on page 24.

Evaluation Allows you to try out the
product before
purchasing for a limited
time, ordinarily two
weeks. Note that you
will have to enter a
permanent or TLA key
later to continue using
the product.
Step 1: Obtaining a license for your Rational product 3

Information you need to obtain a license

In addition to contact information, you will need to provide the
following to AccountLink, Rational Software’s license management
web tool, in order to obtain a .upd import file. The .upd file contains
licensing information and you will use it later in the licensing
procedure.

Data for AccountLink Notes Your Entry

Your Rational account
number

Source: your Rational license key certificate.

License Type Source: your Rational license key certificate

Permanent and TLA licenses for PurifyPlus
can be either Floating licenses or Named User
licenses.

Permanent and TLA licenses for Purify,
PureCoverage, and Quantify are always
Named User licenses.

Rational Product Line Source: your Rational license key certificate DEVELOPER TOOLS

Product Name Source: your Rational license key certificate. PurifyPlus for UNIX,
Purify for UNIX,
PureCoverage for UNIX, or
Quantify for UNIX

Quantity Source: your Rational license key certificate.

This is the number of Floating licenses or
Named User licenses that you intend to
install. This cannot be greater than the
number of licenses you purchased.

Host Name and hostid This is the name and hostid of the machine
that you intend to use as your license server
host.

If the license server host is different from the
installation machine, you must have remote
shell access from the installation machine to
the license server host during installation.

In addition, the installation directory must be
accessible from the license server host.

If you do not know the hostid of your license
server host, you can download and run the
tool get_hostinfo.sh after you have
begun your license request on AccountLink;
go to Obtaining a .upd import file using
AccountLink on page 5.
4 Chapter 1 - Installing the products

Obtaining a .upd import file using AccountLink

Access AccountLink at http//:www.rational.com/accountlink. The
AccountLink website provides instructions for requesting licenses.

When you supply the required information to AccountLink, you will
receive by return email a file named
license_for_<server name>.upd. Save this file as a text file in a
location that is accessible from the installation machine.

Go on to Step 2: Installing your Rational product on page 5.

Step 2: Installing your Rational product

Install your product using the script rs_install.

Information you need for rs_install

The information you need to supply to the rs_install script depends
on what type of license you have, and on how you are setting it up.

� If you already have a valid license or are using a temporary or
evaluation license, and if you are not setting up a new ClearQuest
integration, and if you intend to perform a Typical installation
(with the product or products installed on the same system as the
system where you are logged in), you do not need to gather any
additional information. Go right to Installing the products using
rs_install on page 15.

� If you are installing a new permanent or TLA license, and you have
a .upd file that you can use to import licensing data, go to page 6.

� If you are installing a new permanent or TLA license, and you
do not have a .upd file that you can use to import licensing data, go
to page 9.

� If you already have a permanent or TLA license set up, but are not
performing a Typical installation, go to page 11.

� If you are installing a temporary or evaluation license, but are not
performing a Typical installation, go page 13.
Step 2: Installing your Rational product 5

If you are installing a new permanent or TLA license
and are importing a .upd file

Gather the information specified in the following table:

Data for rs_install Notes Your Entry

The full pathname
to the installation
location (referred
to in this chapter as
Rational).

This is the directory for installing all Rational Software products.

You must have 20 megabytes of free disk space for each
installation of Purify, Quantify, and PureCoverage. You must have
60 megabytes for a complete installation of PurifyPlus. Note that
these are per-platform figures.

The directory must be accessible from every machine on which
you plan to run the Rational products—both the machines on
which users instrument their applications, and the machines on
which users run their applications. The directory must be the
same for each machine, so you cannot use a local automount path
like /tmp_mnt/Rational.

If Rational does not already exist, the installation program will
create it when you enter the full pathname.

If you are installing on a read-only file system, or want to create
this directory manually, see Supplemental notes on page 24. This
section also shows the structure of the directory after installation.
6 Chapter 1 - Installing the products

Note: If you are installing a Named User license, you must supply user names for each individual who
will be using the product. You must include your user name in order to perform the post-installation
self-test successfully. User names are recorded in the FLEXlm options file, rational.opt. For
information about the options file, see Maintaining the rational.opt options file on page 22.

You do not need user names if you are installing a Floating license for PurifyPlus.

To input user names, you need the data in A or B below, or the data in A supplemented with the data
in B.

A. Path of the
PureLA directory
containing the file
users.purela
(available only if
you licensed an
earlier version of
the product using
PureLA License
Advisor).

If you are currently running the product under a PureLA license,
you have the option of importing the user names from the
PureLA database instead of entering them manually. The PureLA
directory is located in the same parent directory as the previous
product installation, which you can find with the command
<product> -printhomedir, where <product> is purify,
purecov, or quantify.

You can modify the list of imported user names, either while
you’re running rs_install or afterwards. If the number of user
names is not the same as the number of licenses you bought,
rs_install will help you correct the list.

B. user names (all
names; or some or
none, in
combination with
an option to
generate dummy
names).

You can enter all user names. The number of names you enter
must match the number of licenses you purchased.

You can enter some user names, and then enter -n to populate the
rest of the options file with dummy names as placeholders that
you can replace later.

Or you can just enter -n to enter nothing but dummy names, and
update the options file later.

Name for the
Rational license file
(<server name>
.dat), including
full pathname.

The rs_install program, which creates this file when it runs,
will suggest <server name>.dat as a default.

See The Rational license file on page 28 for information about the
file.

Note: If you have installed Rational ClearQuest, Rational Software’s change request management
system, it is possible for Purify and PureCoverage users to file change requests from within the Purify
and PureCoverage graphical interface. To configure this integration between the products:
� You as the installer can provide rs_install with site-wide default values. Note that individual

users can override the default values if they have different requirements, following the instructions
in the Purify and PureCoverage online help systems. (See "ClearQuest" in the online help index.)

� Alternatively, you can choose not to enter default values. In this case, users must enter their own
values in order to use the integration.

The source for the following configuration values is your ClearQuest system administrator.

Data for rs_install Notes Your Entry
Step 2: Installing your Rational product 7

When you have gathered the information you need, go on to Installing
the products using rs_install on page 15.

ClearQuest client
interface.

If you are installing on a Solaris or HP-UX platform, you can
specify the default ClearQuest client for your users:
� X for the ClearQuest native X client
� web for the ClearQuest web client

All other platforms support only the web client.

Users must have ClearQuest on their path in order to use the
native X client.

Name of the
default ClearQuest
database.

Enter the name of a site-wide default ClearQuest database for
your users who access ClearQuest through the native X client.

Even if you have chosen web as your default interface, you may
want to enter a value here for users who prefer to use the
ClearQuest native X client.

Source: ClearQuest system administrator.

URL for the
ClearQuest web
client.

Specify the URL if you selected web as your default ClearQuest
client interface.

Even if you have chosen X as your default interface, you may
want to enter a value here for users who prefer to use the web
interface.

Source: ClearQuest system administrator.

Data for rs_install Notes Your Entry
8 Chapter 1 - Installing the products

If you are installing a new permanent or TLA license
without importing a .upd file

Gather the information specified in the following table:

Data for rs_install Notes Your Entry

The full pathname
to the installation
location (referred
to in this chapter as
Rational).

This is the directory for installing all Rational Software products.

You must have 20 megabytes of free disk space for each
installation of Purify, Quantify, and PureCoverage. You must have
60 megabytes for a complete installation of PurifyPlus. Note that
these are per-platform figures.

The directory must be accessible from every machine on which
you plan to run the Rational products—both the machines on
which users instrument their applications, and the machines on
which users run their applications. It must be the same for each
machine, so you cannot use a local automount path like
/tmp_mnt/Rational.

If Rational does not already exist, the installation program will
create it when you enter the full pathname.

If you are installing on a read-only file system, or if you want to
create this directory manually, see Supplemental notes on page 24.
This section also shows you the structure of the directory after
installation.

Host name or IP
address of the host
machine on which
the license server is
to run (the "license
server host").

If the license server host is different from the installation machine,
you should have remote shell access from the installation machine
to the license server host. If you do you have remote shell access,
the rs_install program provides instructions for how to
proceed.

In addition, the installation directory must be accessible from the
license server host.

License server port
number.

This is the port at which the license server listens for license
requests. Default is 27000. You can use any port number that is
not already in use. The /etc/services file on the license host lists
all ports in use by most commonly used services, but other ports
may be in use on your system as well. FLEXlm reserves ports
27000–27009 for its use; these ports are ordinarily available unless
a different FLEXlm server on the license host is using them.

The rs_install program checks to make sure that the license
server port number does not conflict with entries in the
/etc/services file on the license server host, or with NIS services.

License quantity. Source: your Rational license key certificate.
Step 2: Installing your Rational product 9

Note: If you are installing a Named User license, you must supply user names for each individual who
will be using the product. You must include your user name in order to perform the post-installation
self-test successfully. User names are recorded in the FLEXlm options file, rational.opt. For
information about the options file, see Maintaining the rational.opt options file on page 22.

You do not need user names if you are installing a Floating license for PurifyPlus.

To input user names, you need the data in A or B below, or the data in A supplemented with the data
in B.

A. Path of the
PureLA directory
containing the file
users.purela
(available only if
you licensed an
earlier version of
the product using
PureLA License
Advisor).

If you are currently running the product under a PureLA license,
you have the option of importing the user names from the
PureLA database instead of entering them manually. The PureLA
directory is located in the same parent directory as the previous
product installation, which you can find with the command
<product> -printhomedir, where <product> is purify,
purecov, or quantify.

You can modify the list of imported user names, either while
you’re running rs_install or afterwards. If the number of user
names is not the same as the number of licenses you bought,
rs_install will help you correct the list.

B. user names (all
names; or some or
none, in
combination with
an option to
generate dummy
names).

You can enter all user names. The number of names you enter
must match the number of licenses you purchased.

You can enter some user names, and then enter -n to populate the
rest of the options file with dummy names as placeholders that
you can replace later.

Or you can just enter -n to enter nothing but dummy names, and
update the options file later.

Name for the
Rational license file
(<server name>
.dat), including
full pathname.

The rs_install program, which creates this file when it runs,
will suggest <server name>.dat as a default.

If you want to use an existing Rational license .dat file, enter its
name, including full pathname, instead of the default. The
rs_install program makes a backup of the existing license file
before it processes the file with the new data. For information, see
The Rational license file on page 28.

Note: If you have installed Rational ClearQuest, Rational Software’s change request management
system, it is possible for Purify and PureCoverage users to file change requests from within the Purify
and PureCoverage graphical interface. To configure this integration between the products:
� You as the installer can provide rs_install with site-wide default values. Note that individual

users can override the default values if they have different requirements, following the instructions
in the Purify and PureCoverage online help systems. (See "ClearQuest" in the online help index.)

� Alternatively, you can choose not to enter default values. In this case, users must enter their own
values in order to use the integration.

The source for the following configuration values is your ClearQuest system administrator.

Data for rs_install Notes Your Entry
10 Chapter 1 - Installing the products

When you have gathered the information you need, go on to Installing
the products using rs_install on page 15.

If you already have a permanent or TLA license set up

If you are upgrading from an earlier version of the product and still
have a valid permanent license, most of the information you need is
already available in your system.

Gather the information specified in the following table:

ClearQuest client
interface.

If you are installing on a Solaris or HP-UX platform, you can
specify the default ClearQuest client for your users:
� X for the ClearQuest native X client
� web for the ClearQuest web client

All other platforms support only the web client.

Users must have ClearQuest on their path in order to use the
native X client.

Name of the
default ClearQuest
database.

Enter the name of a site-wide default ClearQuest database for
your users who access ClearQuest through the native X client.

Even if you have chosen web as your default interface, you may
want to enter a value here for users who prefer to use the
ClearQuest native X client.

Source: ClearQuest system administrator.

URL for the
ClearQuest web
client.

Specify the URL if you selected web as your default ClearQuest
client interface.

Even if you have chosen X as your default interface, you may
want to enter a value here for users who prefer to use the web
interface.

Source: ClearQuest system administrator.

Data for rs_install Notes Your Entry

Data for rs_install Notes Your Entry

Full pathname of
your license file,
<server name>.
dat.

Alternatively, you can supply the host name or IP address of the
host machine on which the license server is running (the “license
server host”) and the license server port number.
Step 2: Installing your Rational product 11

The full pathname
to the current
installation
location, or to the
new installation
location (referred
to in this chapter as
Rational).

This is the directory for installing all Rational Software products.
You can use your existing installation; but if you use a new
directory, it must meet the following requirements:
� You must have 20 megabytes of free disk space for each

installation of Purify, Quantify, and PureCoverage. You must
have 60 megabytes for a complete installation of PurifyPlus.
Note that these are per-platform figures.

� The directory must be accessible from every machine on which
you plan to run the Rational products—both the machines on
which users instrument their applications, and the machines on
which users run their applications. It must be the same for each
machine, so you cannot use a local automount path like
/tmp_mnt/Rational.

If the directory you specify does not already exist, the installation
program will create it when you enter the full pathname.

If you are installing on a read-only file system, or if you want to
create this directory manually, see Supplemental notes on page 24.
This section also shows you the structure of the directory after
installation.

Note: If you have installed Rational ClearQuest, Rational Software’s change request management
system, it is possible for Purify and PureCoverage users to file change requests from within the Purify
and PureCoverage graphical interface. To configure this integration between the products:
� You as the installer can provide rs_install with site-wide default values. Note that individual

users can override the default values if they have different requirements, following the instructions
in the Purify and PureCoverage online help systems. (See "ClearQuest" in the online help index.)

� Alternatively, you can choose not to enter default values. In this case, users must enter their own
values in order to use the integration.

The source for the following configuration values is your ClearQuest system administrator.

ClearQuest client
interface.

If you are installing on a Solaris or HP-UX platform, you can
specify the default ClearQuest client for your users:
� X for the ClearQuest native X client
� web for the ClearQuest web client

All other platforms support only the web client.

Users must have ClearQuest on their path in order to use the
native X client.

Name of the
default ClearQuest
database.

Enter the name of a site-wide default ClearQuest database for
your users who access ClearQuest through the native X client.

Even if you have chosen web as your default interface, you may
want to enter a value here for users who prefer to use the
ClearQuest native X client.

Source: ClearQuest system administrator.

Data for rs_install Notes Your Entry
12 Chapter 1 - Installing the products

When you have gathered the information you need, go on to Installing
the products using rs_install on page 15.

If you are installing a temporary or evaluation license

Gather the information specified in the following table:

URL for the
ClearQuest web
client.

Specify the URL if you selected web as your default ClearQuest
client interface.

Even if you have chosen X as your default interface, you may
want to enter a value here for users who prefer to use the web
interface.

Source: ClearQuest system administrator.

Data for rs_install Notes Your Entry

Data for rs_install Notes Your Entry

The full pathname
to the installation
location (referred
to in this chapter as
Rational).

This is the directory for installing all Rational Software products.

You must have 20 megabytes of free disk space for each
installation of Purify, Quantify, and PureCoverage. You must have
60 megabytes for a complete installation of PurifyPlus. Note that
these are per-platform figures.

The directory must be accessible from every machine on which
you plan to run the Rational products—both the machines on
which users instrument their applications, and the machines on
which users run their applications. It must be the same for each
machine, so you cannot use a local automount path like
/tmp_mnt/Rational.

If Rational does not already exist, the installation program will
create it when you enter the full pathname.

If you are installing on a read-only file system, or if you want to
create this directory manually, see Supplemental notes on page 24.
This section also shows you the structure of the directory after
installation.

License key type. Source: your Rational license key certificate or email from
Rational Software.

startup or
evaluation

Expiration date. Source: your Rational license key certificate or email from
Rational Software.

If you have a startup or evaluation license, enter the date in the
dd-mmm-yyyy format (for example, 31-dec-2003). The field is not
case sensitive.
Step 2: Installing your Rational product 13

When you have gathered the information you need, go on to Installing
the products using rs_install on page 15.

Note: If you have installed Rational ClearQuest, Rational Software’s change request management
system, it is possible for Purify and PureCoverage users to file change requests from within the Purify
and PureCoverage graphical interface. To configure this integration between the products:
� You as the installer can provide rs_install with site-wide default values. Note that individual

users can override the default values if they have different requirements, following the instructions
in the Purify and PureCoverage online help systems. (See "ClearQuest" in the online help index.)

� Alternatively, you can choose not to enter default values. In this case, users must enter their own
values in order to use the integration.

The source for the following configuration values is your ClearQuest system administrator.

ClearQuest client
interface.

If you are installing on a Solaris or HP-UX platform, you can
specify the default ClearQuest client for your users:
� X for the ClearQuest native X client
� web for the ClearQuest web client

All other platforms support only the web client.

Users must have ClearQuest on their path in order to use the
native X client.

Name of the
default ClearQuest
database.

Enter the name of a site-wide default ClearQuest database for
your users who access ClearQuest through the native X client.

Even if you have chosen web as your default interface, you may
want to enter a value here for users who prefer to use the
ClearQuest native X client.

Source: ClearQuest system administrator.

URL for the
ClearQuest web
client.

Specify the URL if you selected web as your default ClearQuest
client interface.

Even if you have chosen X as your default interface, you may
want to enter a value here for users who prefer to use the web
interface.

Source: ClearQuest system administrator.

Data for rs_install Notes Your Entry
14 Chapter 1 - Installing the products

Installing the products using rs_install

For information about specific product and operating system versions,
see the README file on your CD-ROM or in the directory that results
when you unpack the tar file from Rational Software.

To install the products:

1 Make the product available for installation.

If you are installing the product from the Rational Software product
CD-ROM and need instructions for mounting a CD-ROM, see
page 25.

If you have obtained the products from a web or FTP download,
unpack the compressed tar file. The directory that is created is
equivalent to the top level of the CD-ROM.

2 Run the rs_install program. The rs_install program is a
complete installer that guides you through whichever of the
following processes are necessary:

❑ Setting up the license server.

❑ Installing product licenses.

❑ Installing the selected product and documentation.

Note: Your users can get online help only if you install the html
documentation.

❑ Performing the post-installation tasks.

To run the rs_install program, go to the directory where you
mounted the CD-ROM or unpacked your tar file. (You should not be
root when you run rs_install.) For example:

exit

% cd /cdrom

% ./rs_install

The rs_install program prompts you through the installation,
providing detailed instructions along with default settings. The
defaults appear in brackets, for example [2]. To accept the default,
press ENTER.
Step 2: Installing your Rational product 15

If you select Typical as your installation type within rs_install,
the entire installation, including the post-installation tasks, proceeds
automatically. A typical installation installs all the products for
which you have a license on the system you’re logged into.

Note: After you install your license key, the rs_install program
reminds you that you must configure your server to automatically
restart the license server when it reboots. The rs_install program
gives you instructions for doing this.

3 When installation is complete, go to Step 3: Post-installation
configuration tasks on page 18 and perform any necessary
post-installation procedures.

Answers to questions about rs_install

Below are the answers to some common questions about the
rs_install program.

� What’s the easiest way to use rs_install? Choose Typical when
the rs_install program prompts you for the type of installation to
perform. The program then proceeds to complete installation and
post-installation tasks without further intervention from you. If you
have special requirements, such as the need to install a Solaris
version of the product on an HP-UX machine, or if you are setting
up a new ClearQuest integration, you have to choose Custom
instead of Typical; this requires you to input a small amount of
additional information.

� Can I rerun parts of the installation? Yes. The rs_install program
provides commands that enable you to rerun specific sections of the
installation as needed. See Using rs_install commands on page 27.

� Do I have to reenter my license server information each time I
install a product? No. You only need to enter this information once.
The rs_install program saves the information you enter about
yourself and about the machine to be used as the license server for
your Rational Software product licenses in a text file called
rs_install.PurifyPlus.<version>. The rs_install program
reports the location of these files when you quit the program. The
next time you run rs_install, the program uses the saved
configuration information. To change your license server, use the
license_setup command; see Using rs_install commands on page 27.
16 Chapter 1 - Installing the products

� Do I need to install all my licenses on one server? No. You are not
required to use all of your allowed licenses for a single license
server. You might want to install a product at another site and
configure a license server at that site to serve the remaining licenses
in your Rational Software account.

� Which type of product license key should I install? If you already
have your permanent or TLA license key, you can install it right
away. You can also request a permanent license key at
www.rational.com/accountlink. Otherwise, select the startup or
evaluation license to get started using the product.

Note: To ensure uninterrupted use of your Rational Software
product, you should install your permanent or TLA license key as
soon as possible.

� Can I import existing user names from an earlier installation of
the product installed under PureLA License Administrator with
Named User licensing? Yes. The rs_install script asks you if you
want to import the existing users.purela file, and also permits you
to edit the imported user names. You can also edit the user names
after installation; see Maintaining the rational.opt options file on
page 22.

� The host I want to use as the license server for my new products is
already the license server for other Rational products. How do I
share the server? You must add the new licenses to your current
Rational .dat license file. To do this, specify the current Rational
.dat license file as the license file name instead of using the default.

� How do I get updates for the rs_install program and for the
Rational products? You can get updates from within the
rs_install program, though you must be running the program on
a machine that has internet access. The rs_install program’s
Licensing Options screen lets you select an item to download the
latest version of rs_install (in which case rs_install replaces
itself and restarts using the new version) or get product updates.

� How do I report problems or make suggestions for the rs_install
program? You can submit comments by running the rs_install
command with the -report option. This option helps you organize
installation and licensing information and e-mail it to Rational
technical support. You can, of course, also call or e-mail Rational
technical support without this option.
Step 2: Installing your Rational product 17

Step 3: Post-installation configuration tasks

Configuration tasks include tasks that the rs_install program
performs (or helps you perform) and tasks that you must complete
manually.

The rs_install program performs its configuration tasks by calling
the <product>.configure command for the product your are
installing; <product> is purify, purecov, or quantify. You can also
rerun the <product>.configure command at any time to check or to
adjust your configuration; refer to Checking and adjusting your
configuration on page 21.

The tasks that <product>.configure performs include:

� Configuring the cache directory.

� Setting up the online help system.

� Integrating Rational ClearQuest (for PurifyPlus, Purify, and
PureCoverage).

� Running <product>_test to validate setup.

The tasks that you must perform manually include:

� Installing on a read-only file system; see page 18.

� Making the manual pages available;see page 19.

� Making the products available to all users; see page 19.

Note that <producthome> is the home directory of Purify,
PureCoverage, or Quantify.

Installing on a read-only file system

Purify, PureCoverage, and Quantify work by creating and monitoring
special instrumented versions of object files and libraries. They must be
able to write these instrumented files to a cache directory, which by
default is Rational/releases/<producthome>/cache.

For this reason, if you install any of the products on a file system that is
mounted read-only by client machines, you must create symbolic links
to a writable file system. The rs_install program guides you through
the process of selecting a shared directory that is mounted read/write
on client machines and linking the cache directory to this publicly
writable directory.
18 Chapter 1 - Installing the products

If there is no writable shared directory mounted on client machines,
have all users make a cache subdirectory in their home directory and
set the product’s -cache-dir option to this directory. For example:

% mkdir $HOME/cache
% echo $PUREOPTIONS

If the PUREOPTIONS environment variable is already set, have users
specify the -cache-dir option:

csh % setenv PUREOPTIONS "-cache-dir=$HOME/cache \
$PUREOPTIONS"

sh, ksh $ PUREOPTIONS="-cache-dir=$HOME/cache \
$PUREOPTIONS"; export PUREOPTIONS

If the PUREOPTIONS environment variable is not set, have users specify:

csh % setenv PUREOPTIONS "-cache-dir=$HOME/cache"

sh, ksh $ PUREOPTIONS="-cache-dir=$HOME/cache"; export \
PUREOPTIONS

Have all users add this same specification to their local or central
.cshrc file, or its equivalent.

Making the manual pages available

The rs_install program installs the product manual pages in
Rational/releases/<producthome>/man, where <producthome> is
the home directory for Purify, PureCoverage, or Quantify. To make the
manual pages available, do one of the following:

� Set your MANPATH environment variable to include
Rational/releases/<producthome>/man.

� Copy the manual pages for the product into your man directory.
If necessary, log in as root to do this.

Making the products available to all users
Note: If you are using Named User licensing, users must be listed in the
rational.opt file in order to use Purify, PureCoverage, and Quantify;
to add users to the options file, see Maintaining the rational.opt options file
on page 22.

To make the products available to all users listed in rational.opt, add
the full Rational/releases/<producthome> pathname to each user’s
PATH environment variable, or specify the full pathname in makefiles.
Step 3: Post-installation configuration tasks 19

As an alternative to modifying your PATH environment variable, you
can create a symbolic link to <producthome>/<product> from a
directory such as /usr/local/bin. Make sure this is a symbolic link,
not a copy or a hard link. Create symbolic links for each product you
install, as in the following examples:

� For Purify:

% rm /usr/local/bin/purify

% ln -s Rational/releases/\

<producthome>/purify /usr/local/bin

� For PureCoverage:

% rm /usr/local/bin/purecov

% ln -s Rational/releases/\

<producthome>/purecov /usr/local/bin

For PureCoverage, you also need to create symbolic links to the
pc_* script files:

% rm -i /usr/local/bin/pc_*

% ln -s Rational/releases/\

<purecovhome>/scripts/pc_* /usr/local/bin

For more information on the pc_* scripts, see the PureCoverage
online help system.

� For Quantify:

% rm /usr/local/bin/quantify

% ln -s Rational/releases/\

<producthome>/quantify /usr/local/bin

For Quantify, you also need to create symbolic links to the
qv program and to the qx script files:

% rm /usr/local/bin/qv

% rm -i /usr/local/bin/qx*

% ln -s Rational/releases/\

<quantifyhome>/qv /usr/local/bin

% ln -s Rational/releases/\

<quantifyhome>/qx* /usr/local/bin

For more information on the qv program and on the qx scripts, see
the Quantify online help system.
20 Chapter 1 - Installing the products

� Create symbolic links for debugger scripts on HP-UX:

On HP-UX, Purify, PureCoverage, and Quantify include three
scripts that enable you to start instrumented programs under a
debugger. You need to create symbolic links to these scripts. For
example, for Purify:

% rm /usr/local/bin/purify_dde

% rm /usr/local/bin/purify_xdb

% rm /usr/local/bin/purify_softdebug

% ln -s <purifyhome>/purify_dde /usr/local/bin

% ln -s <purifyhome>/purify_xdb /usr/local/bin

% ln -s <purifyhome>/purify_softdebug /usr/local/bin

For PureCoverage and Quantify, create the same symbolic links,
substituting purecov or quantify for purify.

The installation is now complete. To add names to the options file, see
Maintaining the rational.opt options file on page 22. To remove previous
versions of the products, see Removing a previous product release on
page 23.

Checking and adjusting your configuration

You can run the script <product>.configure (where <product> is
purify, purecov, or quantify) at any time to check that your
configuration is correct and to make adjustments.

To use the script, go to the product home directory. For example, for
Purify, type:

% cd ‘purify -printhomedir‘

To check your configuration and licensing, type:

% ./purify.configure -check

To run the script in interactive mode, type:

% ./purify.configure

You can also run the script in batch mode, specifying the parameters
you want changed as arguments to options. For a list and description of
batch mode options, type:

% ./purify.configure -help

HPUX
Checking and adjusting your configuration 21

Maintaining the rational.opt options file

Named User licensing is always used with Purify, PureCoverage, and
Quantify, and is available for use with PurifyPlus. Under Named User
licensing, the user names of all users who are authorized to run Purify,
PureCoverage, and Quantify must be listed in the rational.opt
options file. The number of user names in the file must match the
number of licenses you have installed.

Users who are identified in the file can use all features of the product,
including instrumenting applications, running instrumented
applications, and viewing saved data files in the product’s user
interface. A user can run as many concurrent sessions as desired on a
single host machine; this consumes a single license. The same user can
run the product on additional host machines, but consumes another
license for each additional machine.

The options file is created when you run the rs_install program. By
default, this file is Rational/config/rational.opt. You can relocate
the file yourself after installation, but you must edit the DAEMON line in
the license file to specify the new path:

DAEMON rational /etc/rational /mydir/rational.opt

During installation, rs_install asks you to supply user names, one for
each license you purchased. You don’t have to enter all user names
during installation; rs_install will generate dummy names to bring
the total up to the number of licenses you purchased. Your entries—real
names, automatically generated dummy names, or both—are recorded
in the options file.

The user names are recorded in the options file in GROUP directives. An
INCLUDE directive follows each GROUP directive, specifying one product
that the users in the group are authorized to use:

GROUP <group name> <user1> <user2> . . . <usern>
INCLUDE <product>:KEY=<license key> GROUP <group name>

For example, in the following, alice, tom, and harry can use Purify, but
only alice and harry can use Quantify:

GROUP DevTools1 alice tom harry
INCLUDE purify:KEY=456778982 GROUP DevTools1
GROUP DevTools2 alice harry
INCLUDE quantify:KEY=12345778654 GROUP DevTools2

The KEY is the license key from your .dat license file.
22 Chapter 1 - Installing the products

Modifying the list of user names
Note: If you modify the options file while the license vendor daemon is
running, you must restart the license server.

You can add, change, or delete user names by running the
options_setup script. You can also add, change, or delete user names
in the options file using any text editor.

The number of users listed for each product must always match the
number of licenses that you purchased. The license server must be
restarted before the changes can take effect; the options_setup script
restarts the license server for you.

For additional information about the options file, refer to your FLEXlm
user’s manual.

Removing a previous product release

Note: Only the installer of the product can uninstall it.

After you install the latest version of Purify, PureCoverage, or Quantify,
and after all users have switched to the new version, you can remove
the old release to reclaim disk space.

To remove a previous release of Purify, PureCoverage, or Quantify, go
to the Rational directory and run the uninstall script:

% cd Rational
% config/uninstall

Running the uninstall script with no command-line arguments
causes it to display the list of products in the releases directory. The
script prompts you for the product you want to remove.

Requesting and installing the permanent or TLA license key

If you installed your product with a startup or evaluation license key,
you have to enter a permanent or TLA license key before the startup or
evaluation license key expires. This allows you to continue
uninterrupted use of the product.
Removing a previous product release 23

Requesting your permanent or TLA license key

To request a permanent or TLA license key, go to
www.rational.com/accountlink and follow the instructions provided there.

Entering a permanent or TLA license key after initial installation

To enter your permanent or TLA license key after you have installed
your Rational Software product and exited the rs_install program:

1 Go to the Rational/releases/PurifyPlusFamily.<version>
directory and run the license_setup program. For instructions, see
Using rs_install commands on page 27.

2 For the licensing option, select the option for setting up a permanent
license.

Note: The program tells you how to update your license server
machine so that it restarts the license server when it reboots. You need
root permission to perform the update.

Supplemental notes

Creating an installation directory manually

You need a publicly readable directory for the installation of your
product if it is to run on multiple machines. If one does not already
exist, you can create it when you run rs_install. You can also create it
manually before you start rs_install.

1 Log into a UNIX workstation that provides access to the product
files to be installed, and that mounts the file system(s) into which
you want to load the product.

2 Create a Rational directory. For example:

% mkdir /opt/Rational

The Rational directory must be visible on all machines that are to
run this product. The NFS name for Rational must be the same on
all machines. (If you are installing the product for your use only, you
can install it in your home directory.)
24 Chapter 1 - Installing the products

After the installation, the Rational directory is structured like this:

Note: Purify, PureCoverage, and Quantify must be able to write
instrumented files to a cache subdirectory of the <producthome>
directory. If you install on a read-only file system, you must create
symbolic links to a writable file system. See Installing on a read-only file
system on page 18.

Mounting the CD-ROM

The following instructions refer to specific operating systems.
To determine your operating system, type:

% uname -a

Before you begin, make sure you know the device name of your
CD-ROM drive. Ask your system administrator for this information.

On Solaris and IRIX systems with Volume Management, load the
CD-ROM and then go to Step 5. (On these systems, the CD-ROM
automatically mounts on the /cdrom directory. To determine whether
you have Volume Management, check to see if the Solaris vold daemon
or the IRIX mediad daemon is running on your system.)

/Rational/

PurifyPlusFamily.<version>/

purify.hp.<version>/

quantify.<platform>.<version>

The <producthome> directories
purify.sg32.<version>/

config/

releases/

base/cots/flexlm.6.0i

Rational license files

uninstall script

purify.sol.<version>/

The FLEXlm Software License Manager

Contains the README file,
the rs_install commands,

and online documentation

rational.opt

defaults

purifyplus_setup.{csh/sh}

Files for configuring licensee environment

purecov.<platform>.<version>/

Solaris IRIX
Supplemental notes 25

To mount the CD-ROM:

1 Load the CD-ROM into the drive.

2 Log in as root:

% su root

3 If you do not already have one, create a cdrom directory to be the
mount point for the CD-ROM drive:

mkdir /cdrom

4 Mount the CD-ROM:

❑ On Solaris systems without Volume Management:

/etc/mount -r -F hsfs <cdrom-device-name> /cdrom

❑ If your HP-UX system is configured to mount the CD-ROM at
/cdrom:

/etc/mount /cdrom

❑ If your HP-UX system is not configured to mount the CD-ROM at
/cdrom, use the following command:

/etc/mount -r -F cdfs <cdrom-device-name> /cdrom

❑ On IRIX 6.x:

/etc/mount -r -t iso9660 <cdrom-device-name> /CDROM

5 To verify that the CD-ROM is mounted, use the ls command to list
the files:

ls -R /cdrom

Ejecting the CD-ROM

After you complete the installation, eject the CD-ROM.

On Solaris with Volume Management, type:

% eject cdrom

On Solaris without Volume Management, type:

% su root
umount /cdrom
eject cdrom
exit

Solaris

HPUX

IRIX

Solaris
26 Chapter 1 - Installing the products

On HP-UX, type:

% su root
umount /cdrom
exit

Press the eject button on the CD-ROM drive.

On IRIX, type:

% eject /CDROM

Using rs_install commands

The rs_install program includes four commands that you can use to
rerun specific sections of the rs_install program without actually
reinstalling any products: license_setup, license_check,
post_install, and options_setup.

To use these commands, go to the PurifyPlusFamily.<version>
directory. For example:

% cd Rational/releases/PurifyPlusFamily.<version>
% ./license_setup

Use these commands as follows:

� Use the license_setup command to rerun the license setup phase
of the installation. Use license_setup to import your permanent or
TLA license keys and whenever you want to change your licensing
information.

� Use the license_check command to check your license server and
the .dat license file to make sure your license information is correct.

� Use the post_install command to rerun the post-installation
phase of the installation. One of the actions this command performs
is to call the <product>.configure command; see Step 3:
Post-installation configuration tasks on page 18.

� Use options_setup to modify the list of users allowed to use the
Rational Software product. For more information, see Modifying the
list of user names on page 23.

Using the FLEXlm Software License Manager

The FLEXlm Software License Manager monitors license access,
simultaneous usage, idle time, and so on. It includes the following
components:

HPUX

IRIX
Supplemental notes 27

� A vendor daemon named rational that dispenses Purify,
PureCoverage, and Quantify licenses. The rational daemon is
used for all licensed Rational Software products. If you have
products from other vendors that also use FLEXlm, they will include
their own vendor daemons.

� A license manager daemon named lmgrd that is used by all licensed
products from all vendors that use FLEXlm. The lmgrd daemon
does not process requests on its own, but forwards requests to the
appropriate vendor daemon.

� A Rational license file that specifies your license servers, vendor
daemons, and product licenses.

The Rational license file

The Rational .dat license file is a text file that in most cases is created
when you run the rs_install or license_setup program. The .dat
license file is based on data from the .upd file that you receive from
AccountLink.

The file for startup and evaluation licenses is:

Rational/config/Temporary.dat

The default file for permanent or TLA licenses is:

Rational/config/<server name>.dat

Note: For best results, use the Rational license file only for Rational
Software product licenses.

The rs_install program saves the license path to
<producthome>/.lm_license_file. This is the path that Purify,
PureCoverage, and Quantify use to locate the license file. You can
override the location in .lm_license_file by setting the
LM_LICENSE_FILE environment variable. The full path searched is
equivalent to $LM_LICENSE_FILE:‘cat.lm_license_file‘.

Verifying that FLEXlm is working

To verify that your FLEXlm License Manager is operational and that the
daemons are running, type the following on your license server:

% /bin/ps -e | egrep "lmgrd|rational"
28 Chapter 1 - Installing the products

The output should include lines similar to the following:

/bin/ps -e | egrep "lmgrd|rational"
351 ? 0:00 rational
345 ? 0:01 lmgrd

Using FLEXlm commands

The FLEXlm License Manager supports the following commands for
system administration:

Learning more about FLEXlm

For more information about the FLEXlm Software License Manager, see
the FLEXlm End User Manual that is included on your Rational Software
CD-ROM.

The FLEXlm End User Manual, along with answers to frequently asked
questions about FLEXlm, is also available at
http://www.globetrotter.com/manual.htm.

Use this command: To:

lmdiag Diagnose problems when you cannot check out a license

lmdown Shut down the license and vendor daemons

lmhostid Report the license manager host ID of a workstation

lmreread Reread the license file and start new vendor daemons

lmstat Report status on daemons and feature usage

exinstal Report on licenses in the license file you specify on the
command line
Supplemental notes 29

30 Chapter 1 - Installing the products

2Using Rational Purify
Rational Purify: What it does

Rational® Purify® is the most comprehensive runtime error detection
tool available. It checks all the code in your program, including any
application, system, and third-party libraries. Purify works with
complex software applications, including multi-threaded and
multi-process applications.

Purify checks every memory access operation, pinpointing where errors
occur and providing detailed diagnostic information to help you
analyze why the errors occur. Among the many errors that Purify helps
you locate and understand are:

� Reading or writing beyond the bounds of an array

� Using uninitialized memory

� Reading or writing freed memory

� Reading or writing beyond the stack pointer

� Reading or writing through null pointers

� Leaking memory and file descriptors

With Purify, you can develop clean code from the start, rather than
spending valuable time debugging problem code later.

This chapter introduces the basic concepts involved in using Purify. For
complete information, see the Purify online help system.
31

Finding errors in Hello World

This chapter shows you how to use Purify to find memory errors in an
example Hello World program. If you run the example yourself, you
should expect minor platform-related differences in program output
from what is shown here.

Before you begin:

1 Create a new working directory. Go to the new directory and copy
the hello_world.c program and related files from the
<purifyhome>/example directory. For example:

% mkdir /usr/home/chris/pwork

% cd /usr/home/chris/pwork

% cp <purifyhome>/example/hello* .

2 Examine the code in hello_world.c. The version of
hello_world.c provided with Purify is slightly different from the
traditional version.

1 /*
2 * Copyright (c) 1992-1997 Rational Software Corp.

...
9 * This is a test program used in Purifying Hello World

10 */
11
12 #include <stdio.h>
13 #include <malloc.h>
14
15 static char *helloWorld = "Hello, World";
16
17 main()
18 {
19 char *mystr = malloc(strlen(helloWorld));
20
21 strncpy(mystr, helloWorld, 12);
22 printf("%s\n", mystr);
23 }

At first glance there are no obvious errors, yet the program actually
contains a memory access error and leaked memory that Purify will
help you to identify.
32 Chapter 2 - Using Rational Purify

Instrumenting a program

1 Compile and link the Hello World program, then run the program to
verify that it produces the expected output:

2 Instrument the program by adding purify to the front of the
compile/link command line. To get the maximum amount of detail
in Purify messages, use the -g option:

% purify cc -g hello_world.c

Note: On IRIX, you can add purify in front of the compile/link
command line, or you can Purify the executable:

% purify a.out

You then run the instrumented program by typing:

% a.out.pure

On IRIX, Purify caches Dynamic Shared Objects (DSOs), not object
files. References to linkers and link-line options in this book do not
apply to Purify on IRIX.

Compiling and linking in separate stages

If you compile and link your program in separate stages, specify
purify only on the link line. For example:

On the compile line, use:

% cc -c -g hello_world.c

On the link line, use:

% purify cc -g hello_world.o

% cc -g hello_world.c

% a.out

Hello, Worldoutput

IRIX

IRIX
Instrumenting a program 33

Running the instrumented program

Run the instrumented Hello World program:

% a.out

On IRIX, if you use purify on the executable instead of on the
compile/link line, type:

% a.out.pure

This prints “Hello, World” in the current window and displays the
Purify Viewer.

Notice that the instrumented Hello World program starts, runs, and
exits normally. Purify does not stop the program when it finds an error.

HPUXSolaris

IRIX

The Purify Viewer
displays messages
about the program,

including errors such
as this ABR error

Purify displays the number of access errors
and leaked bytes detected

For a description of a
message, right click the

message, then select
Explain message from

the pop-up menu

Click for a list of Purify
error messages
34 Chapter 2 - Using Rational Purify

Seeing all your errors at a glance

The Purify Viewer displays the results of the run of the instrumented
Hello World program. You can expand each message to see additional
details.

Note: The Viewer displays messages for a single executable only. It is
specific to the name of the executable, the directory containing the
executable, and the user ID.

Select one or more messages in the Viewer,
then click to expand the messages

Click to expand
a message or item

The configuration
message shows the

execution process ID
(pid) and the Purify

options used

You can use the
program controls to

run a debugging cycle.
To display them, select

View > Program
Controls
Seeing all your errors at a glance 35

Finding and correcting errors

Purify reports an array bounds read (ABR) memory access error in the
Hello World program. You can expand the ABR message to see the
exact location of the error.

Note: To make debugging easier, Purify reports line numbers, source
filenames, and local variable names whenever possible if you use the -g
compiler option when you instrument the program. If you do not use
the -g option, Purify reports only function names and object filenames.

On IRIX, system libraries retain their source file and line number
information; therefore, the can appear next to a system library
function whose source file is not available. When you click the for
such a line, Purify prompts you for the location of the source file. Enter
the location of the file if you know it, and then click OK to expand the
line.

Click to expand the
ABR message

 The function call chain
indicates an error

occurring in _doprnt
called by printf,

in turn called
on line 22 of main

The exact location
of the error

The allocation call chain
shows that the memory

block is allocated
in the function main

on line 19

The details of the
access error

IRIX

�

�

36 Chapter 2 - Using Rational Purify

Understanding the cause of the error

To understand the cause of the ABR error, look at the code in
hello_world.c again.

On line 22, the program requests printf to display mystr, which is
initialized by strncpy on line 21 for the 12 characters in
“Hello, World.” However, _doprnt is accessing one byte more than it
should. It is looking for a NULL byte to terminate the string. The extra
byte for the string’s NULL terminating character has not been allocated
and initialized.

For more information, see How Purify finds memory-access errors on
page 50.

.

.

.
15 static char *helloWorld = "Hello, World";
16
17 main()
18 {
19 char *mystr = malloc(strlen(helloWorld));
20
21 strncpy(mystr, helloWorld, 12);
22 printf("%s\n", mystr);
23 }

Purify reports that the
ABR error occurs here

Start of the memory block
(0x44230)

Allocated block size (12)

Accessing 1 byte past
the end of the block
causes an ABR error

H e l l o , W o r l d

Location accessed
(0x4423c)
Finding and correcting errors 37

Correcting the ABR error

To correct this ABR error:

1 Click the Edit tool to open an editor.

Note: By default, Purify displays seven lines of the source code file
in the Viewer. You can change the number of lines of source code
displayed by setting an X resource.

2 Change lines 19 and 21 as follows:

19 char *mystr = malloc(strlen(helloWorld)+1);

20

21 strncpy(mystr, helloWorld, 13);

Or click here to edit
the source code

Click to edit the source code
38 Chapter 2 - Using Rational Purify

Finding leaked memory

When a program exits, Purify searches for memory leaks and reports all
memory blocks that were allocated but for which no pointers exist.

Note: When you run longer-running instrumented programs, you can
click the New Leaks tool to generate a new leaks summary while the
program is running.

1 Expand the memory-leaked summary for Hello World.

The memory-leaked summary shows the number of leaked bytes as
a percentage of the total heap size. If there is more than one memory
leak, Purify sorts them by the number of leaked bytes, displaying
the largest leaks first.

2 Expand the MLK message.

The memory-leaked
summary reports

12 bytes of leaked
memory

Memory analysis by
category

The call chain shows
how the leaked

memory was allocated

When you run your programs, click the New Leaks tool to
generate a new leaks summary while the program is running
Finding leaked memory 39

Correcting the MLK error

It is not immediately obvious why this memory was leaked. If you look
closer, however, you can see that this program does not have an exit

statement at the end. Because of this omission, the main function
returns rather than calls exit, thereby making mystr— the only
reference to the allocated memory—go out of scope.

If main called exit at the end, mystr would remain in scope at program
termination, retaining a valid pointer to the start of the allocated
memory block. Purify would then have reported it as memory in use
rather than memory leaked. Alternatively, main could free mystr

before returning, deallocating the memory so it is no longer in use or
leaked.

To correct this MLK error:

1 Click the Edit tool to open an editor.

2 Add a call to exit(0) at the end of the Hello World program.

Line 19 of
hello_world.c
in main allocates

12 bytes of
leaked memory.
The start of this
memory block is

0x44230, the same
block with the array

bounds read error
in _doprnt
40 Chapter 2 - Using Rational Purify

Looking at the heap analysis

Purify distinguishes between three memory states, reporting both the
number of blocks in each state and the sum of their sizes:

� Leaked memory

� Potentially leaked memory

� Memory in use

The exit status message provides information about:

� Basic memory usage containing statistics not easily available from a
single shell command. It includes program code and data size, as
well as maximum heap and stack memory usage in bytes.

� Shared-library memory usage indicating which libraries were
dynamically linked and their sizes.

 A true memory leak
(MLK) is memory to
which your program

has no pointer

A potential memory
leak (PLK) is memory

that does not have a
pointer to its beginning,

but does have one
to its interior

Memory in use
(MIU) is memory to
which your program

has pointers
(these are not leaks)
Finding leaked memory 41

Comparing program runs

To verify that you have corrected the ABR and MLK errors, recompile
the program with purify, and run it again.

Purify displays the results of the new run in the same Viewer as the
previous run so it’s easy to compare them. In this simple Hello World
program, you can quickly see that the new run no longer contains the
ABR and MLK errors.

Congratulations! You have successfully Purify’d the Hello World
program.

Suppressing Purify messages

A large program can generate hundreds of error messages. To quickly
focus on the most critical ones, you can suppress the less critical
messages based on their type and source. For example, you might want
to hide all informational messages, or hide all messages that originate
in a specific file.

In the new run, Purify
reports no errors

and no memory leaks

In the previous run,
Purify reported one error
and twelve leaked bytes
42 Chapter 2 - Using Rational Purify

You can suppress messages in the Viewer either during or after a run of
your program. To suppress a message in the Viewer:

1 Select the message you want to suppress.

2 Select Options > Suppressions.

Purify displays the Suppressions dialog, containing information about
the selected message.

You can also specify suppressions directly in a .purify file.
Suppressions created in the Viewer take precedence over suppressions
in .purify files; however, they apply only to the current Purify session.
Unless you click Make permanent, they do not remain when you restart
the Viewer.

Saving Purify output to a view file

A view file is a binary representation of all messages generated in a
Purify run that you can browse with the Viewer or use to generate
reports independent of a Purify run. You can save a run to a view file to
compare the results of one run with the results of subsequent runs, or to
share the file with other developers.

Purify saves suppressions in
.purify files

Select a message to suppress

Select where to suppress
the message

Click to make a
suppression

permanent

The suppression
directive

Control the depth of
the call-chain match

You can save the suppression
directive to another .purify file
Saving Purify output to a view file 43

Saving a run to a view file from the Viewer

To save a program run to a view file from the Viewer:

1 Wait until the program finishes running, then click the run to
select it.

2 Select File > Save As.

3 Type a filename, using the .pv extension to identify the run as a
Purify view file.

Opening a view file

To open a view file from the Viewer:

1 Select File > Open.

2 Select the view file you want to open.

Purify displays the run from the view file in the Viewer. You can work
with the run just as you would if you had run the program from the
Viewer.

You can also use the -view option to open a view file. For example:

% purify -view <filename>.pv

This opens the <filename>.pv view file in a new Viewer.

Using your debugger with Purify

You can run an instrumented program directly under your debugger so
that when Purify finds an error, you can investigate it immediately.

Alternatively, you can enable Purify’s just-in-time (JIT) debugging
feature to have Purify start your debugger only when it encounters an
error—and you can specify which types of errors trigger the debugger.
JIT debugging is useful for errors that appear only once in a while.
When you enable JIT debugging, Purify suspends execution of your
program just before the error occurs, making it easier to analyze the
error.
44 Chapter 2 - Using Rational Purify

Using Purify with PureCoverage

Purify is designed to work closely with PureCoverage, Rational
Software’s runtime test coverage tool. PureCoverage identifies the parts
of your program that have not yet been tested so you can tell whether
you’re exercising your program sufficiently for Purify to find all the
memory errors in your code.

To use Purify with PureCoverage, add both product names to the front
of your link line. Include all ‘ with the program to which they refer. For
example:

% purify <purifyoptions> purecov <purecovoptions> \
cc -g hello_world.c -o hello_world

To start PureCoverage from the Purify Viewer, click the PureCoverage
icon in the toolbar.

For more information, see Rational Purify: What it does on page 31.

Purify API functions

You can call Purify’s API functions from your source code or from your
debugger to gain more control over Purify’s error checking. By calling
these functions from your debugger, you get additional control without
modifying your source code. You can use Purify’s API functions to
check memory state and to search for memory and file-descriptor leaks.

For example, by default Purify reports memory leaks only when you
exit your program. However, if you call the API function
purify_new_leaks at key points throughout your program, Purify
reports the memory leaks that have occurred since the last time the
function was called. This periodic checking enables you to locate and
track memory leaks more effectively.

To use Purify API functions, include <purifyhome>/purify.h in your
code and link with <purifyhome>/purify_stubs.a.

HPUXSolaris

Commonly used functions Description

int purify_describe (char *addr) Prints specific details about memory

int purify_is_running (void) Returns "TRUE" if the program is
instrumented
Using Purify with PureCoverage 45

Build-time options

Specify build-time options on the link line when you instrument a
program with Purify. For example:

% purify -cache-dir=$HOME/cache -always-use-cache-dir cc ...

int purify_new_inuse (void) Prints a message on all memory newly
in use

int purify_new_leaks (void) Prints a message on all new leaks

int purify_new_fds_inuse (void) Lists the new open file descriptors

int purify_printf (char *format, ...) Prints formatted text to the Viewer or
log-file

int purify_watch (char *addr) Watches for memory write, malloc,
free

int purify_watch_n (char *addr, int size,
char *type)

Watches memory: type = "r", "w", "rw"

int purify_watch_info (void) Lists active watchpoints

int purify_watch_remove (int watchno) Removes a specified watchpoint

int purify_what_colors (char *addr, int
size)

Prints the color coding of memory

Commonly used functions Description

Commonly used build-time options Default

-always-use-cache-dir

Forces all instrumented object files to be written to the global cache
directory

no

-cache-dir

Specifies the global directory where Purify caches instrumented object
files

<purifyhome>/cache

-collector

Specifies the collect program to handle static constructors (for use with
gcc, g++)

none

-ignore-runtime-environment

Prevents the runtime Purify environment from overriding the option
values used in building the program

no
46 Chapter 2 - Using Rational Purify

Conversion characters for filenames

Use these conversion characters when specifying filenames for options
such as -log-file and -view-file.

Runtime options

Specify runtime options on the link line or by using the PURIFYOPTIONS

environment variable. For example:

% setenv PURIFYOPTIONS "-log-file=mylog.%v.%p ‘printenv PURIFYOPTIONS‘"

-linker

Sets the alternative linker to build the executables instead of the system
default

system-dependent

-print-home-dir

Prints the name of the directory where Purify is installed, then exits

Commonly used build-time options Default

Character Converts to

%V Full pathname of program with “/” replaced by “_”

%v Program name

%p Process id (pid)

qualified filenames (./%v.pv) Absolute or relative to current working directory

unqualified filenames (no ‘/’) Directory containing the program

Commonly used runtime options Default

-auto-mount-prefix

Removes the prefix used by file system auto-mounters

/tmp_mnt

-chain-length

Sets the maximum number of stack frames to print in a report

6

-fds-in-use-at-exit

Specifies that the file descriptor in use message be displayed at program exit

yes
Conversion characters for filenames 47

†

†

† Can use the conversion characters listed on page 47.

-follow-child-processes

Controls whether Purify monitors child processes in an instrumented program

no

-jit-debug

Enables just-in-time debugging

none

-leaks-at-exit

Reports all leaked memory at program exit

yes

-log-file

Writes Purify output to a log file instead of the Viewer window

stderr

-messages

Controls display of repeated messages: "first", "all", or in a "batch" at
program exit

first

-program-name

Specifies the full pathname of the instrumented program if argv[0] contains
an undesirable or incorrect value

argv[0]

-show-directory

Shows the directory path for each file in the call chain, if the information is
available

no

-show-pc

Shows the full pc value in each frame of the call chain

no

-show-pc-offset

Appends a pc-offset to each function name in the call chain

no

-view-file

Saves Purify output to a view file (.pv) instead of the Viewer.

none

-user-path

Specifies a list of directories in which to search for programs and source code

none

-windows

Redirects Purify output to stderr instead of the Viewer if -windows=no

none

Commonly used runtime options Default
48 Chapter 2 - Using Rational Purify

Purify messages

Purify reports the following messages. For detailed, platform-specific
information, see the Purify online help system.

* Message severity: F=Fatal, C=Corrupting, W=Warning, I=Informational

Message Description Severity* Message Description Severity*

ABR Array Bounds Read W NPR Null Pointer Read F

ABW Array Bounds Write C NPW Null Pointer Write F

BRK Misuse of Brk or Sbrk C PAR Bad Parameter W

BSR Beyond Stack Read W PLK Potential Leak W

BSW Beyond Stack Write W PMR Partial UMR W

COR Core Dump Imminent F SBR Stack Array Bounds Read W

FIU File Descriptors In Use I SBW Stack Array Bounds Write C

FMM Freeing Mismatched
Memory

C SIG Signal I

FMR Free Memory Read W SOF Stack Overflow W

FMW Free Memory Write C UMC Uninitialized Memory
Copy

W

FNH Freeing Non Heap
Memory

C UMR Uninitialized Memory
Read

W

FUM Freeing Unallocated
Memory

C WPF Watchpoint Free I

IPR Invalid Pointer Read F WPM Watchpoint Malloc I

IPW Invalid Pointer Write F WPN Watchpoint Entry I

MAF Malloc Failure I WPR Watchpoint Read I

MIU Memory In-Use I WPW Watchpoint Write I

MLK Memory Leak W WPX Watchpoint Exit I

MRE Malloc Reentrancy Error C ZPR Zero Page Read F

MSE Memory Segment Error W ZPW Zero Page Write F
Purify messages 49

How Purify finds memory-access errors

Purify monitors every memory operation in your program,
determining whether it is legal. It keeps track of memory that is not
allocated to your program, memory that is allocated but uninitialized,
memory that is both allocated and initialized, and memory that has
been freed after use but is still initialized.

Purify maintains a table to track the status of each byte of memory used
by your program. The table contains two bits that represent each byte of
memory. The first bit records whether the corresponding byte has been
allocated. The second bit records whether the memory has been
initialized. Purify uses these two bits to describe four states of memory:
red, yellow, green, and blue.

Purify checks each memory operation against the color state of the
memory block to determine whether the operation is valid. If the
program accesses memory illegally, Purify reports an error.

Blue

Yellow

Illegal to read, write, or free
red and blue memory

malloc

free

write

free

Legal to read and write
(or free if allocated
by malloc)

Legal to write
or free, but

illegal to read

Green

unallocated and
uninitialized freed but still

initialized

Red

 allocated but
uninitialized

 allocated and
initialized

memory memory

memory
memory
50 Chapter 2 - Using Rational Purify

� Red: Purify labels heap memory and stack memory red initially. This
memory is unallocated and uninitialized. Either it has never been
allocated, or it has been allocated and subsequently freed.

In addition, Purify inserts guard zones around each allocated block
and each statically allocated data item, in order to detect array
bounds errors. Purify colors these guard zones red and refers to
them as red zones. It is illegal to read, write, or free red memory
because it is not owned by the program.

� Yellow: Memory returned by malloc or new is yellow. This memory
has been allocated, so the program owns it, but it is uninitialized.
You can write yellow memory, or free it if it is allocated by malloc,
but it is illegal to read it because it is uninitialized. Purify sets stack
frames to yellow on function entry.

� Green: When you write to yellow memory, Purify labels it green.
This means that the memory is allocated and initialized. It is legal to
read or write green memory, or free it if it was allocated by malloc

or new. Purify initializes the data and bss sections of memory to
green.

� Blue: When you free memory after it is initialized and used, Purify
labels it blue. This means that the memory is initialized, but is no
longer valid for access. It is illegal to read, write, or free blue
memory.

Since Purify keeps track of memory at the byte level, it catches all
memory-access errors. For example, it reports an uninitialized memory
read (UMR) if an int or long (4 bytes) is read from a location previously
initialized by storing a short (2 bytes).

How Purify checks statically allocated memory

In addition to detecting access errors in dynamic memory, Purify
detects references beyond the boundaries of data in global variables
and static variables; that is, data allocated statically at link time as
opposed to dynamically at run time.

Here is an example of data that is handled by the static checking
feature:

int array[10];
main() {

array[11] = 1;
}

How Purify finds memory-access errors 51

In this example, Purify reports an array bounds write (ABW) error at
the assignment to array[11] because it is 4 bytes beyond the end of the
array.

Purify inserts red zones around each variable in your program’s
static-data area. If the program attempts to read from or write to one of
these red zones, Purify reports an array bounds error (ABR or ABW).

Purify inserts red zones into the data section only if all data references
are to known data variables. If Purify finds a data reference that is
relative to the start of the data section as opposed to a known data
variable, Purify is unable to determine which variable the reference
involves. In this case, Purify inserts red zones at the beginning and end
of the data section only, not between data variables.

Purify provides several command-line options and directives to aid in
maximizing the benefits of static checking.
52 Chapter 2 - Using Rational Purify

3Using
Rational PureCoverage
Rational PureCoverage: What it does

During the development process, software changes daily, sometimes
hourly. Unfortunately, test suites do not always keep pace. Rational®

PureCoverage® is a simple, easily deployed tool that identifies the lines
and functions in your code that have not been exercised by testing. It
supports C and C++ applications, as well as Java applications running
on a Solaris SPARC 32-bit Java virtual machine (JVM).

Using PureCoverage, you can:

� Pinpoint untested areas of your code

� Accumulate coverage data over multiple runs and multiple builds

� Merge data from different programs sharing common source code

� Work closely with Purify to make sure that Purify finds errors
throughout your entire application

� Automatically generate a wide variety of useful reports

� Access the coverage data so you can write your own reports

� Collect coverage data on UNIX for viewing on a Windows system

PureCoverage provides the information you need to identify gaps in
testing quickly, saving time and effort.

This chapter introduces the basic concepts involved in using
PureCoverage. For complete information, see the PureCoverage online
help system, including the Java Supplement for PureCoverage.
53

Finding untested Java code

PureCoverage provides accurate coverage information that identifies
all the gaps in your testing of Java code. To collect Java code coverage
data, run PureCoverage with the -java option, as follows:

� For an applet:

% purecov [<PureCoverage options>] -java \

<applet viewer> [<applet viewer options>] <html file>

� For a class file:

% purecov [<PureCoverage options>] -java \

<Java executable> <Java options>] <class>

� For a JAR file:

% purecov [<PureCoverage options>] -java \

<Java executable> [<Java options>] <JAR switch> \

<JAR file>.jar

� For a container program:

% purecov [<PureCoverage options>] -java <exename> \

[<arguments to exename>]

PureCoverage also monitors native methods written in languages such
as C/C++ and assembly using the Java Native Interface (JNI).

To display the coverage data for the program, use the command:

% purecov -view java.pcv

For an example showing how to use PureCoverage to monitor Java
code, and for information about ways to control code monitoring, see
the Java Supplement for PureCoverage, which is included with the
PureCoverage online help system.
54 Chapter 3 - Using Rational PureCoverage

Finding untested C/C++ code

This chapter shows you how to use PureCoverage to find the untested
parts of the hello_world.c program.

Before you begin:

1 Create a new working directory. Go to the new directory, and copy
the hello_world.c program and related files from the
<purecovhome>/example directory:

% mkdir /usr/home/pat/example

% cd /usr/home/pat/example

% cp <purecovhome>/example/hello* .

2 Examine the code in hello_world.c.

The version of hello_world.c provided with PureCoverage is
slightly more complicated than the usual textbook version.

#include <stdio.h>

void display_hello_world();

void display_message();

main(argc, argv)

int argc;

char** argv;

{

if (argc == 1)

display_hello_world();

else

display_message(argv[1]);

exit(0);

}

void

display_hello_world()

{

printf("Hello, World\n");

}

void

display_message(s)

char *s;

{

printf("%s, World\n", s);

}

Finding untested C/C++ code 55

Instrumenting a C/C++ program

1 Compile and link the Hello World program, then run the program to
verify that it produces the expected output:

2 Instrument the program by adding purecov to the front of the
compile/link command line. To have PureCoverage report the
maximum amount of detail, use the -g option:

% purecov cc -g hello_world.c

Note: If you compile your code without the -g option, PureCoverage
provides only function-level data. It does not show line-level data.

A message appears, indicating the version of PureCoverage that is
instrumenting the program:

PureCoverage 2003.06.00 Solaris 2 (32-bit), Copyright
(C)1994-2003 Rational Software Corp.
All rights reserved.
Instrumenting: hello_world.o Linking

Note: When you compile and link in separate stages, add purecov only
to the link line.

Running the instrumented C/C++ program

Run the instrumented Hello World program:

% a.out

% cc -g hello_world.c

% a.out

Hello, Worldoutput
56 Chapter 3 - Using Rational PureCoverage

PureCoverage displays the following:

The a.out program produces its normal output, just as if it were not
instrumented. When the program completes execution, PureCoverage
writes coverage information for the session to the file a.out.pcv. Each
time the program runs, PureCoverage updates this file with additional
coverage data.

Displaying C/C++ coverage data

To display the coverage data for the program, use the command:

% purecov -view a.out.pcv

This displays the PureCoverage Viewer.

**** PureCoverage instrumented a.out (pid 3466 at Wed Feb 6 10:32:40 2003)

* PureCoverage 2003.06.00 Solaris 2 (32-bit), Copyright (C) 1994-2003
Rational Software Corp.

 * All rights reserved.

 * For contact information type: "purecov -help"

* Options settings: -purecov \

 -purecov-home=/usr/rational/releases/purecov.sol.2003.06.00

 * License successfully checked out

 * Command-line: a.out

Hello, World

**** PureCoverage instrumented a.out (pid 3466) ****

 * Saving coverage data to /usr/home/pat/example/a.out.pcv.

 * To view results type: purecov -view /usr/home/pat/example/a.out.pcv

Name of the instrumented executable You can use this command to display
technical support contact information

Start-up banner

Normal
program output

 PureCoverage saves
coverage data to

a .pcv file
Finding untested C/C++ code 57

In this example, there is only one source directory, so the information
displayed for the directory is identical to the Total Coverage
information.

Note: The default header for line statistics is ADJUSTED LINES, not just
LINES. This is because PureCoverage has an adjustment feature that lets
you adjust coverage statistics by excluding specific lines. Under certain
circumstances, the adjusted statistics give you a more practical
reflection of coverage status than the actual coverage statistics. The
ADJS column in this example contains zeroes, indicating that it does not
include adjustments.

Summary information
for the entire program

These columns show
statistics for function usage

These columns show
statistics for line usage

This column shows the
number of adjusted lines

Information for the
source directory
58 Chapter 3 - Using Rational PureCoverage

Expanding the file-level detail

Click next to .../example/ to expand the file-level information for
the directory.

You used only one file in the example directory to build a.out.
Therefore the FUNCTIONS and ADJUSTED LINES information for the file is
the same as for the directory. The number 1 in the Runs column
indicates that you ran the instrumented a.out only once.

Note: When you are examining data collected for multiple executables,
or for executables that have been rebuilt with some changed files, the
number of runs can be different for each file.

Examining function-level detail

Expand the hello_world.c line to show function-level information.

The Viewer shows coverage information for the functions
display_message, main, and display_hello_world.

�
File-level information
includes the number

of runs for which
PureCoverage
collected data
Finding untested C/C++ code 59

PureCoverage does not list the printf function or any functions that it
calls. The printf function is a part of the system library, libc. By
default, PureCoverage excludes collection of data from system libraries.

Function-level
information includes the

number of times
the program called

each function

The Calls column shows how many times
the program called each function

The FUNCTIONS columns tell
at a glance whether each
function was used or unused
60 Chapter 3 - Using Rational PureCoverage

Examining the annotated source

To see the source code for main annotated with coverage information,
click the Annotated Source tool next to main in the Viewer.
PureCoverage displays the Annotated Source window.

PureCoverage highlights code that was not used when you ran the
program. In this file only two pieces of code were not used:

� The display_message(argv[1]); statement in main

� The entire display_message function

A quick analysis of the code reveals the reason: the program was
invoked without arguments.

Improving Hello World’s test coverage

To improve the test coverage for Hello World:

1 Without exiting PureCoverage, run the program again, this time
with an argument. For example:

% a.out Goodbye

Unused code

Number of times each line was executed

Adjustments

Source code
line numbers

Unused code

Source code
Finding untested C/C++ code 61

PureCoverage displays the following:

**** PureCoverage instrumented a.out (pid 17331 at Wed Feb

6 10:38:07 2003) PureCoverage 2003.06.00 Solaris 2

(32-bit), Copyright (C) 1994-2003 Rational Software Corp.

* All rights reserved.

* For contact information type: "purecov -help"

* Options settings: -purecov \

-purecov-home=/usr/rational/releases/purecov.sol.2003.

06.00

* License successfully checked out

* Command-line: a.out Goodbye

Goodbye, World

**** PureCoverage instrumented a.out (pid 17331) ****

* Saving coverage data to

/usr/home/pat/example/a.out.pcv.

* To view results type: purecov -view

/usr/home/pat/example/a.out.pcv

2 PureCoverage displays a dialog confirming that coverage data has
changed for this run. Select Reload changed .pcv files and click OK.

Note: This dialog appears only if the PureCoverage Viewer is open
when you run the program.

Reload the changed
a.out.pcv file
62 Chapter 3 - Using Rational PureCoverage

PureCoverage updates the coverage information in the Viewer and the
Annotated Source window.

Note: If you still have untested lines, it is possible that your
compiler is generating unreachable code.

3 Select File > Exit.

Function and line coverage is now 100%

and the function
display_message are

now shown as used

The statement
display_message

(argv[1]);. . .
Finding untested C/C++ code 63

Viewing UNIX coverage data on Windows

You can collect coverage data on your UNIX system and view it on
Windows using Rational PureCoverage for Windows.

To collect coverage data for viewing on Windows, assign the value
windows or both to the -view-file-format option. You can specify the
option in the environment variable PURECOVOPTIONS or on the
command line.

With the option set to windows, PureCoverage saves coverage data to a
.cfy file, which you can analyze using PureCoverage for Windows.
With the option set to both, PureCoverage saves data to a .pcv file as
well.

PureCoverage for UNIX does not merge .cfy files, unlike .pcv files.
You can merge .cfy files when you view them on Windows.

For more information, see the online help systems for PureCoverage on
both UNIX and Windows.

Using report scripts

You can use PureCoverage report scripts to format and process
PureCoverage data. The report scripts are located in the
<purecovhome>/scripts directory.

Select File > Run script to open the script dialog.

You can also run report scripts from the command line.

Select a script from the selection list Type arguments

Report scripts

pc_annotate Produces an annotated source text file

% pc_annotate [-force-merge][-apply-adjustments=no]\
[-file=<basename>...][-type=<type>][<prog>.pcv...]

pc_below Reports low coverage

% pc_below [-force-merge][-apply-adjustments=no][-percent=<pct>]\
[<prog>.pcv...]
64 Chapter 3 - Using Rational PureCoverage

pc_build_diff Compares PureCoverage data from two builds of an application

% pc_build_diff [-apply-adjustments=no][-prefix=XXXX....] old.pcv \
new.pcv

pc_covdiff Annotates the output of diff for modified source code

Note: Cannot run from Viewer

% yourdiff <name> | pc_covdiff [-context=<lines>] \
[-format={diff|side-by-side|new-only}][-lines=<boolean>] \
[-tabs=<stops>][-width=<width>][-force-merge][-apply-adjustments=no] \
-file=<name> <prog>.pcv...

pc_diff Lists files for which coverage has changed

% pc_diff [-apply-adjustments=no] old.pcv new.pcv

pc_email Mails a report to the last person who modified insufficiently covered files

% pc_email [-force-merge][-apply-adjustments=no][-percent=<pct>] \
[<prog>.pcv...]

pc_select Identifies the subset of tests required to exercise modified source code

% <list of changed files> | pc_select \
[-diff=<rules>][-canonicalize=<rule>]test1.pcv test2.pcv...

pc_ssheet Produces a summary in spreadsheet format

% pc_ssheet [-force-merge][-apply-adjustments=no][<prog>.pcv...]

pc_summary Produces an overall summary in table format

% pc_summary [-file=<name>...] [-force-merge] [-apply-adjustments=no]
[<prog>.pcv...]

Report scripts
Using report scripts 65

*

*

*

*

*

PureCoverage options

PureCoverage provides command-line options for controlling
operations and handling coverage data both for C/C++ and for Java
code.

Build-time options

For a C or C++ application, specify build-time options on the link line
when you instrument with PureCoverage. For example:

% purecov -always-use-cache-dir cc ...

For a Java application, specify these options (which for Java are not
actually build-time options) on the command line when you run the
application with PureCoverage.

For C, C++, and Java applications, you can also set these options using
the PURECOVOPTIONS environment variable. For example:

% setenv PURECOVOPTIONS "-always-use-cache-dir"

* Does not apply to Java.

Commonly used build-time options Default

-always-use-cache-dir

Forces all PureCoverage instrumented object files to be written to the
global cache directory

no

-auto-mount-prefix

Removes the prefix used by file system auto-mounters

/tmp_mnt

-cache-dir

Specifies the global directory for caching instrumented object files

<purecovhome>/cache

-collector

Specifies the collect program to handle static constructors (for use with
gcc, g++)

none

-ignore-runtime-environment

Prevents the runtime PureCoverage environment from overriding the
option values used in building the program

no

-linker

Specifies a linker other than the system default for building executables

system-dependent
66 Chapter 3 - Using Rational PureCoverage

†

†

*

†

Runtime options

For a C or C++ application, specify runtime options on the link line
when you instrument with PureCoverage. For a Java application,
specify these options on the command line when you run the
application with PureCoverage.

For C, C++, and Java applications, you can also set these options using
the PURECOVOPTIONS environment variable. For example:

% setenv PURECOVOPTIONS \
"-counts-file=./test1.pcv ‘printenv PURECOVOPTIONS‘"

† Can use the conversion characters listed on page 45.
* Does not apply to Java.

Analysis-time options

Use analysis-time options with analysis-time mode options. For
example:

% purecov -merge=result.pcv -force-merge filea.pcv fileb.pcv

Commonly used runtime options Default

-counts-file

Specifies an alternate file for writing coverage count data in binary format

%v.pcv

-follow-child-processes

Controls whether PureCoverage is enabled in forked child processes

no

-log-file

Specifies a log file for PureCoverage runtime messages

stderr

-program-name

Specifies the full pathname of the PureCoverage instrumented program

argv[0]

-user-path

Specifies a list of directories to search for source code

none
PureCoverage options 67

Analysis-time mode options

Command-line syntax:

% purecov -<mode option> [analysis-time options] \
<file1.pcv file2.pcv ...>

Commonly used analysis-time options Default

-apply-adjustments

Applies all adjustments in the $HOME/.purecov.adjust file to
exported coverage data

yes

-force-merge

Forces the merging of coverage data files (.pcv) obtained from
different versions of the same object file

no

Analysis-time mode options Compatible options

-export

Merges and writes coverage counts from multiple coverage data
files (.pcv) in export format to a specified file
(-export=<filename>) or to stdout

-apply-adjustments

-extract

Extracts adjustment data from source code files and writes it to
$HOME/.purecov.adjust

none

-merge=<filename.pcv>

Merges and writes coverage counts from multiple coverage data
files (.pcv) in binary format

-force-merge

-view

Opens the PureCoverage Viewer for analysis of one or more
coverage data files (.pcv)

-force-merge,
-user-path
68 Chapter 3 - Using Rational PureCoverage

4Using Rational Quantify
Rational Quantify: What it does

Your application’s runtime performance—its speed—is one of its most
visible and critical characteristics. Developing high-performance
software that meets the expectations of customers is not an easy task.
Complex interactions between your code, third-party libraries, the
operating system, hardware, networks, and other processes make
identifying the causes of slow performance difficult.

Rational® Quantify® is a powerful tool that identifies the portions of
you application that dominate its execution time. It supports C and
C++ applications, as well as Java applications running on a Solaris
SPARC 32-bit Java virtual machine (JVM). Quantify gives you the
insight to eliminate performance problems so that your software runs
faster. With Quantify, you can:

� Get accurate and reliable performance data

� Control how data is collected, collecting data for a small portion of
your application’s execution or the entire run

� Compare before and after runs to see the impact of your changes on
performance

� Easily locate and fix only the problems with the highest potential for
improving performance

This chapter introduces the basic concepts involved in using Quantify.
For complete information, see the Quantify online help system,
including the Java Supplement for Quantify.

How Quantify works: C/C++

Unlike sampling-based profilers, Quantify reports performance data
for your program without any profiler overhead. The numbers you see
represent the time your program would take without Quantify.
69

Quantify instruments and reports performance data for all the code in
your program, including system and third-party libraries, shared
libraries, and statically linked modules.

Quantify counts machine cycles: For C/C++ code, Quantify uses
Object Code Insertion (OCI) technology to count the instructions your
program executes and to compute how many cycles they require to
execute. Counting cycles means that the time Quantify records in your
code is independent of accidental local conditions and, assuming that
the input does not change, identical from run to run. The fact that
performance data is repeatable enables you to see precisely the effects
of algorithm and data-structure changes.

Since Quantify counts cycles, it gives you accurate data at any scale.
You do not need to create long runs or make numerous short runs to get
meaningful data as you must with sampling-based profilers—one short
run and you have the data. As soon as you can run a test program, you
can collect meaningful performance data and establish a baseline for
future comparison.

Quantify times system calls: Quantify measures the elapsed (wall
clock) time of each system call made by your program and reports how
long your program waited for those calls to complete. You can
immediately see the effects of improved file access or reduced network
delay on your program. You can optionally choose to measure system
calls by the amount of time the kernel records for the process, which is
the same as the time the UNIX /bin/time utility records.

Quantify distributes time accurately: Quantify distributes each
function’s time to its callers so you can tell at a glance which function
calls were responsible for the majority of your program’s time. Unlike
gprof, Quantify does not make assumptions about the average cost per
function. Quantify measures it directly.

How Quantify works: Java

Quantify provides performance profiling for Java applications running
on a Solaris SPARC 32-bit Java virtual machine (JVM).

Quantify times performance: Quantify times each method as it
executes, and collects accurate data about the actual execution of your
Java code. You can choose either to record elapsed wall-clock time or to
measure the amount of time the kernel records for the process, like the
70 Chapter 4 - Using Rational Quantify

UNIX /bin/time utility. Because data for Java code is based on timing
and not counting cycles, as it is for C and C++, performance data for
Java code, while reliable for a given run, is not repeatable.

Quantify distributes time accurately: Quantify distributes each
method’s time to its callers. This helps you detect the methods that are
ultimately responsible for bottlenecks in your code.

Collecting performance data: C/C++

To collect performance data for a C/C++ program:

1 Add quantify to the front of the link command line. For example:

% quantify cc -g hello_world.c -o hello_world

2 Run the instrumented program as you usually do:

% hello_world

When the program starts, Quantify prints license and support
information, followed by the expected output from your program.

When the program finishes execution, Quantify transmits the
performance data it collected to qv, Quantify’s data-analysis program.

**** Quantify instrumented hello_world (pid 20352 at Sat 5
08:41:27 1999)
Quantify 4.4 Solaris 2, Copyright 1993-1999 Rational
Software Corp.

* For contact information type: “quantify -help”
* Quantify licensed to Quantify Evaluation User
* Quantify instruction counting enabled.

Hello, World.

Quantify: Sending data for 37 of 1324 functions
from hello_world (pid 20352).........done.

Program output

Data transmission
Collecting performance data: C/C++ 71

Interpreting the program summary: C/C++

After each dataset is transmitted, Quantify prints a program summary
showing at a glance how the original, non-instrumented, program is
expected to perform.

Collecting performance data: Java

To collect Java performance data, run Quantify with the -java option,
as follows:

� For an applet:

% quantify [<Quantify options>] -java <applet viewer>

[<applet viewer options>] <html file>

� For a class file:

% quantify [<Quantify options>] -java <Java executable>

[<Java options>] <class>

� For a JAR file:

% quantify [<Quantify options>] -java <Java executable>

[<Java options>] -jar <JAR file>

Quantify: Resource Statistics for hello_world (pid 20352)
 * cycles secs
 * Total counted time: 16148821 0.323 (100.0%)
 * Time in your code: 2721 0.000 (0.0%)
 * Time in system calls: 843950 0.017 (5.2%)
 * Dynamic library loading: 15302150 0.306 (94.8%)
 *
*
 * Note: Data collected assuming a sparcstation_lx with clock rate of 750 MHz.
 * Note: These times exclude Quantify overhead and possible memory effects.
 *
 * Elapsed data collection time: 0.336 secs
 *

 * Note: This measurement includes Quantify overhead.

 Time Quantify expects the original program to take

Time spent executing
program functions
(compute-bound)

Time taken to collect
data includes Quantify’s
counting overhead and

any memory effects

Time spent loading
dynamic libraries

Time spent waiting for
system calls to complete
72 Chapter 4 - Using Rational Quantify

� For a container program such as Netscape Navigator:

% quantify [<Quantify options>] -java <exename>

[<arguments to exename>]

Note: Quantify can collect line-by-line performance data or
method-level data. By default, Quantify uses the line level when debug
data, which is stored in class files, is available.

When Quantify starts, it prints license and support information,
followed by the expected output from your program.

When the program finishes execution, Quantify transmits the
performance data it collected to qv, Quantify’s data-analysis program.

Interpreting the program summary: Java

After each dataset is transmitted, Quantify prints a program summary
showing at a glance how the original, non-instrumented, program is
expected to perform.

Actual time taken by your process
from when Java was started to the end

Time spent in your Java
code, including some

Quantify overhead

Quantify: Resource Statistics for /people/jo/4java/bin/appletviewer (pid 24565)
* cycles secs
* Total counted time: 101071710000 134.762 (100.0%)
* Time in your code: 54225003750 72.300 (53.7%
*
*Time Quantify excluded from the dataset:
* Time spent blocked/waiting: 36447111000 48.596
*
* Note: Data collected assuming a UltraSparc with clock rate of 750 MHz.
*
*
* Note: These measurements performed on a machine with 2 processors.
* For threaded programs on multiprocessors, Quantify will time
* operations that are executed in parallel as if they were performed
* on a single processor.
*
Collecting performance data: Java 73

Using Quantify’s data analysis windows

After transmitting the last dataset, Quantify displays the Control Panel.
From here, you can display Quantify’s data analysis windows and
begin analyzing your program’s performance.

ANNOTATED SOURCE

FUNCTION LIST

FUNCTION DETAIL

CONTROL PANEL

CALL GRAPH
74 Chapter 4 - Using Rational Quantify

The Function List window

The Function List window shows the functions that your program
executed. By default, it displays all the functions in your program,
sorted by their function time. This is the amount of time a function spent
performing computations (compute-bound) or waiting for system calls
to complete.

Sorting the function list

To sort the function list based on the various data Quantify collects,
select View > Display data.

Function list description

Click a function
to select it

Find a function by name
or filter by expression

For C/C++ code

For Java code
The Function List window 75

Restricting functions

To focus attention on specific types of functions, or to speed up the
preparation of the function list report in large programs, you can
restrict the functions shown in the report. Select View > Restrict
functions.

You can restrict the list to the top 20 or top 100 functions in the list, to
the functions that have annotated source, to functions that are
compute-bound (make no system calls), or to functions that contribute
non-zero time for a recorded data type.

The Call Graph window

The Call Graph window presents a graph of the functions called during
the run. It uses lines of varying thickness to graphically depict where
your program spends its time. Thicker lines correspond directly to
larger amounts of time spent along a path.

The call graph helps you understand the calling structure of your
program and the major call paths that contributed to the total time of
the run. Using the call graph, you can quickly discover the sources of
bottlenecks.

For Java code

For C/C++ code
76 Chapter 4 - Using Rational Quantify

By default, Quantify expands the call paths to the top 20 functions
contributing to the overall time of the program.

Using the pop-up menu

To display the pop-up menu, right-click any function in the call graph.

You can use the pop-up menu to:

� Expand and collapse the function’s subtree

� Locate individual caller and descendant functions

� Change the focus of the call graph to the selected function

� Display the annotated source code or the function detail for the
selected function

Or click and drag the
Viewport to move
to a new location

The selected function

Click and drag
anywhere in the

call graph to move to
a new location

Thicker lines mean more
expensive paths
The Call Graph window 77

Expanding and collapsing descendants

Use the pop-up menu to expand or collapse the subtrees of descendants
for individual functions.

After expanding or collapsing subtrees, you can select
View > Redo layout to remove any gaps that your changes create in the
call graph.

The Function Detail window

The Function Detail window presents detailed performance data for a
single function, showing its contribution to the overall execution of the
program.

For each function, Quantify reports both the time spent in the function’s
own code (its function time) and the time spent in all the functions that
it called (its descendants time). Quantify distributes this accumulated
function+descendants time to the function’s immediate caller.

Select to expand
or collapse

descendant subtrees

The functions that called
malloc

All the data collected
for malloc

The immediate descendants of malloc, and how they contributed
to malloc’s function+descendants time

The minimum and
maximum time

spent in malloc
on any one call
78 Chapter 4 - Using Rational Quantify

Double-click a caller or descendant function to display the detail for
that function.

The function time and the function+descendants time are shown as a
percentage of the total accumulated time for the entire run. These
percentages help you understand how this function’s computation
contributed to the overall time of the run. These times correspond to the
thickness of the lines in the call graph.

Changing the scale and precision of data

Quantify can display the recorded data in cycles (the number of
machine cycles) and in microseconds, milliseconds, or seconds.
To change the scale of data, select View > Scale factors.

To change the precision of data, select View > Precision.

Saving function detail data

To save the current function detail display to a file, select
File > Save current function detail as.

To append additional function detail displays to the same file, select
File > Append to current detail file.
The Function Detail window 79

The Annotated Source window

Quantify’s Annotated Source window presents line-by-line
performance data using the function’s source code.

Note: The Annotated Source window is available only for files that you
compile using the -g debugging option.

The numeric annotations in the margin reflect the time recorded for that
line or basic block over all calls to the function. By default, Quantify
shows the function time for each line, scaled as a percentage of the total
function time accumulated by the function.

Changing annotations

To change annotations, use the View menu. You can select both function
and function+descendants data, either in cycles or seconds and as a
percentage of the function+descendants time.

Source file

Function summary

Annotations show how
function+descendants

time was distributed
over its source lines

Find text in
the source code
80 Chapter 4 - Using Rational Quantify

Saving performance data on exit

To exit Quantify, select File > Exit Quantify. If you analyze a dataset
interactively, Quantify does not automatically save the last dataset it
receives. When you exit, you can save the dataset for future analysis.

By default, Quantify names dataset files to reflect the program name
and its runtime process identifier. You can analyze a saved dataset at a
later time by running qv, Quantify’s data analysis program.

You can also save Quantify data in export format. This is a clear-text
version of the data suitable for processing by scripts.

Comparing program runs with qxdiff

The qxdiff script compares two export data files and reports any
changes in performance. For C or C++ programs, the results show
exactly how much your program’s performance has improved. For Java
code, the results indicate general performance trends. This is because C
and C++ performance data, based on counting cycles, is repeatable,
while Java data, based on the timing of methods, is not repeatable.

To use the qxdiff script:

1 Save baseline performance data to an export file. Select
File > Export Data As in any data analysis window.

2 Change the program and run Quantify on it again.

3 Select File > Export Data As to export the performance data for the
new run.

4 Use the qxdiff script to compare the two export data files. For
example:

% qxdiff -i testHash.pure.20790.0.qx

improved_testHash.pure.20854.0.qx

You can use the -i option to ignore functions that make calls to
system calls.
Saving performance data on exit 81

Below is the output from this example.

Quantify options

Quantify provides command-line options for controlling operations
and handling coverage data for both C/C++ and for Java code.

Build-time options

For a C or C++ application, specify build-time options on the link line
when you instrument with Quantify. For example:

% quantify -cache-dir=$HOME/cache -always-use-cache-dir \
cc ...

For a Java application, specify these options (which for Java are not
actually build-time options) on the command line when you run the
application with Quantify.

For C, C++, and Java applications, you can also set these options using
the QUANTIFYOPTIONS environment variable. For example:

% setenv QUANTIFYOPTIONS "-always-use-cache-dir"

qxdiff lists the
functions that have

changed . . .

and summarizes the
differences for the

entire run

Differences between:

program testHash.pure (pid 20790) and

program improved_testHash.pure (pid 20854)

Function name Calls Cycles % change

! strcmp -40822 -1198640 93.77% faster

! putHash 0 -32912 6.61% faster

! getHash 0 -28376 7.86% faster

! remHash 0 -7856 5.91% faster

! hashIndex 0 10000 1.49% slower

5 differences; -1257784 cycles (-0.025 secs at 50 MHz)

25.01% faster overall (ignoring system calls).

Commonly used build-time options Default

-always-use-cache-dir

Specifies whether instrumented files are written to the global cache
directory

no

-cache-dir

Specifies the global cache directory

<quantifyhome>/cache
82 Chapter 4 - Using Rational Quantify

†

†

†

†

† Does not apply to Java.

qv runtime options

To run qv, specify the option and the saved .qv file. For example:

% qv -write-summary-file a.out.23.qv

-collection-granularity

Specifies the level of collection granularity

line

-collector

Specifies the collect program to handle static constructors in C++
code

none

-ignore-runtime-environment

Prevents the runtime Quantify environment from overriding option
values used in building the program

no

-linker

Specifies an alternative linker to use instead of the system linker

system-dependent

-use-machine

Specifies the build-time analysis of instruction times according to a
particular machine

system-dependent

Commonly used build-time options Default

qv options Default

-add-annotation

Specifies a string to add to the binary file

none

-print-annotations

Writes the annotations to stdout

no

-windows

Controls whether Quantify runs with the graphical interface

yes

-write-export-file

Writes the recorded data in the dataset to a file in export format

none

-write-summary-file

Writes the program summary for the dataset to a file

none
Quantify options 83

†

†

†

†

Runtime options

For a C or C++ application, specify build-time options on the link line
when you instrument with Quantify. For a Java application, specify
these options on the command line when you run the application with
Quantify.

For C, C++, and Java applications, you can also set these options using
the QUANTIFYOPTIONS environment variable. For example:

% setenv QUANTIFYOPTIONS "-windows=no"; a.out

Commonly used runtime options Default

-avoid-recording-system-calls

Avoids recording specified system calls

system-dependent

-measure-timed-calls

Specifies measurement for timing system calls

elapsed-time

-record-child-process-data

Records data for child processes created by fork and vfork

no

-record-system-calls

Records system calls

yes

-report-excluded-time

Reports time that was excluded from the dataset

0.5

-run-at-exit

Specifies a shell script to run when the program exits

none

-run-at-save

Specifies a shell script to run each time the program saves counts

none

-save-data-on-signals

Saves data on fatal signals

yes

-save-thread-data

Saves composite or per-stack thread data

composite

-write-export-file

Writes the dataset to an export file as ASCII text

none

-write-summary-file

Writes the program summary for the dataset to a file

/dev/tty
84 Chapter 4 - Using Rational Quantify

†

†

†

†

† Does not apply to Java.

API functions: C/C++

To use Quantify API functions with C/C++ code, include
<quantifyhome>/quantify.h in your code and link with
<quantifyhome>/quantify_stubs.a

-windows

Specifies whether Quantify runs with the graphical interface

yes

Commonly used runtime options Default

Commonly used C/C++ functions Description

quantify_help (void) Prints description of Quantify API
functions

quantify_is_running (void) Returns true if the executable is
instrumented

quantify_print_recording_state (void) Prints the recording state of the
process

quantify_save_data (void) Saves data from the start of the
program or since last call to
quantify_clear_data

quantify_save_data_to_file (char * filename) Saves data to a file you specify

quantify_add_annotation (char * annotation) Adds the specified string to the next
saved dataset

quantify_clear_data (void) Clears the performance data recorded
to this point

quantify_<action>_recording_data (void) Starts and stops recording of all data

quantify_<action>_recording_dynamic_library_
data (void)

Starts and stops recording dynamic
library data

quantify_<action>_recording_register_window_
traps (void)

Starts and stops recording
register-window-trap data

quantify_<action>_recording_system_call
(char *system_call_string)

Starts and stops recording specific
system-call data
API functions: C/C++ 85

†

† <action> is one of: start, stop, is. For example:
quantify_stop_recording_system_call

API methods: Java

You can call an API method from your Java code or from a debugger.
Use the following syntax:

Rational.PureAPI.IsRunning()

or

import Rational.PureAPI;
...
PureAPI.IsRunning()

PureAPI is a Java class that includes all the Quantify API methods that
can be used with Java code. The PureAPI class is part of a Java package
called Rational.jar, which is located in <quantifyhome>.

You can run class files that include calls to PureAPI methods with or
without Quantify:

� When you run these class files with Quantify, Quantify
automatically sets CLASSPATH and LD_LIBRARY_PATH to access
Rational.jar and libQProfJ.so.

� When you run the class files without Quantify, you must add
<quantifyhome>/lib32 to your LD_LIBRARY_PATH. In addition, if
you do not have a Rational.jar file in your
<javahome>/jre/lib/ext directory, you must add
<quantifyhome> to your CLASSPATH.

The Java API methods are as follows:

quantify_<action>_recording_system_calls
(void)

Starts and stops recording of all
system-call data

Commonly used C/C++ functions Description

Java API methods: class PureAPI Description

public static int IsRunning(); Returns true if the executable is
instrumented

public static int DisableRecordingData(); Disables collection of all data by Quantify
86 Chapter 4 - Using Rational Quantify

public static int StartRecordingData(); Tells Quantify to start recording all program
performance data

public static int StopRecordingData(); Tells Quantify to stop recording all program
performance data

public static int IsRecordingData(); Checks if Quantify is currently recording all
program performance data

public static int ClearData(); Tells Quantify to clear all the data it has
recorded about your program's performance
to this point

public static int SaveData(); Saves all the data recorded since program
start (or the last call to clearData()) into a
dataset (a .qv file)

public static int AddAnnotation(String
annotation);

Tells Quantify to save the argument string in
the next output datafile written by
saveData()

Java API methods: class PureAPI Description
API methods: Java 87

88 Chapter 4 - Using Rational Quantify

Index
Symbols
%V, %v, %p 47

A
ABR, array bounds read error

correcting 38
in Hello World 36

access errors, how Purify finds 50
account number, Rational Software 4
AccountLink user input 4
-add-annotation 83
adjusted lines 58
-always-use-cache-dir 46, 66, 82
analysis-time options 67
Annotated Source window

PureCoverage 61
Quantify 80

a.out.pcv 57
API functions

Purify 45
Quantify (C/C++) 85
Quantify (Java) 86

appending function detail 79
applets, collecting performance data 72
-apply-adjustments 68
-auto-mount-prefix 47, 66
-avoid-recording-system-calls 84

B
blue memory color 51
build-time options

PureCoverage 66
Purify 46
Quantify 82

C
cache directory

configuring 19
location of 25

-cache-dir 19, 46, 66, 82, 83
caching dynamic shared objects

IRIX 33
caching options

PureCoverage 66
Purify 46
Quantify 82

Call Graph window, Quantify 78
Calls column, PureCoverage 60
CD-ROMs

ejecting 26
mounting 25

.cfy Windows coverage data file 64
-chain-length 47
changing annotations, Quantify 80
characters, conversion 47
class files, collecting performance data 72
ClearQuest, integrating 18
code, see source code
collapsing subtrees 78
-collection-granularity 83
-collector 46, 66, 83
color, see memory color
comparing program runs

with PureCoverage 61
with Purify 42
with Quantify qxdiff script 81

compiling and linking 33
compute-bound

functions 75, 76
time 72

configuration message 35
configure command 27
configuring the cache directory 18
89

container programs
collecting Java coverage data 54
collecting Java performance data 73

controls, Purify program 35
conversion characters for filenames 47
-counts-file 67
coverage data

file level 59
function level 59
in PureCoverage Viewer 57

cycles
counted by Quantify 70
scale factor 79

D
daemons, and licensing 28
.dat license file 7, 10, 28
data

comparing export files 81
saving Quantify data 81

debugger(s)
JIT debugging 44
scripts on HP-UX 21
using with Purify 44

debugging option, see -g debugging option
deleting product releases 23
directories

cache 19
installation 6, 9, 12, 13, 24
PureLA 7, 10
Rational 24– 25

disk space requirements 5
dynamic library, timing 72
dynamic shared object (DSO) caching 33

E
editing source code 38, 40
ejecting CD-ROMs 26
environment variables

LM_LICENSE_FILE 28
MANPATH 19

PATH 19
PURECOVOPTIONS 66, 67
PUREOPTIONS 19
PURIFYOPTIONS 47
QUANTIFYOPTIONS 82, 84

executables, instrumenting (IRIX) 33
expanding subtrees 78
expiration date, licenses 13
-export 68
exporting Quantify data 81
-extract 68

F
-fds-in-use-at-exit 47
file(s)

a.out.pcv 57
.cfy Windows coverage data file 64
installing product 25
license_for_*.upd 5
Purify view 43
qv and qx script 20
Rational license (.dat) 7, 10, 28
rational.opt 22
Temporary.dat 28
users.purela 7, 10

filename conversion characters 47
filesystems, installing on read-only 18
FLEXlm

commands 29
End User Manual 29
GLOBEtrotter web site 29
License Manager 27

floating license 4
-follow-child-processes 48, 67
-force-merge 68
Function Detail window 78

saving data 79
scale and precision of data 79

Function List window
finding top contributors 75
restricting functions 76

function+descendants time 78
90 Index

functions
compute-bound 76
coverage detail 59
restricting display in Quantify 76
sorting in Quantify 75
See also API functions

Functions columns, PureCoverage 60

G
-g debugging option

and PureCoverage 56
and Purify 36
and Quantify 71, 80

get_hostinfo.sh 4
GLOBEtrotter web site 29
graph, see Call Graph window
green memory color 51

H
heap analysis, Purify 41
Hello World example

PureCoverage 55
Purify 32

help system, setting up 18
help, technical support x
hiding

functions in Quantify 76
messages in Purify 43

hostid for license server host 4
HP-UX debugger scripts 21

I
-ignore-runtime-environment 46, 66, 83
installation

basic steps 1
directory 6, 9, 12, 13, 24
evaluation license 3
on read-only filesystems 18
permanent license 24
requirements 5

rs_install commands 27
startup license 17
Typical installation option 1
user input (AccountLink) 4

instrumenting a program
description of ix
with PureCoverage 56
with Purify 33
with Quantify 71

integration, Purify and PureCoverage 45
IRIX

compile/link command 33
DSO caching 33
running a Purify instrumented program 34

J
JAR files, collecting performance data 72
-java

PureCoverage 54
Quantify 72

Java and PureCoverage 54
Java and Quantify 70, 72
-jit-debug 48
just-in-time debugging 44

K
keys, product license 17

L
leaks, see memory leaks
-leaks-at-exit 48
library

system and PureCoverage 60
time loading dynamic 72

license daemon, lmgrd 28
license file

.dat 7, 10, 22, 28

.upd 5
license key types 17
License Manager, FLEXlm 27
Index 91

license server
port number 9
requirements 4
using multiple servers 17

license(s)
checking 27
expiration date 13
floating 4
license key types 17
named user 7, 10, 17, 19
permanent 24
quantity 4
Rational license file (.dat) 28
setting up 27
startup 2, 17
upd license file 5
user names 7, 10, 22– 23

license_check command 27
license_for_*.upd file 5
license_setup command 27
line numbers

-g option 33, 36
on IRIX 36

-linker 47, 66, 83
links, symbolic 19
LM_LICENSE_FILE environment variable 28
lmgrd license daemon 28
local variable names, displaying 33
-log-file 48, 67

M
machine cycles 70
MANPATH environment variable 19
manual pages 19
-measure-timed-calls 84
memory access errors

example 36
how Purify finds 50

memory color 50
memory in use message 41
memory leaks

definition 41
heap analysis 41

message 39
new leaks button 39
potential 41
purify_new_leaks 45

menu, Quantify pop-up 77
-merge 68
-messages 48
messages

Purify 49
suppressing Purify 43

MLK, memory leak 40
example 39

mounting CD-ROMs 25

N
Named User license 7, 10, 17, 19, 22
new memory leaks, Purify 39

O
Object Code Insertion (OCI) 70
online help system, setting up 18
operating system, identifying 25
options

PureCoverage analysis-time 67
PureCoverage build-time 66
PureCoverage runtime 67
Purify build-time 46
Purify runtime 47
Quantify build-time 82
Quantify runtime 84
qv runtime 83

options (by name)
-add-annotation 83
-always-use-cache-dir 46, 66, 82
-apply-adjustments 68
-auto-mount-prefix 47, 66
-avoid-recording-system-calls 84
-cache-dir 46, 66, 82, 83
-chain-length 47
-collection-granularity 83
-collector 46, 66, 83
-counts-file 67
92 Index

-export 68
-extract 68
-fds-in-use-at-exit 47
-follow-child-processes 48, 67
-force-merge 68
-ignore-run-time-environment 66
-ignore-runtime-environment 46, 83
-java 54, 72
-jit-debug 48
-leaks-at-exit 48
-linker 47, 66, 83
-log-file 48, 67
-measure-timed-calls 84
-merge 68
-messages 48
-print-annotations 83
-print-home-dir 47
-program-name 48, 67
-record-child-process-data 84
-record-system-calls 84
-report-excluded-time 84
-run-at-exit 84
-run-at-save 84
-save-data-on-signals 84
-save-thread-data 84
-show-directory 48
-show-pc 48
-show-pc-offset 48
-use-machine 83
-user-path 48, 67
-view 54, 57, 68
-view-file 48
-windows 48, 83, 85
-write-export-file 83, 84
-write-summary-file 83, 84

options file 22
options_setup command 27
overhead, Quantify 72

P
PATH environment variable 19
performance data 71, 73

saving 81

permanent licenses
installing manually 24
requesting 24

pop-up menu, Quantify 77
port number, license server 9
post_install command 27
post-installation configuration tasks 18
potential memory leak 41
-print-annotations 83
-print-home-dir 47
product license keys 17
producthome directory 24
products, removing 23
program controls, Purify 35
program runs, comparing

Quantify qxdiff script 81
with PureCoverage 61
with Purify 42

program summary, Quantify 72, 73
-program-name 48, 67
programs, running instrumented

PureCoverage 56
Purify 34
Quantify 71

purecov.configure command 27
PureCoverage

benefits 53
for Windows 64
symbolic links for 20
using with Purify 45
Viewer 57
with Java 54

PURECOVOPTIONS environment variable 67
PureLA directory 7, 10
PUREOPTIONS environment variable 19
Purify

API functions 45
instrumenting a program 33
messages 49
Viewer 34

purify.configure command 27
PURIFYOPTIONS environment variable 47
PurifyPlus ix, 1
Index 93

Q
Quantify

API functions (C/C++) 85
API functions (Java) 86
build-time options 82
Call Graph window 76, 78
overhead 72
repeatability of timing 70
runtime options 84
symbolic links for 20
with Java 70, 72

quantify.configure command 27
QUANTIFYOPTIONS environment variable 66,

82, 84
qv 71, 73
qv script files 20
qx script files 20
qxdiff script 81

R
Rational ClearQuest, integrating 18
rational daemon 28
Rational license file

*.dat 28
license_for_*.upd 5

Rational PureCoverage for Windows 64
Rational PurifyPlus ix, 1
Rational Software account number 4
Rational Software website

AccountLink 5
home page x
technical support x

rational.opt options file 22
README file location 15
read-only filesystems 18
-record-child-process-data 84
-record-system-calls 84
red memory color 51
Redo layout, Quantify 78
removing previous releases 23
report(s)

program summary 72, 73
PureCoverage scripts 64

-report-excluded-time 84
restricting functions in Quantify 76
rs_install

commands 27
program 15

-run-at-exit 84
-run-at-save 84
running an instrumented program

PureCoverage 56
Purify 34
Quantify 71

runs
column, PureCoverage 59
comparing with PureCoverage 61
comparing with Purify 42
comparing with Quantify 81

runtime options
PureCoverage 67
Purify 47
Quantify 84
qv 83

S
-save-data-on-signals 84
-save-thread-data 84
saving

function detail data 79
Purify run 43
Quantify data 81

scale factors 79
scripts

enabling PureCoverage scripts 20
HP-UX debugger 21
PureCoverage report scripts 64
Quantify 20
qxdiff 81

server-name.dat file 28
servers, license 16

requirements 4
using multiple 17

-show-directory 48
-show-pc 48
-show-pc-offset 48
94 Index

sorting function list 75
source code

annotated in PureCoverage 61
annotated in Quantify 80
displaying filenames 36
editing from Viewer 38, 40
line numbers, Purify 36
number of lines displayed 38

startup license 2, 17
statically allocated memory 51
subtrees, Quantify 78
summary, Quantify program 72, 73
support, technical x
suppressing Purify messages 43
symbolic links 19

for HP-UX debugger scripts 21
for PureCoverage 20
for Purify 20
for Quantify 20

system call timing 70
system libraries and PureCoverage 60

T
technical support x
Temporary .dat file 28
time

compute-bound 72
function+descendants 78
in code 72
loading dynamic libraries 72
to collect the data 72

Total Coverage row, PureCoverage 58
Typical installation option 1

U
uname command 25
uninstall command 23
.upd license file 5
-use-machine 83

user names, for licensing 7, 10, 22– 23
-user-path 48, 67

V
validating setup 18
variable, see environment variable
-view 54, 57, 68
view file, Purify 43, 44
Viewer 57

PureCoverage 57
Purify 34

-view-file 48
viewport, call graph 77

W
websites

for obtaining Rational licenses 5
GLOBEtrotter 29
Rational software x
Rational technical support x

-windows 48, 83, 85
windows

PureCoverage annotated source 61
PureCoverage viewer 57
Purify viewer 34
Quantify annotated source 80
Quantify call graph 78
Quantify data analysis 74
Quantify function detail 78
Quantify function list 75

Windows, displaying UNIX coverage data 64
-write-export-file 83, 84
-write-summary-file 83, 84

Y
yellow memory color 51
Index 95

96 Index

	Title page
	Legal notices
	Preface
	What’s in this guide?
	Audience
	Other resources
	Contacting Rational technical publications
	Contacting Rational technical support

	Installing the products
	Overview
	Step 1: Obtaining a license for your Rational product
	About licenses
	Information you need to obtain a license
	Obtaining a .upd import file using AccountLink

	Step 2: Installing your Rational product
	Information you need for rs_install
	If you are installing a new permanent or TLA license and are importing a .upd file
	If you are installing a new permanent or TLA license without importing a .upd file
	If you already have a permanent or TLA license set up
	If you are installing a temporary or evaluation license

	Installing the products using rs_install
	Answers to questions about rs_install

	Step 3: Post-installation configuration tasks
	Installing on a read-only file system
	Making the manual pages available
	Making the products available to all users

	Checking and adjusting your configuration
	Maintaining the rational.opt options file
	Modifying the list of user names

	Removing a previous product release
	Requesting and installing the permanent or TLA license key
	Requesting your permanent or TLA license key
	Entering a permanent or TLA license key after initial installation

	Supplemental notes
	Creating an installation directory�manually
	Mounting the CD-ROM
	Ejecting the CD-ROM
	Using rs_install commands
	Using the FLEXlm Software License Manager
	The Rational license file
	Verifying that FLEXlm is working
	Using FLEXlm commands
	Learning more about FLEXlm

	Using Rational Purify
	Rational Purify: What it does
	Finding errors in Hello World
	Instrumenting a program
	Compiling and linking in separate stages

	Running the instrumented program
	Seeing all your errors at a glance
	Finding and correcting errors
	Understanding the cause of the error
	Correcting the ABR error

	Finding leaked memory
	Correcting the MLK error
	Looking at the heap analysis

	Comparing program runs
	Suppressing Purify messages
	Saving Purify output to a view file
	Saving a run to a view file from the Viewer
	Opening a view file

	Using your debugger with Purify
	Using Purify with PureCoverage
	Purify API functions
	Build-time options
	Conversion characters for filenames
	Runtime options
	Purify messages
	How Purify finds memory-access errors
	How Purify checks statically allocated memory

	Using Rational�PureCoverage
	Rational PureCoverage: What it does
	Finding untested Java code
	Finding untested C/C++ code
	Instrumenting a C/C++ program
	Running the instrumented C/C++ program
	Displaying C/C++ coverage data
	Expanding the file-level detail
	Examining function-level detail
	Examining the annotated source

	Improving Hello World’s test coverage

	Viewing UNIX coverage data on Windows
	Using report scripts
	PureCoverage options
	Build-time options
	Runtime options
	Analysis-time options
	Analysis-time mode options

	Using Rational Quantify
	Rational Quantify: What it does
	How Quantify works: C/C++
	How Quantify works: Java
	Collecting performance data: C/C++
	Interpreting the program summary: C/C++

	Collecting performance data: Java
	Interpreting the program summary: Java

	Using Quantify’s data analysis windows
	The Function List window
	Sorting the function list
	Restricting functions

	The Call Graph window
	Using the pop-up menu
	Expanding and collapsing descendants

	The Function Detail window
	Changing the scale and precision of data
	Saving function detail data

	The Annotated Source window
	Changing annotations

	Saving performance data on exit
	Comparing program runs with qxdiff
	Quantify options
	Build-time options
	qv runtime options
	Runtime options

	API functions: C/C++
	API methods: Java

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

