
Rational Software Corporation®
Rational® Test RealTime
Reference Manual

VERSION: 2003.06.00

WINDOWS AND UNIX
support@rational.com
http://www.rational.com

ii Rational Test RealTime and PurifyPlus RealTime Installation Guide

Legal Notices

©2001-2003, Rational Software Corporation. All rights reserved.

Any reproduction or distribution of this work is expressly prohibited without the
prior written consent of Rational.

Version Number: 2003.06.00

Rational, Rational Software Corporation, the Rational logo, Rational Developer
Network, AnalystStudio, , ClearCase, ClearCase Attache, ClearCase MultiSite,
ClearDDTS, ClearGuide, ClearQuest, ClearTrack, Connexis, e-Development
Accelerators, DDTS, Object Testing, Object-Oriented Recording, ObjecTime,
ObjecTime Design Logo, Objectory, PerformanceStudio, PureCoverage, PureDDTS,
PureLink, Purify, Quantify, Rational Apex, Rational CRC, Rational Process
Workbench, Rational Rose, Rational Suite, Rational Suite ContentStudio, , Rational
Summit, Rational Visual Test, Rational Unified Process, RUP, RequisitePro,
ScriptAssure, SiteCheck,SiteLoad, SoDA, TestFactory, TestFoundation, TestStudio,
TestMate, VADS, and XDE, among others, are trademarks or registered trademarks of
Rational Software Corporation in the United States and/or in other countries. All
other names are used for identification purposes only, and are trademarks or
registered trademarks of their respective companies.

Portions covered by U.S. Patent Nos. 5,193,180 and 5,335,344 and 5,535,329 and
5,574,898 and 5,649,200 and 5,675,802 and 5,754,760 and 5,835,701 and 6,049,666 and
6,126,329 and 6,167,534 and 6,206,584. Additional U.S. Patents and International
Patents pending.

U.S. GOVERNMENT RIGHTS. All Rational software products provided to the U.S.
Government are provided and licensed as commercial software, subject to the
applicable license agreement. All such products provided to the U.S. Government
pursuant to solicitations issued prior to December 1, 1995 are provided with
“Restricted Rights” as provided for in FAR, 48 CFR 52.227-14 (JUNE 1987) or DFARS,
48 CFR 252.227-7013 (OCT 1988), as applicable.

WARRANTY DISCLAIMER. This document and its associated software may be used
as stated in the underlying license agreement. Except as explicitly stated otherwise in
such license agreement, and except to the extent prohibited or limited by law from
jurisdiction to jurisdiction, Rational Software Corporation expressly disclaims all
other warranties, express or implied, with respect to the media and software product
and its documentation, including without limitation, the warranties of
merchantability, non-infringement, title or fitness for a particular purpose or arising
from a course of dealing, usage or trade practice, and any warranty against
interference with Licensee’s quiet enjoyment of the product.

Third Party Notices, Code, Licenses, and Acknowledgements

Portions Copyright ©1992-1999, Summit Software Company. All rights reserved.
Chapter - iii

Microsoft, the Microsoft logo, Active Accessibility, Active Client, Active Desktop,
Active Directory, ActiveMovie, Active Platform, ActiveStore, ActiveSync, ActiveX,
Ask Maxwell, Authenticode, AutoSum, BackOffice, the BackOffice logo, bCentral,
BizTalk, Bookshelf, ClearType, CodeView, DataTips, Developer Studio, Direct3D,
DirectAnimation, DirectDraw, DirectInput, DirectX, DirectXJ, DoubleSpace,
DriveSpace, FrontPage, Funstone, Genuine Microsoft Products logo, IntelliEye, the
IntelliEye logo, IntelliMirror, IntelliSense, J/Direct, JScript, LineShare, Liquid Motion,
Mapbase, MapManager, MapPoint, MapVision, Microsoft Agent logo, the Microsoft
eMbedded Visual Tools logo, the Microsoft Internet Explorer logo, the Microsoft
Office Compatible logo, Microsoft Press, the Microsoft Press logo, Microsoft
QuickBasic, MS-DOS, MSDN, NetMeeting, NetShow, the Office logo, Outlook,
PhotoDraw, PivotChart, PivotTable, PowerPoint, QuickAssembler, QuickShelf,
RelayOne, Rushmore, SharePoint, SourceSafe, TipWizard, V-Chat, VideoFlash,
Virtual Basic, the Virtual Basic logo, Visual C++, Visual C#, Visual FoxPro, Visual
InterDev, Visual J++, Visual SourceSafe, Visual Studio, the Visual Studio logo, Vizact,
WebBot, WebPIP, Win32, Win32s, Win64, Windows, the Windows CE logo, the
Windows logo, Windows NT, the Windows Start logo, and XENIX, are either
trademarks or registered trademarks of Microsoft Corporation in the United States
and/or in other countries.

Sun, Sun Microsystems, the Sun Logo, Ultra, AnswerBook 2, medialib, OpenBoot,
Solaris, Java, Java 3D, ShowMe TV, SunForum, SunVTS, SunFDDI, StarOffice, and
SunPCi, among others, are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

Licensee shall not incorporate any GLOBEtrotter software (FLEXlm libraries and
utilities) into any product or application the primary purpose of which is software
license management.

BasicScript is a registered trademark of Summit Software, Inc.

Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma,
Richard Helm, Ralph Johnson and John Vlissides. Copyright © 1995 by
Addison-Wesley Publishing Company, Inc. All rights reserved.

Additional legal notices are described in the legal_information.html file that is
included in your Rational software installation.
iv Rational Test RealTime and PurifyPlus RealTime Installation Guide

Reference Manual Contents

Preface .. xi
Audience ..xi
Contacting Rational Technical Publications...xi
Other Resources...xii
Customer Support...xii

Command Line Reference .. 1
Runtime Analysis for C and C++.. 3

C and C++ Instrumentor ..4
C and C++ Instrumentation Launcher ...15

Runtime Analysis for Java ... 21
Java Instrumentor..22
Java Instrumentation Launcher ...28
Java Instrumentation Launcher for Ant ...31
JVMPI Agent..35

Runtime Analysis for Ada... 39
Ada Instrumentor ...40
Ada Link File Generator...46
Ada Unit Maker ..48
Ada Metrics Calculator ..50

Component Testing for C... 51
C Source Code Parser ..52
C Test Script Compiler ..56
C Test Report Generator ...61

Component Testing for C++... 65
C++ Source Code Parser ..66
C++ Test Script Compiler ..71
C++ Test Report Generator...73

Component Testing for Java.. 75
Java Source Code Parser ...76
Java Test Report Generator ..78

Component Testing for Ada ... 81

v

Table Of Contents

Ada Source Code Parser...82
Ada Test Script Compiler...85
Ada Test Report Generator ...90

System Testing for C ... 93
System Testing Script Compiler ..94
System Testing Report Generator...99
Probe Processor..102
System Testing Supervisor..104
Virtual Tester ...106
System Testing Load Report Generator..108

Generic Tools... 109
TDF Splitter..110
Graphical User Interface..111
Code Coverage Report Generator ..112
Trace Receiver ..116
Test Process Monitor...118
Dump File Splitter ..121
Uprint Localization Utility ...122

Component Testing Script Languages.. 125
C Test Script Language ... 127

About the C Test Script Language ..129
BEGIN..131
COMMENT ..132
DEFINE STUB ... END DEFINE..133
ELEMENT ... END ELEMENT...135
ENVIRONMENT ... END ENVIRONMENT..137
FAMILY..138
FORMAT..139
HEADER..141
IF ... ELSE ... END IF ..142
INCLUDE...144
INITIALIZATION ... END INITIALIZATION ..145
NEXT_TEST..146
SERVICE ... END SERVICE ...147
SIMUL ... ELSE_SIMUL ... END SIMUL..148
STUB ...150
TERMINATION ... END TERMINATION ...153
TEST ... END TEST...154
USE ...155
VAR, ARRAY and STR..157
VAR, ARRAY and STR <variable> Parameter..159
VAR, ARRAY and STR <initialization> Parameter..160
VAR, ARRAY and STR <expected> Parameter..163

vi

Table Of Contents

C++ Test Script Language ... 167
About the C++ Test Script Language ..169
EPILOGUE ..171
PROLOGUE ..172
INCLUDE...173
TEST CLASS...174
TEST CASE...176
TEST SUITE..178
RUN ...180
PROPERTY...182
PROC ..183
REQUIRE ..185
ON ERROR ...187
STUB ...189
COMMENT ..191

Ada Test Script Language ... 193
About the Ada Test Script Language ..195
Ada Test Script Language Identifiers ..196
BEGIN..197
COMMENT ..198
DEFINE STUB ... END DEFINE..199
ELEMENT ... END ELEMENT...201
EXCEPTION..202
FAMILY..203
HEADER..204
IF ... ELSE ... END IF ..205
INCLUDE...207
INITIALIZATION ... END INITIALIZATION ..208
NEXT_TEST..209
SERVICE ... END SERVICE ...210
SERVICE_TYPE..211
SIMUL ... ELSE_SIMUL ... END SIMUL..212
STUB ...214
TERMINATION ... END TERMINATION ...217
TEST ... END TEST...218
VAR, ARRAY, and STR...219
VAR, ARRAY and STR <variable> Parameter..220
VAR, ARRAY and STR <expected> Parameter..221
VAR, ARRAY and STR <initialization> Parameter..224

Java Test Primitives... 227
About Java Test Primitives ..229
assertEquals()..231
assertNotNull()...234
assertNull() ..235
assertSame() ...236

vii

Table Of Contents

assertTrue() ...237
fail()..238
verifyEquals()...239
verifyNotNull() ..242
verifyNull()..243
verifySame() ..244
verifyTrue() ..245
verify()..246
verifyApproxEquals() ...248
verifyGreaterThan() ...250
verifyGreaterThanEquals() ..252
verifyLowerThan()..254
verifyLowerThanEquals()...256
verifyLogMessage() ...258
verifyLogfail() ...259
createTimer() ...260
timerStart()...261
timerReportElapsedTime() ..262
verifyElapsedTime()...263

System Testing Script Languages... 265
System Testing Language for C .. 265
Test Script Keywords ... 267

ADD_ID..268
CALL..269
CALLBACK ... END CALLBACK ...270
CASE ... IS ... WHEN ... WHEN OTHERS ... END CASE.................................272
CHANNEL..273
CLEAR_ID ...274
COMMENT ..275
COMMTYPE..276
DECLARE_INSTANCE ...277
DEF_MESSAGE..278
END ...279
ERROR..280
EXCEPTION ... END EXCEPTION ...281
EXIT...282
FAMILY..283
FLUSH_TRACE...284
FORMAT..285
HEADER..286
IF...THEN...ELSE ..287
INCLUDE...288
INITIALIZATION ... END INITIALIZATION ..289
INSTANCE ... END INSTANCE...290

viii

Table Of Contents

INTERRECV..291
INTERSEND..292
MATCHED...293
MATCHING..294
MESSAGE...295
MESSAGE_DATE ...296
NIL ...297
NO_MESSAGE..298
NONIL..299
NOTMATCHED ...300
NOTMATCHING..301
PAUSE...302
PRINT..303
PROC ... END PROC ..304
PROCSEND ..305
RENDEZVOUS..307
RESET...308
SCENARIO ... LOOP ... END SCENARIO ..309
SEND...311
SHARE ..312
TERMINATION ... END TERMINATION ...313
TIME ..314
TIMER..315
TRACE_OFF ...316
TRACE_ON ...317
VAR ...318
VIRTUAL CALLBACK..320
VIRTUAL PROCSEND ..322
WAITTIL...324
WHILE ... END WHILE ..326
WTIME...327

Macro Keywords .. 329
ATL_OCCID...330
ATL_NUMINSTANCE..331
ATL_TIMEOUT..332

Supervisor Script Keywords... 333
CHDIR ...334
COPY...335
DELETE...337
DO ...338
ENDOF ..340
ERROR..341
EXECUTE..342
EXIT...344
HOST...345
IF ... THEN ... ELSE ... END IF..346

ix

Table Of Contents

INCLUDE...347
MEMBERS...348
MKDIR ...349
PAUSE...350
PRINT..351
PRINTLN ...352
RENDEZVOUS..353
RMDIR...354
SET..355
SHELL ...356
STATUS...357
STOP...358
TIMEOUT...359
TRACE ... FROM...360
UNSET...361
WHILE ...362
Variables..363
Environment variables ...364
Expressions ...365

System Testing Probe Macros... 367
About Probe Macros..369
atl_dump_trace() ...370
atl_end_trace()...371
atl_format_trace() ..372
atl_recv_trace()..373
atl_select_trace() ...374
atl_send_trace()...375
atl_start_trace()..376

Appendices.. 377
GUI Macro Variables.. 377
Instrumentation Pragmas... 379
Environment Variables... 382
Setting Environment Variables... 386
File Types .. 387

Index... 393

x

Preface

Welcome to Rational Test RealTime.

This Reference Manual contains advanced information to help you use the product
from the command line.

Test RealTime is a complete runtime analysis and testing solution for real-time and
embedded systems. It addresses all runtime analysis needs and all test levels
including component and system testing for the C, C++, Ada, and Java programming
languages.

General information about using the product can be found in the Test RealTime User
Guide.

If you are using the product for the first time, please take the time to go through the
Test RealT me Online Tutorial. i

Audience

This guide is intended for Rational software users who are using Test RealTime, such
as application developers, quality assurance managers, and quality assurance testers.

You should be familiar with the selected Windows or UNIX platform as well as both
the native and target development environments.

Contacting Rational Technical Publications

To send feedback about documentation for Rational products, please send e-mail to
our technical publications department at techpubs@rational.com.

Keep in mind that this e-mail address is only for documentation feedback. For
technical questions, please contact Customer Support.

xi

Test RealTime - Reference Manual

Other Resources

All manuals are available online, either in HTML or PDF format. The online manuals
are on the CD and are installed with the product.

For the most recent updates to the product, including documentation, please visit the
Product Support section of the Web site at:

http://www.rational.com/products/testrt/index.jsp

Documentation updates and printable PDF versions of Rational documentation can
also be downloaded from:

http://www.rational.com/support/documentation/index.jsp

For more information about Rational Software technical publications, see:

http://www.rational.com/documentation.

For more information on training opportunities, see the Rational University Web site:

http://www.rational.com/university.

Customer Support

Before contacting Rational Customer Support, make sure you have a look at the tips,
advice and answers to frequently asked questions in Rational's Solution database:

http://solutions.rational.com/solutions

Choose the product from the list and enter a keyword that most represents your
problem. For example, to obtain all the documents that talk about stubs taking
parameters of type “char”, enter "stub char". This database is updated with more
than 20 documents each month.

When contacting Rational Customer Support, please be prepared to supply the
following information:

• About you:
Name, title, e-mail address, telephone number

• About your company:
Company name and company address

• About the product:
Product name and version number (from the Help menu, select About).
What components of the product you are using

• About your development environment:
Operating system and version number (for example, Linux RedHat 8.0), target

xii

http://www.rational.com/products/testrt/index.jsp
http://www.rational.com/documentation
http://www.rational.com/university

Preface

compiler, operating system and microprocessor. If necessary, send the Target
Deployment Port .xdp file

• About your problem:
Your service request number (if you are calling about a previously reported
problem)
A summary description of the problem, related errors, and how it was made to
occur
Please state how critical your problem is
Any files that can be helpful for the technical support to reproduce the problem
(project, workspace, test scripts, source files). Formats accepted are .zip and
compressed tar (.tar.Z or .tar.gz)

If your organization has a designated, on-site support person, please try to contact
that person before contacting Rational Customer Support.

You can obtain technical assistance by sending e-mail to just one of the e-mail
addresses cited below. E-mail is acknowledged immediately and is usually answered
within one working day of its arrival at Rational. When sending an e-mail, place the
product name in the subject line, and include a description of your problem in the
body of your message.

Note When sending e-mail concerning a previously-reported problem, please
include in the subject field: "[SR#<number>]", where <number> is the service
request number of the issue. For example:
Re:[SR#12176528] New data on Test RealTime install issue

Sometimes Rational support engineers will ask you to fax information to help them
diagnose problems. You can also report a technical problem by fax if you prefer.
Please mark faxes "Attention: Customer Support" and add your fax number to the
information requested above.

Location Contact

North America

Rational Software,
18880 Homestead Road,
Cupertino, CA 95014

voice: (800) 433-5444
fax: (408) 863-4001

e-mail: support@rational.com

Europe, Middle East, and Africa Rational Software,
Beechavenue 30,
1119 PV Schiphol-Rijk,
The Netherlands

voice: +31 20 454 6200
fax: +31 20 454 6201

e-mail: support@europe.rational.com

xiii

Test RealTime - Reference Manual

Asia Pacific Rational Software Corporation Pty Ltd,
Level 13, Tower A, Zenith Centre,
821 Pacific Highway,
Chatswood NSW 2067,
Australia

voice: +61 2-9419-0111
fax: +61 2-9419-0123

e-mail: support@apac.rational.com

xiv

Command Line Reference

This section provides reference information to help you run Test RealTime features
from a command line. This can be useful in complex development environments to
perform software testing tasks in the command line interface under UNIX or
Windows operating systems.

1

Runtime Analysis
for C and C++

3

Test RealTime - Reference Manual

C and C++ Instrumentor

Purpose

The two SCI Instrumentors for C and C++ insert functions from a Target Deployment
Port library into the C or C++ source code under test. The C and C++ Instrumentors
are used for:

• Memory Profiling

• Performance Profiling

• Code Coverage

• Runtime Tracing

Syntax
attolcc1 <src> <instr> <def> [<options>]
attolccp <src> <instr> <hpp> <opp> [<options>]

where:

• <src> Preprocessed source file (input)

• <instr> Instrumented file (output)

• <def> Standard definitions file the C Instrumentor only

• <hpp> and <opp> are the definition files for the C++ Instrumentor only

The <src> input file must have been preprocessed beforehand (with macro
definitions expanded, include files included, #if and directives processed).

When using the C Instrumentor, all arguments are functions. When using the C++
Instrumentor, arguments are qualified functions, methods, classes, and namespaces,
for example: void C::B::f(int).

Description

The SCI Instrumentor builds an output source file from an input source file, by
adding special calls to the Target Deployment Port function definitions.

The Runtime Analysis tools are activated by selecting the command line options:

• -MEMPRO for Memory Profiling

• -PERFPRO for Performance Profiling

• -TRACE for Runtime Tracing

4

Command Line Reference

• -PROC , -CALL, -COND and -BLOCK for Code Coverage (code coverage
levels).

Note that there is no -COVERAGE option; the following rules apply for the Code
Coverage feature:

• If no code coverage level is specified, nor Runtime Tracing, Memory Profiling,
Performance Profiling or C++ Component Testing Contract Check, then the
default is to have code coverage analysis at the -PROC and -BLOCK=DECISION
level.

• If no code coverage level is specified while one or more of the aforementioned
features are selected, then code coverage analysis is not performed.

Detailed information about command line options for each feature are available in
the sections below.

The C Instrumentor (attolcc1) supports preprocessed ANSI 89 or K&R C standard
source code without distinction. The ANSI 99 standard is not supported.

The C++ Instrumentor (attolccp) accepts preprocessed C++ files compliant with the
ISO/IEC 14882:1998 standard. Depending on the Target Deployment Port, attolccp
can also accept the C ISO/IEC 9899:1990 standard and other C++ dialects.

Both C and C++ versions of the Instrumentor accept either C or C++-style comments.

Attol pragmas start with the # character in the first column and end at the next line
break.

The <def> and <header> parameters must not contain absolute or relative paths. The
Code Coverage Instrumentor looks for these files in the directory specified by the
ATLTGT environment variable, which must be set.

You can select one or more types of coverage at the instrumentation stage.

When you generate reports, results from some or all of the subset of selected
coverage types are available.

General Options
-FILE=<filename>[{,<filename>}] | -
EXFILE=<filename>[{,<filename>}]

-FILE specifies the only files that are to be explicitly instrumented, where <filename>
is a C/C++ source file. All other source files are ignored. Use this option with
multiple /C++files that can be found in a preprocessed file (#includes of files
containing the bodies of C/C++ functions, lex and yacc outputs, and so forth).

-EXFILE explicitely specifies the files that are to be excluded from the
instrumentation, where <filename> is a C source file. All other source files are
instrumented. You cannot use this option with the option -FILE. Files that are

5

Test RealTime - Reference Manual

excluded from the instrumentation process are still analyzed. Any errors found in
those files are still reported.

<filename> may contain a path (absolute or relative from the current working
directory). If no path is provided, the current working directory is used.

-FILE and -EXFILE cannot be used together.

-UNIT=<name>[{,<name>}] | -EXUNIT=<name>[{,<name>}]

-UNIT specifies code units (functions, procedures, classes or methods) whose bodies
are to be instrumented, where <name> is a unit which is to be explicitly
instrumented. All other functions are ignored.

-EXUNIT specifies the units that are to be excluded from the instrumentation. All
other units are instrumented. Functions, procedures, classes or methods that are
excluded from the instrumentation process with the -EXUNIT option are still
analyzed. Any errors found in those units are still reported.

-UNIT and -EXUNIT cannot be used together.

Note These options replace the -SERVICE and -EXSERVICE options from
previous releases of the product.

-RENAME=<function>[,<function>]

For the C Instrumentor only. The -RENAME option allows you to change the name of
C functions <func on> defined in the file to be instrumented. Doing so, the f function
will be changed to _atw_stub_f. Only definitions are changed, not declarations
(prototypes) or calls. Component Testing for C can then define stubs to some
functions inside the source file under test.

ti

-REMOVE=<name>[,<name>]

This option removes the definition of the function (or method) <name> in the
instrumented source code. This allows you to replace one or several functions (or
methods) with specialized custom functions (or methods) from the TDP.

-NOINSTRDIR=<directory>[,<directory>]

Specifies that any C/C++ function found in a file in any of the <directories> or a sub-
directory are not instrumented.

Note You can also use the attol incl_std pragma with the same effect in the
standard definitions file.

-INSTANTIATIONMODE=ALL

6

Command Line Reference

C++ only. When set to ALL, this option enables instantiation of unused methods in
template classes. By default, these methods are not instantiated by the C++
Instrumentor.

-DUMPCALLING=<name>[{,<name>]]
-DUMPINCOMING=<name>[{,<name>}]
-DUMPRETURNING=<name>[{,<name>}]

These options allow you to explicitly define upon which incoming, returning or
calling function(s) the trace dump must be performed. The -DUMPCALLING
function is for the C language only. Pleaser refer to General Runtime Analysis
Settings in the User Guide for further details.

-NOPATH

Disables generation of the path to the Target Deployment Package directory in the
#include directive. This lets you instrument and compile on different computers.

-NOINFO

Prohibits the Instrumentor from generating the identification header. This header is
normally written at the beginning of the instrumented file, to strictly identify the
instrument used.

-NODLINE

Prohibits the Instrumentor from generating #line statements which are not supported
by all compilers. Use this option if you are using such a compiler.

-TSFDIR[=<directory>]

Not applicable to Code Coverage (see FDCDIR). Specifies the destination <directory>
for the .tsf static trace file which is generated following instrumentation for each
 source code file. If <directory> is not specified, each .fdc file is generated in the
corresponding source file's directory. If you do not use this option, the .tsf files
directory is the working directory (the attolccl execution directory). You cannot use
this option with the -FDCNAME option.

-TSFNAME=<name>

Not applicable to Code Coverage (see FDCNAME). Specifies the .tsf file name
<name> to receive the static traces produced by the instrumentation. You cannot use
this option with the -TSFDIR option.

7

Test RealTime - Reference Manual

-NOINCLUDE

This option excludes all included files from the instrumentation process. Use this
option if there are too many excluded files to use the -EXFILE option.

Code Coverage Options

The following parameters are specific to the Code Coverage runtime analysis feature.

-PROC[=RET]

-PROC instruments procedure inputs (C/C++ functions). This is the default setting.

The -PROC=RET option instruments procedure inputs, outputs, and terminal
instructions.

-CALL

Instruments C/C++ function calls.

-BLOCK=IMPLICIT | DECISION | LOGICAL

The -BLOCK option alone instruments simple blocks only.

Use the IMPLICIT or DECISION (these are equivalent) option to instrument implicit
blocks (unwritten else instructions), as well as simple blocks.

Use the LOGICAL parameter to instrument logical blocks (loops), as well as the
simple and implicit blocks.

By default, the Instrumentor instruments implicit blocks.

-NOTERNARY

This option allows you to abstract the measure from simple blocks. If you select
simple blocks coverage, those found in ternary expressions are not considered as
branches.

-COND[=MODIFIED | =COMPOUND | =FORCEEVALUATION]

MODIFIED or COMPOUND are equivalent settings that allow measuring the
modified and compound conditions.

FORCEEVALUATION instruments forced conditions.

When -COND is used with no parameter, the Instrumentor instruments basic
conditions.

8

Command Line Reference

-NOPROC

Specifies no instrumentation of procedure inputs, outputs, or returns, and so forth.

-NOCALL

Specifies no instrumentation of calls.

-NOBLOCK

Specifies no instrumentation of simple, implicit, or logical blocks.

-NOCOND

Specifies no instrumentation of basic conditions.

-COUNT

Specifies count mode.

-COMPACT

Specifies compact mode.

-EXCALL=<filename>

For C only. Excludes calls to the C functions whose names are listed in <filename>
from being instrumented. The names of functions (identifiers) must be separated by
space characters, tab characters, or line breaks. No other types of separator can be
used.

-FDCDIR=<directory>

Specifies the destination <directory> for the .fdc correspondence file, which is
generated for Code Coverage after the instrumentation for each source file.
Correspondence files contain static information about each enumerated branch and
are used as inputs to the Code Coverage Report Generator. If <directory> is not
specified, each .fdc file is generated in the directory of the corresponding source file.
If you do not use this option, the default .fdc files directory is the working directory
(the attolccl execution directory). You cannot use this option with the -FDCNAME
option.

-FDCNAME=<name>

9

Test RealTime - Reference Manual

Specifies the .fdc correspondence file name <name> to receive correspondence
produced by the instrumentation. You cannot use this option with the -FDCDIR
option.

-NOCVI

Disables generation of a Code Coverage report that can be displayed in the Code
Coverage Viewer.

-METRICS

Provides static metric data for compatibility with old versions of the product. Use the
static metrics features of the Test Script Compiler tools instead. By default no static
metrics are produced by the Instrumentors.

-NOSOURCE

Replaces the generation of the colorized viewer source listing by a colorized viewer
pre-annotated report containing line number references.

-COMMENT=<comment>

Associates the text from either the Instrumentation Launcher (preprocessing
command line) or from the source file under analysis and stores it in the .fdc
correspondence file to be mentioned in Code Coverage reports. In the Code Coverage
Viewer, a magnifying glass appears next to the source file, allowing you to display
the comments in a separate window.

Memory Profiling Specific Options

The following parameters are specific to the Memory Profiling runtime analysis
feature.
-MEMPRO

Activates instrumentation for the Runtime Tracing analysis feature.

-NOINSPECT=<variable>[,<variable>]

Specifies global variables that are not to be inspected for memory leaks. This option
can be useful to save time and instrumentation overhead on trusted code.

Performance Profiling Specific Options

The following parameters are specific to the Performance Profiling runtime analysis
feature.

10

Command Line Reference

-PERFPRO[=<os>|<process>]

Activates instrumentation for the Runtime Tracing analysis feature.

The optional <os> parameter allows you to specify a clock type. By default the
standard operating system clock is used.

The <process> parameter specifies the total CPU time used by the process.

The <os> and <process> options depend on target availability.

Runtime Tracing Specific Options

The following parameters are specific to the Runtime Tracing analysis feature.
-TRACE

Activates instrumentation for the Runtime Tracing analysis feature.

-NO_UNNAMED_TRACE

For the C++ Instrumentor only. With this option, unnamed structs and unions are not
instrumented.

-NO_TEMPLATE_NOTE

For the C++ Instrumentor only. With this option, the UML/SD Viewer will not
display notes for template instances for each template class instance.

-BEFORE_RETURN_EXPR

For the C Instrumentor only. With this option, the UML/SD Viewer displays calls
located in return expressions as if they were executed sequentially and not in a
nested manner.

Component Testing Options for C++

The following parameters are specific to Component Testing for C++.

-OTIFILE=<filename>[{,<filename>}]

Name of one or several Component Testing .oti instrumentation files for C++. These
files contain rules for Component Testing instrumentation for C++ (they are
generated by the C++ Test Script Compiler).

-AUTO_OTI

11

Test RealTime - Reference Manual

If this option is specified, Component Testing .oti instrumentation files for C++ will
be searched and loaded in the directory specified with option -OTIDIR, or in current
directory if this option is not used. .oti files are searched according to the source file
names. For instance, if class A is found in file myfile.h, the .oti searched will be
myfile.oti. An information message is issued for each .oti file loaded automatically.

-OTIDIR=[<directory>]

This option specifies, when option -AUTO_OTI is active, which directory is to be
searched. If no directory is specified (i.e. -OTIDIR= is specified), .oti files will be
searched in the same directory as the source file they are matching.

-BODY=MAP_FILE|NAME_CONV|INLINE

This option specifies where generated methods body should be generated.

Use INLINE to generate method bodies in each instrumented source file as inline
routines. This is the default, since there is little chance that the generated code cannot
be accepted by a compiler, except with template classes on some compilers.

Use NAME_CONV to generate routine bodies in the .cpp, .cc or .C file whose name
matches the .h file that contains the class definition of the generated method.

Use MAP_FILE when you provide a map file with the option -MAPFILE. This
generates method bodies according to the map file.

-MAPFILE=<filename>

When you add the -BODY=MAP_FILE option, this option must be provided. The -
MAPFILE option specifies a user-created map file, describing where the methods of
each class are to be generated.

This file must have the following format:
<source file>
 <class name>
 <class name>
 ...
<source file>
 <class name>
 ...
 ...

Note that the character before a class name MUST be a tabulation.

For example:
a.cpp
 A
b.cpp
 B

12

Command Line Reference

This specifies that class A methods bodies have to be generated in file a.cpp, and B
methods bodies have to be generated in file b.cpp.

-NO_OTC
-NO_OTD

These options specify that Component Testing instrumentation rules for C++ issued
from, respectively, an .otc contract check test script, or an .otd test driver script
should be ignored.

-SHOWINFO

This option activates a diagnosis for each signature analysis. Usually, analysis of ill-
formed signatures is silent. This option allows you to find ignored signatures

Note A signature is a string describing a class, a method, or a function, and is
used in .otc and .otd files.

-NOWARNING

This option deactivates the warning display for signature analysis. The
Instrumentor's signature analyzer accepts any non-ambiguous signature, and more
permissive than most compilers. Warnings indicates signatures that which are
accepted by the instrumentor, but would be rejected by compilers.

-INSTR_CONST

Usually a C++ const method cannot modify any field of the this object. That's why
the const methods are not checked for state changes, and are only evaluated once for
invariants. But in some cases, the this object may change even if the method is
qualified with const (by assembler code or by calling another method with casting
the this parameter to a non-const type).

There may also be pointers fields to objects which logically belong to the object, but
the C++ compiler does not guarantee that these pointed sub-objects are not modified.
Use this option if the source code contains such pointers.

-MTSUPPORT

Use this option if your application is multi-threaded and objects are shared by several
threads. This will ensure the specificity of each object for state evaluation.

Note To use multi-thread support in the product, you must also compile the
Target Deployment Port with multi-thread support.

13

Test RealTime - Reference Manual

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

7 End of execution because of fatal error

9 End of execution because of internal error

All messages are sent to the standard error output device.

14

Command Line Reference

C and C++ Instrumentation Launcher

Purpose

The Instrumentation Launcher instruments and compiles C and C++ source files. The
Instrumentation Launcher is used by Memory Profiling, Performance Profiling,
Runtime Tracing and Code Coverage, as well as the Component Testing Contract
Check feature for C++.

Syntax
attolcc [-<options>] [--<settings>] -- <compilation_command>
attolcc --help

where:

• <compilation_command> is the standard compiler command line that you
would use to launch the compiler if you are not using the product

• "--" is the command separator preceded and followed by spaces

• <options> is a series of optional parameters

• <settings> is a series of optional instrumentation settings

Description

The Instrumentation Launcher fits into your compilation sequence with minimal
changes.

The Instrumentation Launcher is suitable for use with only one compiler and only
one Target Deployment Port. To view information about the driver, run attolcc with
no parameters.

The attolcc binary is located in the /cmd directory of the Target Deployment Port.

Note Some Target Deployment Ports do not have an attolcc binary. In this
case, you must manually run the instrumentor, compiler and linker.

General Options

The Instrumentation Launcher accepts all command line parameters for either the C
or C++ Instrumentor, including runtime analysis feature options. This allows the
Instrumentation Launcher to automatically compile the selected Target Deployment
Port.

In addition to Instrumentor parameters and Code Coverage parameters, the
following options are specific to the Instrumentation Launcher. Command line

15

Test RealTime - Reference Manual

options can be abbreviated to their shortest unambiguous number of characters and
are not case-sensitive.
--HELP

Type attolcc --help to list a comprehensive list of options, including those of the
instrumentor, for use with the instrumentation launcher.

-VERBOSE | -#

The -VERBOSE option shows commands and runs them. The "-#" option shows
commands but does not execute them.

-TRACE
-MEMPRO
-PERFPRO

These options activate specific instrumentation for respectively the Runtime Tracing,
Memory Profiling and Performance Profiling runtime analysis feature.

-OTIFILE=<file>[{,<file>}]

When using the Contract Check capability of Component Testing for C++, the -
OTIFILE option allows you to specify one or several Component Testing .oti
instrumentation files for C++. These files are generated by the C++ Test Compiler
and contain the Component Testing instrumentation rules for C++.

-AUTO_OTI

When using the Contract Check capability of Component Testing for C++, this option
specifies that Component Testing instrumentation files (.oti) for C++ are to be
searched and loaded from the directory specified with option -OTIDIR, or in current
directory if this option is not used. .oti files are searched according to the source file
names. For instance, if class A is found in file myfile.h, the .oti searched will be
myfile.oti. An information message is issued for each .oti file loaded automatically.$

-FORCE_TDP_CC

This option forces the Instrumentation Launcher to attempt to compile the Target
Deployment Port even if the link phase has not yet been reached before the TP.o or
TP.obj is built.

-NOSTOP

This option forces the initial command to resume when a failure occurs during
preprocessing, instrumentation, compilation or link. This means that the build chain

16

Command Line Reference

is not interrupted by errors, but the resulting binary may not be fully instrumented.
Use this option when debugging instrumentation issues on large projects.

Each error is logged in an attolcc.log file located in the directory where the error
occurred.

Code Coverage Options

The following parameters are specific to the Code Coverage runtime analysis feature.
These options do not activate Code Coverage. To activate Code Coverage, use the
Code Coverage Level options (-PROC, -CALL, -COND and -BLOCK).
-PASS | -COUNT | -COMPACT

Pass mode only indicates whether a branch has been hit. The default setting is pass
mode.

Count mode keeps track of the number of times each branch is exercised. The results
shown in the code coverage report include the number of hits as well as the pass
mode information.

Compact mode is equivalent to pass mode, but each branch is stored in one bit,
instead of one byte as in pass mode. This reduces the overhead on data size.

-COMMENT | -NOCOMMENT

The comment option lets the user associate a comment string with the source in the
code coverage reports and in Code Coverage Viewer.

By default, the Instrumentation Launcher sends the preprocessing command as a
comment. This allows you to distinguish the source file that was preprocessed and
compiled more than once with distinct options.

Use -NOCOMMENT to disable the comment setting.

Instrumentation Settings

The instrumentation settings apply to the compilation of the Target Deployment Port
Library.

The 0 or 1 values for many conditional settings mean false for 0 and 1 for true.

Compiler Settings
--cflags=<compilation flags>
--cppflags=<preprocessing flags>
--include_paths=<comma separated list of include paths>
--defines=<comma separated list of defines>

17

Test RealTime - Reference Manual

Enclose the flags with quotes ("") if you specify more than one. These flags are used
while compiling the Target Deployment Port Library

By default, the corresponding DEFAULT_CPPFLAGS, DEFAULT_CFLAGS,
DEFAULT_INCLUDE_PATHS and DEFAULT_DEFINES from the <ATLTGT>/tp.ini
or <ATLTGT>/tpcpp.ini file are used

General Settings
--atl_multi_threads=0|1

To be set to 1 if your application is multi-threads (default 0).
--atl_threads_max=<number>

Maximum number of threads at the same time (default 64).
--atl_multi_process=0|1

To be set to 1 if your application uses fork/exec to run itself or another instrumented
application (default 0). Traces files are named atlout.<pid>.spt.
--atl_buffer_size=<bytes>

Size of the Dump Buffer in bytes (default 16384).
--atl_traces_file=<file-name>

Name of the file that is flushed by execution and to be split (default atlout.spt).

Memory Profiling Settings
--atp_call_stack_size=<number of frames>

Number of functions from the stack associated to any tracked memory block or to
any error (default 6).
--atp_reports_fiu=0|1

File In Use detection and reporting (default 1)
--atp_reports_sig=0|1

POSIX Signal detection and reporting (default 1).
--atp_reports_miu=0|1

Memory In Use detection and reporting, ie: not leaked memory blocks (default 0).
--atp_reports_ffm_fmwl=0|1

Freeing Freed Memory and Late Detect Free Memory Write detection and reporting
 (default 1).
--atp_max_freeq_length=<number of tracked memory blocks>

Free queue length, ie: maximum number of tracked memory blocks whom actual free
is delayed (default 100).
--atp_max_freeq_size=<bytes number>

18

Command Line Reference

Sets the free queue size, ie: the maximum number of bytes actually unfreed (default
1048576 = 1Mb)
--atp_reports_abwl=0|1

Late Detect Array Bounds Write detection and reporting (default 1).
--atp_red_zone_size=<bytes number>

Size of each of the two Red Zones placed before and after the user space of the
tracked memory blocks (default 16).

Performance Profiling Settings
--atq_dump_driver=0|1

Enable the Performance Profiling Dump Driver API atqapi.h (default 0).

Code Coverage Settings
--atc_dump_driver=0|1

Enablesthe Coverage Dump Driver API apiatc.h (default 0).

Runtime Tracing Settings
--att_on_the_fly=0|1

If set to 1, implies that each tdf lines are flushed immediatly in order to be read on-
the-fly by the UML/SD Viewer in Studio (default 0).
--att_item_buffer=0|1

Enable Trace Buffer (not Dump Buffer) if set to 1 (default 0).
--att_item_buffer_size=<bytes>

Maximum number of recorded Trace elements before Trace Buffer flush (default 100).
--att_partial_dump=0|1

Partial Message Dump is on if set to 1 (default 0).
--att_signal_action=0|1|2

• 0 means no action when handling a signal (default)

• 1 means toggling dump of messages

• 2 means only flushing the current call stack
--att_record_max_stack=0|1

Display largest call stack length in a note (default 1).
--att_timestamp=0|1

If enabled, record and display time stamp (default 0).
--att_thread_info=0|1

19

Test RealTime - Reference Manual

If 1 record and display thread information (default 1).

Component Testing for C++ Contract Check Settings
--atk_stop_on_error=0|1

Call breakpoint function on assertion failure (default 0).
--atk_dump_success=0|1

By default (0), only failed assertions are reported. If enabled, both failed and passed
assertions are reported.
--atk_report_reflexive_states=0|1

Trace unchanged states (default 1).

Example
attolcc -- cc -I../include -o appli appli.c bibli.c -lm
attolcc -TRACE -- cc -I../include -o appli appli.c bibli.c -lm

Return codes

The return code from the Instrumentation Launcher is either the first non-zero code
received from one of the commands it has executed, or 0 if all commands ran
successfully. Due to this, the Instrumentation Launcher is fully compatible with the
make mechanism.

If an error occurs while the Instrumentation Launcher - or one of the commands it
handles - is running, the following message is generated:

ERROR : Error during C preprocessing

All messages are sent to the standard error output device.

20

Runtime Analysis
for Java

21

Test RealTime - Reference Manual

Java Instrumentor

Purpose

The SCI Instrumentor for Java inserts methods from a Target Deployment Port
library into the Java source code under test. The Java Instrumentor is used for:

• Performance Profiling

• Code Coverage

• Runtime Tracing

Memory Profiling for Java uses the JVMPI Agent instead of source code insertion
(SCI) technology as for other languages.

Syntax
javi <src> {[,<src>]} [<options>]

where:

• <src> is one or several Java source files (input)

Description

The SCI Instrumentor builds an output source file from each input source file by
adding specific calls to the Target Deployment Port method definitions. These calls
are used by the product's runtime analysis features when the Java application is built
and executed.

The Runtime Analysis tools are activated by selecting the command line options:

• -MEMPRO for Memory Profiling

• -PERFPRO for Performance Profiling

• -TRACE for Runtime Tracing

• -PROC and -BLOCK for Code Coverage (code coverage levels).

Note that there is no -COVERAGE option; the following rules apply for the Code
Coverage feature:

• If no code coverage level is specified, nor Runtime Tracing, Memory Profiling,
or Performance Profiling, then the default is to have code coverage analysis at
the -PROC and -BLOCK=DECISION level.

• If no code coverage level is specified while one or more of the aforementioned
features are selected, then code coverage analysis is not performed.

22

Command Line Reference

Detailed information about command line options for each feature are available in
the sections below.

The Java Instrumentor creates the output files in a javi.jir directory, which is located
inside the current directory. By default, this directory is cleaned and rewritten each
time the Instrumentor is executed.

Although the Java Instrumentor can take several input source files on the command
line, you only need to provide the file containing a main method for the Instrumentor
to locate and instrument all dependencies.

When using the Code Coverage feature, you can select one or more types of coverage
at the instrumentation stage (see the User Guide for more information). When you
generate reports, results from some or all of the subset of selected coverage types are
available.

Options
-FILE=<filename>[{,<filename>}] | -
EXFILE=<filename>[{,<filename>}]

-FILE specifies the only files that are to be explicitly instrumented, where <filename>
is a Java source file. All other source files are ignored.

-EXFILE explicitely specifies the files that are to be excluded from the
instrumentation, where <filename> is a Java source file. All other source files are
instrumented.

Files that are excluded from the instrumentation process with the -EXFILE option are
still analyzed. Any errors found in those files are still reported.

<filename> may contain a path (absolute or relative from the current working
directory). If no path is provided, the current working directory is used.

-FILE and -EXFILE cannot be used together.

-CLASSPATH=<classpath>

The -CLASSPATH option overrides the $CLASSPATH and $EDG_CLASSPATH
environment variables -in that order- during instrumentation.

In <classpath>, each path is separated by a colon (":") on UNIX systems and a
semicolon (";") in Windows.

-OPP=<filename>

The -OPP option allows you to specify an optional definition file. The <filename>
parameter is a relative or absolute filename.

23

Test RealTime - Reference Manual

-DESTDIR=<directory>

The -DESTDIR option specifies the location where the javi.jir output directory
containing the instrumented Java source files is to be created. By default, the output
directory is created in the current directory.

-PROC [=RET]

The -PROC option alone causes instrumentation of all classes and method entries.
This is the default setting.

The -PROC=RET option instruments procedure inputs, outputs, and terminal
instructions.

-BLOCK=IMPLICIT | DECISION | LOGICAL

The -BLOCK option alone instruments simple blocks only.

Use the IMPLICIT or DECISION (these are equivalent) option to instrument implicit
blocks (unwritten else instructions), as well as simple blocks.

Use the LOGICAL parameter to instrument logical blocks (loops), as well as the
simple and implicit blocks.

By default, the Instrumentor instruments implicit blocks.

-NOTERNARY

This option allows you to abstract the measure from simple blocks. If you select
simple block coverage, those found in ternary expressions are not considered as
branches.

-NOPROC

Specifies no instrumentation of procedure inputs, outputs, or returns, and so forth.

-NOBLOCK

Specifies no instrumentation of simple, implicit, or logical blocks.

-COUNT

Specifies count mode. By default, the Instrumentor uses pass mode. See the User
Guide.

-COMPACT

24

Command Line Reference

Specifies compact mode. By default, the Instrumentor uses pass mode. See the User
Guide.

-UNIT=<name>[{,<name>}] | -EXUNIT=<name>[{,<name>}]

-UNIT specifies Java units whose bodies are to be instrumented, where <name> is an
Java package, class or method which is to be explicitly instrumented. All other units
are ignored.

-EXUNIT specifies the units that are to be excluded from the instrumentation. All
other Java units are instrumented.

-UNIT and -EXUNIT cannot be used together.

-DUMPINCOMING=<service>[{,<service>}]
-DUMPRETURNING=<service>[{,<service>}]
-MAIN=<service>

These options allow you to precisely specify where the SCI dump must occur. -MAIN
is equivalent to -DUMPRETURNING.

-COMMENT=<comment>

Associates the text from either the Code Coverage Launcher (preprocessing
command line) or from you with the source file and stores it in the FDC file to be
mentioned in coverage reports. In Code Coverage Viewer, a magnifying glass is put
in front of the source file. Clicking this magnifying glass shows this text in a separate
window.

-NOCVI

Disables generation of a Code Coverage report that can be displayed in the Code
Coverage Viewer.

-JTEST | -NOJTEST

The -JTEST option provides UML sequence diagram output for Component Testing
for Java with Test RealTime. -NOJTEST disables this output.

-NOCLEAN

When this option is set, the Instrumentor does not clear the javi.jir directory before
generating new files.

-FDCDIR=<directory>

25

Test RealTime - Reference Manual

Specifies the destination <directory> for the .fdc correspondence file, which is
generated for Code Coverage after the instrumentation for each source file.
Correspondence files contain static information about each enumerated branch and
are used as inputs to the Code Coverage Report Generator. If <directory> is not
specified, each .fdc file is generated in the directory of the corresponding source file.
If you do not use this option, the default .fdc files directory is the current working
directory. You cannot use this option with the -FDCNAME option.

-FDCNAME=<name>

Specifies the .fdc correspondence file name <name> to receive correspondence
produced by the instrumentation. You cannot use this option with the -FDCDIR
option.

-NO_UNNAMED_TRACE

With this option, anonymous classes are not instrumented.

-PERFPRO

This option activates Performance Profiling instrumentation. This produces output
for a Performance Profile report.

-TRACE

This option activates Runtime Tracing instrumentation. This produces output for a
UML sequence diagram.

-TSFDIR=<directory>

Specifies the destination <directory> for the .tsf static trace file, which is generated
for Code Coverage after the instrumentation of each source file. If <directory> is not
specified, each .tsf static trace file is generated in the directory of the corresponding
source file. If you do not use this option, the default .tsf static trace file directory is
the current working directory. You cannot use this option with the -TSFNAME
option.

-TSFNAME=<filename>

Specifies the <name> of the .tsf static trace file that is to be produced by the
instrumentation. You cannot use this option with the -TSFDIR option.

-INSTRUMENTATION=[FLOW|COUNT|INLINE]

26

Command Line Reference

Choose specifies the instrumentation mode. By default, count mode is used, which is
a compromise between the flow mode (everything is a call to the Target Deployment
Package) and the inline mode (when possible, the code is directly inserted into the
generated file).

Warning: Inline mode must be used only in pass mode. Do not use this option if you
want to know how many times a branch is reached.

-NOINFO

Asks the Instrumentor not to generate the identification header. This header is
normally written at the beginning of the instrumented file.

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

7 End of execution because of fatal error

9 End of execution because of internal error

All messages are sent to the standard error output device.

27

Test RealTime - Reference Manual

Java Instrumentation Launcher

Purpose

The Instrumentation Launcher instruments and compiles Java source files. The
Instrumentation Launcher is used by Performance Profiling, Runtime Tracing and
Code Coverage.

Syntax
javic [<options>] -- <compilation_command>

where:

• <compilat on_command> is the standard compiler command line that you
would use to launch the compiler if you are not using the product

i

i

• "--" is the command separator preceded and followed by spaces

• <options> is a series of optional parameters for the Java Instrumentor.

Description

The Instrumentation Launcher (javic) fits into your compilation sequence with
minimal changes.

The Instrumentation Launcher is suitable for use with only one compiler and only
one Target Deployment Port. To view information about the driver, run javic with no
parameters.

The javic (or javic.exe) binary is located in the cmd subdirectory of the Target
Deployment Port.

The Java Instrumentation Launcher automatically sets the $ATLTGT environment
variable if it is not already set.

The Instrumentation Launcher accepts all command line options designed for the
Java Instrumentor.

Command line options can be abbreviated to their shortest unambiguous number of
characters and are not case-sensitive.

Customization

The javic (or javic.exe) binary is a copy of the perllauncher (or perllauncher.exe)
binary located in <InstallD r>/bin/<platform>/<os>.

28

Command Line Reference

The launcher runs the javic.pl perl script which is located in the cmd subdirectory
and produces the products.java file that contains the default configuration settings.
These are copied from <Ins allDir>/lib/scripts/BatchJavaDefault.pl. t

The javic.pl included with the product is for the Sun JDK 1.3.1 or 1.4.0 compiler. This
script can be changed in the TDP Editor, allowing you to customize the default
settings, which are based on the BatchJavaDefault.pl script, before the call to
PrepareJavaTargetPackage.

Options

The Launcher accepts the following settings:
 --atl_threads_max=<number>

 Sets the maximum number of threads at the same time. The default value is 64.

 --atl_buffer_size=<bytes>

 Sets the size of the Dump Buffer in bytes. The default value is 16384.

 --address=<IPaddress>

 Address of the Socket Trace Receiver Host. The default address is 127.0.0.1.

 --uploader_port=<port number>

 Port number listened to by the Socket Trace Receiver Host. The default port
number is 7777.

 --atl_run_gc_at_exit=0|1

 Set this setting to 1 to run finalizers invoking the Garbage Collector upon exit. 0
disables the option. Default is 1.

 --atj_check_stub=0|1

 Check Component Testing for Java stubs. Default is 0.

 --atj_display_stub=0|1

 Display Component Testing for Java stubs in Runtime Tracing. Default is 0.

 --att_on_the_fly=0|1

29

Test RealTime - Reference Manual

 If set to 1, implies that each tdf lines are flushed immediately in order to be read
on-the-fly by Runtime Tracing. Default is 1.

 --att_partial_dump=0|1

 Partial Message Dump is on if set to 1 in Runtime Tracing. Default is 0.

 --att_timestamp=0|1

 If 1 record and display Time Stamp in Runtime Tracing. Default is 1.

 --att_heap_size=0|1

 Record and Display Current Heap Size in Runtime Tracing. Default is 1.

 --att_thread_info=0|1

 Record and Display Thread Information in Runtime Tracing. Default is 1.

 --att_record_max_stack=0|1

 Record and Display Max Stack in a note in Runtime Tracing. Default is 1.

Example

The following command launches Runtime Tracing instrumentation of
program1.java and its dependencies, then compiles the instrumented classes in the
java.jir directory.

javic -trace -- javac program1.java

The following command launches Code Coverage instrumentation of program2.java
and program3.java, as well as their dependencies, and generates the instrumented
classes in the tmpclasses directory.

javic -proc=r -block=l -- javac program1.java program2.java -d
tmpclasses

In this example, tmpclasses will contain the compiled TDP classes only if they are not
already in the TDP directory. The -d option creates these TDP .class files in the same
location as the source files. Make sure that you set a correct CLASSPATH when
running the application.

30

Command Line Reference

Java Instrumentation Launcher for Ant

Purpose

The Java Instrumentation Launcher (javic) for Ant provides integration of the Java
Instrumentor with the Apache Jakarta Ant build utility.

Description

This adapter allows automation of the instrumented build process for Ant users by
providing an Ant CompilerAdapter implementation called
com.rational.testrealtime.Javic.

The Java Instrumentation Launcher for Ant provided with the product supports
version 1.4.1 of Ant, but is delivered as source code, so that you can adapt it to any
release of Ant. Source code for the Javic class is available at:

<InstallDir>/lib/java/ant/com/rational/testrealtime/Javic.java

Javic uses the build.actual.compiler property to obtain the name of your Java
compiler. When using JDK 1.4.0, this name is modern. Please refer to Ant
documentation for other values.

In some cases -opp=<file> and -destdir=<dir> can not be set in the Javi.options
property:

• The .opp instrumentation file is automatically set in the -opp=<file> option by
the Javic class if and only if $ATLTGT/ana/atl.opp exists.

• The instrumented file repository directory, where the javi.jir subdirectory is
created, is automatically set by the Javic class if the destdir attribute is set in the
javac task.

-classpath=<classpath> cannot be set in the Javi.options property.

The classpath used by the Java Instrumentor is a merge of the classpath attribute of
the javac task with the $CLASSPATH and $EDG_CLASSPATH contents.

$ATLTGT must point to the Java TDP directory, for example:
<InstallDir>/targets/jdk_1.4.0. On Windows platforms, this path must be provided
in short-name DOS format.

Options

The Launcher accepts the following settings:
 --atl_threads_max=<number>

Sets the maximum number of threads at the same time. The default value is 64.

31

Test RealTime - Reference Manual

 --atl_buffer_size=<bytes>

Sets the size of the Dump Buffer in bytes. The default value is 16384.

 --address=<IPaddress>

Address of the Socket Trace Receiver Host. The default address is 127.0.0.1.

 --uploader_port=<port number>

Port number listened to by the Socket Trace Receiver Host. The default port number
is 7777.

 --atl_run_gc_at_exit=0|1

Set this setting to 1 to run finalizers invoking the Garbage Collector upon exit. 0
disables the option. Default is 1.

 --atj_check_stub=0|1

Check Component Testing for Java stubs. Default is 0.

 --atj_display_stub=0|1

Display Component Testing for Java stubs in Runtime Tracing. Default is 0.

 --att_on_the_fly=0|1

If set to 1, implies that each tdf lines are flushed immediately in order to be read on-
the-fly by Runtime Tracing. Default is 1.

 --att_partial_dump=0|1

Partial Message Dump is on if set to 1 in Runtime Tracing. Default is 0.

 --att_timestamp=0|1

If 1 record and display Time Stamp in Runtime Tracing. Default is 1.

 --att_heap_size=0|1

Record and Display Current Heap Size in Runtime Tracing. Default is 1.

32

Command Line Reference

 --att_thread_info=0|1

Record and Display Thread Information in Runtime Tracing. Default is 1.

 --att_record_max_stack=0|1

Record and Display Max Stack in a note in Runtime Tracing. Default is 1.

 To install the Javic class for Ant:

1. Download and install Ant v1.4.1 from http://jakarta.apache.org/ant/

2. Set ANT_HOME to the installation directory, for example: /usr/local/jakarta-
ant-1.4.1.

3. Add $ANT_HOME/bin in your PATH

4. Compile and install the Javic class. In the ant directory, type:
ant

This adds the javic.jar to the $ANT_HOME/lib directory.

Example

The files for the following example are located in
<InstallDir>/lib/java/ant/example.

The following command performs a standard build based on the build.xml file
ant

This produces the following output:
Buildfile: build.xml
clean:
cc:
 [javac] Compiling 1 source file
all:
BUILD SUCCESSFUL
Total time: 2 seconds

To perform an instrumented build of the same build.xml, without modifying that file:
ant -DATLTGT=$ATLTGT -
Dbuild.compiler=com.rational.testrealtime.Javic -
Dbuild.actual.compiler=modern -Djavi.options=-trace -
Djavi.settings=--att_on_the_fly=0

This produces the following output:
Buildfile: build.xml
clean:
 [delete] Deleting: Sample.class

33

Test RealTime - Reference Manual

cc:
 [javac] Compiling 1 source file
 [javi] Instrumenting 1 source file
 [javac] Compiling 1 source file
all:
BUILD SUCCESSFUL
Total time: 4 seconds

34

Command Line Reference

JVMPI Agent

Purpose

The JVMPI Agent is a dynamic library that is part of the J2SE and J2ME virtual
machine distributions. The Agent ensure the memory profiling functionality when
using the Memory Profiling feature for Java.

Syntax
java -Xint -Xrunpagent[:<options>] <configuration>

where:

• <options> are the command line options of the JVMPI agent

• <configuration> is the configuration required to run the application

Description

Because of the garbage collector concept used in Java, Performance Profiling for Java
uses the JVMPI agent facility delivered by the JVM. This differentiates Memory
Profiling for Java from the SCI instrumentation technology used with other
languages.

To run the JVMPI Agent from the command line, add the -Xrunpagent option to the
Java command line.

The JVMPI Agent analyzes the following internal events of the JVM:

• Method entries and exits

• Object and primitive type allocations

The JVMPI Agent retrieves source code debug information during runtime. When the
Agent receives a snapshot trigger request, it can either execute an instantaneous
JVMPI dump of the JVM memory, or wait for the next garbage collection to be
performed.

Note Information provided by the instantaneous dump includes actual
memory use as well as intermediate and unreferenced objects that are
normally freed by the garbage collection.

The actual trigger event can be implemented with any of the following methods:

• A specified method entry or exit used in the Java code

• A message sent from the Snapshot button or menu item in the graphical user
interface

• Every garbage collection

35

Test RealTime - Reference Manual

The JVMPI Agent requires that the Java code is compiled in debug mode, and cannot
be used with Java in just-in-time (JIT) mode.

Options

The following parameters can be sent to the JVMPI Agent on the command line.
-H_Cx=<size>
-H_Ox=<size>

Specifies the size of hashtables for classes (-H_Cx) or objects (-H_Ox) where <size>
 must be 1, 3, 5 or 7, corresponding respectively to hashtables of 64, 256, 1024 or 4096
values.

-JVM <prefix>

By default, the Agent waits for the virtual machine (VM) to be fully initialized before
it starts collecting data. This usually relates to the spawning of the first user thread.
With the -JVM option, data collection starts on the first memory allocation, even if the
VM is not fully initialized.

-N_O

With the -N_O option, the Agent only counts the number of allocated objects and
ignores any further object data. The existence of the objects after garbage collection
cannot be verified. Use this option to reduce Performance Profiling overhead or to
obtain a quick summary.

-D_O_N

Delete Object No. By default, the Agent only collects and presents method data on
the latest call to that method. Any further calls to the method replaces existing call
data.

Use the -D_O_N option to display all referenced objects.

-D_GC

This option requests a JVMPI dump after each garbage collection

-D_PGC

When using a dump request method, this option makes the Agent wait until the next
garbage collection before performing the dump.

-D_M[[<method>,<class>,<mode>],[,<method>,<class>,<mode>]]

36

Command Line Reference

Activates "Dump Method" mode.

Use this option to perform a snapshot on entry or exit of the specified methods,
where <mode> may be 0 or 1:

• 0 performs the method dump upon exit

• 1 performs the method dump on entry

<class> must be the fully qualified name of a class, including the entire package
name.

-O_M[[<method>,<class>],[<method>,<class>]]

Activates "Observe Method" mode.

Use this option to store the call stack when the specified methods are called. The
stack is loaded from 0 to 10 (max).

-U_S=[<name>]

User name

This option adds the name of the user to the JVMPI dump data. The name must be
specified between brackets ("[]").

-D_U=[<string>]

This option specifies a start date that is used by the JVMPI dump data. The stringr
must be specified between brackets ("[]").

-F_M[[<method>,<class>],[<method>,<class>]]

Filter mode.

Use this option to produce JVMPI data only on the specified method(s). All other
methods are ignored.

-H_N=[<hostname>]

Hostname.

Use this option to specify a hostname for the JVMPI Agent to communicate with the
graphical user interface on the local host. The hostname must be specified between
brackets ("[]").

-P_T=[<port_number>]

37

Test RealTime - Reference Manual

Port number. Use this option to specify a port number for the JVMPI Agent to
communicate with the graphical user interface on the local host. The port number
must be specified between brackets ("[]").
-OUT=[<filename>]

Output filename.

This option specified the name of the trace dump file produced by the JVMPI Agent.
Use the Dump File Splitter on this output file to produce a .tsf static trace file for the
GUI Memory Profiling Viewer.

Example

The following example launches the JVMPI Agent by dumping the expor values and
expor values2 methods of the com.rational.Th class:

t
t
java -Xint -Xrunpagent:-JVM-
D_M[[exportvalues,com.rational.Th,0],[exportvalues2,com.rational.
Th,0]] -classpath $CLASSPATH Th

38

Runtime Analysis
for Ada

39

Test RealTime - Reference Manual

Ada Instrumentor

Purpose

The source code insertion (SCI) Instrumentor for Ada inserts functions from a Target
Deployment Port library into the Ada source code under test. The Ada Instrumentor
is used for Code Coverage only.

Syntax
attolada <src> <instr> [<options>]

where:

• <src> is the source file (input)

• <instr> is the instrumented output file

Description

The Instrumentor builds an output source file from an input source file, by adding
special calls to the Target Deployment Port function definitions.

The Ada Instrumentor (attolada) supports Ada83 and Ada95 standard source code
without distinction.

You can select one or more types of coverage at the instrumentation stage (see the
User Guide for more information).

When you generate reports, results from some or all of the subset of selected
coverage types are available.

Options
-PROC [=RET]

-PROC alone instruments procedure, function, package, and task entries. This is the
default setting.

The -PROC=RET option instruments both entries and exits.

-CALL

Instruments Ada functions or procedures.

-BLOCK [=IMPLICIT | DECISION | LOGICAL | ATC]

This option specifies how blocks are to be instrumented.

40

Command Line Reference

• The -BLOCK option alone instruments simple blocks only.

• Use the IMPLICIT or DECISION option to instrument implicit blocks
(unwritten else instructions), as well as simple blocks.

• Use the LOGICAL parameter to instrument logical blocks (loops), as well as the
simple and implicit blocks.

• Use the ATC parameter to extend the instrumentation to asynchronous transfer
control (ATC) blocks.

By default, the Instrumentor instruments implicit blocks.

-COND [=MODIFIED | COMPOUND | FORCEEVALUATION]

When -COND is used with no parameter, the Instrumentor instruments basic
conditions.

• MODIFIED or COMPOUND are equivalent settings that allow measuring the
modified and compound conditions.

• FORCEEVALUATION instruments forced conditions.
-NOPROC

Disables instrumentation of procedure inputs, outputs, or returns, etc.

-NOCALL

Disables instrumentation of calls.

-NOBLOCK

Disables instrumentation of simple, implicit, or logical blocks.

-NOCOND

Disables instrumentation of basic conditions.

-UNIT=<name>[{,<name>}] | -EXUNIT=<name>[{,<name>}]

-UNIT specifies Ada units whose bodies are to be instrumented, where <name> is an
Ada unit which is to be explicitly instrumented. All other functions are ignored.

-EXUNIT specifies the units that are to be excluded from the instrumentation. All
other Ada units are instrumented. Units that are excluded from the instrumentation
process with the -EXUNIT option are still analyzed. Any errors found in those files
are still reported.

41

Test RealTime - Reference Manual

-UNIT and -EXUNIT cannot be used together.

-LINK=<filename>[{,<filename>]]

Provides a set of link files to the Instrumentor.

-STDLINK=<filename>

Provides a standard link file to the Instrumentor.

-FDCDIR=<directory>

Specifies the destination <directory> for the .fdc correspondence file, which is
generated for Code Coverage after the instrumentation for each source file.
Correspondence files contain static information about each enumerated branch and
are used as inputs to the Code Coverage Report Generator. If <directory> is not
specified, each .fdc file is generated in the directory of the corresponding source file.
If you do not use this option, the default .fdc files directory is the working directory
(the attolccl execution directory). You cannot use this option with the -FDCNAME
option.

-FDCNAME=<name>

Specifies the .fdc correspondence file name <name> to receive correspondence
produced by the instrumentation. You cannot use this option with the -FDCDIR
option.

-DUMPINCOMING=<name>[{,<name>}]
-DUMPRETURNING=<name>[{,<name>}]

These options allow you to explicitly define upon which incoming or returning
function(s) the trace dump must be performed. Please refer to General Runtime
Analysis Settings in the User Guide for further details.

-COMMENT=<comment>

Associates the text from either the Code Coverage Launcher (preprocessing
command line) or from you with the source file and stores it in the FDC file to be
mentioned in coverage reports. In Code Coverage Viewer, a magnifying glass is put
in front of the source file. Clicking on this magnifying glass, shows this text in a
separate window.

-NOMETRICS

42

Command Line Reference

Saves the metrics basic data calculation time.

-RESTRICTION =NOEXCEPTION|NOGENERIC|CSMART

Use this option to set a restriction.

• NOEXCEPTION deactivates instrumentation of exception block branches
encountered in the source file. When this option is active, no coverage
information is available on exception blocks or on instructions contained in
exception blocks.

• NOGENERIC deactivates the instrumentation using a generic Target
Deployment Port call. When this option is active, the generated source code
may contain uninstrumentable calls. If used with the -CALL option, this can
generate compilation errors depending on your application if, for example, you
use private packages as well as private sub-packages.

• CSMART generates CSMART compliant code.
-NOSOURCE

Replaces the generation of the colorized viewer source listing by a colorized viewer
pre-annotated report containing line number references.

-NOCVI

Disables generation of a Code Coverage report that can be displayed in the Code
Coverage Viewer.

-METRICS

Provides static metric data for compatibility with old versions of the product. Use the
static metrics features of the Test Script Compiler tools instead. By default no static
metrics are produced by the Instrumentors.

-GENERATEDNAME = CHECKSUM | <filename>
-USERNAME = <NAME>

Use these options to add a package to the header of the generated file to store
coverage traces. You can specify the name of the generated package using one of the
following three options:

• -GENERATEDNAME=CHECKSUM uses a checksum calculated on the
instrumented file to create a package name under the form ATC_<checksum>,
where <checksum> has a maximum of four letters.

• -GENERATEDNAME=<filename> uses the name of the file to be instrumented,
this name is transformed into an Ada identifier and prefixed by ATC_.

43

Test RealTime - Reference Manual

• -USERNAME=<username>: A name you choose freely by the user and provide
on the command line.

<File> is used without checking whether it is a valid Ada identifier.

By default, the -GENERATEDNAME=<FILE> option is used.

-PREFIX=<prefix>

You can prefix some instrumentations (name of the generated package, variables,
etc.) if there are any semantic ambiguities. Thus, packages generated by attolada can
be recognized by giving them a known prefix.

By default, no prefix is used.

Note The prefix you provide is used, without checking whether it is a valid
Ada identifier.

-SPECIFICATION

Extends instrumentation of calls and conditions to source code inside package
specifications.

-MAIN=<unit>[{,<unit>}]

Forces a trace dump at the end of the main unit of your application.

-EXCALL=<unit>[{,<unit>}]

Excludes from call instrumentation the calls to specified units or to functions or
procedures inside the specified units.

-ADA83 | -ADA95

Choose specifies the Ada language used by the Instrumentor. This language is
applied to the analyzed and generated file.

-INSTRUMENTATION=[COUNT|INLINE]

Specifies the Instrumentation Mode:

• COUNT: Default Pass mode, each branch generates in 32 bits for profiling
purposes. This offers the best compromise between code size and speed
overhead.

• INLINE: Compact mode. functionally equivalent to Pass mode, except that each
branch needs only one bit of storage instead of one byte. This implies a smaller

44

Command Line Reference

requirement for data storage in memory, but produces a noticeable increase in
code size (shift/bits masks) and execution time.

By default, count mode is used, which is a compromise between the flow mode
(everything is a call to the Target Deployment Package) and the inline mode (when
possible, the code is directly inserted into the generated file).
-NOINFO

Asks the Instrumentor not to generate the identification header. This header is
normally written at the beginning of the instrumented file, to strictly identify the
instrument used.

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

7 End of execution because of fatal error

9 End of execution because of internal error

All messages are sent to the standard error output device.

45

Test RealTime - Reference Manual

Ada Link File Generator

Purpose

The Ada Link File Generator (attolalk) feature automatically generates link files. It
uses file name extensions that you allow or disallow, and on the file list found in the
specified directories.

Syntax
attolalk [<options>] <link file name> <directory> [<directory>
... <directory>]

where:

• <link file name> is the name of the generated link file. If attolalk cannot write
this file a fatal error is generated.

• <directory> is a directory name. If attolalk cannot read file from this directory, a
fatal error is generated.

• <options> is a set of optional command line parameters as specified in the
following section.

Description

The Link File Generator requires that the LD_LIBRARY_PATH environment variable
is set to the /lib directory in the product installation directory.

File Extensions

A file extension is a character string of unconstrained positive length (greater than
zero). A file name matches an extension if its length is greater than the length of
extension, and if the N last characters of the file name are identical to the characters
of the extension (N is the length of the extension). For example, source.ada matches
the .ada extension but not .1.ada extension.

Permitted and Forbidden Extensions:

Permitted and forbidden file extensions for the Link File Generator are specified by
the ATTOLALK_EXT and ATTOLALK_NOEXT environment variables and are
separated by the ':' character on UNIX systems and ';' on Windows. For example:

ATTOLALK_EXT=".ada:.a:.am"
ATTOLALK_NOEXT=".1.ada"

By default, the allowed extension list is ".ada:.ads:.adb" and the forbidden extension
list is empty.

46

Command Line Reference

Link File Generation

For each given directory, the contained file name list is loaded. Each file name is
compared with the allowed extensions. If a match is found, the file name is compared
with forbidden extension. If there is no match, the file is taken as an Ada source file.
Each Ada source file is analyzed and may produce one or more lines in the generated
link file (with the syntax described above).

Command Line Parameters

Options can be in any order. They may be upper or lowercase and can be abbreviated
to their shortest unambiguous number of characters.

-r

Relative paths. With the -r option, all filenames are generated with relative paths.

-s

Silent mode. With the -s option, only errors are displayed.

-f

Force all Ada files. By default, the Link File Generator only analyzes Ada source files
that were changed since the last analysis. Use the -f option to force the analysis of all
Ada source files, regardless of when they were modified.

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

3 End of execution with one or more warning messages

5 End of execution with one or more errors

7 End of execution because of fatal error

9 End of execution because of internal error

All messages are sent to the standard error output device.

47

Test RealTime - Reference Manual

Ada Unit Maker

Purpose

The Instrumentor generates several compilation units in the same file. Some
compilers require a separate file for each compilation unit.

To achieve this, the Ada Unit Maker feature generates one file for each compilation
unit found in a specified Ada source file as the gnatchop command, provided with
the GNAT Ada compiler, does. You can choose the name of the generated files from
several naming conventions.

Syntax
attolchop [<options>] <source file name>

where:

• <source file name> is the source file name to analyze. If this file cannot be read
or contains lexical or syntax errors, a fatal error is generated.

• <options> is a set of optional command line parameters as specified in the
following section.

Description

The Ada Unit Maker feature can generate file names for Rational Apex or Gnat
naming standards. To choose the naming standard, either set the ATTOLCHOP
environment variable to GNAT or APEX or use the -n command line parameter. By
default, the Ada Unit Maker uses the Gnat naming convention.

Gnat Naming

The full compilation unit name is set to lower case and all dot characters (".") are
replaced with hyphens ("-"). The feature appends the .ads extension to the name if the
unit is an extension or the .adb extension if the unit is a body. The Krunch Gnat short
name mode is not supported by the Ada Unit Maker. Please refer to your Gnat
documentation for further information.

Rational Apex Naming

The full compilation unit name is set to lower case; then the feature appends a .1.ada
extension to the filename if the unit is a specification, or a .2.ada extension if the unit
is a body. Please refer to your Apex documentation for further information.

48

Command Line Reference

Options

Options can be in any order. They may be upper or lowercase and can be abbreviated
to their shortest unambiguous number of characters.
-l

This option must be placed first if it is used. This tells the Ada Unit Maker feature to
send the name of the generated file, and no other messages, to the standard output.

-w

Overwrite. By default, the Ada Unit Maker produces an error if a filename already
exists. Use the -w option to overwrite any existing files.

-n APEX|GNAT

Naming standard. Use the -n option to select either the Rational Apex or Gnat
naming convention. This parameter overrides the default setting (Gnat) as well as the
ATTOLCHOP environment variable if set.

Return Codes

After execution, the program exits with the following return codes:

Code Description

0 End of execution with no errors

3 End of execution with one or more warning messages

5 End of execution with one or more errors

7 End of execution because of a fatal error

9 End of execution because of an internal error

All messages are sent to the standard error output device.

49

Test RealTime - Reference Manual

Ada Metrics Calculator

Purpose

The Ada Metrics Calculator produces .met static metric files for the specified source
files.

Syntax
metada <source_file> [-output_dir=<output_directory>]
metada @<options_file>

where:

• <source_file> is the name of the source file to be analyzed.

• <output direc ory> is the absolute path of the location where the .met static
metric file is to be generated.

t

• <options_file> points to a plain text file containing a list of options.

Description

The Ada Metrics Calculator analyzes a specified Ada source file and produces a .met
static metric file, which can be opened with the Test RealTime GUI.

Note For other languages, the .met static metric files are produced by the C,
C++ and Java Source Code Parsers.

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

3 End of execution with one or more warning messages

5 End of execution with one or more errors

7 End of execution because of fatal error

9 End of execution because of internal error

All messages are sent to the standard error output device.

50

Component
Testing for C

51

Test RealTime - Reference Manual

C Source Code Parser

Purpose

When creating a new Component Testing test campaign for C, the C Source Code
Parser creates a C test script template based on the analysis of the source code under
test.

When the -metrics option is specified, the Source Code Parser produces static metrics
for the specified source files.

Syntax
attolstartC <source_under_test > <test_script> [{<-option>}]
attolstartC @<option file >

where:

• <source under test> this required parameter is the name of the source file to be
tested.

• <test script> is the name of the test script that is generated

• <options> is a list of options as defined below.

• <option file> is the name of a plain-text file containing a list of options.

Description

The C Source Code Parser analyzes the source file to be tested in order to extract
global variables and testable functions.

Each global variable is automatically declared as external, if this has not already been
done at the beginning of the test script. Then, an environment is created to contain all
these variables with default tests. This environment has the name of the file (without
the extension).

For each function under test, the generator creates a SERVICE which contains the C
declaration of the variables to use as parameters of the function.

Parameters passed by reference are declared according to the following rule:

• char* <param> causes the generation of char <param>[200]

• <type>* <param> causes the generation of <type> <param> passing by
reference

It is sometimes necessary to modify this declaration if it is unsuitable for the tested
function, where <type>* <param> can entail the following declarations:

• <type>* <param> passing-by-value,

52

Command Line Reference

• <type> <param> passing-by-reference,

• <type> <param>[10] passing-by-reference.

File names can be related or absolute.

If the generated file name does not have an extension, the C Source Code Parser
automatically attaches .ptu or the extension specified by the ATTOLPTU
environment variable. This name may be specified relatively, in relation to the
current directory, or as an absolute path.

If the test script cannot be created, the C Source Code Parser issues a fatal error and
stops.

If the test script already exists, the previous version is saved under the name
<generated test script>_bck and a warning message is generated.

Options

Options can be in any order. They may be upper or lowercase and can be abbreviated
to their shortest unambiguous number of characters.

Static Metrics
-metrics=<output directory>

Generates static metrics for the specified source files. Resulting .met static metric files
are produced in specified <output direc ory>. When the -metrics option is used, no
other action is performed by the Source Code Parser.

t

-one_level_metrics

For use with the -metrics option only. When the -metrics option is used, by default,
the calculation of static metrics is applied to the specified source files, and extended
to any files included in those source files. Use the -one_level_metrics option to ignore
included files when calculating static metrics.

-restrict_dir_metrics <directory>

For use with the -metrics option only. Use the the -restrict_dir_metrics option to
calculate static metrics of the specified source files, extended to any files included in
those source files but limited to those files located in the specified <directory>.

Included Files
-insert

With this option the source file under test is included into the test script with an
#include directive, ensuring that all the internal functions and variables (declared

53

Test RealTime - Reference Manual

static) are visible to the test script. The C Source Code Parser adds the #include
directive before the BEGIN instruction and after any #includes added by the -use
option.

-use=<file used>{[,<file used>]}

This option gives the C Source Code Parser a list of header files to include in the test
script before the BEGIN instruction. This avoids declaring variables or functions that
have already been declared in a C header file of the application under test.

The C Source Code Parser adds the #include directive before the BEGIN instruction.
Then, for each file, an environment is created, containing all variables with a default
test. This environment has the name of the included file.

By default, no files are included in the test script.

Integrated Files
-integrate=<additional file>{[,<additional file>]}

This option provides a list of additional source files whose objects are integrated into
the test program after linking.

The C Source Code Parser analyzes the additional files to extract any global variables
that are visible from outside. For each global variable the Parser declares an external
variable and creates a default test which is added to an environment named after the
corresponding additional file.

By default, any symbols and types that could be exported from the source file under
test are declared again in the test script.

Simulated Files
-simulate=<simulated file>{[,<simulated file>]}

This option gives the C Source Code Parser a list of source files to simulate upon
execution of the test. List elements are separated by commas and may be specified
relatively, in relation to the current directory, or as an absolute path.

The Parser analyzes the simulated files to extract the global variables and functions
that are visible from outside. For each file, a DEFINE STUB block, which contains the
simulation of the file's external global variables and functions, is generated.

By default, no simulation instructions are generated.

Return Codes

After execution, the program exits with the following return codes

Code Description

54

Command Line Reference

0 End of execution with no errors

3 End of execution with one or more warning messages

5 End of execution with one or more errors

7 End of execution because of fatal error

9 End of execution because of internal error

All messages are sent to the standard error output device.

55

Test RealTime - Reference Manual

C Test Script Compiler

The C Test Script Compiler tool pre-processes a .ptu test script and converts it into a
native source code test harness.

Syntax
attolpreproC <test_script> <generated_file> [
<target_directory>] {[<-options>]}

where:

• <test_scr pt> is a required parameter that specifies the name of the test program
to be generated.

i

i t

• <generated_file> is a required parameter that specifies the name of the test
harness that is generated from the test script.

• <options> is a set of optional command line parameters as specified in the
following section.

• <option_file> is the name of a plain-text file containing a list of options.

Description

Source File Under Test
-source=<source file>

This option specifies the name of the source file being tested, allowing the Test Script
Compiler to:

• Establish the list of include files in the tested source file.

The name of the tested source file may be specified with a relative or absolute
directory in a syntax recognized by the operating system, or, in UNIX, by an
environment variable.

Purpose

attolpreproC @<option_file>

• <target_d rec ory> is an optional parameter. It specifies the location where
Component Testing for C will generate the trace file. By default, the trace file is
generated in the workspace directory.

Options can be in any order. They may be upper or lowercase and can be abbreviated
to their shortest unambiguous number of characters.

• Maintain the source file name in the table of correspondence files so that the
Test Report Generator can display this name in the header of the results
obtained file.

56

Command Line Reference

By default, the list of include files in the tested source file and the source file name
are not displayed in the Results Obtained file.

Condition Definition
-define=<ident>[=<value>] {[,<ident>[=<value>]}

This option specifies conditions to be applied when the Test Script Compiler starts.
These conditions allow conditional test harness generation as well as identifier
definition for C.

The identifiers specified by the -define option apply conditions to the generation of
any IF ... ELSE ... END IF blocks in the test script.

If the option is used with one of the conditions specified in the IF instruction, the IF ...
ELSE block (if ELSE is present) or the ELSE ... END IF block (if ELSE is not present) is
analyzed and generated. The ELSE ... END IF block is eliminated.

If the option is not used or if none of the conditions specified in the IF instruction are
satisfied, the ELSE ... END IF block is analyzed and generated.

All symbols defined by this option are equivalent to the following line in C
-define <ident> [<value>]

By default, the ELSE ... END IF blocks are analyzed and generated.

Specifying Tests, Families, and Services
-test=<test>{[,<test>]} | -extest=<test>{[,<test>]}

This option specifies a list of tests to be executed.

Use -test to only generate the source code related to the specified tests, and -extest to
specify the tests for which you do not want to generate source code.

Both -test and -extest cannot be used together.

By default, all tests are selected.
-family=<family>{,<family>} | -exfamily=<family>{,<family>}

Use -family to only generate the source code related to the specified families, and -
exfamily to specify the families for which you do not want to generate source code.

Both -family and -exfamily cannot be used together.

By default, all families are selected.
-service=<service>{[,<service>]} | -
exservice=<service>{[,<service>]}

Use -service to only generate the source code related to the specified services, and -
exservice family to specify the services for which you do not want to generate source
code.

Both -service and -exservice cannot be used together.

57

Test RealTime - Reference Manual

By default, all services are selected.

Test Script Parsing
-fast | -nofast

The -fast option tells the C Test Script Compiler to analyze only those tests that you
want to generate. This setting considerably speeds up the Test Script Compiler when
you use the -service,-exservice,-family, -exfamily,-test, or -extest options.

The -fast option is selected by default.

If you want a full test script analysis, this option can be de-selected using the -nofast
option.
-noanalyse

This option disables the native language parser.

By default, native language lines are analyzed. This option enables you to disable this
parsing.
-noedit

This option limits unit test code generation to the initialization of variables, making it
possible to generate tighter code for special purposes such as debugging. If you
specify the -noedit option, you cannot generate a test report.

By default, code is generated normally.
-nopath

Use this option if you do not want to generate long pathnames on the open and close
execution trace file call, and on the Target Deployment Port header file include
directive. This can be useful, for example, to preserve memory on embedded targets.

By default, full pathnames are generated.
-nosimulation

This option determines the conditional generation related to simulation in the source
file generated by the Test Script Compiler. Blocks delimited by the keywords SIMUL
... ELSE_SIMUL ... END SIMUL can be included in the test scripts.

See SIMUL blocks in the C Test Script Language Reference.
-restriction=ANSI | KR | NOEXCEPTION | NOIMAGE | NOPOS | SEPAR

This option lets you modify the behavior of test script parser.

• ANSI enables C native code to be analyzed according to the ANSI standard (C
only).

• KR enables C native code to be analyzed according to the KERNIGHAN &
RITCHIE version 2 standard (C only).

• noexception: tells the Test Script Compiler to skip EXCEPTION blocks when
generating a test harness. This allows the use of compilers that do not

58

Command Line Reference

implement exception handling. By default, EXCEPTION blocks are generated in
the test program.

• noimage: initialization, expected, and obtained values display as integers
instead of character strings. By default, reports are generated with IMAGE
attributes.

• nopos: modifies the way enumerated variables are displayed in the test report
by not generating any POS or IMAGE attributes. Initialization and expected
values are displayed as they are written in the test script, whereas obtained
values do not appear (although they are tested). Use this option to save memory
on restricted target platforms. By default, reports are is generated with IMAGE
attributes.

• separ: modifies the format of the generated test program. In place of a main
procedure including a sub-procedure for each service, the C Test Script
Compiler generates one separate procedure for each service. With this
restriction, the Test Script Compiler generates several compilation units and
avoids overflow errors on compilation. By default, code is generated normally.

Several -restriction options can be used on the same command line. The ANSI and
KR parameters, however, cannot be used together.

Using an Option File
@<parameter file>

This syntax allows the compiler to pass options to the preprocessor through a file.
The parameter file name can be written in absolute or relative format.

The format of the file must follow these rules:

• One or more options can occur per line.

• Each option must follow the same syntax as the command line version, with the
character that usually introduces the option being '-' under UNIX and '/' under
Windows.

• You may not use both an option file and command line options.

By default, no file is taken into account.

If the option file is not found, a fatal error is generated and the preprocessor stops.

Examples
attolprepro C add.ptu Tadd.cpp -service=add -test=1,2,3 -
family=nominal
attolprepro CPP @add.opt

In this case, the parameter file add.opt would contains:
add.ptu Tadd.cpp
-service=add

59

Test RealTime - Reference Manual

-test=1,2,3
-family=nominal

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

3 End of execution with one or more warning messages

5 End of execution with one or more errors

7 End of execution because of fatal error

9 End of execution because of internal error

These codes help you decide on a course of action once the Test Script Compiler has
finished test execution. For example, if the return code in the command file shows
there have been incorrect tests, you can save certain files in order to analyze them
later.

All messages are sent to the standard error output device.

Related Topics

C++ Test Compiler | System Testing Script Compiler

60

Command Line Reference

C Test Report Generator

Purpose

The C Test Report Generator processes a trace file produced during test execution,
and generates a test report.

Syntax
attolpostpro <trace_filename> <report_filename> [<options>]
attolpostpro @<option file>

where:

• <trace_filename> specifies the root (filename without extension) of the trace file
that is generated when the program runs.

• <report_ ilename> specifies the name of the .rod compact report file produced
by the Test Report Generator.

f

f

• <options> can be any of the optional parameters specified below.

• <option_file> is the name of a plain-text file containing a list of options.

Description

The Test Report Generator uses <trace_ ilename> to find the names of both the .rio
trace file and the .tdc table of correspondence file that are generated by the Test Script
Compiler.

If <report_filename> is provided without an extension, the Test Report Generator
attaches .rod.

If either <trace_filename> or <report_filename> are omitted, the Test Report
Generator produces an error message and terminates.

If the either <trace_filename>.rio or <trace_filename>.tdc do not exist, cannot be
read, or contain synchronization errors, the Test Report Generator produces an error
message and terminates.

If the Test Report Generator cannot create the .rod compact report file, generation of
the report is terminated. If the file already exists, the newly generated file replaces
the existing report.

The .rod compact report file is an intermediate low-footprint format that can be
stored on remote targets. The .rod files must be converted to the .xrd report file
format to be displayed by the Test RealTime GUI with the rod2xrd command line
tool.

Options

61

Test RealTime - Reference Manual

Options can be in any order. They may be upper or lowercase and can be abbreviated
to their shortest unambiguous number of characters.

-cio=<coverage result file>

This option allows you to insert coverage results in the report file. This option must
be used only in conjunction with the Code Coverage feature.

-compare[=strict]

This option lets you compare the results from two test runs. A trace file generated
during the first run has a .rio extension, and the one generated during the second run
has a .ri2 extension.

When making a comparison, the Test Report Generator generates the test report
from:

• The .tdc table of correspondence file

• The .rio trace file generated during the first run

• The .ri2 trace file generated during the second run

The same root name is used for the names of the three files.

When comparing values, a variable will only be deemed correct if the two obtained
values are the same as the expected value, or within the specified validity interval for
that variable. With the compare=strict option, the two results must have the same
value.

-ra[=test | error]

This option specifies the form of the output report generated by the Test Report
Generator.

Use -ra with no parameter, to display ALL test variables and mark any variables that
are incorrect for a given test. This option is used by default.

Use the -ra=test option to display ALL test variables, with incorrect variables
marked. This option provides a comprehensive display of variables for an incorrect
test, which can prove useful in a complex test environment.

Use -ra=error to to display only erroneous test variables.

For both -ra=test and -ra=error, if no errors are detected in the test, only general
information about the test is produced.

-va=eval | noeval | combined

This option lets you specify the way in which initial and expected values of each
variable are displayed in the test report.

62

Command Line Reference

Use -va=eval if you want the test report to show the initial and expected value of
each variable evaluated during execution of the test. This is only relevant for
variables whose initial or expected value expressions are not reducible in the test
script.

Note: For arrays and structures in which one of the members is an array, the initial
values are not evaluated. For the expected values, only incorrect elements are
evaluated.

Use -va=noeval if you want the test report to show the initial and expected values
described in the test script.

The -va=combined option combines both eval and noeval parameters. For each
variable, the Report Generator includes the initial and expected values described in
the test script, as well as the initial and expected values evaluated during execution,
if these values differ.

By default, the -va=eval parameter is used.

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

3 End of execution with one or more warning messages

5 End of execution with one or more errors

7 End of execution because of fatal error

9 End of execution because of internal error

All messages are sent to the standard error output device.

63

Component
Testing for C++

65

Test RealTime - Reference Manual

C++ Source Code Parser

Purpose

The C++ Source Code Parser takes a set of C++ source files containing classes to
generate template .otd C++ Test Driver Scripts and .otc C++ Contract Check Scripts
to fully cover the application under test.

When the -metrics option is specified, the Source Code Parser produces static metrics
for the specified source files.

Syntax
atostart {[-i] <source file>} <options>
atostart {<source file>} -metrics <options>

where:

• <tested file> is the list of files containing classes to be tested. If no class if
specified with the option -test_class, the tested classes will be either the classes
defined in a file under test, or the classes for which a method is defined in a
tested file.

• <options> is a series of command line options. See the section Options.

If a tested file is specified with option -i, this file will be included by the generated
.otd script. As a consequence everything defined in this tested file will be available in
the script (especially types, classes, static variables, and functions). This option is
ignored if you choose not to generate an .otd C++ Test Driver Script.

Description

The tested files and additional files (see option -integrate) are parsed by the
integrated C++ analyzer. A candidate classes list is automatically deduced from the
content of tested files (this list can be viewed in the header of the generated .otd and
.otc scripts). If no -test_class or -do_not_test_class option is used, then all the
candidate classes will have generated code to test them.

The C++ Source Code Parser generates only one .otd C++ Test Driver Script that
contains all classes under test. It also generates two files associated to this test script:
a .dcl declaration file (declaring and including every resource needed to compile the
test script) and a .stb stub file (containing stub declarations deduced from used but
not defined entities found in the parsed files).

The C++ Source Code Parser generates one .otc C++ Contract Check Script per
encountered .h file defining a class.

Options

66

Command Line Reference

The C++ Source Code Parser supports the following options:
{-integrate <additional file>}

Specifies additional files or directories to be analyzed. These files do not contain any
classes under test, but they do contain code which is to be linked with the tested
application. Basically, this option tells the C++ Source Code Parser which files not to
stub.

Three types of additional files or directories are supported :

• body files: Only the entities defined within the file are considered defined.

• header files: Every declaration within the file is considered as having a
matching definition in a non-provided body file or in a library. Use additional
header files when linking to code for which the source is not available.

• directories: Every declaration found in a file belonging to an additional
directory is considered as having a matching definition in a non-provided body
file or in a library (an additional directory can be viewed as a collection of
additional header files).

Note A header file is recognized as such from its content, and not from its
extension. A header file does not contain any definition, other than inline
functions, and template functions, or else it is considered as a body file.

This option is ignored when no .otd generation is required.

-o|-otd <test script>

Specifies the name of the generated .otd script. Two associated files are also
generated with the same name, but with extension .dcl and .stb. If the filename
extension of <test script> is not .otd, then a warning is issued.

This option is ignored when no .otd generation is required.
-otc <test script>

Specifies the name of the generated .otc script. If the filename extension of <test
script> is not .otc, then a warning is issued.

This option is ignored when no .otc generation is required.

-otcdir <OTC directory>

Specifies the directory where .otc files are to be generated.

This option is ignored when no .otc generation is required.

-opp <compiler option file>

67

Test RealTime - Reference Manual

Specifies the name of the Target Deployment Port C++ parser option file. This file is
searched for in /ana subdirectory of the current Target Deployment Port (see
ATLTGT environment variable), and should not include any path.

If this option is not provided, the default filename atl.opp will be searched for.

-hpp <compiler configuration file>

Specifies the name of the Target Deployment Port C++ parser configuration file. This
file is searched for in /ana subdirectory of the current Target Deployment Port (see
ATLTGT environment variable), and should not include any path.

If this option is not provided, the default filename atl.hpp will be searched for.

{-test_class|-tc <class under test>}

Specifies the classes to be explicitly tested. The classes must belong to the candidate
classes. This option cannot be used simultaneously with the options -
do_not_test_class (-dtc).

{-do_not_test_class|-dtc) <excluded class>}

Specifies the classes, among the candidate classes, which should not be tested. This
option cannot be used simultaneously with the options -test_class (-tc).

-test_struct

Specifies whether structs and unions should be treated as classes, and therefore
should be considered as potential tested classes. This option is not significant when -
test_class option is used (you can specify structs or unions as classes to be tested).

-test_method|-tm <method name> <line>

Specifies the methods to be explicitly tested. <method_name> is the fully qualified
name of the method (fully qualified class name with method name, without return
values or parameters). <line> is the line number of the method. For example:

-test_method "class::method1" "50" "class::method2" "70"

-test_class_prefix <prefix>

Specifies the prefix used to name the generated test classes. By default, atostart uses
'Test'.

-test_each_instance

68

Command Line Reference

By default, a template class is tested as a generic template class. Use this option if you
want to generate a specific test for each found instance of a template class.

{-force_template <template instance>}

This option forces the instantiation of the specified templates classes. Use it if no
automatic template instantiation occurs while parsing the code. This option is useful
only in conjunction with -test_each_instance option.

-metrics <output directory>

Generates static metrics for the specified source files. Resulting .met static metric files
are produced in specified <output direc ory>. When the -metrics option is used, no
other action is performed by the Source Code Parser.

t

-one_level_metrics

For use with the -metrics option only. When the -metrics option is used, by default,
the calculation of static metrics is applied to the specified source files, and extended
to any files included in those source files. Use the -one_level_metrics option to ignore
included files when calculating static metrics.

-restrict_dir_metrics <directory>

For use with the -metrics option only. Use the the -restrict_dir_metrics option to
calculate static metrics of the specified source files, extended to any files included in
those source files but limited to those files located in the specified <directory>.

-overwrite

By default, the Test Template Generator creates a backup file of every file it
overwrites. Use this option if you really intend to overwrite these files without
backing up them.

-ignore_line_directives

Usually the generator parse #line directives, so that you can use your own
preprocessor instead of the built-in preprocessor. If required, deactivate this setting
with the -ignore_line_directives option. This can be useful when parsing
automatically generated code.

This option is ignored when no .otd generation is required.

{-I<include directory>}

69

Test RealTime - Reference Manual

This option specifies directories where included files are to be searched for. You can
use the option -I- to introduce the system includes: only directories specified after -I-
will be looked up when the include directives use angular brackets (#include <…>).

{-D<macro>[=<value>]}

 This option adds a predefinition for <macro> to <value>.

-E

This options generates preprocessing output to standard output. This option is
mainly for debugging purpose.

-include={relative|absolute|copy}

This option specifies how #include directives should be generated in the test script.
When relative is chosen, includes use relative path to the directory where the
generated script is put. When absolute is chosen, absolute paths are generated. When
copy is chosen, the way files are included in the test script is the same as they are
included in the tested files, you should in this case ensure that the test script is
generated in the same directory than the source files.

This option is ignored when no .otd generation is required.
-no_otc

This option deactivates .otc script generation. Use this option if you only want an .otd
test driver script.
-no_otd

This option deactivates .otd script generation. Use this option if you only want an .otc
Contract-Check script.

Note If no candidate class is found, nothing will be generated.

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

1 End of execution with error

All messages are sent to the standard error output device.

70

Command Line Reference

C++ Test Script Compiler

Purpose

The C++ Test Script Compiler compiles the .otd C ++ Test Driver Script and .otc C++
Contract Check Scripts into C++ source code.

Syntax
atoprepro [<OTD Script>]|[<OTC Scripts>] -G C++ -O <cpp file> -
OTI <oti file> -TDF <tdf file>

where:

• <otd script> is an .otd C++ Test Driver Script file.

• <otc scripts> is a set of one or more .otc C++ Contract Check Script files.

• <cpp file> is the name of the .cc or .cpp source file to be generated by Component
Testing for C++ and linked to the application under test.

i• <ot file> is the name of the .oti instrumentation file to be generated. This file is
used by the C++ Instrumentor.

• <tdf file> is the .tdf dynamic trace file to be generated during the execution of the
application under test.

Options

The C++ Source Code Parser supports the following options:
-E <number of errors>

Specifies the maximum number of error messages that can be displayed by the C++
Test Script Compiler. The default value is 30.
-NODLINE

Deactivates the generation of #line statements. This can be useful in environments
where the generated source code cannot use the #line mechanism. By default #line
statements are generated.
-NOPATH

This option tells the C++ Test Script Compiler not to use the full path to the TDP
from the $ATLTGT environment variable before the name of TP.h in the #include
directive.

This option is useful for embedded targets when compilation of the generated source
does not occur on the same host as the C++ test compilation.

Example
atoprepro script.otd contract1.otc contract2.otc -G C++ -O app.cc

71

Test RealTime - Reference Manual

-OTI foo.oti -TDF bar.tdf -E 60

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

1 Abnormal termination

All messages are sent to the standard error output device.

72

Command Line Reference

C++ Test Report Generator

Purpose

The C++ Test Report Generator processes a trace file produced during test execution,
and generates a test report that can be viewed in the GUI.

Syntax
atopospro -ots {<ots files>} -tdf <tdf file> -xrd <xrd file>

where:

• <ots files> is a list of .ots intermediate files generated by the C++ Test Script
Compiler.

• <tdf file> is the .tdf dynamic trace file generated during the execution of the
application under test.

• <xrd file> is the .xrd report file to be generated by the Report Generator.

Example
atopospro -ots script.ots contract1.ots contract2.ots -tdf
bar.tdf -xrd report.xrd

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

1 Abnormal termination

All messages are sent to the standard error output device.

73

Component
Testing for Java

75

Test RealTime - Reference Manual

Java Source Code Parser

Purpose

The Source Code Parser for Component Testing for Java analyzes a set of Java source
files that contain classes, and produces a test harness template and metrics.

When the -metric option is specified, the Source Code Parser produces static metrics
for the specified source files.

Syntax
startjava <java source files> <options>

where:

• <java source ile> is the list of files containing classes to be tested. f

• <options> is a series of command line options. See the section Options.

Description

The Java source files are parsed by the integrated Java analyzer. A candidate classes
list is automatically deduced from the content of source files.

The Metric Generator generates one metric file for each source file in the <java source
file> list.

The Source Code Parser generates only one Java test driver script that contains all
classes under test. It also generates stub file containing stub declarations for classes
specified in the –stub option.

Options
-J2SE | -J2ME

Specifies the Java target testing framework. The default framework is J2ME.

-classpath <val>

Sets the EDGCLASSPATH value to <val>. EDGCLASSPATH is the environment
variable used by the parser to search for Java classes.

-typical

With this option, all used classes are stubbed.

-pref <prefix>

76

Command Line Reference

Use this option to change the prefix of generated test class names. The default prefix
is Test.

-metric

Generates a .met static metric files for each specified Java class. When the -metrics
option is used, no other action is performed by the Source Code Parser.

-odir <output directory>

Specifies the directory where results files are to be generated.

-test_class|-tc <java classes>

Specifies the classes to be explicitly tested. List of classes could be specified by giving
Java source file or class names.

-test_method|-tm <method name> <line>

Specifies the methods to be explicitly tested. <method_name> is the fully qualified
name of the method (fully qualified class name with method name, without return
values or parameters). <line> is the line number of the method. For example:

-test_method "package.class.method1" "50" "package.class.method2"
"70"

-o <file name>

Specifies the name of the generated test. This option is ignored when no test
generation is required (see option –test_class).

-stub_class | -sc <java classes>

Specifies the classes to be explicitly stubbed. List of classes could be specified by
giving Java source file or class names.

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

1 Abnormal termination

All messages are sent to the standard error output device.

77

Test RealTime - Reference Manual

Java Test Report Generator

Purpose

The Java Test Report Generator processes a trace file produced during test execution,
and generates a test report that can be viewed in the Test RealTime GUI.

Syntax
javapostpro -tsf<trace files> -tdf<dynamic trace file> -
xrd<report file>

where:

• <trace files> is a series of input .tsf and .tdf intermediate files produced during
execution of the test driver

• <dynamic trace file> is the input .tdf dynamic trace file produced during
execution of the test driver

• <report file> is the output .xrd test report file to be generated

Description

The -tsf option takes a list of generated .tsf static trace files. However, in Component
Testing for Java, the .tdf dynamic trace files may contain structural data as well as
trace data. Therefore, the .tdf file must be specified both in the -tsf option and the -tdf
option.

If a specified .tsf or .tdf file does not exist, cannot be read, or contains
synchronization errors, the Test Report Generator produces a fatal error message.

If the Test Report Generator cannot create the .xrd report file, generation of the report
is terminated. If the file already exists, the newly generated file replaces the existing
report.

Example
javapostpro -tsf testClass1.tsf testClass2.tsf testDriver.tdf -
tdf testDriver.tdf -xrd report.xrd

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

1 Abnormal termination

78

Command Line Reference

All messages are sent to the standard error output device.

79

Component
Testing for Ada

81

Test RealTime - Reference Manual

Ada Source Code Parser

Purpose

When creating a new Component Testing test campaign for Ada, the Ada Source
Code Parser creates an Ada test script template based on the analysis of the source
code under test.

When the -metrics option is specified, the Source Code Parser produces static metrics
for the specified source files.

Syntax
attolstartADA <source_under_test > <test_script> [{<-option>}]
attolstartADA @<option file >

where:

• <source under test> this required parameter is the name of the source file to be
tested.

• <test script> is the name of the test script that is generated

• <options> is a list of options as defined below.

• <option file> is the name of a plain-text file containing a list of options.

Description

The Ada Source Code Parser analyzes the source file to be tested in order to extract
global variables and testable functions.

Each global variable is automatically declared as external, if this has not already been
done at the beginning of the test script. Then, an environment is created to contain all
these variables with default tests. This environment has the name of the file (without
the extension).

For each function under test, the generator creates a SERVICE which contains the
Ada declaration of the variables to use as parameters of the function.

Parameters passed by reference are declared according to the following rule:

• char* <param> causes the generation of char <param>[200]

• <type>* <param> causes the generation of <type> <param> passing by
reference

It is sometimes necessary to modify this declaration if it is unsuitable for the tested
function, where <type>* <param> can entail the following declarations:

• <type>* <param> passing-by-value,

82

Command Line Reference

• <type> <param> passing-by-reference,

• <type> <param>[10] passing-by-reference.

File names can be related or absolute.

If the generated file name does not have an extension, the Ada Source Code Parser
automatically attaches .ptu or the extension specified by the ATTOLPTU
environment variable. This name may be specified relatively, in relation to the
current directory, or as an absolute path.

If the test script cannot be created, the Ada Source Code Parser issues a fatal error
and stops.

If the test script already exists, the previous version is saved under the name
<generated test script>_bck and a warning message is generated.

Options

Options can be in any order. They may be upper or lowercase and can be abbreviated
to their shortest unambiguous number of characters.

Static Metrics
-metrics=<output directory>

Generates static metrics for the specified source files. Resulting .met static metric files
are produced in specified <output direc ory>. When the -metrics option is used, no
other action is performed by the Source Code Parser.

t

Included Files
-insert

With this option the source file under test is included into the test script with an
#include directive, ensuring that all the internal functions and variables (declared
static) are visible to the test script. The Ada Source Code Parser adds the #include
directive before the BEGIN instruction and after any #includes added by the -use
option.

Additional Files
-integrate=<additional file>{[,<additional file>]}

This option provides a list of additional source files whose objects are integrated into
the test program after linking.

The Ada Source Code Parser analyzes the additional files to extract any global
variables that are visible from outside. For each global variable the Parser declares an
external variable and creates a default test which is added to an environment named
after the corresponding additional file.

83

Test RealTime - Reference Manual

By default, any symbols and types that could be exported from the source file under
test are declared again in the test script.

Simulated Files
-simulate=<simulated file>{[,<simulated file>]}

This option gives the Ada Source Code Parser a list of source files to simulate upon
execution of the test. List elements are separated by commas and may be specified
relatively, in relation to the current directory, or as an absolute path.

The Parser analyzes the simulated files to extract the global variables and functions
that are visible from outside. For each file, a DEFINE STUB block, which contains the
simulation of the file's external global variables and functions, is generated.

By default, no simulation instructions are generated.

Header Files
-use=<file used>{[,<file used>]}

This option gives the Ada Source Code Parser a list of header files to include in the
test script before the BEGIN instruction. This avoids declaring variables or functions
that have already been declared in an Ada header file of the application under test.

The Ada Source Code Parser adds the #include directive before the BEGIN
instruction. Then, for each file, an environment is created, containing all variables
with a default test. This environment has the name of the included file.

By default, no files are included in the test script.

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

3 End of execution with one or more warning messages

5 End of execution with one or more errors

7 End of execution because of fatal error

9 End of execution because of internal error

All messages are sent to the standard error output device.

84

Command Line Reference

Ada Test Script Compiler

Purpose

The Ada Test Script Compiler tool pre-processes the Ada test script and converts it
into a native source test harness.

Syntax
attolpreproADA <test_script> <generated_file> [
<target_directory>] {[<-options>]}
attolpreproADA @<option_file>

where:

• <test_scr pt> is a required parameter that specifies the name of the test program
to be generated.

i

i t

• <generated_file> is a required parameter that specifies the name of the test
harness that is generated from the test script.

• <target_d rec ory> is an optional parameter. It specifies the location where
Component Testing for Ada will generate the trace file. By default, the trace file
is generated in the workspace directory.

• <options> is a set of optional command line parameters as specified in the
following section.

• <option_file> is the name of a plain-text file containing a list of options.

Description

Options can be in any order. They may be upper or lowercase and can be abbreviated
to their shortest unambiguous number of characters.

The Ada Test Script Compiler produces a series of .tdc, .ddt and .mdt files, which are
required by the Ada Test Report Generator.

Source File Under Test
-source=<source file>

This option specifies the name of the source file being tested, allowing the Test Script
Compiler to:

• Maintain the source file name in the table of correspondence files so that the
Test Report Generator can display this name in the header of the results
obtained file.

• Establish the list of include files in the tested source file.

85

Test RealTime - Reference Manual

The name of the tested source file may be specified with a relative or absolute
directory in a syntax recognized by the operating system, or, in UNIX, by an
environment variable.

By default, the list of include files in the tested source file and the source file name
are not displayed in the Results Obtained file.

Condition Definition
-define=<ident>[=<value>] {[,<ident>[=<value>]}

This option specifies conditions to be applied when the Test Script Compiler starts.
These conditions allow conditional test harness generation as well as identifier
definition for Ada.

The identifiers specified by the -define option apply conditions to the generation of
any IF ... ELSE ... END IF blocks in the test script.

If the option is used with one of the conditions specified in the IF instruction, the IF ...
ELSE block (if ELSE is present) or the ELSE ... END IF block (if ELSE is not present) is
analyzed and generated. The ELSE ... END IF block is eliminated.

If the option is not used or if none of the conditions specified in the IF instruction are
satisfied, the ELSE ... END IF block is analyzed and generated.

All symbols defined by this option are equivalent to the following line in Ada
-define <ident> [<value>]

By default, the ELSE ... END IF blocks are analyzed and generated.

Specifying Tests, Families, and Services
-test=<test>{[,<test>]} | -extest=<test>{[,<test>]}

This option specifies a list of tests to be executed.

Use -test to only generate the source code related to the specified tests, and -extest to
specify the tests for which you do not want to generate source code.

Both -test and -extest cannot be used together.

By default, all tests are selected.
-family=<family>{,<family>} | -exfamily=<family>{,<family>}

Use -family to only generate the source code related to the specified families, and -
exfamily to specify the families for which you do not want to generate source code.

Both -family and -exfamily cannot be used together.

By default, all families are selected.
-service=<service>{[,<service>]} | -
exservice=<service>{[,<service>]}

86

Command Line Reference

Use -service to only generate the source code related to the specified services, and -
exservice family to specify the services for which you do not want to generate source
code.

Both -service and -exservice cannot be used together.

By default, all services are selected.

Test Script Parsing
-fast | -nofast

The -fast option tells the Test Script Compiler to analyze only those tests that you
want to generate. This setting considerably speeds up the Test Script Compiler when
you use the -service,-exservice,-family, -exfamily,-test, or -extest options.

The -fast option is selected by default.

If you want a full test script analysis, this option can be de-selected using the -nofast
option.
-noanalyse

This option disables the native language parser.

By default, native language lines are analyzed. This option enables you to disable this
parsing.
-noedit

This option limits unit test code generation to the initialization of variables, making it
possible to generate tighter code for special purposes such as debugging. If you
specify the -noedit option, you cannot generate a test report.

By default, code is generated normally.
-nopath

Use this option if you do not want to generate long pathnames on the open and close
execution trace file call, and on the Target Deployment Port header file include
directive. This can be useful, for example, to preserve memory on embedded targets.

By default, full pathnames are generated.
-nosimulation

This option determines the conditional generation related to simulation in the source
file generated by the Test Script Compiler. Blocks delimited by the keywords SIMUL
... ELSE_SIMUL ... END SIMUL can be included in the test scripts.

See SIMUL blocks in the Ada Test Script Language.
-restriction=ANSI | KR | NOEXCEPTION | NOIMAGE | NOPOS | SEPAR

This option lets you modify the behavior of test script parser.

• noexception: tells the Test Script Compiler to skip EXCEPTION blocks when
generating a test harness. This allows the use of compilers that do not

87

Test RealTime - Reference Manual

implement exception handling. By default, EXCEPTION blocks are generated in
the test program.

• noimage: initialization, expected, and obtained values display as integers
instead of character strings. By default, reports are generated with IMAGE
attributes.

• nopos: modifies the way enumerated variables are displayed in the test report
by not generating any POS or IMAGE attributes. Initialization and expected
values are displayed as they are written in the test script, whereas obtained
values do not appear (although they are tested). Use this option to save memory
on restricted target platforms. By default, reports are is generated with IMAGE
attributes.

• separ: modifies the format of the generated test program. In place of a main
procedure including a sub-procedure for each service, the Test Script Compiler
generates one separate procedure for each service. With this restriction, the Test
Script Compiler generates several compilation units and avoids overflow errors
on compilation. By default, code is generated normally.

Several -restriction options can be used on the same command line. The ANSI and
KR parameters, however, cannot be used together.

Using an Option File
@<parameter file>

This syntax allows the compiler to pass options to the preprocessor through a file.
The parameter file name can be written in absolute or relative format.

The format of the file must follow these rules:

• One or more options can occur per line.

• Each option must follow the same syntax as the command line version, with the
character that usually introduces the option being '-' under UNIX and '/' under
Windows.

• You may not use both an option file and command line options.

By default, no file is taken into account.

If the option file is not found, a fatal error is generated and the preprocessor stops.

attolprepro C add.ptu Tadd.cpp -service=add -test=1,2,3 -
family=nominal
attolprepro CPP @add.opt

add.ptu Tadd.cpp
-service=add

Examples

In this case, the parameter file add.opt would contains:

88

Command Line Reference

-test=1,2,3

Return Codes

After execution, the program exits with the following return codes

-family=nominal

Code Description

0 End of execution with no errors

3 End of execution with one or more warning messages

5 End of execution with one or more errors

7 End of execution because of fatal error

9 End of execution because of internal error

These codes help you decide on a course of action once the Test Script Compiler has
finished test execution. For example, if the return code in the command file shows
there have been incorrect tests, you can save certain files in order to analyze them
later.

All messages are sent to the standard error output device.

Related Topics

C++ Test Compiler | System Testing Script Compiler

89

Test RealTime - Reference Manual

Ada Test Report Generator

Purpose

Syntax
attolpostproADA <trace_filename> <report_filename> [<options>]

where:

• <trace_filename> specifies the root (filename without extension) of the trace file
that is generated when the program runs.

• <options> can be any of the optional parameters specified below.

• <option_file> is the name of a plain-text file containing a list of options.

The Ada Test Report Generator processes a trace file produced during test execution,
and generates a test report.

attolpostproADA @<option file>

• <report_ ilename> specifies the name of the .rod compact report file produced
by the Test Report Generator.

f

f

Description

The Test Report Generator uses <trace_ ilename> to find the names of both the .rio
trace file and the .tdc, .ddt and .mdt files that are generated by the Test Script
Compiler.

If <report_filename> is provided without an extension, the Test Report Generator
attaches .rod.

If either <trace_filename> or <report_filename> are omitted, the Test Report
Generator produces an error message and terminates.

If any of the required files (.rio, .tdc, .ddt or .mdt) do not exist, cannot be read, or
contain synchronization errors, the Test Report Generator produces an error message
and terminates.

If the Test Report Generator cannot create the .rod compact report file, generation of
the report is terminated. If the file already exists, the newly generated file replaces
the existing report.

The .rod compact report file is an intermediate low-footprint format that can be
stored on remote targets. The .rod files must be converted to the .xrd report file
format to be displayed by the Test RealTime GUI with the rod2xrd command line
tool.

Options

90

Command Line Reference

Options can be in any order. They may be upper or lowercase and can be abbreviated
to their shortest unambiguous number of characters.

This option allows you to insert coverage results in the report file. This option must
be used only in conjunction with the Code Coverage feature.

This option specifies the form of the output report generated by the Test Report
Generator.

Use -ra with no parameter, to display ALL test variables and mark any variables that
are incorrect for a given test. This option is used by default.

Use -ra=error to to display only erroneous test variables.

For both -ra=test and -ra=error, if no errors are detected in the test, only general
information about the test is produced.

-va=eval | noeval | combined

This option lets you specify the way in which initial and expected values of each
variable are displayed in the test report.

Note: For arrays and structures in which one of the members is an array, the initial
values are not evaluated. For the expected values, only incorrect elements are
evaluated.

Use -va=noeval if you want the test report to show the initial and expected values
described in the test script.

By default, the -va=eval parameter is used.

Return Codes

-cio=<coverage result file>

-ra[=test | error]

Use the -ra=test option to display ALL test variables, with incorrect variables
marked. This option provides a comprehensive display of variables for an incorrect
test, which can prove useful in a complex test environment.

Use -va=eval if you want the test report to show the initial and expected value of
each variable evaluated during execution of the test. This is only relevant for
variables whose initial or expected value expressions are not reducible in the test
script.

The -va=combined option combines both eval and noeval parameters. For each
variable, the Report Generator includes the initial and expected values described in
the test script, as well as the initial and expected values evaluated during execution,
if these values differ.

After execution, the program exits with the following return codes

91

Test RealTime - Reference Manual

Code Description

0 End of execution with no errors

3 End of execution with one or more warning messages

5 End of execution with one or more errors

7 End of execution because of fatal error

9 End of execution because of internal error

All messages are sent to the standard error output device.

92

System Testing for
C

93

Test RealTime - Reference Manual

System Testing Script Compiler

Syntax
atsprepro <test script> <interface_file> {[,<interface_file>]}
<file name> [<options>]

• <test script> is the test script to be compiled.

• <interface file> lists interface files that contain event structure definitions,
includes for interface prototypes, and their types. These files may have any
extension.

• <file name> is the name of the C code file generated from the test script. If you
do not specify an extension, the system uses the ATS_SRC environment variable
extension, or the default extension .c.

• <options> is a set of optional parameters among those described below.

If you do not specify an extension, the system uses the ATS_PTS environment
variable extension or the default .pts extension.

If an input file is absent or read access is denied, System Testing for C produces a
fatal error.

The System Testing Script Compiler preprocesses the Test Script and converts it into
a native source test harness.

where:

Note If read access to these files is denied, System Testing for C produces a
fatal error.

Description

After execution, the code is generated in the code.c file. If it is not possible to create
the file, you will receive a fatal error.

If the Report Generator detects incorrect tests, System Testing for C produces a
warning message.

If the report detects a synchronization error between the .tdc and the .rio file, System
Testing for C produces a fatal error.

Optional Parameters

Options can be in any order. They may be upper or lowercase and can be abbreviated
to their shortest unambiguous number of characters.

-ALLOCATION[=STACK | =DYNAMIC]

94

Command Line Reference

This option allows you to specify the method for allocating the work of the test
program in the compiler.

If this option is present, the test program uses only allocated data on the execution
stack (=STACK).

By default, the work context is global static data.

-BUFSIZE=<size>

This option sets the size of the trace buffer in kilobytes. The trace buffer is only used
with the -TRACE option.

The default buffer size is 10KB.

-DEFINE=<list of conditions>

This option lets you specify the conditions to apply during test compilation. This
option is equivalent to compiler option -D.

You can specify particular conditions or give them a value (-
define=condition=value). Symbols defined with this option are equivalent to the
following line in C:

#define <symbol> [<value>]

-FAMILY=<family> {[,<family>]} | -EXFAMILY=<family>
{[,<family>]}

-FAMILY specifies the only test families that are to be explicitly executed. Any other
test families are ignored.

-EXFAMILY explicitly specifies the families that are to be ignored. All other families
are executed.

-FAMILY and -EXFAMILY cannot be used together. The test compiler generates a
warning message if no scenarios are generated.

By default, all test families are executed.

-SCN=<scenario> {[,<scenario>]} | -EXSCN=<scenario>
{[,<scenario>]}

-SCN specifies the only scenarios that are to be explicitly executed. Any other
scenarios are ignored.

-EXSCN explicitely specifies the scenarios that are to be ignored. All other scenarios
are executed.

-SCN and -EXSCN cannot be used together.

To specify a sub-scenario, name the set of scenarios in which it is included and
separate with full stops. If you exclude a scenario that contains sub-scenarios, all its
sub-scenarios are also excluded.

95

Test RealTime - Reference Manual

The test compiler generates a warning message if no scenarios are generated.

-FAST | -NOFAST

The -FAST option tells the test compiler to analyze only those scenarios that you
want to generate. This option accelerates execution of the test compiler if you use a
selection option. The option is useful when using -SCN, -EXSCN, -FAMILY, -
EXFAMILY.

The -NOFAST option disables this behavior.

By default, the -FAST option is used.

-INCL=<directory> {[,<directory>]}

This option lists directories where included files are located. Using this option
enables you to:

• Establish the list of include files in the tested source file

• Execute the INCLUDE instructions

• Execute the C #include instruction

The system first searches the current directory, next in the directories specified with
the -INCL option, and finally the default C system files directory.

-LANG=C

This option allows you to select the language of the generated code. You can generate
C virtual testers.

By default, virtual testers are generated in C.

-LOG | -NOLOG

With the -LOG option, the system displays and stores errors found during the
analysis of interface files and test script. The name of the log file is the name of the
test script with the .lis extension.

If you select -NOLOG, these errors are not displayed.

By default, the -LOG option is used.
-NOCOMMENT

Use this option to deactivate the processing of COMMENT statements in order to
improve performance issues.

-NOTSHARED

This option allows you to disable sharing of global static data between instances.
When using this option, you must apply different names to all global variables
within a test script. No local variable, constant, or function parameter should have
the same name as a global static variable in the test script.

96

Command Line Reference

This used only by the -ALLOCATION and -THREAD options.

By default global variables of the test script are shared by all instances.

-STD_DEFINE=<standard definitions file>

This option provides the C parser with a C source file describing the characteristics of
the compiler used.

If the specified file cannot be found, the test compiler stops and you will receive a
fatal error.

By default, no compiler characteristics are specified.

-THREAD [=<function name>]

This option allows you to create a test function with a name other than main.

If <function name> is omitted, the function name becomes the source file name
appended with _start.

By default, the generated function is called main.

-TRACE=CIRCULAR | ERROR | SCN | TIME

The test compiler uses a buffer to store the result of the test script execution. This
buffer is saved on disk each time selected events (ERROR, SCN, TIME) occur. This
option reduces the size of the virtual tester execution file. It is most useful during an
endurance test.

• -TRACE=CIRCULAR tells the virtual tester to use a circular buffer to store
execution traces. The circular buffer stores the execution traces in memory.
Traces are flushed into the .rio file only after virtual tester execution or if
explicitly requested in the test script (see the FLUSH_TRACE keyword).

• -TRACE=ERROR saves the buffer each time a test script error occurs.

• -TRACE=SCN has the same functionality as the ERROR parameter, and
additionally saves scenario begin and end marks.

• -TRACE=TIME has the same functionality as the SCN parameter; and
additionally saves timed events (WAITTIL and PRINT).

These options generate incomplete reports - some information is filtered - but the
report always includes plan test errors.

If the buffer is too small, some traces are lost and the generated report is incomplete.
You can change buffer size with the -BUFSIZE option.

Examples
atsprepro gen.pts interface.h code -EXSCN=Main.send.test_1,
Main.receive.test_1

97

Test RealTime - Reference Manual

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

3 End of execution with one or more warning messages

5 End of execution with one or more errors

7 End of execution because of fatal error

9 End of execution because of internal error

All messages are sent to the standard error output device.

98

Command Line Reference

System Testing Report Generator

Syntax
atsmerge <file> {[, <file>]} [<options>]

where:

• <file> lists the .rio intermediate result files generated during the virtual tester
execution phase and the .tdc correspondence table files generated during
compilation.

• <options> is a list of options described below.

Description

The system generates a .rod result file for each .rio file, which is saved in the rio
directory. The .rod filename uses the .rio filename with a .rod extension.

If one of the files cannot be found, the Report Generator produces a fatal error. The
Report Generator does not support spaces in a filename.

The Report Generator produces a warning message each time it encounters any
incorrect data.

If the report contains any synchronization errors between the .tdc and the .rio file, the
Report Generator produces a fatal error.

Options

The options can be in any order. They may be upper or lower case and written in an
incomplete form, provided the selected option is clear.
-TIME

This option enables you to merge reports that do not contain structure instructions.
Structural instructions are beginning and ending block instructions (scenario,
initialization, exception, termination).

If the .rio and .tdc files come from different test scripts, the -TIME option is enabled.
-RDD = <RDD report filename>

This option enables you to specify the output report filename.

By default, the report is names atsrdd.rdd and generated in the current directory.
-RA [=ERR | =TEST]

This option specifies the form of the report generated.

With -RA = TEST, only variables that are in a failed test are displayed.

With -RA = ERR, no variables are displayed.

99

Test RealTime - Reference Manual

In both cases, if the test is correct, only general information on this test is displayed.

The default option is -RA (with no parameters), which provides a full report of all
variables for each test.
-VA =EVAL | NOEVAL | COMBINE

This option lets you specify the way in which initial and expected values of each
variable is displayed in the test report.

• With -VA = EVAL, the initial, expected value of each variable evaluated during
execution is displayed in the report. This option is only visible for variables
whose initialization or expected value is not reduced in the test script.

Note: For structures in which one of the fields is an array, this evaluation is not given
for the initial values. For expected values, it is only given for incorrect elements.

• With -VA = NOEVAL, for each variable, the report generator displays in the test
report the initial and expected values described in the test script.

• Use -VA = COMBINE to combines the previous two options, that is, for each
variable, the report generator displays in the test report the initial and expected
values described in the test script as well as the initial and expected values
evaluated during execution.

By default -VA = EVAL is used.
-SUMMARY | NOSUMMARY

This option produces a summary of the test execution in the test report.

This option gives a quick overview of the execution of the set of test scenarios. It only
summarizes the execution of the test scenarios.

The default option is -NOSUMMARY.
-COMMENT | -NOCOMMENT

In the System Testing Language, the COMMENT keyword displays a comment in the
test report. You can use -NOCOMMENT to disable these comments, and -
COMMENT to make them visible.

By default comments are displayed.

Log File
-LOG | -NOLOG

With the -LOG option, errors found during analysis of .rio and .tdc files are displayed
on screen. Use the -NOLOG option to disable this behavior.

By default the -LOG option is used.

Example
atsmerge fic01.rio fic02.rio fic01.tdc fic02.tdc ...

100

Command Line Reference

Return Codes

After execution, the program exits with the following return codes:

Code Description

0 End of execution with no errors

3 End of execution with one or more warning messages

5 End of execution with one or more errors

7 End of execution because of fatal error

9 End of execution because of internal error

All messages are sent to the standard error output device.

101

Test RealTime - Reference Manual

Probe Processor

When using the Probe runtime analysis feature of the product, the Probe Processor
takes the instrumented source files and the message definition files and generates a
set of source files containing the definition of the message trace functions called by
the probe environment.

Syntax
parsecode.pl [<options>] {<msg_files> [,<msg_files>]} {<source>
[,<source>]}

where:

• <msg_files> are .h message type definition files

• <source> are probed C source files

• <options> is a set of optional parameters among those described below.

Definition

The Probe Processor is tightly related with the System Testing feature for C.

By default, the message traces are written to the .rio System Testing output file for C.
In this case, the probed binary is produced by compiling the atlprobe.c file generated
file by the Processor and linking the application object files with the atlprobe.o file
and the Target Deployment Port.

Optional Parameters
[-mode=DEFAULT|CUSTOM]

Custom mode allows the probes to write traces to a temporary location, such as
memory, tubes or a buffer file. In custom mode, the traces are flushed to the .rio file
only when an atl_dump_trace macro is encountered.

The I/O functions for probe trace output to the temporary location are defined in the
probecst.c source file delivered with the product. You can modify this file to adapt
the probe mechanism to your application and platform.

In custom mode, the compilation and link phase generates write operations from the
probed application and the probecst.c file, and read operations from the atlprobe.c,
probecst.c files and the TP.o Target Deployment Port file.

[-preopts=-INCL=<include directories>]

The -preopts option allows you to send a list of include directories specified with a C
Test Script Compiler -INCL option. See the C Test Script Compiler -INCL option.

102

Command Line Reference

[-outdir=<output directory>]

This option allows you to specify the target directory for the .rio System Testing
output file for C.

Related Topics

Probe Macros | C Test Script Compiler | System Testing Report Generator

103

Test RealTime - Reference Manual

System Testing Supervisor

Purpose

The System Testing Supervisor executes .spv supervisor script files.

Syntax
atsspv <spv_script> <options>

where:

• <spv_script> is the .spv supervisor script to execute

• <options> is a series of command line options. See the section Options.

Description

System Testing manages the simultaneous execution of Virtual Testers distributed
over a network. When using System Testing, the job of the Supervisor is to:

• Set up target hosts to run the test

• Launch the Virtual Testers, the system under test and any other tools.

• Synchronize Virtual Testers during execution

• Retrieve the execution traces after test execution

The System Testing Supervisor uses an .spv supervisor deployment script to control
System Testing Agents installed on each distributed target host. Agents can launch
either applications or Virtual Testers.

While the agent-spawned processes are running, their standard and error outputs are
redirected to the supervisor.

Note You must install and configure the agents on the target machines before
execution.

The Supervisor generates traces during analysis and execution. These traces are
displayed on the screen and written to a log file named as <spv_script>.lis.

Options

The options can be in any order. They may be upper or lower case and written in an
incomplete form, provided the selected option is clear.
-CHECK

This option specifies that the scenario is to be analyzed but not executed. This allows
you to check for errors in the .spv script.

104

Command Line Reference

-NOLOG

Disables supervisor output of error messages and warnings to the screen. Traces are
still written to the .lis log file.

-STUDIO_MACH=localhost

By default, the supervisor uses the IP address 127.0.0.1 to connect to the Test
RealTime graphical user interface. Use -STUDIO_MACH= localhost to resolve
problems when the supervisor fails to connect.

Return Codes

Code Description

0 End of execution with no errors

3 End of execution with one or more warning messages

5 End of execution with one or more errors

7 End of execution because of fatal error

9 End of execution because of internal error

105

Test RealTime - Reference Manual

Virtual Tester

Syntax
<virtual tester> [-INSTANCE=<instance>] [-OCCID=<id_number>] [-
RIO=<trace_file>]

Description

Virtual testers are multiple contextual incarnations of a single .pts System Testing test
script.

One virtual tester can be deployed simultaneously on one or several targets, with
different test configurations. A same virtual tester can also have multiple clones on
the same target host machine.

Deployment of virtual testers is controlled by either the GUI or a System Testing .spv
supervisor script when running in the command line interface. Do not edit .spv
scripts when using the GUI.

System Testing for C generates virtual testers from a test script according to the
declared instances.

Note A System Testing Agent for C must be installed and running on each
target host before deploying virtual testers to those targets.

Following the execution architecture and constraints needed to comply, the System
Testing Script Compiler provides several ways to generate the virtual testers.

Options

Virtual testers can take the following command line options:
-INSTANCE=<instance>

If the .pts test script contains DECLARE_INSTANCE instructions, this option
specifies which behavioral instance the virtual tester is to initiate. By default, the
virtual tester generates all behaviors contained in the test script, but on execution,
only one instance is adopted.

If no instances are selected even though instances do exist in the test script, the
virtual tester stops with a fatal error message.

-RIO=<trace_file>

This syntax specifies the name of the execution trace file to be generated by the
virtual tester.

If you do not define a trace filename, the name <v rtua tester>.rio will be used. i l

106

Command Line Reference

-OCCID=<occurrence_id_number>

This allows you to specify the occurrence identification number to use in the virtual
tester identifier when using communication between virtual testers. See the
INTERSEND and INTERRECV statements for more information.

107

Test RealTime - Reference Manual

System Testing Load Report Generator

Purpose

The Load Report Generator produces a report describing messages and execution
time.

Syntax
atsload -SEPARATOR='<sep_string>' [-TITLE] <rdd file> {[, <rdd
file>]}

where:

• <rdd_file> is an .rdd output file generated by the Report Generator.

• <sep_string> is the separator string.

• <options> is a set of optional parameters among those described below.

Description

The System Testing Load Report Generator tool processes .rdd file of a virtual tester
from the Report Generator and produces the following output:

• TITLE: The optional header for each column of the report.

• SCENARIO: total execution time

• SEND: timestamp of a SEND message relative to the beginning of the
SCENARIO

• MESSAGE: timestamp of a WAITTIL relative to the beginning of the
SCENARIO

• PRINT: value of the numeric parameter

You can use the Load Report Generator to compare between several virtual testers.
Data is presented in columns, separated by a separator string. Each column
represents a particular virtual tester.

There must be one .rdd file for each virtual tester.

Optional Parameters
-TITLE

This option adds a TITLE line to the report, containing the name of the virtual tester
for each column.

108

Command Line Reference

Example
atsload -SEPARATOR=':' vt1.rod vt2.rod vt2.rod

Return Codes

After execution, the program exits with the following return codes:

Code Description

0 End of execution with no errors

7 End of execution due to a fatal error

9 End of execution due to an internal error

All messages are sent to the standard error output device.

Generic Tools

109

Test RealTime - Reference Manual

TDF Splitter

Purpose

For use with Runtime Tracing. The .tdf splitter (attsplit) tool allows you to separate
large .tdf dynamic trace files into smaller—more manageable—files.

Syntax
attsplit [<options>] <tcf file> <tsf_file> <tdf file>

where:

• <tcf_file> is always $TESTRTDIR/lib/tracer.tcf

• <tsf_file> is the name of the generated .tsf static trace file

• <tdf file> is the name of the original .tdf dynamic trace file

Description

Trace .tdf files that contain loops cannot be split.

Options
-p <prefix>

Specifies the filename prefix for the split .tdf files. By default, split .tdf filenames start
with att.
-s <bytes>

Sets the maximum file size for the split .tdf files. By default, the original .tdf dynamic
trace file is split into 1000 byte split .tdf files

Specifies
-v | -vw

Activates verbose mode (-v) or verbose mode for written files only (-vw).
-nt

Disables the writing of time information. By default, time information is written to
the split .tdf files.
-fopt <filename>

Uses a text file to pass options to the attsplit command line.

110

Command Line Reference

Graphical User Interface

Purpose

The Test RealTime Graphical User Interface (GUI) is an integrated environment that
provides access to all of the capabilities packaged with the product.

Syntax
studio [-r <node>] [<filename>{ <filename>}]

where:

• <filename> can be an .rtp project or .rtw workspace file, as well as source files
(.c, .cpp, .h, .ada, .java) or any report files that can be opened by the GUI, such
as .tdf, .tsf, .tpf, .tqf, .xrd files.

• <node> is a project node to be executed.

Description

The studio command launches the GUI.

The -r option launches the GUI and automatically executes the specified node. Use
the following syntax to indicate the path in the Project Explorer to the specified node:

<workspace_node>{[.<child_node>]}

Nodes in the path are separated by period ('.') symbols. If no node is specified, the
GUI executes the entire project.

When using the -r option, an .rtp project file must be specified.

Example

The following command opens the project.rtp project file in the GUI, and runs the
app_2 node, located in app_group_1 of user_workspace:

studio -r user_workspace.app_group_1.app_2 project.rtp

The following example opens a UML sequence diagram created by Runtime Tracing.
studio my_app.tsf my_app.tdf

111

Test RealTime - Reference Manual

Code Coverage Report Generator

Purpose

The Report Generator creates Code Coverage reports from the coverage data
gathered during the execution of the application under analysis.

Syntax
attolcov {<fdc file>} {<traces>} [<options>]

where:

• <fdc files> The list of correspondence files for the application under test, with
one file generated for each source file during instrumentation

• <traces> is a list of trace files. (default name attolcov.tio)

• <options> represents a set of options described below.

Parameters can use wild-card characters ('*' and '?') to specify multiple files. They can
also contain absolute or relative paths.

Description

Trace files are generated when an instrumented program is run. A trace file contains
the list of branches exercised during the run.

You can select one or more coverage types at the instrumentation stage.

All or some of the selected coverage types are then available when reports are
generated.

The Report Generator supports the following coverage type options:

-PROC[=RET]

The -PROC option, with no parameter, reports procedure inputs.

Use the RET parameter to reports procedure inputs, outputs, and terminal
instructions.
-CALL

Reports call coverage.

-BLOCK[=IMPLICIT | DECISION | LOGICAL | ATC]

The -BLOCK option, with no parameter, reports statement blocks only.

• IMPLICIT or DECISION (equivalent) reports implicit blocks (unwritten else and
default blocks), as well as statement blocks.

112

Command Line Reference

• LOGICAL Reports logical blocks (loops, as well as statement and implicit
blocks.

• ATC Reports asynchronous transfer control (ATC) blocks, as well as statement
blocks, implicit blocks, and logical blocks.

-COND[=MODIFIED|COMPOUND]

The -COND option, with no parameter, reports basic conditions only.

MODIFIED reports modified conditions as well as basic conditions.

COMPOUND reports compound conditions as well as basic and modified
conditions.

Explicitly Excluded Options

Each coverage type can also be explicitly excluded.

-NOPROC

Procedure inputs, outputs, or returns are not reported.

-NOCALL

Calls are not reported.

-NOBLOCK

Simple, implicit, or logical blocks are not reported.

-NOCOND

Basic conditions are not reported.

Additional Options

The following options are also available:

-FILE=<file>{[,<file>]} | -EXFILE=<file>{[,<file>]}

Specifies which files are reported or not. Use -FILE to report only the files that are
explicitly specified or -EXFILE to report all files except those that are explicitly
specified. Both -FILE and -EXFILE cannot be used together.

-SERVICE=<service>{[,<service>]} | -
EXSERVICE=<service>{[,<service>]}

Specifies which functions, methods, and procedures are to be reported or not. Use -
SERVICE to report only the functions, methods and procedures that are explicitly

113

Test RealTime - Reference Manual

specified or -EXSERVICE to report all functions, methods, and procedures except
those that are explicitly specified. Both -SERVICE and -EXSERVICE cannot be used
together.

-TEST=<test>{[,<test>]} | -EXTEST=<test>{[,<test>]}

Specifies which tests are reported or not. Use -TEST to report only the tests that are
explicitly specified or -EXTEST to report all tests except those that are explicitly
specified. Both -TEST and -EXTEST cannot be used together.

-OUTPUT=<file>

Specifies the name of the report file (<file>) to be generated. You can specify any
filename extension and can include an absolute or relative path.

-LISTING[=<directory>]

This option requires annotated listings to be generated from the source files.
Annotated listings carry the same name as their corresponding source files, but with
the extension .lsc. The optional parameter <directory> is the absolute or relative path
to the directory where the listings are to be generated. By default, a listing file is
generated in the directory where its corresponding source file is located.

-NOGLOBAL

Reports the results of each test found in the trace file, followed by a conclusion
summarizing all the tests. If a test has no name, it is identified as "#" in the report. A
test is an execution of an instrumented application, a TEST as defined for Component
Testing for C and Ada, or a dump-on-signal. By default, the report is not structured
in terms of tests.

-BRANCH=COV

Reports branches covered rather than branches not covered. It does not affect listings,
where only branches not covered are indicated with the source code line where they
appear.

-SUMMARY=CONCLUSION | FILE | SERVICE

This option sets the verbosity of the summary:

• CONCLUSION reports only the overall conclusion.

• FILE reports only the conclusion for each source file, and the overall conclusion.

• SERVICE reports only the levels of coverage for each source file, each C
function, and overall. The list of branches covered or not covered is not
included.

114

Command Line Reference

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

7 End of execution because of fatal error

9 End of execution because of internal error

All messages are sent to the standard error output device.

115

Test RealTime - Reference Manual

Trace Receiver

Purpose

The Trace Receiver is a graphical client that receives and splits trace dump data
through a socket.

Syntax
trtpd [<options>] [<file> [,<file>]]

where:

• <file> is one or several dynamic trace output files

• <options> is a set of optional parameters

Description

If a set of user-defined I/O functions uses sockets in a customized Target
Deployment Port (TDP), the Trace Receiver can be used to receive the dump data and
to split the trace files on-the-fly. Use the Target Deployment Port Editor to customize
the TDP.

The Trace Receiver uses its own graphical user interface to display reception and
split progression.

To use the Trace Receiver, you must:

• Customize the TDP to produce trace buffer output through a socket by setting
the SOCKET_UPLOAD setting of the TDP to True

• Specify a delimiter character in the SOCKET_UPLOAD_DELIMITER setting of
the TDP

The Runtime Trace Receptor uses the delimiter to find useful trace data and directs
the output to the trace file formats. If no filenames are provided, the following files
are produced:

• testing.rio for Component Testing output to be processed by a Report Generator

• purifylt.tpf for Memory Profiling data

• quantifylt.tqf for Performance Profiling data

• attolcov.tio for Code Coverage data

• tracer.tdf for Runtime Tracing data

116

Command Line Reference

Options
-p|--port <number>

Port number. Specifies the decimal number of the port. The default port number is
7777.
-d|--delimiter <delimiter-byte>

Delimiter byte. Specified the decimal number of the delimiter byte. The default
number is 94 ("^" in ASCII).
-o|--oneshot

Oneshot. Exits the Trace Receiver when the first client closes.

Example

The following trace dump is sent to the socket, using the "^" character as a delimiter:
...
^TU "ms"
SF 1 1dch 9527b66bh
TI 1 1 5
TM 726h
HS 95fch
ME 3 1
NI 6 1
SF 2 10edh 72cbacbch
TM b68h
HS bea4h
^ ...

Use the following command line to receive and split the trace dump into the correct
output file formats.

trtpd --port 7778 --delimiter 95 -o c:\\temp\\coverage.tio
c:\\temp\\trace.tdf c:\\temp\\profiling.tqf

You can also launch the Trace Receiver with no parameters. In this case, default
parameters are assumed:

trtpd

117

Test RealTime - Reference Manual

Test Process Monitor

Purpose

Use the Test Process Monitor tool (tpm_add) to create and update Test Process
Monitor databases from a command line.

Syntax
tpm_add -metric=<metric> [-file=<filename>] [-user=<user>]
{[<value_field>]}

where:

• <metric> is the name of the metric.

• <filename> contains the name of the file under test to which the metric applies.
This allows metrics for several files to be saved within the same database.

• <user> is the name of the product user who performed the measured value.

• <value_field> are the values attributed to each field

Description

The Test Process Monitor (TPM) provides an integrated monitoring feature that helps
project managers and test engineers obtain a statistical analysis of the progress of
their development effort.

Metrics generated by a test or runtime analysis feature are stored in their own
database. Each database is actually a three-dimensional table containing:

• Fields: Each database contains a fixed number of fields. For example a typical
Code Coverage database records.

• Values: Each field contains a series of values.

• Filenames: Values can be attributed to a filename, such as the name of the file
under analysis. This way, the TPM Viewer can display result graphs for any
single filename as well as for all files, allowing detailed statistical analysis.

Each field contains a set of values.

Note Although you specify a filename for the file under analysis, the TPM
Viewer currently only displays a unique FileID number for each file.

The TPM database is made of two files that use the following naming convention:
<metric>.<user>.<nb_fields>.idx
<metric>.<user>.<nb_fields>.tpm

118

Command Line Reference

where <nb_fields> is the number of fields contained in the database.

In the GUI, the Test Process Monitor gathers the statistical data from these database
file and generates a graphical chart based on each field.

There are 3 steps to using TPM:

• Creating a database for the metric

• Updating the database

• Viewing the results in the GUI

Creating a Database

Before opening the Test Process Monitor in the product, you must create a database.

Database files are created by using the tpm_add command line tool.

If you are using Code Coverage from the GUI, it automatically creates and updates a
TPM code-coverage database.

If you are using the product in the command line interface you can invoke tpm_add
from your own scripts.

 To create a new metric database with tpm_add:

1. Type the following command:
tpm_add -metric=<name> -file=<filename> <value1>[{<value2>... }]

where <name> is the name of the new metric and <value> represents the initial
value of each field in the database. <filename> is the name of the source file to
which these values are related.

Updating a Database

The Test Process Monitor adds a record to the database each time it encounters an
existing database.

 To add a new record to this database:

1. Type the tpm_add command:
tpm_add -metric=<name> <value1>[{<value2>... }]

where <name> is the name of the new metric and <value> represents the initial
value of each field in the database. The number of values must be the consistent
with the number of fields in the table.

Note It is important to remain consistent and supply the correct number of
fields for your database. If you run the tpm_add command on an existing

119

Test RealTime - Reference Manual

metric, but with a different number of fields, the feature creates a new
database.

tpm_add -metric=stats 5 -6 5.4 3 0

Viewing TPM Reports

Use the Test Process Monitor menu in the product to display database. Please refer to
the User Guide for further information.

Examples

The following command creates a user metric called stats, made up of five fields,
containing initial values 1, 0.03, 0, 3 and -4.7.

tpm_add -metric=stats -file=/project/src/myapp.c 1 0.03 0 3 -4.7

The new database is contained in the following files:
stats.user.5.idx
stats.user.5.tpm

The following line adds a new record to the stats database, pertaining to the myapp.c
source file:

tpm_add -metric=stats -file=/project/src/myapp.c 5 -6 5.4 3 0

The following line adds a new set of values to the stats database, this time related to
the mylib.c source file:

tpm_add -metric=stats -file=/project/src/mylib.c 5 -6 5.4 3 0

The metrics related to myapp.c and mylib.c are stored in the same database and can
be viewed either jointly or separately in the product Test Process Monitor Viewer.

If the following command is issued:
tpm_add -metric=stats -file=myapp.c 5 -6 3 0

A new database is created with four fields:
stats.user.4.idx
stats.user.4.tpm

120

Command Line Reference

Dump File Splitter

Purpose

The dump file splitter (atlsplit) tool separates the unique multiplexed trace data file
generated by the runtime analysis command line tools into specific trace files that can
be processed by the runtime analysis and test feature Report Generators.

Syntax
atlsplit <trace_file>

where:

• <trace_file> is the name of the generated trace file (atlout.spt)

Description

The dump file splitter actually launches a perl script. You must therefore have a
working perl interpreter such as the one provided with the product in the /bin
directory.

Alternatively, you could use the following command line:
perl -I<installdir>/lib/perl
<installdir>/lib/scripts/BatchSplit.pl atlout.spt

where <install_dir> is the installation directory of the product.

The script automatically detects which test or runtime analysis feature were used to
generate the file and produces as many output files.

After the split, depending on the selected runtime analysis feature, the following file
types are generated:

• .rio test result files: process with C Test Report Generator, Ada Test Report
Generator or System Testing Report Generator

• .tio Code Coverage report files: view with Code Coverage Viewer

• .tdf Dynamic trace files: view with UML/SD Viewer

• .tpf Memory Profiling report files: view with Memory Profiling Viewer

• .tqf Performance Profiling report files: view with Performance Profiling Viewer

121

Test RealTime - Reference Manual

Uprint Localization Utility

Purpose

The Uprint is a utility that can prove useful if you are experiencing localization issues
with Test RealTime.

Syntax
uprint
uprint <hex_min>..<hex_max>
uprint --mimename
uprint --utf8 <string>

where:

• <hex_min> and <hex_max> specify a range of 16-bit unicode characters
expressed in hexadecimal notation.

• <string> is a character string encoded in the current locale.

Description

When used with no argument, uprint returns the following information about the
current locale:

• Mib name

• mimeName

• Locale name

When used with a <hex_min>..<hex_max> argument, uprint also returns a list of
locale-encoded characters from <hex_m n> to <hex_max>. i

When used with the --utf8 option, uprint translates a specified locale-encoded
<string> into a UTF-8 compliant backslashed hexadecimal string for use in C or C++
source code.

When used with the --mimename option, uprint returns the name of the Unicode
Mime encoding.

Examples

The following command returns information about the current locale:
>uprint
Mib:111 mimeName:"ISO-8859-15" locale:"fr_FR@euro"

The following command translates the word "éric" into a UTF-8 compliant string:

122

Command Line Reference

>uprint --utf8 éric
\xc3\xa9\x72\x69\x63

123

Component Testing Script Languages

The Component Testing feature of Test RealTime provides a unique, fully automated,
and proven solution for C, C++, Java and Ada Component Testing, dramatically
increasing test productivity.

This section provides reference information to help you write your own test scripts
using Rational Test RealTime.

Each test feature uses its own specialized language. Use the scripting language
corresponding to the type of test.

125

C Test Script
Language

127

Test RealTime - Reference Manual

128

Component Testing Script Languages

About the C Test Script Language

The Test RealTime Component Testing feature for C uses its own simple language for
test scripting: C Test Script Language.

This section describes each keyword of the C Test Script language, including:

• Syntax

• Functionality and rules governing its usage

• Examples of use

Notation Conventions

Throughout this guide, command notation and argument parameters use the
following standard convention:

Notation Example Meaning

BOLD BEGIN Language keyword

<italic> <filename> Symbolic variables

[] [<option>] Optional items

{ } {<filenames>} Series of values

[{ }] [{<filenames>}] Optional series of variables

| on | off OR operator

Note C Test Script Language keywords can be entered in upper or lower
case. To distinguish C Test Script Language from native code, this guide
conventionally uses upper case typography for C Test Script Language
keywords.

C Test Script Language Identifiers

A C Test Script Language identifier is a text string used as a label, such as the name
of a TEST or a STUB in a .ptu test script.

Identifiers are made of an unlimited sequence of the following characters:

• a-z

• A-Z

• 0-9

129

Test RealTime - Reference Manual

• _ (underscore)

Spaces are not valid identifier characters.

Note that identifiers starting with a numeric character are allowed. The following
statement, for example, is syntactically correct:

TEST 1
...
END TEST

Unlike keywords, C Test Script Language identifiers are case sensitive. This means
that LABEL, label, and Label are three different identifiers.

C Test Script Language Keywords

The C Test Script Language keywords are not case sensitive. This means that STUB,
stub, and Stub are equivalent. For conventional purposes however, this document
uses upper-case notation for the C Test Script Language keywords in order to
differentiate from native source code.

130

Component Testing Script Languages

BEGIN

Purpose

The BEGIN instruction marks the beginning of the test program.

Syntax
BEGIN

Description

BEGIN marks the beginning of the C code generation.

The BEGIN instruction is mandatory and must be located before any other
Component Testing instruction for C, except a HEADER instruction.

If the BEGIN keyword is not found, a warning message is generated and a BEGIN
instruction is implicitly created before the first occurrence of a SERVICE instruction.

131

Test RealTime - Reference Manual

COMMENT

Purpose

The COMMENT instruction adds a textual comment to the test report.

Syntax
COMMENT [<text>]

Argument

<text> is an optional text string to be displayed.

Description

The COMMENT instruction is optional and can be used anywhere in the test script.

The position of the COMMENT instruction in the test script defines the position in
which the comments appear in the test report.

• Within an ELEMENT block: the comment appears just before the variable state
descriptions.

• After a TEST instruction: the comment appears in the test header, before the
variable descriptions.

• After a SERVICE instruction: the comment appears in the service header, before
the test descriptions.

• Outside a SERVICE block: the comment appears in the service header following
the declaration, before the test descriptions.

Example
TEST 1
FAMILY nominal
COMMENT histogram computation for a black image
ELEMENT

132

Component Testing Script Languages

DEFINE STUB ... END DEFINE

Purpose

The DEFINE STUB and END DEFINE instructions delimit a simulation block
consisting of stub definition functions, methods, or procedure declarations.

Syntax
DEFINE STUB <stub_name> [<stub_dim>]
END DEFINE

<stub_name> is the mandatory name of a simulation block.

<stub_dim> is an optional maximum number of stub call descriptions for a test
scenario. By default, its value is 10.

Description

Defining stubs in a test script is optional.

Using the stub definitions, the C Test Script Compiler generates simulation variables
and functions for which the interface is identical to that of the stubbed variables and
functions.

The purpose of these simulation variables and functions is to store and test input
parameters, assign values to output parameters, and if necessary, return appropriate
values.

Definitions of functions must be in the form of ANSI prototypes for C.

Stub parameters describe both the type of item used by the calling function and the
mode of passing. The mode of passing the parameter is specified by adding the
following before the parameter name:

• _in for input parameters

• _out for output parameters

• _inout for input/output parameters

• _no for parameters that you do not want to test

The parameter mode is optional. If no parameter mode is specified, the _in mode is
assumed by default.

A return parameter is always deemed to be an output parameter.

Global variables defined in DEFINE STUB blocks replace the real global variables.

DEFINE STUB / END DEFINE blocks must be located after the BEGIN instruction
and outside any SERVICE block.

133

Test RealTime - Reference Manual

Example
BEGIN
DEFINE STUB Example
 #int open_file(char _in f[100]);
 #int create_file(char _in f[100]);
 #int read_file(int _in fd, char _out l[100]);
 #int write_file(int fd, char _in l[100]);
 #int close_file(int fd);
END DEFINE

DEFINE STUB Example
#int foo1 (int _in param1)
#{
{int foo1_b ;
foo1_b = 10 ;}
#}
END DEFINE

134

Component Testing Script Languages

ELEMENT ... END ELEMENT

Purpose

The ELEMENT and END ELEMENT instructions delimit a test phase or ELEMENT
block.

Syntax
ELEMENT
END ELEMENT

Description

The ELEMENT instruction is mandatory and can only be located within a TEST
block. If absent, a warning message is generated and the ELEMENT block is
implicitly declared before the first occurrence of a VAR, ARRAY, STR, or STUB
instruction.

The block must end with the instruction END ELEMENT. If absent, a warning
message is generated and it is implicitly declared before the next ELEMENT
instruction, or the END TEST instruction.

The ELEMENT block contains a call to the service under test as well as instructions
describing the initializations and checks on test variables.

Positioning of VAR, ARRAY, STR or STUB instructions is irrelevant, with respect to
the test procedure call since the Test Compiler separates these instructions into two
parts:

• The test initializer (described by INIT) is generated with the ELEMENT
instruction.

• The test of the expected value (described by EV) is generated with the END
ELEMENT instruction.

Example
 TEST 1
 FAMILY nominal
 ELEMENT
 VAR x1, init = 0, ev = init
 VAR x2, init = SIZE_IMAGE-1, ev = init
 VAR y1, init = 0, ev = init
 VAR y2, init = SIZE_IMAGE-1, ev = init
 ARRAY image, init = 0, ev = init
 VAR histo[0], init = 0, ev = SIZE_IMAGE*SIZE_IMAGE
 ARRAY histo[1..SIZE_HISTO-1], init = 0, ev = 0
 VAR status, init ==, ev = 0
 #status = compute_histo(x1,y1,x2,y2,histo);
 END ELEMENT
 END TEST

135

Test RealTime - Reference Manual

136

Component Testing Script Languages

ENVIRONMENT ... END ENVIRONMENT

Purpose

The ENVIRONMENT instruction defines a test environment declaration, that is, a
default set of test specifications.

Syntax
ENVIRONMENT <name> [(<param> { , <param> })]
END ENVIRONMENT

<name> is a mandatory identifier that provides a unique environment name.

<param> is an optional identifier.

Description

Every environment can contain parameters. The declared parameters can be used in
initialization and expected value expressions. These parameters are initiated by the
USE instruction.

The END ENVIRONMENT instruction marks the end of an environment declaration.

<name> specifies an environment name that is referenced in the USE instruction.

An environment must be defined after the BEGIN instruction.

Each environment is visible in the block in which it has been declared and in any
blocks included in this block, after its declaration.

An environment can only contain VAR, ARRAY, STR, FORMAT or STUB
instructions and conditional generation instructions. If it is empty, a warning
message is generated.

An environment is activated by the USE instruction that defines its scope and its
priority. After generating the initializations and the tests of an ELEMENT block,
visible environments are included in order of priority, at every END ELEMENT
instruction, in order to complete the initializations and tests.

Example
ENVIRONMENT compute_histo
 VAR x1, init = 0, ev = init
 VAR x2, init = SIZE_IMAGE-1, ev = init
 VAR y1, init = 0, ev = init
 VAR y2, init = SIZE_IMAGE-1, ev = init
 ARRAY histo, init = 0, ev = 0
 VAR status, init ==, ev = 0
END ENVIRONMENT

137

Test RealTime - Reference Manual

FAMILY

Purpose

The FAMILY instruction groups tests by families or classes.

Syntax
FAMILY <family_name> { , <family_name>}

Argument

<family_name> is a mandatory identifier indicating the name of the test family.
Typically, you could specify nominal, structural, or robustness families.

Description

The FAMILY instruction appears within TEST blocks, where it defines the families to
which the test belongs.

When you run the test sequence, you can request that only tests of a given family are
executed.

A test can belong to several families. In this case, the FAMILY instruction contains a
<family_name> list, separated by commas.

The FAMILY instruction must be located before the first ELEMENT block of the
TEST block and must be unique in the TEST block.

The FAMILY instruction is optional. If it is omitted, a warning message is generated
and the test belongs to every family.

Example
 TEST 1
 FAMILY nominal
 COMMENT histogram computation on a black image
 ELEMENT

138

Component Testing Script Languages

FORMAT

Syntax
FORMAT <variable> = <format>
FORMAT <type> = <format>
FORMAT <field> = <format>

Description

The FORMAT instruction allows you to change the display format of a tested item.
This item can be:

• A variable

• A simple C type declared by typedef; in this case, the display mode will change
for all variables of this type

• A member of a structure or a C union; in this case, the display mode will change
for all the members of variables of this type

The new format of the item is described by an optional abstract C type eventually
followed by a printing directive for variables of type integer or floating only. The
format of these printing directives is the following:

directive [size]

with the following possibilities for integers:

• #h for hexadecimal display,

• #b for binary display,

• #u for unsigned decimal display,

• #d for signed decimal display,

and with the following possibilities for floating variables:

• #f to display without an exponent,

• #e to display with an exponent.

For integers, size is the number of bits to be displayed. For floating variables, size is
the number of the number of digits after the decimal point.

Associated Rules

The FORMAT instruction is optional and must be located after the BEGIN
instruction.

It is applicable immediately, only in the block in which it is declared.

139

Test RealTime - Reference Manual

<variable> follows standard C syntax rules. <type> is a C identifier used in typedef,
struct or union instructions. <format> is an abstract C type.

If the change is to be applied to array elements, you can use an abstract C type to
describe the new modified variable, field, or type.

<variable>, < ype> or <field> and <format> are mandatory. A format cannot be
empty. It must contain either the abstract C type or the printing directive.

t

In the printing directive, the size is optional. The size must be a multiple of 8 for the
integers. The default values for this size are the following:

• For integers, the number of bits of the abstract type if it is given, or if it is not,
the number of bits of the type or the variable whose printing format is modified

• For #f, 6 digits after the decimal point and for #e, 2 digits after the decimal point

Example
#char x;
#typedef char *pointer;
#pointer p;
#char t[10]
FORMAT x = int
FORMAT pointer = void-- modifies p
FORMAT t = int[] - t is an array of integers
FORMAT x = int#h8 -- display in hexa, only 8 bits
FORMAT y = #b -- display in binary without
 -- modifying the type
FORMAT z = short#u -- display in unsigned decimal
FORMAT f1 = #f -- displays by example 3.670000
FORMAT f1 = #f4 -- displays by example 3.6700
FORMAT f1 = #e4 -- displays by example 0.36700E1FORMAT

140

Component Testing Script Languages

HEADER

Purpose

The HEADER instruction specifies the name and version of the module under test as
well as the version number of the test script.

Syntax
HEADER <module_name>, <module_version>, <test_plan_version>

<module_name>, <module_version> and <test_plan_version> are character strings
with no restrictions, except for versions beginning with a dollar sign ('$'). These
instructions must be followed by an identifier.

Description

This information contained in the HEADER keyword is reproduced in the test report
header to identify the test sequence.

The module and test script versions can be read from the environment variables if
they are identifiers beginning with a dollar sign ($).

The HEADER instruction is mandatory, but its arguments are optional. It must be the
first instruction in the test program. If it is absent, a warning message is generated.

Example
HEADER histo, 01a, 01a
BEGIN

141

Test RealTime - Reference Manual

IF ... ELSE ... END IF

Syntax
IF <condition> { , <condition> }
ELSE
END IF

Description

The IF, ELSE and END IF statements allow conditional generation of the test
program.

These statements enclose portions of script that are included depending on the
presence of one of the conditions in the list provided to the C Test Compiler by the -
define option.

The <condition> list forms a series of conditions that is equivalent to using an
expression of logical ORs.

The IF instruction starts the conditional generation block.

The END IF instruction terminates this block.

The ELSE instruction separates the condition block into 2 parts, one being included
when the other is not.

Associated Rules

This block of instructions can appear anywhere in the test program.

<condition> is any identifier. You must have at least one condition in an IF
instruction.

This block can contain any scripting or native language.

IF and END IF instructions must appear simultaneously.

The ELSE instruction is optional.

The generating rules are as follows:

• If at least one of the conditions specified in the IF instruction's list of conditions
appears in the list associated with the -define option, the first part of the block is
included.

• If none of the conditions specified in the IF instruction appears in the list
associated with the -define option, then the second part of the block is included
(if ELSE is present).

The IF...ELSE...END IF block is equivalent to the following block in C:
#if defined(<condition>) { || defined(<condition>) } ...

142

Component Testing Script Languages

...
#else
...
#endif

Example
IF test_on_target
 VAR register, init == , ev = 0
ELSE
 VAR register, init = 0 , ev = 0
END IF

143

Test RealTime - Reference Manual

INCLUDE

Syntax
INCLUDE CODE <file>
INCLUDE PTU <file>

Description

The INCLUDE specifies an external file for the C Test Compiler to process.

When an INCLUDE instruction is encountered, the C Test Compiler leaves the
current file, and starts pre-processing the specified file. When this is done, the C Test
Compiler returns to the current file at the point where it left.

Including a file with the additional keyword CODE lets you include a source file
without having to start every line with a hash character ('#').

Including a file with the additional keyword PTU lets you include a test script within
a test script.

Associated Rules

The name of the included file can be specified with an absolute path or a path relative
to the current directory.

If the file is not found in the current directory, all directories specified by the -incl
option are searched when the preprocessor is started.

If it is still not found or if access is denied, an error is generated.

The instruction INCLUDE CODE <file> is equivalent to the following line in C
 ##include "<file>".

Example
INCLUDE CODE file1.c
INCLUDE CODE ../file2.c
INCLUDE PTU /usr/foo/test/file3.ptu

144

Component Testing Script Languages

INITIALIZATION ... END INITIALIZATION

Syntax
INITIALIZATION
END INITIALIZATION

Description

The INITIALIZATION and END INITIALIZATION statements let you provide
native code that is integrated into the generation as the first native instructions of the
test program (first lines of main).

In some environments, such as if you are using a different target machine, this
provides a way to initialize the target.

Associated Rules

An INITIALIZATION block must appear after the BEGIN instruction or between two
SERVICE blocks.

This block can only contain native code. This code must begin with '#' or '@'.

There is no limit to the number of INITIALIZATION blocks. On generation, they are
concatenated in the order in which they appeared in the test script.

145

Test RealTime - Reference Manual

NEXT_TEST

Syntax
NEXT_TEST [LOOP <nb>]

where:

• <nb> is an integer expression strictly greater than 1.

Description

The NEXT_TEST instruction allows you to repeat a series of test contained within a
previously defined TEST block.

It contains one more ELEMENT block. It does not contain the FAMILY instruction.

For this new test, a number of iterations can be specified by the keyword LOOP.

The NEXT_TEST instructions can only appear in a TEST ... END TEST block.

The main difference between a NEXT_TEST block and an ELEMENT block is when
you use an INIT IN statement within a test block:

• If the INIT IN is in a TEST block, there will be a loop over the entire TEST block,
without consideration of the ELEMENT blocks that it might contain.

• If the INIT IN is inside a NEXT_TEST block however, the loop will not affect the
ELEMENT blocks within other TEST blocks

Example
SERVICE COMPUTE_HISTO
int x1, x2, y1, y2 ;
int status ;
T_HISTO histo;
 TEST 1
 FAMILY nominal
 ELEMENT
...
 END ELEMENT
 NEXT_TEST LOOP 2
 ELEMENT

146

Component Testing Script Languages

SERVICE ... END SERVICE

Syntax
SERVICE <service_name>
END SERVICE

Description

The SERVICE instruction starts a SERVICE block. This block contains the description
of all the tests relating to a given service of the module to be tested.

The <service_name> parameter flags the tested service in the test report, and is
therefore usually the name of this service (although this is not obligatory).

The END SERVICE instruction indicates the end of the service block.

Associated Rules

The SERVICE instruction must appear after the BEGIN instruction.

The <service_name> parameter can be any identifier. It is obligatory.

Example
BEGIN
SERVICE COMPUTE_HISTO
int x1, x2, y1, y2 ;
int status ;
T_HISTO histo;
 TEST 1
 FAMILY nominal

147

Test RealTime - Reference Manual

SIMUL ... ELSE_SIMUL ... END SIMUL

Purpose

The SIMUL, ELSE_SIMUL, and END SIMUL instructions allow conditional
generation of test script program.

Syntax
SIMUL
ELSE_SIMUL
END SIMUL

Description

Code enclosed within a SIMUL block is conditionally generated depending on the
status of the Simulation setting in Test RealTime.

The SIMUL instruction starts the conditional generation block.

The END SIMUL instruction terminates this block.

The ELSE_SIMUL instruction separates this block into two parts, one being included
when the other is not, and vice versa.

This block of instructions can appear anywhere in the test program and can contain
both scripting instructions or native code.

The SIMUL and END SIMUL instructions must appear as a pair. One cannot be used
without the other.

The ELSE_SIMUL instruction is optional.

When using Test RealTime in the command line interface, use the -nosimulation
option to deactivate the simulation setting in the C Test Script Compiler.

When using the Test RealTime user interface, select or clear the Simulation option in
the Component Testing for C tab of the Configuration Settings dialog box.

The generating rules are as follows:

• If Simulation is enabled => the first part of the SIMUL block is included.

• If Simulation is disabled => the second part of the block (ELSE_SIMUL) is
included if it exists. If there is no ELSE_SIMUL statement, then the SIMUL block
is ignored.

Example
SIMUL
 #x = 0;
ELSE_SIMUL
 #x = (type_x *) malloc (sizeof(*x));

148

Component Testing Script Languages

END SIMUL
...
SIMUL
VAR x , INIT = 0 , EV = 1
VAR p , INIT = NIL , EV = NONIL
ELSE_SIMUL
VAR x , INIT = 0 , EV = 0
VAR p , INIT = NIL , EV = NIL
END SIMUL

149

Test RealTime - Reference Manual

STUB

Purpose

The STUB instruction for C describes all calls to a simulated function in a test script.

Syntax
STUB [<stub_name>.] <function> [<call_range> =>] ([<param_val>
{, <param_val> }]) [<return_val>] {, [<call_range> =>]
([<param_val> {, <param_val> }]) [<return_val>] }

Description

The following is described for every parameter of this function and for every
expected call:

• For _in parameters, the values passed to the function; these values will be stored
and then tested during execution,

• For _out parameters and, where appropriate, the return value, the values
returned by the function; these values will be stored in order to be returned
during execution,

• For _inout parameters, both the previous two values are required,

• For _no parameters, nothing is required.

<call_range> describes one or many calls as follows:
<call_num> =>
<call_num> .. <call_num> =>
others =>

where <call_num> is the number of the stub call (begins at 1). The keyword others
describes all calls that have not been described. Moreover, this key word allows to
not check the sub call number.

<function> is the name of the simulated function. It is obligatory. You must
previously have described this function in a DEFINE STUB ... END DEFINE STUB
block. You can specify in which stub (<stub_name>) the declaration was made.

<param_va > is an expression describing the test values for _in parameters and the
returned values for _out parameters. For _inout parameters, <param_va > is
expressed in the following way:

l
l

(<in_param_val>, <out_param_val>)

<return_val> is an expression describing the value returned by the function if its type
is not void. Otherwise, no value is provided.

150

Component Testing Script Languages

You must give values for every _in, _out and _inout parameter; otherwise, a warning
message is generated. The _no parameters are ignored.

<param_va > and <return_val> are expressions that can contain: l

• Numeric (integer or floating-point), character, or character string literal values.
Strings can be delimited by single or double inverted commas

• Constants which can be numeric, characters, or character strings

• Constants defined in the test script

• Variables belonging to the test program or the module to be tested

• C functions

• The keyword NIL to designate a null pointer

• Pseudo-variables I, I1, I2 ..., J, J1, J2 ..., where In is the current index of the nth
dimension of the parameter and Jm the current number of the subtest generated
by the test scenario's mth INIT IN, INIT FROM or LOOP; the I and I1 variables
are therefore equivalent as are J and J1; the subtest numbers begin at 1 and are
incremented by 1 at each iteration

• An expression with one or more of the above elements combined using any of
the C operators (+, -, *, /, %, &, |, ^, &&, ||, <<, >>) and casting, with all
 required levels of parentheses, and conforming to C rules of syntax and
semantics, the + operator being allowed to concatenate character string
variables

• For arrays and structures, a list of expressions between braces ('{' and '}') or
brackets ('[' and ']') with, where appropriate:

• For an array element, part of an array or a structure field, its index, interval or
name followed by '=>' and by the value of the array element, common to all
elements of the array portion or structure field

• The keyword OTHERS followed by '=>' and the default value of any array
elements or structure fields not yet mentioned.

You must describe at least one call in the STUB instruction. There can be several
descriptions, separated by commas (','). STUB instructions can appear in ELEMENT
or ENVIRONMENT blocks.

Type Modifier '@' Syntax

In a STUB definition you can use a @ before a type modifier to indicate that this type
modifier should be used when generating variable that test the correct execution of
STUBs. For example:

DEFINE STUB Example
#void ConstParam (@const int _in *a);
END DEFINE

151

Test RealTime - Reference Manual

Without the @ symbol, the variables are of const int type and therefore are not
modified by the test harness.

Example
STUB open_file ("file1")3
STUB create_file ("file2")4
STUB read_file (3,"line 1")1, (3,"line 2")1, (3,"")0
STUB write_file (4,"line 1")1, (4,"line 2")1
STUB close_file 1=>(3)1,2=>(4)1

152

Component Testing Script Languages

TERMINATION ... END TERMINATION

Syntax
TERMINATION
END TERMINATION

Description

The TERMINATION and END TERMINATION instructions delimit a block of native
code that is integrated into the generation process as the last instructions to be
executed (last lines of main).

In certain environments (for example, a different target machine), these instructions
terminate execution on the target machine.

Associated Rules

A TERMINATION/END TERMINATION block must appear after the BEGIN
instruction and outside any SERVICE block.

This block can only contain native code. This code must begin with '#' or '@'.

There is no limit to the number of TERMINATION blocks. They are concatenated at
generation.

Related Topics

INITIALIZATION

153

Test RealTime - Reference Manual

TEST ... END TEST

Syntax
TEST <test_name> [LOOP <nb>]
END TEST

Description

The TEST instruction starts a TEST block. This block describes the test case for a
service. It contains one more ELEMENT blocks specifying the test.

In the test report, the <test_name> parameter flags the test within the SERVICE
block. Tests are usually given numbers in ascending order.

A number of iterations can be specified for each test with the optional LOOP
keyword.

The TEST LOOP statement can generate graph metric results in a .rtx file. To do this,
you must set the environment variable ATURTX to True. The produced .rtx graph
can be viewed in the Test RealTime Graphic Viewer.

The END TEST instruction marks the end of the TEST block.

Associated Rules

The TEST and END TEST instructions can only appear in a SERVICE block.

<test_name> is obligatory. If it is absent, the Test Compiler generates an error
message.

<nb> is an integer expression strictly greater than 1.

Example
SERVICE COMPUTE_HISTO
int x1, x2, y1, y2 ;
int status ;
T_HISTO histo;
 TEST 1
 FAMILY nominal
 ELEMENT

154

Component Testing Script Languages

USE

Purpose

The USE instruction activates a test environment that is defined using the
ENVIRONMENT instruction.

Syntax
USE <name> [(<expression> { , <expression> })]

Description

The position of the USE instruction determines which tests are affected by the
environment used:

• If USE occurs outside a SERVICE block, the instructions contained in this
environment are applied to all subsequent ELEMENT blocks.

• If USE occurs within a SERVICE block and outside a TEST block, the
instructions contained in this environment are applied to all subsequent
ELEMENT blocks of this SERVICE block.

• If USE occurs within a TEST block and outside an ELEMENT block, the
instructions contained in this environment are applied to all subsequent
ELEMENT blocks of this TEST block.

• If USE occurs within an ELEMENT block, the instructions contained in this
environment will only be applied to this block.

Because the USE instruction can appear at these four different levels, four priority
levels are created from "outside a SERVICE block" (the lowest priority) to "inside an
ELEMENT block" (the highest priority).

Within the same priority level, the last USE instruction is the one with the highest
priority.

Testing is completed according to these priority rules, and on the basis that variables
tested several times are included in the environment with the highest priority.

This is also true for every element of arrays described in extended mode.

If the environment it references takes parameters, the USE instruction must initialize
these parameters using C expressions.

Associated Rules

The USE instruction can appear after BEGIN and outside an ENVIRONMENT block,
after the definition of the environment it references.

<name> is the name of an environment declared by the ENVIRONMENT instruction.

155

Test RealTime - Reference Manual

<expression> must be an expression that conforms to C syntax and semantics.

Example
ENVIRONMENT compute_histo
 VAR x1, init = 0, ev = init
 VAR x2, init = SIZE_IMAGE-1, ev = init
 VAR y1, init = 0, ev = init
 VAR y2, init = SIZE_IMAGE-1, ev = init
 ARRAY histo, init = 0, ev = 0
 VAR status, init ==, ev = 0
END ENVIRONMENT
USE compute_histo

156

Component Testing Script Languages

VAR, ARRAY and STR

Purpose

The VAR, ARRAY, and STR instructions declare the test of a simple variable, a
variable array or a variable structure.

Syntax
VAR <variable>, <initialization>, <expected_value>
ARRAY <variable>, <initialization>, <expected_value>
STR <variable>, <initialization>, <expected_value>
VAR <expression>, <expected_value>
ARRAY <expression>, <expected_value>
STR <expression>,<expected_value>

where:

• <variable> is a C variable

• <expression> is a valid C expression

• <initialization> is a Component Testing initialization parameter for C

• <expected value> is a Component Testing expected_value parameter for C

Description

Use the VAR, ARRAY, and STR instructions to declare a variable test. During test
execution, if the value of the variable is out of the bounds specified in the
<expected_value> expression, the test is Failed.

Use the VAR, ARRAY, and STR instructions to declare a variable test. During test
execution, if the value of the variable is out of the bounds specified in the <expected>
expression, the test is Failed.

VAR, ARRAY or STR are synonymous and do not change the way in which the result
displayed in the test report.

• VAR: This statement is for simple variables.

• ARRAY: This statement is for variable arrays.

• STR: This statement is for variable structures.

If you use a VAR statement to test an array or structure, the report lists each element
of the array or structure.

The VAR, ARRAY, and STR instructions must be located in an ELEMENT or an
ENVIRONMENT block.

157

Test RealTime - Reference Manual

If you use a VAR statement to test an array or structure, the report lists each element
of the array or structure.

The VAR, ARRAY, and STR instructions must be located in an ELEMENT or an
ENVIRONMENT block.

Note Expressions must not use '--' or '++' operators, as these are interpreted
as comments in

158

Component Testing Script Languages

VAR, ARRAY and STR <variable> Parameter

Description

In the current documentation, the Component Testing <variable> parameter for C is
a conventional notation name for a C variable under test. The syntax of the
<variable> parameter allows you to specify the upper and lower boundaries of the
range of the test for each dimension of the array:
[<lower> .. <upper>]

where:

• <lower> is lower boundary for acceptable values of <variable>

• <upper> is the upper boundary for acceptable values of <variable>

Associated Rules

<variable> can be a simple variable (integer, floating-point number, character,
pointer or character string), an element of an array or structure, part of an array, an
entire array, or a complete structure.

If no test boundaries have been specified for a variable array, all array elements are
tested. Similarly, if one of the fields of a variable structure is an array, all elements of
this field are tested.

The variable must have been declared in advance.

Example
VAR x, ...
VAR y[4], ...
VAR z.field, ...
VAR p->value, ...
ARRAY y[0..100], ...
ARRAY y, ...
STR z, ...
STR *p, ...

159

Test RealTime - Reference Manual

VAR, ARRAY and STR <initialization> Parameter

Purpose

In this documentation, the Component Testing < nitialization> parameters for C
specify the initial value of the variable.

i

Syntax
INIT = <exp>
INIT IN { <exp>, <exp>, ... }
INIT (<variable>) WITH { <exp>, <exp>, ... }
INIT FROM <exp> TO <exp> [STEP <exp> | NB_TIMES <nb>
| NB_RANDOM <nb>[+ BOUNDS]]
INIT ==

where:

• <exp> is an expression as described below.

• <nb> is an integer constant that is either literal or derived from an expression
containing native constants or constants defined with a CONST instruction

• <variable> is a C variable

Description

The <init alization> expressions are used to assign an initial value to a variable. The
initial value is displayed in the Component Testing report for C.

i

l

The INIT value is calculated during the preprocessing phase, not dynamically during
test execution.

Initializations can be expressed in the following ways:

• INIT = <exp> initializes a variable before the test with the value <expression>.

• INIT IN { <exp> , <exp> , ...} declares a list of initial values. This is a condensed
form of writing that enables several tests to be contained within a single
instruction.

• INIT (<variab e>) WITH { <exp> , <exp> , ...} declares a list of initial values that
is assigned in correlation with those of the variable initialized by an INIT IN
instruction. There must be the same number of initial values.

The INIT IN and INIT (<variable>) WITH expressions cannot be used with for arrays
that were initialized in extended mode or for structures.

• INIT FROM <lower> TO <upper> allows the initial value of a numeric variable
(integer or floating-point) to vary between lower and upper boundary limits:

160

Component Testing Script Languages

• STEP: the value varies by successive steps

• NB_TIMES <nb>: the value varies by a number <nb> of values that are
equidistant between the two boundaries, where <nb> >= 2

• NB_RANDOM <nb>: the value varies by generating random values between
the 2 boundaries, including, when appropriate, the boundaries, where <nb> >=
1

The INIT FROM expression can only be used for numeric variables.

The STEP syntax cannot be used when the same variable is tested by another VAR,
ARRAY or STR statement.

• INIT == allows the variable to be left un-initialized. You can thus control the
values of variables that are dynamically created by the service under test. The
initial value is displayed in the test report as a question mark (?).

An initialization expression can still be used (INIT == <expression>) to include of
expected value expression when using the INIT pseudo-variable is used. See
Expected_Value Expressions.

Expressions

The initialization expressions <exp> can be among any of the following values:

1. Numeric (integer or floating-point), character, or character string literal values.
Strings can be delimited by single or double quotes

2. Native constants, which can be numeric, characters, or character strings

3. Constants, previously defined with the CONST instruction

4. Variables belonging to the test program or the module to be tested

5. C or Ada functions

6. The keyword NIL to designate a null pointer

7. Pseudo-variables I, I1, I2 ..., J, J1, J2 ..., where In is the current index of the nth
dimension of the parameter and Jm the current number of the subtest generated
by the test scenario's mth INIT IN, INIT FROM or LOOP; the I and I1 variables are
therefore equivalent as are J and J1; the subtest numbers begin at 1 and are
incremented by 1 at each iteration

8. A C or Ada expression with one or more of the above elements combined using
any operators and casting, with all required levels of parentheses, the + operator
being allowed to concatenate character string variables

9. For arrays and structures, any of the above-mentioned expressions between
braces ('{}') for C or brackets ('[]') for Ada, including when appropriate:

161

Test RealTime - Reference Manual

10. For an array element, part of an array or a structure field, its index, interval or
name followed by '=>' and by the value of the array element, common to all
elements of the array portion or structure field

11. For structures you can test some fields only, by using the following syntax:

1. For C: {<value>,,<value>}

2. For all languages: [<fieldname> => <value>, < ieldname> => <value>] f

12. The keyword OTHERS followed by '=>' and the default value of any array
elements or structure fields not yet mentioned

13. For INIT IN and INIT WITH only, a list of values delimited by braces ('{}') for C
composed of any of the previously defined expressions

Additional Rules

Any integers contained in an expression must be written either in accordance with
native lexical rules, or under the form:

• <hex_integer>H for hexadecimal values. In this case, the integer must be
preceded by 0 if it begins with a letter

• <binary_integer>B for binary values

Example
VAR x, INIT = pi/4-1, ...
VAR y[4], INIT IN { 0, 1, 2, 3 }, ...
VAR y[5], INIT(y[4]) WITH { 10, 11, 12, 13 }, ...
VAR z.field, INIT FROM 0 TO 100 NB_RANDOM 3, ...
VAR p->value, INIT ==, ...
ARRAY y[0..100], INIT = sin(I), ...
ARRAY y, INIT = {50=>10,others=>0}, ...
STR z, INIT = {0, "", NIL}, ...
STR *p, INIT = {value=>4.9, valid=>1}, ...

162

Component Testing Script Languages

VAR, ARRAY and STR <expected> Parameter

Purpose

In this documentation, the Component Testing <expected value> parameters for C
specify the expected value of a variable.

Syntax
EV = <exp>
EV = <exp> , DELTA = <delta>
MIN = <exp>, MAX = <exp>
EV IN { <exp>, <exp>, ... }
EV (<variable>) IN { <exp>, <exp>, ... }
EV ==

where:

• <exp> can be any of the expressions of the Initialization Parameters, plus the
following expressions:

• <delta> is the acceptable tolerance of the expected value and can be expressed:

• <variab e> is a C variab e l l

Description

The <expected value> expressions are used to specify a test criteria by comparison
with the value of a variable. The test is considered Passed when the actual value
matches the <expected value> expression.

The EV value is calculated during the preprocessing phase, not dynamically during
test execution.

An acceptable tolerance <delta> can be expressed:

• As an absolute value, by a numerical expression in the form described above

• As a percentage of the expected value. Tolerance is then written in the form
<exp>%.

Expected values can be expressed in the following ways:

• EV = <exp> specifies the expected value of the variable when it is known in
advance. The value of variable is considered correct if it is equal to <exp>.

• EV = <exp>, DELTA = <tolerance> allows a tolerance for the expected value.
The value of variable is considered correct if it lies between <exp> - <tolerance>
and <exp> + <tolerance>.

163

Test RealTime - Reference Manual

• MIN = <exp> and MAX = <exp> specify an interval delimited by an upper and
lower limit. The value of the variable is considered correct if it lies between the
two expressions. Characters and character strings are treated in dictionary
order.

• EV IN { <exp>, <exp>, ... } specifies the values expected successively, in
accordance with the initial values, for a variable that is declared in INIT IN. It is
therefore essential that the two lists have an identical number of values.

• EV (<variable>) IN is identical to EV IN, but the expected values are a function
of another variable that has previously been declared in INIT IN. As for EV IN,
the two lists must have an identical number of values.

• EV == allows the value of <variable> not to be checked at the end of the test.
Instead, this value is read and displayed. The value of <variable> is always
considered correct.

Expressions

The initialization expressions <exp> can be among any of the following values:

• Numeric (integer or floating-point), character, or character string literal values.
Strings can be delimited by single or double quotes

• Native constants, which can be numeric, characters, or character strings

• Constants, previously defined with the CONST instruction

• Variables belonging to the test program or the module to be tested

• C or Ada functions

• The keyword NIL to designate a null pointer

• The keyword NONIL, which tests if a pointer is non-null

• Pseudo-variables I, I1, I2 ..., J, J1, J2 ..., where In is the current index of the nth
dimension of the parameter and Jm the current number of the subtest generated
by the test scenario's mth INIT IN, INIT FROM or LOOP; the I and I1 variables
are therefore equivalent as are J and J1; the subtest numbers begin at 1 and are
incremented by 1 at each iteration

• A C or Ada expression with one or more of the above elements combined using
any operators and casting, with all required levels of parentheses, the +
operator being allowed to concatenate character string variables

• For arrays and structures, any of the above-mentioned expressions between
braces ('{}') for C, including when appropriate:

164

Component Testing Script Languages

• For an array element, part of an array or a structure field, its index, interval or
name followed by '=>' and by the value of the array element, common to all
elements of the array portion or structure field

• For structures you can test some fields only, by using the following syntax:

• {<value>,,<value>}

• The keyword OTHERS followed by '=>' and the default value of any array
elements or structure fields not yet mentioned

• The pseudo-variable INIT, which copies the initialization expression

Additional Rules

EV with DELTA is only allowed for numeric variables.

MIN = <exp> and MAX = <exp> are only allowed for alphanumeric variables that
use lexicographical order for characters and character strings.

MIN = <exp> and MAX = <exp> are not allowed for pointers.

Only EV = and EV == are allowed for structured variables.

In some cases, in order to avoid generated code compilation warnings, the word
CAST must be inserted before the NIL or NONIL keywords.

Example
VAR x, ..., EV = pi/4-1
VAR y[4], ..., EV IN { 0, 1, 2, 3 }
VAR y[5], ..., EV(y[4]) IN { 10, 11, 12, 13 }
VAR z.field, ..., MIN = 0, MAX = 100
VAR p->value, ..., EV ==
ARRAY y[0..100], ..., EV = cos(I)
ARRAY y, ..., EV = {50=>10,others=>0}
STR z, ..., EV = {0, "", NIL}
STR *p, ..., EV = {value=>4.9, valid=>1}

165

C++ Test Script
Language

167

Test RealTime - Reference Manual

168

Component Testing Script Languages

About the C++ Test Script Language

The Test RealTime Component Testing feature for C++ uses its own simple language
for test scripting: C++ Test Script Language.

This language is designed to bring object-oriented programming techniques to
software testing and is applicable to both object-oriented and procedural source code.

Notation conventions

Throughout this guide, command notation and argument parameters use the
following standard convention:

Notation Example Meaning

BOLD INCLUDE Language keyword

<italic> <filename> Symbolic variables

[] [<option>] Optional items

{ } {<filenames>} Series of values

[*] [{<filenames>}] Optional series of variables

| on | off OR operator

Note C++ Test Script Language keywords can be entered in upper or lower
case. To distinguish C++ Test Script Language from native code, this guide
conventionally uses upper case typography for C++ Test Script Language
keywords.

C++ Test Script Language Identifiers

A C++ Test Script Language identifier is a text string used as a label, such as the
name of a test case in this kind of script.

Identifiers are made of an unlimited sequence of the following characters:

• a-z

• A-Z

• 0-9

• _ (underscore)

Spaces are not valid identifier characters.

169

Test RealTime - Reference Manual

Note that, as opposed to the C++ language, identifiers starting with a numeric
character are allowed. For example, PROC 1 is syntactically correct.

Unlike keywords, these identifiers are case sensitive. This means that LABEL, label,
and Label are three different identifiers.

C++ Test Script Keywords

C++ Test Script Language keywords are not case sensitive. This means that STUB,
stub, and Stub are equivalent. For conventional purposes however, this document
uses upper-case notation for C++ Test Script Language keywords in order to
differentiate from native source code.

OTD Keywords

170

Component Testing Script Languages

EPILOGUE

Syntax
EPILOGUE { <epilogue item>* }

Location

TEST CLASS | TEST SUITE

Description

The EPILOGUE structure defines native code that is to be executed whenever the
execution of the surrounding test class ends. This code is executed after other test
class components.

An EPILOGUE statement may appear at most once in a test class. In an object-
context, an EPILOGUE can be compared to a destructor.

<epilogue item> may be one of the following entities:

• COMMENT

• PRINT

• Native statement

Order is meaningful.

Example

 EPILOGUE {
 #delete s;

 CHECK (!s->full ());

 tc1;

TEST CLASS ATest
{
 PROLOGUE {
 #Stack *s = new Stack(20);
 #s->fill ();
 }

 }
TEST CASE tc1 {

}
RUN {

}
}

171

Test RealTime - Reference Manual

PROLOGUE

Syntax
PROLOGUE { <prologue item>* }

Location

TEST CLASS | TEST SUITE

<prologue item> may be one of the following entities:

Order is meaningful. The native code can be made of declarations and instructions.
Variables declared in prologue are visible from every component of the surrounding
test class.

TEST CLASS ATest
{

 CHECK (!s.full ());

}

Description

The PROLOGUE statement defines native code that is to be executed whenever the
surrounding test class execution begins. This code is executed before any other of the
test class' components.

The PROLOGUE statement may appear at most once in a test class. In an object-
context, a prologue can be compared to a constructor.

• COMMENT

• PRINT

• Native statement

Note If the native code raises an exception, the prologue generates an error,
handled by the ON ERROR local block. Even if the ON ERROR statement is
CONTINUE, the whole TEST CLASS or TEST SUITE is skipped, including its
EPILOGUE.

Example

 PROLOGUE {
 #Stack s(20);
 #s.fill ();
 }

TEST CASE tc1 {

}
RUN {
 tc1;

}

172

Component Testing Script Languages

INCLUDE

Syntax
INCLUDE "<file name>";

Location

C++ Test Driver Script

Description

The INCLUDE statement opens the file <file name> and inserts its code into the C++
Test Driver Script.

A file cannot include itself, directly or indirectly.

An included file must not have a RUN statement at the script level. A RUN statement
at script level is only allowed in the main test script.

Example
INCLUDE "test1.otd";

173

Test RealTime - Reference Manual

TEST CLASS

Syntax
TEST CLASS <test_class_name> [<formal_parameter> [,
<formal_parameter>]] [: <parent_class>] [<actual_parameter> [,
<actual_parameter>]] { <test_class_item>}

Location

C++ Text Driver Script, TEST CLASS

Description

The TEST CLASS statement describes an object test class, which is one of the
structuring entities of a C++ Test Driver Script. Test classes can appear at the root-
level of a C++ Test Driver Script and in test classes.

<test class name> is a C++ Test Script Language identifier.

<formal parameter> is a C++ Test Script Language identifier. It has no type: it is
replaced into the test class by an actual parameter. Thus it can refer to a C++ type as
well a C++ constant or a C++ variable.

<actual parameter> is a C++ actual parameter.

<parent class> is a valid test class that is defined in the same scope that contains the
TEST CLASS. All entities of a parent class are inherited. This mean that they are
available just as if they were defined in <test class name> itself. The entities defined
in the current test class with the same name as in the parent class are said to override,
or replace, the entities defined in the parent class.

<test class item> may be one of the following entities:

• TEST CLASS

• TEST SUITE

• TEST CASE

• ON ERROR

• PROPERTY

• PROC

• PROLOGUE

• EPILOGUE

• RUN

174

Component Testing Script Languages

A test class scope has no order, so these entities can appear in any order. However
ON ERROR, EPILOGUE, PROLOGUE, and RUN may appear only once. The
execution of a TEST CLASS without a RUN statement will execute the class'
PROLOGUE and EPILOGUE only.

Example
TEST CLASS AdvancedTest (T) : BasicTest
 {
 PROLOGUE {
 #Stack s (20);
 }

 CHECK PROPERTY Initial;

 }

 }

 PROPERTYInitial { (s.count == 0) }
 PROPERTYFinal { (s.count == 1) }
TESTCASE tc1 {

 #s.push (1);
 CHECKPROPERTY Final;

 RUN{
 tc1;

 }

175

Test RealTime - Reference Manual

TEST CASE

Syntax
TEST CASE <test case name> { <test case item>}

Location

The TEST CASE statement describes an object test case, which is the smallest testing
structure in a hierarchical C++ Test Driver Script. Test cases appear in test classes and
test suites.

• ON ERROR

• CHECK PROPERTY

• CALL

CALL, CHECK, CHECK PROPERTY, COMMENT, PRINT as well as Native
statements are ordered (they are executed sequentially). Other entities are not (they
have a global effect on the test case).

TEST CLASS A {

 #do_something ();

TEST CLASS, TEST SUITE

Description

<test case name> is a C++ Test Script Language identifier.

<test case item> may be one of the following entities:

• CHECK EXCEPTION

• CHECK

• CHECK METHOD

• CHECK STUB

• COMMENT

• PRINT

• Native statement

ON ERROR and CHECK EXCEPTION may appear only once.

Example

 TEST CASE 1 {
 CHECK (x == 1);

 CHECK PROPERTY ok;

176

Component Testing Script Languages

 }
 RUN {
 1;
 }
}

177

Test RealTime - Reference Manual

TEST SUITE

Syntax
TEST SUITE <test suite name> { <test suite item>}

Location

OTD script, TEST CLASS, TEST SUITE

<test suite name> is a C++ Test Script Language identifier.

All entities but TEST CASE are not ordered in a test suite scope. However, ON
ERROR, EPILOGUE, and PROLOGUE may appear only once. The test cases and test
suites of a test suite are executed sequentially.

 /... */

 {

 /... */

 {

Description

The TEST SUITE statement describes an Object test suite, which is one of the
structuring entities of an C++ Test Driver Script. Test suites can appear at the root-
level of a C++ Test Driver Script, in test classes, and in test suites.

<test suite item> may be one of the following entities:

• TEST SUITE

• TEST CASE

• ON ERROR

• PROPERTY

• PROC

• PROLOGUE

• EPILOGUE

Example
TEST SUITE ChargeTest {
 TEST CASE Test1
 {

 }
 TEST SUITE Test2

 TEST CASE SubTest2a
 {

 }
 TEST CASE SubTest2b

178

Component Testing Script Languages

 /... */
 }
 }
}

179

Test RealTime - Reference Manual

RUN

Syntax
RUN { <run item> }

Location

TEST CLASS, OTD Script

Description

The RUN statement defines the behavior of the surrounding test class.

<run item> may be one of the following entities:

• Test class name

These names refer to a component defined in the surrounding test class or in an
inherited test class. Order is meaningful. They can refer to a nested item (the nesting
sequence is specified with the list of identifiers, from the most-surrounding to the
most-nested one, separated by a dot).

• When used at the root level of a script, the RUN statement defines which
entities are to be run when the script is executed. The RUN items can refer to
any entity of the script.

RUN items are executed sequentially.

TEST CASE tc1 {
 #s.push (i);

• Test suite name

• Test case name

The RUN statement can be located either within a TEST CLASS or at the root level of
a C++ Test Driver Script:

• When used in a TEST CLASS, the RUN statement defines the behavior of the
surrounding TEST CLASS.

Only one RUN statement is allowed at the root of a script or within each TEST
CLASS.

The RUN statement is not allowed in included scripts.

Example
TEST CLASS ATest
{

 CHECK (!s.full ());
}

180

Component Testing Script Languages

TEST CASE tc2 {
 #s.pop ();
 CHECK (!s.empty ());
RUN {
 tc1; tc2; tc2; tc1;

}
}

181

Test RealTime - Reference Manual

PROPERTY

Syntax
PROPERTY <property name> [(<parameter> [(, <parameter>)])
]
{ ((<native expression>))}

Location

TEST CLASS, TEST SUITE

Description

The PROPERTY statement associates a global state, defined by the conjunction of
<native expression>, to a name. This name is visible in the TEST CLASS where the
property is defined.

Note The occurrence of a property may be checked with the keyword
CHECK PROPERTY.

<native expression> is a valid C++ expression that may be evaluated to a Boolean.

Example

 RUN { tc1; }

TEST CLASS TestA {
 PROPERTY Empty { (s.count() == 0) }
 TEST CASE tc1 {
 CHECK PROPERTY Empty;
 }

}

182

Component Testing Script Languages

PROC

Syntax
PROC <procedure name> [(<formal parameter> [(, <formal
parameter>)])]
[REQUIRE (<native expression>)]
<procedure item>
[ENSURE (<native expression>)]

Location

TEST CLASS, TEST SUITE

Description

The PROC statement defines a procedure.

<formal parameter> is a C++ Test Script Language identifier. It has no type: it is
replaced into the procedure by an actual parameter. Thus it can refer to a C++ type as
well a C++ constant or a C++ variable.

• CHECK EXCEPTION

• CALL

• ON ERROR

Note Procedures can be called with the CALL statement.

<procedure name> is a C++ Test Script Language identifier. It is visible in the
surrounding test class or test suite, in sub-test classes or sub-test suites, and in
inheriting test classes.

<native expression> is a C++ expression that can be evaluated to a Boolean. The
REQUIRE expression is evaluated before execution of the procedure. The ENSURE
expression is evaluated after execution of the procedure. If any of these optional
expressions is False, the evaluation leads to an error in the caller's context.

<procedure item> may be one the following entities:

• CHECK

• CHECK PROPERTY

• CHECK STUB

• CHECK METHOD

• COMMENT

183

Test RealTime - Reference Manual

• PRINT

• Native statement

Example
TEST CLASS TestA {

Order is meaningful, except for CHECK STUB, CHECK METHOD, and ON ERROR
statements.

The ON ERROR statement may only appear once.

 PROC InitArray (array, length)
 REQUIRE (length>30 && length<array.length())
 {
 #{
 for (int i = 0; i<length; i++)
 array[i].init ();
 }#
 }
 ENSURE (array[0].initialized())
}

184

Component Testing Script Languages

REQUIRE

Syntax
REQUIRE <native expression>

Location

WRAP, STUB, PROC

Description

The REQUIRE statement describes a method pre-condition. It can be used in a
WRAP, STUB or PROC block.

Note The information below pertains to the use of REQUIRE within a WRAP
block. For more information about using the REQUIRE and ENSURE
statement within a STUB or PROC block, please refer to the STUB and PROC.

<native expression> is a C++ Boolean expression (or an expression that can be
converted into a Boolean), which can use:

• Any of the public or protected class members.

• The method parameters (with the names used in the signature or in the method
definition).

• Local variables

i

Example

• Any of the global variables declared in the file where the method is defined.

The following symbols cannot be used in the <native expression> parameter of the
REQUIRE statement:

• Macros

Evaluation

The <native expression> parameter of the REQUIRE statement is evaluated before
any code of the method is executed (local variables are not pushed yet).

Warning: you can call methods in <nat ve expression>, but you must ensure that
these calls do not modify the object's state by writing to any field. You can ensure this
by calling const methods only.

C++ source code example:
class Stack {

185

Test RealTime - Reference Manual

 int count;
 Stack () : count(0) {}
 void push (void *);
 void *pop ();

OTC code example:

}

};

CLASS Stack {
 WRAP pop
REQUIRE (count > 0)

186

Component Testing Script Languages

ON ERROR

Syntax
ON ERROR [{ <error item> }] <error action>;

Description

The ON ERROR statement defines the behavior of the test driver when an error
occurs.

Location

C++ Test Driver Script, TEST CLASS, TEST SUITE, TEST CASE, PROC

ON ERROR applies to the current scope level, and to nested scopes, unless another
ON ERROR statement has been defined. The general rule is that the most nested ON
ERROR statement is applied.

Note An error can be raised by any instruction of a TEST CASE or a PROC,
and by native code from a PROLOGUE or EPILOGUE.

ON ERROR does not apply to stubs. There is always an implicit ON ERROR
CONTINUE behavior in stubs

<error item> may be one of the following entities:

• COMMENT

• PRINT

• Native statement

This block is executed when an error occurs.

<error action> is a keyword which defines the behavior of the test driver when an
error occurs:

• CONTINUE : The execution continues just as if no error occurred. If the error
comes from an unexpected exception raised by native code, the execution
continues after the native code, except for an error in a PROLOGUE block. Since
it is the default behavior, this on-error action should only be specified to
override another on-error action.

• EXIT : The execution of the test driver stops at the error point.

• BYPASS : The execution of the rest of the current test case or procedure is
skipped.

• BYPASS <test class name> | <test suite name> | <test case name> | <proc
name> : The execution of the rest of the referred entity is skipped.

187

Test RealTime - Reference Manual

Example
ON ERROR CONTINUE;
TEST CLASS A {
 ON ERROR EXIT;

 TEST CASE A1a {

 PRINT "ok"; // this instruction is executed

 CHECK (false); // this leads to an error

 }

 PRINT "ko"; // this instruction is never executed

}
TEST CLASS B {

 ON ERROR BYPASS;
 CHECK (false); // this leads to an error -- execution resumes
after B1

 TEST SUITE A1 {
 ON ERROR BYPASS A;

 ON ERROR CONTINUE;
 CHECK (false); // this leads to an error but
execution continues

 }
 TEST CASE A1b {

 // execution resumes after TEST CLASS
A
 PRINT "ko"; // this instruction is never executed
 }

 TEST CASE A2 {
 CHECK (false); // this leads to an error -- the test
driver exits

 }
 RUN { A1; A2; }

 TEST CASE B1 {

 PRINT "ko"; // this instruction is never executed
 }
 TEST CASE B2 {
 CHECK (false); // this leads to an error but execution
continues
 PRINT "ok"; // this instruction is executed
 }
 RUN { B1; B2; B1; }
}
RUN { B; A; A.A2; }

In this example, the execution is: B1 (aborted), B2, B1 (aborted), A1a, A1b (A is
aborted), A2 (exited).

188

Component Testing Script Languages

STUB

Syntax
STUB <stub name> : <native routine signature>
[REQUIRE (<require native expression>)]
{<stub item>... <stub item>}
[ENSURE (<ensure native expression>)]

Location

C++ Test Driver Script

Description

The STUB statement defines a stub for a function or method. A stub defines or
replaces the initial routine.

Note The use of stubs requires instrumentation.

<stub name> is a unique C++ Test Script Language identifier.

<native routine signature> is a C++ signature matching the routine to stub. Unlike
WRAP signatures, the signature must be complete; the return type and parameters
(type and name) must be specified. If the routine is a class member or belongs to a
namespace, its name must be qualified. If the routine is a template function or a
template class member, the usual template<...> prefix must be used. If it is a generic
template, any instance of this template is stubbed. If it is a template specialization,
only the corresponding instance is stubbed.

<require native expression> is a C++ expression that can be evaluated to a Boolean. It
is evaluated before the stub execution. It can refer to:

• The global variables defined in the test script.

• The stubbed routine's parameters.

<ensure nat ve expression> is a C++ expression which can be evaluated to a Boolean.
It is evaluated after the stub execution. It can refer to:

i

• The global variables defined in the test script.

• The stubbed routine's parameters.

• The _ATO_result variable that contains the routine return value, if any. Its type
is that of the routine return type. Its value may be undefined if no value is
returned (because an exception was thrown, or a return without a value is
executed, or the function implicitly returns).

189

Test RealTime - Reference Manual

• The _ATO_in_exception Boolean variable, which is True if the post-condition is
executed because an exception has been thrown. This variable is available only
if the Target Deployment Package is configured to support exceptions.

If one of these expressions is False, the stub is failed but not the CHECK STUB, which
could still have been defined to ensure the stub is called.

<stub item> may be one the following entities:

• PRINT

You cannot define several stubs for the same method. However you can define a stub
for each instance of a template function or a template class member.

STUB ModifyCell : int IntArray::Modify (int Cell)

• CHECK

• COMMENT

• Native statement

The "..." zone is optional and is replaced by the code provided through the CHECK
STUB statement. If not specified, it is implicitly defined at the end of the STUB block.

If a statement of the STUB generates an error, the stub is declared failed, but its
execution continues (there is always an implicit ON ERROR CONTINUE in stubs).

An error in a STUB does not imply an error in the TEST CASE containing the
corresponding CHECK STUB. The CHECK STUB statement only checks that the stub
is called, not that its execution is correct.

Example

REQUIRE (Cell != 128)
{
 #int Nb = random(10000);
 ... // this part is completed by the code of CHECK STUB
 #return (Nb);
}

In this example, a number Nb is randomly chosen. If no additional code is provided
by a CHECK STUB, then this number is returned. If a CHECK STUB is provided,
assign the expected return value to Nb on a case-by-case basis.

190

Component Testing Script Languages

COMMENT

Syntax
COMMENT <one-line text>
COMMENT { <multiple-line text> }

Location

TEST CASE, PROC, STUB, CHECK STUB, PROLOGUE, EPILOGUE, ON ERROR,
CHECK EXCEPTION

Description

The COMMENT instruction allows the output of static comments to a trace file.
These comments can be visualized through the UML/SD Viewer in the GUI.

Example
TEST CASE tc1 {

}

#s.push (i);
COMMENT An element was added to the stack.
CHECK (!s.full ());

191

Ada Test Script
Language

193

Test RealTime - Reference Manual

194

Component Testing Script Languages

About the Ada Test Script Language

The Test RealTime Component Testing feature for Ada uses its own simple language
for test scripting, called Ada Test Script Language.

This section describes each keyword of the Ada Test Script language, including:

• Syntax

Notation Conventions

• Functionality and rules governing its usage

• Examples of use

Throughout this guide, command notation and argument parameters use the
following standard convention:

Notation Example Meaning

BOLD BEGIN Language keyword

<italic> <filename> Symbolic variables

[] [<option>] Optional items

{ } {<filenames>} Series of values

[{ }] [{<filenames>}] Optional series of variables

| on | off OR operator

Note: Ada Test Script Language keywords can be entered in upper or lower case. To
distinguish Ada Test Script Language from native code, this guide conventionally
uses upper case typography for Ada Test Script Language keywords.

195

Test RealTime - Reference Manual

Ada Test Script Language Identifiers

A Ada Test Script Language identifier is a text string used as a label, such as the
name of a TEST or a STUB in a .ptu test script.

Identifiers are made of an unlimited sequence of the following characters:

• a-z

• A-Z

• 0-9

• _ (underscore)

Spaces are not valid identifier characters.

Note that identifiers starting with a numeric character are allowed. The following
statement, for example, is syntactically correct:

TEST 1
...
END TEST

Unlike keywords, Ada Test Script Language identifiers are case sensitive. This means
that LABEL, label, and Label are three different identifiers.

Ada Test Script Language Keywords

The Ada Test Script Language keywords are not case sensitive. This means that
STUB, stub, and Stub are equivalent. For conventional purposes however, this
document uses upper-case notation for the Ada Test Script Language keywords in
order to differentiate from native source code.

196

Component Testing Script Languages

BEGIN

Purpose

The BEGIN instruction marks the beginning of the Ada code generation. The BEGIN
GENERIC option is specifically for testing Ada generic packages.

Syntax
BEGIN [<parent_unit> [, <procedure>]]
BEGIN GENERIC(<generic_package>, <instance>) [, <procedure>]

where:

• <parent_unit> is the full name of the unit under test.

• <procedure> is the name of the generated separate procedure, by default
ATTOL_TEST.

• <generic_package> is the name of a generic unit under test.

• <instance> is the name of the instanciated unit from the generic.

Description

The BEGIN instruction is mandatory and must be located after a HEADER statement,
and before any other Ada Test Script instruction.

By default, the Ada Test Script Compiler creates an independent compilation unit. To
test private elements of a package you must first generate a procedure.

The reference body to the separate procedure must be written in the parent unit
package.

If a BEGIN keyword is not found in the test script, a warning message is generated
and a BEGIN instruction is implicitly created before the first occurrence of a
SERVICE instruction.

To test a generic package, you need to generate the test driver separately and call it as
a procedure of the instance. Use the BEGIN GENERIC syntax to automatically
generates a separate procedure <procedure> of <generic_package>. This allows you
to access the procedure <instance>.<procedure_name>, which is generated by the
Ada Test Script Compiler.

Note This technique also allows testing of private types within the generic
package.

197

Test RealTime - Reference Manual

COMMENT

Purpose

The COMMENT instruction adds a textual comment to the test report.

Syntax
COMMENT [<text>]

where:

• <text> is an optional comment text string to be displayed.

Description

The COMMENT instruction is optional and can be used anywhere in the test script.

The position of the COMMENT instruction in the test script defines the position in
which the comments appear in the test report.

• Within an ELEMENT block: the comment appears just before the variable state
descriptions.

• After a TEST instruction: the comment appears in the test header, before the
variable descriptions.

• After a SERVICE instruction: the comment appears in the service header, before
the test descriptions.

• Outside a SERVICE block: the comment appears in the service header following
the declaration, before the test descriptions.

Example
TEST 1
FAMILY nominal
COMMENT histogram computation for a black image
ELEMENT

198

Component Testing Script Languages

DEFINE STUB ... END DEFINE

Purpose

The DEFINE STUB and END DEFINE instructions delimit a simulation block
consisting of stub definition declarations written in Ada.

Syntax
DEFINE STUB <stub_name> [<stub_dim>]
END DEFINE

where:

• <stub_name> is the mandatory name of a simulation block.

• <stub_dim> is an optional maximum number of stub call descriptions for a test
scenario. By default, its value is 10.

DEFINE STUB / END DEFINE blocks must be located after the BEGIN instruction
and outside any SERVICE block.

All functions and procedures of the <stub_name> package are simulated, and stub
definitions are Ada declarations (beginning with '#') of functions, procedures, or
assignment instructions.

• out for output parameters

The parameter mode is optional. If no parameter mode is specified, the in mode is
assumed by default.

Description

Defining stubs in a test script is optional.

Using the stub definitions, the Ada Test Script Compiler generates simulation
variables and functions for which the interface is identical to that of the stubbed
variables and functions.

The purpose of these simulation variables and functions is to store and test input
parameters, assign values to output parameters, and if necessary, return appropriate
values.

Stub parameters describe both the type of item used by the calling function and the
mode of passing. The mode of passing the parameter is specified by adding the
following before the parameter name:

• in for input parameters

• in out for input/output parameters

• no for parameters that you do not want to test

199

Test RealTime - Reference Manual

A return parameter is always deemed to be an output parameter.

Global variables defined in DEFINE STUB blocks replace the real global variables.

Example

END DEFINE

BEGIN
DEFINE STUB file_io

200

Component Testing Script Languages

ELEMENT ... END ELEMENT

Purpose

The ELEMENT and END ELEMENT instructions delimit a test phase or ELEMENT
block.

Syntax
ELEMENT
END ELEMENT

Description

The ELEMENT instruction is mandatory and can only be located within a TEST
block. If absent, a warning message is generated and the ELEMENT block is
implicitly declared before the first occurrence of a VAR, ARRAY, STR, or STUB
instruction.

The block must end with the instruction END ELEMENT. If absent, a warning
message is generated and it is implicitly declared before the next ELEMENT
instruction, or the END TEST instruction.

The ELEMENT block contains a call to the service under test as well as instructions
describing the initializations and checks on test variables.

Positioning of VAR, ARRAY, STR or STUB related to the actual test procedure is
irrelevant as the Test Compiler separates these instructions into two parts:

• The test initialization (described by INIT) is generated with the ELEMENT
instruction

• The test of the expected value (described by EV) is generated with the END
ELEMENT instruction

Example
 TEST 1
 FAMILY nominal
 ELEMENT
 VAR x1, init = 0, ev = init
 VAR x2, init = SIZE_IMAGE-1, ev = init
 VAR y1, init = 0, ev = init
 VAR y2, init = SIZE_IMAGE-1, ev = init
 ARRAY image, init = 0, ev = init
 VAR histo(0), init = 0, ev = SIZE_IMAGE*SIZE_IMAGE
 ARRAY histo(1..SIZE_HISTO-1), init = 0, ev = 0
 #compute_histo(x1,y1,x2,y2,histo);
 END ELEMENT
 END TEST

201

Test RealTime - Reference Manual

EXCEPTION

Purpose

The EXCEPTION instruction describes the behavior of the test script if any
exceptions are raised during the execution.

Syntax
EXCEPTION <exception_name>

ti

ELEMENT

Description

This instruction can only appear in an ELEMENT block.

<excep on_name> is the name of the exception under test.

This instruction must be unique in the block where it appears. If it is absent, the test
shall not raise any exception, otherwise, an error is generated.

Only exceptions raised by the procedure under test can be tested. Exceptions raised
during the initialization of the variables or during the test of the variables cannot be
tested. They are nevertheless detected and written in the test report.

Note Do not use the EXCEPTION statement simultaneously with any native
exception handling code, as this will create internal conflicts.

Example

In this example, the exception class is overflow.

-- The test shall raise the overflow exception
EXCEPTION overflow
....
-- Using the ‘exception’ variable
VAR exception->ch1,
END ELEMENT

202

Component Testing Script Languages

FAMILY

Purpose

The FAMILY instruction groups tests by families or classes.

Syntax
FAMILY <family_name> { , <family_name>}

Argument

<family_name> is a mandatory identifier indicating the name of the test family.
Typically, you could specify nominal, structural, or robustness families.

Description

The FAMILY instruction appears within TEST blocks, where it defines the families to
which the test belongs.

When you run the test sequence, you can request that only tests of a given family are
executed.

A test can belong to several families. In this case, the FAMILY instruction contains a
<family_name> list, separated by commas.

The FAMILY instruction must be located before the first ELEMENT block of the
TEST block and must be unique in the TEST block.

 TEST 1

 ELEMENT

The FAMILY instruction is optional. If it is omitted, a warning message is generated
and the test belongs to every family.

Example

 FAMILY nominal
 COMMENT histogram computation on a black image

203

Test RealTime - Reference Manual

HEADER

Purpose

The HEADER instruction specifies the name and version of the module under test as
well as the version number of the test script.

Syntax
HEADER <module_name>, <module_version>, <test_plan_version>

This information contained in the HEADER keyword is reproduced in the test report
header to identify the test sequence.

Example
HEADER histo, 01a, 01a

<module_name>, <module_version> and <test_plan_version> are character strings
with no restrictions, except for versions beginning with a dollar sign ('$'). These
instructions must be followed by an identifier.

Description

The module and test script versions can be read from the environment variables if
they are identifiers beginning with a dollar sign ($).

The HEADER instruction is mandatory, but its arguments are optional. It must be the
first instruction in the test program. If it is absent, a warning message is generated.

BEGIN

204

Component Testing Script Languages

IF ... ELSE ... END IF

Purpose

The IF, ELSE and END IF statements allow conditional generation of the test driver.

Syntax
IF <condition> { , <condition> }
ELSE
END IF

where:

• <condition> is an identifier sent by the -define option to the Ada Test Script
Compiler.

Description

These statements enclose portions of script that are included depending on the
presence of one of the conditions in the list provided to the Ada Test Compiler by the
-define option.

The <condition> list forms a series of conditions that is equivalent to using an
expression of logical ORs.

The IF instruction starts the conditional generation block.

The END IF instruction terminates this block.

The ELSE instruction separates the condition block into 2 parts, one being included
when the other is not.

Associated Rules

This block of instructions can appear anywhere in the test program.

<condition> is any identifier. You must have at least one condition in an IF
instruction.

This block can contain any code written in Ada Test Script Language or native Ada.

IF and END IF instructions must appear simultaneously.

The ELSE instruction is optional.

The generation rules are as follows:

• If at least one of the conditions specified in the IF instruction's list of conditions
appears in the list associated with the -define option, the first part of the block is
included.

205

Test RealTime - Reference Manual

• If none of the conditions specified in the IF instruction appears in the list
associated with the -define option, then the second part of the block is included
(if ELSE is present).

Example
IF test_on_target
 VAR register, init == , ev = 0
ELSE
 VAR register, init = 0 , ev = 0
END IF

206

Component Testing Script Languages

INCLUDE

Purpose

The INCLUDE statement specifies an external file for the Ada Test Compiler to
process.

Syntax
INCLUDE CODE <file.ada>
INCLUDE PTU <file.ptu>

where:

• <file.ada> is the file name of an external Ada source file

Including a file with the additional keyword CODE lets you include a source file
without having to start every line with a hash character ('#').

If it is still not found or if access is denied, an error is generated.

INCLUDE CODE ../file2.ada

• <file.ptu> is the file name of an Ada test script

Description

When an INCLUDE instruction is encountered, the Ada Test Compiler leaves the
current file, and starts pre-processing the specified file. When this is done, the Ada
Test Compiler returns to the current file at the point where it left.

Including a file with the additional keyword PTU lets you include an Ada test script
within another Ada test script.

The name of the included file can be specified with an absolute path or a path relative
to the current directory.

If the file is not found in the current directory, all directories specified by the -incl
option are searched when the preprocessor is started.

Example
INCLUDE CODE file1.ada

INCLUDE PTU /usr/tests/file3.ptu

207

Test RealTime - Reference Manual

INITIALIZATION ... END INITIALIZATION

Purpose

Specifies native Ada code to initialize the test driver

Syntax
INITIALIZATION
END INITIALIZATION

Description

The INITIALIZATION and END INITIALIZATION statements let you provide
native Ada code that is integrated as the first main statements of the test driver.

This block can only contain native Ada code. Each line of native code must be
preceded with '#' or '@'.

In some environments, such as when using a different target machine, this is a
convenient way to initialize the target.

An INITIALIZATION block must appear after the BEGIN instruction or between two
SERVICE blocks.

There is no limit to the number of INITIALIZATION blocks. Upon test driver
generation, they are concatenated in the order in which they appeared in the test
script.

208

Component Testing Script Languages

NEXT_TEST

Purpose

The NEXT_TEST instruction starts a TEST block that is linked to the previous test
block.

Syntax
NEXT_TEST [LOOP <nb>]

Description

For this new test, a number of iterations can be specified by the keyword LOOP.

• If the INIT IN is in a TEST block, there will be a loop over the entire TEST block,
without consideration of the ELEMENT blocks that it might contain.

SERVICE COMPUTE_HISTO

 FAMILY nominal

 END ELEMENT

where:

• <nb> is an integer expression strictly greater than 1.

The NEXT_TEST instruction allows you to repeat a series of test contained within a
previously defined TEST block.

It contains one more ELEMENT block. It does not contain the FAMILY instruction.

The NEXT_TEST instructions can only appear in a TEST ... END TEST block.

The main difference between a NEXT_TEST block and an ELEMENT block is when
you use an INIT IN statement within a test block:

• If the INIT IN is inside a NEXT_TEST block however, the loop will not affect the
ELEMENT blocks within other TEST blocks

Example

x1, x2, y1, y2 : integer ;
histo : T_HISTO ;
 TEST 1

 ELEMENT
 ...

 NEXT_TEST LOOP 2
 ELEMENT

209

Test RealTime - Reference Manual

SERVICE ... END SERVICE

Purpose

A SERVICE block contains a common description for all tests related to a given
service of the module under test.

Syntax
SERVICE <service_name>
END SERVICE

where:

• <service_name> specified the tested service in the test report

Description

The SERVICE instruction starts a SERVICE block. This block contains the description
of all the tests relating to a given service of the module to be tested.

The <service_name> is usually the name of thes service under test, although this is
not mandatory.

The END SERVICE instruction indicates the end of the service block.

Associated Rules

The SERVICE instruction must appear after the BEGIN instruction.

The <service_name> parameter can be any identifier. It is obligatory.

SERVICE COMPUTE_HISTO

 TEST 1

Example
BEGIN

 # x1, x2, y1, y2 : integer ;
 # histo : T_HISTO ;

 FAMILY nominal

210

Component Testing Script Languages

SERVICE_TYPE

Purpose

The SERVICE_TYPE statement indicates the type of service tested.

Syntax
SERVICE_TYPE <type> {,<type>}

where:

• <type> is a user-defined service type identifier

Description

The SERVICE_TYPE instruction allows you to specify an identifier indicating the
type of service tested. This identifier is included in the test report.

You can use this functionality to specify whether a service is internal or external.

If SERVICE_TYPE is placed within a SERVICE ... END SERVICE block, it indicates
the type of the current SERVICE block.

If the SERVICE_TYPE statement is placed outside a SERVICE block, then it indicates
the default service type for all SERVICE blocks that do not contain a SERVICE_TYPE
statement.

Example
SERVICE_TYPE internal, external
SERVICE count
 SERVICE_TYPE internal
 ...
END SERVICE

211

Test RealTime - Reference Manual

SIMUL ... ELSE_SIMUL ... END SIMUL

Purpose

The SIMUL, ELSE_SIMUL, and END SIMUL instructions allow conditional
generation of test driver.

Syntax
SIMUL
ELSE_SIMUL
END SIMUL

Description

The END SIMUL instruction marks the end of the conditional block.

The SIMUL and END SIMUL instructions must appear as a pair. One cannot be used
without the other.

The code generation rules are as follows:

Example
SIMUL

Code enclosed within a SIMUL block is conditionally generated depending on the
status of the Simulation configuration setting in the Test RealTime GUI, or the -
nosimulation command line option of the Ada Test Script Compiler.

The SIMUL instruction starts the conditional generation block.

The ELSE_SIMUL instruction separates this block into two parts, one being included
when the other is not, and vice versa.

This block of instructions can appear anywhere in the test program and can contain
both Ada Test Script Language or native Ada code.

The ELSE_SIMUL instruction is optional.

When using the Test RealTime user interface, select or clear the Simulation option in
the Component Testing for Ada tab of the Configuration Settings dialog box.

• If Simulation is enabled => the first part of the SIMUL block is included.

• If Simulation is disabled => the second part of the block (ELSE_SIMUL) is
included if it exists. If there is no ELSE_SIMUL statement, then the SIMUL block
is ignored.

 #x := 0;
ELSE_SIMUL
 #x := 1;
END SIMUL
...

212

Component Testing Script Languages

SIMUL
 VAR x , INIT = 0 , EV = 1
 VAR p , INIT = NIL , EV = NONIL
ELSE_SIMUL
 VAR x , INIT = 0 , EV = 0
 VAR p , INIT = NIL , EV = NIL
END SIMUL

213

Test RealTime - Reference Manual

STUB

Purpose

The STUB instruction for Ada describes all calls to a simulated function in a test
script.

Syntax
STUB <stub_name> [<slice>] ([<param_val> {, <param_val> }])
[<return_val>] { ,[<slice>] ([<param_val> { , <param_val> }]
) [<return_val>] }

Description

• For out parameters and, where appropriate, the return value, the values
returned by the function. These values are stored in order to be returned during
execution.

<stub_name> is the name of the simulated procedure or function. It is obligatory.
You must previously have described this procedure or function in a DEFINE STUB
block.

<param_val> is an expression describing the test values for in parameters and the
returned values for out parameters. If named, parameters can be in any order. For in
out parameters, <param_val> is expressed in the following way:

l

The following is described for every parameter of this function and for every
expected call:

• For in parameters, the values passed to the function. These values are stored
and tested during execution.

• For in out and in access parameters, both the previous two values are required.

• For no parameters, no expression is required.

([IN =>]<in_param_val> , [OUT =>]<out_param_val>)

If you use the optional IN => and OUT => specifiers, you can invert the order of the
parameters.

<return_val> is an expression describing the value returned by the function if its type
is not void. Otherwise, no value is provided.

You must give values for every in, out and in out parameter; otherwise, a warning
message is generated. The no parameters are ignored.

<param_va > and <return_val> are Ada expressions that can contain:

• Numeric (integer or floating-point), character, or character string literal values.
Strings can be delimited by single or double inverted commas.

214

Component Testing Script Languages

• Constants, in the Ada sense of the word, which can be numeric, characters, or
character strings

• Variables belonging to the test program or the module to be tested

• Ada functions

• The keyword NIL to designate a null pointer

• Pseudo-variables I, I1, I2 ..., J, J1, J2 ..., where In is the current index of the nth
dimension of the parameter and Jm the current number of the subtest generated
by the test scenario's mth INIT IN, INIT FROM or LOOP; the I and I1 variables
are therefore equivalent as are J and J1; the subtest numbers begin at 1 and are
incremented by 1 at each iteration

• An Ada expression with one or more of the above elements combined using any
of the Ada operators and casting, with all required levels of parentheses, and
conforming to Ada rules of syntax and semantics

• For arrays and structures, aggregates between parentheses ('()') or brackets ('[
]').

<param_va > can contain for an in value: l

l

If are using one of the above expressions, you can specify the type of parameter by
using the ==: <type> syntax for the out and return value or <->: <type> for the in
value.

The <slice> expression can be used to specify the maximum number of calls to be
recorded.

• The <-> expression to specify that the parameter should be ignored

• The <value> <-> <value> expression to specify a range of values for the
parameter

<param_va > can contain for an out value or return value:

• The == expression to specify that the parameter should not be set

<return_val> can also refer to an Ada exception name introduced by the following
syntax:

[:<return_type>] RAISE <exception_name>

where :<return_type> is used to specify the function returned type in case of
overloading.

You must describe at least one call in the STUB instruction. Several descriptions can
occur separated by commas.

STUB instructions can appear in ELEMENT blocks.

215

Test RealTime - Reference Manual

Example
STUB open_file ("file1")3

 & 4..7 =>(3,"",0)0

STUB create_file ("file2")4
STUB read_file 1..2 =>(3,"line 1",1)1,(3,"line 2",2<->3)1,

STUB write_file (4,"line 1")1, (4,"line 2")1
STUB close_file (3)1,(4)1, (<->) RAISE DEVICE_ERROR

216

Component Testing Script Languages

TERMINATION ... END TERMINATION

Syntax
TERMINATION
END TERMINATION

Description

The TERMINATION and END TERMINATION instructions delimit a block of native
code that is integrated into the generation process as the last main statements to be
executed.

In some environments, such as when using a different target machine, this is a
convenient way to exit the target.

This block can only contain native Ada code. Each line of native code must be
preceded with '#' or '@'.

Associated Rules

A TERMINATION ... END TERMINATION block must appear after the BEGIN
instruction and outside any SERVICE block.

There is no limit to the number of TERMINATION blocks. Upon test driver
generation, they are concatenated in the order in which they appeared in the test
script.

217

Test RealTime - Reference Manual

TEST ... END TEST

Syntax
TEST <test_name> [LOOP <nb>]
END TEST

In the test report, the <test_name> parameter flags the test within the SERVICE
block. Tests are usually given numbers in ascending order.

The END TEST instruction marks the end of the TEST block.

<test_name> is obligatory. If it is absent, the Test Compiler generates an error
message.

<nb> is an integer expression strictly greater than 1.

Description

The TEST instruction starts a TEST block. This block describes the test case for a
service. It contains one more ELEMENT blocks specifying the test.

A number of iterations can be specified for each test with the optional LOOP
keyword.

The TEST LOOP statement can generate graph metric results in a .rtx file. To do this,
you must set the environment variable ATURTX to True. The produced .rtx graph
can be viewed in the Test RealTime Graphic Viewer.

Associated Rules

The TEST and END TEST instructions can only appear in a SERVICE block.

Example
SERVICE COMPUTE_HISTO
 # int x1, x2, y1, y2 : integer ;
 # histo : T_HISTO ;
 TEST 1
 FAMILY nominal
 ELEMENT

218

Component Testing Script Languages

VAR, ARRAY, and STR

Purpose

The VAR, ARRAY, and STR instructions declare the test of a simple variable, a
variable array or a variable structure.

Syntax
VAR <variable>, <initialization>, <expected>
ARRAY <variable>, <initialization>, <expected>
STR <variable>, <initialization>, <expected>
VAR <expression>, <expected>
ARRAY <expression>, <expected>
STR <expression>,<expected>

where:

• <variable> is a variable

• <expected value> is an expected parameter

VAR, ARRAY or STR are synonymous and do not change the way in which the result
displayed in the test report.

• STR: This statement is for variable structures.

If you use a VAR statement to test an array or structure, the report lists each element
of the array or structure.

• <expression> is a valid Ada expression that is to be tested

• <initialization> is an initialization parameter

Description

Use the VAR, ARRAY, and STR instructions to declare a variable test. During test
execution, if the value of the variable is out of the bounds specified in the <expected>
expression, the test is Failed.

• VAR: This statement is for simple variables.

• ARRAY: This statement is for variable arrays.

The VAR, ARRAY, and STR instructions must be located in an ELEMENT or an
ENVIRONMENT block.

219

Test RealTime - Reference Manual

VAR, ARRAY and STR <variable> Parameter

Description

In conjunction with the VAR, ARRAY and STR keywords, the <variable> parameter
for Ada is a conventional notation name for an Ada variable under test.

Associated Rules

<variable> can be a simple variable (integer, floating-point number, character,
pointer, character string, ...), an element of an array or record, part of an array, an
entire array, or a complete record.

If the variable is an array for which no test boundaries have been specified, all the
array elements are tested. Similarly, if the variable is a record of which one of the
fields is an array, all elements of this field are tested.

Brackets or parentheses can be used to index array variables.

The variable must have been declared in Ada before it is used in the .ptu test script.

Example
VAR x, ...
VAR y(4), ...
VAR z.field, ...
VAR p.value, ...
ARRAY y(0..100), ...
ARRAY y, ...
STR z, ...
STR p.all, ...

220

Component Testing Script Languages

VAR, ARRAY and STR <expected> Parameter

Purpose

In conjunction with the VAR, ARRAY and STR keywords, the <expected value>
parameters for Ada specify the expected value of a variable.

Syntax
EV = <exp>
EV = <exp> , DELTA = <delta>
MIN = <exp>, MAX = <exp>
EV IN { <exp>, <exp>, ... }
EV (<variable>) IN { <exp>, <exp>, ... }
EV ==

where:

• <exp> can be any of the expressions of the Initialization Parameters, plus the
following expressions:

• <delta> is the acceptable tolerance of the expected value and can be expressed:

• <variable> is an Ada variable

Description

The EV expressions are used to specify a test criteria by comparison with the value of
a variable. The test is considered Passed when the actual value matches the
<expected value> expression.

The EV value is calculated during the preprocessing phase, not dynamically during
test execution.

An acceptable tolerance <delta> can be expressed:

• As an absolute value, by a numerical expression in the form described above

• As a percentage of the expected value. Tolerance is then written in the form
<exp>%.

Expected values can be expressed in the following ways:

• EV = <exp> specifies the expected value of the variable when it is known in
advance. The value of variable is considered correct if it is equal to <exp>.

• EV = <exp>, DELTA = <tolerance> allows a tolerance for the expected value.
The value of variable is considered correct if it lies between <exp> - <tolerance>
and <exp> + <tolerance>.

221

Test RealTime - Reference Manual

• MIN = <exp> and MAX = <exp> specify an interval delimited by an upper and
lower limit. The value of the variable is considered correct if it lies between the
two expressions. Characters and character strings are treated in dictionary
order.

• EV IN { <exp>, <exp>, ... } specifies the values expected successively, in
accordance with the initial values, for a variable that is declared in INIT IN. It is
therefore essential that the two lists have an identical number of values.

• EV (<variable>) IN is identical to EV IN, but the expected values are a function
of another variable that has previously been declared in INIT IN. As for EV IN,
the two lists must have an identical number of values.

• EV == allows the value of <variable> not to be checked at the end of the test.
Instead, this value is read and displayed. The value of <variable> is always
considered correct.

Expressions

The initialization expressions <exp> can be among any of the following values:

• Numeric (integer or floating-point), character, or character string literal values.
Strings can be delimited by single or double quotes

• Native constants, which can be numeric, characters, or character strings

• Constants, previously defined with the CONST instruction

• Variables belonging to the test program or the module to be tested

• Ada functions

• The keyword NIL to designate a null pointer

• The keyword NONIL, which tests if a pointer is non-null

• Pseudo-variables I, I1, I2 ..., J, J1, J2 ..., where In is the current index of the nth
dimension of the parameter and Jm the current number of the subtest generated
by the test scenario's mth INIT IN, INIT FROM or LOOP; the I and I1 variables
are therefore equivalent as are J and J1; the subtest numbers begin at 1 and are
incremented by 1 at each iteration

• An Ada expression with one or more of the above elements combined using any
operators and casting, with all required levels of parentheses, the + operator
being allowed to concatenate character string variables

• For arrays and structures, any of the above-mentioned expressions between
brackets ('[]') for Ada, including when appropriate:

222

Component Testing Script Languages

• For an array element, part of an array or a structure field, its index, interval or
name followed by '=>' and by the value of the array element, common to all
elements of the array portion or structure field

• For structures you can test some fields only, by using the following syntax:

• [<fieldname> => <value>, <fieldname> => <value>]

• The keyword OTHERS followed by '=>' and the default value of any array
elements or structure fields not yet mentioned

EV with DELTA is only allowed for numeric variables.

Only EV = and EV == are allowed for structured variables.

VAR x, ..., EV = pi/4-1

VAR z.field, ..., MIN = 0, MAX = 100
VAR p->value, ..., EV ==

• The pseudo-variable INIT, which copies the initialization expression

Additional Rules

MIN = <exp> and MAX = <exp> are only allowed for alphanumeric variables that
use lexicographical order for characters and character strings.

MIN = <exp> and MAX = <exp> are not allowed for pointers.

In some cases, in order to avoid generated code compilation warnings, the word
CAST must be inserted before the NIL or NONIL keywords.

Example

VAR y[4], ..., EV IN { 0, 1, 2, 3 }
VAR y[5], ..., EV(y[4]) IN { 10, 11, 12, 13 }

ARRAY y[0..100], ..., EV = cos(I)
ARRAY y, ..., EV = {50=>10,others=>0}
STR z, ..., EV = {0, "", NIL}
STR *p, ..., EV = {value=>4.9, valid=>1}

223

Test RealTime - Reference Manual

VAR, ARRAY and STR <initialization> Parameter

Purpose

In conjunction with the VAR, ARRAY and STR keywords, the <initialization>
parameters for Ada specify the initial value of the variable.

Syntax
INIT = <exp>
INIT IN { <exp>, <exp>, ... }
INIT (<variable>) WITH { <exp>, <exp>, ... }
INIT FROM <exp> TO <exp> [STEP <exp> | NB_TIMES <nb>
| NB_RANDOM <nb>[+ BOUNDS]]
INIT ==

where:

• <exp> is an expression as described below.

• <nb> is an integer constant that is either literal or derived from an expression
containing native constants or constants defined with a CONST instruction

• <variable> is an Ada variable

Description

The <init alization> expressions are used to assign an initial value to a variable. The
initial value is displayed in the Component Testing report for Ada.

i

l

The INIT value is calculated during the preprocessing phase, not dynamically during
test execution.

Initializations can be expressed in the following ways:

• INIT = <exp> initializes a variable before the test with the value <expression>.

• INIT IN { <exp> , <exp> , ...} declares a list of initial values. This is a condensed
form of writing that enables several tests to be contained within a single
instruction.

• INIT (<variab e>) WITH { <exp> , <exp> , ...} declares a list of initial values that
is assigned in correlation with those of the variable initialized by an INIT IN
instruction. There must be the same number of initial values.

• The INIT IN and INIT (<variable>) WITH expressions cannot be used with for
arrays that were initialized in extended mode or for structures.

• INIT FROM <lower> TO <upper> allows the initial value of a numeric variable
(integer or floating-point) to vary between lower and upper boundary limits:

224

Component Testing Script Languages

• STEP: the value varies by successive steps

• NB_TIMES <nb>: the value varies by a number <nb> of values that are
equidistant between the two boundaries, where <nb> >= 2

• NB_RANDOM <nb>: the value varies by generating random values between
the 2 boundaries, including, when appropriate, the boundaries, where <nb> >=
1

• The INIT FROM expression can only be used for numeric variables.

• The STEP syntax cannot be used when the same variable is tested by another
VAR, ARRAY or STR statement.

• INIT == allows the variable to be left un-initialized. You can thus control the
values of variables that are dynamically created by the service under test. The
initial value is displayed in the test report as a question mark (?).

• An initialization expression can still be used (INIT == <expression>) to include
of expected value expression when using the INIT pseudo-variable is used. See
Expected_Value Expressions.

Expressions

The initialization expressions <exp> can be among any of the following values:

• Numeric (integer or floating-point), character, or character string literal values.
Strings can be delimited by single or double quotes

• Native constants, which can be numeric, characters, or character strings

• Constants, previously defined with the CONST instruction

• Variables belonging to the test program or the module to be tested

• Ada functions

• The keyword NIL to designate a null pointer

• Pseudo-variables I, I1, I2 ..., J, J1, J2 ..., where In is the current index of the nth
dimension of the parameter and Jm the current number of the subtest generated
by the test scenario's mth INIT IN, INIT FROM or LOOP; the I and I1 variables
are therefore equivalent as are J and J1; the subtest numbers begin at 1 and are
incremented by 1 at each iteration

• An Ada expression with one or more of the above elements combined using any
operators and casting, with all required levels of parentheses, the + operator
being allowed to concatenate character string variables

• For arrays and structures, any of the above-mentioned expressions between
brackets ('[]') for Ada, including when appropriate:

225

Test RealTime - Reference Manual

• For an array element, part of an array or a structure field, its index, interval or
name followed by '=>' and by the value of the array element, common to all
elements of the array portion or structure field

• For structures you can test some fields only, by using the following syntax:

• [<fieldname> => <value>, <fieldname> => <value>]

• The keyword OTHERS followed by '=>' and the default value of any array
elements or structure fields not yet mentioned

• For INIT IN and INIT WITH only, a list of values delimited by brackets ('[]') for
Ada composed of any of the previously defined expressions

Additional Rules

Any integers contained in an expression must be written either in accordance with
native lexical rules, or under the form:

• <hex_integer>H for hexadecimal values. In this case, the integer must be
preceded by 0 if it begins with a letter

• <binary_integer>B for binary values

Example
VAR x, INIT = pi/4-1, ...
VAR y[4], INIT IN { 0, 1, 2, 3 }, ...
VAR y[5], INIT(y[4]) WITH { 10, 11, 12, 13 }, ...
VAR z.field, INIT FROM 0 TO 100 NB_RANDOM 3, ...
VAR p->value, INIT ==, ...
ARRAY y[0..100], INIT = sin(I), ...
ARRAY y, INIT = {50=>10,others=>0}, ...
STR z, INIT = {0, "", NIL}, ...
STR *p, INIT = {value=>4.9, valid=>1}, ...

226

Java Test
Primitives

227

Test RealTime - Reference Manual

228

Component Testing Script Languages

About Java Test Primitives

All the test primitives described here are available for both J2SE and J2ME versions of
the JUnit testing framework.

This section describes each method used by Component Testing for Java, including:

• Syntax

• Functionality and rules governing its usage

• Examples of use

Notation Conventions

Throughout this guide, command notation and argument parameters use the
following standard convention:

Notation Example Meaning

BOLD BEGIN Language keyword

<italic> <string> Symbolic variables

[] [<option>] Optional items

{ } {<string>} Series of values

[{ }] [{<string>}] Optional series of variables

| on | off OR operator

JUnit Assert Primitives

Component testing for Java uses the standard assert test primitives provided by
JUnit. Please refer to documentation provided with JUnit documentation for further
information.

Method Purpose

assertEquals() Checks that two values are equal

assertNotNull() Checks that an object is not null

assertNull() Checks that an object is null

assertSame() Checks that two object are actually the same

assertTrue() Checks that a condition is true

fail() Marks a test as Failed

229

Test RealTime - Reference Manual

Extended Primitives

Component Testing for Java extends the set of assert test primitives provided by
JUnit with a special set of ver fy primitives. These extended test methods are part of
the TestCase class. User test classes must derive from TestCase to use these
primitives.

i

Method Purpose

verifyEquals() Checks that two values are equal

verifyNotNull() Checks that an object is not null

verifyNull() Checks that an object is null

verifySame() Checks that two object are actually the same

verifyTrue() Checks that a condition is true

verify() Checks that an exception is thrown

verifyApproxEquals() Checks that two variables have the same value within a given
margin

verifyGreaterThan() Checks that a tested value is strictly greater than a reference
value

verifyGreaterThanEquals() Checks that a tested value is greater or equal to reference value

verifyLowerThan() Checks that a tested value is strictly lower than a reference
value

verifyLowerThanEquals() Checks that a tested value is lower or equal to reference value

verifyLogMessage() Logs a message in the test report

verifyLogfail() Marks a test as Failed with a message

Timer Primitives

Component Testing for Java provides multiple timer control primitives, allowing you
to perform basic performance testing.

Method Purpose

createTimer() Creates a timer

timerStart() Starts a timer

timerReportElapsedTime() Logs the elapsed time since a timer was started

verifyElapsedTime() Checks that the elapsed time for a timer is below a given value

230

Component Testing Script Languages

assertEquals()

Purpose

Checks that two values are equal.

Syntax
assertEquals([<string>,] <val1>, <val2> [, <precision>])

where:

• <string> is an optional message

• <val1> and <val2> are two Java type values

• <precision> is an optional precision argument for Float or Double types

i

l

An optional <string> message can be logged and displayed in the test report.

assertEquals("assert equals true", true, true);

float val1;

Description

The corresponding test result is Passed if the <val1> and <val2> are equal—within a
given <prec sion> margin if specified—and Failed if the condition is False.

Compared values may be of any Java type: Boo ean, float, double, short, byte, char,
int, long or object. <val1> and <val2> must be of the same type.

An optional <precision> argument specifies an acceptable margin for Float or Double
values. By default, <val1> and <val2> must be strictly equal.

If an exception is thrown in the assertEquals() method, the test is stopped.

Examples

Boolean:

assertEquals("assert equals false", true, false);
assertEquals(true, true);
assertEquals(true, false);

Float:

float val2;
val1 = 1;
val2 = 1;
assertEquals("assert equals true", val1, val2, 0.1);
val2 = 3;
assertEquals("assert equals false", val1, val2, 0.1);

float val1;
float val2;

231

Test RealTime - Reference Manual

val1 = 1;
val2 = 1;
assertEquals(val1, val2,0.1);

val1 = 1.05;

assertEquals("assert equals false", val1, val2,0.0001);

val2 = 1.06;

short val2 = 1;

byte val2 = 1;

char val2 = 'a';

assertEquals("assert equals true long", val1,val2);

long val1 = 1;

val2 = 3;
assertEquals(val1, val2,0.1);

Double:
double val1;
double val2;

val2 = 1.05;
assertEquals("assert equals true", val1, val2,0.01);
val2 = 1.06;

double val1;
double val2;
val1 = 1.05;
val2 = 1.05;
assertEquals(val1, val2,0.01);

assertEquals(val1, val2,0.0001);

Short:
short val1 = 1;

assertEquals("assert equals true short", val1,val2);

Byte:
byte val1 = 1;

assertEquals(val1,val2);

Char
char val1 = 'a';

assertEquals("assert equals true char", val1,val2);

Int
int val1 = 1;
int val2 = 1;
assertEquals("assert equals true int", val1,val2);

Long
long val1 = 1;
long val2 = 1;

Object

long val2 = 1;
assertEquals("assert equals true Object", new Long(val1), new
Long(val2));

232

Component Testing Script Languages

233

Test RealTime - Reference Manual

assertNotNull()

Purpose

Checks that an object is not null.

Syntax
assertNotNull([<string>,]<object>)

where:

Description

If an exception is thrown in the assertNotNull() method, the test is stopped.

assertNotNull("assert not null passed", one_obj);

• <string> is an optional message

• <object> is a Java object

The corresponding test result is Passed if <object> is not null, and Failed if the
condition is False.

An optional <string> message can be logged and displayed in the test report.

Examples
Object one_obj = new Long(10);

Object one_obj = new Long(10);
assertNotNull(one_obj);

234

Component Testing Script Languages

assertNull()

Purpose

Checks that an object is not null.

Syntax
assertNull([<string>,]<object>)

where:

• <string> is an optional message

• <object> is a Java object

Description

The corresponding test result is Passed if <object> is null, and Failed if the condition
is False.

An optional <string> message can be logged and displayed in the test report.

If an exception is thrown in the assertNull() method, the test is stopped.

Examples
Object one_obj = null;
assertNull("assert null passed", one_obj);

Object one_obj = null;
assertNull(one_obj);

235

Test RealTime - Reference Manual

assertSame()

Purpose

Checks that two object are actually the same.

Syntax
assertSame([<string>],<object1>,<object2>)

where:

• <string> is an optional message

• <object1> and <object2> are two Java objects

Description

The corresponding test result is Passed if <object1> and <object2> refer to the same
object, and Failed if the condition is False.

An optional <string> message can be logged and displayed in the test report.

If an exception is thrown in the assertSame() method, the test is stopped.

Examples
Object one_obj = new Long(10);
Object other=one_obj;
assertSame("assert Same passed", one_obj,other);

Object one_obj = new Long(10);
Object other=one_obj;
assertSame(one_obj,other);

236

Component Testing Script Languages

assertTrue()

Purpose

Checks that a condition is true.

Syntax
assertTrue([<string>,]<Boolean>)

where:

Description

If an exception is thrown in the assertTrue() method, the test is stopped.

assertTrue("Should be failed",false);

• <string> is an optional message

• <Boolean> is a Boolean condition

The corresponding test result is Passed if the assertTrue() condition is True and
Failed if the condition is False.

An optional <string> message can be logged and displayed in the test report.

Examples
assertTrue("Should be true",true);

assertTrue(true);
assertTrue(false);

237

Test RealTime - Reference Manual

fail()

Purpose

Marks a test as Failed.

Syntax
fail([<string>])

where:

• <string> is an optional message

Description

The corresponding test result is Failed if the Fail() method is encountered.

If an exception is thrown in the Fail() method, the test is stopped.

Examples

 fail();

 fail("test fail");

An optional <string> message can be logged and displayed in the test report.

 verifyLogMessage("test fail");

 verifyLogMessage("test fail");

238

Component Testing Script Languages

verifyEquals()

Checks that two values are equal.

Syntax

verifyEquals([<string>,] <val1>, <val2> [, <precision>])
verifyEquals([<string>,] <vector1>, <vector2> [, <precision>]
)

where:

• <val1> and <val2> are two Java type values

Description

l

l

• <string> is an optional message

• <Boolean1> and <Boolean2> are two Boolean conditions

• <vector1> and <vector2> are two vectors

• <precision> is an optional precision argument for Float or Double types

The corresponding test result is Passed if the verifyEquals() condition is True and
Failed if the condition is False..

Compared values may be of any Java type: Boo ean, float, double, short, byte, char,
int, long, object or vectors. <val1> and <val2> must be of the same type.

An optional <precision> argument specifies an acceptable margin for Float or Doub e
values. By default, <val1> and <val2> must be strictly equal.

If an exception is thrown in a verifyEquals() method, an error is logged and the test
continues.

Char:
 char valc1 = 'a';

 verifyEquals("verify equals true char", valc1, valc2);
 valc2 = 'b';

Short:

Purpose

verifyEquals([<string>,]<Boolean1>,<Boolean2>)

An optional <string> message can be logged and displayed in the test report.

Examples

 char valc2 = 'a';

 verifyEquals("verify equals false char", valc1, valc2);

239

Test RealTime - Reference Manual

 short val1 = 1;

 verifyEquals("verify equals true short", val1, val2);
 val2 = 2;

Byte:
 byte b1 = 1;

 verifyEquals("verify byte equals true", b1, b2);
 b2 = 2;

 int i1 = 1;

 short val2 = 1;

 verifyEquals("verify equals false short", val1, val2);

 byte b2 = 1;

 verifyEquals("verify byte equals false", b1, b2);

Int:

 verifyEquals("verify equals int true", i1, i2);

 long l1 =1;

 l1 = 2;

 long l1 =1;

 l1 = 3;

 double vald1 = 1;

 vald2 = 2;

 float valf1 = 1;
 float valf2 = 1;

 int i2 = 1;

 i1= 2;
 verifyEquals("verify equals int false", i1, i2);

Long:

 long l2 =1;
 verifyEquals("verify equals long true", l1, l2);

 verifyEquals("verify equals long false", l1, l2);

Object:

 long l2 =1;
 verifyEquals("verify equals object true", new Long(l1), new
Long(l2));

 verifyEquals("verify equals object false", new Long(l1), new
Long(l2));

Double:

 double vald2 = 1;
 verifyEquals("verify equals true double", vald1, vald2);

 verifyEquals("verify equals false double", vald1, vald2);

Float:

 verifyEquals("verify equals true float", valf1, valf2);
 valf2 = 2;
 verifyEquals("verify equals false float", valf1, valf2);

Vector:
Vector vec_int = new Vector();
Vector same_vec = new Vector();
Vector vec_int2_length = new Vector();
Vector vec_char = new Vector();
for (int i = 0;i<3;i++)
 {
 vec_int.addElement(new Integer(i));
 same_vec.addElement(new Integer(i));
 vec_int2_length.addElement(new Integer(i));

240

Component Testing Script Languages

 vec_char.addElement(new Character((char)i));
 }
vec_int2_length.addElement(new Integer(500));

verifyLogMessage("Check Vector true and false");

Vector another = new Vector();
another.addElement(new Character('a'));
another.addElement(new Character('b'));

verifyEquals("verify equal vector should be true", vec_int,
same_vec);
verifyEquals("verify equal vector should be false for length",
vec_int, vec_int2_length);
verifyEquals("verify equal vector should be false, not the same",
vec_int, vec_char);

241

Test RealTime - Reference Manual

verifyNotNull()

Purpose

Checks that an object is not null.

Syntax
verifyNotNull([<string>,]<object>)

where:

• <string> is an optional message

• <object> is a Java object

Description

The corresponding test result is Passed if <object> is not null, and Failed if the
condition is False.

An optional <string> message can be logged and displayed in the test report.

If an exception is thrown in a verifyNotNull() method, an error is logged and the test
continues.

Example
 Object one_obj = null;
 verifyNotNull("verify not null failed", one_obj);

242

Component Testing Script Languages

verifyNull()

Purpose

Checks that an object is not null.

Syntax
verifyNull([<string>,] <object>)

where:

• <string> is an optional message

The corresponding test result is Passed if <object> is null, and Failed if the condition
is False.

Example

• <object> is a Java object

Description

An optional <string> message can be logged and displayed in the test report.

If an exception is thrown in a verifyNull() method, an error is logged and the test
continues.

Object one_obj = null;
verifyNull("verify null passed", one_obj);

243

Test RealTime - Reference Manual

verifySame()

Purpose

Checks that two object are actually the same.

Syntax
verifySame([<string>],<object1>,<object2>)

where:

• <string> is an optional message

• <object1> and <object2> are two Java objects

Description

The corresponding test result is Passed if <object1> and <object2> refer to the same
object, and Failed if the condition is False.

An optional <string> message can be logged and displayed in the test report.

If an exception is thrown in a verifySame() method, an error is logged and the test
continues.

Examples
Object one_obj = new Integer(10);
Object another = one_obj;
verifySame("verify same passed",another,one_obj);

Object one_obj = new Long(10);
Object other=one_obj;
assertSame(one_obj,other);

244

Component Testing Script Languages

verifyTrue()

Purpose

Checks that a condition is true.

Syntax
verifyTrue([<string>,]<Boolean>)

where:

• <string> is an optional message

• <Boolean> is a Boolean condition

Description

The corresponding test result is Passed if the verifyTrue() condition is True and
Failed if the condition is False.

An optional <string> message can be logged and displayed in the test report.

If an exception is thrown in a verifyTrue() method, an error is logged and the test
continues.

Examples
verifyTrue("verify 1 true", true);
verifyTrue("verify 2 false", false);
verifyTrue(true);
verifyTrue(false);

245

Test RealTime - Reference Manual

verify()

Purpose

Checks that an exception is thrown.

Syntax
verify(<exception>)

where:

The corresponding test result is Passed if the exception in thrown or Failed if not.

• <exception> is a throwable exception

Description

Verifies that an exception compatible with the specified <exception> is thrown
during the test.

If an exception is thrown in a verify() method, an error is logged and the test
continues.

Examples
public void WillThrowRTE()
{
 verifyLogMessage("RTE in next call");
 throw new RuntimeException("Exception Message");
}
public void testException1()
{
 verifyLogMessage("Check true for RTE");
 Throwable tosee= new RuntimeException("Exception Runtime ");
 verify(tosee);
 WillThrowRTE();
}
public void testException2()
{
 verifyLogMessage("Check true for RTE");
 Throwable tosee= new Exception("Exception");
 verify(tosee);
 WillThrowRTE();
}
public void testException3()
{
 verifyLogMessage("Check true for RTE");
 Throwable tosee= new Throwable();
 verify(tosee);
 WillThrowRTE();
}
public void testException4()
{

246

Component Testing Script Languages

 verifyLogMessage("Check false for RTE");
 Throwable tosee= new ArithmeticException("Throwable");
 verify(tosee);
 WillThrowRTE();
}
public void testException5()
{
 verifyLogMessage("Check false for RTE");
 Throwable tosee= new ClassCastException("Throwable");
 verify(tosee);
 WillThrowRTE();
}
public void testException6()
{
 verifyLogMessage("Check false for RTE");
 Throwable tosee= new ClassCastException("Throwable");
 verify(tosee);
 //Do not call anything.
}

247

Test RealTime - Reference Manual

verifyApproxEquals()

Purpose

Checks that two variables have the same value within a given margin.

Syntax
verifyApproxEquals([<string>,] <variable1>, <variable2>,
<precision>)

where:

• <string> is an optional message

• <variable1> and <variab e2> are two Java type variables l

• <precision> is a precision argument

Description

The corresponding test result is Passed if the assertApproxEquals() condition is True
and Failed if the condition is False.

Compared variables may be of any Java type: Boolean, float, double, short, byte,
char, int, long or object. <variable1> and <variable2> must be of the same type.

An optional <string> message can be logged and displayed in the test report.

The <precision> argument specifies an acceptable margin.

If an exception is thrown in a verifyApproxEquals() method, an error is logged and
the test continues.

Example

Char:
char valc1 = 'a';
char valc2 = 'e';
verifyApproxEquals("verify approx char passed", valc1,valc2, 10);

Byte:
byte valb1 = 5;
byte valb2 = 10;
verifyApproxEquals("verify approx byte passed", valb1,valb2, 10);

Short:
short val1 = 1;
short val2 = 5;
verifyAproxEquals("verify approx short passed", val1,val2, 10);

Int:

248

Component Testing Script Languages

int vali1 = 1;
int vali2 = 20;
verifyApproxEquals("verify approx int passed", vali1,vali2, 20);

Long:
long vall1 = 1;
long vall2 = 20;
verifyApproxEquals("verify approx long passed", vall1,vall2, 20);

Float:
float valf1 = 1;
float valf2 = 20;
verifyApproxEquals("verify approx float passed", valf1,valf2,
20);

Double:
double vald1 = 1;
double vald2 = 20;
verifyApproxEquals("verify approx double passed", vald1,vald2,
20);

249

Test RealTime - Reference Manual

verifyGreaterThan()

Purpose

Checks that a tested value is strictly greater than a reference value.

Syntax
verifyGreaterThan([<string>,] <reference_value>,
<tested_value>)

where:

• <string> is an optional message

• <reference_value> and <tested_value> are two Java type values

Description

The corresponding test result is Passed if the <tested_value> is strictly greater than
<reference_value>, and Failed if the condition is False.

Compared values may be of any numeric Java type: Boolean, float, double, short,
byte, char, int or long. <reference_value> and <tested_value> must be of the same
type.

An optional <string> message can be logged and displayed in the test report.

If an exception is thrown in a verifyGreaterThan() method, an error is logged and the
test continues.

Examples

Char:
char valc1 = 10;
char valc2 = 20;
verifyGreaterThan("verify greater char true", valc1,valc2);

Byte:
byte valb1 = 10;
byte valb2 = 20;
verifyGreaterThan("verify greater byte true", valb1,valb2);

Short:
short val1 = 10;
short val2 = 20;
verifyGreaterThan("verify greater short true", val1,val2);

Int:
int vali1 = 10;
int vali2 = 20;
verifyGreaterThan("verify greater int true", vali1,vali2);

250

Component Testing Script Languages

Long:
long vall1 = 10;
long vall2 = 20;
verifyGreaterThan("verify greater long true", vall1,vall2);

Float:
float valf1 = 10;
float valf2 = 20;
verifyGreaterThan("verify greater float true", valf1,valf2);

Double:
double vald1 = 10;
double vald2 = 20;
verifyGreaterThan("verify greater double true", vald1,vald2);

251

Test RealTime - Reference Manual

verifyGreaterThanEquals()

Purpose

Checks that a tested value is greater or equal to reference value.

Syntax
verifyGreaterThanEquals([<string>,] <reference_value>,
<tested_value>)

where:

• <string> is an optional message

• <reference_value> and <tested_value> are two Java type values

Description

The corresponding test result is Passed if the <tested_value> is greater than
<reference_value> or equals <reference_value>, and Failed if the condition is False.

Compared values may be of any numeric Java type: Boolean, float, double, short,
byte, char, int or long. <reference_value> and <tested_value> must be of the same
type.

An optional <string> message can be logged and displayed in the test report.

If an exception is thrown in a verifyGreaterThanEquals() method, an error is logged
and the test continues.

Example

Char:
char valc1 = 10;
char valc2 = 20;
verifyGreaterThanEquals("verify greater char true", valc1,valc2);

Byte:
byte valb1 = 10;
byte valb2 = 20;
verifyGreaterThanEquals("verify greater byte true", valb1,valb2);

Short:
short val1 = 10;
short val2 = 20;
verifyGreaterThanEquals("verify greater short true", val1,val2);

Int:
int vali1 = 10;
int vali2 = 20;
verifyGreaterThanEquals("verify greater int true", vali1,vali2);

252

Component Testing Script Languages

Long:
long vall1 = 10;
long vall2 = 20;
verifyGreaterThanEquals("verify greater long true", vall1,vall2);

Float:
float valf1 = 10;
float valf2 = 20;
verifyGreaterThanEquals("verify greater float true",
valf1,valf2);

Double:
double vald1 = 10;
double vald2 = 20;
verifyGreaterThanEquals("verify greater double true",
vald1,vald2);

253

Test RealTime - Reference Manual

verifyLowerThan()

Purpose

Checks that a tested value is strictly lower than a reference value.

Syntax
verifyLowerThan([<string>,] <reference_value>, <tested_value>
)

where:

• <string> is an optional message

• <reference_value> and <tested_value> are two Java type values

Description

The corresponding test result is Passed if the <tested_value> is strictly lower than
<reference_value>, and Failed if the condition is False.

Compared values may be of any numeric Java type: Boolean, float, double, short,
byte, char, int or long. <reference_value> and <tested_value> must be of the same
type.

An optional <string> message can be logged and displayed in the test report.

If an exception is thrown in a verifyLowerThan() method, an error is logged and the
test continues.

Examples

Short:
short val1 = 21;
short val2 = 20;
verifyLowerThan("verify lower true short", val1,val2);

Byte:
byte valb1 = 21;
byte valb2 = 20;
verifyLowerThan("verify lower true byte", valb1,valb2);

Char:
char valc1 = 21;
char valc2 = 20;
verifyLowerThan("verify lower true char", valc1,valc2);

Int:
int vali1 = 21;
int vali2 = 20;
verifyLowerThan("verify lower true int", vali1,vali2);

254

Component Testing Script Languages

Long:
long vall1 = 21;
long vall2 = 20;
verifyLowerThan("verify lower long true", vall1,vall2);

Float:
float valf1 = 21;
float valf2 = 20;
verifyLowerThan("verify lower float true", valf1,valf2);

Double:
double vald1 = 21;
double vald2 = 20;
verifyLowerThan("verify lower double true", vald1,vald2);

255

Test RealTime - Reference Manual

verifyLowerThanEquals()

Purpose

Checks that a tested value is lower or equal to reference value.

Syntax
verifyLowerThanEquals([<string>,] <reference_value>,
<tested_value>)

where:

• <string> is an optional message

• <reference_value> and <tested_value> are two Java type values

Description

The corresponding test result is Passed if the <tested_value> is lower than
<reference_value> or equals <reference_value>, and Failed if the condition is False.

Compared values may be of any numeric Java type: Boolean, float, double, short,
byte, char, int or long. <reference_value> and <tested_value> must be of the same
type.

An optional <string> message can be logged and displayed in the test report.

If an exception is thrown in a verifyLowerThanEquals() method, an error is logged
and the test continues.

Examples

Char:
char valc1 = 10;
char valc2 = 20;
verifyLowerThanEquals("verify lower char true", valc1,valc2);

Byte:
byte valb1 = 10;
byte valb2 = 20;
verifyLowerThanEquals("verify lower byte true", valb1,valb2);

Short:
short val1 = 10;
short val2 = 20;
verifyLowerThanEquals("verify lower short true", val1,val2);

Int:
int vali1 = 10;
int vali2 = 20;
verifyLowerThanEquals("verify lower int true", vali1,vali2);

256

Component Testing Script Languages

Long:
long vall1 = 10;
long vall2 = 20;
verifyLowerThanEquals("verify lower long true", vall1,vall2);

Float:
float valf1 = 10;
float valf2 = 20;
verifyLowerThanEquals("verify lower float true", valf1,valf2);

Double:
double vald1 = 10;
double vald2 = 20;
verifyLowerThanEquals("verify lower double true", vald1,vald2);

257

Test RealTime - Reference Manual

verifyLogMessage()

Purpose

Logs a message in the test report.

Syntax
verifyLogMessage(<string>)

where:

• <string> is a message

Description

The <string> message is logged and displayed in the test report.

If an exception is thrown in a verifyLogMessage() method, an error is logged and the
test continues.

Example
verifyLogMessage("Hello World");$

258

Component Testing Script Languages

verifyLogfail()

Purpose

Marks a test as Failed with a message.

Syntax
verifyLogfail(<string>)

where:

• <string> is a message

Description

The corresponding test result is Failed if the verifyLogfail() method is encountered.

The <string> message is logged and displayed in the test report.

If an exception is thrown in a verifyLogfail() method, an error is logged and the test
continues.

Example
verifyLogfail("Log message with fail");$

259

Test RealTime - Reference Manual

createTimer()

Purpose

Creates a timer.

Syntax
createTimer(<string>)

where:

• <string> is a message

Description

Several timers can be created. When a timer is created, createTimer() returns an
identification number for the timer (integer) for use with other timer-related
functions.

Timers must be started with the timerStart() method.

The <string> message is logged and displayed in the test report.

If an exception is thrown in a createTimer() method, an error is logged and the test
continues.

Example
int timer1, timer2, timer3;
int any = 10;
timer1 = createTimer("first timer created");
timer2 = createTimer("second timer created");
timer3 = createTimer("third timer created");

260

Component Testing Script Languages

timerStart()

Purpose

Starts a timer.

Syntax
timerStart(<timer_id>,<string>)

where:

• <timer_id> is in an integer timer identification number

• <string> is a string message

Description

Starts the timer identified as <timer> and logs the message provided in <str ng>. i

Timers must be created with createTimer() before being started. Several timers can
run simultaneously.

If an exception is thrown in a timerStart() method, an error is logged and the test
continues.

Example
 int timer1, timer2, timer3;
 int any = 10;
 timer1 = createTimer("first timer created");
 timer2 = createTimer("second timer created");
 timer3 = createTimer("third timer created");
 //then start the timers.
 timerStart(timer1,"Start 1");
 timerStart(timer2,"Start 2");
 timerStart(timer3,"Start 3");

261

Test RealTime - Reference Manual

timerReportElapsedTime()

Purpose

Logs the elapsed time since a timer was started.

Syntax
timerReportElapsedTime(<timer_id>, <string>)

where:

• <timer_id> is an integer timer identification number

• <string> is a message to be logged with the elapsed time value

Description

The elapsed time of the timer identified as <timer_id> is logged and displayed in the
test report with a <string> message.

The time unit is specified by the current Target Deployment Port. By default, the
elapsed time is returned in milliseconds.

Timers must be started with timerReportElapsedTime() before an elapsed time can be
calculated.

If an exception is thrown in a timerReportElapsedTime() method, an error is logged
and the test continues.

Example
int timer1, timer2, timer3;
int any = 10;
timer1 = createTimer("first timer created");
timer2 = createTimer("second timer created");
timer3 = createTimer("third timer created");
//then start the timers.
timerStart(timer1,"Start 1");
timerStart(timer2,"Start 2");
timerStart(timer3,"Start 3");
//Report time.
long val1, val2, val3;
val2 = 100;
val3 = 1000;
val1 = 10000;
verifyLogMessage("Timer report");
timerReportElapsedTime(timer1,"report 1 ");
timerReportElapsedTime(timer2,"report 2 ");
timerReportElapsedTime(timer2,"report 2 ");

262

Component Testing Script Languages

verifyElapsedTime()

Purpose

Checks that the elapsed time for a timer is below a given value.

Syntax
verifyElapsedTime(<timer_id>, <value>, <string>)

where:

• <timer_id> is an int timer identification number

• <value> is a long expected time

• <string> is a message to be logged with the elapsed time value

Description

The corresponding test result is Passed if the elapsed time of the timer identified as
<timer_id> is lower or equal to the expected time <value>, and Failed if the condition
is False.

The result is logged and displayed in the test report with a <str ng> message. i

val2 = 100;

The time unit is specified by the current Target Deployment Port. By default, the
elapsed time is returned in milliseconds.

Timers must be started with timerStart() before an elapsed time can be calculated.

If an exception is thrown in a verifyElapsedTime() method, an error is logged and the
test continues.

Example
int timer1, timer2, timer3;
int any = 10;
timer1 = createTimer("first timer created");
timer2 = createTimer("second timer created");
timer3 = createTimer("third timer created");
//then start the timers.
timerStart(timer1,"Start 1");
timerStart(timer2,"Start 2");
timerStart(timer3,"Start 3");
//Report time.
long val1, val2, val3;

val3 = 1000;
val1 = 10000;
verifyLogMessage("Timer report");
timerReportElapsedTime(timer1,"report 1 ");
timerReportElapsedTime(timer2,"report 2 ");

263

Test RealTime - Reference Manual

timerReportElapsedTime(timer2,"report 2 ");
//then some verifys.
verifyLogMessage("Timer verifys");
verifyElapsedTime(timer1,val1,"ellapsed 1 with 10000");
verifyElapsedTime(timer1,val2,"ellapsed 1 with 100");
verifyElapsedTime(timer1,val3,"ellapsed 1 with 1000");

264

System Testing Script Languages

System Testing Language for C

Purpose

The Test RealTime System Testing feature uses two different script languages and C
macros that can be added to your C code:

• System Testing Test Script Language (.pts scripts)

• System Testing Supervisor Script Language (.spv scripts)

• System Testing Probe Macros

Note When using the Test RealTime graphical user interface, the .spv supervisor
scripts are generated automatically. Experienced users can edit these files manually. See
Editing Supervisor Scripts in the Test RealTime User Guide.

This section describes each System Testing Language scripting instruction, including:

• Syntax

• Functionality and rules governing its usage

• Examples of use

Notation Conventions

Throughout this guide, command notation and argument parameters use the
following standard convention:

Notation Example Meaning

BOLD ADD_ID Language keyword

<italic> <filename> Symbolic variables

[] [<option>] Optional items

{ } {<filenames>} Series of values

[{ }] [{<filenames>}] Optional series of variables

265

Test RealTime - Reference Manual

| on | off OR operator

Note: PTS and SPV keywords are case sensitive. Keywords must be typed in upper
case as specified in this guide.

System Testing Language Identifiers

A System Testing Language identifier for C is a text string used as a label, such as the
name of a message type in an .spv supervisor script or .pts test script.

Identifiers are made of an unlimited sequence of the following characters:

• a-z

• A-Z

• 0-9

• _ (underscore)

Spaces are not valid identifier characters.

System Testing keywords and identifiers are case sensitive. This means that LABEL,
label, and Label are three different identifiers.

266

Test Script
Keywords

267

Test RealTime - Reference Manual

ADD_ID

System Testing Test Script Language.

Syntax
ADD_ID(<channel_identifier>, <connection_identifier>)

Description

The ADD_ID instruction dynamically adds the value of a connection identifier to a
communication channel identifier.

A communication channel is a logical medium that integrates (multiplexes) the same
type of connection between the virtual tester and remote applications under test.

When opening a connection with your communication API, you must dynamically
link the connection identifier with a channel identifier.

You must declare a channel identifier with the CHANNEL instruction.

C connection identifiers must be compatible with C communication channels.

Examples
...
COMMTYPE ux_inet IS integer_t
CHANNEL ux_inet: ch
...
SCENARIO First
...
#integer_t id;
CALL socket(AF_UNIX, SOCK_STREAM, 0) @@ id
ADD_ID(ch, id)
....

268

System Testing Script Languages

CALL

System Testing Test Script Language.

Syntax
CALL <identifier> (<arguments>) [@ [<expected_expr>] @
[<return_var>]]

Description

The CALL instruction lets you call a specific interface routine. This routine may be a
function or a procedure.

You can check a function's return values for interface routine calls.

The @ character is a separator.

<expected_expr> gives the expected return value of the function.

<return_var> gives the variable in which the return value of the function is stored.

If <return_var> is specified, the return value is stored in <re urn_var>. t

The CALL instruction can be used in a PROC, SCENARIO, INITIALIZATION,
TERMINATION, or EXCEPTION blocks.

Example
#int return_val;
#int V_in;
#int V1_out, V2_out;
SCENARIO TEST_1
FAMILY nominal
...
CALL API_function(V_in, REF(@0@V1_out),&1@0@V2_out)@1@return_val
...

269

Test RealTime - Reference Manual

CALLBACK ... END CALLBACK

System Testing Test Script Language.

Purpose

The CALLBACK instruction dynamically recalls message reception and links a
connection identifier value to a communication channel identifier.

Syntax
CALLBACK <message_type>: <msg> ON <commtype>: <id> [<n>]
END CALLBACK

<message_type> is a message type previously declared in a MESSAGE statement.

<msg> is the output parameter of <message_type> that must be initialized in the
callback if a message is received.

<commtype> is the type of communication used for reading messages previously
declared in a COMMTYPE statement.

<id> is the input connection parameter on which a message must be read.

Description

Callbacks are declared in the first part of the test script, before the first scenario.

<commtype> must be declared with the COMMTYPE instruction.

<message_type> must be declared with the MESSAGE instruction.

You can declare only one callback per combination of message and communication
type.

Message reception in the CALLBACK statement must never be blocked. If no
message is received, you must exit the block using the NO_MESSAGE instruction.

Use of both a NO_MESSAGE and MESSAGE_DATE statement is mandatory within
the callback or a procedure called from a callback.

If the C <message_type> contains unions, you can define for each union the display
and comparison field. The system implicitly defines a structured variable, named as
ATL_ followed by the name of the <message_type>. You can specify which field to
use by specifying select attribute for the union.

Freeze Mode

Freeze mode is a blocking mode in which the CALLBACK waits for a message to be
received. To use freeze mode, you must use only one CALLBACK block throughout
the entire test script, messages can be read in freeze mode. In this mode, the

270

System Testing Script Languages

ATL_TIMEOUT macro specifies the maximum wait delay for a message. The value of
ATL_TIMEOUT is calculated from a WTIME expression used in the WAITTIL
statement. The ATL_TIMEOUT macro is an integer and uses the time unit defined in
the Target Deployment Port. By default, the time unit is a hundredth of second.

Example
typedef enum { e_name, e_id, e_balance } client_kind_t;
typedef struct {
client_kind_t kind;
union {
char name[50];
int id;
float balance;
} my_union;
} client_info_t;
COMMTYPE socket IS socket_id_t
CHANNEL socket: ch
MESSAGE client_info_t: msg
CALLBACK client_info_t: info ON socket: id
 CALL read(id, &info, sizeof(client_info_t))@@ret
 IF (ret == 0) THEN
 NO_MESSAGE
 END IF
 MESSAGE_DATE
 VAR ATL_client_info_t.my_union.select, INIT=info.kind
END CALLBACK

271

Test RealTime - Reference Manual

CASE ... IS ... WHEN ... WHEN OTHERS ... END CASE

System Testing Test Script Language.

Syntax
CASE <expression> IS
WHEN <constant1> => <instructions>
WHEN <constant2> => <instructions>
WHEN <constant3> => <instructions>
WHEN OTHERS => <instructions>
END CASE

Description

The CASE instruction allows you to choose one of several sets of instructions
according to the value of an expression.

The CASE instruction may appear in a PROC, SCENARIO, INITIALIZATION,
TERMINATION or EXCEPTION block.

The list of options for the expression begins after IS and ends in END CASE.

WHEN identifies the different constant expressions that cause a specific process to be
carried out. This process is defined by the instructions following the => symbol.

OTHERS processes all the values of expression that have not been explicitly
processed in the CASE. This instruction set is optional.

<expression> must take an integer value.

Examples
##define ACK 0
##define NACK 1
#int choice;
SCENARIO TEST_1
FAMILY nominal
CALL ApiGetChoice(choice)
CASE (choice) IS
WHEN ACK => CALL ApiAcknowledge()
WHEN NACK => CALL ApiReset()
...
WHEN OTHERS => CALL Api_DefaultMsg()
END CASE
...

272

System Testing Script Languages

CHANNEL

System Testing Test Script Language.

Syntax
CHANNEL <communication_type>: <channel> {[, <channel>]}

Description

The CHANNEL instruction allows you to declare a set of communication channels.

You must declare the <communication_type> with the COMMTYPE instruction.

Each <channel> variable identifies a new type of communication channel. A
communication channel is a logical medium that integrates (multiplexes) the same
type of connection among virtual testers and remote applications under test.

Use the CHANNEL instruction at the beginning of the test script, before the first
scenario.

Examples
#typedef int inet_id_t;
COMMTYPE ux_inet IS inet_id_t WITH MULTIPLEXING
CHANNEL ux_inet: ch_1, ch_2, ch_3
CHANNEL ux_inet: ch_out

273

Test RealTime - Reference Manual

CLEAR_ID

System Testing Test Script Language.

Syntax
CLEAR_ID(<channel_identifier>)

Description

The CLEAR_ID instruction clears a communication channel.

The communication channel has no more links with remote applications under test.

You must declare a communication channel with the CHANNEL instruction.

Example
...
COMMTYPE ux_inet IS integer_t
CHANNEL ux_inet: ch
...
SCENARIO First
...
#integer_t id;
CALL socket(AF_UNIX, SOCK_STREAM, 0) @@ id
ADD_ID(id,ch)
...
CLEAR_ID(ch)
....

274

System Testing Script Languages

COMMENT

System Testing Test Script Language.

Syntax
COMMENT

Description

The COMMENT instruction allows you to add comments to the results file by
inserting text.

Its use in test scenarios is optional.

The position of the COMMENT instruction in the test program defines the position in
which the comment appears in the test report.

The COMMENT instruction may appear in a PROC, SCENARIO, INITIALIZATION,
TERMINATION or EXCEPTION block.

In the command line interface, you can deactivate the processing of comments by
adding the -NOCOMMENT option to the C Test Script Compiler command line.

Example
SCENARIO TEST_1
FAMILY nominal
COMMENT calling connection confirmation
CALL api_trsprt_connectionCF()
...

275

Test RealTime - Reference Manual

COMMTYPE

System Testing Test Script Language.

Syntax
COMMTYPE <identifier> IS <connection_id_type> [WITH
MULTIPLEXING]

Description

The COMMTYPE instruction defines a type of communication. The C connection
identifies the communication type.

The C <connection_id_type> must be a typedef, as defined in the interface file, an
included file, or in the test script.

You can define the communication type as being able to multiplex connections for
the read operation, using the multiplexing option.

You must use the COMMTYPE instruction at the beginning of the test script, before
the first scenario.

Example
...
#typedef int inet_id_t;
COMMTYPE ux_inet IS inet_id_t WITH MULTIPLEXING
#typedef struct { int key; int id; } msgqueue_id_t;
COMMTYPE ux_msgqueue IS msgqueue_id_t
....

276

System Testing Script Languages

DECLARE_INSTANCE

System Testing Test Script Language.

Syntax
DECLARE_INSTANCE <instance> {[,<instance>]}

Description

The DECLARE_INSTANCE instruction allows you to define the set of the instances
described in the test script.

A DECLARE_INSTANCE instruction takes effect after you have declared it.

<instance> may be any identifier. The DECLARE_INSTANCE must have at least one
instance name passed by parameter.

Example
HEADER "DEMO SOCKET", "1.0", "2.4"
DECLARE_INSTANCE client, server
SCENARIO Main
 ...
END SCENARIO
Related Topics
INSTANCE

277

Test RealTime - Reference Manual

DEF_MESSAGE

System Testing Test Script Language.

Syntax
DEF_MESSAGE <message>, EV= <cmp_expression>

Description

The DEF_MESSAGE instruction allows you to define a reference <message> variable.
In order to do this, you must define the reference values with <cmp_expression>.

The message variable is the reference event variable initialized by the
DEF_MESSAGE instruction. It has to be declared by the MESSAGE instruction.

Associated Rules

The DEF_MESSAGE instruction can appear in a PROC, SCENARIO,
INITIALIZATION, TERMINATION, or EXCEPTION block.

You may partially define a reference message. The undefined <cmp_expression>
fields are not used to compare incoming messages.

Interface File
typedef struct {
int type;
struct {
char app_name[8];
unsigned char class_name;
} data;
char userdata[100];
} message_t;

Example
MESSAGE message_t: msg
SCENARIO first
DEF_MESSAGE msg, EV= { code=>ConnectCF,
& data=>{ app_name=>"ATCMKD" }}

278

System Testing Script Languages

END

System Testing Test Script Language.

Syntax
END <block>

Description

The END instruction delimits an instruction block.

You use it to end the following:

• A callback: END CALLBACK

• A procedure: END PROC

• A message sending procedure: END PROCSEND

• An initialization block: END INITIALIZATION

• A termination block: END TERMINATION

• An exception block: END EXCEPTION

• A scenario: END SCENARIO

• An instance block: END INSTANCE

• A CASE instruction: END CASE

• An IF instruction: END IF

• A WHILE instruction: END WHILE

Example
INSTANCE tester1, tester2:
PROC clean1
...
END PROC
 ...
END INSTANCE
INITIALIZATION
...
END INITIALIZATION
SCENARIO TEST1
...
END SCENARIO

279

Test RealTime - Reference Manual

ERROR

System Testing Test Script Language.

Syntax
ERROR

Description

When an unexpected output value for a function or a WAITTIL causes a problem, the
current scenario halts as a result. You may terminate the scenario deliberately with
the ERROR instruction.

After an ERROR instruction, the EXCEPTION block is executed on the next scenario
at the same level, if there is one.

Example
#int sock;
...
SCENARIO Main
SCENARIO Test1
...
IF (sock==-1) THEN
ERROR
END IF
...
END SCENARIO
SCENARIO Test2
...
CALL ...
...
END SCENARIO
END SCENARIO

In the above example, you can stop the Test1 scenario with the ERROR instruction.
The virtual tester then proceeds to Test2 scenario.

280

System Testing Script Languages

EXCEPTION ... END EXCEPTION

System Testing Test Script Language.

Syntax
EXCEPTION [<proc>([<arg> { [, <arg>]}]]
END EXCEPTION

Description

The EXCEPTION instruction or block deletes a specific environment by executing the
set of instructions or the procedure <proc>. END EXCEPTION marks the end of the
EXCEPTION block.

Associated Rules

An EXCEPTION block or instruction applies to the set of scenarios at its level.

It does not apply to subscenarios of these scenarios.

The EXCEPTION instruction or block is optional.

A maximum of one EXCEPTION block may occur in a scenario.

The EXCEPTION instruction is only executed if a scenario terminates with an error.

It does not matter where the EXCEPTION instruction is placed among scenarios in a
given level.

Example
#int sock;
EXCEPTION
CALL close (sock)
...
END EXCEPTION
...
SCENARIO Main
...
END SCENARIO

281

Test RealTime - Reference Manual

EXIT

System Testing Test Script Language.

Syntax
EXIT

Description

This instruction lets you exit from the virtual tester. It causes all scenarios to
terminate.

After an EXIT, the virtual tester terminates. For an EXIT instruction, the end of
execution code of the virtual tester process is -1.

The scenario in which the EXIT instruction was executed is deemed incorrect.

Example
#int sock;
...
SCENARIO Main
SCENARIO Test1
...
IF (sock==-1) THEN
COMMENT stop tester
EXIT
END IF
...
END SCENARIO
SCENARIO Test2
...
CALL ...
...
END SCENARIO
END SCENARIO

282

System Testing Script Languages

FAMILY

System Testing Test Script Language.

Syntax
FAMILY <family> {[, <family>]}

Description

The FAMILY instruction allows you to group tests by families or classes.

This instruction appears just once at the beginning of a SCENARIO block, where it
defines the family or families to which the scenario belongs.

When starting tests, you can request to execute only tests of a given family.

The <family> parameter indicates the name of the test family. You can define the
following families: nominal, structural, robustness.

A test can belong to several families: in this case, the FAMILY instruction contains a
<family> list, separated by commas.

<family> can be any identifier. You must have at least one family name.

The FAMILY instruction is optional. If omitted, the test belongs to every family.

Example
SCENARIO Test_1
FAMILY nominal
COMMENT ...
...
END SCENARIO

283

Test RealTime - Reference Manual

FLUSH_TRACE

System Testing Test Script Language.

Syntax
FLUSH_TRACE

Description

The FLUSH_TRACE instruction dumps the execution traces stored in the circular
buffer to the .rio file.

This instruction is taken into account only when the -TRACE=CIRCULAR test
compiler option is set.

The FLUSH_TRACE instruction can be used in a PROC, SCENARIO,
INITIALIZATION, TERMINATION, or EXCEPTION block. You may not use
FLUSH_TRACE in a CALLBACK or PROCSEND block.

Example
SCENARIO one
 (...)
 FLUSH_TRACE
 (...)
END SCENARIO
Related Topics
-TRACE=CIRCULAR, TRACE_ON, TRACE_OFF

284

System Testing Script Languages

FORMAT

System Testing Test Script Language.

Syntax
FORMAT <variable> = <format>
FORMAT <type> = <format>
FORMAT <field> = <format>

Description

This FORMAT instruction modifies the way a variable, type, or field of a structure is
tested and printed. All formats of the same type is modified.

The new format is defined in C.

A format can also specify a print mode in binary or hexadecimal, using the options
#B and #H.

The FORMAT instruction is optional. You may use it at the beginning of the test
script or in a block of instructions, depending on the required scope. However,
FORMAT statements that apply to data contained in a CALLBACK or PROCSEND
block must be located before:

• any CALLBACK or PROCSEND block

• any PROC statements that contain DEF_MESSAGE or SEND instructions

Example
SCENARIO first
#char buffer[100];
#typedef struct {
int ax_register;
int bx_register;
int cx_register;
#} 8088_register_t;
FORMAT buffer = unsigned char[50]
FORMAT 8088_register_t.ax_register = #B
FORMAT 8088_register_t.bx_register = #H
END SCENARIO

285

Test RealTime - Reference Manual

HEADER

System Testing Test Script Language.

Syntax
HEADER <test_name>, <version>, <test_plan_version>

Description

This instruction allows you to define a standard header at the beginning of the test
script. The information contained in this header enables you to identify a list of
scenarios.

The headers can be strings or environment variables.

<test_name> is the name for the test script.

<version> is the version of the system tested.

<test_plan_version> is the test script version.

This instruction must appear before the first instruction block and strings must be
enclosed in double-quotes (" ").

Example
HEADER "DEMO SOCKET", $VERSION, "2.4"
INITIALIZATION
...
END INITIALIZATION
SCENARIO Main
....
END SCENARIO

286

System Testing Script Languages

IF...THEN...ELSE

System Testing Test Script Language.

Syntax
IF <condition> THEN
ELSE
END IF

Description

This is a control statement. The simplest form of an IF instruction begins with the
keyword IF, is followed by a Boolean expression, and then the keyword THEN. A set
of instructions follows. These instructions are executed if the expression is true. The
last END IF marks the end of the set of instructions.

Other actions can be executed depending on the value of the condition. Add an ELSE
block, followed by the set of instructions to be executed if the condition is false.

IF may be placed anywhere in the test program.

THEN must be placed at the end of a line.

ELSE must be on its own line.

END IF must be on its own line.

Example
HEADER "DEMO SOCKET RPC","1.0a", "2.5"
#int sock;
INITIALIZATION
...
IF (sock==-1) THEN
ERROR
ELSE
CALL listen(sock,5)
...
END IF
...
END INITIALIZATION
SCENARIO Main
....

287

Test RealTime - Reference Manual

INCLUDE

System Testing Test Script Language.

Syntax
INCLUDE <string>

Description

The INCLUDE instruction lets you include scenarios in the current test script.

Its use in test scenarios is optional.

The INCLUDE instruction may appear in any scenario as long as the scenario does
not contain any primary instructions. <string> is the name of the file to be included.
The system searches for files in the current directory and then searches the list of
paths passed on to the Test Script Compiler.

Example
SCENARIO Test_1
FAMILY nominal
INCLUDE "../common/initialization"
INCLUDE "scenario_1_and_2"
SCENARIO scenario_3
COMMENT call connection
CALL api_trsprt_connexionCF()
CALL ...
END SCENARIO
END SCENARIO

288

System Testing Script Languages

INITIALIZATION ... END INITIALIZATION

System Testing Test Script Language.

Syntax
INITIALIZATION [<proc> ([<arg> { , <arg> }])]
END INITIALIZATION

Description

The INITIALIZATION instruction initializes a specific environment by executing a
set of instructions or the procedure <proc>. END INITIALIZATION marks the end of
the INITIALIZATION block.

An INITIALIZATION block or instruction applies to the set of scenarios at its level. It
does not apply to sub-scenarios.

The INITIALIZATION instruction or block is optional.

A maximum of one INITIALIZATION block or instruction may occur at a given
scenario level.

This instruction is executed before every scenario at the same level.

The INITIALIZATION instruction may appear anywhere among scenarios at a given
level.

Example
...
INITIALIZATION
CALL socket (AF_INET, SOCK_DGRAM, 0)@@ds
...
FD_ADD(ds,SOCKAPI)
END INITIALIZATION
...

289

Test RealTime - Reference Manual

INSTANCE ... END INSTANCE

System Testing Test Script Language.

Syntax
INSTANCE <instance>{[,<instance>]}:
END INSTANCE

Description

An INSTANCE ... END INSTANCE block allows you to specify associated
declarations or the instructions.

When the INSTANCE ... END INSTANCE block is located before the top-level
scenarios, it gives global declarations to the test script for all the specified instances.

At the block or nested scenario level, it gives instructions or local declarations to the
wrapping block or scenario.

You may not nest instance blocks.

You cannot mix declarations and instructions in the same instance block.

Instance blocks containing instructions follow instance blocks containing
declarations.

Examples
HEADER "DEMO SOCKET", $VERSION, "2.4"
DECLARE_INSTANCE client, server
INSTANCE server:
 #static int var_c_time ;
END INSTANCE
INITIALIZATION
 INSTANCE server:
 var_c_time = 0;
 END INSTANCE
END INITIALIZATION
SCENARIO Principal
...
INSTANCE client:
 #int connectStatus ;
END INSTANCE
...
INSTANCE server:
 var_c_time = TIME(globalTime);
END INSTANCE
END SCENARIO

290

System Testing Script Languages

INTERRECV

System Testing Test Script Language.

Syntax
INTERRECV(<integer_pointer>)
INTERRECV(<string_pointer>, <buffer size>)

<integer_pointer> indicates the memory location of a 32-bit integer message.

<string_pointer> points to a static or allocated memory zone containing the incoming
message.

<buffer size> is the size of the memory zone starting at <string_pointer>.

Description

The INTERRECV statement allows the virtual tester to receive a simple message sent
by an INTERSEND statement from another virtual tester.

Received messages are stored in static or allocated memory zone indicated by
<integer_pointer> or <string_pointer>.

The message can be either an integer or a string. However if the message type
expected by the INTERRECV mismatches the actual message type sent by
INTERSEND, System Testing for C attempts to convert the message.

Example
INSTANCE JUPITER:
 INTERSEND("How many messages did you receive from SUT?" ,
"SATURN_0")
 INTERRECV(&transmitted_int)
END INSTANCE

INSTANCE SATURN:
 INTERRECV(buffer, 1024)
 INTERSEND(2 , "JUPITER_0")
END INSTANCE

291

Test RealTime - Reference Manual

INTERSEND

System Testing Test Script Language.

Syntax
INTERSEND(<integer>, <identifier>)
INTERSEND(<string>, <identifier>)

<identifer> is the unique identifier of a virtual tester to which the message is to be
sent.

<integer> is a 32-bit integer value.

<string> is a string-type value.

Description

The INTERSEND statement allows the virtual tester to send a simple message to
another virtual tester. The other virtual tester receives the incoming message with the
INTERRECV statement.

The message can be either an integer or a string.

<identifier> is <instance_name>_<occid> or <test_script.rio>_<occid>

The default value for <occid> is 0.

Example
INSTANCE JUPITER:
 INTERSEND("How many messages did you receive from SUT?" ,
"SATURN_0")
 INTERRECV(&transmitted_int)
END INSTANCE

INSTANCE SATURN:
 INTERRECV(buffer, 1024)
 INTERSEND(2 , "JUPITER_0")
END INSTANCE

292

System Testing Script Languages

MATCHED

System Testing Test Script Language.

Syntax
MATCHED(<ref_msg> {[, <channel>)]})

<channel> is a communication channel declared with the CHANNEL instruction and
initialized by the ADD_ID instruction.

CHANNEL ux_socket: ch

...

...

Description

<ref_msg> is a reference message variable declared with the MESSAGE instruction
and initialized with the DEF_MESSAGE instruction.

MATCHED is a function that returns a Boolean value. It returns true if one of the
messages received during a WAITTIL matches the reference message <ref_msg>. If
you specify a channel, it returns true only if the matching message was received on
this channel.

It returns true if at least one received message has the same values as those defined
for the reference message.

MATCHED is only meaningful when used in a WAITTIL instruction or in control
statements following a WAITTIL, such as IF, WHILE, or CASE.

The MATCHED return value changes when you reuse it in a WAITTIL statement.

Examples
...

SCENARIO Main
DEF_MESSAGE msg_1, EV={100,10}
DEF_MESSAGE msg_2, EV={200,20}

WAITTIL(MATCHED(msg_1) && MATCHED(msg_2,ch),WTIME==10)
...
IF (MATCHED(msg_1,ch)) THEN

293

Test RealTime - Reference Manual

MATCHING

System Testing Test Script Language.

Syntax
MATCHING(<ref_msg> {[, <channel>)]})

Description

MATCHING is a function that returns a Boolean value. It returns true if the last
message received during a WAITTIL matches the reference message <ref_msg>. If
you specify a channel, it returns true only if the matching message was received on
this channel.

<ref_msg> is a reference message variable declared with the MESSAGE instruction
and initialized with the DEF_MESSAGE instruction.

MATCHING is only meaningful when used in a WAITTIL instruction and in control
statements following a WAITTIL, such as IF, WHILE, or CASE.

WAITTIL(MATCHING(msg_1) || MATCHING(msg_2,ch),WTIME==10)
...

<channel> is a communication channel declared with the CHANNEL instruction and
initialized by the ADD_ID instruction.

It returns true if the last received message has the same values as those defined for
the reference message.

Associated Rules

The MATCHING return value changes when you reuse it in a WAITTIL.

Examples
...
CHANNEL ux_socket: ch
SCENARIO Main
DEF_MESSAGE msg_1, EV={100,10}
DEF_MESSAGE msg_2, EV={200,20}
...

IF (MATCHING(msg_1,ch)) THEN
...

294

System Testing Script Languages

MESSAGE

System Testing Test Script Language.

Syntax
MESSAGE <message_type>: <ref_msg> {[, <ref_msg>]}

Description

The MESSAGE instruction allows you to declare a list of reference messages
<ref_msg> of the <message_type> type.

<message_type> is in C and must be defined by a typedef in the interface file, an
included file, or the test script.

You must use the MESSAGE instruction at the beginning of the test script, before the
first scenario.

The reference messages are global variables. After a WAITTIL instruction, the
reference messages used contains the value of the last received message.

Interface file
typedef struct {
int code;
int flight_number;
struct {
char flight_name[8];
unsigned char class_name;
} data;

MESSAGE aircraft_data_t: air_msg

} aircraft_data_t;

Examples

SCENARIO first
DEF_MESSAGE air_msg, EV= {code => FlightReport }
WAITTIL(MATCHING(air_msg), WTIME == 100)
...
IF (air_msg.flight_number == 321) THEN
...

295

Test RealTime - Reference Manual

MESSAGE_DATE

System Testing Test Script Language.

Syntax
MESSAGE_DATE

Description

The MESSAGE_DATE instruction marks the date the user receives the message.

For instance, this date may be the moment a message is present in a reception queue
or when a message has been read and decoded. This instruction must appear once in
a callback or in a procedure called in a callback.

The MESSAGE_DATE instruction must be used in a callback.

Examples

MESSAGE client_info_t: msg

IF (ret == 0) THEN

MESSAGE_DATE

COMMTYPE socket IS socket_id_t
CHANNEL socket: ch

CALLBACK client_info_t: info ON socket: id
CALL read(id, &info, sizeof(client_info_t))@@ret

NO_MESSAGE
END IF

END CALLBACK

296

System Testing Script Languages

NIL

System Testing Test Script Language.

Syntax
NIL

Example

CALL free_object(@NIL@object)

Description

NIL is a macro that represents the value of a null pointer and can be used in any C
expression.

...
SCENARIO Main

...
END SCENARIO

297

Test RealTime - Reference Manual

NO_MESSAGE

System Testing Test Script Language.

Syntax
NO_MESSAGE

Description

The NO_MESSAGE instruction is used to exit the callback if no message has been
received.

This instruction has to appear once in a callback or in a procedure called in a callback.

COMMTYPE socket IS socket_id_t

CALLBACK client_info_t: info ON socket: id

The MESSAGE_DATE instruction must be used in a callback.

Example

CHANNEL socket: ch
MESSAGE client_info_t: msg

CALL read(id, &info, sizeof(client_info_t))@@ret
IF (ret == 0) THEN
NO_MESSAGE
END IF
MESSAGE_DATE
END CALLBACK

298

System Testing Script Languages

NONIL

System Testing Test Script Language.

Syntax
NONIL

Description

Example

NONIL is a macro that represents the value of a non-null pointer and can be used in
any C expression.

NONIL is useful in a CALL or a VAR instruction. In these two cases, it verifies that
the pointer does not have a null value.

...
SCENARIO Main
CALL alloc_object() @ NONIL @ object
VAR object, VA = NONIL
...
END SCENARIO

299

Test RealTime - Reference Manual

NOTMATCHED

System Testing Test Script Language.

Syntax
NOTMATCHED(<ref_msg> [, <channel>])

Description

NOTMATCHED is a function that returns a Boolean value. It returns true if one of
the messages received during a WAITTIL does not match the reference message
<ref_msg>. If you specify a channel, it returns true only if the non-matching message
was received on this channel.

<ref_msg> is a reference message variable declared with the MESSAGE instruction
and initialized with the DEF_MESSAGE instruction.

<channel> is a communication channel declared with the CHANNEL instruction and
initialized by the ADD_ID instruction.

The NOTMATCHED return value changes when reused in a WAITTIL.

CHANNEL ux_socket: ch

DEF_MESSAGE msg_2, EV={200,20}

...

It returns true if at least one received message has a value different from those
defined for the reference message.

NOTMATCHED is only meaningful when used in a WAITTIL instruction or in
control statements following a WAITTIL, such as IF, WHILE, or CASE.

Example
...

SCENARIO Main
DEF_MESSAGE msg_1, EV={100,10}

...
WAITTIL(WTIME==10, NOTMATCHED(msg_1))

IF (NOTMATCHED(msg_1,ch)) THEN
...

300

System Testing Script Languages

NOTMATCHING

System Testing Test Script Language.

Syntax
NOTMATCHING(<ref_msg> [, <channel>])

Description

NOTMATCHING is a function that returns a Boolean value. It returns true if the last
message received during a WAITTIL does not match the reference message
<ref_msg>. If you specify a channel, it returns true only if the non-matching message
was received on this channel.

<ref_msg> is a reference message variable declared with the MESSAGE instruction
and initialized with the DEF_MESSAGE instruction.

NOTMATCHING is only meaningful when used in a WAITTIL instruction or in
control statements following a WAITTIL, such as IF, WHILE, or CASE.

...

DEF_MESSAGE msg_1, EV={100,10}

WAITTIL(WTIME==10, NOTMATCHING(msg_2,ch))
...

<channel> is a communication channel declared with the CHANNEL instruction and
initialized by the ADD_ID instruction.

It returns true if the value of the last received message differs from the values
specified for the reference message.

The NOTMATCHING return value changes when reused in a WAITTIL.

Example

CHANNEL ux_socket: ch
SCENARIO Main

DEF_MESSAGE msg_2, EV={200,20}
...

IF (NOTMATCHING(msg_2,ch)) THEN
...

301

Test RealTime - Reference Manual

PAUSE

System Testing Test Script Language.

Syntax
PAUSE <numeric_expression>

Description

The PAUSE instruction lets you temporary suspend the test script execution. The
<numeric_expression> parameter defines the duration of the suspend execution.

The PAUSE instruction does not appear in generated reports.

Example
#int hp = 3;
#int ds = 5;
PROC init (int sock_type)
...
PAUSE 20
...
END PROC
SCENARIO Main
...
CALL init(AF_UNIX)
PAUSE (hp+ds)*23
...
END SCENARIO

302

System Testing Script Languages

PRINT

System Testing Test Script Language.

Syntax
PRINT <identifier>, <expression>

Description

The same identifier can be used in different PRINT instructions.

PROC init (int sock_type)

...

...

PRINT elapsedTime, TIME (time)

The PRINT instruction prints the value of <expression> in the generated reports. The
identifier names the value.

<expression> must be a C integer expression.

Example
#int hp = 3;
#int ds = 5;
TIMER time

...
PRINT SockTypeValue, sockType

END PROC
SCENARIO Main

CALL init(AF_UNIX)
PRINT HpDs, (hp+ds)*10

...
END SCENARIO

303

Test RealTime - Reference Manual

PROC ... END PROC

System Testing Test Script Language.

Syntax
PROC <arg> {[, <arg>]}
END PROC

Description

The PROC instruction lets you define a local procedure inside a scenario. A
procedure can take parameters defined as data types.

Any previously defined global variables declared in the test script are visible in the
PROC block. Variables declared locally to a procedure block are only visible within
that procedure.

Procedure parameters take basic data: int, char, and float as well as any data types
defined by the a typedef statement.

Procedures must be located at the beginning of the test script file, before the highest-
level scenarios.

Procedures can be called from any scenario.

Procedures do not return any parameters.

Example
#int hp,ds;
PROC init (int sock_type)
...
CALL gethostbyname (serv_name)@@hp
CALL socket (sock_type, SOCK_DGRAM, 0)@@ds
...
END PROC
SCENARIO Main
...
CALL init(AF_UNIX)
...
END SCENARIO

304

System Testing Script Languages

PROCSEND

System Testing Test Script Language.

Syntax
PROCSEND <message_type>: <msg> ON <commtype>: <id>
END PROCSEND

Description

The PROCSEND instruction allows you to define a message-sending procedure. The
SEND statement uses this instruction.

You must declare the message-sending procedure in the first part of the test script,
before the first scenario.

You only need to declare one message-sending procedure a message and
communication type pair.

Example

 client k_kind_t kind ;

 int id ;

} client_info_t;

MESSAGE client_info_t: msg
#socket_id_t id;

<message_type> is declared with the MESSAGE instruction.

<msg> is the input parameter of <message_type> that describes the message to be
sent.

<commtype> is the communication method for sending messages.

<id> is the input parameter of the connection on which a message has to be sent.

Declare <commtype> with the instruction COMMTYPE.

Declare <message_type> with the instruction MESSAGE.

If the structured C <message_type> contains unions, you should declare the field of
the union that you want to use. For this purpose, a structured variable is implicitly
defined. Its name adds ATL_ before the name of the <message_type>. An attribute
selected for each union lets you define the field.

typedef enum { e_name, e_id, e_balance } client_kind_t ;
typdef struct {

 union {
 char name[50];

 float balance ;
 } my_union

COMMTYPE socket IS socket_id_t
CHANNEL socket: ch

305

Test RealTime - Reference Manual

PROCSEND message_t: msg ON appl_comm: id
...
CALL socket (sock_type, SOCK_DGRAM, 0) @ 0
...
END PROCSEND
SCENARIO Principal
 ...
 ADD_ID(ch,id)
 ...
SEND (msg,ch)
...
END SCENARIO

306

System Testing Script Languages

RENDEZVOUS

System Testing Test Script Language.

Syntax
RENDEZVOUS <identifier>

Description

i

When the rendezvous is valid, the scenario resumes the execution.

SCENARIO Connection

The RENDEZVOUS instruction allows you to synchronize several virtual testers. A
rendezvous name is the < dentifier>following the keyword.

When the scenario is executed, the RENDEZVOUS instruction stops the execution
until all virtual testers have reached the rendezvous point, thereby validating the
rendezvous.

A RENDEZVOUS identifier does not appear more than one time in a scenario.

Example

RENDEZVOUS begin
...

307

Test RealTime - Reference Manual

RESET

System Testing Test Script Language.

Syntax
RESET <identifier>

Description

The RESET instruction lets you reset the <identifier> timer.

Example
TIMER time

...

Declare the timer identifier with the TIMER instruction.

You may use a timer identifier only once in the same block. The timer immediately
restarts after being reset.

SCENARIO Connexion

RESET time
...
END SCENARIO

308

System Testing Script Languages

SCENARIO ... LOOP ... END SCENARIO

System Testing Test Script Language.

Syntax
SCENARIO <scenario> [LOOP <iteration_factor>]
END SCENARIO

Description

This instruction allows you to define a scenario block. This is the highest level of
instruction.

<scenario> is the name of the scenario.

The optional LOOP keyword lets you state the identifier's scenario
<iteration_factor>.

Associated Rules

Scenarios at the same level must have different names.

A scenario that contains other scenarios can only include FAMILY and SCENARIO
statements.

<scenario> must begin with an upper or lower case letter and may contain letters,
numbers, underscores, and dollar signs.

<iteration_factor> must be a positive integer.

Example

The Jn variable (n is the nesting level of the scenario that starts at 0) gives the current
scenario iteration number.

SCENARIO principal LOOP 10
FAMILY nominal, robustness
...
SCENARIO number_one
...
SCENARIO number_one_two LOOP 10
CALL ...
PRINT iteration_number_one_two, J2
END SCENARIO
...
END SCENARIO
SCENARIO number_two LOOP 5
...
CALL ...
PRINT iteratio_number_two, J1

END SCENARIO

PRINT global_iteratio, J0
...

309

Test RealTime - Reference Manual

END SCENARIO

310

System Testing Script Languages

SEND

System Testing Test Script Language.

Syntax
SEND (<message>, <channel>)

Description

The SEND instruction allows you to send a <message> on a specific <channel>. It
calls the message-sending procedure associated with the message and
communication types.

The SEND instruction may be located in a PROC, SCENARIO, INITIALIZATION,
TERMINATION, or EXCEPTION block.

Example
CHANNEL appl_comm: appl_ch
#message_t msg;
SCENARIO TEST_1
FAMILY nominal
...
SEND(msg, appl_ch)

311

Test RealTime - Reference Manual

SHARE

System Testing Test Script Language.

Syntax
SHARE <identifier>

Description

The SHARE instruction allows you to specify global static variables declared in a test
script.

This allows all instances of the same test script, to share these variables in multi-
thread environments.

Associated Rules

Example

#static int buffer;

FAMILY nominal

The SHARE instruction must be at the beginning of a test script, before the first block.

The identifier is the name of the global static variable declared at the beginning of the
test script.

#static int id_Connection;
#static int Synchro;

SHARE Synchro
SCENARIO Test1

...

312

System Testing Script Languages

TERMINATION ... END TERMINATION

System Testing Test Script Language.

Syntax
TERMINATION [<proc>([<type identifier>]{ , type identifier }
)]
END TERMINATION

Description

The TERMINATION instruction deletes a specific environment by executing a set of
instructions or the procedure <proc>. END TERMINATION marks the end of the
TERMINATION block.

A TERMINATION block or instruction applies to the set of scenarios on its level. It
does not apply to sub-scenarios.

The TERMINATION instruction or block is optional. A maximum of one
TERMINATION block or instruction may occur at a given scenario level. The
TERMINATION instruction is only executed when a scenario terminates without
errors.

You may place a TERMINATION instruction anywhere among scenarios at the same
level.

Example
#int sock;
TERMINATION
 ...
 CALL close (sock)
 ...
END TERMINATION
...
SCENARIO Main
 ...
END SCENARIO

313

Test RealTime - Reference Manual

TIME

System Testing Test Script Language.

Syntax
TIME (<identifier>)

Description

The TIME instruction gives the value of the identifier timer.

The timer < dentifier> must be declared by a TIMER instruction. i

PRINT time, TIME (globalTime)

The TIME instruction can only appear in a C expression (analyzed or not).

Example
#static int id_connexion;
#static int Synchro;
#static int buffer;
TIMER globalTime
SCENARIO TEST_1
FAMILY nominal
#unsigned long C_var_Time = TIME (globalTime);
...

END SCENARIO

314

System Testing Script Languages

TIMER

System Testing Test Script Language.

Syntax
TIMER <identifier>

Description

The TIMER instruction lets you define a timer (which automatically starts after being
defined).

A timer < dentifier> can be declared once in the same block. The scope of an
identifier is its definition block. For example, an identifier declared in an exception
block can only be used in this block. However, you may use an identifier declared in
the global block in all the other blocks.

i

Example
#static int id_connexion;
#static int Synchro;
#static int buffer;
TIMER globalTime
PROC dummy
TIMER procTime
END PROC
SCENARIO TEST_1
FAMILY nominal
#unsigned long C_var_Time = TIME (globalTime);
...
PRINT time, TIME (globalTime)
END SCENARIO

315

Test RealTime - Reference Manual

TRACE_OFF

System Testing Test Script Language.

Syntax
TRACE_OFF

Description

The TRACE_OFF instruction turns off storage of execution traces in the circular
buffer.

This instruction is taken into account only when the -TRACE=CIRCULAR option is
set.

Associated Rules

The TRACE_OFF instruction can be used in PROC, SCENARIO, INITIALIZATION,
TERMINATION, or EXCEPTION blocks, but not in CALLBACK or PROCSEND
blocks.

Example
SCENARIO one
 ...
 TRACE_OFF
 ...
END SCENARIO

316

System Testing Script Languages

TRACE_ON

System Testing Test Script Language.

Syntax
TRACE_ON

Description

The TRACE_ON instruction stores execution traces in the circular buffer.

This instruction is taken into account only when the -TRACE=CIRCULAR option is
set.

Associated Rules

The TRACE_ON instruction can be used in PROC, SCENARIO, INITIALIZATION,
TERMINATION, or EXCEPTION blocks, but not in CALLBACK or PROCSEND
blocks.

Example
SCENARIO one
 ...
 TRACE_ON
 ...
END SCENARIO

317

Test RealTime - Reference Manual

VAR

System Testing Test Script Language.

Syntax
VAR <variable>, INIT= <cmp_expression> | EV= <cmp_expression>

Description

This instruction allows you to initialize or check a variable. The first statement
performs the initialization. The second statement compares the contents of the
variable with the expression.

<variable> is a message or a variable that has previously been declared in native
language. It may be any basic or structure type expression.

<cmp_expression> is in C and takes the following form:

[attol_init {,attol_init}]

 C_CPP_lang_exp

When controlling a numeric value (VAR ... EV=), you can check a range of values
with one of following syntaxes:

VAR <variable>, EV= [<expr_min> .. <expr_max>]

The VAR instruction may appear in a PROC, SCENARIO, INITIALIZATION,
TERMINATION or EXCEPTION block.

Example

#struct {
char name[30];

double size;

cmp_expression::= C_CPP__lang_exp
{cmp_init {,cmp_initialization}}

cmp_init::=Constant=>C_CPP_lang_exp |
 Constant1 .. Constant2=>C_CPP_lang_exp |

field_name =>C_language_expression

VAR <variable>, EV= [<expr_min> ..]
VAR <variable>, EV= [.. <expr_max>]

These indicates that the value should be greater than or equal to the expression, less
than or equal to the expression, or between the two expressions.

The keyword OTHERS in a <cmp_expression> that represents ranges in an array or
fields in a structure that have not been previously specified.

The identifiers I1, I2, ... I20 are reserved to access different dimensions of an array.
For a three-dimensional matrix, I1 represents the index for the first dimension, I2 the
index for the second dimension, and I3 the index for the third dimension.

SCENARIO Main
#int matrix[3][3];

char color[20];

318

System Testing Script Languages

} object;
long x;
CALL compute(matrix)
VAR matrix, EV=[[1, 1, 1], [2, 2, 2], [1, 1, 1]]
-- OR
VAR matrix, EV=[2 => [2, 2, 2], OTHERS=>[1,1,1]]
-- multiplication table:
VAR matrix, INIT= I1 I2
VAR object, INIT=[name => "car", color => "rouge",
& size => 2.50]
VAR object, INIT=[size => 0.10, OTHERS => "orange"]
VAR x, EV=[11..28]
END SCENARIO

319

Test RealTime - Reference Manual

VIRTUAL CALLBACK

C++ only.

The VIRTUAL keyword modifies the CALLBACK statement, allowing it to handle
messages using C++ inheritance.

Syntax
VIRTUAL CALLBACK <message_type>: <msg> ON <commtype>: <id>
[<n>]
END CALLBACK

Description

The CALLBACK instruction dynamically recalls message reception and adds a
connection identifier value to a communication channel identifier.

<message_type> is a message type, previously declared with a C++ typedef
statement. Syntax using <message_type>* is not allowed.

<msg> is the output parameter of <message_type> that must be a polymorphic C++
class, which means that it must contain at least one virtual method.

<commtype> is the type of communication used for reading messages.

• If a CALLBACK exists for a given <message type>, System Testing chooses it.

 virtual int get_type(){return 0;}

<id> is the input connection parameter on which a message must be read.

Because a single VIRTUAL CALLBACK can read several message types, the implicit
choice of a CALLBACK may be ambiguous. The following rules apply:

• If not, and if the message type is actually a virtual class, then System Testing
chooses the VIRTUAL CALLBACK with the closest type in terms of path in the
inheritance diagram of <message_type>.

• If more than one VIRTUAL CALLBACK can be chosen by following the above
rules, the CALLBACK is ambiguous and System Testing produces an error.

Example
class high_level_message
{
 public:
 char from[12];
 char applname[12];

};

class ack : public high_level_message
{
 public:
 int get_type(){return ACK;}

320

System Testing Script Languages

};
class negack : public high_level_message
{
 public:
 int get_type(){return NEG_ACK;}
};
class data : public high_level_message
{
 public:
 char userdata[MAX_USERDATA_LENGTH];
 int length;
 int get_type(){return DATA;}

VIRTUAL CALLBACK pt_ high_level_message: msg ON appl_comm: id

 IF (errcode == err_empty) THEN

 IF (errcode != err_ok) THEN

END CALLBACK

MESSAGE data : a_data

MESSAGE high_level_message : hm
DEF_MESSAGE my_ack, EV={}

 DEF_MESSAGE a_data, EV={}

};
#typedef high_level_message * pt_ high_level_message;

 CALL get_message (&id, &msg, 0) @@ errcode
 MESSAGE_DATE

 NO_MESSAGE
 END IF

 ERROR
 END IF

This VIRTUAL CALLBACK allows you to read high_level_message, ack, negack and
data message types, as shown on the following lines:

MESSAGE ack : my_ack
MESSAGE negack : my_neg_ack

WAITTIL (MATCHING(my_ack), WTIME==300)

WAITTIL (MATCHING(a_data), WTIME==300)

321

Test RealTime - Reference Manual

VIRTUAL PROCSEND

For C++ only.

The VIRTUAL keyword modifies the PROCSEND statement, allowing it to handle
messages using C++ inheritance.

Syntax
VIRTUAL PROCSEND <message_type>: <msg> ON <commtype>: <id>
END CALLBACK

Description

The PROCSEND instruction allows you to define a message-sending procedure using
C++ classes.

<message_type> is a message type, previously declared with a C++ typedef
statement. Syntax using <message_type>* is not allowed.

<msg> is the output parameter of <message_type> that must be a polymorphic C++
class, which means that it must contain at least one virtual method.

<commtype> is the type of communication used for reading messages.

<id> is the input connection parameter on which a message must be read.

Associated Rules

Because a single VIRTUAL PROCSEND can read several message types, the implicit
choice of a PROCSEND may be ambiguous. The following rules apply:

• If a PROCSEND exists for a given <message type>, System Testing chooses it.

• If not, and if the message type is actually a virtual class, then System Testing
chooses the VIRTUAL PROCSEND with the closest type in terms of path in the
inheritance diagram of <message_type>.

• If more than one VIRTUAL PROCSEND can be chosen by following the above
rules, the PROCSEND is ambiguous and System Testing produces an error.

Example
VIRTUAL PROCSEND pt_high_level_message : msg ON appl_comm :
id_stack
CALL send_message (msg) @ err_ok
END PROCSEND

This VIRTUAL PROCSEND example allows you to send high_level_message, ack,
negack et data message types, as shown on the following lines:

MESSAGE data : a_data
MESSAGE ack : my_ack

322

System Testing Script Languages

MESSAGE negack : my_neg_ack
MESSAGE high_level_message : hm
VAR a_data, INIT={applname=>"SATURN",userdata=>"Hello Saturn!"}
 SEND(a_data , appl_ch)
VAR my_ack, INIT={applname=>"SATURN"}
 SEND(my_ack , appl_ch)
VAR my_neg_ack, INIT={applname=>"SATURN"}
SEND(my_neg_ack , appl_ch)

323

Test RealTime - Reference Manual

WAITTIL

System Testing Test Script Language.

Syntax
WAITTIL (<passed_expr>, <failed_ expr>)

<failed_ expr> is a parameter that contains a Boolean expression. If this expression is
true, the waiting process is disabled and it ends with an error.

• Declare a communication channel with the CHANNEL instruction.

• Define the expected values for each reference message with the DEF_MESSAGE
instruction.

Interface file

typedef struct{

typedef struct {

char number[60];

Description

This instruction waits for several events and/or a timer.

<passed_expr> is a parameter that contains a Boolean expression. If this expression is
true, the waiting process is disabled and the test sequence continues.

When <failed_ expr> is true, the execution of the scenario containing the WAITTIL is
interrupted. The next scenario at the same level is then executed.

To use this instruction, you need to take the following actions:

• Declare a type of communication with the COMMTYPE instruction.

• Declare the reference messages with the MESSAGE instruction.

• Write a callback for a non-blocking read of communication and message type.

• Associate the identifier of a communication connection with the ADD_ID
instruction.

• Use the four comparison operators, MATCHING, MATCHED,
NOTMATCHING, NOTMATCHED, and the timer WTIME. Also use the &&
(logical and) and || (logical or) operators.

#include <sys/types.h>
#include <sys/socket.h>

char validity[60];
char ccnumber[60];
}account_t;

char code;
char name[60];

account_t account;
}client_info_t;

324

System Testing Script Languages

Example
HEADER "Client","1.0","1.0"
#typedef int socket_id_t
COMMTYPE socket IS socket_id_t

CALLBACK client_info_t: info ON socket: id

NO_MESSAGE

END CALLBACK

ADD_ID(ConnectId,ch)

CHANNEL socket: ch
MESSAGE client_info_t: msg

CALL read(id, &info, sizeof(client_info_t))@@ret
IF (ret == 0) THEN

END IF
MESSAGE_DATE

SCENARIO simple_test
...

DEF_MESSAGE msg, EV={name=>"John Smith"}
WAITTIL (MATCHING(msg), NOTMATCHING(msg))
END SCENARIO

325

Test RealTime - Reference Manual

WHILE ... END WHILE

System Testing Test Script Language.

Syntax
WHILE (condition)
END WHILE

Description

#int i = 0;

The instruction WHILE is a control structure. All the instructions between WHILE
and END WHILE is executed if the condition is true.

Example

SCENARIO Main
CALL api1_func...
WHILE (i<100)
CALL api_val(i)
VAR i, INIT=i+1
END WHILE
...
END SCENARIO

326

System Testing Script Languages

WTIME

System Testing Test Script Language.

Syntax
WTIME

Description

You can assign parameters to the timer's unit of time in the Target Deployment Port.

SCENARIO Acknowledge
...

WTIME is a macro that acts as a timer in a WAITTIL instruction.

The value of WTIME is reset to zero before every WAITTIL.

Example
...

WAITTIL (MATCHING (OK), WTIME == 1000)
END SCENARIO

327

Macro Keywords

329

Test RealTime - Reference Manual

ATL_OCCID

System Testing Test Script Language.

Description

ATL_OCCID is a macro that returns the value of the occurrence identification
number (OCCID) that uniquely identifies a virtual tester.

You can change the occurrence identification number of a virtual tester by adding the
-OCCID=<number> parameter to the command line of the generated virtual tester.

By default, the value of ATL_OCCID within a test script is 0.

Example
HEADER "Client", "1.0", "3.0"
SCENARIO Main
 ...
 PRINT occnumber, ATL_OCCID
 ...
END SCENARIO

330

System Testing Script Languages

ATL_NUMINSTANCE

System Testing Test Script Language.

Description

ATL_NUMINSTANCE is a macro that returns the index number of an executed
instance, according to the order defined in the DECLARE_INSTANCE instruction.

Note The number returned by ATL_NUMINSTANCE is the index number
+1. For example, the first instance returns 2, the fourth instance returns 5.

Example
HEADER "Client", "1.0", "3.0"

 ...

END SCENARIO

DECLARE_INSTANCE client, server
SCENARIO Main

 PRINT instanceNum, ATL_NUMINSTANCE
 ...

331

Test RealTime - Reference Manual

ATL_TIMEOUT

System Testing Test Script Language.

Description

The value of ATL_TIMEOUT is calculated from a WTIME expression used in the
WAITTIL statement. The ATL_TIMEOUT macro is an integer and uses the time unit
defined in the Target Deployment Port. By default, the time unit is a hundredth of
second.

332

Supervisor Script
Keywords

333

Test RealTime - Reference Manual

CHDIR

System Testing Supervisor Script Language.

Purpose

The CHDIR instruction changes the current working directory of the System Testing
Supervisor machine or of a target machine.

Syntax
CHDIR [<hostname>:] <directory>

where:

• <hostname> is an optional logical name of a target machine (see HOST)

• <directory> is the relative or absolute path of a directory

Description

When supervisor execution starts, the working directory of the System Testing
Supervisor machine is the current directory of the shell that runs the System Testing
Supervisor.

When the script starts, the working directory of the target machine is the directory
where the Agent has been started.

The <directory> path may contain local environment variables from the System
Testing Supervisor machine, or remote environment variables defined on the target
machine. For more information, refer to the section on Environment variables.

If the operation fails, you will receive an error message (see ERROR).

HOST target IS workstation.domain.com

CHDIR target:$HOME

CHDIR $DIR

The <directory> path may contain long quoted pathnames, such as "C:\Program
Files\Rational\Test RealTime\".

Example

CHDIR localdir
CHDIR $ATS_DIR

CHDIR target:/tmp/project
SET DIR=C:\tmp

334

System Testing Script Languages

COPY

System Testing Supervisor Script Language.

Purpose

The COPY instruction transfers a binary or ASCII file from the System Testing
Supervisor machine to a target machine, or the opposite.

Syntax
COPY [<hostname>:]<destination> [<hostname>:]<source> [/ASCII]

where:

• <source> is the absolute or relative filename of the file to be copied.

• <destination> is the absolute or relative path to which <source> is to be copied.

• <hostname> is the optional name of the source or destination machine.

Description

When the <hostname> is not specified, the filename refers to a local file on the
System Testing Supervisor machine. When a <hostname> is specified, the filename
refers to a file on the corresponding remote host.

COPY instructions can only transfer files from the System Testing Supervisor
machine to a remote machine, or from a remote machine to the System Testing
Supervisor machine. Transfers from one remote machine to another must be
performed using two COPY instructions.

By default, transfers are in binary mode. If you specify the keyword /ASCII, the
transfer is performed in character mode, which insures that text files are correctly
copied between different types of machines. In binary mode, the target file's access
permissions are updated so that the file is executable.

A filename may contain environment variables that are local to the System Testing
Supervisor machine or that are defined on the remote machine. For more
information, refer to the section on Environment variables.

If the file to be copied does not exist or is read-protected, you will receive an error
message (see ERROR).

Path and filenames may contain long quoted pathnames, such as "C:\Program
Files\Rational\Test RealTime\".

Example
HOST target_1 IS antares
...
COPY localfile target_1:$HOME/file.bin

335

Test RealTime - Reference Manual

COPY target_1:remotefile localfile /ASCII
...

336

System Testing Script Languages

DELETE

System Testing Supervisor Script Language.

Purpose

The DELETE instruction deletes a local or remote file.

Syntax
DELETE <filename>

where:

<filename> may be specified with an absolute or relative path, or as <hostname>:
<filename>, where <hostname> is a remote host running a System Testing Agent
daemon.

Path and filenames may contain long quoted pathnames, such as "C:\Program
Files\Rational\Test RealTime\".

DELETE target_2:$DIR/../remote_file

• <filename> is a local or remote file to be deleted.

Description

The filename may contain environment variables that are local to the System Testing
Supervisor machine or that are defined on the remote machine. For more
information, refer to the section on Environment variables

If the file to be deleted does not exist or is write-protected, you will receive an error
message. (See ERROR.)

Example
HOST target_2 IS 123.4.56.7(10098)

DELETE local_file

337

Test RealTime - Reference Manual

DO

System Testing Supervisor Script Language.

Purpose

The DO instruction executes a program on a remote machine and waits for the end of
its execution.

Syntax
DO [<process> IS] <hostname>: <program> [<parameters>]

• <hostname> is the name of the remote machine as defined by a HOST
instruction

The field <hostname> is mandatory and must specify a remote machine.

While the program runs, all logs sent to the standard and error outputs are redirected
to the supervisor, except if you have set TRACE OFF.

Example

i = 1
WHILE i < 10

where:

• <process> optionally assigns a process name to the program

• <program> is the name of the program to execute

• <parameters> is a set of optional parameters that can be sent to <program>

Description

DO is a blocking instruction that waits for the program to end.

You can give a logical name to a program by including the clause <process> IS. You
can then form expressions with the ENDOF and STATUS operators.

A process name may only appear once in a supervision script, otherwise you will
receive an error when the scenario does not execute. If <process> IS is not present,
the ENDOF and STATUS operators cannot be used.

If the program does not start or does not have execution permission, an error
message is produced. (See ERROR.)

Note If a logical process name is used in a DO instruction within a WHILE
loop, the name refers not to a single process, but a group of processes. (See the
ENDOF and STATUS operators.)

HOST remote IS 192.3.2.1
DO process_1 IS remote: ls /tmp -l

338

System Testing Script Languages

DO group IS remote:program
i = i + 1
END WHILE
-- the variable group refers to a group of 9
-- executions of the process called program

339

Test RealTime - Reference Manual

ENDOF

System Testing Supervisor Script Language.

Purpose

ENDOF is a Boolean function that tests whether <process> has ended or not. ENDOF
is true if the execution of <process> has ended.

Syntax
ENDOF (<process>)

<process> is a logical process name, defined with an EXECUTE statement.

Description

You can use the ENDOF function in expressions analyzed by the supervisor.

ENDOF is a non-blocking operator.

If an unknown process identifier is specified, an error is generated during analysis of
the supervision script before it is executed.

Note If an EXECUTE instruction is placed inside a WHILE loop, the process
identifier denotes a group of processes. In this case, an ENDOF expression
with this process identifier is true when all the processes associated with the
identifier have ended.

Example
...

 EXECUTE proc_group IS machine:program

...

END IF

i = 1
WHILE i < 10

 i = i + 1
END WHILE

IF ENDOF (proc_group) THEN
 PRINT "end of execution of all processes"

340

System Testing Script Languages

ERROR

System Testing Supervisor Script Language.

Purpose

The ERROR instruction indicates to the supervisor whether or not execution of a
scenario should be interrupted if an error occurs.

Syntax
ERROR [ON | OFF]

Description

Use ERROR ON to interrupt execution of the supervision script if an error is
detected.

Use ERROR OFF to ignore errors and continue execution of the supervision script.

In both cases, you will still receive an error message through the standard output.

The use of ERROR in supervision scripts is optional. ERROR ON is the default
setting.

You may use ERROR ON and ERROR OFF several times in the same supervisor
script.

Example
...
COPY localfile_1 target:file_1
ERROR OFF
DELETE localfile_1
ERROR ON
...
ERROR OFF
EXECUTE target:file_1
ERROR ON

341

Test RealTime - Reference Manual

EXECUTE

System Testing Supervisor Script Language.

Purpose

The EXECUTE instruction executes the program <program_name> on the
<hostname> defined by a previous HOST instruction.

Syntax
EXECUTE [<process> IS] <hostname>: <program> [<parameters>]

where:

• <process> optionally assigns a process name to the program

• <hostname> is the name of the remote machine as defined by a HOST
instruction

• <program> is the name of the program to execute

• <parameters> is a set of optional parameters that can be sent to <program>

Description

EXECUTE is a non-blocking instruction that asynchronously starts the <program> on
<hostname>, and then returns.

The field <hostname> is mandatory and must specify a remote machine.

You can assign a logical name to the <program> by adding the optional <process> IS
statement. You can use this logical name to form expressions with the ENDOF and
STATUS operators.

Any logical process name must be unique to a supervision script, otherwise it will
generate an error when the scenario execution fails.

If no logical process name is assigned to the program execution, the ENDOF and
STATUS operators will generate an error during the analysis of the supervisor script.

While <program> is running, all logs normally sent to the standard and error outputs
are redirected to the supervisor, except if you have used a TRACE OFF statement.

If the <program> file is missing or does not have execution permission, an error is
generated.

Note If a logical process name is used in an EXECUTE instruction within a
WHILE loop, the name refers not to a single process, but a group of processes.
(See the ENDOF and STATUS operators).

Example
342

System Testing Script Languages

HOST remote IS 192.3.2.1
EXECUTE process_1 IS remote: ls /tmp -l
EXECUTE remote: myFoo
i = 1
WHILE i < 10
 EXECUTE group IS remote:program
 i = i + 1
END WHILE
-- the variable group refers to a group of 9
-- executions of the process called program

343

Test RealTime - Reference Manual

EXIT

System Testing Supervisor Script Language.

Purpose

The EXIT instruction stops execution of the supervision script.

Syntax
EXIT ["<message>"]

Stopping the supervisor causes all processes started by agents to stop as well.

Example

IF (i = 3) THEN

 EXIT "Exit on incorrect value of \"i\""

<message> is a an optional character string delimited by double-quotes (").

Description

The optional <message> is printed as an information message.

Note If you need to include a double-quote in the message, use \".

HOST remote IS 192.6.2.1
...

 EXECUTE remote: ls /tmp -l
ELSE

END IF

344

System Testing Script Languages

HOST

System Testing Supervisor Script Language.

Purpose

The HOST instruction assigns a logical machine name to a target machine.

Syntax
HOST <logical_name> IS <address> [(<port_number>)]

<logica _name> is the identifier of the target machine. l

<address> is the network address of the target machine

<port_number> is the network port to which the target machine's Agent is assigned.

Description

Executing a HOST instruction opens a connection with an agent on the target
machine.

Logical machine names are used in CHDIR, COPY, DO, DELETE, EXECUTE,
MKDIR, RMDIR, SET, TRACE and UNSET instructions to refer to target machines.

The host <address> may be:

• a hostname (for example: workstation.domain.com),

• an alias (for example: workstation),

• or an IP address (for example: 155.22.9.3).

The TCP/IP port number is optional. It helps specify the port used by the target
machine's agent that listens for connection demands. By default, the port used by the
supervisor is the one specified by the ATS_PORT environment variable, or 10000.

A logical machine name must be unique within the supervision script. If the System
Testing Supervisor machine cannot connect to the agent, the supervisor produces an
error message and terminates, regardless of any ERROR statement.

Example
HOST machine_1 IS localhost
HOST machine_2 IS 193.256.6.2(10098)
HOST machine_3 IS $HOSTNAME
COPY local_file machine_2:remote_file
DO machine_1:program

345

Test RealTime - Reference Manual

IF ... THEN ... ELSE ... END IF

System Testing Supervisor Script Language.

Purpose

The IF ... END IF statement allows you to define a conditional behavior based on the
result of an expression.

Syntax
IF <expression> THEN
ELSE
END IF

<expression> is a Boolean expression. See Expressions.

Description

IF defines the Boolean expression.

Instructions following the THEN keyword are executed if the expression is true.

Instructions following ELSE are executed if the expression is false.

END IF marks the end of the of the IF statement.

Example
HOST machine IS 193.6.2.1
DO prepro IS machine:preprocessing.exe
IF (STATUS (prepro) == 0) THEN
 PRINTLN "preprocessing OK"
ELSE
 PRINTLN "preprocessing FAILED"
 EXIT
END IF

346

System Testing Script Languages

INCLUDE

System Testing Supervisor Script Language.

Purpose

The INCLUDE instruction allows you to nest supervision scripts.

Syntax
INCLUDE "<filename>"

<filename> is the absolute or relative file name of an included supervision script,
delimited by double quotes (").

Description

There is no limit to the levels of nested INCLUDE commands.

If an infinite loop of included files is detected during analysis, you will receive an
error message and the execution will fail.

INCLUDE instructions may appear anywhere in a supervision script, including
inside a structured IF or WHILE instruction.

There is no default file extension. If the filename has an extension, you must state it in
the INCLUDE instruction.

Example
HOST machine_1 IS 193.6.2.1
INCLUDE "included_file.spv"
...
DO test_1 IS machine_1:test_1

347

Test RealTime - Reference Manual

MEMBERS

System Testing Supervisor Script Language.

Purpose

The MEMBERS instruction lets you declare the number of members awaited at a
given rendezvous.

Syntax
MEMBERS <rendezvous> <number>

where:

• <rendezvous> is the rendezvous identifier

• <number> is a positive integer representing the number of members to wait for

Description

MEMBERS lets you synchronize virtual testers with the RENDEZVOUS instructions
or with other applications with the rendezvous Target Deployment Port.

A <rendezvous> identifier must be unique within the supervision script. If not, an
error message is produced and the scenario execution fails.

Example
...
MEMBERS beginning 3
...
EXECUTE machine_1:test1
EXECUTE machine2:test2
...
RENDEZVOUS beginning

348

System Testing Script Languages

MKDIR

System Testing Supervisor Script Language.

Purpose

The MKDIR instruction creates a new directory on the System Testing Supervisor
machine or on a target machine.

Syntax
MKDIR [<hostname>:] <directory>

where:

Description

Example

MKDIR target:$HOME/tmp

• <hostname> is an optional logical name of a target machine (see HOST)

• <directory> is the relative or absolute path of a directory

The directory path name may contains local environment variables of the System
Testing Supervisor machine, or remote environment variables defined on the target
machine.

If the operation fails, the script returns an error message.

HOST target IS workstation.domain.com(10098)
MKDIR ../localdir

349

Test RealTime - Reference Manual

PAUSE

System Testing Supervisor Script Language.

Purpose

You may use the PAUSE instruction to delay script execution.

Syntax
PAUSE <duration>

<duration> is in seconds. It may be an integer constant or an integer expression.

DELAY = 25
...

...

<duration> is an integer expression specifying the length of the delay in seconds.

Description

Executing the PAUSE instruction will not delay any processes already running on
target machines.

Example

PAUSE 3

PAUSE DELAY

350

System Testing Script Languages

PRINT

System Testing Supervisor Script Language.

Purpose

The PRINT instruction prints <argument> to the supervision script execution log file
without a carriage return or line feed.

Syntax
PRINT <argument>

where:

• <argument> is a string or a variable that points to a string

Description

The PRINT instruction does not cause a carriage return or line feed after printing the
value of <argument>.

<argument> can be a string constant, delimited by quote double-quotes, or a variable
integer value used in the scenario.

If <argument> uses an unknown variable, the scenario execution exits with an error
message.

Example
var_i = 25
PRINT "value of var_i "
PRINT var_i

351

Test RealTime - Reference Manual

PRINTLN

System Testing Supervisor Script Language.

Purpose

The PRINTLN instruction prints <argument> to the supervision script execution log
file with a carriage return or line feed.

Syntax
PRINTLN [<argument>]

<argument> is an optional string or identifier that is to be printed.

Description

PRINTLN var_i

The value of <argument> can be a string constant, delimited by double-quotes, or a
variable integer value used in the scenario.

If you provide no argument, the instruction causes a carriage return or line feed.

If <argument> uses an unknown variable, the scenario execution exits with an error
message.

Example
var_i = 25
PRINTLN "value of var_i "

352

System Testing Script Languages

RENDEZVOUS

System Testing Supervisor Script Language.

Purpose

The RENDEZVOUS instruction synchronizes virtual testers and other processes.

Syntax
RENDEZVOUS <rendezvous>

<rendezvous> is a rendezvous identifier, previously declared by a MEMBERS
statement.

Description

When the scenario reaches a RENDEZVOUS statement, the script is halted until all
declared members arrive at the rendezvous. When the rendezvous is met by all
members, the supervisor orders all processes to resume.

RENDEZVOUS identifiers must be unique in the script, including from logical
process names or variable names, otherwise you will receive an error when execution
fails.

...

EXECUTE machine_2:test2

If the rendezvous does not occur before the end of the timeout delay, you will receive
an error. The default delay is five minutes. You can modify the delay with the
TIMEOUT instruction.

Example

MEMBERS test1_test2 3
EXECUTE machine_1:test1

RENDEZVOUS test1_test2

353

Test RealTime - Reference Manual

RMDIR

System Testing Supervisor Script Language.

Syntax

Purpose

The RMDIR instruction deletes a directory from the System Testing Supervisor
machine or from a target machine.

RMDIR [<hostname>:] <directory>

where:

• <hostname> is an optional logical name of a target machine (see HOST)

The directory path name may contain local environment variables of the System
Testing Supervisor machine or remote environment variables defined on the target
machine. For more information, refer to the section on Environment variables.

If the operation fails, the script returns an error message.

Example

• <directory> is the relative or absolute path of a directory

Description

The <directory> path may contain long quoted pathnames, such as "C:\Program
Files\Rational\Test RealTime\".

HOST target IS antares.tlse.fr(10098)
RMDIR ../localdir
RMDIR target:$HOME/tmp

354

System Testing Script Languages

SET

System Testing Supervisor Script Language.

Purpose

The SET instruction sets an environment variable on either the System Testing
Supervisor machine or the target machine.

Syntax
SET [<hostname>:] <env_var> << <expression>
SET [<hostname>:] <env_var> = <string>

<hostname> is the logical name of the target machine,

<env_var> is the name of the environment variable,

<expression> is a numerical expression,

<string> is a text string.

Description

<hostname> must be previously declared with a HOST instruction. If you do not
specify a hostname, the SET instruction sets a local environment variable on the
supervisor machine.

The environment variable is set when the SET instruction executes. It keeps its value
until the end of the execution, or until it resets.

The string from the equal sign (=) to the end of the line belongs to the expression.

To evaluate an expression and assign it to the variable, use the << symbol. The
expression may contain variables.

Example

SET target:NUMVALUE <<i+2

HOST target IS workstation(10098)
...
SET LOCAL_TMP_DIR=/tmp
SET target:REMOTE_TMP_DIR << $TMPDIR

355

Test RealTime - Reference Manual

SHELL

System Testing Supervisor Script Language.

Syntax
SHELL command

The command's execution log is not recorded in the supervision script execution log.

Purpose

The SHELL instruction executes a command by the System Testing Supervisor
machine.

Description

SHELL commands block execution of the supervision script until the command is
complete.

Example
...
SHELL ls /tmp -l ...

356

System Testing Script Languages

STATUS

System Testing Supervisor Script Language.

Purpose

STATUS is an integer operator that retrieves the code returned by a remote process
when it terminates.

Syntax
STATUS (process)

where:

• <process> is a logical process identifier

Description

The execution of a STATUS expression does not block execution of the scenario.

WHILE !ENDOF(proc_1)

 EXIT

Applying STATUS to an ongoing process always returns a zero value. We
recommend you use the STATUS operator in conjunction with ENDOF.

Note If you place an EXECUTE or DO instruction inside a WHILE loop, the
process identifier denotes a group of processes. In this case, a STATUS
expression returns a binary result or code from all the processes in the group.
For example, if ten processes terminate with a return code of 0 and one
process terminates with the return code of 1, the STATUS operator returns the
value 1.

Example
EXECUTE proc_1 IS machine:foo0098

PAUSE 1
END WHILE
j = STATUS (proc_1)
IF j != 0 THEN
 PRINT "incorrect termination of program -> "
 PRINTLN j

END IF

357

Test RealTime - Reference Manual

STOP

System Testing Supervisor Script Language.

Syntax
STOP <process>

where:

• <process> is the identifier of a process

Purpose

The STOP instruction stops a process began with the EXECUTE instruction.

Example
HOST target IS antares
EXECUTE server IS machine:server
...
STOP server

358

System Testing Script Languages

TIMEOUT

System Testing Supervisor Script Language.

Syntax
TIMEOUT <integer>

Purpose

The TIMEOUT instruction lets you define the time to wait for a rendezvous.

The value is measured in seconds.

HOST machine_1 IS 193.5.4.3

Description

You may use only one TIMEOUT instruction in a test script.

The default value is 300 seconds (5 minutes).

Example

HOST machine_2 IS remote.domain.fr
TIMEOUT 40
RENDEZVOUS phase_1

359

Test RealTime - Reference Manual

TRACE ... FROM

System Testing Supervisor Script Language.

Syntax
TRACE ON | OFF [FROM <host_name>]

Purpose

The TRACE instruction enables or disables execution traces from the machine
specified by host_name, where this name was defined by a HOST instruction.

The traces are consolidated into the supervisor log file.

The keyword ON enables traces.

If the clause FROM host_name is not present, all traces from all machines are enabled
or disabled.

By default, traces follow the HOST instruction.

HOST machine_2 IS remote

The keyword OFF disables traces.

Description

If the clause FROM host_name is present, traces from machine host_name are
enabled or disabled.

If you specify an unknown host name, you will receive an error when scenario
execution fails.

Example
HOST machine_1 IS 193.5.4.3

TRACE OFF FROM machine_1

360

System Testing Script Languages

UNSET

System Testing Supervisor Script Language.

Syntax
UNSET [<hostname>:] <env_var>

• <env_var> is the name of the environment variable

Description

Hostname is the logical name on a target machine as defined in the HOST
instruction. If you do not specify a hostname, the UNSET instruction deletes a local
variable.

where:

• <hostname> is the logical name of the target machine (See HOST.)

Purpose

The UNSET instruction deletes an environment variable from the System Testing
Supervisor machine or from the target machine.

When you execute the UNSET instruction, the environment variable deletes until the
end of the execution, or until you reset it.

Example
HOST target IS workstation(10098)
...
SET LOCAL_TMP_DIR=/tmp
SET target:REMOTE_TMP_DIR=$TMPDIR
...
UNSET LOCAL_TMP_DIR
UNSET target:REMOTE_TMP_DIR
...

361

Test RealTime - Reference Manual

WHILE

System Testing Supervisor Script Language.

Syntax
WHILE expression
instructions
END WHILE

Purpose

The WHILE instruction creates an execution loop.

Example
HOST machine IS 193.6.2.1
EXECUTE proc_1 IS machine:program
i = 1
WHILE !ENDOF (proc_1)
 PAUSE 1
 i = i + 1
END WHILE
j = STATUS (proc_1)
PRINT "execution time: "
PRINTLN i
PRINT "return code: "
PRINTLN j

362

System Testing Script Languages

Variables

System Testing Supervisor Script Language.

A supervision script may contain integer variables only.

The system implicitly declares variables the first time they appear. The variable must
first appear in an assignment instruction.

A variable must have a different name from any logical hostname defined in a HOST
instruction, from any logical process name defined in an EXECUTE instruction, and
from any RENDEZVOUS name. Otherwise, you will receive an error when scenario
execution fails.

Variable names must begin with an upper or lowercase letter or with an underscore
(_), followed, if necessary, by a series of letters, digits, or underscore characters.

Variable names are case sensitive. For example, the variable Aa5 is different from the
variable aA5.

Example
HOST machine IS 193.6.2.1
EXECUTE proc_1 IS machine:program
i = 1
-- declaration of i
WHILE !ENDOF (proc_1)
 PAUSE 1
 i = i + 1
END WHILE
j = STATUS (proc_1)
 -- declaration of j

PRINT "return code "

PRINT "execution time "
PRINTLN i

PRINTLN j

363

Test RealTime - Reference Manual

Environment variables

System Testing supervisor scripts may read and write environment variables on the
System Testing Supervisor machine and on target machines.

Example

DO machine: ls $HOME

Precede an environment variable name with a dollar sign ($) to substitute the
environment variable by its value within a statement.

To force a variable to refer to the environment of the System Testing Supervisor
machine, precede the environment variable with the 'at' sign (@) instead of the dollar
sign.

HOST machine IS $HOSTNAME
-- show the contents of the target home directory

-- show the contents of the local home directory
SHELL ls $HOME

364

System Testing Script Languages

Expressions

System Testing Supervisor Script Language.

Supervisor scripts may contain integer expressions only.

You may use expressions in variable assignments, IF instructions, and WHILE
instructions.

Expressions may contain the following operators:

Operator Description

== Equals

!= Does not equal

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

+ Plus

- Unary or binary minus

* Multiply

/ Divide

% Modulo

! Negation

&& Logical AND

|| Logical OR

ENDOF See ENDOF

STATUS See STATUS

• >, >=, <, <=

• !, ENDOF, STATUS

Expressions may be nested with parentheses. Operators obey the following
ascending order of priority:

• &&, ||

• ==, !=

• +, Unary or binary -

• *, /, %

365

Test RealTime - Reference Manual

Example
HOST machine IS 193.6.2.1
EXECUTE proc_1 IS machine:program

j = (i + 3 2) + (i <= 2)

i = 1
 -- declaration of i

 -- declaration of j
PRINTLN j

366

System Testing
Probe Macros

367

Test RealTime - Reference Manual

368

System Testing Script Languages

About Probe Macros

Probe Macros allow you to manually instrument your source code under test to add
message tracing capability to your test binary. This feature is tightly linked with
System Testing for C.

Before adding probe macros to your source code, add the following #include
statement to each source file that is to contains a probe:

#include "atlprobe.h"

Upon execution of the instrumented binary, the probes write trace information on the
exchange of specified messages to the .rio System Testing output file.

Using Probe Macros

The atl_start_trace() and atl_end_trace() macros must be called when the application
under test starts and terminates.

Other macros must be placed in your source code in locations that are relevant for the
messages that you want to trace.

Probe Macros

• atl_dump_trace()

• atl_end_trace()

• atl_recv_trace()

• atl_select_trace()

• atl_send_trace()

• atl_start_trace()

• atl_format_trace()

369

Test RealTime - Reference Manual

atl_dump_trace()

Purpose

Writes traces from the cus om location, when FIFO, File or User buffer is selected, to
the .rio System Testing output files for C.

t

Syntax

This is not used in Default mode.

atl_dump_trace()

Example
int main(int argc, char** argv)
{
...
atl_start_trace(atl_client, "../res/", client, 0);
atl_start_trace(atl_serv, "../res/", serv, 0);
...
atl_end_trace(atl_client);atl_end_trace(atl_serv);
atl_dump_trace();
...
}

370

System Testing Script Languages

atl_end_trace()

Purpose

Closes the trace environment of an instance. This macro must be executed before the
application terminates.

Syntax
atl_end_trace(<ctx>)

where:

• <ctx> is the identifier of a context variable linked to an instance.

Example
int main(int argc, char** argv)
{
...
atl_start_trace(atl_client,"client.rio",client,1000);
atl_start_trace(atl_serv, "serv.rio", serv, 2000);
...
atl_end_trace(atl_client);
atl_end_trace(atl_serv);
...
}

371

Test RealTime - Reference Manual

atl_format_trace()

Purpose

This macro allows you to include a format file for the trace output.

Syntax
atl_format_trace(<file>)

where:

int main(int argc, char** argv)

atl_start_trace(atl_client,"client.rio",client,1000);

atl_format_trace("atl_format.hts");
...

• <file> is the name of a format file, containing System Testing FORMAT
instructions for C.

Example

{
...

atl_start_trace(atl_serv, "serv.rio", serv, 2000);
...

atl_end_trace(atl_client);
atl_end_trace(atl_serv);
...
}

372

System Testing Script Languages

atl_recv_trace()

Purpose

Traces the reception of message.

Syntax
atl_recv_trace(<ctx>, <dist>, <msg>, <type>, <msgname>)

where:

• <ctx> is the identifier of a context variable linked to an instance.

• <dist> is the identifier of the emitter of a message.

• <msg> is the message address.

• <type> is the message type as defined in the msg_type.h file.

• <msgname> is the name of the message traced in the report.

Example
atl_recv_trace(atl_client,f1,serv,t_cost,cost);
atl_send_trace

373

Test RealTime - Reference Manual

atl_select_trace()

Purpose

Specifies for a given union type, the field to use for a message instance.

Syntax
atl_select_trace(<ctx>, <idx>, <val>)

where:

• <ctx> is the identifier of a context variable linked to an instance.

• <idx> is a union type semantic path.

• <val> is the rank of the field used in the union type.

Example
atl_recv_trace(atl_client,f1,serv,t_cost,cost);
atl_send_trace

374

System Testing Script Languages

atl_send_trace()

Purpose

Traces a message sent.

Syntax
atl_send_trace(<ctx>, <dist>, <msg>, <type>, <msgname>)

where:

• <type> is the message type as defined in the msg_type.h file.

• <ctx> is the identifier of the context variable linked to an instance.

• <dist> is the identifier of the receiver of a message.

• <msg> is the message identifier.

• <msgname> is the name of the message traced in the report.

Example
atl_send_trace(atl_client,f1,serv,t_cost,cost);

375

Test RealTime - Reference Manual

atl_start_trace()

Purpose

Initializes the environment of an instance trace. This macro must be executed when
the application under test starts.

Syntax
atl_start_trace(<ctx>, <path>, <instance>, <size>)

where:

• <ctx> is an ATL_CTX_PRB type identifier. This type is defined in the file
produced by the Probe Test Script Generator or in the probecst.h file

• <path> is the path to the .rio file to which the traces are to be written

• <instance> is the name of the instance

• <size> specifies the memory size used in bytes in FIFO or USER mode

Example
int main(int argc, char** argv)
{
...
atl_start_trace(atl_client, "../res/", client, 0);
atl_start_trace(atl_serv, "../res/", serv, 0);
...
atl_end_trace(atl_client);
atl_end_trace(atl_serv);
...
}

376

Appendices

This section provides extra reference information that may be necessary when using
the product.

GUI Macro Variables

Some parts of the graphical user interface (GUI) allow you to specify command lines,
such as in the Tools menu or in User Command nodes.

To enhance the usability of this feature, the product includes a macro language,
allowing you to pass system and application variables to the command line.

Usage

Macro variables are preceded by $$ (for example: $$WSPNAME).

Macro functions are preceded by @@ (for example: @@PROMPT).

Environment variables are also accessible, and start with $ (for example: $DISPLAY).

When specifying a command line, variables and functions are replaced with their
value.

In Windows, when long filenames are involved, it is necessary to add double quotes
(" ") around filename variables. For example:

"C:\Program Files\Internet Explorer\IEXPLORE.EXE" "$$NODEPATH"

Node variables are context-sensitive: the variable returned relates to the node
selected in the File or Test Browser. Multiple selections are supported. If a node
variable is invoked when there is no selection, no value is returned by the variables.

Macro variables and functions are case-insensitive. For clarity, they are represented
in this document in upper case characters.

Language Reference

• Global variables: not node-related, include Workspace and application
parameters.

377

Test RealTime - Reference Manual

• Node attribute variables: general attributes of a node.

• Functions: return a value to the command line after an action has been
performed.

Functions

Functions process an input value and return a result. Input values are typically a
global or node variable.

Environment Variable Description

@@PROMPT('<message>') Opens a prompt dialog box, allowing the user to enter a line of
text.

The optional <message> parameter allows you to define a
prompt message, surrounded by single quotes (').

@@EDITOR(<filename>) Opens the product Text Editor.

@@OPEN(<filename>) Opens <fi ename>. <fi ename> must be a file type recognized l l
by the product. This is the equivalent of selecting Open from
the File menu.

Global Variables

Global variables always return the same value throughout the Workspace.

Environment
Variable

Description

$$PRJNAME Returns the name of the current .rtp Project file

$$PRJDIR Returns the directory name of the current .rtp Project file

$$PRJPATH Returns the absolute path of the current .rtp Project file

$$VCSDIR Returns the local repository for files retrieved from Rational
ClearCase, as specified in the ClearCase Preferences dialog box

$$CPPINCLUDES Returns the directory of C and C++ include files, as specified in the
Directories Preferences dialog box

$$PERL Returns the full command-line to run the PERL interpreter included
with the product

$$CLIPBOARD Returns the text content of the clipboard

$$VCSITEMS Returns a list of installed configuration management system (CMS)
tools

378

Appendices

Node Attribute Variables

These variables represent the attributes of a selected node. If no node is selected,
these variables return an empty string.

Environment
Variable

Description

$$NODENAME Returns the name of the node. In the case of files, this is the node's
short filename

$$NODEPATH Returns the absolute path and filename of the selected node

$$CFLAGS Returns the compilation flags

$$LDLIBS Returns the filenames of link definition libraries

$$LDFLAGS Returns the flags used for link definition

$$ARGS Returns all arguments sent to the command line

$$OUTDIR Returns the name of the product features output directory

$$REPORTDIR Returns name of the text report output directory

$$TARGETDIR Returns the absolute path to the current Target Deployment Port

$$BINDIR Returns the binary directory where the product is installed

$$OBJECTS Returns a list of .o or .obj object files generated by the compiler

$$TIO Returns the name of the current .tio trace file generated by Code
Coverage

$$TSF Returns the name of the current UML/SD .tsf static file generated by
Runtime Tracing

$$TDF Returns the name of the current UML/SD .tdf dynamic file generated
by Runtime Tracing

$$TDC Returns the name of the current Code Coverage .tdc correspondence
file

$$ROD Returns the name of the current .rod report file

$$FDC Returns the name of the current .fdc correspondence files for Code
Coverage

Instrumentation Pragmas

The Runtime Tracing feature allows the user to add special directives to the source
code under test, known as pragma directives. When the source code is instrumented,
the Instrumentor replaces pragma directives with dedicated code.

379

Test RealTime - Reference Manual

Usage
#pragma attol <pragma name> <directive>

Example
int f (int a)
{
#pragma attol att_insert if (a == 0) _ATT_DUMP_STACK
 return a;
}

This code will be replaced, after instrumentation, with the following line:
/*#pragma attol att_insert*/ if (a == 0) _ATT_DUMP_STACK

Note Pragma directives are implemented only if the routine in which it is
used is instrumented.

Instrumentation Pragma Names
#pragma attol insert <directive>

replaced by the instrumentation to be:
/*#pragma attol insert*/ <directive>

if any of Code Coverage, Runtime Tracing, Memory Profiling or Performance
Profiling is/are selected.

#pragma attol atc_insert <directive>

replaced by the instrumentation to be:
/*#pragma attol atc_insert*/ <directive>

if Code Coverage is selected.

#pragma attol att_insert <directive>

replaced by the instrumentation to be:
/*#pragma attol att_insert*/ <directive>

if Runtime Tracing is selected.

#pragma attol atp_insert <directive>

replaced by the instrumentation to be:
/*#pragma attol atp_insert*/ <directive>

380

Appendices

if Memory Profiling is selected.

#pragma attol atq_insert <directive>

replaced by the instrumentation to be:
/*#pragma attol atq_insert*/ <directive>

if Performance Profiling is selected.

Code Coverage, Memory Profiling and Performance Profiling Directives
_ATCPQ_DUMP(<reset>)

where <reset> is 1 if internal tables reset is wanted or 0 if not.

This macro ATCPQ_DUMP does nothing if Code Coverage, Memory Profiling, or
Performance Profiling are not selected.

Runtime Tracing Directives

When using this mode, the Target Deployment Package only sends messages related
to instance creation and destruction, or user notes. All other events are ignored. See
Partial message dump for more information about this feature.
_ATT_START_DUMP
_ATT_STOP_DUMP

These directives activate and deactivate the partial message dump mode.

_ATT_TOGGLE_DUMP

This directive toggles the dump mode on and off. _ATT_TOGGLE_DUMP can be
used instead of _ATT_START_DUMP and _ATT_STOP_DUMP.

_ATT_DUMP_STACK

When invoked, this directive dumps the contents of the call stack at that moment.

_ATT_FLUSH_ITEMS

When in Target Deployment Package buffer mode, this directive flushes the buffer.
All buffered trace information is dumped. Flushing the buffer be useful before
entering a time-critical phase of the trace.

_ATT_USER_NOTE(<text>)

381

Test RealTime - Reference Manual

This directive associates a text note to the function or method instance. <text> is a
user-specified alphanumeric string containing the note text of type char*. The length
of <text> must be within the maximum note length specified in the Runtime Tracing
Settings dialog box.

Environment Variables

Mandatory Environment Variables

The following environment variables MUST be set to run the product:

• TESTRTDIR for the graphical user interface

• ATUDIR for Component Testing for C and Ada

• ATS_DIR for System Testing for C

• ATLTGT in the command line interface

Environment Variable List

Environment Variable Description

TESTRTDIR A mandatory environment variable that points to the
installation directory of the product.

ATTOLSTUDIO_VERBOSE

Setting this variable to 1 forces the product GUI to display
verbose messages, including file paths, in the Build Message
Window.

Runtime Analysis Features

The Runtime Analysis Features use the following environment variables:

Environment Variable Description

ATLTGT A mandatory environment variable that points to the Target
Deployment Port directory when you are using the product in
the command line interface.

When you are using the Instrumentation Launcher or the
product GUI, you do not need to set ATLTGT manually, as it is
calculated automatically.

ATL_TMP_DIR Indicates the location for temporary files. By default, they are

382

Appendices

 placed in /tmp for UNIX or the current directory for Windows.

ATL_EXT_SRC

This variable allows you to instrument additional files with
filename extensions other than the defaults (.c and .i). The .c
extension is reserved for C source files that require
preprocessing, while .i is for already preprocessed files. All
other extensions supported by this variable are assumed to be
of source files that need to be preprocessed.

ATL_EXT_OBJ Lets you specify an alternative extension to .o (UNIX) or .obj
(DOS) for object files.

ATL_EXT_ASM Lets you specify more than .s extension for assembler source
files when the compiler offers an option to generate an
assembler listing without compiling it to the object file.

ATL_EXT_TMP_CMD Windows only. Lets you specify an alternative extension to the
Windows temporary options file. Defaults to ._@@.

ATL_EXT_SRCCP The variable lets you add C++ source file extensions (defaults
are .C, .cpp, .c++, .cxx, .cc, and .i) to specify the C++ source
files to be instrumented. Extensions .C to .cc in the list are
reserved for source files under analysis. The .i extension is
reserved for those to be processed, if the
ATL_FORCE_CPLUSPLUS variable is set to ON. Any other
extension implies that pre-processing is to be performed.

ATL_FORCE_CPLUSPLUS If set to ON, this variable allows you to force C++
instrumentation whether the file extension is .c, .i, or any
added extension.

Component Testing for C and Ada

Component Testing for C and Ada uses the following environment variables:

Environment
Variable

Description

ATUDIR Points to the /lib directory in the product installation directory.

ATUTGT Points to the Target Deployment Port directory for Component
Testing for C and Ada.

You can change default extensions for Component Testing for C and Ada through the
use of environment variables when the Test Script Compiler or Test Report Generator
is started.

The following table summarizes these environment variables and the extensions they
modify.

383

Test RealTime - Reference Manual

Environment
Variable

File

ATTOLPTU Test script .ptu

ATTOLTDC Table of correspondence file .tdc

ATTOLLIS List of errors .lis

ATTOLRIO Trace file

ATTOLRO Test report .ro

ATTOLROD Unformatted test report .rod

ATTOLDEF Standard definitions file .def

ATTOLSMB Symbol table file .smb

Default extension

.rio

The rule whereby a "2" is added to the extension of the .rio trace file when the -
compare option is used still applies if the default extension is changed in the
ATTOLRIO environment variable.

System Testing for C

System Testing for C uses the following environment variable:

Environment
Variable

Description

ATS_DIR Points to the directory containing the System Testing binaries for C.

Test Process Monitor

The Test Process Monitor uses the following environment variables.

Environment
Variable

Description

ATTOL_TPM_ROOT This variable indicates the directory where Test Process Monitor
databases are located for a project. ATTOL_TPM_ROOT is a
mandatory variable and must be set when a project is created. It
should be a shared directory accessible by all users who work on a
project.

ATTOL_TPM_USER This optional variable specifies the name of the user. If this variable
is not set, the Test Process Monitor uses the current user, if possible.

384

Appendices

C and C++ Instrumentation Launcher

The Instrumentation Launcher uses the following additional variables:

Environment
Variable

Description

ATTOLBIN If set, this variable must contain the path to the Instrumentor
binaries. If not, this path is determined automatically from the PATH
variable. This variable can be useful if the Target Deployment Port
has been moved to a non-standard location.

ATTOLOBJ If set, this variable points to a valid directory where the products.h
file is generated and the Target Deployment Port (TP.o or TDP.obj) is
compiled. By default, these files are generated in the current
directory.

ATL_OVER_SET This variable must indicate the path to a copy of the
BatchCCDefaults.pl file if you want to change any Target
Deployment Port compilation flags contained in that file.

ATL_EXT_LIB Lets you specify additional alternative extensions for library files. By
default .a or .lib are used.

ATL_FORCE_C_TDP If set to ON, the tp.ini file is used instead of the tpcpp.ini file (used
for C++ language). If the Target Deployment Port supports only C
language, the tp.ini file is always used.

ATL_OVER_SET As an alternative to using the --settings of the Instrumentation
Launcher, you can copy and modify the
<InstallDir>/lib/scripts/BatchCCDefaults.pl file. In this case, set
ATL_OVER_SET to the directory and filename of the new copy of
this file.

Ada Tools

The Ada Link File Generator and Ada Unit Maker use the following additional
variables:

Environment
Variable

Description

ATTOLCHOP Selects the default naming convention. The following values can be
used:

ATTOLCHOP="APEX" : for Rational Apex naming

ATTOLCHOP="GNAT" : for Gnat naming

All other values end with a fatal error. By default, Gnat naming is
used.

ATTOLALK_EXT Specifies allowed extensions separated by the semicolon (':')

385

Test RealTime - Reference Manual

character on UNIX systems and (';') on Windows.

By default, the allowed extension list is ".ada:.ads:.adb"

ATTOLALK_NOEXT Specifies forbidden extensions separated by the ':' character on UNIX
systems and ';' on Windows.

By default, the forbidden extension list is empty.

LD_LIBRARY_PATH Specifies the location of libraries required by the Ada Link File
Generator. By default, these libraries are located in the /lib directory
of the installation directory.

Setting Environment Variables

Solaris, Linux or HP-UX Platforms

 To set an environment variable with a csh shell:

1. Open a shell window

2. Type the following command:
setenv <variable> <value>

 To set an environment variable with a sh, ksh, or Bourne shell:

1. Open a shell window

2. Type the following commands:
<variable>=<value>
export <variable>

Windows Platforms

 To set an environment variable under Windows NT, 2000 or XP:

1. From the Start menu, select Parameters, Control Panel, and double-click System.

2. Select the Advanced tab and click Environment variables.

3. Click the New... button to add the new environment variable.

4. Click OK.

386

Appendices

File Types

This table summarizes all the file types generated and used by Test RealTime.

File Type Default
Extension

Generated By Used By

Component Testing for
C++
Declaration Files

.dcl C++ Source code Parser* C++ Test Script Compiler

Component Testing for
Ada
Intermediate File

.ddt Ada Test Script Compiler
Ada Test Report
Generator

Code Coverage
Correspondence File

.fdc Instrumented application
(Code Coverage)

Code Coverage
Report Generator

Component Testing for
Ada
Intermediate File

.mdt Ada Test Script Compiler
Ada Test Report
Generator

Static Metrics File .met

C++ Source code Parser

C Source Code Parser

Ada Source Code Parser

Java Source Code Parser

GUI Metrics Viewer

Component Testing for
C++
Contract Check Script

.otc C++ Source code Parser* C++ Test Script Compiler

Component Testing for
C++
Test Driver Script

.otd C++ Source code Parser* C++ Test Script Compiler

Component Testing for
C++
Instrumentation File

.oti C++ Test Script Compiler C and C++ Instrumentor

Component Testing for
C++
Intermediate File

.ots C++ Test Script Compiler
C++ Test Report
Generator

System Testing for C
Test Script

.pts User System Testing
Script Compiler

Component Testing for
C and Ada Test Script

.ptu C Source Code Parser* C Test
Script Compiler

System Testing for C
Result File

Component Testing for
C and Ada Result File

.rio

Test Driver
(System Testing for C)

Test Driver
(Component Testing for

System Testing
Report Generator

C Test Report Generator

Ada Test Report

387

Test RealTime - Reference Manual

C and Ada) Generator

Project File .rtp GUI GUI

Workspace File .rtw GUI GUI

Graphic Report .rtx
C Test Report Generator

Ada Test Report
Generator

GUI Report Viewer

System Testing for C
Supervision Script .spv

User (via CLI) or
Virtual Tester
Deployment Wizard

System Testing for C
Supervisor

Target Output File .spt Target Deployment Port GUI

Component Testing for
C++
Stub Files

.stb C++ Source Code Parser* C++ Test Script Compiler

System Testing for C
Intermediate File

Component Testing for
C and Ada
Intermediate File

.tdc

System Testing
Script Compiler

C Test Script Compiler

Ada Test Script Compiler

System Testing
Report Generator

C Test Report Generator

Ada Test Report
Generator

UML/SD
Dynamic Trace File .tdf

Instrumented application
(Runtime Tracing,
Component Testing for
C++ and Java)

GUI UML/SD Viewer

Code Coverage
Intermediate File

.tio Instrumented application
(Code Coverage)

Code Coverage
Report Generator

Memory Profiling for C
and C++
Dynamic Trace File

.tpf
Instrumented application
(Memory Profiling)

GUI Memory Profiling
Viewer

Performance Profiling
Dynamic Trace File

.tqf Instrumented application
(Performance Profiling)

GUI Performance
Profiling Viewer

Static Trace File .tsf

C++ Test Script Compiler

C and C++ Instrumentor

Java Test Report
Generator

GUI UML/SD Viewer

Memory Profiling for
Java
Dynamic Trace File

.txf
Java Instrumented
application (Memory
Profiling)

GUI Memory Profiling
Viewer

Target Deployment
Port Customization File

.xdp TDP Editor TDP Editor

XML Report File .xrd C Test Report Generator
Ada Test Report

GUI Report Viewer

388

Appendices

Generator
C++ Test Report
Generator
Java Test Report
Generator

System Testing
Report Generator

* Indicates files that are generated test script templates. Use these files to write your
own test scripts.

389

391

Index

A atopostpro ... 73
atoprepro ... 71

Ada atostart ... 66
Instrumentor...................................40 ATS_PTS .. 94
keywords.......................................196 ATS_SRC ... 94
Link File Generator........................46 atsload.. 108
Metrics Calculator..........................50 atsmerge .. 99
Source Code Parser........................82 atsprepro.. 94
Test Report Generator90 atsspv ... 104
Test Script Compiler......................85 attolada .. 40
Unit Maker......................................48 attolalk ... 46

Ada ... 82, 85, 90 attolcc ... 15
ADD_ID ...272 attolcc1 ... 4
Agent attolccp... 4

JVMPI ..35 attolchop.. 48
Agent ..35 attolcov .. 112
Ant ..31 attolpostpro 61, 90
Apex ...48 attolpostproADA................................ 90
ARRAY....................................... 157, 220 attolprepro... 56
assertEquals()233 attolpreproADA 85
assertNotNull()236 attolstart... 52
assertNull() ..237 attolstartADA...................................... 82
assertSame().......................................238 attsplit .. 110
assertTrue()..239

B atl_dump_trace374
atl_end_trace375 BEGIN.. 131, 197
atl_format_trace()376 Block Keywords................................ 130
ATL_NUMINSTANCE....................335

C ATL_OCCID......................................334
atl_recv_trace377

C atl_select_trace378
Instrumentation Launcher............ 15 atl_send_trace....................................379
Instrumentor 4 atl_start_trace380
Source Code Parser 52 ATL_TIMEOUT336
Test Report Generator................... 61 atlsplit...121
Test Script Compiler...................... 56

393

Test RealTime - Reference Manual

END ENVIRONMENT.................... 137 Test Script Language Reference 129,
169 END EXCEPTION............................ 285

END IF 291, 350 C.. 52, 56, 61
END INITIALIZATION .. 145, 209, 293 C++
END PROC.. 308 Instrumentation Launcher............15
END PROCSEND............................. 309 Instrumentor.....................................4
END SCENARIO.............................. 313 Source Code Parser........................66
END SERVICE 147, 211 Test Report Generator73
END SIMUL 148 Test Script Compiler......................71
END TERMINATION.............. 218, 317 C++ .. 66, 71, 73
END TEST 154, 219 CALL ..273
ENDIF .. 142, 206 CALLBACK.......................................274
ENDOF .. 344 CASE ..276
ENVIRONMENT.............................. 137 CHANNEL ..277
Environment variables CHDIR..338

Runtime analysis features 386 CLEARD_ID......................................278
Setting environment variables ... 390 Code Coverage Ada Unit Maker48
System Testing 368 Code Coverage Report Generator ..112

Environment variables 381 COMMENT 132, 198
EPILOGUE .. 171 COMMTYPE280
ERROR... 284 COPY..339
EV ... 163 createTimer()262
EXCEPTION.............................. 203, 285

D EXECUTE .. 346
EXIT.. 286 DECLARE_INSTANCE281
Expected values 163, 222 DEF_MESSAGE282
Expressions.. 369 DEFINE STUB 133, 199

DELETE..341 F DO...342
fail() .. 240 Dump File Splitter121
FAMILY 138, 204

E File extensions................................... 391
FLUSH TRACE 288 ELEMENT.................................. 135, 201
FORMAT ... 289 ELSE 142, 206, 291, 350
FROM... 364 ELSE SIMUL......................................148

END.................... 199, 201, 211, 219, 283 G END CALLBACK274
END CASE...276 Generator................... 46, 52, 61, 66, 112
END DEFINE 133, 199 Global variables 382
END ELEMENT........................ 135, 201 Gnat.. 48

394

Index

javic .. 28, 31 Graphical User Interface..................111
JIT mode .. 35 GUI ...111
JUnit ... 231 GUI functions382
JVMPI GUI Macros381

JVMPI Agent 35
H JVMPI... 35

HEADER............................ 141, 205, 290 K HOST..349
Keywords

I Ada .. 196
Keywords 130, 170, 196 Identifiers........................... 129, 169, 270
Krunch ... 48 IF 142, 206, 291, 350

INCLUDE 144, 174, 208, 292, 351 L INIT ..160
Language 129, 169 INITIALIZATION 145, 209, 293
Launcher.. 15 Initializations.....................................225
Launching the GUI........................... 111 INSTANCE ..294
Line command 1 Instrumentation Launcher...........15, 28
Link File Generator 46 Instrumentation pragma directives383
Load Report Generator.................... 108 Instrumentor 4, 22, 40
LOOP (System Testing Language). 313 INTERRECV......................................295

INTERSEND......................................296
M IS ...276

Macro ... 381 J MATCHED.. 297
MATCHING 298 Java
MEMBERS... 352 Instrumentation Launcher for Ant

..31 MESSAGE.. 299
MESSAGE_DATE............................. 300 Instrumention Launcher28
metada ... 50 Instrumentor.............................22, 28
Methods ... 231 Source Code Parser........................76
Metrics ... 50 Test Report Generator79
MKDIR... 353 Test Script Generator.....................76

-Xint -Xrunpagent35
N Java ... 22, 76, 231

javastart..76 NEXT_TEST 146, 210
javi ..22 NIL ... 301
javic NO_MESSAGE 302

Ant ...31 Nodes ... 383

395

Test RealTime - Reference Manual

rod2xrd .. 61, 90 NONIL ...303
RUN ... 181 NOTMATCHED304

NOTMATCHING.............................305
S

O SCENARIO.. 313
ON ERROR..188 SCI Instrumentor
OTHERS...276 Java .. 22

SCI Instrumentor 22
P SEND.. 315

SERVICE.................................... 147, 211 PAUSE.. 306, 354
SERVICE_TYPE 212 Postprocessor
SET.. 359 Ada...90
Setting environment variables........ 390 C++ ...73
SHARE... 316 Java...79
SHELL.. 360 Postprocessor 73, 79, 90
SIMUL.. 148, 213 Pragma directives383
Source Code Parser Preprocessor

Ada .. 82 Ada...85
C... 52 C ...56
C++... 66 C++ ...71
Java .. 76 System Testing94

Source Code Parser 52, 66, 76, 82 Preprocessor 56, 71, 85, 94
Split .. 121 Primitives...231
Splitter.. 110 PRINT... 307, 355
start... 52, 66, 82 PRINTLN...356
STATUS ... 361 Probe Macros.....................................373
STL language 269 Probe Processor.................................102
STOP .. 362 Probes 102, 373, 374, 375, 376, 377, 379,

380 STR ... 157, 220
STUB 150, 190, 215 PROC.. 184, 308
Studio ... 111, 381 PROCSEND.......................................309
Supervisor ... 104 PROLOGUE.......................................172
Support ..xii PROPERTY ..183
System Testing

R Load Report Generator 108
Report Generator 99 RENDEZVOUS311
Supervisor..................................... 104 REQUIRE ...186
Test Compiler................................. 94 RESET...312

System Testing..... 94, 99, 102, 104, 106,
108

RMDIR ...358

396

Index

T U
TDF ...110 Unit Maker .. 48
TDF Splitter110 UNSET ... 365
Technical Support...............................xii uprint ... 122
TERMINATION................ 153, 218, 317 USE... 155
TEST ... 154, 219

V TEST CASE ..177
Test Process Monitor........................118 VAR.................................... 157, 220, 322
Test Report Generator Variables 159, 221, 367, 381, 383

Ada...90 Verify ... 231
C ...61 verify() ... 248
C++ ...73 verifyApproxEquals() 250
Code Coverage.............................112 verifyEllapsedTime() 266
Java...79 verifyEquals 241
System Testing 99, 108 verifyGreaterThan............................ 252

Test Report Generator61, 73, 79, 90, 99,
108, 112

verifyGreaterThanEquals() 254
verifyLogFail() 261

Test Script Compiler verifyLogMessage().......................... 260
Ada...85 verifyLowerThan.............................. 256
C ...56 verifyLowerThanEquals() 258
C++ ...71 verifyNotNull()................................. 244
System Testing94 verifyNull() 245

Test Script Compiler......... 56, 71, 85, 94 verifySame() 246
Test Script Language................ 129, 169 verifyTrue() 247
TEST SUITE179 VIRTUAL CALLBACK.................... 324
TestCase ...231 VIRTUAL PROCSEND.................... 326
TESTCLASS.......................................175 Virtual tester 106
THEN ... 291, 350

W TIME...318
TIMEOUT ..363 WAITTIL ... 328
TIMER ..319 WHEN.. 276
timerReportEllapsedTime().............264 WHILE 330, 366
timerStart()...263 WTIME... 331
Tools ...381

X tpmadd...118
TRACE ...364 -Xint.. 35
TRACE OFF.......................................320 -Xrunpagent .. 35
TRACE ON..321
trtpd..116

397

398

	Rational® Test RealTime
	Reference Manual
	Preface
	Audience
	Contacting Rational Technical Publications
	Other Resources
	Customer Support

	Command Line Reference
	Runtime Analysis for C and C++
	C and C++ Instrumentor
	C and C++ Instrumentation Launcher

	Runtime Analysis for Java
	Java Instrumentor
	Java Instrumentation Launcher
	Java Instrumentation Launcher for Ant
	JVMPI Agent

	Runtime Analysis for Ada
	Ada Instrumentor
	Ada Link File Generator
	Ada Unit Maker
	Ada Metrics Calculator

	Component Testing for C
	C Source Code Parser
	C Test Script Compiler
	C Test Report Generator

	Component Testing for C++
	C++ Source Code Parser
	C++ Test Script Compiler
	C++ Test Report Generator

	Component Testing for Java
	Java Source Code Parser
	Java Test Report Generator

	Component Testing for Ada
	Ada Source Code Parser
	Ada Test Script Compiler
	Ada Test Report Generator

	System Testing for C
	System Testing Script Compiler
	System Testing Report Generator
	Probe Processor
	System Testing Supervisor
	Virtual Tester
	System Testing Load Report Generator

	Generic Tools
	TDF Splitter
	Graphical User Interface
	Code Coverage Report Generator
	Trace Receiver
	Test Process Monitor
	Dump File Splitter
	Uprint Localization Utility

	Component Testing Script Languages
	C Test Script Language
	About the C Test Script Language
	BEGIN
	COMMENT
	DEFINE STUB ... END DEFINE
	ELEMENT ... END ELEMENT
	ENVIRONMENT ... END ENVIRONMENT
	FAMILY
	FORMAT
	HEADER
	IF ... ELSE ... END IF
	INCLUDE
	INITIALIZATION ... END INITIALIZATION
	NEXT_TEST
	SERVICE ... END SERVICE
	SIMUL ... ELSE_SIMUL ... END SIMUL
	STUB
	TERMINATION ... END TERMINATION
	TEST ... END TEST
	USE
	VAR, ARRAY and STR
	VAR, ARRAY and STR <variable> Parameter
	VAR, ARRAY and STR <initialization> Parameter
	VAR, ARRAY and STR <expected> Parameter

	C++ Test Script Language
	About the C++ Test Script Language
	EPILOGUE
	PROLOGUE
	INCLUDE
	TEST CLASS
	TEST CASE
	TEST SUITE
	RUN
	PROPERTY
	PROC
	REQUIRE
	ON ERROR
	STUB
	COMMENT

	Ada Test Script Language
	About the Ada Test Script Language
	Ada Test Script Language Identifiers
	BEGIN
	COMMENT
	DEFINE STUB ... END DEFINE
	ELEMENT ... END ELEMENT
	EXCEPTION
	FAMILY
	HEADER
	IF ... ELSE ... END IF
	INCLUDE
	INITIALIZATION ... END INITIALIZATION
	NEXT_TEST
	SERVICE ... END SERVICE
	SERVICE_TYPE
	SIMUL ... ELSE_SIMUL ... END SIMUL
	STUB
	TERMINATION ... END TERMINATION
	TEST ... END TEST
	VAR, ARRAY, and STR
	VAR, ARRAY and STR <variable> Parameter
	VAR, ARRAY and STR <expected> Parameter
	VAR, ARRAY and STR <initialization> Parameter

	Java Test Primitives
	About Java Test Primitives
	assertEquals()
	assertNotNull()
	assertNull()
	assertSame()
	assertTrue()
	fail()
	verifyEquals()
	verifyNotNull()
	verifyNull()
	verifySame()
	verifyTrue()
	verify()
	verifyApproxEquals()
	verifyGreaterThan()
	verifyGreaterThanEquals()
	verifyLowerThan()
	verifyLowerThanEquals()
	verifyLogMessage()
	verifyLogfail()
	createTimer()
	timerStart()
	timerReportElapsedTime()
	verifyElapsedTime()

	System Testing Script Languages
	System Testing Language for C
	Test Script Keywords
	ADD_ID
	CALL
	CALLBACK ... END CALLBACK
	CASE ... IS ... WHEN ... WHEN OTHERS ... END CASE
	CHANNEL
	CLEAR_ID
	COMMENT
	COMMTYPE
	DECLARE_INSTANCE
	DEF_MESSAGE
	END
	ERROR
	EXCEPTION ... END EXCEPTION
	EXIT
	FAMILY
	FLUSH_TRACE
	FORMAT
	HEADER
	IF...THEN...ELSE
	INCLUDE
	INITIALIZATION ... END INITIALIZATION
	INSTANCE ... END INSTANCE
	INTERRECV
	INTERSEND
	MATCHED
	MATCHING
	MESSAGE
	MESSAGE_DATE
	NIL
	NO_MESSAGE
	NONIL
	NOTMATCHED
	NOTMATCHING
	PAUSE
	PRINT
	PROC ... END PROC
	PROCSEND
	RENDEZVOUS
	RESET
	SCENARIO ... LOOP ... END SCENARIO
	SEND
	SHARE
	TERMINATION ... END TERMINATION
	TIME
	TIMER
	TRACE_OFF
	TRACE_ON
	VAR
	VIRTUAL CALLBACK
	VIRTUAL PROCSEND
	WAITTIL
	WHILE ... END WHILE
	WTIME

	Macro Keywords
	ATL_OCCID
	ATL_NUMINSTANCE
	ATL_TIMEOUT

	Supervisor Script Keywords
	CHDIR
	COPY
	DELETE
	DO
	ENDOF
	ERROR
	EXECUTE
	EXIT
	HOST
	IF ... THEN ... ELSE ... END IF
	INCLUDE
	MEMBERS
	MKDIR
	PAUSE
	PRINT
	PRINTLN
	RENDEZVOUS
	RMDIR
	SET
	SHELL
	STATUS
	STOP
	TIMEOUT
	TRACE ... FROM
	UNSET
	WHILE
	Variables
	Environment variables
	Expressions

	System Testing Probe Macros
	About Probe Macros
	atl_dump_trace()
	atl_end_trace()
	atl_format_trace()
	atl_recv_trace()
	atl_select_trace()
	atl_send_trace()
	atl_start_trace()

	Appendices
	GUI Macro Variables
	Instrumentation Pragmas
	Environment Variables
	Setting Environment Variables
	File Types

	Index

