
Rational Software Corporation®
Rational® Test RealTime
Target Deployment Guide

VERSION: 2003.06.00

WINDOWS AND UNIX
support@rational.com
http://www.rational.com

ii Rational Test RealTime and PurifyPlus RealTime Installation Guide

Legal Notices

©2001-2003, Rational Software Corporation. All rights reserved.

Any reproduction or distribution of this work is expressly prohibited without the
prior written consent of Rational.

Version Number: 2003.06.00

Rational, Rational Software Corporation, the Rational logo, Rational Developer
Network, AnalystStudio, , ClearCase, ClearCase Attache, ClearCase MultiSite,
ClearDDTS, ClearGuide, ClearQuest, ClearTrack, Connexis, e-Development
Accelerators, DDTS, Object Testing, Object-Oriented Recording, ObjecTime,
ObjecTime Design Logo, Objectory, PerformanceStudio, PureCoverage, PureDDTS,
PureLink, Purify, Quantify, Rational Apex, Rational CRC, Rational Process
Workbench, Rational Rose, Rational Suite, Rational Suite ContentStudio, , Rational
Summit, Rational Visual Test, Rational Unified Process, RUP, RequisitePro,
ScriptAssure, SiteCheck,SiteLoad, SoDA, TestFactory, TestFoundation, TestStudio,
TestMate, VADS, and XDE, among others, are trademarks or registered trademarks of
Rational Software Corporation in the United States and/or in other countries. All
other names are used for identification purposes only, and are trademarks or
registered trademarks of their respective companies.

Portions covered by U.S. Patent Nos. 5,193,180 and 5,335,344 and 5,535,329 and
5,574,898 and 5,649,200 and 5,675,802 and 5,754,760 and 5,835,701 and 6,049,666 and
6,126,329 and 6,167,534 and 6,206,584. Additional U.S. Patents and International
Patents pending.

U.S. GOVERNMENT RIGHTS. All Rational software products provided to the U.S.
Government are provided and licensed as commercial software, subject to the
applicable license agreement. All such products provided to the U.S. Government
pursuant to solicitations issued prior to December 1, 1995 are provided with
“Restricted Rights” as provided for in FAR, 48 CFR 52.227-14 (JUNE 1987) or DFARS,
48 CFR 252.227-7013 (OCT 1988), as applicable.

WARRANTY DISCLAIMER. This document and its associated software may be used
as stated in the underlying license agreement. Except as explicitly stated otherwise in
such license agreement, and except to the extent prohibited or limited by law from
jurisdiction to jurisdiction, Rational Software Corporation expressly disclaims all
other warranties, express or implied, with respect to the media and software product
and its documentation, including without limitation, the warranties of
merchantability, non-infringement, title or fitness for a particular purpose or arising
from a course of dealing, usage or trade practice, and any warranty against
interference with Licensee’s quiet enjoyment of the product.

Third Party Notices, Code, Licenses, and Acknowledgements

Portions Copyright ©1992-1999, Summit Software Company. All rights reserved.
Chapter - iii

Microsoft, the Microsoft logo, Active Accessibility, Active Client, Active Desktop,
Active Directory, ActiveMovie, Active Platform, ActiveStore, ActiveSync, ActiveX,
Ask Maxwell, Authenticode, AutoSum, BackOffice, the BackOffice logo, bCentral,
BizTalk, Bookshelf, ClearType, CodeView, DataTips, Developer Studio, Direct3D,
DirectAnimation, DirectDraw, DirectInput, DirectX, DirectXJ, DoubleSpace,
DriveSpace, FrontPage, Funstone, Genuine Microsoft Products logo, IntelliEye, the
IntelliEye logo, IntelliMirror, IntelliSense, J/Direct, JScript, LineShare, Liquid Motion,
Mapbase, MapManager, MapPoint, MapVision, Microsoft Agent logo, the Microsoft
eMbedded Visual Tools logo, the Microsoft Internet Explorer logo, the Microsoft
Office Compatible logo, Microsoft Press, the Microsoft Press logo, Microsoft
QuickBasic, MS-DOS, MSDN, NetMeeting, NetShow, the Office logo, Outlook,
PhotoDraw, PivotChart, PivotTable, PowerPoint, QuickAssembler, QuickShelf,
RelayOne, Rushmore, SharePoint, SourceSafe, TipWizard, V-Chat, VideoFlash,
Virtual Basic, the Virtual Basic logo, Visual C++, Visual C#, Visual FoxPro, Visual
InterDev, Visual J++, Visual SourceSafe, Visual Studio, the Visual Studio logo, Vizact,
WebBot, WebPIP, Win32, Win32s, Win64, Windows, the Windows CE logo, the
Windows logo, Windows NT, the Windows Start logo, and XENIX, are either
trademarks or registered trademarks of Microsoft Corporation in the United States
and/or in other countries.

Sun, Sun Microsystems, the Sun Logo, Ultra, AnswerBook 2, medialib, OpenBoot,
Solaris, Java, Java 3D, ShowMe TV, SunForum, SunVTS, SunFDDI, StarOffice, and
SunPCi, among others, are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

Licensee shall not incorporate any GLOBEtrotter software (FLEXlm libraries and
utilities) into any product or application the primary purpose of which is software
license management.

BasicScript is a registered trademark of Summit Software, Inc.

Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma,
Richard Helm, Ralph Johnson and John Vlissides. Copyright © 1995 by
Addison-Wesley Publishing Company, Inc. All rights reserved.

Additional legal notices are described in the legal_information.html file that is
included in your Rational software installation.
iv Rational Test RealTime and PurifyPlus RealTime Installation Guide

Target Deployment Guide Contents

Preface .. ix
Audience ..ix
Contacting Rational Technical Publications...ix
Other Resources...x
Customer Support...x

Target Deployment Port Tutorial.. 1
Tutorial Preparation ... 1
Tutorial Steps... 1
Creating a New TDP .. 2
Editing a TDP... 3
Validating a New TDP.. 5

Creating a New Configuration ...5
Applying a Configuration to a Project ..6
Validating the Compilation Procedure ...6

Debugging a TDP .. 7
Customizing a TDP .. 8

Library Settings..8
Build Settings...9

User-defined I/O Primitives .. 10
Using a Debugger .. 11

Using the Debugger...11
Debug Results ...12

Break Point Mode .. 12
Dumping the Buffer..13
Converting Data to ASCII ..13

Planning a Target Deployment Port... 15
Contents of a Target Deployment Port .. 15
Determining Target Requirements... 16

Determining Target Requirements ..16
v

Table Of Contents

Data Retrieval Capability ...18
Free Data Space ...18
Free Stack Space ..18
Mutex ...19
Thread Self and Private Data ..19
Clock Interface...19
Heap Management ..19
High-Speed Link ..19
Task Management...20
BSD Socket Compliance ...20
Thread Adaptation ...20
Clock Adaptation ...20
JVMPI Support...21
Heap Settings ..21

Retrieving Data from the Target Host .. 21
Target System Categories...22
Determining Target Architecture Support..23
Data Retrieval Examples ...24

Using the TDP Editor .. 29
Upgrading a Target Deployment Port .. 29
Opening a Target Deployment Port ... 29
Editing Customization Points ... 30
Creating a Target Deployment Port ... 31

Naming Conventions ...31
Updating a Target Deployment Port .. 32
Using a Post-generation Script .. 32

Example...32
Migrating pre-V2002 TDPs to Present Format... 33

unitest.ini..33
atuconf.h ..34
attol_comm and attol_serv ..37
private_io.ads ..37
private_io.adb ..38
attolcov_io.ads...39
attolcov.opp ...39
atlcov.hpp ..39
atlcov.def ...39
atl_cc.def ...40
atl_cc.def for C++ ..40
standard-ada95.ads...40
standard-ada83.ads...40
standard*.* ...40

vi

Table Of Contents

Perl Scripts ..41

Index... 45

vii

Preface

Welcome to Rational Test RealTime.

This Reference Manual contains advanced information to help you use the product
from the command line.

Test RealTime is a complete runtime analysis and testing solution for real-time and
embedded systems. It addresses all runtime analysis needs and all test levels
including component and system testing for the C, C++, Ada, and Java programming
languages.

General information about using the product can be found in the Test RealTime User
Guide.

If you are using the product for the first time, please take the time to go through the
Test RealT me Online Tutorial. i

l
If you are upgrading from a previous version of Test RealTime, please refer to
Upgrading a Target Dep oyment Port.

Audience

This Target Deployment Guide is intended for advanced users of the product.
Advanced knowledge of the target compiler, platform, development and test
environment are required for Target Deployment Port customization tasks.
Knowledge of Perl scripts is also required.

Contacting Rational Technical Publications

To send feedback about documentation for Rational products, please send e-mail to
our technical publications department at techpubs@rational.com.

Keep in mind that this e-mail address is only for documentation feedback. For
technical questions, please contact Customer Support.

ix

Rational Target Deployment Guide

Other Resources

All manuals are available online, either in HTML or PDF format. The online manuals
are on the CD and are installed with the product.

For the most recent updates to the product, including documentation, please visit the
Product Support section of the Web site at:

http://www.rational.com/products/testrt/index.jsp

Documentation updates and printable PDF versions of Rational documentation can
also be downloaded from:

http://www.rational.com/support/documentation/index.jsp

For more information about Rational Software technical publications, see:

http://www.rational.com/documentation.

For more information on training opportunities, see the Rational University Web site:

http://www.rational.com/university.

Customer Support

Before contacting Rational Customer Support, make sure you have a look at the tips,
advice and answers to frequently asked questions in Rational's Solution database:

http://solutions.rational.com/solutions

Choose the product from the list and enter a keyword that most represents your
problem. For example, to obtain all the documents that talk about stubs taking
parameters of type “char”, enter "stub char". This database is updated with more
than 20 documents each month.

When contacting Rational Customer Support, please be prepared to supply the
following information:

• About you:
Name, title, e-mail address, telephone number

• About your company:
Company name and company address

• About the product:
Product name and version number (from the Help menu, select About).
What components of the product you are using

• About your development environment:
Operating system and version number (for example, Linux RedHat 8.0), target

x

http://www.rational.com/products/testrt/index.jsp
http://www.rational.com/documentation
http://www.rational.com/university

Preface

compiler, operating system and microprocessor. If necessary, send the Target
Deployment Port .xdp file

• About your problem:
Your service request number (if you are calling about a previously reported
problem)
A summary description of the problem, related errors, and how it was made to
occur
Please state how critical your problem is
Any files that can be helpful for the technical support to reproduce the problem
(project, workspace, test scripts, source files). Formats accepted are .zip and
compressed tar (.tar.Z or .tar.gz)

If your organization has a designated, on-site support person, please try to contact
that person before contacting Rational Customer Support.

You can obtain technical assistance by sending e-mail to just one of the e-mail
addresses cited below. E-mail is acknowledged immediately and is usually answered
within one working day of its arrival at Rational. When sending an e-mail, place the
product name in the subject line, and include a description of your problem in the
body of your message.

Note When sending e-mail concerning a previously-reported problem, please
include in the subject field: "[SR#<number>]", where <number> is the service
request number of the issue. For example:
Re:[SR#12176528] New data on Rational Test RealTime install issue

Sometimes Rational technical support engineers will ask you to fax information to
help them diagnose problems. You can also report a technical problem by fax if you
prefer. Please mark faxes "Attention: Customer Support" and add your fax number to
the information requested above.

Location Contact

North America

Rational Software,
18880 Homestead Road,
Cupertino, CA 95014

voice: (800) 433-5444
fax: (408) 863-4001

email: support@rational.com

Europe, Middle East, and Africa Rational Software,
Beechavenue 30,
1119 PV Schiphol-Rijk,
The Netherlands

voice: +31 20 454 6200
fax: +31 20 454 6201

email: support@europe.rational.com

xi

Rational Target Deployment Guide

Asia Pacific Rational Software Corporation Pty Ltd,
Level 13, Tower A, Zenith Centre,
821 Pacific Highway,
Chatswood NSW 2067,
Australia

voice: +61 2-9419-0111
fax: +61 2-9419-0123

email: support@apac.rational.com

xii

Target Deployment Port Tutorial

The aim of this quick example is to demonstrate how to create and validate a new
TDP on Windows. The same principles apply to other platforms: just replace
Windows with the native or target platform of your choice.

Tutorial Preparation

An example project for this tutorial, names add.rtp, is provided with Test RealTime
in the /examples/TDP/tutorial directory.

The TDP for this tutorial is based on the MinGW (Minimalist Gnu for Windows) C
compiler distribution. MinGW is a collection of header files and import libraries that
allow one to use GCC and produce native Windows32 programs that do not rely on
any 3rd-party DLLs.

The MinGW distribution includes GNU Compiler Collection (GCC), GNU Binary
Utilities (Binutils), GNU debugger (Gdb) , GNU make, and various other utilities.

 To obtain a copy of the MinGW environment:

1. Connect to http://www.mingw.org

2. Locate and download the latest complete MinGW distribution.

3. Follow the instructions provided with the distribution for installation and
configuration.

Tutorial Steps

This Tutorial will guide you through the steps of creating, modifying and debugging
TDP, using custom I/O functions, a debugger and defining a break point strategy.

1

Rational Target Deployment Guide

Creating a New TDP

In most cases, you will not create a TDP from scratch but rather base your new TDP
on an existing TDP template. In this example, you will adapt an existing TDP
gccmingw_template.xdp to your own environment.

The TDP file format is .xdp, as in XML Deployment Port. There are file-naming
conventions when creating a new TDP:

• c for a C or C++ TDP, j for Java, a for an Ada TDP.

• An acronym for the target platform host, in this case call it wingcc for Windows
GCC.

• The name of the development environment mingw

Therefore, our TDP filename shall be cwingccmingw.

All TDPs are located in the following directory:
<install_dir>/targets/<tdp_name>/<tdp_name>.xdp

where <install_dir> is the installation directory, and <tdp_name> is the name of the
TDP.

 To start the TDP Editor:

1. In Test RealTime, from the Tools menu, select TDP Editor and Start.

or

2. From the command line, type tdpeditor.

 To open a TDP template:

1. In the TDP Editor, from the File menu, select Open.

2. In the targets subdirectory, select the gccmingw_template.xdp TDP file.

3. Right click the Top level node in the tree-view pane: Gnu 2.95.3-5 (mingw).

4. Select Rename.and enter a new name for this TDP: My_MinGW.
This name identifies the TDP in the Test RealTime GUI.

5. In the Comment for the root node section, enter contact information such as
your name and email address. This makes things easier when sharing the TDP
with other users.

 To save the new TDP:

1. From the File menu, select Save xdp As,

2. Save your new TDP as cwingccmingw.xdp.

2

Target Deployment Port Tutorial

3. From the File menu, select Save and Generate. The TDP Editor automatically
creates a directory named cwingccmingw and saves the .xdp file in that
location.

Editing a TDP

The TDP Editor is made up of 4 main sections:

• A Navigation Tree: Use the navigation tree on the left to select customization
points.

• A Help Window: Provides direct reference information for the selected
customization point.

• An Edit Window: The format of the Edit Window depends on the nature of the
customization point.

• A Comment Window: Lets you to enter a personal comment for each
customization point.

In the Navigation Tree, you can click on any customization point to obtained detailed
reference information for that parameter in the Help Window.

The Navigation Tree covers all the customization points of the TDP. There are four
main sections:

• Basic Settings: This section specifies default file extensions, default compilation
and link flags, environment variables and custom variables required for your
target environment. This section allows you to set all the common settings and
variables used by Test RealTime and the different sections of the TDP. For
example, the name and location of the cross compiler for your target is stored in
a Basic Settings variable, which is used throughout the compilation,
preprocessing and link functions. If the compiler changes, you only need to
update this variable in the Basic Settings section.

• Build Settings: This section configures the functions required by the Test
RealTime GUI integrated build process. It defines compilation, link and
execution Perl scripts, plus any user-defined scripts when needed. This section
is the core of the TDP, as it drives all the actions needed to compile and execute
a piece of code on the target.

• Library Settings: This section describes a set of source code files as well as a
dedicated customization file (custom.h), which adapt the TDP to target platform
requirements. This section is definitively the most complex and usually only
requires customization for specialized platform TDPs (unknown RTOS, no
RTOS, unknown simulator, emulator, etc.)

3

Rational Target Deployment Guide

• Parser Settings: This section modifies the behavior of the parser in order to
address non-standard compiler extensions, such as for example, non-ANSI
extensions. This section allows Test RealTime to properly parse your source
code, either for instrumentation or code generation purposes.

On the right hand side of the TDP Editor window, the embedded Help provides
contextual reference information for the part of the TDP that is selected in the tree-
view pane.

 To Edit the new TDP:

Use the TDP Editor's tree pane to navigate through the customization points of the
TDP, and make the following changes:

1. Under Basic Settings: Change the ENV_PATH and customization points in both
the For C and For C++ nodes. ENV_PATH updates the PATH environment
variable in order to invoke the gcc compiler directly. For example:
ENV_PATH C:\Gcc\bin;$ENV{'PATH'}

Note When you modify a customization point in the TDP Editor, it is
generally a good idea to add a note in the Comment box. This makes later
modifications and TDP sharing much easier.

2. In the same manner, check all the other customization points to ensure that they
reflect the correct path and filenames as provided with the MinGW distribution.

3. Under Build Settings: No changes should be required here, but have a look at
the Compilation Function.
Locate the corresponding Perl script and have a look at the Help window to
understand how the atl_cc routine works.
Next, look at the Link Function to understand the alt_link Perl routine.

Note All the parameters used by these Perl routines are set in the Basic
Settings section of the TDP.

4. Under Library Settings: No changes are required at this point.

5. Under Parser Settings: In this section, you need to tell the Test RealTime code
parser where the std GCC libraries are located. You must perform the same
change as much as necessary for the features that you plan to use with this TDP.

6. Save the TDP.

Any changes made to the Basic Settings section of a TDP are read from the Test
RealTime GUI and applied to the project. For this reason, whenever you modify the
Basic Settings of a TDP that is currently used in a Test RealTime project, you must
reload the TDP into the project.

4

Target Deployment Port Tutorial

 To reload the TDP in Test RealTime:

1. In the From the Project menu, select Configurations.

2. Select the TDP and click Remove.

3. Click New, select the TDP and click OK.

You have created your first TDP. The next step is to validate the new TDP in Test
RealTime.

Validating a New TDP

After a TDP has been created or modified, the first step is to validate that it works
correctly on the target.

The first step is to change the TDP used by your project.

To make sure that your TDP is working properly, you must create a Component
Testing test node and run it with all the relevant Runtime Analysis tools enabled.
Once the following steps are covered, you can consider that your TDP is fully
functional:

• Create a new Configuration Test RealTime

• Apply the new Configuration to a project

• Validate the compilation sequence with the new Configuration

Creating a New Configuration

In Test RealTime, the TDP is part of a Configuration. Each Configuration is based on
a TDP, plus the particular Configuration Settings that are specific for each node of the
project.

This means that you can base several slightly different Configurations on a single
TDP.

 To create a new Configuration in Test RealTime:

1. In Test RealTime, open the add.rtp example project.

This example project provides a series of test nodes for demonstration of Test
RealTime features. For this tutorial, concentrate on the add test node, which
contains a simple add.c source file as well as the corresponding add.ptu test
script.

2. From the Project menu, select Configurations. Click New.

5

Rational Target Deployment Guide

3. In the New Configuration box, enter a name for the new Configuration, and
select the TDP on which it shall be based.

For our example, select your newly created MinGW TDP. Notice that two items
appear in the list, one for C, another for C++ followed by the same name. Select
the C version of the TDP

4. Click OK, Close and save the project. Update the TDP in the project.

Applying a Configuration to a Project

Now that the new Configuration has been created, based on your TDP, you need to
select it for use in your project.

Although a project can use multiple Configurations, as well as multiple TDPs, there
must always be at least one active Configuration.

TDP is used when selected from the Build combo-box, but remember that you have
to be consistent between the TDP programming language selection and the source
files used within your test environment.

 To change the current Configuration of a project:

1. From the Build toolbar, select the Configuration you wish to use in the
Configuration box.

2. Update any project settings if necessary.

Validating the Compilation Procedure

In order to validate the compilation sequence, the idea is to successfully compile the
current project with the new Configuration.

 To validate the compilation procedure:

1. In the Project Explorer, select a single source file.

2. From the Build toolbar, click the Build Options button and clear all Runtime
Analysis features (Memory Profiling, Performance Profiling, Code Coverage
and Runtime Tracing) to ensure that these do not affect the build sequence.

3. Select the add.c source file.

4. From the Build toolbar, click Build .

The compilation should end with a Passed status. If not, restart the TDP Editor and
change the atl_cc Perl procedure accordingly.

You can repeat the same action for the following Perl procedures:

• atl_cpp: Preprocessing routine for Source Code Insertion

6

Target Deployment Port Tutorial

• atl_link: Link routine

• atl_exec: Execution routine

• atl_execdbg: Debugging routine

The compilation procedure is validated. You can now consider using the Test and
Runtime Analysis features of Test RealTime on your project.

The next section provides help about debugging any compilation issues you may
have encountered.

Debugging a TDP

If everything does not work as it should, the following method might help you
troubleshoot TDP issues with Test RealTime.

 To troubleshoot a TDP:

1. Set the ATTOLSTUDIO_VERBOSE environment variable to 1. The exact
procedure to do this depends on your operating system.

2. The Test RealTime GUI does not automatically inherit the Windows
environment. Therefore you must save the project, close and relaunch the GUI.

3. Ensure that the correct TDP is selected. From the Project menu, select
Configurations and click New to select the new TDP if necessary.

4. Decompose the complete build process into multiple steps. To do this, click the
Build Options () button, clear the All option and select only the first step of the
compilation sequence (Source compilation). Clear any Runtime Analysis tools.

5. Select the source file under test (add.c in this example) and click Build .

6. Repeat the same operation for each other compilation step and source file until
the whole node can be successfully processed.

This should provide adequate feedback to help you debug each individual step of the
compilation sequence.

In the current example, any problems encountered will usually be related to an
incorrect file path in the Basic Settings of the TDP.

7

Rational Target Deployment Guide

Customizing a TDP

This section of the Tutorial will demonstrate how to use the customize input-output
(I/O) communication and break-point usage in order to address a target system
without standard I/O functions.

First, create a new TDP based on the one created previously.

 To create a new TDP:

1. Open the cwingccmingw.xdp TDP in the TDP Editor

2. Select the top-level node and rename it My MinGW UserMode.

3. From the File menu, select Save xdp As to save the new TDP as
cwingccmingw2.xdp.

4. Collapse all the nodes in the Navigation window as this section concentrates
only on the Build Settings and Library Settings nodes of the TDP Editor.

Library Settings

You first need to specify the I/O user mode, which means disabling the standard I/O
mode for data retrieval on the target.

By default, when executing a program compiled with Test RealTime, the test data is
dumped to a file on the file system by using the standard fopen, fprintf and fclose
functions. On some platforms, these primitives are not available hence the need to
use a set of user-defined I/O functions that allow the TDP to access the File System.

 To change Library settings:

1. Expand Library Settings, Data retrieval and error message output and select
Data retrieval to locate the RTRT_IO macro definition.
In the combo-box for RTRT_IO you can select:

• RTRT_NONE: No I/O available

• RTRT_STD: Standard I/O functions (fopen, fprintf and fclose)

• RTRT_USR: User-defined I/O. This option enables the customization tabs.

2. Select RTRT_USR. Look at the user defined I/O primitives used to access the
File System: usr_open, usr_writeln and usr_close.
Notice that usr_writeln() contains the following statement
printf("$s",s);

3. From the File menu, select Save and Generate.

8

Target Deployment Port Tutorial

4. Update the Configuration in Test RealTime to use the My MinGW UserMode
TDP, and Build your sample project.

This build should fail. The message console should display the following
information, or similar:

Executing gcc_step1\Histo.exe ...
gcc_step1\Histo.exe
PU "Histo"
H0 "..."
O1
NT "Initialization" 0 0
DT 0
...
A32 OK RA=T
NT "Termination" 61 41
DT 0
FT 91e544c5DC 0b72d3c1
PT "Termination"
PS 0 0 0
PY 0 0 0
QT "Termination"
QS 91e544c5 7965f082
NO "2 (Max Calling Level reached)"
CI 0h
Splitting 'gcc_step1\THisto.rio' traces file...
Traces file successfully split.
No RIO instruction found.
Errors have occurred.

This message shows that:

• ASCII character data was dumped from the program directly to the standard
output of the executable through the printf directive.

• Test data output is encoded information that only the Test RealTime Report
Generator is able to understand.

• The trace file is empty. Although the split is successful, no instructions are
found and an error message is produced.

Therefore, for the build to be successful, you must provide the Report Generator with
a valid trace file.

Build Settings

The Execution function is a basic command that produces an output file that redirects
the standard output to $out.

 To change Build settings:

1. In the TDP Editor, expand the Build Settings and select Execution function. The
following code is displayed:
sub atl_exec($$$)
{

9

Rational Target Deployment Guide

 my ($exe,$out,$parameters) = @_;
 unlink($out);
 SystemP("$exe $parameters");
}

2. Change the SystemP line to:
 SystemP("$exe $parameters >$out");

3. Save the TDP, update the Configuration in Test RealTime and Build your
sample project.

This time, the execution should run smoothly and produce complete reports. If not,
rework the above functions until the execution is successful.

User-defined I/O Primitives

This section demonstrates how to define your our own I/O primitives for the dump
phase.

Again, create a new TDP based on the one created previously.

 To create a new TDP:

1. Open the cwingccmingw2.xdp TDP in the TDP Editor

2. Select the top-level node and rename it My MinGW UserMode2

3. Save the current TDP as cwingccmingw3.xdp.

4. Collapse all the nodes in the Navigation window as this section concentrates
only on the Build Settings and Library Settings nodes of the TDP Editor.

 To set up user-defined I/O primitives:

1. Expand Build Settings and select the Execution function.

2. Delete the >$out parameter that was added to the SystemP statement:
 SystemP("$exe $parameters");

3. Expand Library Settings, Data retrieval and error output and select Data
retrieval to locate the RTRT_IO macro definition.

4. Select the RTRT_USR entry.

5. On the Settings tab, in RTRT_FILE_TYPE, change int to FILE*.

6. Add your own code for the usr_open function, such as:
printf("...Opening file...\n");
return(fopen(fileName,"w"));

7. Add your own code for the usr_init function:
return(null);

10

Target Deployment Port Tutorial

8. Add your own code for the usr_writeln function:
printf("...Dumping : %s\n",s);
fprintf(f,"%s",s);

9. Add your own code for the usr_close function:
printf("...Closing file...\n");
fclose(f);

10. Save the TDP, update the Configuration in Test RealTime and Build the add.c
example.

The examples described here make no sense in real life as they are functionally
identical the standard I/O mechanism. However, they show how easy it is to map
user-defined I/O primitives to the data retrieval mechanism implemented by the
TDP.

Using a Debugger

Before moving to the next step we need to understand how Test RealTime uses the
GDB debugger command. This function is called when the Debug build option is
selected in the Test RealTime GUI.

Note This is NOT a break-point strategy. The Debug option merely allows
you to manually inspect application execution.

 To build a node in Test RealTime Debug mode:

1. In the Test RealTime Project Explorer, select the project node.

2. From the Build toolbar, click the Build Options button and select Debug in the
Build Options window.

3. In the Project Explorer, select the add.c node.

4. From the Build toolbar, click the Build button.

This runs a command line window with the GDB up and running.

Using the Debugger

In the GDB window, type the following commands:
break priv_writeln
break priv_close
display atl_buffer
run

If you type c or cont for continue you should see the atl_buffer contents changing and
showing information similar to what you obtained in the Message Console with the
printf command.

11

Rational Target Deployment Guide

Debug Results

The priv_writeln and priv_close primitives are implemented within the TDP. The
former is interpreted as a dump request event, whereas the latter is an end of
execution event.

The atl_buffer symbol (default size is 1024 bytes) dynamically gathers information
from the test execution.

The objective is to produce a file on the file system just as we did with the standard
I/O functions or the user-defined I/O functions. When a break point strategy is
required, the manual process you have just accomplished must be somehow
automated.

Break Point Mode

Using Break Point mode can be summed up as the following tasks:

• Compile, link and load the executable in the debugger. This is typically handled
by the GUI, so no action is required.

• Dump the content of atl_buffer each time the break point on priv_writeln is met.

• Quit the debugger when the priv_close is reached

• Ensure sure that the file produced is ASCII

To do this, you must specify a break point for I/O. This means that you will no
longer use the standard I/O or the user-defined I/O functions.

 To disable I/O functions:

1. Expand Library Settings, Data retrieval and error output and select Data
retrieval to locate the RTRT_IO macro definition.
In the combo-box for RTRT_IO you can select:

• RTRT_NONE: No I/O available

• RTRT_STD: Standard I/O functions

• RTRT_USR: User-defined I/O. Only this option allows you to access the
customization tabs.

2. Select RTRT_NONE. This is the typical choice when on limited target platforms
with no operating system and no file system.

12

Target Deployment Port Tutorial

Dumping the Buffer

You need to dump the content of atl_buffer each time the break point on priv_writeln
is encountered. The way to do this, without a file system, is to specify how to use the
gdb debugger command line in the atl_exec Perl script.

The debugger documentation explains how to call gdb and how to automate the use
of the debugger through a command script.

 To invoke the debugger from the atl_exec:

1. Expand Build Settings and select Execution function to locate the atl_exec Perl
function.

2. Comment the existing command line with a # character.

3. Add the following lines to invoke gdb:
my $cmd="$TARGETDIT\\cmd\\run.cmd";
SystemP("gdb -se=$exe -command=$cmd > stdout.log");

4. Right-click Build Settings and select Ascii File. Rename the created file to
run.cmd.

5. Copy the contents of the run_example.cmd file, provided in the example
directory, into the run.cmd file.

6. Save the TDP, update the TDP in the project, and Build the add.c node.

Converting Data to ASCII

Depending on the cross development environment, the format of the dumped data
can vary largely from one target to another. In most cases, the results must be
decoded and converted to ASCII data in order to be processed by the Test RealTime
Data Splitter and Report Generators.

You need to decode the dump data to ASCII with a Perl routine by using the Perl
subroutine named decode.pl.

 To decode dump data to ASCII:

1. Save the TDP, update the Configuration in Test RealTime and Build the add.c
node.

Test RealTime returns an error: the dump accomplished by the debugger does
not produce a plain ASCII file as expected.

2. Look at the result file created by GDB. The relevant data is present but is
represented in hex and mixed with other information.

3. Open the decode.pl Perl script in a text editor, provided with the example.

13

Rational Target Deployment Guide

4. In the TDP Editor, expand Build Settings and select Execution function to locate
the atl_exec Perl function.

5. Copy-paste the contents of the decode.pl Perl script into the atl_exec Perl
function after execution of gdb.

6. Save the TDP update the TDP in the project, and Build the add.c node.

This time, everything should work as expected and you should be able to view the
reports generated by the execution.

Congratulations! You have completed what is probably the most complex part
building a TDP.

14

Planning a Target Deployment Port

Rational's Target Deployment Technology extends Rational Test RealTime to provide
support for your own target environment.

Setting up a Target Deployment Port (TDP) essentially involves the creation of a set
of files and procedures that enable the execution of generated test programs or
instrumented applications directly on your target host, as well as enabling the
retrieval of test and runtime analysis results from the target host.

Due to the nature of the tasks at hand and to the characteristics of each target host,
you may or may not be able to run certain features of the product on certain targets.

First, refer to Target Requirements for a list of minimum requirements that the target
system must provide for each test and runtime analysis feature.

Contents of a Target Deployment Port

By default, the Target Deployment Ports available on your machine are located
within the product installation folder, in the \targets directory:

Each Target Deployment Port is stored in its own directory. The directory name starts
with a c for the C and C++ languages, ada for the Ada language or j for Java,
followed by the name of the development environment, such as the compiler and
target platform.

A Target Deployment Port can be subdivided into four primary sections:

• Basic Settings: This section specifies default file extensions, default compilation
and link flags, environment variables and custom variables required for your
target environment. This section allows you to set all the common settings and
variables used by Test RealTime and the different sections of the TDP. For
example, the name and location of the cross compiler for your target is stored in
a Basic Settings variable, which is used throughout the compilation,
preprocessing and link functions. If the compiler changes, you only need to
update this variable in the Basic Settings section.

• Build Settings: This section configures the functions required by the Test
RealTime GUI integrated build process. It defines compilation, link and
execution Perl scripts, plus any user-defined scripts when needed. This section

15

Rational Target Deployment Guide

is the core of the TDP, as it drives all the actions needed to compile and execute
a piece of code on the target.

• Library Settings: This section describes a set of source code files as well as a
dedicated customization file (custom.h), which adapt the TDP to target platform
requirements. This section is definitively the most complex and usually only
requires customization for specialized platform TDPs (unknown RTOS, no
RTOS, unknown simulator, emulator, etc.). These files are stored in the TDP lib
subdirectory.

• Parser Settings: This section modifies the behavior of the parser in order to
address non-standard compiler extensions, such as for example, non-ANSI
extensions. This section allows Test RealTime to properly parse your source
code, either for instrumentation or code generation purposes. The resulting files
are stored in the TDP ana subdirectory.

Use the Help Window in the TDP Editor to obtain reference information about each
setting.

Determining Target Requirements

Determining Target Requirements

The following tables lists the minimum requirements that your development
environment must provide to enable use of each feature of Test RealTime:

• C, C++ and Ada requirements

• Java requirements

C, C++ and Ada Requirements

Each feature is listed as a column title.

Component
Testing for
C and Ada

Component
Testing for
C++

System
Testing for
C

#Virtual
Testers=1

System
Testing for
C

#Virtual
Testers>1

Code
Coverage

Runtime
Tracing

Memory
Profiling

Performance
Profiling

Data
Retrieval
Capability

Required Required Required Required Required Required Required Required

Free Data
Space

For stand
alone

For
stand
alone

For
stand
alone

For stand
alone

16

Planning a Target Deployment Port

Free Stack
Space

For stand
alone

For
stand
alone

For
stand
alone

For stand
alone

Mutex For MT For MT For MT For MT For MT

Thread Self
and
PrivateData

 For MT For MT For MT For MT

Clock
Interface

 Required Required Required

Heap
Management

 Required Required Required

High Speed
Link

 Required

Task
Management

 For MT Required For MT For MT For MT

BSD Sockets Required

Ada N/A N/A N/A N/A N/A N/A

• For stand alone: Required for stand alone use of a runtime analysis feature - i.e.
used without a Test RealTime test feature

• For MT: Required if the application under test is a multi-threaded application
based on a preemptive multi-tasking mechanism.

Note Only the Component Testing for C and Ada and Code Coverage
features support the Ada language. System Testing for C can, however, be
used to send messages to an Ada-written application if C bindings exist for
that feature.

Java Requirements

Component
Testing for
Java

Code
Coverage

Runtime
Tracing

Memory
Profiling

Performance
Profiling

Data
Retrieval
Capability

Required Required Required Required Required

Free Data
Space

 For stand
alone

For stand
alone

For stand
alone

For stand
alone

Free Stack
Space

 For stand
alone

For stand
alone

For stand
alone

For stand
alone

Thread Required Required Required

17

Rational Target Deployment Guide

Adaptation

Clock
Adaptation

 Required

JVMPI
Support

 Required

Heap
Settings

 Required

• For stand alone: Required for stand alone use of a runtime analysis feature - i.e.
used without Component Testing for Java.

Data Retrieval Capability

Test programs or instrumented applications need to generate a text file on the host -
this is how information is gathered to prepare Test RealTime reports.

The Target Deployment Port gathers this report data by obtaining the value of a (char
*) global variable, containing regular ASCII codes, from the application or test driver
running on the target machine.

This retrieval can be accomplished in whichever way is most practical for the target.
It could be through file system access, a socket, specific system calls or a debugger
script. Most known environments allow at least some form of I/O.

At least one form of data retrieval capability is required.

Free Data Space

All runtime analysis features are based on Rational Source Code Insertion (SCI)
technology. The overhead introduced by this technology is dependent both on the
selected instrumentation level and on code complexity.

The Code Coverage feature requires the most free data space. The overhead for
default Code Coverage levels (procedure/method entries and decisions) typically
increases code size by 25%. Runtime Tracing, Memory Profiling and Performance
Profiling introduce a significantly lower overhead (about 16 bytes per instrumented
file).

The Component Testing features Test RealTime do not typically require additional
free memory because it is rare for the entire application to be run on the target.

Free Stack Space

The stack size should not be optimized for the requirements of the original
application. The Test RealTime instrumentation process adds a few bytes to the stack
and inserts calls to the TDP embedded runtime library.

18

Planning a Target Deployment Port

Since, based on experience, it is difficult to identify stack overflow, the user should
assume that each instrumented function requires, on average, an extra 30 bytes for
local data.

Mutex

This customization is required by all runtime analysis features of the product if the
application under test uses a preemptive scheduling mechanism. A mutual exclusion
mechanism is required to ensure uninterrupted operation of critical sections of the
Target Deployment Port.

Thread Self and Private Data

It must be possible to retrieve the current identifier of a thread, and it must be
possible to create thread-specific data (e.g. pthread_key_create for POSIX).

Clock Interface

A clock interface is not necessary for the Component Testing for C and Ada, for C++,
Memory Profiling and Performance Profiling features, but it is required for
Performance Profiling and System Testing for C. The goal is to read and return a
clock value (Performance Profiling) and to provide time out values (System Testing
for C).

If you are using Performance Profiling and System Testing for C with Component
Testing and the clock interface does exist, then Component Testing indicates time
measurements for each function under test and the Runtime Tracing feature
timestamps all messages.

Heap Management

This customization is required by Memory Profiling and System Testing for C only.

Both Memory Profiling and System Testing for C need to allocate memory
dynamically.

Memory Profiling also tracks and records memory heap usage, based on the standard
malloc and free functions. However, it can also handle user-defined or operating
system dependent memory usage functions, if necessary.

High-Speed Link

For Runtime Tracing On-the-Fly only.

To use the Runtime Tracing feature without a testing feature, a high-speed link
between the host and target machine is required in order to take full advantage of the
On-the-Fly tracing mode. This is because Runtime Tracing-instrumented code "writes

19

Rational Target Deployment Guide

a line" to the host for each entry point and exit point of every instrumented function.
This means that as the application is running, a continuous flow of messages is
written to the host. Understandably, a 9600 bit rate, for example, would not be
sufficient for use of the Runtime Tracing feature with an entire application.

Note that the Code Coverage, Memory Profiling and Performance Profiling features
store their data in static target memory, and data is only sent back to the host at
specified flush points (with the Runtime Tracing feature, static memory is also
flushed when it becomes full). Technically, a Memory Profiling, Performance
Profiling, and Code Coverage instrumented application can run for weeks without
seeing a growth in consumed memory; nothing need be sent to the host until a user-
defined flush point is reached.

Task Management

Runtime analysis features require task management capabilities when they are used
to monitor multi-threaded applications.

When the System Testing feature for C executes more than one virtual tester, full task
management capabilities must be available. In other words, System Testing for C
should be able to start a task, stop a task, and get the status of a task.

BSD Socket Compliance

When the System Testing feature for C executes more than one virtual tester, the
target must be BSD socket compliant. This is necessary because System Testing for C
uses TCP/IP sockets to enable communication between System Testing Agents and
the System Testing Supervisor, as well as to enable virtual tester RENDEZVOUS
synchronization.

If, in fact, the target host is BSD socket-compliant, then it is guaranteed that you can
address the Data Retrieval Capability and the High-Speed Link requirements.

Thread Adaptation

This is required by all Java runtime analysis features except Memory Profiling for
Java.

The waitForThreads method must wait for the last thread to terminate before
dumping results and exiting the application.

On J2ME platforms, this method is empty.

Clock Adaptation

This customization is required for the Performance Profiling feature

• The getClock method must return the clock value, represented as a long.

20

Planning a Target Deployment Port

• The getClockUnit method must return an array of bytes representing the clock
unit.

JVMPI Support

The Java Virtual Machine (JVM) must support the JVM Profiler Interface (JVMPI)
technology used for memory monitoring.

This is required for Memory Profiling for Java.

Heap Settings

This customization is part of the JVMPI support settings.

If available, the dynamic memory allocation required by the feature is made through
standard malloc and free functions.

If the use of such routines is not allowed on the target, fill JVMPI_SIZE_T,
jvmpi_usr_malloc and jvmpi_usr_free types and functions with the appropriate code.

Retrieving Data from the Target Host

All test and runtime analysis features of the product must be able to retrieve the
value of a global (char *) variable from an application running on the target machine
and then write that value to a text file on the host machine. (The variable will contain
only ASCII values).

This retrieval may be the result of a specific program running on the target, of an
adapted execution procedure on the host, or both.

To perform data retrieval, the program generated or instrumented by the product is
linked with the Target Deployment Port data retrieval functions and type definition.

For example, in the C language, the type definition and data retrieval functions are:
#define RTRT_FILE <Type>
RTRT_FILE priv_init(char *fName); /* fName: file name to
be written on the host */
RTRT_FILE priv_open(char *fName); /* fName: file name to
be written on the host */
void priv_writeln(RTRT_FILE f,char *data); /* data is the data
that should be printed in the file */
void priv_close(RTRT_FILE f); /* Close the host file
*/

These data retrieval functions are called by the Target Deployment Port library.
Depending on the nature of the target platform, some or all of these routines may be
empty.

21

Rational Target Deployment Guide

Target System Categories

Target platforms can be classified into three categories, characterized by their data-
retrieval method:

• Standard Mode

• User Mode

• Breakpoint Mode

Standard Mode

This kind of target system allows use of a regular FILE * data type and of the fopen,
fprintf and fclose functions found in the standard C library. Such systems include, for
example, all UNIX or Windows platforms, as well as LynxOS or QNX.

If the standard C library is usable on the target, use these regular
fopen/fprintf/fclose functions for TDP data retrieval. This is by far the easiest data
retrieval option.

• If your target system is compliant with the Standard Mode category, data
retrieval is assured.

User Mode

On User Mode systems, the standard C library calls described above are not available
but other calls that send characters to the host machine are available. This could be a
simple putchar-like function sending a character to a serial line, or it could be a
method for sending a string to a simulated I/O channel, such as in the case of a
microprocessor simulator.

• If your target system is using an operating system, there are usually functions
that enable communication between the host machine and the target. Therefore,
data retrieval capability is assured.

• If your target system allows use of a standard socket library, User Mode is
always possible - thus data retrieval is assured.

Breakpoint Mode

On breakpoint mode systems, no I/O functions are available on the target platform.
This is usually the case with small target calculators, such as those used in the
automotive industry, running on a microprocessor simulator or emulator with no
operating system.

If no communication functions are available on the target platform, the best
alternative is to use a debugger logging mechanism, assuming one exists.

 To retrieve data using in breakpoint mode:

1. set a breakpoint on the priv_writeln function

22

Planning a Target Deployment Port

2. at this breakpoint, have the debugger retrieve the value of atl_buffer and write
it to a host-based file

3. continue the execution

Note In breakpoint mode, some compilers and linkers ignore empty
functions and remove them from the final a.out binary. As the debugger must
use these routines to set breakpoints, you must ensure that the linker includes
these functions - any associated symbols must be in the map file. Currently, all
of the priv_ functions for C and C++ contain a small amount of dummy code
to avoid this issue; however, you might need to add dummy code for Ada.

Determining Target Architecture Support

If your target can be used in Standard or User Mode, then it is fully supported by
Test RealTime.

However, if your target can only be used in Breakpoint Mode, then you must ask
yourself the following questions to determine if your target platform has enough
data retrieval capability to be supported by Test RealTime:

• Does this debugger provide access to symbols?

• Is there a command language?

• Is there a way to run commands from a file?

• Can a command file be executed automatically when the debugger starts, either
from a particular filename or from an option of the command line syntax.

• Is there a command to stop the debugger? (The execution process must be
blocked until execution is terminated and the trace file is generated.)

• Is there a way to set software breakpoints?

• Is there a way to log what happens into a file?

• Is there a way to dump the contents of a variable in any format, or to dump a
memory buffer and log the value?

• Can the debugger automatically run other debugger commands when a
breakpoint is reached, such as a variable dump and resume; or, alternatively,
does the debugger command language include loop instructions?

If the answer to any of these questions is "No", then no data retrieval capability exists.
Therefore, test and runtime analysis feature execution on the target machine will not
be possible with Test RealTime.

23

Rational Target Deployment Guide

Data Retrieval Examples

Data Retrieval is accomplished through the association of the Target Deployment
Port library functions with an execution procedure.

The following examples demonstrate the Standard, User, and Breakpoint Modes,
based on a simple program which writes a text message to a file named
"cNewTdp\\atl.out".

Standard Mode Example: Native
#define RTRT_FILE FILE *
RTRT_FILE usr_open(char *fileName)
 { return((RTRT_FILE)(fopen(fileName,"w"))); }
void usr_writeln(RTRT_FILE f,char *s)
 { fprintf(f,"%s",s); }
void usr_close(RTRT_FILE f)
 {fclose(f) ;}
char atl_buffer[100];
void main(void)
{
RTRT_FILE f ;
strcpy(atl_buffer,"Hello World ");
f=usr_open("cNewTdp\\atl.out");
usr_writeln(f,atl_buffer);
usr_close(f);
}

Execution command : a.out

When executing a.out, cNewTdp\atl.out will be created, and will contain "Hello
World".

User Mode Example: BSO-Tasking Crossview

Source code of the program running on the target:
#define RTRT_FILE int
RTRT_FILE usr_open(char *fName) { return(1); }
void usr_writeln(RTRT_FILE f,char *s) { _simo(1,s,80); }
void usr_close(RTRT_FILE f) { ; }
char atl_buffer[100];
void main(void)
{
 RTRT_FILE f ;
 strcpy(atl_buffer,"Hello World");
 f=usr_open("cNewTdp\\atl.out");
 usr_writeln(f,atl_buffer);
 usr_close(f);
}

Execution command from host:
xfw166.exe a.out -p TestRt.cmd

Content of TestRt.cmd:
1 sio o atl.out
r
q y

24

Planning a Target Deployment Port

In this example, usr_open and usr_close functions are empty. Priv_writeln uses a
BSO-Tasking function, _simo, which allows to send the content of the s parameter on
the channel number 1 (an equivalent of a file handle).

On another side, on the host machine, the Crossview simulator (launched by the
xfw166.exe program) is configured by the command

1 sio o atl.out

indicating to the simulator running on the host, that any character being written on
the channel number 1 should be logged into a file name atl.out

The next command is to run the program, and quit at the end.

The original needs, which was to have cNewTdp\atl.out file be written on the host
has to completed by a script on the host machine, consisting in moving the atl.out
generated in the current directory into the cNewTdp directory. The complete
execution step would be in Perl:

SystemP("xfw166.exe a.out -p TestRt.cmd");
If (! -r atl.out) { Error…. return(1);}
move("atl.out","cNewTdp/atl.out");

Breakpoint-Mode :

In all the breakpoint mode examples, the usr_ functions are empty.

Breakpoint Mode Example: Keil MicroVision

Source code of the program running on the target:
#define RTRT_FILE int
RTRT_FILE usr_open(char *fName) { return(1); }
void usr_writeln(RTRT_FILE f,char *s) {;}
void usr_close(RTRT_FILE f) { ; }
char atl_buffer[100];
void main(void)
{
RTRT_FILE f ;
strcpy(atl_buffer,"Hello World");
f=usr_open("cNewTdp\\atl.out");
usr_writeln(f,atl_buffer);
usr_close(f);
}

Execution command from host:
uv2.exe -d TestRt.cmd

Content of TestRt.cmd:
load a.out
func void out(void) {
int i=0;
while(atl_buffer[i]) printf("%c",atl_buffer[i++]);
printf("\n");
}
bs usr_writeln,"out()"

25

Rational Target Deployment Guide

bs usr_close
reset
log > Tmpatl.out
g
exit

In this example, all the usr_ functions are empty. The intelligence is deported into the
TestRt.cmd script which a command file for the debugger.

It first loads a.out executable program. It then defines a function, which prints the
value of atl_buffer in the MicroVision command window. Then it sets two
breakpoints. The first one in usr_writeln, and the second one in usr_close. When
usr_writeln is reached, the program halts, and the debugger automatically runs his
out() function, which print the value of atl_buffer into its command window. When
usr_close is reached, the program halts.

Then, the debugger scripts resets the processor, and logs anything that happens in
the debugger command window into a file named Tmpatl.out. It then starts the
execution, (which finally halts when usr_close is reached as no action is associated
with this breakpoint) and exits.

The final result is contained into Tmpatl.out, which should be cleanup by the host (a
little decoder in Perl for example) to give the final expected cNewTdp\atl.out file
containing "Hello World". The global execution step in Perl would be:

SystemP("uv2.exe -d TestRt.cmd") ;
Decode and clean Tmpatl.out and write the results in
cNewTdp\atl.out
Decode_Tmpatl.out_Into_Final_Intermediate_Report();

Breakpoint Mode Example: PowerPC-SingleStep

Source code of the program running on the target:
#define RTRT_FILE int
RTRT_FILE usr_open(char *fName) { return(1); }
void usr_writeln(RTRT_FILE f,char *s) { _simo(1,s,80); }
void usr_close(RTRT_FILE f) { ; }
char atl_buffer[100];
void main(void)
{
RTRT_FILE f ;
strcpy(atl_buffer,"Hello World");
f=usr_open("cNewTdp\\atl.out");
usr_writeln(f,atl_buffer);
usr_close(f);
}

Execution command from host:
simppc.exe TestRt.cmd

Content of TestRt.cmd:
debug a.out
break usr_close

26

Planning a Target Deployment Port

break usr_writeln -g -c "read atl_buffer >> Tmpatl.out"
go
exit

As in the previous example, all the usr_ functions are empty. The intelligence is
deported into the TestRt.cmd script which a command file executed when the
SingleStep debugger is launched.

It first loads the executable program, a.out by the debug command.

Then it sets a breakpoint at usr_close function, which serves as an exit-point, then set
a breakpoint in the usr_writeln function. The -g flag of the break commmand
indicates to continue the execution, whilest the -c specifies a command that should be
executed before continuing. This command (read) writes the value of the atl_buffer
variable into Tmpatl.out.

The SingleStep debugger then starts the execution. When it stops, it means than
usr_close has been reached. It then executes the exit command, to terminate the
debugging session.

The final result is contained into Tmpatl.out, and should be cleaned-up by the host (a
little decoder in Perl for example) to produce the final expected cNewTdp\atl.out file
containing "Hello World".

Based on the "Hello World" program, we should now focus on automating the
execution step and having atl.out being written.

27

Using the TDP Editor

The TDP Editor provides a user interface designed to help you customize and create
unified Target Deployment Ports.

The TDP Editor is made up of 4 main sections:

• A Navigation Tree: Use the navigation tree on the left to select customization
points.

• A Help Window: Provides direct reference information for the selected
customization point.

• An Edit Window: The format of the Edit Window depends on the nature of the
customization point.

• A Comment Window: Lets you to enter a personal comment for each
customization point.

In the Navigation Tree, you can click on any customization point to obtained detailed
reference information for that parameter in the Help Window. Use this information
to customize the TDP to suit your requirements.

Upgrading a Target Deployment Port

If you are upgrading from a previous version of Rational Test RealTime you must
update all existing Target Deployment Ports to use them with the new version.

 To Update a Target Deployment Port:

1. Start the TDP Editor and open the .xdp Target Deployment Port file.

2. Save the .xdp Target Deployment Port file.

Opening a Target Deployment Port

Target Deployment Ports can be viewed and edited with the TDP Editor supplied
with Test RealTime.

29

Rational Target Deployment Guide

 To start the TDP Editor:

1. In Test RealTime, from the Tools menu, select TDP Editor and Start.

or

2. From the command line, type tdpeditor.

 To open a TDP:

1. From the File menu, select Open.

2. In the targets directory, select an .xdp file and click Open.

Editing Customization Points

Use the Navigation Tree on the left to select customization points. A Target
Deployment Port can be subdivided into four primary sections:

• Basic Settings: This section specifies default file extensions, default compilation
and link flags, environment variables and custom variables required for your
target environment. This section allows you to set all the common settings and
variables used by Test RealTime and the different sections of the TDP. For
example, the name and location of the cross compiler for your target is stored in
a Basic Settings variable, which is used throughout the compilation,
preprocessing and link functions. If the compiler changes, you only need to
update this variable in the Basic Settings section.

• Build Settings: This section configures the functions required by the Test
RealTime GUI integrated build process. It defines compilation, link and
execution Perl scripts, plus any user-defined scripts when needed. This section
is the core of the TDP, as it drives all the actions needed to compile and execute
a piece of code on the target. All files related to the Build settings are stored in
the TDP cmd subdirectory

• Library Settings: This section describes a set of source code files as well as a
dedicated customization file (custom.h), which adapt the TDP to target platform
requirements. This section is definitively the most complex and usually only
requires customization for specialized platform TDPs (unknown RTOS, no
RTOS, unknown simulator, emulator, etc.). These files are stored in the TDP lib
subdirectory.

• Parser Settings: This section modifies the behavior of the parser in order to
address non-standard compiler extensions, such as for example, non-ANSI
extensions. This section allows Test RealTime to properly parse your source
code, either for instrumentation or code generation purposes. The resulting files
are stored in the TDP ana subdirectory.

30

Using the TDP Editor

 To edit a customization point

1. In the Navigation Tree, select the customization point that you want to edit.

2. In the Help Window, read the reference information pertaining to the selected
customization point. Use this information fill out the Edit window.

3. As a good practice, enter any remarks or comments in the Comments window.

After making any changes to a TDP, you must update the TDP in Test RealTime to
apply the changes to a project.

Creating a Target Deployment Port

To create a new Target Deployment Port (TDP), the best method is to make a copy of
an existing TDP that requires minimal modifications.

Naming Conventions

By convention, the TDP directory name starts with a c for the C and C++ languages,
 ada for the Ada language or j for Java, followed by the name of the development
environment, such as the compiler and target platform.

The name of the .xdp file generally follows the same convention.

The name of the top-level node can be a user-friendly name, as it is to be displayed in
the Test RealTime GUI.

 To create a new TDP:

1. In the TDP Editor, from the File menu, select New.

2. In the Language Selection box, select the language used for this TDP.

The TDP Editor uses this information to create a template, which already
contains most of the information required for the TDP.

3. Right click the top level node in the tree-view pane, which contains the name of
the TDP. Select Rename. and enter a new name for this TDP. This name
identifies the TDP in the Test RealTime GUI and can be more explicit than the
TDP filename (see Naming Conventions).

4. As a good practice, in the Comment section, enter contact information such as
your name and email address. This makes things easier when sharing the TDP
with other users.

 To save the new TDP:

1. From the File menu, select Save As.

31

Rational Target Deployment Guide

2. Save your new TDP with a filename that follows the naming conventions
described above. The actual location of the .xdp file is not relevant. The TDP
Editor automatically creates a directory with the same name as the .xdp file and
saves the .xdp file at that location.

Updating a Target Deployment Port

The Target Deployment Port (TDP) settings are read or loaded when a Test RealTime
project is opened, or when a new Configuration is used.

If you make any changes to the Basic Settings of a TDP with the TDP Editor, any
project settings that are read from the TDP will not be taken into account until the
TDP has been reloaded in the project.

 To reload the TDP in Test RealTime:

1. From the Project menu, select Configurations.

2. Select the TDP and click Remove.

3. Click New, select the TDP and click OK.

Using a Post-generation Script

In some cases, it can be necessary to make changes to the way the TDP is written to
its directory beyond the possibilities offered by the TDP editor.

To do this, the TDP editor runs a post-generation Perl script called postGen.pl, which
can be launched automatically at the end of the TDP directory generation process.

 To use the postGen script:

1. In the TDP editor, right click on the Build Settings node and select Add child
and Ascii File.

2. Name the new node postGen.pl.

3. Write a perl function performing the actions that you want to perform after the
TDP directory is written by the TDP Editor.

Example

Here is a possible template for the postGen.pl script file:
sub postGen
{
 $d=shift;

32

Using the TDP Editor

the only parameter passed to this function is the path to
the target directory
here any action to be taken can be added
}
1;

The parameter $d contains <tdp_dir>/<tdp_name>, where <tdp_dir> is a chosen
location for the TDP directory (by default, the targets subdirectory of the product
installation directory), and <tdp_name> is the name of the current TDP directory

Migrating pre-V2002 TDPs to Present Format

This section describes the conversion of TDPs built for older versions of Rational Test
RealTime to the new, unified format.

This section applies to TDPs and ATTOL Target Packages created for:

• ATTOL Coverage, UniTest and SystemTest

• Rational Test RealTime v2001A
TDPs created for later versions of Rational Test RealTime or Rational PurifyPlus RealTime are
compatible with the current version.

 To migrate your old TDP to the current format:

1. In the TDP Editor, create a new Target Deployment Port based on the
appropriate new template:

• use templatec.xdp for C and C++ TDPs

• use templatea.xdp for Ada TDPs

2. Item by item, recode or copy-paste information from your old TDP to the
corresponding customization points in the TDP Editor, using the information in
this section of the Target Deployment Guide to direct you.

unitest.ini

Template: any template

Copy all unitest.ini settings into the Basic Settings section of the TDP Editor.

Environment Variables

In the old TDP, the following line inserted the string "Value;" in the front of the
current value of X:

ENV_X="Value; "

33

Rational Target Deployment Guide

In the new TDP, the same syntax would set x equal to "Value; ". The new, proper
syntax for insertion or concatenation is either:

ENV_X="Value;$ENV{'X'}"

or
ENV_X="$ENV{'X'};Value"

This concatenation and insertion algorithm is also valid for simple $Ini fields.

Additionally, the following line now sets <Value> to X if X is not defined in the
environment:

ENV_SET_IF_NOT_SET_X="<Value>"

Other Changes

The following fields are no longer used and can be deleted:
COMPILERVER=""
CCSCRIPT="atl_cc.pl"
LDSCRIPT="atl_link.pl"
EXESCRIPT="atl_exec.pl"
STDFILE="atl_cc.def"

atuconf.h

Original Location: lib folder

Template: templatec.xdp

The following list is not exhaustive but it contains most of the typical TDP settings
found in earlier Target Deployment Port releases. All TDP Editor references are
located in the Library Settings section.

Old TDP Settings New Customization Points

#define ANSI_C Target Compiler Specifics

Linkage Directives

RTRT_KR

The default value is unselected. Keep this
setting unselected if ANSI_C is defined.

#define USE_OLD 1 Environmental Constraints

sprintf function avaliability

RTRT_SPRINTF

If USE_OLD is set to 1, select RTRT_SPRINTF.

34

Using the TDP Editor

#define ATTOL_HEADER_MAIN int
main(void) {
empty_func();
}

For Test RealTime Testing Features

Test program entry point prototype and
termination instruction

RTRT_MAIN_HEADER

RTRT_MAIN_HEADER equals
ATTOL_HEADER_MAIN.

Note empty_func() was a function used to
initialize a set of unused variables. This
function is no longer needed. As a result, it is
not necessary to redefine main() unless 'main'
is not the name of the entry function.

Copy #define ATTOL_RETURN_MAIN
return (0);

For Test RealTime Testing Features

Test program entry point prototype and
termination instruction

RTRT_MAIN_RETURN

RTRT_MAIN_RETURN equals the value of
ATTOL_RETURN_MAIN.

#define USE_STRING 0 For Test RealTime Testing Features

String support

RTRT_STRING

If USE_STRING is set to 0, deselect
RTRT_STRING.

#define USE_FLOAT 0 For Test RealTime Testing Features

Floating-point number support

RTRT_FLOAT

If USE_FLOAT was set to 0, deselect
RTRT_FLOAT.

Either of the following statements:

a. #define ATL_EXIT exit(0)

b. #define ATL_EXIT

c. #define ATL_EXIT my_exit

Environmental Constraints

exit function availability

RTRT_EXIT

Set RTRT_EXIT to RTRT_STD if ATL_EXIT is
set to exit(0).

Set RTRT_EXIT to RTRT_NONE if ATL_EXIT

35

Rational Target Deployment Guide

is undefined.

Set RTRT_EXIT to RTRT_USR if ATL_EXIT
was defined to a user-defined function, and
copy the code from this function to the
usr_exit section.

Either of the following statements:

a. #define STD_TIME_FUNC

b. #define USR_TIME_FUNC
 int usr_time() {
 /* Return current clock value*/
return(-1);
 }

c. No clock interface defined.

Clock Interface

RTRT_CLOCK

If STD_TIME_FUNC is defined, set
RTRT_CLOCK to RTRT_STD.

If USR_TIME_FUNC is defined, set
RTRT_CLOCK to RTRT_USR and copy the
code from usr_time to the usr_clock section.

If no clock interface was defined, set
RTRT_CLOCK equal to RTRT_NONE.

Either of the following statements:

 #define STD_DATE_FUNC

b. #define USR_DATE_FUNC
 void usr_date(char *s) {
 /* Sets s to the current date */
s[0]=0;
 }

c. Nothing date interface defined

No longer needed; dates are supplied by the
host.

Either of the following statements:

a. #define STD_IO_FUNC

b. #define USR_IO_FUNC
 typedef int usr_file;
 usr_file usr_open(char *name) {
 /* Open the file named name */
 usr_file x=1;
 return(x);
 }
 void usr_writeln(usr_file
file,char *str) {
 /* Print str into file and add \n
*/
 printf("%s",str);
 }
 void usr_close(usr_file file) {
 /* Close the file */

Data Retrieval and Error Output

Test and runtime analysis results output

RTRT_IO

If STD_IO_FUNC is defined, set RTRT_IO to
the RTRT_STD value.

If USR_IO_FUNC is defined, set RTRT_IO to
RTRT_USR, set RTRT_FILE_TYPE to the
usr_file type, and write code for the functions
usr_open, usr_writeln and usr_close into the
corresponding usr_open, usr_writeln and
usr_close sections.

If no data retrieval function was defined, set
RTRT_IO to RTRT_NONE.

36

Using the TDP Editor

 }

c. Nothing defined for IO

#define BUFFERED_IO

No longer necessary; this is the default mode.

attol_comm and attol_serv

Original Location: lib folder

Template: templatea.xdp

These files contained the implementation of any Ada restrictions made by target
environment.

If your Ada environment implements the entire Ada standard, select the setting
Library Settings->Ada restrictions->std

If your Ada environment does not allow the use if image attributes and of Ada
exceptions, select the setting
Library Settings->Ada restrictions->smart

If your Ada environment does not allow the use of image attributes and Ada
exceptions, and if the floating-point numbers were written from the target in
hexadecimal mode, select the setting Library Settings->Ada restrictions->dump

private_io.ads

Original Location: lib folder

Template: templatea.xdp

Old settings are listed in the left column, updated settings in the right. All TDP Editor
references are located in the Library Settings section.

With clauses; with clauses for package
specification

Affichage_chaine : constant :=100 Constant definitions-
>string_max_len

subtype priv_file is something; Data types->PRIV_FILE

subtype longest_integer is
something;

Data types->LONGEST_INTEGER

subtype longest_float is float; Data types->LONGEST_FLOAT

37

Rational Target Deployment Guide

Subtype priv_int is
longest_integer;

Data types->INTEGER_32B

clock_present : constant boolean
:= FALSE ;

No longer used.

clock_offset : constant priv_int :=
0;

Constant definitions->clock_offset

This constant has been changed
from integer to float.

clock_divide : constant priv_int :=
1;

Constant definitions->clock_divide

clock_multiply : constant priv_int
:= 1;

Constant definitions-
>clock_multiply

clock_unit: constant string := "D0 ";
-- D0 ms, D1 micro s, D2 cycles, D3
tops

Constant definitions->clock_unit

access_size : constant := 32; Constant definitions->access_size

access_max : constant :=
(2**(access_size-1))-1;

Constant definitions->access_max

access_min : constant := -
(2**(access_size-1));

Constant definitions->access_min

Any additional
function/procedure specifications
other than those for user_open,
user_close, priv_open, priv_close,
priv_writeln, priv_clock,
priv_date.

User-defined function
specifications

private_io.adb

Original Location: lib folder

Template: templatea.xdp

The code for the procedures priv_clock, priv_open, priv_close and priv_writeln must
be reported with no modification in the settings
Library settings->Function bodies->Clock function/Open function/Close
function/Write function

38

Using the TDP Editor

Be aware that some parameter names may have changed; for example, the parameter
"fichier" is now "file".

Any additional with clauses that were written in private_io.adb have to be reported
in the setting Library settings->Function bodies->with clauses for package body

Any other functions that were written in private_io.adb have to be reported in the
setting
Library settings->Function bodies->User-defined function bodies

attolcov_io.ads

Original Location: lib folder

Template: templatea.xdp

Report the value of the constant atc_nb_bit_branch into the setting
Library Settings->Constants definitions->atc_nb_bit_branch

attolcov.opp

Original Location: <OldInstallDir>/…/atc/target/oldTdp

Template: templatec.xdp

Copy the contents of this file into the TDP editor in the section
Parser Settings->Component Testing and runtime analysis features for C++-
>Analyzer file configuration

atlcov.hpp

Original Location: <OldInstallDir>/…/atc/target/oldTdp

Template: templatec.xdp

Copy the contents of the old file into the TDP editor in the section
Parser Settings->Component Testing and runtime analysis features for C++->Header
file configuration

atlcov.def

Original Location: <OldInstallDir>/…/atc/target/oldTdp

Template: templatec.xdp

Copy the contents of this file into the TDP editor in the section
Parser Settings->Runtime analysis features for C

39

Rational Target Deployment Guide

atl_cc.def

Location: <OldInstallDir>/…/atu/target/oldCTdp/cmd

Template: templatec.xdp

Copy the contents of this file into the TDP editor in the section
Parser Settings->Component Testing and System Testing for C

atl_cc.def for C++

Location: <OldInstallDir>/…/atu/target/oldCTdp/cmd

Template: templatec.xdp

Copy the contents of this file into the TDP editor in the section
Parser Settings->System Testing for C++

standard-ada95.ads

Location: <OldInstallDir>/…/atc/target/oldTdp)

Template: templatea.xdp

Copy the contents of this file into the TDP editor to the Parser Settings - Standard
specification for Ada section.

standard-ada83.ads

Location: <OldInstallDir>/…/atc/target/oldTdp)

Template: templatea.xdp

Copy the contents of this file into the TDP editor in the section Parser Settings -
Standard specification for Ada83

standard*.*

Location: <OldInstallDir>/…/atu/target/oldTdp/ana)

Template: templatea.xdp

Here is the list of adaptations that must be reported in the TDP editor in the section
Parser Settings->Standard specification for Ada83

These settings correspond to the previous use of Ada83 with the old Analyzer
(without using Code Coverage).

- replace the boolean type defintion with

type Boolean is _internal(BOOLEAN);

40

Using the TDP Editor

- replace the character type definition with

type Character is _internal(CHARACTER_8);

- delete the universal_integer and universal_float type definitions

- delete all function definitions for all types.

- add after the FLOAT type definition:

type _INTERNAL_INTEGER is _internal(INTERNAL_INTEGER);

type _INTERNAL_FLOAT is _internal(INTERNAL_FLOAT83);

The first is preferred; the second one corresponds to the case where Code Coverage is
not available.

Perl Scripts

atl_cc.pl

Original Location: cmd folder

Template: either

This file contained 2 functions.

Copy the atl_cc function into the Build Settings->Compilation function section of the
TDP Editor.

Copy the atl_cpp function into the Build Settings->Preprocessing function section of
the TDP Editor.

Function prototypes

The function prototypes have changed. Old prototypes were:
sub atl_cc {
my ($SourceFile, $OutputFile, $Includes, $AdditionalOptions)=@_;
}

and
sub atl_cpp {
my ($SourceFile, $OutputFile, $Includes, $AdditionalOptions)=@_;
}

These are replaced by:
sub atl_cc ($$$$\@\@) {
my ($lang,$src,$out,$cflags,$Defines,$Includes) = @_;
}

and
sub atl_cpp ($$$$\@\@) {
my ($lang, $src,$out,$cppflags,$Defines,$Includes) = @_;
}

41

Rational Target Deployment Guide

where

$Defines and $Includes are Perl references to arrays.

$lang contains C, CPP, ADA or ADA83, based on the source file extension.

$src and $out are the source file and the output file to generate.

These functions must now compile both C or C++ source code. In fact, the same TDP
should support both C and C++. To accomplish this dual functionality, simply make
the appropriate edits for C++ in the Parser Settings section of the TDP Editor.

atl_link.pl

Original Location: cmd folder

Template: either

Copy the atl_cc function into the Build Settings->Link function section of the TDP
Editor.

Any other files required for the link phase, such as linker command files, boot
assembly startup code, etc., should be added to the Build Settings section of the TDP
editor by right-clicking the Build Settings node and selecting Add Child->ASCII File.

Function prototype

The function prototype has changed. The old prototype was:
sub atl_link() {
my ($ListObject,$OutputFile,$AdditionalFiles)=@_;
}

This has been replaced by:
sub atl_link ($\@$\@$) {
my ($OutputFile,$Objects,$LdFlags,$LibPath, $Libraries)=@_ ;
}

where

$Objects, $LibPath are now given as references to Perl arrays.

All other parameters are scalar.

atl_exec.pl

Original Location: cmd folder

Template: either

Copy the atl_exec function into the Build Settings->Execution function section of the
TDP Editor.

Any other files required for the link phase, such as debugger scripts, mapping
definitions, etc., should be added to the Build Settings section of the TDP editor by
right-clicking the Build Settings node and selecting Add Child->ASCII File.

42

Using the TDP Editor

Function prototype

The function prototype remains unchanged:
sub atl_exec($$$) {
 my ($exe,$out,$params)=@_;
}

Other Perl Scripts

Any file other than atl_cc.pl, atl_link.pl or atl_exec.pl must be added to the Build
Settings section of the TDP editor by right-clicking the Build Settings node and
selecting Add Child->ASCII File.

43

Index

$ Atl_link .. 47
Atl_link.pl...................................... 37, 47

Value ..37 Atlcov.def .. 44
Atlcov.hpp... 43 A
Attol_comm... 41

A.out...26, 28 ATTOL_HEADER_MAIN................. 38
Access_max ...41 ATTOL_HEADER_MAIN int........... 38
Access_min..41 ATTOL_RETURN_MAIN 38
Access_size ..41 Attol_serv .. 41
Ada 19, 20, 26, 35, 41, 44, 47 Attolcov.opp 43
Ada TDPs Attolcov_io.ads 43

templatea.xdp...........................19, 37 Atuconf.h... 38
Ada TDPs.......................................19, 37

B ADA83..44, 47
Ada-written application20 B .. 38
AdditionalOptions..............................47 BOOLEAN... 44
Affichage_chaine41 Breakpoint-Mode................................ 28
ANSI_C ..38 Bs priv_close 28
ASCII ..22, 25 BSD Socket Compliance 24
Atc_nb_bit_branch43 BSO-Tasking.. 28
Atl.out ..28 BUFFERED_IO.................................... 38
Atl_buffer.......................................26, 28

C Atl_cc..47
Atl_cc.def C

C ...44 atl_cc.def ... 44
Atl_cc.def37, 44 C... 19, 35
Atl_cc.pl ...37, 47 templatec.xdp........................... 19, 37
Atl_cpp...47 C.......19, 20, 25, 26, 28, 35, 37, 38, 44, 47
Atl_exec..47 CCSCRIPT ... 37
Atl_exec.pl37, 47 CHARACTER_8 44
ATL_EXIT ..38 Characteristics..................................... 19
ATL_EXIT my_exit38 Child->ASCII File 47

45

Rational Target Deployment Guide

Func.. 28 Clock Interface23
Function... 41 Clock_divide41

Clock_multiply41
H Clock_offset ...41

Clock_present......................................41 Heap Management............................. 23
Clock_unit..41 Hexa ... 41
Cmd ..47 High-Speed Link 23
Commmand...28

I COMPILERVER..................................37
CPP ...47 I/O... 22, 26
Crossview ..28 Instrumentation 22

Int.. 28 D
INTERNAL_FLOAT 44

D TestRt.cmd.......................................28 INTERNAL_FLOAT83 44
Data ..25 INTERNAL_INTEGER...................... 44
Data Retrieval Capability22 IO .. 38
Data Retrieval Examples....................28

K Definition...44
Do..27 Keil MicroVision................................. 28

E L
E-mail ...1 Lang.. 47
ENV ..37 Ld.. 28
ENV_SET_IF_NOT_SET_X37 LDSCRIPT ... 37
ENV_X..37 LibPath... 47
Execution ...28 Longest_float....................................... 41
EXESCRIPT..37 Longest_integer 41

LynxOS .. 26 F
M Fclose..26, 28

Fichier...43 Malloc... 23
FILE ..26 Memory Profiling 20, 22, 23
FileName..28 MicroVision... 28
FLOAT..44 MT .. 20
FName..25, 28 Mutex ... 23
Fopen..26, 28

O Fprintf...26, 28
Free Data Space...................................22 OutputFile ... 47
Free Stack Space..................................22

46

Index

P Retrieval... 38
RTRT_CLOCK

P TestRt.cmd28 RTRT_STD...................................... 38
Performance Profiling 20, 22, 23 RTRT_USR...................................... 38
Perl..28, 47 RTRT_CLOCK 38
POSIX RTRT_EXIT

pthread_key_create23 RTRT_NONE 38
POSIX ...23 RTRT_STD...................................... 38
Printf...28, 38 RTRT_USR...................................... 38
Priv ...26, 28 RTRT_EXIT.. 38
Priv_clock41, 43 RTRT_FILE.................................... 25, 28
Priv_close........................... 25, 28, 41, 43 RTRT_FILE f.................................. 25, 28
Priv_date..41 RTRT_FILE f,char 25, 28
Priv_file..41 RTRT_FILE priv_append 25
Priv_int...41 RTRT_FILE priv_open................. 25, 28
Priv_writeln................. 25, 26, 28, 41, 43 RTRT_FILE_TYPE
Private Data...23 usr_file... 38
Private_io.adb43 RTRT_FILE_TYPE 38
Private_io.ads......................................41 RTRT_FLOAT 38
Procedure/method..............................22 RTRT_IO
Pthread_key_create RTRT_NONE 38

POSIX ..23 RTRT_STD...................................... 38
Pthread_key_create23 RTRT_USR...................................... 38
PurifyPlus RealTime ... 1, 19, 20, 22, 23,
25, 27, 33

RTRT_IO.. 38
RTRT_MAIN_HEADER.................... 38

PurifyPlus RealTime Support27 RTRT_MAIN_RETURN 38
Putchar-like ...26 RTRT_NONE

RTRT_EXIT..................................... 38 Q
RTRT_IO ... 38

QNX..26 RTRT_NONE 38
RTRT_SPRINTF.................................. 38 R
RTRT_STD

Rational PurifyPlus RealTime 1, 19, 22,
27, 37

RTRT_CLOCK................................ 38
RTRT_EXIT..................................... 38

Rational Software Corporation...........1 RTRT_IO ... 38
Rational Test RealTime 1, 19, 22, 27, 37 RTRT_STD... 38
Recode..37 RTRT_STRING.................................... 38
Recompilation33 RTRT_USR
Release..19, 37 RTRT_CLOCK................................ 38
RENDEZVOUS synchronization......24 RTRT_EXIT..................................... 38

47

Rational Target Deployment Guide

Technical Support 1 RTRT_IO ...38
Templatea.xdp RTRT_USR...38

Ada TDPs.................................. 19, 37
S Templatea.xdp 19, 37, 41, 43, 44

Templatec.xdp S TestRt.cmd..28
C... 19, 37 SCI...22

Templatec.xdp 19, 37, 38, 43, 44 Simo..28
Test RealTime... 1, 19, 20, 22, 23, 25, 27,
33, 38

SingleStep ..28
Sio o atl.out ..28

Test RealTime Support 27 SourceFile...47
TestRt.cmd... 28 Src ...47
Thread Self .. 23 Standard
Thread-specific 23 Standard-ada83.ads44
Timestamp... 23 Standard-ada95.ads44
Tmain ... 28 Standard...44
Tmpatl.out... 28 STD_DATE_FUNC.............................38
Typedef int usr_file 38 STD_IO_FUNC38

STD_TIME_FUNC..............................38 U STDFILE...37
STDOUT...28 Unitest.ini .. 37
Str..38 Universal_float.................................... 44
Strcpy ...28 Universal_integer 44
Subdirectory19, 33 UNIX .. 26
SystemP..28 USE_FLOAT.. 38

USE_OLD .. 38
T USE_STRING 38

User_close.. 41 Target
User_open.. 41 Target Deployment Port19, 35
Using Target Host25

TDP Editor...................................... 33 Target Requirements20
Using .. 33 Target System Categories26
Usr_clock ... 38 Target ...27
Usr_close.. 38 Task Management24
Usr_date... 38 TCP/IP ..24
USR_DATE_FUNC 38 TDP 19, 22, 26, 33, 35, 37, 38, 41, 43, 44,

47 Usr_file
RTRT_FILE_TYPE 38 TDP Editor

Usr_file... 38 Using..33
Usr_file file .. 38 TDP Editor...33
Usr_file file,char.................................. 38 TDP Migration37

48

Index

W Usr_file usr_open................................38
USR_IO_FUNC38

Whilest ... 28 Usr_open..38
WindShell tool 28 Usr_time...38

USR_TIME_FUNC..............................38 X
Usr_writeln..38

Xdp ... 19, 33
V Xdp file... 35

Xml ... 35 v2002 Release 219, 37
XML-based TDP 19 VxWorks ..28

49

50

	Rational® Test RealTime
	Target Deployment Guide
	Preface
	Audience
	Contacting Rational Technical Publications
	Other Resources
	Customer Support

	Target Deployment Port Tutorial
	Tutorial Preparation
	Tutorial Steps
	Creating a New TDP
	Editing a TDP
	Validating a New TDP
	Debugging a TDP
	Customizing a TDP
	User-defined I/O Primitives
	Using a Debugger
	Break Point Mode

	Planning a Target Deployment Port
	Contents of a Target Deployment Port
	Determining Target Requirements
	Retrieving Data from the Target Host

	Using the TDP Editor
	Upgrading a Target Deployment Port
	Opening a Target Deployment Port
	Editing Customization Points
	Creating a Target Deployment Port
	Updating a Target Deployment Port
	Using a Post-generation Script
	Migrating pre-V2002 TDPs to Present Format

	Index

