Rational Software Corporatione

Rational Suite.

Tutorial

VERSION: 2003.06.00

PART NUMBER: 800-026081-000

WINDOWS

R at i O na]® support@rational.com

the software development company http://www.rational.com

Legal Notices

©1998-2003, Rational Software Corporation. All rights reserved.
Part Number: 800-026081-000

Version Number: 2003.06.00

This manual (the "Work") is protected under the copyright laws of the United States and/or
other jurisdictions, as well as various international treaties. Any reproduction or distribution of
the Work is expressly prohibited without the prior written consent of Rational Software
Corporation.

The Work is furnished under a license and may be used or copied only in accordance with the
terms of that license. Unless specifically allowed under the license, the Work or copies of it may
not be provided or otherwise made available to any other person. No title to or ownership of
the manual is transferred. Read the license agreement for complete terms.

Rational Software Corporation, Rational, Rational Suite, Rational Suite ContentStudio, Rational
Apex, Rational Process Workbench, Rational Rose, Rational Summit, Rational Unified process,
Rational Visual Test, AnalystStudio, ClearCase, ClearCase Attache, ClearCase MultiSite,
ClearDDTS, ClearGuide, ClearQuest, PerformanceStudio, PureCoverage, Purify, Quantify,
Requisite, RequisitePro, RUP, SiteCheck, SiteLoad, SoDa, TestFactory, TestFoundation,
TestMate and TestStudio are registered trademarks of Rational Software Corporation in the
United States and are trademarks or registered trademarks in other countries. The Rational
logo, Connexis, ObjecTime, Rational Developer Network, RDN, ScriptAssure, and XDE, among
others, are trademarks of Rational Software Corporation in the United States and /or in other
countries. All other names are used for identification purposes only and are trademarks or
registered trademarks of their respective companies.

Portions covered by U.S. Patent Nos. 5,193,180 and 5,335,344 and 5,535,329 and 5,574,898 and
5,649,200 and 5,675,802 and 5,754,760 and 5,835,701 and 6,049,666 and 6,126,329 and 6,167,534
and 6,206,584. Additional U.S. Patents and International Patents pending.

U.S. Government Restricted Rights

Licensee agrees that this software and /or documentation is delivered as "commercial computer
software," a "commercial item," or as "restricted computer software," as those terms are defined
in DFARS 252.227, DFARS 252.211, FAR 2.101, OR FAR 52.227, (or any successor provisions
thereto), whichever is applicable. The use, duplication, and disclosure of the software and/or
documentation shall be subject to the terms and conditions set forth in the applicable Rational
Software Corporation license agreement as provided in DFARS 227.7202, subsection (c) of FAR
52.227-19, or FAR 52.227-14, (or any successor provisions thereto), whichever is applicable.

Warranty Disclaimer

This document and its associated software may be used as stated in the underlying license
agreement. Except as explicitly stated otherwise in such license agreement, and except to the
extent prohibited or limited by law from jurisdiction to jurisdiction, Rational Software
Corporation expressly disclaims all other warranties, express or implied, with respect to the
media and software product and its documentation, including without limitation, the
warranties of merchantability , non-infringement, title or fitness for a particular purpose or
arising from a course of dealing, usage or trade practice, and any warranty against interference
with Licensee's quiet enjoyment of the product.

Third Party Notices, Code, Licenses, and Acknowledgements
Portions Copyright ©1992-1999, Summit Software Company. All rights reserved.

Microsoft, the Microsoft logo, Active Accessibility, Active Client, Active Desktop, Active
Directory, ActiveMovie, Active Platform, ActiveStore, ActiveSync, ActiveX, Ask Maxwell,
Authenticode, AutoSum, BackOffice, the BackOffice logo, bCentral, BizTalk, Bookshelf,
ClearType, CodeView, DataTips, Developer Studio, Direct3D, DirectAnimation, DirectDraw,
DirectInput, DirectX, DirectX], DoubleSpace, DriveSpace, FrontPage, Funstone, Genuine
Microsoft Products logo, IntelliEye, the IntelliEye logo, IntelliMirror, IntelliSense,] /Direct,
JScript, LineShare, Liquid Motion, Mapbase, MapManager, MapPoint, MapVision, Microsoft
Agent logo, the Microsoft eMbedded Visual Tools logo, the Microsoft Internet Explorer logo,
the Microsoft Office Compatible logo, Microsoft Press, the Microsoft Press logo, Microsoft
QuickBasic, MS-DOS, MSDN, NetMeeting, NetShow, the Office logo, Outlook, PhotoDraw,
PivotChart, PivotTable, PowerPoint, QuickAssembler, QuickShelf, RelayOne, Rushmore,
SharePoint, SourceSafe, TipWizard, V-Chat, VideoFlash, Visual Basic, the Visual Basic logo,
Visual C++, Visual C#, Visual FoxPro, Visual InterDev, Visual J++, Visual SourceSafe, Visual
Studio, the Visual Studio logo, Vizact, WebBot, WebPIP, Win32, Win32s, Win64, Windows, the
Windows CE logo, the Windows logo, Windows NT, the Windows Start logo, and XENIX, are
either trademarks or registered trademarks of Microsoft Corporation in the United States
and/or in other countries.

Sun, Sun Microsystems, the Sun Logo, Ultra, AnswerBook 2, medialib, OpenBoot, Solaris, Java,
Java 3D, ShowMe TV, SunForum, SunVTS, SunFDD], StarOffice, and SunPCi, among others,
are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

Licensee shall not incorporate any GLOBEtrotter software (FLEXIm libraries and utilities) into
any product or application the primary purpose of which is software license management.

BasicScript is a registered trademark of Summit Software, Inc.

Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma, Richard
Helm, Ralph Johnson and John Vlissides. Copyright © 1995 by Addison-Wesley Publishing
Company, Inc. All rights reserved.

Additional legal notices are described in the legal_information.html file that is included in your
Rational software installation.

Contents

Preface.cciii i s Xi
AUAIENCE . . . o e Xi
Other RESOUICES o ot e e e e e Xi
Rational Suite Documentation Roadmap Xii
Contacting Rational Customer Support Xiii

1 Welcome to Rational Suite.ciiiiiiiiiiant. 15
Principles of Software Development. i 15
Rational Suite Can Help e 18
What Is Rational Suite? 19

Tools That Unify Your Team e 19
Rational Suite Team Unifying Platform. 19
Tools for Analysts e 21
Rational Suite AnalystStudio 21
Tools for Developers. e 21
Rational Suite DevelopmentStudio. 22
Rational Suite DevelopmentStudio — RealTime Edition. 23
Tools for Testers e 23
Rational Suite TestStudio. 23
Rational Suite Enterprise 24
Rational Suite: A Complete Lifecycle Solution 25
For More Information 26
What's Next 26

2 AboutThisTutorial............cciiiiii it i i e e nans 27
Prerequisites 27
Determining Which Rational Suite Tools Are Installed 27
ClassicsCD.com: The Tutorial Sample Application. 28

Tutorial Background 28
Installing the Tutorial Sample Application and Related Files 28
Getting Started 30
Registering the Project. 30
Associating the Change Request Database with the Project. 31
Using the Application 33
DiscoveringWhatto Build 34

How to Use This Tutorial e e 35

SUMMANY. . . ot 36
What You Learned in This Chapter 36

What's Next 36

3 Learning About the Rational Unified Process. 37
AUAIENCE e 37
Getting Your Bearings 37
What Is the Rational Unified Process (RUP)?. 38
The Rational Unified Process and Rational Suite. 39
Learningthe MechaniCs e 39
The Processata Glance. i e e 40
Key COoNCEPES . . 41
Exploringa Workflow 43
Starting with Actorsand Use Cases i 44
Tool Mentors: Using Rational Tools to Supportthe Process. 45
Learningthe BasiCs i e 46
SUMMANY. . o o e e 47
For More Information 47
Cleaning Up . ..o 47
What You Learned in This Chapter. i 47
What's Next. e 47

4 Managing Change to Project Artifacts......................... 49
AUAIENCE e e 49
What Is Unified Change Management? 49
UCM TOO0IS . . o 50
Using the Tools with UCM — ClearQuest and ClearCase LT................... 51
Unifying Code and Content for Web Development 53
SUMMANY. . o o 53
For More Information 53
What You Learned in This Chapter. i 54
What's Next. e 54

vi Contents

5 CreatingRequirementsiiiiiiiinnnnaanaannns 55

AUAIENCE. . . . e e 55
Getting Your Bearings.o 55
Why Worry About Requirements? 57
Where Do Requirements Come From? 57
Managing Requirements 58
Using RequisitePro 58
Startingwitha Use Case e 58
Why Work with Use Cases?. e 58
How Does RequisitePro Handle Requirements? 61
Learning More About Use Cases.t e 61
Continuing Use Case Work Using Rose. i 61
Working with a Use Case Diagram. i 62
Associating the Rose Model with the RequisitePro Project. 63
Creatinga New Requirement 64
Looking at Requirements inthe Database 65
Linking to Another Requirement. 66
Traceability and SuspectLinks. 67
Other Requirement Types.ot e e 67
When Have You Finished Gathering Requirements? 68
Extended Help 68
SUMMANY . . oo e 69
For More Information 69
Cleaning Up . ..o oo 69
What You Learned in This Chapter i .. 69
What's Next 69

6 TestPlanningciiiiiiiiii ittt nnnnnnnnnnans 71
AUdIENCE. . . . e 71
Getting Your Bearings.o 71
What Is Test Planning?. 72
Managing Risk 72
Making a Plan and Measuring Progress 72
Developinga Test Plan. 73
Organizing Your Test Plan 73
Determining Whatto Test. e 75

Contents vii

7

viii

Working with Test Cases. i e 76

Test Inputs from Rational Rose i 77
Test Inputs from Rational RequisitePro 77
Traceability and SuspectLinks. 79
Elaboratingon Test Cases 79
Understanding the Impact of Test Planning 79
Continuing with Test Planning. 80
Risks and Resources e 80
Types of Teststo Perform 81
Stages of Testingo 81
Project Scheduling 81
More on Test Artifacts. 82
SUMMANY. . o e e 83
For More Information 83
Cleaning Up . ..o 83
What You Learned in This Chapter. i 83
What's Next. e 83
Modeling the Enhancement, 85
AUAIBNCE e 85
Getting Your Bearings 85
What Is Visual Modeling? o 86
Using Rational Rose. e 86
Visual Modeling and the Tutorial 86
Working with a Sequence Diagram. 86
Opening a Sequence Diagram i 87
Adding Messages for the Enhancement. 89
Publishing Part of the Modeltothe Web. 90
Continuing Work with the Sequence Diagram., 91
Refiningthe Objects 91
Implementing Code e 92
Modeling Data e 93
Benefits 93
SUMMANY. . o 93
For More Information 93
Cleaning Up . ..o 94
What You Learned in This Chapter. i 94
What's Next. 94

Contents

8 Communicating ProjectStatus.............ot 95

AUAIENCE. . . . e e 95
Getting Your Bearings.o 95
Managing Project Status 96
What Is SODA 96
Using SoDA Templates e 96

Why Generate a Use Case Report? 97
Creatingthe Use Case Report. e 97
Working with SODA Templates. i, 99

What Is ProjectConsole? 929
Using the Project Web Site i i 100
Working with Project Metrics 100
SUMMANY . .o e e 103
For More Information 103
Cleaning Upo oo 103
What You Learned in This Chapter i, 103
What's Next e e 103

9 Reliability Testing.ccoiiiiiiii i 105
AUdIENCE. . . . e 105
Reliability Testing Tools. 105
Run-Time Analysis Tools in Rational Suite. 106
Rational Purify 106
Rational PureCoverage 107
Rational Quantify 108
Using Purify, PureCoverage, and Quantify with Other Rational Tools 108
SUMMANY . oo 109
For More Information 109
What You Learned in This Chapter i, 109
What's Next 109

10 Functional Testingttt e e aanes 111
AUAIENCE. . . . 111
Getting Your Bearings.o 111
What Is Functional Testing? 112
Working with Test Scripts. 112
Scripts and Modularity 112
Gettingto a Starting Point 113
Working with Test Scripts. 113

Contents ix

Recordingthe Script 115

Startingto Recordthe Script 115
Creating a Verification Point. 116
Finishing the Recording Session 117
Addinga Test Scripttoa Suite 118
Incorporating a Test Scriptinto Your TestPlan. 119

Playing Back the Scriptona New Build 120
Analyzingthe Results e 121
Handling Failures 121
Handling an Intentional Change. 121
Handlinga Real Error. 122
Reporting the Error. 123
SUMMANY. .« . e 125
For More Information 125
Cleaning Up . ..o e 125
What You Learned in This Chapter. i, 125
What's Next. 125

11 Planning the Next Iteration 127
AUdIENCE e 127
Getting Your Bearings 127
Assessing the State of your Project 128
Showingthe Workload 128
Working with Enhancement Requests 130
Other Planning Activities. 132
What Will Happen in the Next lteration? it 132
SUMMANY. .« . e 134
For More Information 134
Cleaning Up . ..o e e 134
What You Learned in This Chapter. i, 134
What You Learned in This Tutorial, 134
What's Next. 135

€] o T T 137
INdeX . ..o e e 143

x Contents

Preface

Rational Suite delivers a comprehensive set of integrated tools that embody software

engineering best practices and span the entire software development lifecycle. This

tutorial teaches you the basics of using Rational Suite to plan, design, implement, and

test applications. It also points you to additional information so that you can learn
more on your own.

Audience

Read this tutorial if you:

» Are a member of a development team — an analyst, developer, tester, project
leader, or manager.

» Have experience with some aspect of Windows-based application development.

You do not need prior experience with any Rational tools to use this tutorial.

Other Resources

»= All manuals are available online, either in HTML or PDF format. The online
manuals are on the Rational Solutions for Windows Online Documentation CD.

= To send feedback about documentation for Rational products, please send e-mail
to techpubs@rational.com.

» For more information about Rational Software technical publications, see:
http://www.rational.com/documentation.

» For more information on training opportunities, see the Rational University Web
site: http://www.rational.com/university.

= For articles, discussion forums, and Web-based training courses on developing
software with Rational Suite products, join the Rational Developer Network by
selecting Start > Programs > Rational Software > Logon to the Rational Developer
Network.

Xi

http://www.rational.com/documentation/
http://www.rational.com/university

Rational Suite Documentation Roadmap

R

Rational Suite® Introduction
Rational Suite® Tutorial

Rational® ClearCase® LT Introduction

Rational® ClearQuest® Introduction

The Rational Unified Process®, an Introduction (ISBN: 0201604590)
Rational Unified Process® Team View

Rational Software Desktop Products Installation Guide

Rational® RequisitePro® Tutorial

Getting Started: Rational® ProjectConsole

Using Unified Change Management with Rational Suite®

Rational® TestManager User’s Guide
|

<>

Getting Started:

Getting Started:
Rational Suite® AnalystStudio® Rational® PurifyPlus, Rational® Purify®,
Rational Rose® Tutorial Rational® PureCoverage®,
Rational® Quantify®

Rational Unified Process®
Rational Rose® Tutorial

Anaylist View
Rational Rose® RealTime Tutorials
Rational® QualityArchitect User’s Guide
Rational Unified Process® Developer View

Rational Suite® Release Notes
Rational Software License Management Guide

Rational Software Desktop Products
Installation Guide

Rational Software Server Products

Getting Started:
Rational® PurifyPlus, Rational® Purify®,
Rational® PureCoverage®,
Rational® Quantify®

Rational® Robot User’s Guide
Rational® TestFactory® User’s Guide

Rational Unified Process®
Tester View

Installation Guide
Rational Suite® Upgrade Guide
Rational Suite® Administrator’s Guide

Using Unified Change Management
with Rational Suite®

RATIONAL SUITE
ADMINISTRATOR

xii Introducing Rational Suite

Contacting Rational Customer Support

If you have questions about installing, using, or maintaining this product, contact
Rational Customer Support as follows:

Your Location

Telephone

Facsimile

E-mail

North America

(800) 433-5444
(toll free)

(408) 863-4000
Cupertino, CA

(781) 676-2460
Lexington, MA

support@rational.com

Europe, Middle
East, Africa

+31 (0) 20-4546-200
Netherlands

+31 (0) 20-4546-201
Netherlands

support @ europe.rational.com

Asia Pacific

+61-2-9419-0111
Australia

+61-2-9419-0123
Australia

support@apac.rational.com

Note: When you contact Rational Customer Support, please be prepared to supply
the following information:

Your name, company name, telephone number, and e-mail address

Your operating system, version number, and any service packs or patches you

have applied

Product name and release number

Your case ID number (if you are following up on a previously reported problem).

Preface xiii

xiv Introducing Rational Suite

Welcome to
Rational Suite

Think about your last software project. Was it delivered on time? Was it released
within its budget? Was communication between team members clear and timely? Did
your team maintain consistency throughout the project while it defined requirements,
developed designs, and wrote code? Was your build process repeatable? Did your
software meet requirements, satisfy users, and perform reliably?

Many project teams experience problems in these areas. In fact, many software
projects finish late (or not at all), and the results often don’t match the requirements.
Many projects uncover serious design flaws late in the process. Defects are often
found after the software ships, instead of during development.

How can you make your next project more successful?

Principles of Software Development

Rational Software Corporation helps organizations overcome many software
development issues while accelerating time to market and improving quality. The
Rational solution helps organizations develop software through a combination of:

= Software engineering best practices.
» Integrated tools that automate these best practices.

= Professional services that accelerate the adoption and implementation of these best
practices and tools (see Figure 1).

15

Figure 1 The Rational Best Practices, Tools, and Services

Tools

Lin'en’ Thody fov e Pciect Team

Rational helps you increase your productivity and effectiveness by focusing on these
software development best practices:

Develop Software Iteratively

Iterative development means analyzing, designing, and implementing incremental
subsets of the system over the project lifecycle. The project team plans, develops, and
tests an identified subset of system functionality for each iteration. The team develops
the next increment, integrates it with the first iteration, and so on. Each iteration
results in either an internal or external release and moves you closer to the goal of
delivering a product that meets its requirements.

Developing iteratively helps you:

= Make your project more predictable.

= Collect feedback early.

» Identify and eliminate risks early in the project.

= Test continuously throughout the project lifecycle.

16 Rational Suite Tutorial

Manage Requirements

A requirement is one criterion for a project’s success. Your project requirements answer
questions like “What do customers want?” and “What new features must we
absolutely ship in the next version?” Most software development teams work with
requirements. On smaller, less formal projects, requirements might be kept in text
files or e-mail messages. Other projects can use more formal ways of recording and
maintaining requirements.

Managing requirements means that you understand how changing requirements
affect your project and you can effectively communicate requirements to all team
members and to stakeholders. Effective requirements management helps your
organization ensure that its products meet their stated goals.

Use Component-Based Architectures

Software architecture is the fundamental framework on which you construct a
software project. When you define an architecture, you design a system’s structural
elements and their behavior, and you decide how these elements fit into progressively
larger subsystems.

A component is a nontrivial, independent, and replaceable part of a system that
combines data and functions to fulfill a clear purpose. You can build components
from scratch, reuse components you previously built, or even purchase components
from other companies.

Designing a component-based architecture helps you reduce the size and complexity
of your application and enhance maintainability and extensibility so your systems are
more robust and resilient.

Model Software Visually

Visual modeling helps you manage software design complexity. At its simplest level,
visual modeling means creating a graphical blueprint of your system’s architecture.
Visual models can also help you detect inconsistencies between requirements,
designs, and implementations. They help you evaluate your system’s architecture,
ensuring sound design.

Visual models also improve communication across your entire team because they
concisely convey a lot of information. With Rational tools, you can create visual
models in the Unified Modeling Language (UML), the industry-standard language for
visualizing and documenting software systems.

Chapter 1 - Welcome to Rational Suite 17

Continuously Verify Quality

Verifying product quality means that you perform activities such as testing to ensure
quality of the code, documentation, and any product-related training. Testing
includes verifying that the system delivers required functionality, reliability, and the
ability to perform under load. It also means that there are effective user support
materials.

An important benefit of iterative development is that you can begin testing early in
the development process. Testing every iteration helps you discover problems early
and expose inconsistencies between requirements, designs, and implementations.

Manage Change

It is important to manage change in a trackable, repeatable, and predictable way.
Change management includes facilitating parallel development, tracking and
handling enhancement and change requests, defining repeatable development
processes, and reliably reproducing software builds.

As change propagates throughout a project, clearly defined and repeatable change
process guidelines help facilitate clear communication about progress. Making team
members aware of change helps you control risks associated with unmanaged
change.

Rational Suite Can Help

To put these software development principles to work, Rational Software offers
Rational Suite, a family of market-leading software development tools supported by
the Rational Unified Process. These tools help you throughout the project lifecycle.

Rational Suite packages the tools and the process into several editions, each of which
is customized for specific practitioners on your development team, including
analysts, developers, and testers.

Alone, these tools have helped organizations around the world successfully create
software. Integrated into Rational Suite, they:

= Unify your team by enhancing communication and providing common tools.

» Optimize individual productivity with market-leading development tools
packaged in Suite editions that are customized for the major roles on your team.

= Simplify adoption by providing a comprehensive set of integrated tools that
deliver simplified installation, licensing, and user support plans.

18 Rational Suite Tutorial

What Is Rational Suite?

Rational Suite editions are sets of tools customized for every member of your team.
Each Suite edition contains the tools from the Rational Suite Team Unifying Platform.
The Team Unifying Platform is a common set of tools that focus on helping your team
perform more effectively. Each Rational Suite edition also contains tools selected for a
specific practitioner on your development team. The following sections describe each
Suite edition and the tools they contain.

Tools That Unify Your Team

Rational Suite Team Unifying Platform

Rational Suite Team Unifying Platform unifies all members of a software
development team to maximize productivity and quality. It provides best practices
and integrated tools for managing change, building high-quality applications, and
communicating results from requirements to release.

Rational Suite Team Unifying Platform is useful to project members who need access
to common project information, but do not need any of the optimized, role-specific
tools found in the other Suite editions. For example, project and program managers,
project administrators, and development managers use the tools in this Suite edition.

The Team Unifying Platform is included in every Rational Suite edition. It contains
the following tools:
Rational Unified Process (RUP)

The RUP is an online collection of software best practices (see pages 16 — 18 for an
overview) that guide your team through the software development process. The
Rational Unified Process (also known as the RUP) provides guidelines, templates, and
Tool Mentors (instructions for applying the guidelines to specific Rational tools) for
each phase of the development lifecycle. Additionally, you can customize the RUP to:

= Use only the process components you need for each stage of a project.
= Develop your own process components.

= Exchange best practices with peers and industry leaders.

Rational RequisitePro

RequisitePro helps you organize, prioritize, track, and control changing project
requirements. With the RequisiteWeb interface, users can access, create, and manage
requirements from a Web browser.

Chapter 1 - Welcome to Rational Suite 19

Rational ClearQuest

ClearQuest manages change activity associated with software development,
including enhancement requests, defect reports, and documentation modifications.
The ClearQuest Web interface provides all major ClearQuest operations, such as
submitting records, finding records, creating or editing queries and reports, and
creating shortcuts, from a Web browser. ClearQuest MultiSite helps you share change
request information across a geographically distributed team.

Rational SoDA

SoDA automatically generates project documents by extracting information from files
you produce during project development, including: source code and files produced
with Rational tools. SODA uses predefined templates or your own customized
templates to format the information. SoDA is integrated with Microsoft Word for ease
of use and easy customizing.

Rational ClearCase LT

ClearCase LT provides software configuration management and a built-in process to
track changes to all software project assets, including: requirements, visual models,
and code. It also provides a Web interface, allowing users to perform all major
ClearCase LT operations. ClearCase LT supports Unified Change Management,
Rational's best practices process for managing change and controlling workflow.

Rational TestManager

TestManager helps you create real-world functional and multiuser tests to determine
the reliability and performance of Web, multi-tier, and database applications.
TestManager tracks how many tests have been planned, scripted, and carried out;
which requirements have been covered; and the number of tests that have passed and
failed. TestManager allows your team to objectively assess project status, and create
and customize reports to communicate these findings to project stakeholders.

Rational ProjectConsole

ProjectConsole helps you track project metrics by automatically generating charts and
gauges from data produced during software development. ProjectConsole is
integrated with Microsoft Project so that you can create a centralized project plan.
ProjectConsole helps you organize project artifacts on a central Web site so all team
members can view them.

20 Rational Suite Tutorial

Rational Developer Network

The Rational Developer Network helps you expand and hone professional skills, and
stay ahead of the technology curve. The Rational Developer Network is an online
community for software professionals, providing useful information, an opportunity
to exchange ideas with other software professionals, and best practices for software
development teams. The network delivers white papers, documentation, articles, and
training.

Tools for Analysts
An analyst’s role is to:

» Determine what the system does.
» Represent the user’s needs to the development organization.
» Specify and manage requirements.

Rational Suite AnalystStudio

Rational Suite AnalystStudio supports the analysts on your team. It contains the Team
Unifying Platform and:

Rational Rose (Professional Data Modeler Edition)

Rose enables visual modeling of databases, architectures, and components using the
industry-standard Unified Modeling Language (UML). The UML is a language for
specifying, visualizing, constructing, and documenting software systems. This edition
of Rose integrates the modeling environment with the database design environment,
mapping the object and data models, tracking changes across business, application
and data models.

Tools for Developers
A developer’s role is to:

» Determine how the system works.
» Define the architecture.
» Create, modify, manage, and test code.

Rational Suite offers two editions to support the developers and architects on your
team: Rational Suite DevelopmentStudio and Rational Suite DevelopmentStudio —
RealTime Edition.

Chapter 1 - Welcome to Rational Suite 21

Rational Suite DevelopmentStudio

Rational Suite DevelopmentStudio supports system developers, designers, and
architects. Rational Suite DevelopmentStudio contains the Team Unifying Platform
and:

Rational Rose (Enterprise Edition)

Rose enables visual modeling of architectures, components, and data using UML.
Rational Rose can regenerate the framework of your code in Java, C++, Microsoft
Visual Basic, and other popular languages. Rose is also tightly integrated with
Microsoft Visual Studio and IBM VisualAge for Java. The Rose round-trip
engineering feature helps you automate the process of maintaining consistency
between a model and its implementation.

Rational QualityArchitect

Quality Architect is a Rational Rose add-in that automates the mechanical aspects of
test code creation by generating test code from visual models. This feature of Rose
allows developers to automatically generate component tests by building stubs and
drivers before an application is complete. This is important because early testing
helps to reduce project risk. Your team can determine how a potential system
architecture meets functional and performance requirements, before developing the
design further. Rational QualityArchitect supports Enterprise JavaBeans, COM,
COM+, and DCOM models.

Rational PureCoverage

PureCoverage identifies which parts of your Java, Visual C++, Visual Basic,
Visual Basic.NET, or Visual C#.NET program have and have not been exercised.
Exposes testing gaps so you can prevent untested application code from reaching
your users.

Rational Purify

Purify pinpoints run-time errors and memory leaks in Visual C++ application code,
and errors related to garbage-collection in Java and .NET managed application code.
Rational Quantify

Quantify profiles your Java, Visual C++, Visual Basic, Visual Basic.NET, or
Visual C#.NET application to help you identify performance issues in your source
code.

22 Rational Suite Tutorial

Rational Suite DevelopmentStudio — RealTime Edition

Rational Suite DevelopmentStudio — RealTime Edition is the Rational Suite edition
designed for practitioners who focus on real-time and embedded development. This
Suite edition contains all the tools in Rational Suite DevelopmentStudio but replaces
Rational Rose Enterprise Edition with Rational Rose RealTime Edition.

Rational Rose (RealTime Edition)

Rose Real-Time delivers a powerful combination of notation, processes, and tools to
meet the challenges of real-time development. Using Rose RealTime, you can:

* Create executable models to compile and then observe simulations of your UML
designs on the host or target platform. As a result, you can refine your design early
and continually verify quality.

= Generate complete, deployable executables in C or C++ directly from UML design
models targeted to real-time operating systems. Generating these applications
eliminates the need for manual translation and avoids costly design interpretation
errors.

This tutorial does not discuss Rose RealTime in detail. To learn more about Rose
RealTime, see the online tutorials available from the Rose RealTime Help menu.

Tools for Testers
A tester’s role is to:

» Ensure that software meets all requirements.
= Create, manage, and run tests.
* Report results and verify fixes.

Rational Suite TestStudio

Rational Suite TestStudio is the Rational Suite edition designed for testers. It contains
the Team Unifying Platform and:

Rational Robot

Robot facilitates functional and performance testing by automating the recording and
playback of test scripts for both functional and performance testing. Allows you to
write, troubleshoot, and run tests, and to capture results for analysis.

Chapter 1 - Welcome to Rational Suite 23

Rational TestFactory

TestFactory automates testing by combining automatic test generation with
source-code coverage analysis. Tests an entire application, including all GUI features
and all lines of source code.

Rational PureCoverage

PureCoverage identifies which parts of your Java, Visual C++, or Visual Basic
program have and have not been exercised. Uses test scripts to drive the application
and expose testing gaps so you can prevent untested application code from reaching
users.

Rational Purify

Purify pinpoints run-time errors and memory leaks in Visual C++ application code,
and errors related to garbage-collection in Java application code. Purify does this by
using test scripts to drive the application.

Rational Quantify

Quantify profiles your Java, Visual C++, or Visual Basic application to help you
identify performance bottlenecks in your code. Quantify does this by using test scripts
to drive the application.

Rational Suite Enterprise

On some projects, team members may perform many types of tasks. For example, on
smaller projects, team members are likely to perform more than one role. On larger
projects, team members might move from task to task. It may therefore make sense to
equip all team members with a full complement of tools.

Rational Suite Enterprise contains all the tools in the Team Unifying Platform,
AnalystStudio, DevelopmentStudio, and TestStudio, so it can accommodate the needs
of all the members of your team.

24 Rational Suite Tutorial

Rational Suite: A Complete Lifecycle Solution

Rational Suite provides an integrated solution for development teams and offers
tailored editions to best suit your team’s needs. This table shows which tools are
included with each edition of Rational Suite.

Project Analysts Developers Testers | All Roles
Leaders/
Managers
Team Analyst | DevelopmentStudio | DevelopmentStudio | TestStudio | Enterprise
Unifying Studio RealTime Edition
Platform
Windows Windows | Windows| UNIX | Windows| UNIX Windows | Windows
Rational
Unified Process
Rational ° ° ° oWEB . oWEB . .
g | RequisitePro
)
= | Rational ° ° ° ° °)))
& | ClearQuest
&
i Rational SoDA o SW o SW o SW o SF o SW o SF o SW o SW
)
:ﬁ) Rational ° ° ° . ° . . .
. ClearCase LT
E Rational ° ° ° o TA ° o TA ° °
TestManager
Rational
ProjectConsole
Rational Rose oM oE oU o RT oRT/U oFE
Rational
PureCoverage
Rational Purify ° °
Rational
Quantify
Rational Robot . .
Rational . .
TestFactory
E = Enterprise Edition
M = Professional Data Modeler Edition
RT = RealTime Edition
SF = Rational SoDA for FrameMaker
SW = Rational SoDA for Word
TA = Used in conjunction with test agents
U = UNIX Edition
WEB = Can be accessed through Web interface only

Chapter 1 - Welcome to Rational Suite 25

For More Information

For more information about Rational Suite and the principles of software
development, see the Rational Suite Introduction.

For more information about the Unified Modeling Language, visit the UML Resource
Center at: http://www.rational.com/uml. This Web site contains UML information, tips
about getting started with UML, and a bibliography for further reading.

What’s Next

In the next chapter, you will learn more about this tutorial, and you install and set up
the files you will use.

26 Rational Suite Tutorial

http://www.rational.com/uml

About This Tutorial

This tutorial teaches you the basics of using Rational Suite to plan, design, implement,
and test applications. It also points you to additional information about Rational Suite
so that you can learn more on your own.

Prerequisites

Before continuing, make sure you have the following software installed on your
computer, and a valid license to use each:

» An English edition of Rational Suite, version 2003.06.00.
» Microsoft Internet Explorer 5.5, with Service Pack 1 or 2, or later.
= Microsoft Word 2000 or later.

If any of these prerequisites are not met, you can still benefit from reading this
tutorial, but you may not be able to perform the exercises.

Determining Which Rational Suite Tools Are Installed

Table 1 shows which tools are included in Rational Suite.

Table 1 Rational Suite Tools

Rational ClearCase LT Rational RequisitePro

Rational ClearQuest Rational Robot

Rational ProjectConsole Rational Rose
Rational PureCoverage Rational SoDA for Word

Rational Purify Rational TestManager

R I A I A I A
R I A I A I A

Rational Quantify Rational Unified Process

27

Exercise: Find out which tools are on your computer.

To determine whether a tool is installed:

1 Click Start.

2 Check to see if the tool’s name is in the Programs > Rational Software menu.

(From now on, we’ll abbreviate these two steps as follows: “Start > Programs >
Rational Software.”)

You may discover that some tools listed in Table 1 are not installed on your
computer. For example, a tool may be excluded because of the Suite edition you, or
your company, purchased. Or someone in your organization may have chosen not
to install certain tools.

3 Using Table 1 on page 27, place check marks next to the tools that are installed on
your computer.

4 Place a bookmark on page 27 so you can refer back to Table 1 later in this tutorial.

ClassicsCD.com: The Tutorial Sample Application

In this tutorial, you implement a small part of a large development project. Using the
Rational tools and process, you develop requirements, work with a visual model, and
test an application.

Tutorial Background

In this tutorial, you work for ClassicsCD, Inc., a growing online store that sells classical
music CDs. Your team is working on Version 2 of the ClassicsCD.com Web site, and
uses Rational Suite to plan, design, implement, and test this version of the Visual
Basic application. In this tutorial, you add one new enhancement to ClassicsCD.com.

Installing the Tutorial Sample Application and Related Files

Before you perform the tutorial exercises, you must install and set up the files you will
use. The Rational Suite Tutorial installation requires approximately:

= 10 MB of disk space to download the setup application.
» 65 MB of additional disk space to download the tutorial files.

Note: If you are using Windows NT, make sure you have Administrator privileges so
that you can complete the setup successfully.

28 Rational Suite Tutorial

Exercise: Install the tutorial application and files.

1

Start the tutorial installation now: click Start > Programs > Rational Software >
Download Rational Suite Tutorial.

This path automatically connects you to the Documentation area of the
Rational Software Web site, http://www.rational.com/documentation.

Under View Documentation Online (Login required), click Rational Suite Tutorial
from the drop-down menu.

Log on, or create your Rational Member Profile.

If, after logging on, you are returned to the Rational Software home page, go to
http://www.rational.com/documentation to access the Tutorial as you did in Step 2.

From the Rational Suite Tutorials page, scroll to the section, Version 2003 Tutorial
and then click Rational Suite Tutorial ReadMe File.

This page provides information and instructions about the tutorial installation and
set up process. Use this information to install the tutorial program files and
documentation.

After you read the information, click Back to return to the Rational Suite Tutorials
page, and if necessary, scroll to the section, Version 2003 Tutorial.

Click Rational Suite Tutorial Manual.

After the PDF file opens, we recommend that you print the book so you can refer
to it more easily. You may also want to save the book to your hard disk.

Return to the Rational Suite Tutorials page, and if necessary, scroll to the section
Version 2003 Tutorial.

Click Rational Suite Tutorial v2003.06.00 Kit.
Follow the instructions to install the tutorial files on your computer.

After you install the files, close your Web browser.

Chapter 2 - About This Tutorial 29

http://www.rational.com/documentation
http://www.rational.com/documentation
http://www.rational.com/documentation/
http://www.rational.com/documentation/

Getting Started

Now you are ready to start your work for ClassicsCD, Inc.! To understand how
Rational Suite fits into your development environment, we recommend that you work
through the entire tutorial. Follow the instructions for each exercise exactly as they are
printed, and make sure you complete all exercises in each chapter before attempting
to perform the exercises in subsequent chapters. Each series of exercises builds upon
the information and skills you learned in previous chapters.

Registering the Project

In a typical development environment, a project administrator sets up the Rational
software environment and creates a Rational project in the Rational Administrator.
Your project administrator uses the Rational Administrator to group a set of artifacts
associated with Rational Suite (for example, a RequisitePro database and a Rose
model). As a user, you register the project to your computer so that you can connect to,
and work with, the project on the network. In this tutorial, the Rational project has
been created for you.

Exercise: Register the Rational project you will use in this tutorial.

1 To start the Rational Administrator, click Start > Programs > Rational Software >
Rational Administrator.

2 In the left pane of the Rational Administrator, right-click Projects. From the
shortcut menu that appears, click Register Existing Project (see Figure 2).

Figure 2 Registering a Project Using Rational Administrator

+ -+ Rational Administrator =]

File Edit Yiew Tools Help

|laesc®eecn | [BEPsQED: Baw |

E-?}- Rational Administratar ame I Location | Path | ClearQuest

Mew Project,
Regisk

3 In the Select Rational Project dialog box, browse to C:\Classics\Projects\Webshop.
4 Click Webshop.rsp and then click Open.

The Rational Administrator adds Webshop under the Projects entry in the
tree browser. This is the project you will use throughout this tutorial.

30 Rational Suite Tutorial

5 In the left pane of the Rational Administrator, right-click Webshop and then click
Connect.

All assets and development information associated with the Webshop project
appear under the Webshop entry (see Figure 3), indicating that you have
successfully connected to the project.

Figure 3 Connecting to a Project Using Rational Administrator

++Rational Administrator
File Edit WYiew Insert Tools Help

fpesmen|capss@n:emam|

= % Rational Administrator Propett: | Yalue
E\-@ Projects Hame ‘Webshop
E-@ webshop Location CihClassics\Projectstwebshop!,

“ff, RequisitePro Project (C:iClassics),. . |ClassicswebShap.rgs) Path Ci\Classics\Projectsiebshopiirebshop.rsp

% Cleartuest Database [CL5I) ClearGuest .Database MName CLSIC

H . Db Connection kame

F Rational Test Datastore Wersioning Requirements Mo

H Rose Model (C:\Classics\,. .. \ClassicsCD_WinDA.mdly Versioning Test Assets Mo

E Rose Model (CriClassics),. .. |ClassicsCDWorld.mdl) TestDataStorePath Ci\Classics\Projectsiwebshop) TestDatastore

! Rose Model {C:\Classics), . \ClassicsCD_IBM.mdl} RequisitePro Project Path Ci\lassics\Projects\webshop\RequisiteProlClassicswebShop.rgs
UCHEnable es
Version 2003.06.00

Keep the Rational Administrator open for the next task.

Associating the Change Request Database with the Project

A Rational project associates software development information collected from
Rational tools that are installed on your computer. A Rational project points to
development information stored in a database or in a datastore, which consists of one
or more databases. A project administrator creating a Rational project can associate it
with various Rational product datastores, databases, and projects.

After the project administrator associates development assets with a Rational project,
you can link data from one database or datastore to another by using individual
product features.

In this tutorial, you work with:

= A ClearQuest change request database that contains the project’s change requests
(defects and enhancement requests).

» A RequisitePro database that contains the project’s business and system
requirements.

» A Rational Test datastore that contains the project’s testing information (test
assets, logs, and reports).

= Rational Rose models that contain the project’s visual models.

Chapter 2 - About This Tutorial 31

Exercise: Attach the change request database to your project.

1 Check whether Rational ClearQuest is installed on your computer by referring to
Table 1 on page 27. If it is installed and then you can proceed with this section’s
instructions. If it is not installed, you cannot use ClearQuest during this tutorial.

2 From the Rational Administrator menu bar, click Tools >
Rational ClearQuest Maintenance Tool.

3 From the ClearQuest Maintenance Tool menu bar, click Connection > New.

Note: The next few steps show you how to connect to a schema repository
supplied with this tutorial. If you have been using ClearQuest and a connection to
another schema repository, you must reconnect to it after you finish with the
tutorial. If you have any questions, contact your project administrator.

4 Under Schema Repository Properties, look for “2003.06.00:”
a Make sure the value in the Vendor box is MS_ACCESS.

b In the Physical Database Name box, click ... (the Browse button) and go to
C:\Classics\Projects\ChangeRequests.

¢ Click CQMaster.mdb and then click Open.

You have now entered the properties of the change request database to be used
in this tutorial (see Figure 4).

Figure 4 Attaching a Change Request Database

B\ Rational ClearQuest Maintenance Tool - Connect [2003.06.00 i] 5
File Connection Schema Repository Help

el | % e 8 dt e e

Existing Connections:

I arder to connect to an existing repository, enter the properties of the database
that's been designated az the schema repository. Y'ou can also use a connection
profile [if one has been created) to connect to an exizting schema repogitory by
uging File | Impart Profile.

Schema Repository Properties for 2003, 06.00"

Yendar: |Ms_access =l
Physical Database Name: IEI: WClassics\Projects\ChangeFRequ B

d Click Finish.

5 Review Status messages to confirm that you have connected the change request
database to the project and then click Done.

6 Close the ClearQuest Maintenance Tool.

32 Rational Suite Tutorial

7 Quit the Rational Administrator.

Note: Typically, these tasks are completed by your project administrator. To work
with this tutorial, though, it is necessary that you complete these tasks.

Using the Application

In a real-world online store, Web pages would load dynamically, based on
information stored in databases, and in reaction to user input. The application you
work with during the tutorial, ClassicsCD.com, contains static Web pages. These
pages do not change in response to user input. In a typical project, you would create a
prototype using static pages and later change to using dynamic pages.

Also, follow the instructions throughout this tutorial exactly. If you diverge from the
prescribed path, the application may appear to malfunction. Because the Web pages
are static, they do not actually respond to your input.

Exercise: Start ClassicsCD.com and order two CDs.

1 To start the application, use Windows Explorer and go to
C:\Classics\ClassicsCD_com_sites\v1 and then open index.htm.

Your Web browser displays the first page of ClassicsCD.com.
2 On the ClassicsCD.com home page, click Explore our storefront.
3 On the storefront page, click Catalog.

4 In the Beethoven section (composers are listed alphabetically), click
Beethoven: Symphonie Nr. 5 to view details of that album.

5 On the album’s page, click g? (the Shopping Cart button) to add the album to
your order.

The CD Catalog page reappears.
6 At the top of the page, click E next to Bach: Brandenburg Concertos 1 + 3.

Exercise: Complete the purchase.
Now complete the purchase and provide feedback to ClassicsCD, Inc.
1 In the left column of the page, click Shopping Cart.
2 On the Shopping Cart page in the left column, click Cashier.
Before you can complete the order, you must log on.

3 Inboth the CustomerID and Password boxes, type jmoore and then click Submit.

Chapter 2 - About This Tutorial 33

If Windows prompts you to remember this password, click No.

Notice that the Checkout page summarizes your order but does not tell you when
the order will ship.

4 Scroll to the bottom of the page and then click Place Order.

5 Provide feedback to the company by clicking Your Feedback at the bottom of the
page.

6 On the feedback form, in the Dear ClassicsCD.com box:
a Type: When I place an order, I want to know when my order will ship.
b In the My e-mail box, type: jmoore@clicker.com.

¢ Click Send!.

7 Quit ClassicsCD.com, and if necessary, quit Windows Explorer.

Discovering What to Build

At the ClassicsCD, Inc. headquarters, someone in marketing received your feedback
and entered it into ClearQuest, the tool that manages change requests (see Figure 5).

Figure 5 Viewing Your Enhancement Request Using ClearQuest

Hiztary I Fequirements I ClearCaze I Unified Change M anagement I
Main | Analyzis I LCustomer I HMotes I Besolution I Attachments
ID: |CLSIC00000035 State: [Assigned
Cancel |
Headline: Meed to display estimated ship date
Suite Project: IWebshop j Frint Record |
Custorner Priority: IMedium j

Description: Actionz W

It would be nice to see when an order will ship. Customers are unsure what to ;I
expect when order iz completed. Customer Support has been inundated with

callz from confused customers. This enhancement will help reduce the burden

on our support staff,

-]

In this tutorial, you learn how to implement this enhancement request using
Rational Suite. You develop a new requirement, work with a visual model, and
perform application testing.

In Chapter 11, Planning the Next Iteration, you work with ClearQuest.

34 Rational Suite Tutorial

How to Use This Tutorial

To understand how Rational Suite fits into your development environment, you can
work through the entire tutorial, or read only those chapters most appropriate to your
role. If you choose to complete the exercises in the tutorial, it is important that you
complete all exercises in each chapter before attempting to perform the exercises in
subsequent chapters, because each series of exercises builds upon the information and
skills you learned in previous chapters. If you choose only to read this tutorial, we
recommend that you start with Chapter 1, Welcome to Rational Suite, and this chapter.

Table 2 presents our recommendations if you choose only to read this tutorial.

Table 2 How to Use This Tutorial
Role Your Main Tasks Recommended Tutorial Chapters
Analyst Determine what the system 3 Learning About the Rational Unified Process
does 4 Managing Change to Project Artifacts
5 Creating Requirements
Repr.esent the user 8 Communicating Project Status
Specify and manage 11 Planning the Next Iteration
requirements
Developer | Determine how the system 3 Learning About the Rational Unified Process
works 4 Managing Change to Project Artifacts
. . 5 Creating Requirements
Define archl’.cecture 7 Modeling the Enhancement
Create, modify, manage, and | § Communicating Project Status
test code 9 Reliability Testing
11 Planning the Next Iteration
Tester Ensure requirements are met | 3 Learning About the Rational Unified Process
Create, manage, and run 4 Managing Change to Project Artifacts
tests 6 Test Planning
) 8 Communicating Project Status
Report results and verify 9 Reliability Testing
fixes 10 Functional Testing
11 Planning the Next Iteration
Manager | Identify and manage project | 3 Learning About the Rational Unified Process
or Project | risks 4 Managing Change to Project Artifacts
Leader ; 5 Creating Requirements
M g keq
onitor te.am p.rogress 6 Test Planning
Plan each iteration 7 Modeling the Enhancement
8 Communicating Project Status
9 Reliability Testing
10 Functional Testing
11 Planning the Next Iteration

Chapter 2 - About This Tutorial 35

Summary

What You Learned in This Chapter

In this chapter, you learned how:

» To determine which Rational Suite tools are installed on your computer.
= To install and set up the files you will use in the tutorial.

= A Rational project associates software development information collected from
Rational Suite tools that are installed on your computer.

What’s Next

In this tutorial, you will use the Classics CD Webshop project to implement an
enhancement request. The next chapter introduces you to the Rational Unified
Process. You use this process to learn about work you will do in subsequent chapters.

Let’s get started!

36 Rational Suite Tutorial

Learning About the
Rational Unified Process

This chapter introduces you to the Rational Unified Process (RUP). In this chapter,
you familiarize yourself with the RUP and read guidelines for the work you will
perform in the next chapter.

Audience

This chapter applies to all members of a software development team.

Getting Your Bearings

In this chapter, you use the Rational Unified Process. To determine whether the RUP
is installed on your computer, refer to the tool chart you filled out in Table 1, Rational
Suite Tools, on page 27.

If the RUP is not installed, you can still benefit from reading this chapter, but you will
not be able to perform the exercises.

If the RUP is installed, start it now by clicking Start > Programs > Rational Software >
Rational Unified Process.

You may be prompted to install a version of the Java Plug-in, even if you already have
a version installed on your computer. This occurs because the version on your
computer differs from the version required by the RUP. If you do not install this
particular version of the plug-in, you can still benefit from reading this section, but
you will not be able to perform the exercises.

After the correct Java plug-in for the RUP is installed, you may be prompted to trust a
signed applet from Rational Software. We suggest that you select Always so that you
do not see this warning message again.

Then, your Web browser displays the Getting Started page.

37

In the left pane is the RUP tree browser. The RUP elements are organized in tree sets,
named after topics from the software development process. When selected, each tree
set is displayed in the tree browser. In the right pane, the RUP displays the view of a
selected element. (See Figure 6.)

You can adjust these windows to better view your selection.

Figure 6 The Rational Unified Process Environment

Rational
Unified Process®

fhere Am |

i &

analyst | Developer Getting Started
Tester

Production and Sunport | Team
Getling Started f Manager Getting started with the Rational Unified F'roces_s@ can, at ﬂrst-glgnce, appear sormewhat daummg. Here we provide +
] answers to a number of frequently asked guestions about the Rational Unified Process that will help get you started
track

& & Getting started
i

Oweriew

@ Mavigating the Process
9F Best Practices

@m Process Structure

€ Process Essentials What is the Rational Unified
6 Conceptual Road Maps Process (RUP)?
£J Refarences =

BB yWhat's Mew .
¥ About Rational Uniied Prace| - VWhom is RUP for?
@ Additional Resources

Why should | use RUP?

When should | use RUP?

How do | get started?

Where can | learn more

What Is the Rational Unified Process (RUP)?

The RUP is a process framework for developing software that helps you:

= Coordinate the developmental responsibilities of the entire development team.
= Produce high-quality software.

* Meet the needs of your users.

= Work within a set schedule and budget.

» Leverage new technologies.

Many organizations worldwide have successfully used the RUP for both small- and
large-scale development efforts because it leads teams through best practices for
controlled, iterative software development.

38 Rational Suite Tutorial

The RUP is implemented as an online guide and knowledge base that you view with a
Web browser. It provides guidelines, templates, and Tool Mentors (instructions for
applying the guidelines to specific Rational tools) for each phase of the development
lifecycle. Additionally, you can customize the RUP to:

» Use only the process components you need for each stage of a project.
= Develop your own process components.

= Exchange best practices with peers and industry leaders.

The Rational Unified Process and Rational Suite

The Rational Unified Process can help you and your team work more effectively. The
RUP is a customizable framework providing development teams with a common
vision of software development best practices. You can use Rational Process
Workbench to adapt the RUP to the specific needs of your projects and your team.

If your company has decided to use Rational Suite without adopting any of the RUP,
your projects can still be successful. (You can also use the RUP with projects that do
not use Rational Suite or its component tools.)

Even if you do not follow the RUP, you can use it as a source of information about
software engineering. For example, it contains topics to help you better understand
UML concepts.

This tutorial follows the Rational Unified Process.

Learning the Mechanics

The Rational Unified Process guides you through the full software development
lifecycle for each of the following disciplines:

= Business Modeling

= Requirements

» Analysis and Design

* Implementation

= Testing

= Deployment

= Configuration and Change Management
= Project Management

* Environment Management.

Chapter 3 - Learning About the Rational Unified Process 39

The RUP provides information and guidance for each of these disciplines applied in a
software development project.

Exercise: Learn to navigate within the RUP.

1

2

In the tree browser, select the Getting Started tree set.
In the Getting Started tree set, click Navigating the Process.

Your Web browser displays the Navigating the Process page, which contains
elements of the RUP browser environment.

Click any area for a brief explanation of how to navigate.

When you have finished learning about how to navigate the RUDP, return to the
Navigating the Process page.

The Process at a Glance

The overview of the Rational Unified Process presents a rich visual representation
that can help you better understand the RUP.

Exercise: Get an overview of the Rational Unified Process.

1

In the Getting Started tree set, click Overview.

An overview diagram of the Rational Unified Process appears (see Figure 7).

Figure 7 Rational Unified Process Overview

Phases
Disciplines |Inmpﬂon|| Elaboration ” Construction ” Transltlm|

Business Modeling
Requirements

Analysis & Design

Implementation
Test

Deployment

Configuration
& Change Mgmt i i
Project Management e e FIE S S _._..._: —va

Environment pE— P

—
— Const || Const Const”Trarl
| Initial ||Elab#l||Elah#2|| ol " o | T

Tran
#2

Iterations

40 Rational Suite Tutorial

The diagram in Figure 7 illustrates that software development is best organized
into phases, each of which is performed in a series of iterations. Throughout each
phase, project team members from each of the primary software development roles
(analysts, developers, testers, managers) perform activities in one or more
disciplines. The diagram shows how emphasis on different disciplines varies with
each iteration.

Notice, for example, that most of the work associated with requirements happens
early in the development cycle, but continues throughout a project. Testing,
however, can start early in the project, but typically intensifies at the end of
construction.

The RUP Overview outlines the following important concepts:

2 The software lifecycle of the Rational Unified Process is decomposed over time
into four sequential phases, each concluded by a major milestone. Each phase
is, essentially, a span of time between two major milestones.

s A development iteration is one complete pass through all the disciplines,
leading to a product release.

2 Optionally, click the terms Phases and Iterations in the Overview diagram to learn
more.

When you finish reading about these concepts, click Back in your Web browser to
return to the Rational Unified Process: Overview page.

3 Click other elements in the Getting Started tree set and read about other aspects of
the RUP.

4 Leave the RUP open.

Key Concepts

The Rational Unified Process provides a quick summary of its most important
components.

Exercise: Learn about key concepts.

1 In the Getting Started tree set, click Process Structure.

A new Web page appears. The diagram at the top of the page shows the
relationships among key concepts of the RUP (see Figure 8).

Chapter 3 - Learning About the Rational Unified Process 41

Figure 8 Key Concepts in the Rational Unified Process

The Basic Elements of RUP

\ _ Omanized by E(>'_—>|:\
&J Discipline

Software Englneeung Frocess

o y b
&2/ s T s
&/ AT v
ﬂ"a '/ O perte- ctivity
oy

+ - -,
YO |
. clle .,
Rag. =& X
Y

World] d E,! Toal
oridow Mentor
Artifact

a
=
T
o
o
=
I
-4
&/

s Y T

Checkpoints ~ Template Report

‘Worlflow Details

Dascrbed by

[<J

R efers to

2 C(lick a symbol in the graphic to learn more about that concept (excerpts follow).

a A discipline shows all activities that produce a particular set of software assets.
The RUP describes development disciplines at an overview level—including a
summary of all roles, workflows, activities, and artifacts that are involved.

2 Avoleis defined as the behavior and responsibilities of an individual or a group
of individuals on a project team. One person can act in the capacity of several
roles over the course of a project. Conversely, many people can act in the
capacity of a single role in a project. Roles are responsible for creating artifacts.

s A workflow is the sequence of activities that workers perform toward a common
goal. A workflow diagram serves as a high-level map for a set of related activities.
The arrows between activities represent the typical, though not required, flow
of work between activities.

2 An activity is a unit of work that is performed by a particular role. It is a set of
ordered steps, like a recipe, for creating an artifact.

2 An artifact is something a role produces as the result of performing an activity.
In the RUP, the artifacts produced in one activity are often used as input into
other activities. An artifact can be small or large, simple or complex, formal or
informal. Examples of artifacts are: a test plan, a vision document, a model of a
system’s architecture, a script that automates builds, or application code.

42 Rational Suite Tutorial

3 Below the diagram, scroll to the first section, Software Engineering Process, and read
it for a quick summary of the Rational Unified Process.

Exploring a Workflow

Exercise: Explore the Requirements discipline.

The RUP provides guidance on how to enhance existing systems. During this tutorial,
you use the RUP guidelines to work on refining the online store application,
ClassicsCD.com.

Learn about the workflow details for Requirements:
1 In the tree browser, select the Analyst tree set.

2 In the Analyst tree set, click Requirements > Workflow to display the
Requirements: Workflow page.

3 On the Requirements: Workflow page, click Refine the System Definition to display
workflow details (see Figure 9).

Workflow details (like those in Figure 9) represent the roles involved, the artifacts
used as input, the resulting artifacts, and the activities that make up this part of the
overall workflow. For more information about any of these elements, click that
element within the details page.

Figure 9 Requirements Workflow Details in the RUP

Workflow Detail: Refine the System Definition

The purpose of this workflow detail is to further refine the requirements in order to capture the consensus understanding of the
systemn definition.

Topics H E s
Require ments Requirements -

L. Glossary Maqa ement Attributes
B Description . (refined)
B Peolated A ¢ / /v Use Case
Inforrnation O (described)
2 Iy g D T
Optionality Detail a Sofware
B How to Requirzme nts pest e Requlremenk
- Specmer Supplementary
Staft Specificaions
B ok (detailed)
Guidelines . . . - H
Software
Stakeholder Mision Supplementary Use Case Requirements
Requests Specifications {outlined) Specification

Chapter 3 - Learning About the Rational Unified Process 43

Starting with Actors and Use Cases

When you design or enhance a system, the Rational Unified Process recommends that
members of your team start by agreeing on the system’s high-level behavior. To do so,
you identify actors and use cases.

= Actors are the entities that interact with your system. An actor is often a person (for
example, a sales clerk or administrator). An actor can also be an external hardware
or software system (for example, a cash register or credit card verification system
provided by a financial institution).

= Use cases describe how an actor uses and interacts with the system. More formally,
a use case describes what services or features a system provides to a certain actor.
You define a use case by describing a complete sequence of actions that yields
observable results of value to an actor.

Use cases are a key concept in the RUP and in the UML. They enhance
communication across development teams so that you can solve the right problem
and define the right system for your users.

Exercise: Learn about use cases.
1 Within the Requirements Workflow detail, click Detail a Use Case.

The Rational Unified Process displays a page describing how to write a use case. It
includes details about the artifacts that you will need to get started and the
artifacts that result from the activity. It then provides a step-by-step description of
the activity.

2 To learn more about use cases, including how to write them, in the
Resulting Artifacts section, click Use Case.

This new page provides a good overview of use cases as artifacts, including a
description of how they’re used, an outline of a typical use case, and responsible
parties.

On this page, there’s a link to a use case template. When you create use cases, we
recommend that you use this template, or another template that your group has
designed, to ensure consistency and completeness in use case development. This
makes it easy for all stakeholders to locate and understand important project
information.

Review the templates; you will work with a use case document later on in this
tutorial.

44 Rational Suite Tutorial

3 Click Back in your Web browser to return to the Activity: Detail a Use Case page.

4 At this point, you might want to understand where you are in the RUP hierarchy.
Do one of the following:

2 Look at the top of the displayed page to see the RUP visual that shows where
you are (see Figure 10, “1”). Use this feature anytime you want to know the
location of the RUP page that is displayed.

Or, click Where am | in the tree browser. The tree browser updates itself to show
your location. Currently, you are within the Analyst tree set — Requirements
Specifier > Detail a Use Case (see Figure 10, “2”).

Figure 10 Knowing Where You Are in the RUP

ational
Unified Proces

Tester Activity: Detail a Use Case
Production and Support | Team
Getting Started | Manager
Analyst | Developer Purpose
& Business-Process Analyst
L g Business Desigrer v W Tg describe the use case's flow of events in detail
B System Aralyst B Tg describe the use case's flow of events so that the customer and the users can understand it
Reqguirements Specifier
Detail re Re
. #_ Steps 2
£ 45 Additional Rales
}Q Business Modeling W Detail the Flow of Events of the Use Case
LB Requirements W Structure the Flow of Events of the Use Case
8 Introduction W |llustrate Relationshins with Actors and Other Use Cases
Gm Concents B Describe the Special Requirements ofthe Use Case
B8 Workflow W Describe Communication Protocols
= Activity Overview B Describe Preconditions of the Use Case, <aptional>
a8 Artifact Overvicw B Describe Posteonditions of the Use Case, <optional»
E% Guidelines Overview B Describe Extension Paints, <aptional>
B) Artitacts ® Evaluate Your Results
£+ 44, Tool Mentars
= @ Additional Resources Input Artifacts: Resulting Artifacts:

For more information on use cases, see Chapter 5, Creating Requirements.

Tool Mentors: Using Rational Tools to Support the Process

The Rational Unified Process provides guidelines for all phases of software
development. It uses Tool Mentors to provide guidance on using Rational tools. Tool
Mentors give detailed descriptions of how to perform steps in the process, or produce
a particular artifact or report, using one or more tools.

In the next exercise, you use a Tool Mentor to get instructions for the work you will do
first: defining use cases.

Chapter 3 - Learning About the Rational Unified Process 45

Exercise: Work with a Tool Mentor.
Read a Tool Mentor to see how the RUP integrates with Rational tools.

1 On the Activity: Detail a Use Case page, scroll down and find the Tool Mentors
section in the table.

2 C(lick Detailing a Use Case Using Rational RequisitePro.

The RUP displays the Tool Mentor, showing a statement of purpose, an overview,
and a series of steps to use the tool.

3 Under Tool Steps, scroll to and then click Step 3, Create requirements in the detailed
Use-Case Specification.

Review the instructions; you will perform a subset of these steps in this tutorial.

Learning the Basics

The Rational Unified Process provides guidance for performing certain kinds of work,
including the work you will do in this tutorial with ClassicsCD.com.

Exercise: Learn about Process Essentials.
1 In the Getting Started tree set, click Process Essentials.

2 Read the topics to learn about essential elements of the RUP.

Exercise: Learn about developing applications for the Web.

1 In the Getting Started tree set, go to Conceptual Road Maps >
Developing e-business Solutions.

2 Read the topics to learn more about developing Web applications.

46 Rational Suite Tutorial

Summary

For More Information

To learn more about the Rational Unified Process, use the tree browser to select and
read the topics of interest.

Cleaning Up

Either quit the RUP, or minimize it and use the RUP as a supplement to learn more
about topics covered later on in this tutorial.

What You Learned in This Chapter

In this chapter, you learned that:

The Rational Unified Process provides customizable guidelines for best practices
for software development. In Rational Suite, the RUP is recommended, but
optional.

A workflow describes a set of related activities focused on meeting a goal. For each
activity, a role uses artifacts created in previous activities and produces other
artifacts.

Early in the requirements phase, you define actors (users and external systems that
interact with your system) and use cases (services that the system provides to
actors).

Tool Mentors provide explicit instructions for performing a RUP activity using the
appropriate Rational tool.

What’s Next

In the next chapter, you learn how Rational ClearCase LT helps you effectively
manage change throughout the software development lifecycle.

Chapter 3 - Learning About the Rational Unified Process 47

48 Rational Suite Tutorial

Managing Change
to Project Artifacts

In this chapter, you learn about the Rational approach to managing change during
software development using Rational ClearCase LT and Unified Change
Management (UCM). When used together, ClearCase LT and UCM help you
successfully manage changing project artifacts from requirements to release, through
multiple iterations.

Audience

This chapter applies to all team members.

What Is Unified Change Management?

Rational Software offers Unified Change Management (LICM) as the best approach for
managing change during software system development from requirements to release.
UCM focuses on these guiding concepts:

» A UCM activity represents the work required to complete a development task.
UCM activities can be derived from a variety of sources, including a defect or an
enhancement request.

= Anartifact is an item that is produced, modified, or used in the software
development lifecycle as the result of performing an activity. In the
Rational Unified Process (RUP), the artifacts produced in one activity are often
used as input into other activities. Conceptually, artifacts can be requirements,
visual models, test cases, source code, documentation, or project plans. Artifacts
are items that are critical to the success of your project and should be placed under
configuration management, or version control. Usually, an artifact is represented by
a file or a set of files.

The key strength of UCM is that it unifies the activities used to plan and track
software development progress with the artifacts used to create, design, and build
software applications. Figure 11 shows a typical way to manage change using UCM.

49

Figure 11 Typical UCM Workflow
Make

baselines

Rebase
work area

Deliver Work on
activities activities

Integrate Promote

work Development cycle baselines

Project management cycle

UCM Tools

A key aspect of the UCM model is that it unifies the activities used to plan and track
project progress and the artifacts undergoing change. The UCM model is realized by
both process and tools. Rational ClearQuest and Rational ClearCase LT provide tool
support for UCM. For example, ClearQuest manages the project's tasks, defects, and
requests for enhancements (referred to generically as activities), and ClearCase LT
manages the artifacts produced by a software project. When used together, these tools
help your software team better manage changing requirements and development
complexity throughout the software development lifecycle.

Rational ClearQuest. Manages change activity associated with software development,
including enhancement requests, defect reports, and documentation modifications.
ClearQuest also offers charting and reporting features to track and communicate
project progress to all stakeholders.

Rational ClearCase LT. Uses the built-in UCM development process to track and
manage changes to all software project files, including requirements, visual models,
and source code.

50 Rational Suite Tutorial

Using the Tools with UCM — ClearQuest and ClearCase LT

As described in the RUP, you typically use UCM with ClearQuest and ClearCase LT
as follows:

1 [one time] A project manager or administrator installs Rational software. This
individual sets up the ClearQuest and ClearCase LT environments, and creates a
Rational project. (A Rational project associates the data created and maintained by
Rational tools and enables integrations among them.) A project manager also
creates a UCM project to associate with the Rational project.

2 [one time] You identify yourself to the project by joining the project. As a result, a
private workspace (consisting of a development stream and a development view) is
created for you. You also gain access to a workspace available to your entire team.
This public workspace includes an integration stream; you can create a companion
integration view for your own use.

You use a view to select one version of each element in your workspace. In UCM,
your stream provides these configuration instructions to the view and tracks your
activities. When you join a project, UCM automatically configures your stream so
that you see the right version for your workspace (see Figure 12).

Figure 12 Exploring ClearCase LT Projects Using UCM

ClearCase Projects o [=]
File 'Viewm Took Halp
I LA -I Ll & ‘I'_'.v ﬂ?ﬁ i
< Clwmics Actiity s | Created O
S Chamnios W2 Progects [SDispdey shippineg dele dor each rew onder radema [EEdE]
o Sipckuta ko | on e pog ekt L2 0000

e Y Ineoration
F. radirn_W3
Ml ook

Bl 3 S ftees
CR= Tl e

For vEp, prsal Fa

3 Your project manager uses ClearQuest to assign activities to you.

4 You run a ClearQuest query to find the activities assigned to you. This is your
to-do list. From this list, you decide which activity to work on.

Chapter 4 - Managing Change to Project Artifacts 51

5 You work with artifacts as usual. You use ClearCase LT in your private workspace
to:

2 Check out artifacts. When you check out an artifact, ClearCase LT asks which
activity you want to work on. In the background, ClearCase LT keeps track of
the change set (the list of changed artifacts) associated with the activity.

= Edit and verify the changes.

a Check in the artifacts. When you check in an artifact, it is still part of your
private workspace. Your change does not become publicly available until you
deliver it, as described in Step 6.

6 After you finish work on the activity, you deliver changes for the entire activity (see
Figure 13). Because ClearCase LT keeps track of the change set, you don’t have to
specify the list of artifacts to deliver. Delivering the changes makes the changes
publicly available through the integration stream. It can also close the activity,
depending on the policies the project manager has established.

Figure 13 Delivering Changes to the UCM Project Using ClearCase LT

=3 Classics Ackivi
=2 Classics_W2_Projects |EDigplay shippirg dat
SR AT E| pdate logo image ¢
w2 Integration

wl Comporents e
[Release_2_Bugfix Create View. .,
7 [0 Release_3_Projec

Ceeliver fram Stream..

Febase Stream ...

7 After developers deliver a set of activities, the project manager makes a baseline, a
new common starting place for all developers that includes the new activities or
modified artifacts. On your project, a new baseline can be created regularly,
perhaps even daily.

8 If the changes in the baseline are approved (through testing or through another
review process), the project manager promotes it, making it the recommended
baseline.

9 You rebase your development stream (work area) so that when you work on your
next activity, you start from the most recent recommended baseline. Restart with
Step 4 to select the next activity to work on.

52 Rational Suite Tutorial

Depending on the structure of your organization, your team may identify these roles
using different names, assign the responsibility of different roles to be performed by
one individual rather than several, or share the responsibility of a single role among
several team members, as defined by the Unified Process for UCM. No matter how
your team is structured, you can use UCM successfully because the model follows a
basic process for configuration and change management, and ClearCase LT helps to
automate much of the artifact and activity auditing.

Unifying Code and Content for Web Development

As software applications and Web sites grow in size, complexity, and strategic value,
so does the need to control changes to them. Beyond these common characteristics
that Web-based and traditional software development applications share, there are
important distinctions to make between. For example, in Web applications:

= Change happens at a considerably faster pace.

» Many stakeholders in both technical and non-technical roles contribute to Web
sites.

= The frequency of change and the broader spectrum of stakeholders increases the
likelihood of error.

Although most of this tutorial discusses development concepts for traditional
software projects, many of the ideas, tools, and processes presented can also be
applied to Web applications.

Summary

For More Information

To learn how to use ClearCase LT, start with the ClearCase LT tutorial. Go to
Start > Programs > Rational Software > Rational ClearCase > Tutorial. In the Help
Topics window, double click Tutorial and then double click

Rational ClearCase Tutorial.

For more information about using Rational ClearCase LT and UCM with Rational
Suite, read Using Unified Change Management with Rational Suite.

For general information about Rational ClearCase LT with or without UCM, read the
Rational ClearCase LT Introduction.

Chapter 4 - Managing Change to Project Artifacts 53

What You Learned in This Chapter
In this chapter, you learned:

» UCM helps software teams manage change in software development, from
requirements to release.

» (ClearCase LT and ClearQuest are the foundations for UCM. ClearCase LT
manages the artifacts associated with a software development project. ClearQuest
manages the project activities. It offers charting and reporting features to track and
communicate project progress to all stakeholders.

* Under UCM, team members use ClearCase LT to manage artifacts under source
control, they work on activities in their personal development workspaces, and
deliver modified artifacts to the integration stream after they complete an activity.

What’s Next

Now you understand how ClearCase LT and UCM help you manage changing
artifacts throughout the development lifecycle. In the next chapter, you will work on
the Arrange Shipment use case for the enhancement request to ClassicsCD.com.

54 Rational Suite Tutorial

Creating Requirements

In this chapter, you use Rational RequisitePro and Rational Rose to create a use case
for the enhancement you are implementing.

Audience

This chapter applies most directly to analysts, but is relevant for all team members.

Getting Your Bearings

In this chapter, you use RequisitePro and Rose. To determine whether these tools are
installed on your computer, refer to the tool chart you filled out in Table 1, Rational
Suite Tools, on page 27.

If they are not installed, you can still benefit from reading this chapter, but you will
not be able to perform some of the exercises.

If they are installed, start RequisitePro now as follows (you open Rose later in this
chapter):

Click Start > Programs > Rational Software > Rational RequisitePro. RequisitePro starts
and the Open Project window appears. If the Let's Go RequisitePro window also
appears, click Close.

Note: If this is your first time starting RequisitePro, the Exploring Rational RequisitePro
page appears. Read this page to learn about the RequisitePro user interface. You may
want to print this page to keep as quick reference. Then close the window so you can
select a RequisitePro project to work with.

55

Exercise: Open the ClassicsCD.com Webshop Project.

1 In the Open Project window, click Add.

2 From the Add Project window, go to C:\Classics\Projects\Webshop\RequisitePro.

3 Click ClassicsWebShop.rgs and then click Open.
The RequisitePro database associated with the ClassicsCD Web Shop project
appear in the list of Existing projects (see Figure 14).
Figure 14 Opening the ClassicsCD Web Shop Project Using RequisitePro

Rational® =
RequisitePro -

Mew Existing |

| Path

C:A\Clazsics\ProjectzWWwebshophR equisiteProhClazs
%_ Leaming Project - Use Cazes C:\Program FilezR ational\RequisitePro\samplesiL
%_ Learming Project - Traditional — C:\Program FilezR ational\RequisitePro\samplesiL

Proi

1 | i

Add... | Bemove | FBroperties... |

Open Project Options: [~ Read Only [~ Exclusive

QK I Cancel | Help |

4 Click OK. The Project Logon dialog box appears.
5 Inboth the Username and Password boxes, type pat and then click OK.

Note: Throughout this tutorial, we will use pat for the Rational Logon username
and password.

RequisitePro opens the project and displays project artifacts in a hierarchical tree
browser in the left pane (the Explorer window). A description of the artifact
selected in the Explorer window appears at the bottom. In the right pane,
RequisitePro displays the view of a selected artifact. (see Figure 15).

You can adjust these windows to better view your selection.

56 Rational Suite Tutorial

Figure 15 Working with RequisitePro

.:;;Q;Rational RequisitePro - ClassicsCD Web Shop

File Edit WYiew Requirement Traceabilty Tools Window Help

n|z|E] 8 Quals 5% = EH0E ¢

Explorer
Window

H..[7] Coverage Analysis

.. 7] Design Elements

H--[7] Features and ¥ision

b7 Glossany

][7] Impact Analysiz

#..[7] Risks

+.-{ 7] Supplementary Specifications
b7 Use Cases

B Requirements tanagement Plan i

Display Area

ClaszicsCD. com business-to-consumer Web
site project

Artifact
Description

|ClassicsCD weh Shap

Why Worry About Requirements?

One definition of project success is that the product you deliver meets its
requirements. The formal definition of a requirement is a condition or capability to
which the system must conform. More informally, a requirement describes a feature
or behavior that a system must have.

Where Do Requirements Come From?

As an analyst, your job starts with gathering the needs of your stakeholders —
everyone who has an interest in your project. To determine those needs, you
interview users and other stakeholders, analyze enhancement requests, and work
with project team members. You then decide which of those needs will become
project requirements.

Chapter 5 - Creating Requirements 57

Managing Requirements
Managing requirements is a systematic approach to:
» Finding, documenting, organizing, and tracking requirements.

» Establishing and maintaining agreement between the customer and the project
team on the system’s requirements.

Requirements management is challenging because requirements change throughout a
project. For example, users can change their minds about essential features, or they
may not have articulated their wishes clearly in the first place. Competitors can
release new versions of their software and you must respond by changing project
plans midstream. Changing laws can affect your software. When you don’t manage
requirements, feature creep can slow down and complicate your project.

Using RequisitePro

RequisitePro makes it easy to write and manage requirements. It is integrated with
Microsoft Word and is packaged with Word templates to help you get started quickly.
RequisitePro is designed to work for your entire team:

» Analysts use RequisitePro to document and maintain requirements.

» Developers use requirements to design architecture and write more detailed
specifications.

= Testers use requirements to design tests and check test coverage.

» Project leaders and managers use RequisitePro to plan project work based on
available resources (for example, time, budget, and personnel).

Starting with a Use Case

In Chapter 2, About This Tutorial, you saw the enhancement request that was entered
in response to your feedback. One of your team members has started work on the use
case corresponding to the enhancement request.

Why Work with Use Cases?

Use cases describe system behavior in a common language that everyone on the team
can understand. Working with use cases is a key unifying mechanism in the
Rational Unified Process (RUP).

58 Rational Suite Tutorial

Use cases are important to everyone on the project:

Analysts use them to express how the system should behave and to verify planned

changes with stakeholders.

Developers and designers can start with human-language and graphical use cases.
They elaborate them first into architectural specifications and then into classes.

Testers develop test designs based on use cases.

System testers use them to validate system behavior starting as early as the design

phase.

Project leaders and managers use them to formally verify that the results of
requirements conform to the customer's view of the system.

Exercise: Open the use case document.

1

In the Explorer window, go to ClassicsCD Web Shop > Use Cases > Purchase CD >
Purchase CD and then double-click this entry (see Figure 16).

Figure 16 Opening a Use Case Document with RequisitePro

4& Rational RequisitePro - ClassicsCD Web Shop

File Edit Yiew Requirement Traceability Tools

D= & Qe s s

4= ClassicsCD Web Shop

(- {77 Business Context

(- {77 Caverage Analysis

--{:l Design Elements

[{7 Features and Vision

(- (7] Glossary

B (27 Impact Analysis

B {77 Risks

--{:l Supplementary 5pecifications
(1455 Use Cases
(- {77 Access Product Promation
({7 Arange Shipment

[-{77] Shop for CO
- AllUse Cases
- Use Case Survey
@ Fequirements Management Plan

=]

The RequisitePro Word document appears and displays the Purchase CD use
case. This document is based on a template provided with the RUP.

In Chapter 3, you saw, and may have clicked on, a link to an outline of this
template. In the RUDP, this outline can be found in the Analyst tree set: Artifacts >
Requirements Artifact Set > Use-Case Model > Use Case > Use Case Specification

(Informal).

Chapter 5 - Creating Requirements 59

2 In the Table of Contents, go to Section 3, Flow of Events. Locate Section 3.1.5
Complete Order. Click the corresponding page number.

Note: Depending on which version of Microsoft Word is installed on your
computer, you may need to press CTRL to activate the hyperlink to the page.

Microsoft Word automatically takes you to the corresponding use case
specification: uc4.6 Complete Order (see Figure 17).

Capitalized text that also appears in teal colored, italicized font identifies use case
requirements. These use case requirements (identified by the prefix UC) are
high-level requirements that describe the system’s behavior.

Figure 17 Working with Use Case Documents Using RequisitePro

| Ble Edit Wew Insert Format Tooks Table ReguisiePro window Help
|Headngs « sl - 10 - ‘ B[s U |§

EE IR TR Y=
|& = | o |) @ Favorites - | Foo | %‘ Ci\ClassicsiProjects|WebshopiRequisteProlFurchase COUCS = _

[t] AR R NN ST R
9'rhe system displays @ summary of the cuzzent order, This informatien ineludes

Each selected item

Total prics plus tax

Shipping sast for default shipping methad

Prajected Shipping date

Total eost

Shipping address

The last fous digits of the shogper's credit card that will be charged]

316 [IG4E COMPLETE ORDER

]
L]
]
i
1
a
(]
.
L]

The Shopper completes the oxder. The system displays = confirmation that the order has been plared and
provides an order number for future reference, The systems send the order mumber to the Warehouse
system notifying it that a new order has been placed]

316 [garewo

The use case snds when the new order has been placad]

3.2 Alternate Flows

3 Read the Brief Description and Flow of Events. Notice that when a shopper
completes an order, it is not part of the original use case to provide the expected

shipping date. In subsequent exercises, you will identify this feature as a
requirement.

This is a typical way of starting requirements work. You use the familiar
environment of Word to document your requirements. You use RequisitePro to
identify and elaborate on your project requirements. You also indicate which
requirements are related. RequisitePro then tracks how changes to the system
affect your requirements and how changes to requirements affect your system.

4 If Rose is not installed on your computer, minimize Word and RequisitePro. If
Rose is installed, quit Word and then click No if prompted to save your changes.
Also quit RequisitePro. If you are prompted to close the project, click Yes.

60 Rational Suite Tutorial

How Does RequisitePro Handle Requirements?

RequisitePro is both document-centric and database-centric and relies on the
strengths of the following;:

» The document features provide a familiar environment (Word) for creating
descriptions and communicating your work to project stakeholders. You can start
a requirements document either by importing existing Word files into
RequisitePro or by working in a RequisitePro Word document.

» The database features help you organize your requirements, prioritize your work,
track requirements changes, and share information with other Rational tools. To
work with database features, you use RequisitePro Views.

In the use case document, the requirements text (with double-underlined characters
by default) exists in the document. The database also stores the requirements text,
along with attributes (such as priority and assigned-to) that help track the requirement.
Later in this chapter, you will work with RequisitePro database features.

Learning More About Use Cases

You frequently start requirements work by developing use cases. When working with
use cases, you work in Rose to incorporate the use case in your visual model and then
work in RequisitePro to add textual descriptions, attributes, and links.

The RUP describes how to write a use case. It includes details about the artifacts that
you need to get started and the artifacts that result from the activity. It then provides a
step-by-step description of the activity and offers a template for creating use cases.

This template provides guidelines about how to structure a use case. You can use it as
a starting point for defining use case requirements. We recommend that you use this
template, or another template designed by your group, to ensure consistency and
completeness in use case development. This makes it easy for all stakeholders to
locate and understand important project information.

Continuing Use Case Work Using Rose

Rational Rose helps analysts visualize the behavior of a system through use case
diagrams. These diagrams help you manage complexity because they allow you to see
the “big picture.” A use case diagram shows:

» The behaviors of a system. The use cases describe what the system does.

= The boundaries of a system. The actors represent external entities that interact
with the system.

Chapter 5 - Creating Requirements 61

* The relationships between use cases and actors.

By using Rose to create use case diagrams, you provide a centralized, graphic
representation of the system’s use cases. This helps all stakeholders share a common
understanding of the project goals and expected deliverables.

Using Rose is also an effective way to continuously communicate the impact of
change throughout the development lifecycle. All team members can easily share and
revise use case diagrams because they are written in UML, an easily understood,
industry-standard language for designing software. For example, analysts use Rose to
create use case diagrams that describe a system at a high-level. Later on, you will see
how architects continue this work by using Rose to design the system in more detail.
As a result, your system diagram, architecture, and data are managed by one tool,
Rational Rose, and with one language, UML.

Working with a Use Case Diagram

In this section, you continue work on the Purchase CD use case for ClassicsCD.com as
the first step in implementing the enhancement.

Exercise: Start Rose.

1 From the Start menu, click Programs > Rational Software > Rational Rose.

Rose starts and the Create New Model dialog box appears. Make sure that the
check box Don’t show this dialog in the future is cleared so you can easily open the
Rose model later on in this tutorial.

2 C(lick Cancel to close the Create New Model dialog box.

3 Rational Rose lets you work with models moved or copied among workspaces. To
do this, you need to configure Rose:

a From the Rose menu bar, click File > Edit Path Map.
The Virtual Path Map window appears.

b In the Virtual Symbol to Actual Path Mapping list, look for $CURDIR. If you see
this symbol, close the Virtual Path Map window and proceed to Step 4.

¢ In the Symbol box, type CURDIR.
d In the Actual Path box, type &.

e Click Add.

f Click Close.

62 Rational Suite Tutorial

4 From the Rose menu bar, click File > Open and go to
C:\Classics\Projects\Webshop\Rose.

5 Click ClassicsCD_WinDNA.mdl and then click Open.
6 Rose prompts you to load subunits. Click Yes.

Rose displays a hierarchical tree browser in the upper-left pane (the Rose
browser). In the right pane (the diagram window), it displays the logical view of the
architecture showing how the top-level packages in the system interact. If
necessary, maximize the diagram window.

Exercise: View the use case diagram.

1 Inthe Rose browser, go to Use Case View > System Models > Main, and double-click
Main to display the use case diagram (see Figure 18). If necessary, maximize the
diagram window within Rose.

Figure 18 Viewing the ClassicsCD.com Use Case Diagram Using Rose

ClassicsCD.com

ﬁhop for €D

T < Purchase CD use case
Shopper O
Purchase CD
O‘) Legacy
S stem
Arrange Shipment Warehouse
System
Sequence Diagram: Java: Sequence Diagram: WinDNA:
Purchase CD Realization / Purchase CD Realization /
Purchase CD Purchase CD

Associating the Rose Model with the RequisitePro Project

Earlier in this chapter, you opened the ClassicsCD.com Webshop project in
RequisitePro. In this section, you learn how to view the association between the
ClassicsCD.com Rose model with that project in RequisitePro. You also create the
requirement and link the use case with a requirement.

Chapter 5 - Creating Requirements 63

Exercise: View the association between the Rose model and the RequisitePro
project.

1 On the use case diagram, right-click the Purchase CD use case object. From the
shortcut menu, click View RequisitePro Association.

If a login box appears type pat in both the Username and Password boxes and then
click OK.

The RequisitePro Association dialog box appears and displays information about
the Purchase CD use-case document and the Purchase CD requirement you saw
earlier in this chapter.

2 After you finish reviewing the use case’s RequisitePro association, click OK.

The Purchase CD use case is represented both in text and by a visual model. The use
case is a single element because of the integration between Rose and RequisitePro.

Creating a New Requirement

Purchase CD is an established use case, but you still need to identify a requirement
corresponding to the enhancement request to display an estimated ship date for a
customer’s order.

Exercise: Create the requirement.

1 If Rose is not installed on your computer, maximize Word and continue with
Step 2. If Rose is installed, continue working with this Rose model: right-click the
Purchase CD use case. From the shortcut menu, click Use Case Document > Open.

The RequisitePro Word document appears and you can work with the use case.

2 Inthe document, scroll to the use case specification: UC4.6 Complete Order. At
the end of the second sentence, insert the following text before the period: “as well
as an expected ship date for each CD.”

The second sentence should now read: “The shopper completes the order.
The system displays a confirmation that the order has been placed
and provides an order number for future reference as well as an
expected ship date for each CD.”

3 From the Word menu bar, click RequisitePro > Document > Save.

64 Rational Suite Tutorial

RequisitePro prompts you to enter a change description for UC4.6. Enter the
following text “Modified to correspond with the enhancement request to display an
estimated ship date for customer orders.” Then click OK.

RequisitePro saves the document and updates the requirement.

Exercise: Learn about requirement properties

1

From the Word menu bar, click RequisitePro > Requirement > Properties. The
Requirement Properties dialog box appears.

Review the information about this requirement from the General tab.

Go to the Attributes tab. Review the requirement attributes to learn more about the
Complete Order requirement, such as the priority and status.

Go to the Hierarchy tab. From this tab you learn that the Complete Order
requirement that you modified to include the enhancement request for this tutorial
is part of the Purchase CD use case.

When you have finished reviewing the properties of the requirement, click OK.

Looking at Requirements in the Database

In this section, you use the RequisitePro database to view other requirements related
to the enhancement you are working on. Whenever you work in a database, you use a
view, which filters data in a specific format. RequisitePro works the same way:.

Exercise: View requirements using the RequisitePro database.

1

In the Word document, click RequisitePro > Show RequisitePro Explorer.
RequisitePro appears.

In the Explorer window, expand ClassicsCD Web Shop > Use Cases and then
double-click All Use Cases.

The use cases are organized hierarchically and each describes functional areas of
ClassicsCD.com. Child requirement use cases are listed under their respective
parent. Parent requirements are general, while child requirements describe
specific areas. To see children of a use case, you may need to expand the parent
requirement by clicking the + next to the use case’s name.

Scroll down to UC4.6: Complete Order. Review the requirement properties in
this view (see Figure 19).

Chapter 5 - Creating Requirements 65

Figure 19 Viewing Requirements Using RequisitePro

D Web Shop - [UC; AllUse Cases] ST
B Fe Ede vew ceabity Tooks Window e ST

nlzlal 8 nulalel »lz|y = =Hol@Ee
= of]

<D Web Shap

Status Dificuly, Stabity 4.

High Fioposed | High

fors | False Medun |Froposed | Medum

True Medun |Froposed | Medum

Fale Medun |Froposed | Medum

Fale Medun |Proposed | Medum | Medum

Fale Medun |Proposed | Medum | Medum

Fale Medun |Proposed | Medum | Medum

Fale Medun |Proposed | Medum | Medum

Fale Medun |Proposed | Medum | Medum

Fale Medun |Proposed | Medum | Medum

Medun |Froposed | Medum

Medun |Froposed | Medum

HOPPER, the

uCA.10: QUI Medun |Froposed | Medum
GQUIT The Shoy

= ey Feeeres— o o
[UC4.6: COMPLETE ORDER

(COMPLETE ORDER
;II—

Lo

4 To see more of a requirement's attributes and properties, scroll to the right.

Linking to Another Requirement

So far, you have:

* Decided to implement a new enhancement.

* In Rose, reviewed the use case diagram.

» Linked the model to the RequisitePro project.
* Created a new use case requirement.

= Added values to the requirement’s attributes.

You now want to make sure the use case requirement is linked to another type of
requirement, a feature requirement. A system’s feature requirements are written at a
very high-level and form a foundation for the entire system.

Exercise: View the relationship between a use case requirement and a feature
requirement.

1 Inthe RequisitePro Explorer window, go to ClassicsCD Web Shop >
Coverage Analysis and then double-click Use Cases to Features relationships.

RequisitePro displays this view, showing the entire hierarchy of requirements. To
see more details, you may need to move the horizontal and vertical dividers of the
matrix.

66 Rational Suite Tutorial

2 Scroll to UC4 and, if necessary, expand it to see the child requirements.

An arrow symbol appears in the cell, showing the relationship between the
Purchase CD use-case requirement (including all of its child requirements,
including the requirement you just modified) and the feature requirement,
Featurel: Secure Payment Method. You will learn more about traceability in the
next section.

3 Browse this view of the requirements using the scroll bars to learn more about the
relationships between use cases and features.

Traceability and Suspect Links

The matrix in the RequisitePro View shows some of the links between requirements.
These links describe dependencies between requirements.

An arrow with a line through it () indicates that the link is suspect. A link becomes
suspect after a requirement in the link relationship changes. The suspect link alerts
project teams that a requirement has changed. Analysts use this information to:

= Asses the impact of the change to the project.
= Manage the requirements more effectively.

= Work with managers and project leaders to more effectively manage the scope of
the project.

Other Requirement Types

So far, we've discussed high-level feature requirements and more detailed use case
requirements. Some requirements do not lend themselves to use cases, so
RequisitePro supports other types of requirements. For example, you can define
supplemental requirements for performance targets and platform support. Additional
requirement types include design requirements, business needs, and glossary
requirements.

You can also define new requirement types. RequisitePro can manage any type of
requirement that you need on your project.

Chapter 5 - Creating Requirements 67

When Have You Finished Gathering Requirements?

Requirements emerge from a series of communications between analysts and project
stakeholders (application users, members of the marketing team, and so on). As you
capture requirements, you check your work with the appropriate stakeholders. When
the stakeholders and your team come to agreement, your initial job of gathering
requirements is finished.

Of course, as the project progresses, you will continue to manage the requirements,
adding some, possibly removing others, and responding to changes.

Extended Help

Extended Help is a powerful feature of Rational Suite that provides information about
the higher-level tasks you may want to accomplish. It gives you direct access to the
RUP from Rational Suite tools. In addition, you can add your own organizational
guidelines or standards to Extended Help.

Exercise: View Extended Help.

1 From the RequisitePro menu bar, click Help > Extended Help.

The Extended Help: Overview window appears within the RUP. An Extended Help
tree set for this tool also appears.

2 In the Extended Help - ReqPro tree set, left pane, towards the bottom of the list,
click More Content > Tool Mentor: Managing Use Cases Using Rational Rose and
Rational RequisitePro.

Read this Tool Mentor to review the work you did in this chapter.

You can learn more about Extended Help from any Rational tool. From the tool’s
menu bar, click Help > Extended Help. The RUP displays Extended Help topics that are
related to the Suite tool you are using.

68 Rational Suite Tutorial

Summary

For More Information

For more information on using RequisitePro, start with the tutorial. From the
RequisitePro menu bar, click Help > Tutorial.

For more information about Rose, see Modeling the Enhancement on page 85.

Cleaning Up
Quit Extended Help.

Quit RequisitePro by clicking File > Exit from the RequisitePro menu bar. When
RequisitePro asks if you're sure you want to close the project, click Yes. If prompted
to save changes to any views, click No.

If necessary, quit Rose by choosing File > Exit from the Rose menu bar. If Rose
prompts you to save changes, click No.

What You Learned in This Chapter

In this chapter, you learned:

A requirement is a condition or capability to which the system must conform.

Managing requirements is a systematic approach to finding, documenting,
organizing, and tracking system features and attributes.

RequisitePro helps you manage requirements and multiple requirement types.

RequisitePro is both document-centric and database-centric, allowing your team to
benefit from the strengths of both.

When working with use cases, you work in Rose to incorporate the use case into
your visual model and then work in RequisitePro to add textual descriptions,
attributes, and links.

Extended Help gives you immediate access to the RUP and information about
using Rational Suite tools. You can add your own information to Extended Help.

What’s Next

In the next chapter, you use the requirements identified in this chapter to get started
on test planning.

Chapter 5 - Creating Requirements 69

70 Rational Suite Tutorial

Test Planning

So far, you have defined requirements for the ClassicsCD.com enhancement. You
have not yet modeled or implemented code. However, you are ready to start test
planning with Rational TestManager.

Audience

This chapter applies to testers, quality assurance managers, and other team members
responsible for system testing.

Getting Your Bearings

In this chapter, you use Rational TestManager. To determine whether TestManager is
installed on your computer, refer to the tool chart you filled out in Table 1, Rational
Suite Tools, on page 27.

If TestManager is not installed, you can still benefit from reading this chapter, but you
will not be able to perform the exercises.

If TestManager is installed, start it now by clicking Start > Programs >

Rational Software > Rational TestManager. The Rational Test Login dialog box appears.
Exercise: Open the ClassicsCD.com Webshop Project

In the Rational Test Login dialog box, use the following values:

1 In the User Name and Password boxes, type pat.

2 Make sure the Project box displays Webshop.

3 Make sure the Location box displays C:\Classics\Projects\Webshop\Webshop.rsp.

4 Click OK.

TestManager opens the Webshop project. Make sure the Planning tab at the
bottom of the left pane (the Test Asset Workspace) is selected. You can now work
with the project.

71

What Is Test Planning?

Test planning allows your team to effectively measure and manage test efforts over
the course of the project. During test planning, you identify the types of tests to
perform, the strategies for implementing and running those tests, and the resources
you will need during testing.

Test planning starts early in the development cycle, as soon as you understand the
initial set of requirements. Artifacts such as use case requirements, project schedules,
and visual models can be used as test inputs to help you determine what must be
tested. You create fest cases with information contained within these inputs, and use
these throughout the test planning process as a “checklist” against which you
determine the acceptance criteria of your tests. You can also use test inputs to help
you define test configurations, attributes referring to a computer’s hardware and
software. These attributes can apply to your test cases.

As with development, test planning is an iterative process. You continue to plan
testing throughout a project lifecycle, as analysts change or elaborate on
requirements, and as developers design and implement code.

Managing Risk

The recommended strategy for test planning is to focus on the riskiest areas of the
project first. For example, you can identify risks by considering:

» The consequences of not testing a specific part of an application.
» The consequences if a particular part of the application does not work correctly.
» The likelihood that an error will be discovered after the product ships.

» The ramifications if a user, rather than a project member, discovers an error in the
application.

Making a Plan and Measuring Progress

You can use all types of project artifacts to plan, design, and run tests with Rational
TestManager. You can use requirements, visual models, and source code to create a
test plan so that you can test all aspects of your system, including product features,
system architecture, and code.

The integration between Rational tools enables sharing of project assets to help you
start testing for quality early in the development lifecycle.

72 Rational Suite Tutorial

Rational TestManager also:

» Provides access to all test-related information and artifacts so your team can easily
assess project status.

* Helps team members share information about the testing progress.
» Helps you track how many tests have been planned, scripted, and carried out.

= Shows which requirements have been covered by tests, and the number of tests
that have passed and failed.

Because TestManager is part of each Suite edition, team members can use it to
evaluate how well they are meeting project requirements, to monitor the project’s
overall status, and to more effectively share and discuss information about testing
activities with other project stakeholders.

Developing a Test Plan

In TestManager, a test plan can contain information about the purpose and goals of
testing within a Rational project, and the strategies to implement and run testing. You
can have one or more test plans in a project. A test plan can include properties such as
the test plan name, configurations associated with the test plan, and a time frame for
when a test plan must pass.

You can generate reports based on a test plan’s properties. For example, you can
create reports to determine which test cases are part of a test plan. Reports like this
can give you valuable information about the state of your testing project.

Organizing Your Test Plan

A test plan contains test case folders, which in turn contain test cases. A test case is a
testable and verifiable behavior in a system. You can organize the test plan and test
case folders in the way that makes sense for your organization. For example, you can
create a test plan for each testing type, for each use case, or for each iteration or phase
of testing. Alternatively, you can have a master test plan with test case folders that
represent use cases, as in this tutorial (see Figure 20).

Chapter 6 - Test Planning 73

Figure 20 Sample Test Plan Organization in TestManager

¢ Webshop - Rational TestManager
File Edit Yiew Reports Tools Window Help

= I

e

I —
Test Plans [al]
i @l ElaSS!CSED i EID Access Product Promation UC
EI C]%l ElaSSICSED Ao [:I Functionality
erations :
- Ul
..... - ?fﬂdu_c_tﬂzbase =] Amange Shipment UC
..... g T[anS!:!Dn1 (-] Functionality
----- ranzition :
it i i B Ul
..... @ Imitial Dpelratlonal Capability EID S rer Statue LI
""" G Comsnesn %3 Functonsit
..... i san
..... g Elor:“uc'hon; El[:l Purchase CD UC
..... g E|abma:!0n1 -] Functionaliy
----- laboration :
i B Ul
..... ¥ Inception 1 -G ShopForCD UC
B[] Functionaliy
B Ul

Test case folders have properties such as the name of the test case folder, and the
configurations and iterations associated with the test case folder.

Exercise: Understand the structure of the ClassicsCD.com test plan.

1 From the Planning tab in the Test Asset Workspace, expand Test Plans and then
double-click ClassicsCD.

The right pane displays the test case folders for ClassicsCD. In the ClassicsCD.com
Webshop project, test case folders are organized by use cases, as described earlier
and seen in Figure 20.

2 Expand the test case folder for the Purchase CD use case. Two folders appear,
Functionality and Ul. In this tutorial, these test case folders hold test scripts that
represent the system behavior (Functionality) and the Web site’s presentation of
this functionality, user interface (Ul).

3 Expand the Ul test case folder, and then the Order Confirmation Page folder.

Notice that there are no test cases associated with this folder, and a test script for
this does not yet exist for the modification you made earlier to the Complete Order
use case requirement (see Figure 21). You must create the test case so that you can
later develop a test script for the enhancement to display ship dates for ordered
CDs.

74 Rational Suite Tutorial

Figure 21 Test Case Folder in TestManager

T Test Plan - ClassicsCD =lol x|

= [ClassicsCD

D Access Product Promation UC
[Z3 Arrange Shipment UC

[Z Check Order Status UC
Purchase CD UC

[Z Functionality

ol

D Dizplay Member Login Page
-] Display Shop Cart

R} rdler Canfimmation Page
-] Order Summary page
-] Shop For CD UC

Determining What to Test

You continue test planning by identifying test cases for your application. Each test case
describes a specific area of the application to test. Each area can encompass a broad
class of situations that you must test. For example, in testing a cash sales transaction,
you would probably test:

» Valid input (the customer pays the exact price; the customer pays more and needs
change).

= Invalid input (the customer pays less than the sales price; the sales clerk enters an
invalid part number).

So how do you determine what to test? This part of test planning — test analysis and
design — often requires you to rely on your own intelligence and experience, using
existing project assets as a reference.

When you design tests, the first step is to understand how the system is supposed to
behave. During analysis, you identify the conditions you must test to verify that:

* The application does what is intended.

* The application does not do what is not intended.

Chapter 6 - Test Planning 75

Working with Test Cases

A test case describes the testable and verifiable behavior in a system. A test case can
also describe the extent to which you will test an area of the application. Existing
project artifacts, such as requirements, provide information about the application and
can be used as test inputs for your test cases. TestManager provides built-in test input
types, but almost any artifact can be used as a test input.

For example, here’s what the following artifacts offer as test inputs:
» Requirements describe a condition or capability to which a system must conform.

» Visual models provide a graphic representation of a system’s structure and
interrelationships.

You can also define custom test input types, such as source code, software builds, and
functional specifications.

After you identify your test inputs, you can create test cases and associate them with
test inputs. These associations allow you to respond if test inputs change. These
changes might require you to change the test cases or their implementations.

Exercise: Create a test case for the enhancement to the Complete Order
requirement.

1 In the right pane of TestManager, right-click the Order Confirmation Page folder,
and from the shortcut menu click Insert Test Case.

The New Test Case dialog box appears. Information you include in these boxes
helps to define the test case which will be inserted under the test case folder.

2 On the General tab:
a Inthe Name box, type Display Estimated Ship Date.
b In the Description box, type:
Warehouse system gets order and responds with estimated ship date.
¢ In the Owner box, make sure that pat is selected.
3 C(Click OK.

The test case Display Estimated Ship Date appears in the test plan hierarchy (see
Figure 22).

76 Rational Suite Tutorial

Figure 22 ClassicsCD.com Test Plan with New Test Case in TestManager

T Test Plan - ClassicsCD =lol x|

ClassicsCD

[Z] Access Product Pramation UC

[Z3 Arrange Shipment UC

[Z Check Order Status UC

Purchase CD UC

[Z Functionality

g w

D Dizplay Member Login Page
7-(1] Display Shop Cart

|23 Order Confimation Page

- | Dizplay Estimated Ship D ate
H D Order Summary page
({3 Shop For CD UC

Test Inputs from Rational Rose

If you have Rational Rose installed and licensed, then you can register Rose models
with TestManager and use Rose model elements as test inputs. You can view each
individual model element in the TestManager Test Input window, and create an
association between a model element and a test case.

Test Inputs from Rational RequisitePro

You can use RequisitePro requirements as test inputs. You or an administrator can
use the Rational Administrator to associate a RequisitePro project with a Rational
project. This association causes requirements to appear in the TestManager Test Input
window after you log on to that project. You can then create an association between a
requirement and a test case. The requirements, themselves, are created and managed
in RequisitePro, but you can modify the properties of the requirements in
TestManager.

Exercise: Associate a test input with a test case.

1 In the right pane of TestManager, right-click the test case Display Estimated Ship
Date, and from the shortcut menu click Associate Test Input.

It may take a moment for TestManager to access artifacts associated with the
Webshop project, be patient. Soon, the Test Input Selection dialog box appears.
You use this feature to associate project artifacts to test cases.

2 Go to Rational RequisitePro > Rational Project - RequisitePro Project.

TestManager displays a progress indicator as it retrieves information from
RequisitePro. After a pause, TestManager displays the associated RequisitePro
assets in the Test Input Selection hierarchy.

Chapter 6 - Test Planning 77

3 Expand the tree nodes as follows: Rational Project - RequisitePro Project >
Use Cases > Purchase CD > UC4 Purchase CD > UC4.6 COMPLETE ORDER (see
Figure 23).

Figure 23 ClassicsCD.com Test Plan Input Selection in TestManager

¢ Test Input Selection x|

EI--- Fiational RequisitePro

=% Rational Project - RequisitePro Project
-3 Business Context

3 Coverage Analysis

3 Design Elements

3 Features and Yision

3 Glossary

3 Impact Analysis

3 Risks

+ 3 Supplementary Specifications
E- 3 Use Cases

3 Access Product Promotion
3 Anange Shipment

3 Check Order Status

EID Purchase CD
=% UC4 Purchase CD
UC4.1 BERIEF DESCRIPTION

UC4.2BEGIN
UC4.3IDENTIFY SHOFFER
UC4.4 GET PROJECTED SHIP
DATES

UC4.5 SUMMARY
OMPLETE ORDER
UC4.7END

UC4.8 INVALID SHOFPER ID
354.9 USER ALREADY LOGGED
Uc41oaur

UC4.11 QUIT, SHOPPER NOT
IDEMTIFIED

UC4.12 MODIFY ITEMS

UC4.13 CHANGE OPTIONS
UC4.14 PRE-CONDITION
UC4.15 PRE-CONDITION

-3 Shap for CD

Rational Rose

% Classics Rose Models

microsoft excel

[giginging

[gigiginging

[Sging

[giginging

SeiFiler | ok | cancel |

4 Select UC4.6 COMPLETE ORDER and click OK.

The use case requirement you modified earlier in this tutorial is now associated
with this test case.

5 From the TestManager menu bar, click File > Save All.

78 Rational Suite Tutorial

Traceability and Suspect Links

Once a test input is associated with a test case, a dependency between the two
artifacts is created. Using this example, if the requirement UC4.6 COMPLETE ORDER
were to change, the test case named Display Estimated Ship Date would become
suspect.

Recall that in Chapter 5, Creating Requirements, you learned about traceability and
suspect links. The integration between TestManager and RequisitePro builds on this
idea, so that if a requirement’s attributes change, any associated test cases will become
suspect. TestManager alerts project teams that a requirement has changed and that
test cases may be affected. Testers use this information to:

= Asses the impact of the change to test cases and test plans.
= Manage test plans more effectively.

= Work with other team members to more effectively manage project activities and
artifacts.

Elaborating on Test Cases

As part of developing your test plan, you must design your tests. Test designs are
elaborations of test cases. They provide the detail needed for understanding how the
test case will be implemented. You can perform design work in conjunction with, or
after, you plan your test cases, depending on the needs of your project.

You design tests using the Design Editor. During this step, you capture the most basic
and probable flows in a test case and add validation criteria or verification points.

Understanding the Impact of Test Planning

So far, you have learned how to structure and organize a test plan. In Chapter 7,
Modeling the Enhancement, you add the Arrange Shipment enhancement into your
system’s structure for the Checkout user interface. After implementation is complete,
testing can begin. In Chapter 10, Functional Testing, you use the test case you created in
this chapter to perform functional tests on the enhancement.

Test planning helps you identify strategies for testing early and to communicate the
intent of testing activities to all stakeholders. Test planning in TestManager is
designed to work for your entire team:

= Analysts use test plans to configure test inputs, define project iterations, and run
test coverage reports.

= Developers can use test plans to perform unit tests and to verify that the test cases
are consistent with the implementation and development plans.

Chapter 6 - Test Planning 79

= Testers use test plans to organize test cases (which are created from test inputs),
develop and run tests, and analyze test results.

» Project leaders and managers use test plans to define project iterations, create custom
reports, and run test coverage reports.

Continuing with Test Planning

Building a test plan is an iterative process that starts early in the project. It continues

as analysts change requirements and elaborate on use cases, as developers design and
write code, and as testers revisit requirements and use cases, discovering more areas

or conditions to test. Test planning occurs in parallel with other development efforts,
including testing.

As you work on your own test plan, we suggest you consider at least the following
topics, described in the remainder of this section:

» Risks and resources

» Types of tests to perform
= Stages of testing

= Scheduling

Risks and Resources

Identifying risk is an important part of test planning. After you identify the available
testing resources, you must balance inevitable resource constraints with the project
and testing risks. As a result, you can refine the testing strategy.

We recommend that you prioritize tests as follows:

= Must test (high) — You must run this test to avoid severe risk or to identify weak
project areas early in the development cycle. You cannot complete project testing
without completing this test.

= Should test (medium) — You should schedule this test, but in a resource crunch,
might consider not running it.

» Might test (low) — This test might be useful to run, but is not essential to the project.
Run this test if you cannot make further progress on other, more important, tests.

* Won't test (low) — This test is not part of the testing project. A test with this priority
defines the boundaries of the test plan and helps focus attention on what will be
tested.

80 Rational Suite Tutorial

Types of Tests to Perform

There are many types of tests to consider as you create a test plan, including, but not
limited to:

» Reliability tests — Can the application function without errors? Use Purify,
Quantify, and PureCoverage for reliability testing.

= Functional tests — Does the application meet its functional requirements? Use
Rational Robot for functional testing.

= Performance tests — Is the system's performance acceptable under varying
workloads? Use Robot to record performance tests. Use TestManager to run these
test scripts with different workloads, and to analyze the results of a test.

Stages of Testing

There are several stages of testing to consider as you create a test plan. These stages
progress from testing small components to testing completed systems and usually
apply to different stages of the system’s development cycle:

» Unit testing — Verifies individual components, the smallest testable elements of the
software.

» Integration testing — Ensures that the components in the implementation model
operate correctly when combined to run a test for a use case.

= System testing — Ensures that the software is functioning as a whole.

» Acceptance testing — Verifies that the software is ready for delivery and that it meets
its requirements.

Unit testing is typically performed by software developers. As a tester, your focus is
primarily on integration, system, and acceptance testing.

Project Scheduling

Part of creating a test plan involves developing a schedule. You work with team
leaders from other areas of the project to understand when their contributions will be
ready for testing. You then must balance your original schedule against the risks and
resources you identified in order to arrive at the most effective schedule for testing.
Each testing iteration presents an opportunity to validate one or more of your test
cases. Developing a testing schedule based on iterations helps you filter your test
cases so that you can more effectively design, implement, and run your tests for each
stage of software development.

Chapter 6 - Test Planning 81

If you prioritize your tests as described in Risks and Resources on page 80, make sure
you schedule at least the “must” (high priority) and “should” (medium priority) tests.
If resources become constrained over the course of the project, you can sacrifice tests
of lower priority without compromising the absolute quality objectives expressed by
the “must” tests.

TestManager comes with built-in iterations as defined in the RUP, or you can create
your own. You can associate iterations with test cases and then run these test cases
based on iterations.

RequisitePro is integrated with Microsoft Project so that you can link requirements
and tasks on your project schedule. For more information, start RequisitePro as
follows:

1 Click Start > Programs > Rational Software > Rational RequisitePro. RequisitePro
opens and the Open Project dialog box appears.

If, after starting RequisitePro, the Let's Go RequisitePro window appears, click
Close.

2 In the Open Project window, click Cancel.
3 On the RequisitePro menu bar, click Help > Contents and Index.

4 In the RequisitePro Help Browser, on the Contents tab, go to (by double-clicking)
Wizards, Integrations and Components > RequisitePro Wizards >
MS Project Integration Wizard.

A Help topic appears, describing how to work with RequisitePro and
Microsoft Project.

More on Test Artifacts

82

While working with every aspect of test planning is beyond the scope of this tutorial,
this section provides pointers to help you learn more about the artifacts involved.
Exercise: Learn more about test artifacts.

1 If the RUP is still open, make it the active window. If the RUP is not already
started, click Start > Programs > Rational Software > Rational Unified Process.

2 In your Web browser, select the Tester tree set and go to Test > Artifact Overview to
display the Test: Artifacts Overview page.

This overview identifies the roles and artifacts involved in testing. For more
information about any of these elements, click that element.

Rational Suite Tutorial

3 When you have finished using the RUP, you may quit the application. Or, if you
would like to use the RUP as you work through this tutorial, learning more about
the topics as you cover them, minimize the Rational Unified Process so you can
easily use it when you like.

Summary

For More Information
For more information about test planning;:
» Read about test plans in the Rational TestManager User’s Guide.

» For a more in-depth treatment of test planning, read Testing Computer Software
(Vnr Computer Library) by Cem Kaner and others (ISBN: 1850328471).

Cleaning Up
Quit TestManager by choosing File > Exit from the TestManager menu bar.

If necessary, close the Rational RequisitePro Online Help window and quit RequisitePro.
If you are prompted to quit, click Yes.

What You Learned in This Chapter
In this chapter, you learned:

* You can start test planning early in the project, after initial requirements are
identified.

= Test planning is an iterative process, encompassing project and testing risks,
evolving product requirements, available resources, and project schedule.

» Part of test planning involves creating test cases and relating them to test inputs.
* Analysis and design are important components of writing effective tests.

= Prioritizing tests helps you focus your testing effort on the riskiest and most
important areas of the application to test.

What’s Next

In the next chapter, you include the Arrange Shipment enhancement request in the
visual model for ClassicsCD.com.

Chapter 6 - Test Planning 83

84 Rational Suite Tutorial

Modeling the
Enhancement

So far, you have defined a use case requirement for the ClassicsCD.com enhancement.
The test organization has started test planning. In this chapter, you continue to
incorporate designs for the use case requirement into a ClassicsCD.com visual model
using Rational Rose.

Audience

This chapter applies to software designers and developers.

Getting Your Bearings

In this chapter, you use Rational Rose. To determine whether Rose is installed on your
computer, refer to the tool chart you filled out in Table 1, Rational Suite Tools, on page
27.

If Rose is not installed, you can still benefit from reading this chapter, but you will not
be able to perform the exercises.

If Rose is installed, start it now:
1 Click Start > Programs > Rational Software > Rational Rose.

2 If you did not perform the exercises in Creating Requirements on page 55, perform
the steps to start Rose page 62. Then skip to the following steps of this exercise.

3 In the Create New Model dialog box, click the Recent tab.

4 Click the ClassicsCD_WinDNA Rose model and then click Open. If Rose asks
whether to load subunits, click Yes.

Rose displays a hierarchical tree browser in the upper-left pane (the Rose browser).
In the right pane (the diagram window), it displays the logical view of the
architecture showing how the top-level packages in the system interact.

85

What Is Visual Modeling?

Visual modeling is the creation of graphical representations of your system’s
structure and interrelationships. The result is a blueprint of your system’s
architecture. This visual model:

= Is graphical, rather than text-based, making it easier to understand complex
systems at a glance.

» Allows you to see relationships between design components, so that you can
create cleaner designs and therefore write code that’s easier to maintain.

» Helps you meet customer needs because you base the visual model on project
requirements.

= Improves communication across your team because you use the Unified Modeling
Language, a standard graphical language, to convey the system’s architecture.

Using Rational Rose

You can create visual models of architectures, components, and data using the
industry-standard UML with Rational Rose. This helps you visualize, understand,
and refine your requirements and architecture before committing them to code. Using
Rose to develop visual models throughout the development lifecycle helps ensure
that you're building the right system. The architecture model can be traced back to
both the business process model and the system requirements.

Visual Modeling and the Tutorial

In Chapter 5, Creating Requirements, you used Rose and RequisitePro to create a use
case requirement. In this chapter, you continue working on the design for the
requirement using Rational Rose.

Working with a Sequence Diagram

A sequence diagram is a visual representation of the steps through one path in a use
case. Project members and other stakeholders can use a sequence diagram (graphical
representation), use case requirements (text description), or both to evaluate the
project direction and as a basis for their work.

A use case often contains more than one path. It always contains a basic flow which
describes the most common path through the use case. It may contain alternative
flows which describe other paths, including error conditions.

86 Rational Suite Tutorial

A sequence diagram shows how actors interact with the system, and in what order.
When you first work on a sequence diagram, you tend to use human-language labels.
As you refine the system design, you change the diagram so that it identifies:

Classes — Sets of objects that share a common structure and common behaviors.

Messages — Interactions between objects.

Opening a Sequence Diagram

Start by looking at an existing sequence diagram.

Exercise: Open the sequence diagram.

1 In the Rose browser, go to ClassicsCD_WinDNA > Logical View >

WinDNA Realizations > WinDNA: Purchase CD Realization > Checkout. Double-click
the sequence diagram Checkout to open it (see Figure 24).

Figure 24 Opening the Sequence Diagram Using Rose

4* Rational Rose - ClassicsCD_WinDNA - [Sequence
File Edit Yiew Format Browse Report Tools

Dl ' 2E a8 e0Bmn

5] ClazsicsCO_tWinDNA
B3 Use Caze View

EID Logical Yiew

D ATL Classzes

£17 ClassicsCD Site

&3 CoM

£13 PandaEx Site

£17 Persistent Classes
B Schemas

-1 WinDike,

(17 WinDNA Realizations
: Package Overview

= WwinDMA: Shop for CD Realization
3 Associations

B| Enterprise Dverview
2 Associations
-3 Componert Yiew

----- Deployment Wiew

(@8 Model Properties

Rose displays the Checkout sequence diagram (see Figure 25).

Chapter 7 - Modeling the Enhancement 87

Figure 25 Checkout Sequence Diagram in Rose

Cashier I Request I orderRecordset : (... I facadeObject : fe... I facadeObject? : fo... I paymentinfoRecord... I
Purchase CD
Cashier Fequest rderRecordset| facadeObject | |FacadeOhbject2 | paymentinfoRecord
(Recordset) ||fodShopforCD || fcdCheckout| | set: (Recordset)
get 3 q rvored ! 0 U
CustometD B cookie("orderid") E E
T 2 CreateOhject :
: : U
U : |3 getCart()
: U : [
4. arderlD
U : : 3 CreateOb'ject
H : : [l
6 custiD ;
\ \ \ H []
H : : : Component Diagrarm:
1 1 1 1 Business /
CustomerFacad...

2 If you cannot see the entire diagram, click View > Fit in Window.

This sequence diagram shows how the actors and other objects in the application
communicate. A message symbol, a horizontal, solid arrow between two vertical,
dashed lifelines, illustrates how objects in a sequence diagram communicate with
each other. Items in a sequence diagram are arranged in chronological order.

The tutorial follows this naming convention for objects:

2 Names begin with a lowercase letter.

= Names do not contain spaces.

2 Within a name, the first letter of each word is capitalized.

The diagram also details how the ClassicsCD.com server handles the checkout
process after a customer places an order. It shows that the Cashier Active Server Page
calls upon the Checkout fagade to verify member logins, get payment information,
and confirm orders. Specifically, the first few messages mean that:

1 The Cashier Active Server requests a cookie to obtain the member’s ID.
2 The Cashier Active Server creates a facade object.

3 The Cashier Active Server sends the facade object a message to get the contents of
the member’s shopping cart.

88 Rational Suite Tutorial

Adding Messages for the Enhancement

In this section, you add messages to the sequence diagram. Your messages show how
objects in the system will communicate to implement the enhancement you are
working on.

Exercise: Add to the sequence diagram.

Starting on the sequence diagram:

1 On the diagram toolbox (between the Rose browser and the diagram window), click
&1 (the Message to Self button).

2 To place the message, click the diagram on the facadeObject2:fcdCheckout lifeline
(the vertical line associated with the green Rose Object), just under Message 5,
CreateObject.

Notice that Rose renumbers the subsequent message.

3 While the newly inserted Message to Self object is still selected, type getShipDate
and then click anywhere in the background of the diagram (see Figure 26).

4 Click File > Save. If Rose prompts you to save subunits of the model, click Yes. If
Rose prompts you to save subunits of the model to a new format, click Yes.

Figure 26 The Finished Sequence Diagram in Rose

Cashier I Request I orderRecordset : (... I facadeObject : fe... I facadeObject? : fo... I paymentinfoRecord... I

Purchase CD

paymentinfoRecord

Cashier
set: (Recordset)

- (Recordset) | |fedShopfarcD

= NI I 0
M 1. cookie("orderid")

T 2 CreateOhject

‘ Request racadeObjectQ

: fedCheckout
I

’:rderRecurdset racadeObject:

! ! i
U ' 3 getCart()
' U : ITl
4: arderD ,

U : : 3 CreateOb'ject

& getshipDate

TocustiD

: : : : T]
H 5 5 : Component Diagram: T

Business /
CustomerFacad...

Chapter 7 - Modeling the Enhancement 89

Publishing Part of the Model to the Web

Now that you have finished working on this part of the model, we recommend that
you create a Web version of it so that people on your team who have not installed
Rose can review the model and give you feedback.

With Rose Web Publisher, you can create a Web-based (HTML) version of a Rose
model that others can view using a standard Web browser. Rose Web Publisher
recreates Rose model elements, including diagrams, classes, packages, relationships,
attributes, and operations. After the version is published, you can use hypertext links
to explore the model as you would in Rose.

Exercise: Publish the model to the Web.

1 From the Rose menu bar, click Tools > Web Publisher to open the Rose Web

Publisher dialog box.

2 In the Selections list,

a Double-click to clear the Use Case View check box

b Double-click to clear the Component View check box

¢ Click to clear the Deployment View check box.

d Check Logical View check box.

So, of the selections available, only Logical View should be selected (see Figure 27).

Figure 27 Publishing Models to the Web Using Rose

4%+ Rose Web Publisher N 21l
Selections 2
— Lewel of Detail

=8 [7] Use Caze View
- v Logical View
B[] Companent View

— HTML Root File Name

_ i Publish |
" Documentation Only

7 Intermediate
& Full

Diagrams...

" Booch Help
OMT

e
-Matation—————
e

& LML Close |

¥ Include Inherited ltems

¥ Include Properties

¥ Imclude Associations in Browser

¥ Include Document ‘Wrapping in Browser

C:AClassicsWweb Publishbmodel htm
Elapzed Time: 00:00:00

B Freview

90 Rational Suite Tutorial

3 Next to the HTML Root File Name box, click ... and go to C:\Classics\Web Publish.
Then type model in the File name box, and click Save.

The HTML Root File Name box displays this path (see Figure 27).
4 On the Rose Web Publisher dialog box, click Publish.

Rose displays a progress indicator as it accesses and converts the models to
HTML. This process may take a few minutes. When the progress indicator
disappears, the Web files are ready.

5 Click Preview.

Your Web browser displays a hierarchical tree browser in the upper-left pane (the
Rose browser). Information about Rose Web Publisher appears in the right pane
(the diagram window). Once a Rose model is selected, Rose displays it in the
diagram window.

6 In the Rose Web Publisher browser go to Logical View > WinDNA Realizations >
<<use case realization>> WinDNA: Purchase CD Realizations > Checkout.
Double-click this entry to explore the sequence diagram you worked with in this
chapter.

7 Finish reviewing the diagram and then do one of the following:

a If the Rational Unified Process (RUP) was open before you started this exercise,
click Back until you return to the RUP. In Rose, on the Rose Web Publisher
dialog box, click Close.

2 If the RUP was not open before you started this exercise, close your Web
browser. Then on the Rose Web Publisher dialog box, click Close.

Continuing Work with the Sequence Diagram

Now that you have finished this part of the model, there are a few additional tasks to
perform. In this tutorial, we summarize the tasks, but do not expect you to perform
them.

Refining the Objects

In the sequence diagram, you identify the objects involved with the use case. You next
identify the classes to which the objects belong. You use Rose class diagrams to group
related classes and to elaborate on them.

Chapter 7 - Modeling the Enhancement 91

For example, to see a class diagram, use the Rose browser to explore to Logical View >
ClassicsCD Site > Client Composition Diagrams. Double-click cashier_Client Diagrams.
Each representation of a class shows you the class attributes and operations.
(Double-click a class representation to see details about the class.)

After you identify classes, you revise the sequence diagram to use class and operation
names instead of the human-language names you originally assigned.

Implementing Code

You are now ready to implement code. From the diagrams you’'ve created, Rose
Enterprise Edition can create a code skeleton that is consistent with the models you've
developed. This is called forward engineering. Starting from the generated code, you as
a developer fill in the details of the algorithm.

To generate new code or to update existing code, choose a command from the Rose
Tools menu. For example, to implement Java code for the enhancement you’ve been
working on, you would click Tools > Java / J2EE > Generate EJB JAR File, or
Generate WAR File.

When you start changing code, your model may become out of date. It is tedious to
manually update the model whenever the code changes. It is also undesirable to
create a model that immediately becomes obsolete. Rose helps you keep the code and
the model consistent through a process called reverse engineering, where Rose
automatically updates the model from changes in the code. To reverse engineer after
updating source code, you would click Tools > Java / J2EE > Reverse Engineer.

As you can see from the Tools menu, Rose supports several languages in addition to
Java. These languages include ANSI C++ and Visual Basic.

Note: Rose Enterprise Edition and Rose Professional Data Modeler Edition can
generate code, update code, and update models. For database schemas, both editions
can generate code from a Rose visual model and update a Rose model from source
code through a process called round-trip engineering. However, Rose Professional
Data Modeler Edition only supports round-trip engineering to and from DDL scripts
and database schemas — not for other languages such as Java and Visual C++.

92 Rational Suite Tutorial

Modeling Data

You can use Rose to model relational databases. Rose Professional Data Modeler
Edition is a database modeling and design tool that uses UML. It helps you:

» Support most specific database functions such as creating tables, columns,
indexes, relationships, keys (primary and foreign), stored procedures, and views.

= Create column constraints, and both DRI (Declarative Referential Integrity) and RI
triggers.

» Create custom triggers and their generated trigger code.

Benefits
The benefits of using Rose Professional Data Modeler are:

» All your business, application, and data models are written in UML, the same
industry-standard language promoting consistency, traceability, and ease of
communication.

= Both forward and reverse engineering of relational databases are supported,
facilitating the process of keeping database implementations and models
consistent.

Summary

For More Information

For more information about Rational Rose, see the Rational Rose Tutorial, available on
the Rational Solutions for Windows — Online Documentation CD-ROM.

For information about Rational Rose RealTime, see the online tutorials available from
Rose RealTime Help. These tutorials address the needs of Rose RealTime users at all
levels.

For more information about object-oriented analysis and design, use Extended Help
by choosing Help > Extended Help. In the Extended Help - Rose tree set, click
Tool Mentor: Managing Subsystems Using Rational Rose.

Chapter 7 - Modeling the Enhancement 93

Cleaning Up

If necessary, quit the Rose Extended Help.

Quit Rose. If you are prompted to save your changes, click Yes. If you are prompted
to save subunits, click Yes.

What You Learned in This Chapter

In this chapter, you learned:

Visual modeling means creating graphical representations of your system’s
structure and interrelationships.

In Rose, you use sequence diagrams to elaborate on paths through use cases.

Rational Rose helps you: create visual models for code and data, generate code
from visual models, and keep models synchronized with changed code.

You can use Rose to publish read-only copies of your models and diagrams to the
Web. This feature unifies the team by helping you create high-quality architecture
models that can be shared, ensuring that all team members have the same
understanding of the project.

Rose supports many languages, including ANSI C++, Visual Basic, Visual C++,
and Java.

What’s Next

The visual model for the enhancement is now complete. In the next chapter, you
create a report about the use case for the enhancement.

94 Rational Suite Tutorial

Communicating
Project Status

Now that you have elaborated the Arrange Shipment use case with the new
requirement, you want to communicate changes made to the requirements to all team
members and to stakeholders. To do this, you might want to generate a report
consolidating all the information about the use case. Such a report might contain the
sequence diagram from the visual model in Rational Rose and the corresponding
basic flow from the use case in Rational RequisitePro.

You also want to communicate the status of the project. You might want to gather
project metrics from Rational Suite tools to determine the progress made in this
iteration of the ClassicsCD.com project. Charts might help you determine trends and
gauges might help you compare data to predefined threshold values.

In this chapter, you use Rational SoDA to produce a use case report and Rational
ProjectConsole to view project artifacts, analyze metrics, and determine project status.

Audience

This chapter applies most directly to project leaders and managers, but is relevant for
all members of a software development team.

Getting Your Bearings

In this chapter, you use SoDA and ProjectConsole. Rose and RequisitePro must also
be installed on your computer. To determine whether these tools are installed on your
computer, refer to the tool chart you filled out in Table 1, Rational Suite Tools, on page
27.

If any of these tools are not installed, you can still benefit from reading this chapter,
but you will not be able to perform the exercises.

If these tools are installed, start SODA now by clicking Start > Programs >
Rational Software > Rational SoDA for Word.

95

Microsoft Word starts and automatically opens a blank document containing an
additional SoODA menu. But first:

If you see a warning about enabling macros, make sure that you click
Enable Macros. Otherwise, you cannot use SoDA.

If you do not see this warning, go to Tools > Macro > Security. The Security dialog
box opens. On the Security Level tab, make sure that your macro security level is
set to either Medium or Low. Otherwise, you cannot use SoDA. After you finish the
exercises in this chapter, you can reset your macro security level to a higher
setting.

Managing Project Status

Rational ProjectConsole and Rational SoDA provide tool support for managing
project status.

What Is SoDA?

SoDA automates software documentation, like status reports. It is tightly integrated
with many Rational tools so you can easily extract information to report on
requirements, designs, tests, and defect status. For example, you can use SoDA to
report on:

Versioning information with ClearCase LT

Reported defects with ClearQuest

Requirements with RequisitePro

Visual models and designs with Rose

Test scripts with TestManager

Information extracted from other documents created in the Windows environment
Information extracted from multiple Rational tools and other information sources
into a single, integrated document.

Using SoDA Templates

To generate reports and other documents, SoDA relies on a predefined template for
Word. The template gathers information and formats it into a report.

To add information manually to SoDA reports and documents, you simply use the
Microsoft Word or FrameMaker interface and add your text before you generate the
report or document. SODA preserves your text through subsequent cycles of
generating the report or document.

96 Rational Suite Tutorial

You can choose from the many templates provided with SODA, or you can create your
own templates with the easy-to-use template creation tool in SoDA.

Why Generate a Use Case Report?

A use case report gathers into one document both text descriptions of expected
system behavior (as described in use case requirements) and diagrams that show how
the system interacts with actors. Use case reports are helpful to your entire team:

Analysts show the report to customers and other stakeholders. Together, they can
verify that the project is on the right track. These discussions can be held early in
the project, so that the analyst can address problems or gaps before, rather than
after, the project ships.

Developers use the report’s description of expected system behavior to start writing
engineering specifications and designing the system architecture.

Testers use the report to design tests for the use case. From the report, a tester can
identify the steps to test and determine which conditions to test.

Technical writers start planning documentation based on the report’s descriptions
of how users interact with the system.

Usability engineers use the report to design usability tests, possibly starting with
paper prototypes.

Creating the Use Case Report

To create the use case report, SODA relies on a predefined template that gathers
information and formats it into a report. The report you create in this chapter includes
information from RequisitePro and Rose. Therefore, if you have not performed the
exercises in Chapter 5, Creating Requirements, and Chapter 7, Modeling the
Enhancement, you cannot create the use case report.

Exercise: Create the use case report by starting with the template.

1

In Word, open C:\Classics\Projects\Webshop\SoDA\RUP Use Case Report.doc.

You may see a warning about enabling macros if you reset your macro security
levels at the beginning of this chapter, Make sure that you click Enable Macros.
Otherwise, you cannot use SoDA.

Word displays the SoDA template containing text, macro commands, and
annotations.

Chapter 8 - Communicating Project Status 97

2 View the entire template including SODA commands by doing one of the
following from the Word toolbar:

s If you are using Word 2000 or later:

e (lick Tools > Options. On the View tab, under Formatting marks select the
All check box. Click OK.

a If you are using Word 2002:

o Click SoDA > Show/Hide Commands, and display comment markers by
clicking View > Markup.

Pink and yellow Word annotations used by SoDA appear in the document to store
the SoDA commands (see Word 2000 example of display in Figure 28). It is
important to see this hidden text when working with SoDA for Word.

Figure 28 Viewing the Use Case Report Template Using SoDA (Excerpt)

*1. - RelationshipsY

11 5 C icate--AssociationsY
MASTERSIEEPEATTILIMITEN

Note: Hidden text may display differently depending on which version of Word
you are using. Still, when working with SoDA, you should always have the
Show/Hide function turned on to display all hidden text. If you prefer not to see
all formatting marks when you work with Word outside of SoDA, remember to
reset this option later.

3 Click SoDA > Generate Report.

Word closes and SoDA displays the Progress Indicator while retrieving
information from the use case document and the Rose model that you worked
with earlier. This process may take a few moments. Then, SoDA for Word displays
the report.

98 Rational Suite Tutorial

4 Browse through the report.

a Go to page 4 to see the requirement you worked on in Chapter 5, Creating
Requirements.

b Go to page 6 of the report to see the visual model you worked with in Chapter
7, Modeling the Enhancement.

Working with SoDA Templates

Although working with SoDA templates is beyond the scope of this tutorial, this
section provides pointers to help you get started.

Optional Exercise: View the template tool for this SoDA template.

1 In Word, display the use case template, RUP Use Case Report.doc by clicking
Window > RUP Use Case Report.

2 Click SoDA > Template View to display the SODA Template View tool.
You use this Template View to create or enhance SoDA templates.
3 Click Help > Help on SoDA to learn about the elements in this Template View.

Use this information to understand how each line translates into the SoDA
commands for the RUP Use Case Report template.

4 Close SoDA Help and the Template View.

5 Then quit SoDA for Word by choosing File > Exit. If you are prompted to save any
of your changes, click No.

What Is ProjectConsole?

ProjectConsole simplifies access to project information and helps you measure
progress and quality. It automatically collects project artifacts from all Rational Suite
tools and structures them into a project Web site that all Web-enabled team members
can use. In addition, ProjectConsole collects metrics about requirements, designs,
tests, and defect status so that you can easily understand the true status of your
project.

Chapter 8 - Communicating Project Status 99

Using the Project Web Site

ProjectConsole improves team communication by providing one project Web site that
hosts project artifacts such as use case reports, defects, and metric reports.
ProjectConsole automatically extracts artifacts like these from Rational Suite or select
third-party tools. ProjectConsole displays the artifacts in a project Web site according
to the structure you have defined (see Figure 29).

This flexibility allows project leaders to easily adapt the Web site’s information
structure to best fit the needs of their team or organization. Project leaders decide
what information should be displayed and how it should be organized so that all
team members can easily find and access project artifacts. The project Web site can be
refreshed on demand and on a schedule, making sure that all team members are
always viewing the most current artifacts.

Figure 29 Example of ProjectConsole Web Site

Rational® ProjectConso

5|

Home

7 Help | @ About | 7] Log Out

Support

‘ =
User Profile Dashboard Refresh

@Projec‘t(:onsule
= @C\assicsCD com Projects
%Addﬂiunal ProjectConzole Res:
[Eovera\l Status for All Projects
<=5 Point of Sale (POS)
[l £5wishshop
% Classics Webshop Organiz

7 i cessoswensrooroeet | VY €lcome to ClassicsCD.com...

[Z3 Project Information

[(7Release 1.0 ...yeur sizmsddated online source for classical music CDs.
[Release 2.0
[T My Private Area Who we are

ClasgsicsCD cem 15 brought to you by Rational Seftware, the software development corpany. This
site shows how you can use Rational development tools to solve the software development
paradox Deliver applications of high quality more rapidly than ever before.

Capyright © 2003 Rational Saftware Corporation

Working with Project Metrics

ProjectConsole extracts information from data produced throughout a software
development project and automatically generates graphics, such as charts and
gauges, either predefined or ones that you customize. These metrics allow you to
automatically collect information about the status of your project and share it with
members of your team. With ProjectConsole, you can also analyze data in a single,
integrated view collected from several Rational tools.

100 Rational Suite Tutorial

Table 3 shows you how ProjectConsole is used to measure progress and quality.

Table 3 Using ProjectConsole Metrics to Understand Project Status
Use ProjectConsole to by gathering data about using
Determine whether your Lines of code being added, ClearCase LT
application or product is modified, or deleted
stabilizing

Visual model elements being | Rose

added, modified, or deleted

Reported defects ClearQuest
See how many additional Open defects ClearQuest
tasks must be performed in
this iteration Open features, use cases, and | RequisitePro

requirements

Open test cases TestManager
Assess the quality of your Open defects by severity ClearQuest
application or product

Trend of test results TestManager

Figure 30 shows you how ProjectConsole can be used to assess the trend of open

defects over time.

Figure 30 Working with Trend Charts Using ProjectConsole

Trend of Open De

Defects
20

N

W1 Resalve Immedistely
W2 Give High Attertion
3-Mormal Queue

4-Lowy Priority

G |- £0-200E-

Z0-20-200%-
9 |-20-200E-

0£-20-200%-

£ |-60-200E-
LE-B0-E00E-
1 10 L-Z00E
S2-01-200E-
20- | L-200E-
22 | L-E00E-

Date

90- |-Z00E-

0Z- |-200E-

[

Chapter 8 - Communicating Project Status

101

From this trend chart, wherein we see that high priority defects are decreasing over
time, we could determine that developers are successful at stabilizing the application
by the end of the iteration.

Analyzing Metrics

ProjectConsole also provides a dynamic metric analysis tool, the Dashboard, which
helps you drill-down and perform root-cause analysis.

Figure 31 shows you how the ProjectConsole Dashboard can be used to assess overall
project status using indicators and charts. Figure 31 also demonstrates how the
Dashboard allows you to:

= View metrics across different disciplines (requirements, design, testing).
» Understand how the data corresponds to the current project phase.

* Analyze project status.

Figure 31 Assessing Overall Project Status Across Disciplines

Sl ot ol
=2 12 eI,
€ ;’“u_ L] wu FERN
s [iy Wuzsgned g A HUL 1800
x_ + Tl i {'" ! Wcporned 1200 Mineszeizt
- g ot Hpened 2 Incaracrets B0 | I Mincachan
I R BT e # e stones) n Fri pursea: R 5 | [I
EEEEEEZR | Fresoven JEHE T | JEEBSEEBEEREE T
SR Pe e aE Ly S FREAREEE IS
22 oo w-= 38 3 05 2 o' o4 =838 5
VN EY el ! pucFiy

Tulimer Defecl

oz ozponcd Heackod Wbt
liad- oL 1.0 4.0 10 | M. - -ahye REqUests
3 o >N A
Ao yu
dedun B 2.0 [R) 1.0
! i e o o s 0.0
UL BL cAl 2 . dnir an
F CEg] 50
= uzron eal}
(=] 40
ol gan 2.0
oy 5.0

A

102 Rational Suite Tutorial

Summary

For More Information

To learn more about SoDA, in SoDA for Word, click Help > Help on SoDA. A window
showing a list of SODA topics opens. Choose your topic of interest.

For more information on using ProjectConsole, start with the tutorial. Click Start >
Program Files > Rational Software > Rational ProjectConsole >
Rational ProjectConsole Tutorial.

For more information on using ProjectConsole Dashboard, read Getting Started:
Rational ProjectConsole.

To learn more about building templates with ProjectConsole, you must first install the
Rational ProjectConsole Template Builder. Then start ProjectConsole by clicking

Start > Program Files > Rational Software > Rational ProjectConsole Template Builder.
Microsoft Word starts and automatically opens a blank document which contains an
additional ProjectConsole menu. From the Word menu bar, click Help >

Help on Template Builder. A window showing a list of topics opens (you may need to
maximize this window). Choose your topic of interest.

Cleaning Up

If necessary, quit Word. If you are prompted to save your changes, click No.

What You Learned in This Chapter
In this chapter, you learned:

= SoDA automates software documentation by creating reports based on templates.
It contains an easy-to-use tool that assists you with template creation.

= A use case report is useful to all members of your project.

» ProjectConsole automatically collects project artifacts from Rational Suite tools
and structures them into a project Web site for Web-enabled team members to use.

= ProjectConsole automatically generates project metrics by extracting information
from data produced during software development. This provides you with an
accurate and objective assessment of the project status.

What’s Next

In the next chapter, you learn about using Rational tools to perform reliability tests.

Chapter 8 - Communicating Project Status 103

104 Rational Suite Tutorial

Reliability Testing

The ClassicsCD.com enhancement is implemented and testing has been planned. You
are now ready to test the enhancement. In this chapter, we discuss testing for
reliability.

Audience

This chapter applies to testers, developers, and other team members responsible for
reliability testing.

Reliability Testing Tools

This chapter describes the following automated testing tools:

= Rational Purify. Pinpoints run-time errors and memory leaks in Visual C++
application code, and errors related to garbage-collection in Java and .NET
managed application code.

* Rational PureCoverage. Identifies the parts of your Java, Visual C++, Visual Basic,
Visual Basic.NET, or Visual C#NET program that have and have not been
exercised. Exposes testing gaps so you can prevent untested application code from
reaching your users.

* Rational Quantify. Profiles your Java, Visual C++, Visual Basic, Visual Basic.NET,
or Visual C#.NET application to help you identify performance bottlenecks in your
code.

105

Run-Time Analysis Tools in Rational Suite

Rational Purify

Run-time memory corruption errors and memory leaks are some of the most difficult
errors to locate and the most important to correct. They often remain undetected until
triggered by a random event, so that a program can appear to work correctly when
actually it’s not.

Rational Purify is a comprehensive run-time tool used to check for:
* Memory corruption and memory leaks in C/C++ code applications.

* Memory profiling and memory leaks in Java and .NET managed code
applications.

Purify can find memory errors in every component of your program, even if you
don’t have the source code. If Purify detects an error in an area of the application for
which the source code is available, it identifies and displays the command that caused
the invalid memory reference. For Java and .NET managed code applications, Purify
analyzes and reports memory usage.

Purify can also collect coverage data as you check your code for errors, pinpointing
the part of your program that you have not tested. You can use Purify's coverage data
to make sure that all your code is free of errors (see Figure 33).

Figure 32 Sample Error Detection Results from Rational Purify

¥ F:ational Furify - [Data BrowserPurnify'd hello.zwe]

Bk Bt Yew Seftrgs Widow Heo
HEE RN R e E R E EERE R e E e EEE]
o= Eoh |
O Rn@PAVER1EES M | =) Starting Purify'd kello exe at 0TAR002 18:06:46
0 Starting mein
=f UNR: Uninitislized semory read in strlen {1 cocurreccs)
0 AEY: irray boungz write in WinMein {{ oocurremces)
Priting 1 byte to 0xDOOODGERfeB24E4a (1 byte at Ox000D0SERfefldEda illagall
Eddvess Dx000006(biek24f4a is 1 byte past the end of & 10 byee block av Ox00M00GbEed 241
dddress Dx000006EbEeB24i4a points to & malloc'd block in hesp OxieB20000
Thresd ID: Dx3Bc
Errar locatiom
= WinHain [hello.c: 34)
length = =t ringZ).

4+ IR because siringl 1% ot initializ Flnd errors

0, st
aifi] =

i strirgl(i); s AB's generated oo this line

length = strl=c(string2) #¢ AUR generated an this lin=

*

WunHainCRTSartup [ortd cid36)

#_module_sntry [PURERTG4 DIL]

x_mnocule_sotry [FPORERTG DIL]
1 Allocation locatian

M malloc [malloc 53]

— WinHain [hello.c:29]

i WinHainCRTStartup [ortl.ci236]
#_mccule_sntry [FORERTR4 DIL]
w_nodule_sntry [FURERTHY DLL]

=) AER: drray bounds resd in strlen {1 ccourrence}

106 Rational Suite Tutorial

Rational PureCoverage

To effectively test an application, you need to know which parts of the application
were exercised during a test and which ones were missed. Without this information,
you can waste valuable time editing, compiling, and debugging your software
without actually testing the critical problem areas.

With Rational PureCoverage, you can quickly and easily identify the gaps in your
testing of C/C++, Visual Basic 6, Visual Basic.NET, Visual C#NET and Java code.

PureCoverage is especially useful as a companion to Rational Purify and Rational
Robot: it can tell you whether you are exercising your code sufficiently for Purify to
find all of your memory errors and for Robot to test all of your application’s
functionality (see Figure 33). It is essential to an automated testing environment.

Figure 33 Sample Test Coverage Results from Rational PureCoverage

i Ratianal PusCovarags ovesage Browser: Telriz_Goge. sxe]

[e Edt View Setig: Wade Hup SETET]

Slu) [)| o]) ulis] AlE) 55| BolE)| sle] o]

=TT ok oot R T et g | Wechde e Fleias |

Austo Merge @ 127122001 1302

Methods | Methods | & Methods | Lines | Lines | % Lines=
Hit

O Fan 212132001 125231 o Coverage lten Calls | Missed | Hit Missed | Hit | Hit |
= R @ 12032001 130151 oo
= [5] Fiun @ 127272001 125831 <no sopuments> | 1335 | 508 i HE T B
[13 C:Owork\TestiMS NET\Teti_Goga *3 E Fl 8750 ™| = [Y See Coverage
G5 bocksb =g 1 7 750 @ | & | mam e
& Tekis GogoBleck Unsctatel) 1} missed 3 o 000
% Tibis_Gogo ek, Folatel] 5 [[3 | 1mm Summary
% Tetis GogoBlock RetumBlock) | 175 (] [1 | 1000
% Tetis_Goga Block MoveFignl] 3 [0 [3 | 100
% Tetiz_GogoBlack MoveLefi]) 5 (0] o 3| e
% Tebiz GogoBlock MoveDowrl] | 42 it [3| 1mm
% Tebis Goga Block, Coeatel) 4 i M | | s
% Tk Goga Block, cor] 4 hat o 1 10000
=5 Fomvh 715 2 14 5750 45 | @ | B
% Tetis Gogo Foml sublusdles]] | 248 [o 1| mm
% Tetis Gogo Form sublleafind) | 220 (0] [8 | e
% Tebis_Gogo o cmdSist Cickl] 1 (1 [& | 1mm
% Tebis_GogoFoml cmdExd_Chekl] | 0 missed 3 o o
% T GogoForil Tl _Tik) | 45 hit 4 16 BO0D
% Tetia_Goga Fom Man() 1] [1| 1o
W Tetis Gogo Fom IriiskzeConpa.| 1 [[& | 1mm
% Tetiz_Gogo Fom Irifiame(] 2 [[13| 1000
& Tebi 1 [[

& o :
% Tetis_Goga Fomil Disposel] 4 0 ~ .
% Tetis_GogoFomil CieateMewdle | 4 b] T 100,00 ™
% Tetis_Gogo Fomi CheckFodine]] 3 i 2 17 B85 Flnd unteSted COde
% Tetis_Gogo Fom! Carovel) 5 ht 2 n 9429
#® Tetis_GogaFom] _clof) 1 hit o 3 10000
=y [Uknosn Disecion] 12403 502 137 .44
Y] Weknown Fie] 12403 50e 137 2144
% ‘WindProc Invokef) L] mizzed
% ‘WindProc. Endirvokel] o messd
% ‘windProc. Begnirmokel] o missed
® WrdPioc chor] o missed
& WindowClass UringiseiCladsl) 4 hit =
| R o 5 = f ']J
| | |z T
Read P

Chapter 9 - Reliability Testing 107

Rational Quantify

Rational Quantify quickly locates performance bottlenecks in C/C++, Visual Basic 6,
Visual Basic.NET, Visual C#NET and Java code. It takes the difficulty and guesswork
out of performance tuning by delivering accurate, repeatable timing data for all the
components of your program, even if you don’t have the source code.

Quantify gives you the insight you need to write more efficient code and make any

program work faster (see Figure 34). It can turn everyone on your team into a
performance engineer.

Figure 34 Sample Performance Analysis from Rational Quantify

@ Alational Quantify - [Call Graph: Tehis_Goge.exc]

<% Fle Edi Wiew Selings Window Help ~18]x|
fe= 1= =T e | QIEI_I "II« =] A=) I_J!IE =[] W o 5| &[]

2] ChwokATeshMS NET 3] Hlade: Masum Palk o Feal
O Run & 12137200

N See functions that
suggest logic
which is not
scalable

f
[Visble: 173471738 [Highighled. 171

Using Purify, PureCoverage, and Quantify with Other Rational Tools
Rational Purify, PureCoverage, and Quantify integrate with:

» (ClearQuest, so you can submit defects directly from your run-time analysis tool
and communicate reliability findings with other team members.

» Robot, so you can run test scripts and profile your application at the same time,
simultaneously testing an application’s reliability and functionality. This helps
your team work more effectively and efficiently.

108 Rational Suite Tutorial

Summary

For More Information
For more information about:

Purify, PureCoverage, and Quantify. Read Getting Started: Rational PurifyPlus, Rational
Purify, Rational PureCoverage, Rational Quantify.

Rational books are available on the Rational Solutions for Windows — Online
Documentation CD-ROM, or online at http://www.rational.com/documentation.

For more information about Purify, PureCoverage, and Quantify, read their
respective Help systems.

What You Learned in This Chapter
In this chapter, you learned:
» Developers and testers use the following Rational run-time analysis tools:

2 Purify, used to find run-time memory corruption errors for C++ code and
profile memory usage for Java and .NET managed code.

s PureCoverage, used to analyze code coverage.

2 Quantify, used to pinpoint performance bottlenecks.

What’s Next

In the next chapter, you perform functional testing on the ClassicsCD.com
enhancement. You use Robot to create a script, include the script in an existing test
suite, run the test suite, and handle errors discovered by the tests.

Chapter 9 - Reliability Testing 109

http://www.rational.com/documentation/

110 Rational Suite Tutorial

Functional Testing

At this point in the development process, developers have implemented the
ClassicsCD.com enhancement, and testers have run initial reliability tests (this work
was completed outside of the tutorial). In this chapter, you use Rational Robot to
implement the test case you created in Chapter 6, Test Planning, for functional testing
of the enhancement requirement. You also use Rational TestManager to analyze the
results of your implementation.

Audience

This chapter applies to testers and other team members responsible for functional
testing.

Getting Your Bearings

In this chapter, you start by using Rational TestManager. To determine whether
TestManager is installed on your computer, refer to the tool chart you filled out in
Table 1, Rational Suite Tools, on page 27.

If TestManager is not installed, you can still benefit from reading this chapter, but you
will not be able to perform the exercises.

If Robot is not installed, you can still benefit from reading this chapter, but you will
not be able to perform the exercises.

If TestManager is installed, start it now:
1 Click Start > Programs > Rational Software > Rational TestManager.
2 If the Rational Test Login dialog box opens, use these values:
a Inthe User Name and Password boxes, type pat.
b Make sure the Project box displays Webshop.
¢ Make sure the Location box displays C:\Classics\Projects\Webshop\Webshop.rsp.
d Click OK.

111

TestManager opens the Webshop project and displays the Test Asset Workspace in
the left window pane. Make sure you can read the tabs at the bottom of the Test
Asset Workspace. Move your pointer over the symbol on each tab to see its name
and then expand the workspace using the vertical divider until you can clearly see
the tab names. You are now ready to work with the project.

What Is Functional Testing?

Functional testing helps you determine whether a system behaves as intended. The
most natural way to test a system’s behavior is to use the application’s GUI to validate
that the system responds appropriately to user input. Testing can focus on both the
operation and the appearance of GUI objects. TestManager provides built-in support
for implementing and running functional tests created in Robot.

Working with Test Scripts

During test planning, you write test cases, as described in Chapter 6, Test Planning. A
test case describes the extent to which you will test an area of the application. It can
list the preconditions for performing a test, the input to provide during testing, the
variables you will examine, and the expected results of each test.

To implement a test, you start with a test case and create test scripts. You then
associate the test case with a test script. A test script has the following components:

» A set of properties, such as the name and purpose of the script.

= A file containing scripting language commands. You generate a script file when
you record activities with Robot or other scripting languages and tools.

Scripts and Modularity

You can record a test script that starts an application and proceeds through several
steps to achieve a certain end result. If a particular activity must be performed in
many test scripts, it makes sense to create a script that performs only this common
activity.

Instead, you can create a set of test scripts that all start with the same steps and
conclude by testing different parts of the application. Using Robot, you can create
short modular test scripts, which you can then combine and sequence into a suife in
TestManager. With this technique, you can reuse the same script in different tests, or
run these suites repeatedly against successive builds of your product. Or, you can
reuse a test script that has already been recorded to get an application to an
appropriate starting place for recording a subsequent script.

112 Rational Suite Tutorial

For example, you might create a test script for each of the following:

» Logging onto the system

» Selecting an item to purchase
» Completing a purchase

» Logging off the system

You can then run each test script individually, or run all scripts at once, in succession,
by combining them into a suite.

Getting to a Starting Point
Recall that in Chapter 6, Test Planning, you created the Display Estimated Ship Date

test case for your enhancement requirement. In this chapter, you reuse a test script
that was recorded to get the ClassicsCD.com application to an appropriate starting
place for recording a new test script for your test case.

Exercise: Prepare to use Robot.

1 Start Robot from TestManager by clicking Tools > Rational Test > Rational Robot.
2 In Robot, click Tools > GUI Playback Options.

3 On the GUI Playback Options dialog box, on the Log tab, make sure that the
following options are selected:

s Output playback results to log

2 View log after playback

2 Specify log information at playback
4 Click OK.
5 Quit Robot by choosing File > Exit.

Working with Test Scripts

You can record and playback a test script for this tutorial only if Microsoft Internet
Explorer is installed on your computer. (It does not need to be the default browser.) If
Microsoft Internet Explorer is not installed on your computer, continue reading this
chapter and resume performing the exercises starting with Playing Back the Script on a
New Build on page 120.

Chapter 10 - Functional Testing 113

Exercise: Playback a script that completes a sale.

1 From the Execution tab in the Test Asset Workspace in TestManager (the tree
browser in the left pane), expand Suites, and double-click ClassicsCD Buy
Beethoven Bach via.

Test scripts for this suite of the ClassicsCD.com Webshop project appear in the
right window (see Figure 35).

Figure 35 Viewing Test Scripts Using TestManager

B ClassicsCD Buy Beethoven Bach ¥1a B -0 x|
Suite | Event | Dependencies I

uite 1 Prompt for computers before running suite
Browszer-Launch ClassicsCD w1a: 1 time(z]
[l Catlgddd Beethoven: 1 time(s)

; Catlg-4dd Bach: 1 time(z]

CatlgGoTo Cashier: 1 timels)

[0 Scenarios

2 In the Test Asset Workspace, right-click ClassicsCD Buy Beethoven Bach via. From
the shortcut menu, click Run.

The TestManager Run Suite dialog box opens.

In the Build list, make sure that Build 1 is selected. (Use the defaults for the other
values.) If Build 1 is not selected, click Change, and from the Build list click Build 1.

3 In the TestManager Run Suite dialog box, click OK. If TestManager prompts you to
overwrite a test log, click No and either save or delete any open test logs. Then
resume this exercise at Step 2.

Do not interact with the ClassicsCD.com application while TestManager processes
your request to run the script and Robot plays back the scripts in the suite! If you

see a Windows message box that starts Do you want Windows to remember.. .,
wait. Robot will eventually continue.

The script transacts a sale with two line items and a payment. At certain points, the
script compares values in the application to a baseline value. When the script
finishes, TestManager displays the results of the test in the Test Log window. (If
necessary, minimize ClassicsCD.com to see the test results.) All or almost all the
comparisons (the verification points) pass.

In the Test Log window, you can learn more about the results by expanding the
scripts in the Event Type hierarchy. In some cases, you may see a warning next to
a line that says Unexpected Active Window. This warning means that during the

114 Rational Suite Tutorial

playback, an extra window opened on your screen (for example, the message box
that starts Do you want Windows to remember. ..). Robot noticed the window
but the window did not interfere with the test results. If Robot returned the
warning, double-click the warning line to see a screenshot of the unexpected
displayed in the Image Comparator window. After you finish, close the

Image Comparator window.

4 Close the Test Log window.

Recording the Script

You use Robot to record a script while exercising parts of your application’s GUIL
During recording, Robot translates the activities you perform into scripting language
commands. (Robot uses SQABasic for its scripting language. SQABasic resembles
Microsoft Visual Basic and contains additional commands tailored for automated
testing.) After you record a script, you can reuse it, for example, in regression tests
and in suites.

Starting to Record the Script

You have just run a prerecorded script to get the application to a known, consistent
starting place. You are now ready to create and record a new test script for the test
case Display Estimated Ship Date that you created in Chapter 6, Test Planning.
Exercise: Get ready to record the script.

Start recording the script from the point where the ClassicsCD Buy Beethoven Bach
vla suite finished.

1 Open the ClassicsCD.com Web site. Go to C:\Classics\ClassicsCD_com_sites\via and
then open Cashier.htm.

Your Web browser displays the Cashier page of ClassicsCD.com vla, an updated
version of the Web site.

2 Scroll to the bottom of the Checkout page so that you can see Place Order. Notice
that the estimated ship date appears.

3 In TestManager, click a2 (the Record GUI Script button).
Rational Robot starts and the Record GUI dialog box opens.
4 In the Name box, type Display Estimated Ship Date and then click OK.

The GUI Record toolbar appears (see Figure 36).

Chapter 10 - Functional Testing 115

Figure 36 The GUI Record Toolbar

5

Pause Recording

Stop Recording
Open Robot Window

N m 3‘7 jI::"—iDisplay GUI Insert Toolbar

Make the Checkout page of ClassicsCD.com the active window.

Creating a Verification Point

For this test script, you must create a verification point to establish a baseline value for
object properties or data in a specific part of the application. When you play back a
test script, Robot compares the value it finds to the baseline value you establish. You
can include any number of verification points in a test script.

Exercise: Record the script and create the verification point.

1

2

On the GUI Record toolbar, click ﬂ

On the GUI Insert toolbar, click g (the Object Data button). The Verification Point
Name dialog box appears.

In the Name box, type Verify Ship Date and then click OK.
The Select Object dialog box appears.

Click the check box command so that this dialog box will automatically close after
you choose a verification point.

Drag the hand pointer to the line on the Checkout page that starts: We estimate
that your order... (see Figure 37) using a drag-and-drop operation.

Figure 37 Creating a Test Verification Point Using TestManager and Robot

We est:imate&at your order will be shipped m 4 business days.

I you would [HTMLTable|e this order verify vour email address and
click here; I

The Object Data Tests dialog box appears, indicating that you have captured the
Contents of the HTML table. Click OK to view the captured text.

116 Rational Suite Tutorial

7 On the Object Data Verification Point dialog box:

You have now created a verification point and you have almost finished recording

a From the Verification method list, click Find Sub String Case Sensitive.

b Under Select the range to test, scroll to line 26 (We estimate that...)and

then click it so that it is the only line selected (see Figure 38).
¢ Click OK to close the dialog box.

Figure 38 Working with Test Verification Points Using TestManager

7 Dbject Data Yerification Point i =]
Selected object: HTMLT able.Index=1
D ata test: Contents

—Verification method

IFind Sub String Caze Sens 'I

Select the range to test: [Use right mouse button ta mark keys]

i B
21 |24 Eagle Circle
22| i
23
24

credit card you curre

this test script. The next time this script runs, it will verify that the text you captured is

still displayed. You can include any number of verification points in a script. This

script has only one.

Finishing the Recording Session

You can now finish the recording session.

Exercise: Perform the final steps in the script.

1

2

On the Checkout page, click Place Order.
On the GUI Record toolbar, click B to stop recording.

Robot shows the Display Estimated Ship Date script you just recorded.

Read the script and notice how the commands correspond to the actions you

performed as you recorded the script.

Quit Robot and close ClassicsCD.com.

Chapter 10 - Functional Testing

117

Adding a Test Script to a Suite

Recall that before you recorded the Display Estimated Ship Date script, you set up the
application by running the test suite ClassicsCD Buy Beethoven Bach v1la. In future
testing, you need to replay the new Display Ship Date script repeatedly. However, you

want to avoid going through manual steps to set up the application each time.

Instead, you can add the Display Ship Date script to an existing test suite that calls

other scripts to set up and shut down the application.

Exercise: Add the new script to a test suite.

1 From the Execution tab in the Test Asset Workspace in TestManager, go to Suites >

ClassicsCD Shop for CDs v1b and then double-click this entry.

Test cases and scripts for this suite of your project appear in the right pane (see

Figure 39).

Figure 39 Viewing a Test Suite Hierarchy Using TestManager

B ClassicsCD Shop for CDs v1h N

=101 |

Suite I Ewent

| Dependencies I

1| Sh Dz w1k : Prompt for computers befare running suite
Browser-Launch ClassicsCD »1b: 1 time(s)
% Add Beethoven: 1 time(z)
<8 AddBach: 1 timeds)
Catlg-GoTo Cashier: 1 time(s)
i % FPurchase [tems: 1 time(z]
Browsger-Cloze: 1 time(s)
----- 00 Scenaros

2 In this view, right-click the Purchase Items: 1 time(s) test case. On the shortcut

menu, click Insert > Test Script.

The Run Properties of Test Script dialog box appears.

3 In the Test script source box, click GUI- (Rational Test Datastore).

4 In the Select section of the dialog box, scroll to and click the test script

Display Estimated Ship Date.
5 Click OK.

The Display Estimated Ship Date test script appears in the hierarchy.

6 Choose File > Save.

118 Rational Suite Tutorial

The test script is now associated with this test suite.

The scripts and suites you develop form a set of regression tests that you run after
every software build. The outcome of a particular test can change during subsequent
iterations as old defects are fixed and new defects and other changes are introduced.

Incorporating a Test Script into Your Test Plan

After you create and record a test script, and associate it with one or more suites, it is
important that you incorporate it into your test plan. Recall that in the ClassicsCD test
plan, test case folders are organized by use cases. In Chapter 6, Test Planning, you
created the test case Display Estimated Ship Date. In the next exercise, you will
associate the new test script with this test case.

Exercise: Add the new script to a test case.

1 On the Planning tab of the Test Asset Workspace in TestManager, go to
Test Plans > ClassicsCD and then double-click ClassicsCD.

The ClassicsCD test plan hierarchy appears.

2 In this window, go to ClassicsCD > Purchase CD UC > Ul > Order Confirmation Page
> Display Estimated Ship Date.

3 Right-click Display Estimated Ship Date and then click Properties on the shortcut
menu.

The Properties dialog box for your test case opens.

4 On the Implementation tab, under Automated implementation click Select and then
click GUI - (Rational Test Datastore) from the drop-down menu.

The Select Test Script dialog box appears.
5 Scroll to and click Display Estimated Ship Date and then click OK.
6 In the Test Case Properties window, click OK.
7 Choose File > Save All.

The test script is now associated with the test case.

Chapter 10 - Functional Testing 119

Playing Back the Script on a New Build

Testers and developers can work in parallel. So, while testers build test scripts and
suites, developers are typically creating new builds of the application. You recorded a
script against Build 1, but now the developers have delivered Build 2 with changes to
the UL It is important that you run your suites on the newest build.

Testers or other members of your team may want to run test cases early in the project.
Team members can right-click any test case in your test plan and run it from the
shortcut menu.

For the purpose of this exercise, and because we are in the testing phase of Version 2
of the ClassicsCD.com development project, we will run the test script from the suite
itself.

Exercise: Run the test suite on the newest build.

1 From the Execution tab in the Test Asset Workspace of TestManager, right-click
ClassicsCD Shop for CDs vib and then click Run on the shortcut menu.

The TestManager Run Suite dialog box appears. Notice that Build 1 is selected in
the Log Information area.

2 C(Click Change. From the Build list, click Build 2. (Use the defaults for the other
values.) Click OK.

3 Click OK in the Run Suite dialog box.

Note: Do not interact with the ClassicsCD.com application while TestManager
processes your request to run the script and Robot plays back the scripts in the test
suite! If you see a Windows message box that starts Do you want Windows to
remember. . ., wait. Robot will eventually continue.

Robot starts the application, interacts with it, captures properties and data at
verification points, and quits the application. When it has finished running the
script, it displays the results on the Details tab of a new test log.

4 In the Test Log window, click the Details tab to view the test results.

120 Rational Suite Tutorial

Analyzing the Results

TestManager shows which verification points passed and which failed. If a
verification point fails and then its script also fails. You can inspect the test log in

TestManager and decide how to handle any failures.

The script you recorded, Display Estimated Ship Date, passes despite the UI changes
in Build 2. However, notice that other scripts have failed on this new build.

Handling Failures

The outcome of a particular test can change during subsequent iterations as old
defects are fixed and new defects and other changes are introduced. There are two

types of script failures:

* Anintentional change is one in which the script fails due to planned changes in the
application. In this case, you want to change the baseline for the verification point.

= A real error is one in which the script fails with a correct baseline. To report a real
error, submit a defect record using Rational ClearQuest, which is integrated with

Rational TestManager.

Handling an Intentional Change

Exercise: Inspect the first failure.

1 In the Details tab of the Test Log window, go to Computer Start (Shop for CDs vib
[1]) > TestCase Start (Purchase Items) > Script Start (Catlg-Purchase ltems) (see

Figure 40).

Figure 40 Selecting the First Failure Using TestManager

Ewvent Type
[=1 Suite Start [ClassicsCD Shop for CDs w1h]

Bl Computer Start [Shop for CDs «1b [1])

 Script Start [Browser-Launch ClassicsCD v1b]
 TestCaze Start [Add Beethoven)
 TestCaze Start [Add Bach]
 Script Start [Catlg-GoT o Cashier)
- TestCaze Start [Purchase [tems]

Werification e Header - Object ...
Werification Point [Order Summary - Objec...
“Script End [Catlg-Purchaze ltems]
TestCase End [Purchaze |tems]
+ Seript Start (Display E stimated Ship Date]
- Script Start [Browser-Cloze]

i Computer End
""" Suite End [ClazzicsCD Shop for CDz v1b]

Chapter 10 - Functional Testing 121

2 Double-click the failure, Verification Point (Page Header - Object Data).

The Grid Comparator for the page header appears, showing that the page header
changed from Checkout to Cashier. It turns out that this was a planned change and
results from UI modifications.

In this case, you want to change the baseline so that the next time the script plays
back, it compares the page header to the new value. (You change the baseline if a
test fails because of an intentional change in the application.)

3 In the Grid Comparator window, click File > Replace Baseline with Actual.

The Grid Comparator displays a box asking if you want to confirm the
replacement.

4 C(lick Yes.

The Grid Comparator updates the baseline and reports that there are no
differences.

5 Close the Grid Comparator.

Handling a Real Error

Exercise: Inspecting another failure

1 In the Test Log window, double-click the next failure, Verification Point (Order
Summary - Object Data).

The Grid Comparator appears.

On line 2, the baseline shows that you were expecting to purchase a Beethoven
Symphony, but the actual item placed into your shopping cart was a Mozart
Symphony. This is a real error. Because these CDs are priced differently, this error
generates a different purchase amount and the corresponding lines are also
flagged as differences in the Grid Comparator.

2 C(Close the Grid Comparator.

122 Rational Suite Tutorial

Reporting the Error

To report the error, use ClearQuest and its integration with TestManager.

Exercise: Report the error

1

Right-click Verification Point (Order Summary - Object Path) and then choose
Submit Defect on the shortcut menu.

If this menu command appears dimmed, ClearQuest is not installed on your
computer and you cannot complete this exercise.

If ClearQuest is installed on your computer, the ClearQuest Login dialog box
appears.

Note: Before you continue, make sure you completed the exercise on page 32,
when you attached the change request database for the Webshop project.

In the ClearQuest Login dialog box:
a Inboth the User Name and Password boxes, type pat.

b From the Database list, ensure that CLSIC is the selected Database. If not, click
CLSIC: Rational Demo from the list.

CLSIC is the name of the database that contains the change requests (defects
and enhancement requests) for ClassicsCD.com.

¢ Click OK.

ClearQuest opens a Submit Defect dialog box and automatically assigns a number
to your defect. Red items indicate boxes where an entry is required: you cannot
submit a defect until all required boxes contain valid values.

3 In the Headline box, type Wrong item in shopping cart.

4 From the Severity list, click 1-Critical (see Figure 41).

Chapter 10 - Functional Testing 123

Figure 41 Submitting a defect using ClearQuest

Submit Defect CLSICO0D000130 1'

Iterations & Motes I Unified Change kanagement I Fequirements I

Main | Test Data I Environment I Altachments ()3
1D: |CLSICo0000 30 Statel [Submitted

) — Cancel |
Headline: IW’rong item in shipping car
Suite Project: IWebsth vl Fepwords:
LCH Project: I vl J
Owner: I vl

Symptoms:

Priority: I vl |
Severity: |1 Critical - [
Customer Pricrity: I vl
Description:
****** Auto-Generated by Testh anager ="'

5 Go to the Test Data tab. Notice that TestManager has already filled in boxes related
to the test script for this defect.

6 Click OK to close the Submit Defect dialog box.

7 In the Test Log window, scroll to the right until the Defects column is visible.
Notice that the defect you just entered has been automatically associated with the
verification point.

You have finished testing this iteration of ClassicsCD.com.

124 Rational Suite Tutorial

Summary

For More Information

For more information about testing strategy, click Help > Extended Help from any
Rational Test tool. In the Extended Help browser, read the content of interest to you.

To get started with Rational Test tools, see the Rational TestManager User’s Guide and
the Rational Robot User’s Guide, both available on the Rational Solutions for Windows —
Online Documentation CD-ROM.

Cleaning Up

Quit TestManager. If prompted to save any test results, click Yes.

If necessary, quit ClassicsCD.com.

What You Learned in This Chapter

In this chapter, you learned:

Functional testing helps you determine whether a system behaves as intended.
Rational TestManager helps you plan, develop, run, and analyze functional tests.

You develop test scripts by interacting with the application using Rational Robot
and including verification points in your scripts.

You can develop modular scripts and then use suites to call those scripts. You
reuse scripts each time developers deliver a new software build.

Robot makes it easy to address problems that are discovered during testing.

The Rational ClearQuest integration with TestManager automates much of the
error reporting process.

What’s Next

Now that you have learned how to test an application for an iteration of development,
you are nearly finished with the tutorial! In the next chapter, you plan the next
iteration of ClassicsCD.com.

Chapter 10 - Functional Testing 125

126 Rational Suite Tutorial

Planning the
Next Iteration

The ClassicsCD.com enhancement is now complete. You have finished work on this
iteration. This chapter describes the steps you take to begin planning the next
iteration.

Audience

This chapter applies to all members of a software development team.

Getting Your Bearings

In this chapter, you use Rational ClearQuest. To determine whether ClearQuest is
installed on your computer, refer to the tool chart you filled out in Table 1, Rational
Suite Tools, on page 27.

If ClearQuest is not installed, you can still benefit from reading this chapter, but you
will not be able to perform the exercises.

If ClearQuest is installed, make sure you completed the exercisepage 32, when you
attached the change request database for the Webshop project. Then:

1 Click Start > Programs > Rational Software > Rational ClearQuest.
2 In the ClearQuest Login dialog box:
a Inboth the User Name and Password boxes, type pat.

b From the Database list, ensure that CLSIC is the selected Database. If not, click
CLSIC: Rational Demo from the list.

CLSIC is the name of the database that contains the change requests (defects
and enhancement requests) for ClassicsCD.com.

¢ Click OK.

ClearQuest displays two panes. The left pane lists a hierarchy of charts and reports
you can view. The right pane is blank.

127

Assessing the State of your Project

In Chapter 10, Functional Testing, you used ClearQuest to report a defect in the
software. In this chapter, you learn how using ClearQuest helps you to assess the state
of your project.

ClearQuest is a change request management tool that helps you track and manage all
activities (such as defects and enhancement requests) associated with a project.

ClearQuest stores its information in a user database, and comes with a ready-to-use
schema. A schema describes the fields in the user database. ClearQuest is easy to
change; an administrator can customize and define queries, records, fields, activities,
and states specific to your development process.

Showing the Workload

At the end of an iteration, you want to review each project member’s workload so that
you can most effectively allocate work for the next iteration. Using ClearQuest, you
can display a workload chart. From a workload chart, you can drill down to
information about a specific team member’s workload. This feature can be helpful if
you are interested in learning about the defects and related details assigned to an
individual.

Exercise: Display a chart showing workload.

1 In the left pane of ClearQuest, go to Public Queries > Distribution Charts-
All Projects > Defects by Owner.

2 Double-click the State entry (see Figure 42).

Figure 42 Choosing Query Views Using ClearQuest

E-E5 Workspace: Queries, Charts, Reports

0] Personal Queries

-5 Public Queries
E1-[C Aging Charts-all Projects
D Classics PoinbCfSale Project
(-1 ClassicsCD Wehb Project
Ea Distribution Chatts-All Projects
. B3 Defects by Cwner

([Defects by Priarity
B#-[Z] Defects by State

128 Rational Suite Tutorial

ClearQuest displays the workload chart. If necessary, maximize the chart to see the
details more clearly. The turquoise bar on the left represents unassigned defects
(see Figure 43).

Figure 43 Viewing Defects and Workloads Using ClearQuest

Defects by Owner and State

Submitted
Closed
Assigned
Resolved
Opened

(EEmD

Count

NoValue alex chris dale dana devon jan morgan sandy

Owner

3 Click once in the various regions of Jan’s bar to learn more about the state and
number of defects.

4 Double-click the turquoise bar (the leftmost bar) to list the defects summarized in
that bar. These are defects that have not yet been assigned to team members.

ClearQuest displays a confirmation asking if you want to create a query.
5 Click OK.

ClearQuest lists the defects on the Result Set tab and displays details about the
selected defect, so you can quickly drill down to details about a specific defect, and
modify it as needed. This ClearQuest feature helps you plan a new iteration. For
example, using this ClearQuest query, you can:

2 View the unassigned defects
2 Assign a defect (from the Main tab)

2 Link them to requirements (from the Requirements tab).

Chapter 11 - Planning the Next lteration 129

6 Notice that defect ID CLSIC00000130, submitted in Chapter 10, Functional Testing,
is included in this list (see Figure 44).

Figure 44 Viewing Defects Using ClearQuest

id Owner State
CLSIC00000073 Submitted
CLSIC00000074 Submitted
CLSIC00000084 Submitted
CLSIC00000088 Submitted
CLSIC00000089 Submitted
CLSIC00000091 Submitted
52

Submitted

Result set A Guery editar A Dizplay editar /

PQC I Test Data I Environment
Unified Change M anagement I ClearCaze I Fequirements Apply |
Main | Analyzis I Maotes I Fiezolution I Attachments Histary

D: ICLSIEDDDDm 30 State: ISubmitted Fewvert |
Headline: itern in shippi
jul IWrong item in shipping cart Print Record |
Suite Project: IWebshop vl Kepwuords:
UCM Praject: I vl J Actionz + I

Owner: I vl

B Symptons:

Priority: I vl .|
Severity: |1 Critical - [
LCustomer Pricrity: I vl

Description:

I<|<|ID: 000001 30 >|>I|

Working with Enhancement Requests

Recall that you started the tutorial by looking at an enhancement request that you
later implemented. In the next exercise, you find more enhancement requests to
implement in the next iteration.

130 Rational Suite Tutorial

Exercise: Examine the enhancement requests.

1

In the left pane of ClearQuest, go to Public Queries > ClassicsCD Web Project and
then double-click All Project Enhancement Requests.

In the right pane, click CLSIC00000036, Need to notify customer via email when order
ships to display details about this enhancement request. Notice that the
enhancement request is in the Submitted state, but it has not yet been assigned.
Click the History tab to learn more about the request and its history.

Now click CLSIC00000031, Need to notify customer via e-mail when order ships to
display its details. Notice that the enhancement request is in the Assigned state. To
see who is assigned to this request, click the Analysis tab.

Notice that both ClearQuest entries request the same enhancement for the online
store. It is typical for several entries with a very similar, if not identical,
enhancement request or defect to be stored in a change request database. This
allows project teams to evaluate, or triage, each ClearQuest entry. Team members
can determine more than just to whom requests or defects should be assigned, but
also identify those entries which are duplicates of existing or new requirements,
modify them to detail the duplication, and close them with this resolution
description.

Exercise: Modify an enhancement request.

1

Go back to the previous enhancement request you looked at (CLSIC00000036,
Need to notify customer via email when order ships). Since we know that a similar
request has already been assigned, we’ll close this request as a duplicate.

On the Main tab, click Actions and then click Duplicate.
In the Mark as Duplicate dialog box, enter 31 and then click Find.

Notice that the value in the Enter ID field changed to CLSIC00000031, which is the
full ID of the enhancement request.

Click Show more details to make sure you have identified the correct record to
which CLSIC00000036 is a duplicate.

When you are finished reviewing the data, click Cancel to return to the
Mark as Duplicate dialog box.

Chapter 11 - Planning the Next Iteration 131

Click OK to mark CLSIC00000036 as a duplicate of CLSIC00000031.
On tabs where you must fill in a box, a red square appears.
Go to the Analysis tab.

a The Owner box is marked red, indicating that a value is mandatory. Recall that
you logged in as pat and you are determining the resolution for this entry. So
from the Owner list, click pat.

Go to the Resolution tab. Notice that TestManager has already filled in boxes
related to the duplicate of this record.

Click Apply. You may need to click Run Query from the toolbar to refresh the query
results.

You will see that enhancement request CLSIC00000036 is now in the Duplicate
state.

Other Planning Activities

During an iteration, you usually work both to correct defects and to implement
enhancements. As part of planning, you might also use ClearQuest or RequisitePro to
identify the work to do in the next iteration.

During iteration planning, you can produce a Rational SoDA report showing the
defects and enhancements planned for the next iteration. You can also use
ProjectConsole to automatically generate charts and gauges with metrics gathered
from tools like RequisitePro and ClearQuest. This report helps you analyze the status
of your next project and share it with members of your team.

What Will Happen in the Next Iteration?

The next iteration will proceed much as this one has. After it’s planned, the following
activities will transpire:

All team members use the Rational Unified Process (RUP) throughout the project as
a guide for software development best practices, and as a source of information
about software engineering.

Project leaders and managers use the RUP Builder to refine their RUP configuration
to better meet the needs of the next iteration.

132 Rational Suite Tutorial

All team members use Unified Change Management (UCM) throughout the project
to manage change in their system’s development.

All team members use the Rational Developer Network to access targeted
development content, skill-building resources, and an online community of
Rational Suite users.

Analysts discuss planned enhancements with stakeholders. Using RequisitePro
and Rose, the analyst creates one or more use cases and supplies step-by-step
details, including basic flow and alternative flows.

Testers use Rational TestManager to plan the tests for this iteration. The engineers
create test plans, develop test requirements, and design tests.

Developers use visual modeling techniques available in Rose to describe how
planned enhancements fit within the system architecture.

All team members use Unified Software Project Management (USPM) to compile
information so they can assess status, trends, quality, and other aspects critical to
project management and reporting.

All team members use ProjectConsole and SoDA to gather project metrics and create
project reports. Information presented in charts, gauges, and reports is useful
during discussions with stakeholders and in design sessions.

Developers use Rose to initiate implementation of the enhancement.

Developers and testers use Purify, Quantify, and PureCoverage to verify the
iteration’s reliability.
Testers use TestManager and Robot to verify that the enhancements meet

requirements, that defects are fixed, and that no regression failures have occurred.

All team members use ClearCase LT to make changes to project artifacts. Project
members each work in private development workspaces. When team members
finish their work, they deliver artifacts to the team’s public integration workspace.

Project leaders and managers use ProjectConsole, ClearQuest, SoDA, and
RequisitePro to assess that state of the project from requirements through release.
Later, they use these tools to plan subsequent iterations.

Chapter 11 - Planning the Next Iteration 133

Summary

For More Information

To learn more about specific topics described in this book, consider taking a Rational
University course. In these courses, you can get hands-on experience with a specific
Rational tool, or you can learn more about software engineering principles. To learn
more about these courses, see http://www.rational.com/university.

Cleaning Up
When you are ready, quit ClearQuest.

If the Rational Unified Process is still open, either close it now or leave it open and use
it as a supplement to learn more about Rational Suite on your own.

What You Learned in This Chapter

In this chapter, you learned:

» (ClearQuest is a powerful tool that helps you manage and monitor change requests
on your project.

= How the next iteration will proceed, and the activities that will transpire after
planning the project.

What You Learned in This Tutorial

» Rational Suite unifies your team by enhancing team communication.

* Rational Suite optimizes individual team member productivity by providing
market-leading development tools for each member of a software development
team.

= Rational Suite simplifies adoption by providing a comprehensive set of integrated
tools that have simple installation, licensing, and user support.

* Rational Suite supports the entire development lifecycle and the primary roles on
a development team — analysts, developers, testers, and managers.

134 Rational Suite Tutorial

http://www.rational.com/university
http://www.rational.com/university/

What’s Next

Congratulations! You have finished the Rational Suite tutorial. To send us any
comments and suggestions that will help us improve our product documentation, go
to http://www.rational.com/contact/techpub.jsp.

We hope that by using Rational Suite to plan, design, implement, and test
applications, your team will successfully meet the challenges of rapidly developing
high-quality software.

Your next job is to learn more about the tools you will use on your next project and get
to work!

Optional Activity: Join the Rational Developer Network

To access articles, discussion forums, and Web-based training courses on developing
software with Rational Suite, we recommend that you join the Rational Developer
Network.

1 If a current version of Rational Suite is installed on your computer, click Start >
Rational Software > Logon to the Rational Developer Network and follow the
registration instructions.

2 If a current version of Rational Suite is not installed on your computer, from your
Web browser go to http://www.rational.net and follow the registration instructions.

After you register and log in to the Rational Developer Network, scan the Web site
to learn more about the targeted resources, communication, and collaboration
resources available. Using the Rational Developer Network will help you get
started on your own projects using Rational Suite.

Chapter 11 - Planning the Next Iteration 135

http://www.rational.com/contact/techpub.jsp
http://www.rational.net/

136 Rational Suite Tutorial

Glossary

activity. A unit of work that a team member performs.
actor. Someone or something, outside the system or business, that interacts with the system or business.

analyst. A person who determines what the system does, specifies and manages requirements, and
represents the user’s needs to the development organization.

artifact. A piece of information that is produced, modified, or used by a process; defines an area of
responsibility; and is subject to version control. There are many types of artifacts, including
requirements, models, model elements, documents, and source code.

automated testing. A testing technique wherein you use software tools to replace repetitive and
error-prone manual work. Automated testing saves time and enables a reliable, predictable, repeatable,
and accurate process.

baseline. A consistent set of artifact versions that represent a stable configuration for a project’s
components.

class. In object-oriented analysis and design, a set of objects that share the same responsibilities,
relationships, operations, attributes, and semantics.

component. A nontrivial, nearly independent, and replaceable part of a system that fulfills a clear
function in the context of a well-defined architecture.

component-based architecture. A design technique in which a software system is decomposed into
individual components.

configuration management. Helps teams control their day-to-day management of software
development activities as software is created, modified, built, and delivered. Comprehensive software
configuration management includes version control, workspace management, build management, and
process control to provide better project control and predictability.

developer. A person who determines how the system works; defines the architecture; and creates,
modifies, tests, and manages the code.

discipline. The summary of all activities you can go through to produce a particular set of artifacts.

edition. Sets of Rational Suite tools that are customized for each functional area of a software
development team.

element. An object that encompasses a set of versions for software project artifacts. Elements can be
either files or directories.

Extended Help. A powerful feature of Rational Suite that provides links from Rational Suite products to
the Rational Unified Process and any customized information you want to add.

feature creep. A term used by software development teams to describe the tendency to add unplanned
changes to product features throughout (and often late in) the development process.

forward engineering. The process of generating code from a Rational Rose visual model. See visual
model.

137

implementation. The process of testing developed components as units and integrating the results into
an executable system.

iterative development. The process of delivering a distinct sequence of executable files according to a
plan and evaluation criteria over the course of a project. Each executable file is more robust or contains
more features than the previous executable file; each new iteration moves you closer to the goal of
delivering a successful project.

method. In object-oriented analysis and design, the implementation of an operation or procedure.
metrics. The measurements of project activity.

object. In object-oriented analysis and design, a software component that contains a collection of data
and methods (procedures) for operating on that data.

phase. The time between two major project milestones, during which a well-defined set of objectives is
met, artifacts are completed, and decisions are made to move or not move into the next phase.

project. A project is a temporary endeavor undertaken to create a unique product or service. Temporary
means that every project has a definite beginning and a definite ending. Unique means that the product
or service is different in some distinguishing way from all similar products and services. Projects are
often critical components of the performing organizations' business strategy. Projects are performed by
people, constrained by limited resources, and planned, executed, and controlled.

project leader. A person who allocates resources, shapes priorities, coordinates interactions with the
customers and users, and generally tries to keep the project team focused on the right goal. A project
leader also establishes a set of practices that ensures the integrity and quality of project activities and
artifacts.

Rational Administrator. Tool that manages Rational projects and associates repositories to define a
Rational project. For more information, see Using the Rational Administrator.

Rational ClearCase LT. Provides comprehensive configuration management, including version control,
workspace management, and process control.

Rational ClearQuest. A highly customizable change request management tool that helps users track any
type of change activity — defects and fixes, enhancement requests, documentation changes, and so on —
throughout the software development lifecycle. The ClearQuest Web interface allows users to perform
all major ClearQuest operations.

Rational ClearQuest MultiSite. A highly customizable Windows and Web-based change request
management tool that helps geographically distributed users track any type of change activity — defects
and fixes, enhancement requests, documentation changes, and so on — throughout the software
development lifecycle by easily replicating a centralized database to each remote site and then
synchronizing the changes made at each site with changes made at other sites.

Rational Developer Network. A Web-enabled, searchable knowledge base that aggregates best
practices, reusable artifacts and assets, and Web-based training to help software professionals expand
their professional skills. The Rational Developer Network is available to Rational customers as a
component of Rational Suite.

Rational Process Workbench. A highly customizable, Web-enabled, searchable knowledge base that
enhances team productivity and delivers company-specific best practices using guidelines, templates,
and Tool Mentors for critical software development activities.

138 Rational Suite Tutorial

Rational ProjectConsole. A highly customizable project management tool that helps users select and
deploy best practices, plan and carry out iterative projects, and measure progress and quality
throughout the software development lifecycle.

Rational PureCoverage. Automatically pinpoints areas of code in software applications that have not
been tested.

Rational Purify. Automatically pinpoints hard-to-find run-time memory errors in software applications.
Rational Quantify. Automatically pinpoints performance bottlenecks in software applications.

Rational RequisitePro. Helps teams easily and comprehensively organize, prioritize, track, and control
changing requirements of a system or application. Rational RequisitePro does this through a deep
integration with Microsoft Word and a secure, multiuser database. The RequisiteWeb interface allows
users to perform all major RequisitePro operations.

Rational Robot. Helps with functional testing by automating record and playback of test scripts. Helps
you organize, write, and run suites, and capture and analyze the results.

Rational Rose. The world’s leading visual component modeling and development tool; helps you model
software applications that meet current business needs.

Rational SoDA (for Word). Software Documentation Automation — Overcomes the obstacles of
consolidating data from different development tools. Helps you automate the creation of comprehensive
software, systems, and project documents from multiple sources.

Rational Suite. An easy-to-adopt-and-support solution that unifies software teams and optimizes the
productivity of analysts, developers, testers, and project managers.

Rational Suite AnalystStudio. Edition of Rational Suite optimized for system definition. Contains the
Team Unifying Platform and Rational Rose (Professional Data Modeler Edition).

Rational Suite DevelopmentStudio. Edition of Rational Suite optimized for software development.
Contains the Team Unifying Platform plus Rational Rose (Enterprise Edition), Rational Purify, Rational
Quantify, and Rational PureCoverage.

Rational Suite DevelopmentStudio — RealTime Edition. Edition of Rational Suite optimized for system
developers and designers of real-time or embedded systems. Contains the Team Unifying Platform plus
Rational Rose RealTime, Rational Purify, Rational Quantify, and Rational PureCoverage.

Rational Suite Enterprise. Edition of Rational Suite containing all Rational Suite tools.

Rational Suite Team Unifying Platform. Edition of Rational Suite optimized for all members of
software development teams to maximize productivity and quality. This Suite edition includes the
Rational Unified Process, RequisitePro, ClearCase LT, ClearQuest, SoDA, TestManager, and
ProjectConsole.

Rational Suite TestStudio. Edition of Rational Suite optimized for testers. Contains the
Team Unifying Platform and Rational PureCoverage, Rational Purify, Rational Quantify, Rational Robot,
and Rational TestFactory.

Rational TestManager. Provides management and control of all test activities from a single, central
point, including the ability to control and view legacy and proprietary test assets. It improves team
productivity by making test results and progress toward goals immediately available to all team
members.

Glossary 139

Rational Unified Process. A Web-enabled, searchable knowledge base that enhances team productivity
and delivers software best practices through guidelines, templates, and Tool Mentors for critical
software development activities.

real-time application. An application or system with stringent requirements for latency, throughput,
reliability, and availability. Typically understood as representing operations which happen at the same
rate as human perceptions of time.

requirement. A condition or capability of a system, either derived directly from user needs or stated in a
contract, standard, specification, or other formally imposed document.

requirements management. A systematic approach to eliciting, organizing, and documenting a system'’s
changing requirements, and establishing and maintaining agreement between the customer and the
project team.

reverse engineering. The process of creating or updating a Rose visual model from existing code, so that
the visual model and code are kept in sync. See visual model.

risk. The probability of adverse project impact (for example, schedule, budget, or technical).

risk management. Consciously identifying, anticipating, and addressing project risks and devising
plans for risk mitigation, as a way of ensuring the project’s success.

role. The behavior and responsibilities of an individual, or a set of individuals working together as a
team, within the context of a software engineering organization. Traditional roles on a software
development team include analysts, developers, testers, and managers or project leaders.

round-trip engineering. The ability to generate code from a Rose visual model (see forward engineering),
and to update a Rose model file from source code (see reverse engineering).

stream. In UCM, this provides configuration instructions for your view (see view), and tracks activities
and baselines (see baselines).

test case. A set of test inputs that describe a testable and verifiable behavior in a system, the extent to
which you will test an area of an application, and the results of each test.

test configuration. The sequence of attributes for potential organizational structures of the system that
you will apply to your test cases.

tester. A person who creates, manages, and executes tests; ensures that the software meets all its
requirements; and reports the results and verifies fixes.

test input. Any artifact used to develop a system, and can be used to influence testing.

test plan. Contains information about the purpose and goals of testing within a project, and the
strategies to be used to implement testing.

Tool Mentor. Step-by-step instructions on how to use specific Rational tools to perform activities as
described in the Rational Unified Process.

traceability. The ability to trace one project element to other, related project elements.

Unified Change Management (UCM). The Rational approach to managing change in software
development, from requirements to release. UCM spans the development lifecycle, defining how to
manage changes to requirements, design models, documentation, components, test cases, and source
code.

140 Rational Suite Tutorial

Unified Modeling Language (UML). The industry-standard language for specifying, visualizing,
constructing, and documenting software systems. It simplifies software design, and communication
about the design.

use case. A sequence of actions a system performs that yields observable results of value to a particular
actor. A use case specification contains the main, alternate, and exception flows.

Unified Software Project Management (USPM). The Rational approach to managing software projects,
from requirements to release. USPM spans the development lifecycle, focusing on compiling information
to assess status, trends, quality, and other aspects critical to project management and articulation of
progress.

version control. The process of tracking the revision history of files and directories.
view. A ClearCase LT object that provides a work area for one or more users to modify source versions.

vision document. A document that contains a high-level view of the user’s or customer’s understanding
of the system to be developed.

visual model. A graphic representation of a system’s structure and interrelationships.

workflow. The sequence of activities performed by roles within a discipline to attain an observable
value.

Glossary 141

142 Rational Suite Tutorial

Index

A

activity 42, 49, 137
and ClearCase LT 52
actor 44, 137
analyst 21, 137
tools 63
AnalystStudio 21, 139
architecture
component-based 17
visual modeling 86
artifact 42, 49, 61, 72, 137
and ClearCase LT 52
managing change 49
artifacts 30
automated testing 105, 137

B

baseline 52, 137
promoting 52

budget and predictability 38

builds 18

C

change control 18
change set 52
change, managing 18
child requirement 65
class 137
class diagram 91
identifying (Rose) 91
ClassicsCD.com
installing 28
overview 28
running 33
ClearCase LT 20, 49, 50, 96, 101, 138
and ClearQuest 51

and UCM 51
Web interface 20

ClearQuest 20, 34, 50, 96, 101, 127, 138

and ClearCase LT 51
and Robot 121, 123
assessing project status 128

attaching database to a Rational project 31

schema 128
starting 127
Web interface 20
ClearQuest MultiSite 20, 138
code, implementing 92
component 17, 137
component-based architecture 137
designing (Rose) 17
configuration management 20, 49, 137
Customer Support xiii

D

database (RequisitePro) 61
defect reporting 121, 123
designing

tests 79

designing component-based architecture 17

developer 21, 137
tools 63
developing software
See software development

development stream (ClearCase LT) 51
development view (ClearCase LT) 51
DevelopmentStudio 21, 139
RealTime Edition 139
diagram window (Rose) 63, 85, 91
discipline 42, 137
disciplines 39
document (RequisitePro) 61
documentation
resources Xi

143

E

edition 137

element 137

Enterprise Edition
Rational Suite 139
Rose 22

error reporting 121, 123

Extended Help 68, 137

F

feature creep 137
forward engineering 137
functional testing 111, 112

G

GUI Record toolbar 115

H

Help
Rational Customer Support xiii
resources Xi

Help, Extended 68, 137

implementations, in test 76, 138
implementing code 92

installing tutorial sample application 28

integration stream (ClearCase LT) 51
integration view (ClearCase LT) 51
iteration 41
iterative development 16, 138

and Rational Unified Process 40

J

Java
and PureCoverage 107
and Quantify 108
and Rose 92

joining a project 51

144 Rational Suite Tutorial

L

link
requirements and defects 129
suspect, RequisitePro 67
traceability, RequisitePro 67

M

managing 96
managing change 18, 49
managing requirements
See requirement, managing
managing risk 72
managing software changes 18
measuring
project status 96
memory leaks 106
method 138
metrics 138
Microsoft Project (RequisitePro) 82
Microsoft Visual Basic
and PureCoverage 107
and Quantify 108
and Rose 92
Microsoft Visual C++
and PureCoverage 107
and Purify 106
and Quantify 108
and Rose 92
Microsoft Word
and RequisitePro 59

o)

object 138
identifying in Rose 91

P

parent requirement 65
performance testing 23

code 22

system 23, 81
performance testing, code 108
phase 41, 138

planning a script, TestManager 115
playing back a script 120
prerequisites of tutorial 27
process
See Rational Unified Process
Professional Data Modeler Edition
Rose 21
project 138
project leader 138
project metrics (ProjectConsole) 99
project state, assessing 128
project status 96
ProjectConsole 99, 139
PureCoverage 22, 81, 105, 107, 139
and Java 107
and Microsoft Visual Basic 107
and Microsoft Visual C++ 107
Purify 22, 81, 105, 106, 139
and Microsoft Visual C++ 106

Q

quality engineer, role of 23
quality, verifying
See testing
QualityArchitect 22
Quantify 22, 81, 105, 108, 139
and Java 108
and Microsoft Visual Basic 108
and Microsoft Visual C++ 108

R

Rational 24
Rational Administrator 138

attaching change request database to a Ratio-

nal project 31

registering a Rational project 30
Rational ClearCase LT

See ClearCase LT
Rational ClearQuest

See ClearQuest
Rational Developer Network 21, 135, 138
Rational Process Workbench 25, 138
Rational project 30, 51

datastore 32

register 30

Rational PureCoverage
See PureCoverage
Rational Purify
See Purify
Rational Quantify
See Quantify 22
Rational Robot
See Robot
Rational Rose 63
See Rose
Rational SoDA
See SODA
Rational Software, mission 15
Rational Suite 139
AnalystStudio 21, 139
benefits 18, 19
ContentStudio 139
DevelopmentStudio 21, 139
DevelopmentStudio - RealTime Edition 139
documentation roadmap xii
Enterprise Edition 139
summary table 25
Team Unifying Platform 19, 139
TestStudio 23, 139
tools 19, 27
Rational Synchronizer 139
Rational TestFactory
See TestFactory
Rational TestManager 139
See TestManager
Rational Unified Process 18, 19, 37, 140
Extended Help 68
overview 38
phases and iterations 40
starting 37
Tool Mentor 45
real-time application 140
rebasing a stream (UCM) 52
registering a Rational project 30
reports, creating (SoDA) 96
requirement 57, 140
and change 58
and vision document 58
child 65
managing 17, 55, 58, 140
parent 65
types 67

Index 145

RequisitePro 55, 77, 96, 101, 139
and Rose 63
database features 61
document features 61
Explorer 56

integration with Microsoft Project 82

starting 55, 82
test planning 71
Tool Palette 55
Views 61
Web interface 19
Word document 59, 61
resetting tutorial 30
reverse engineering 140
risk management 72, 140
roadmap
Rational Suite Documentation xii
roadmap,
tutorial 35
Robot 23, 81, 107, 111, 139
and ClearQuest 121, 123
GUI Record toolbar 115
playing back a script, Robot 120
reviewing test results 121
starting 113
role 42, 140
roles 41
Rose 63, 77, 85, 92, 96, 101, 139
and RequisitePro 63
browser 63, 85, 91
class diagram 91
diagram window 63, 85, 91
Enterprise Edition 22
Java 92
Microsoft Visual Basic 92
Microsoft Visual C++ 92

Professional Data Modeler Edition 21

RealTime 23

starting 62, 85

Web publishing 90
round-trip engineering 140
run-time errors 106
RUP

See Rational Unified Process

146 Rational Suite Tutorial

S

schedule
predictability 38
test efforts 81
schema 128
script
planning (TestManager) 115
playing back, Robot 120
shell 118
sequence diagram 86
and use case 86
class 87
message 87, 88
object 88
shell script 118
SoDA 20, 95, 96, 139
starting 95
template 99
software 18
software development
common problems 15
component-based architecture 17
controlling change 18
iterative development 16
managing requirements 17
verifying quality 18
software engineer, role of 21
SQABasic 115
stream, in ClearCase LT 140
suspect link (RequisitePro) 67
system performance 23
system testing 23

T

Team Unifying Platform 19, 139
test
suite 112
test case 72, 73, 75, 76, 112, 140
designing 79
folder 73, 75
test configuration 72, 140
testinput 72, 140
test plan 73, 140

test planning 71
creating scripts 115
identifying risks and resources 80
scheduling 81
test types 81
test script 112
tester 23, 140
TestFactory 24
testing
code performance 22, 108
coverage 107
functional 111, 112
memory leaks 106
reliability 105
run-time errors 106
system performance 23, 81
verification point 116
verifying quality 18
TestManager 20, 72, 76, 81, 96, 101, 111, 112,
139
and Robot 121
starting 111
tests
types of 81
TestStudio 23, 139
Tool Mentor 45, 140
Tool Palette (RequisitePro) 55
tools (Rational Suite) 19
tools in Rational Suite 27
traceability 140
links 67
tutorial
ClassicsCD.com 28
prerequisites 27
resetting 30
roadmap 35
sample application 28
setting up 28
tool checklist 27

U

UML, See Unified Modeling Language 21
Unified Change Management 20, 140
Unified Change Management (UCM) 49

Unified Modeling Language 17, 21, 26, 62, 86,

141

Unified Process, See Rational Unified Process

Unified Software Project Management 96
use case 44, 141
and sequence diagram 86
and visual modeling 59
benefits to team 59
report 95, 97
use case diagram 61
working with 63
use case report 97
use case requirement 61

\'

verification point 116

verifying software quality, See testing

version control 141

view 141

view (RequisitePro) 65

Views (RequisitePro) 61

vision document 141
and requirements 58

visual model 141
Web version (Rose) 90

visual modeling 85, 86
implementing code 92
maintaining consistency with code 92

w

Web Development 53
Word document (RequisitePro) 61
workflow 42, 141

Index

147

148 Rational Suite Tutorial

	Rational Suite®
	Preface
	Audience
	Other Resources
	Rational Suite Documentation Roadmap
	Contacting Rational Customer Support

	Welcome to Rational�Suite
	Principles of Software Development
	Rational Suite Can Help
	What Is Rational Suite?
	Tools That Unify Your Team
	Rational Suite Team Unifying Platform

	Tools for Analysts
	Rational Suite AnalystStudio

	Tools for Developers
	Rational Suite DevelopmentStudio
	Rational Suite DevelopmentStudio – RealTime Edition

	Tools for Testers
	Rational Suite TestStudio

	Rational Suite Enterprise

	Rational Suite: A Complete Lifecycle Solution
	For More Information
	What’s Next

	About This Tutorial
	Prerequisites
	Determining Which Rational Suite Tools Are Installed
	ClassicsCD.com: The Tutorial Sample Application
	Tutorial Background
	Installing the Tutorial Sample Application and Related Files

	Getting Started
	Registering the Project
	Associating the Change Request Database with the Project
	Using the Application
	Discovering What to Build

	How to Use This Tutorial
	Summary
	What You Learned in This Chapter
	What’s Next

	Learning About the Rational Unified Process
	Audience
	Getting Your Bearings
	What Is the Rational Unified Process (RUP)?
	The Rational Unified Process and Rational Suite

	Learning the Mechanics
	The Process at a Glance
	Key Concepts
	Exploring a Workflow
	Starting with Actors and Use Cases
	Tool Mentors: Using Rational Tools to Support the Process
	Learning the Basics
	Summary
	For More Information
	Cleaning Up
	What You Learned in This Chapter
	What’s Next

	Managing Change to�Project Artifacts
	Audience
	What Is Unified Change Management?
	UCM Tools

	Using the Tools with UCM – ClearQuest and ClearCase LT
	Unifying Code and Content for Web Development
	Summary
	For More Information
	What You Learned in This Chapter
	What’s Next

	Creating Requirements
	Audience
	Getting Your Bearings
	Why Worry About Requirements?
	Where Do Requirements Come From?
	Managing Requirements
	Using RequisitePro

	Starting with a Use Case
	Why Work with Use Cases?
	How Does RequisitePro Handle Requirements?
	Learning More About Use Cases

	Continuing Use Case Work Using Rose
	Working with a Use Case Diagram
	Associating the Rose Model with the RequisitePro Project

	Creating a New Requirement
	Looking at Requirements in the Database
	Linking to Another Requirement
	Traceability and Suspect Links

	Other Requirement Types
	When Have You Finished Gathering Requirements?
	Extended Help
	Summary
	For More Information
	Cleaning Up
	What You Learned in This Chapter
	What’s Next

	Test Planning
	Audience
	Getting Your Bearings
	What Is Test Planning?
	Managing Risk
	Making a Plan and Measuring Progress

	Developing a Test Plan
	Organizing Your Test Plan

	Determining What to Test
	Working with Test Cases
	Test Inputs from Rational Rose
	Test Inputs from Rational RequisitePro
	Traceability and Suspect Links

	Elaborating on Test Cases
	Understanding the Impact of Test Planning

	Continuing with Test Planning
	Risks and Resources
	Types of Tests to Perform
	Stages of Testing
	Project Scheduling
	More on Test Artifacts

	Summary
	For More Information
	Cleaning Up
	What You Learned in This Chapter
	What’s Next

	Modeling the Enhancement
	Audience
	Getting Your Bearings
	What Is Visual Modeling?
	Using Rational Rose
	Visual Modeling and the Tutorial

	Working with a Sequence Diagram
	Opening a Sequence Diagram
	Adding Messages for the Enhancement

	Publishing Part of the Model to the Web
	Continuing Work with the Sequence Diagram
	Refining the Objects
	Implementing Code
	Modeling Data
	Benefits

	Summary
	For More Information
	Cleaning Up
	What You Learned in This Chapter
	What’s Next

	Communicating Project�Status
	Audience
	Getting Your Bearings
	Managing Project Status
	What Is SoDA?
	Using SoDA Templates

	Why Generate a Use Case Report?
	Creating the Use Case Report
	Working with SoDA Templates

	What Is ProjectConsole?
	Using the Project Web Site
	Working with Project Metrics

	Summary
	For More Information
	Cleaning Up
	What You Learned in This Chapter
	What’s Next

	Reliability Testing
	Audience
	Reliability Testing Tools
	Run-Time Analysis Tools in Rational Suite
	Rational Purify
	Rational PureCoverage
	Rational Quantify
	Using Purify, PureCoverage, and Quantify with Other Rational Tools

	Summary
	For More Information
	What You Learned in This Chapter
	What’s Next

	Functional Testing
	Audience
	Getting Your Bearings
	What Is Functional Testing?
	Working with Test Scripts
	Scripts and Modularity
	Getting to a Starting Point
	Working with Test Scripts

	Recording the Script
	Starting to Record the Script
	Creating a Verification Point
	Finishing the Recording Session
	Adding a Test Script to a Suite
	Incorporating a Test Script into Your Test Plan

	Playing Back the Script on a New Build
	Analyzing the Results
	Handling Failures
	Handling an Intentional Change
	Handling a Real Error

	Reporting the Error

	Summary
	For More Information
	Cleaning Up
	What You Learned in This Chapter
	What’s Next

	Planning the Next�Iteration
	Audience
	Getting Your Bearings
	Assessing the State of your Project
	Showing the Workload
	Working with Enhancement Requests

	Other Planning Activities
	What Will Happen in the Next Iteration?
	Summary
	For More Information
	Cleaning Up
	What You Learned in This Chapter
	What You Learned in This Tutorial
	What’s Next

	Glossary
	Index

