
Rational Software Corporation
C++ Reference

RATIONAL ROSE® REALTIME

VERSION: 2003.06.00

PART NUMBER: 800-026109-000
support@rational.com
http://www.rational.com

WINDOWS/UNIX

Legal Notices
©1993-2003, Rational Software Corporation. All rights reserved.
Part Number: 800-026109-000
Version Number: 2003.06.00

This manual (the "Work") is protected under the copyright laws of the United States
and/or other jurisdictions, as well as various international treaties. Any reproduction
or distribution of the Work is expressly prohibited without the prior written consent
of Rational Software Corporation.

Rational, Rational Software Corporation, the Rational logo, Rational Developer
Network, AnalystStudio, ClearCase, ClearCase Attache, ClearCase MultiSite,
ClearDDTS, ClearGuide, ClearQuest, ClearTrack, Connexis, e-Development
Accelerators, DDTS, Object Testing, Object-Oriented Recording, ObjecTime,
ObjecTime Design Logo, Objectory, PerformanceStudio, PureCoverage, PureDDTS,
PureLink, Purify, Quantify, Rational Apex, Rational CRC, Rational Process
Workbench, Rational Rose, Rational Suite, Rational Suite ContentStudio, Rational
Summit, Rational Visual Test, Rational Unified Process, RUP, RequisitePro,
ScriptAssure, SiteCheck, SiteLoad, SoDA, TestFactory, TestFoundation, TestStudio,
TestMate, VADS, and XDE, among others, are trademarks or registered trademarks of
Rational Software Corporation in the United States and/or in other countries. All
other names are used for identification purposes only, and are trademarks or
registered trademarks of their respective companies.

Portions covered by U.S. Patent Nos. 5,193,180 and 5,335,344 and 5,535,329 and
5,574,898 and 5,649,200 and 5,675,802 and 5,754,760 and 5,835,701 and 6,049,666 and
6,126,329 and 6,167,534 and 6,206,584. Additional U.S. Patents and International
Patents pending.

U.S. GOVERNMENT RIGHTS. All Rational software products provided to the U.S.
Government are provided and licensed as commercial software, subject to the
applicable license agreement. All such products provided to the U.S. Government
pursuant to solicitations issued prior to December 1, 1995 are provided with
“Restricted Rights” as provided for in FAR, 48 CFR 52.227-14 (JUNE 1987) or DFARS,
48 CFR 252.227-7013 (OCT 1988), as applicable.

WARRANTY DISCLAIMER. This document and its associated software may be used
as stated in the underlying license agreement. Except as explicitly stated otherwise in
such license agreement, and except to the extent prohibited or limited by law from
jurisdiction to jurisdiction, Rational Software Corporation expressly disclaims all
other warranties, express or implied, with respect to the media and software product
and its documentation, including without limitation, the warranties of
merchantability, non-infringement, title or fitness for a particular purpose or arising

from a course of dealing, usage or trade practice, and any warranty against
interference with Licensee’s quiet enjoyment of the product.

Third Party Notices, Code, Licenses, and Acknowledgements
Portions Copyright ©1992-1999, Summit Software Company. All rights reserved.

Microsoft, the Microsoft logo, Active Accessibility, Active Client, Active Desktop,
Active Directory, ActiveMovie, Active Platform, ActiveStore, ActiveSync, ActiveX,
Ask Maxwell, Authenticode, AutoSum, BackOffice, the BackOffice logo, bCentral,
BizTalk, Bookshelf, ClearType, CodeView, DataTips, Developer Studio, Direct3D,
DirectAnimation, DirectDraw, DirectInput, DirectX, DirectXJ, DoubleSpace,
DriveSpace, FrontPage, Funstone, Genuine Microsoft Products logo, IntelliEye, the
IntelliEye logo, IntelliMirror, IntelliSense, J/Direct, JScript, LineShare, Liquid Motion,
Mapbase, MapManager, MapPoint, MapVision, Microsoft Agent logo, the Microsoft
eMbedded Visual Tools logo, the Microsoft Internet Explorer logo, the Microsoft
Office Compatible logo, Microsoft Press, the Microsoft Press logo, Microsoft
QuickBasic, MS-DOS, MSDN, NetMeeting, NetShow, the Office logo, Outlook,
PhotoDraw, PivotChart, PivotTable, PowerPoint, QuickAssembler, QuickShelf,
RelayOne, Rushmore, SharePoint, SourceSafe, TipWizard, V-Chat, VideoFlash, Visual
Basic, the Visual Basic logo, Visual C++, Visual C#, Visual FoxPro, Visual InterDev,
Visual J++, Visual SourceSafe, Visual Studio, the Visual Studio logo, Vizact, WebBot,
WebPIP, Win32, Win32s, Win64, Windows, the Windows CE logo, the Windows logo,
Windows NT, the Windows Start logo, and XENIX, are either trademarks or registered
trademarks of Microsoft Corporation in the United States and/or in other countries.

Sun, Sun Microsystems, the Sun Logo, Ultra, AnswerBook 2, medialib, OpenBoot,
Solaris, Java, Java 3D, ShowMe TV, SunForum, SunVTS, SunFDDI, StarOffice, and
SunPCi, among others, are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

Licensee shall not incorporate any GLOBEtrotter software (FLEXlm libraries and
utilities) into any product or application the primary purpose of which is software
license management.

BasicScript is a registered trademark of Summit Software, Inc.

Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma,
Richard Helm, Ralph Johnson and John Vlissides. Copyright © 1995 by
Addison-Wesley Publishing Company, Inc. All rights reserved.

Additional legal notices are described in the legal_information.html file that is
included in your Rational software installation.

Contents
Preface . xxiii
Audience. xxiii

Other Resources . xxiii

Rational Rose RealTime Integrations With Other Rational Products xxiv

Contacting Rational Customer Support .xxv

1 Overview .27
Using this Guide . 27

Workflows for Your Host Workstation and Embedded Target 28

Using C++ Code in Models. 28

Model Properties . 29

C++ Services Library . 30

Code Generation . 30
Modifying Generated Code. 31

Compilation. 31
Linking the Model with the Services Library . 31

Model Executables . 31

Target Observability . 32

2 Using C++ Code in Models .33
Adding C++ Code to Models . 33

The Syntax of Code Segments. 34
Choice Point Code Condition Segment . 34

Encapsulating Target Specific Behavior . 34

Code Sync . 34
Making Changes Outside the Toolset . 35

Identifying Designated Code Sync Areas. 35
De-activating Code Sync . 35
Contents v

Macros and Arguments Available to State Machine Code35
CALLSUPER . 35
SUPER . 36
RTDATA and rtdata . 36
rtport . 36

Limitations .37
Opening Rational Rose Models in Rose RealTime . 37
Using the C++ Analyzer in Rose RealTime . 37

3 Code Generation. 39
Model to Code Correspondence .39

Associations . 39
Valid Code Generation Associations. .40

Dependencies. 41
Classes. 41
Logical Packages . 42
User-defined Operations . 43
Standard Operations . 43
Attributes . 44
Capsules. 45
Capsule State Diagrams. 46
Protocols. 47
Components . 49
Relationships and Elements Ignored by C++ Code Generation 50

Code Generator Behavior .50
Incremental Generation . 51

The Effect of Controlled Units .52

Generated Code Directory Layout . 53
src .53
build. .54

Code Generator Command-Line Arguments . 54
Command-Line Arguments .54

Command-Line Build Interface . 55

4 Generating and Sharing External Library Interfaces 57
Overview .57

Phase 1: Providing the Library Interface Specification.59
Creating a Library Component . 59
Setting the Target Configuration and References. 60
vi Contents

Setting the Visibility Level of External Library Interfaces 60
Redefining Visibility Settings for Unit Interfaces. 64
Setting Inclusion Paths and Library Paths . 65
Specifying the Names of Shared Packages . 66

Phase 2: Publishing the Interface. .66

Phase 3: Sharing and Using the External Library Interface68
Sharing the Interface . 68
Using the Interface . 69

Considerations and Known Issues. .70

5 Classes and Data Types . 73
Overview .73

Sending Data in Messages .73
Protocols . 74

Sending by Value . 74
Sending by Reference . 74

Memory Leaks . 75
Creating Data Types. 76

Marshallable Data Classes . 77
Basic Structures. 77

C++ Data Type Examples .77
Syntax Examples of Sending Data Classes Between Capsule Instances 78

Sending and Receiving Data By Value . 78
Sending and Receiving Data By Reference. 78

Class Modeling Examples . 79
Creating a Class Data Member From the Class Diagram . 79
Specifying Arrays Using Association Multiplicity . 81

Creating and Using Common C++ Constructs. 81
Creating Array and Pointer Attributes . 81
Creating a Constant . 82
Creating a Typedef. 83
Creating an Enumeration . 83
Creating a #define . 84
Creating a Struct . 86

Class Creation Examples. 86
Creating and Using Classes With No Pointer Attributes . 86
Creating and Using Classes With Attributes That Are Pointers 87
Integrating an External Class. 88

Integration Questions . 88
Integration for Case #1 . 88
Integration for Case #2 and Case #3 . 89
Contents vii

Integration Options . 89
Option 1: Describing an External Type to Rose RealTime .89
Option 2: Providing Own Marshalling Functions .90

6 C++ Services Library . 93
C++ Services Library Framework. .93

The Big Advantage . 93
Message Processing . 94

Events and Messages. .94

Processing Overview . 95
Single and Multi-Threaded Message Processing . 95
Introduction to Threads. 96
Types of Concurrency . 96
Mapping Capsules to Threads . 96
Single-Threaded Services Library . 97
Multi-Threaded Services Library . 98
Naming Considerations . 99
C++ Services Library Framework . 99
Capsules Become Subclasses of RTActor . 101
Special Overrideable Capsule Class Operations . 102
Capsule Class Information is Stored in Instances of RTActorClass 102
Capsule Roles are Attributes of Type RTActorRef . 102
Protocols Become Two Classes: Base and Conjugate. 103
Ports are Protocol Type Attributes in RTActor Subclasses 103
Signals Become Operations in Protocol Classes . 103
Capsule Roles are Place Holders for Zero or More Capsule Instances 104

Multiple Containment .104

Capsule Instances Have Access to a RTMessage Object 105
Capsule Instances Have Access to their Controller . 105
Framework Sample Model . 105

Log Service .106

Communication Services .106
Asynchronous and Synchronous Communication . 107
Order-Preserving . 108
Lossy . 108
Request-Reply . 108
The Semantics of Usage of Message Priorities . 109
Support for Unwired Ports . 110
Published Versus Unpublished Unwired Ports . 110
viii Contents

Registration by Name. 111
Registration String . 111
Automatic Versus Application Registration. 111
Deferring and Recalling Messages . 112

Timing Service .112
Relative Versus Absolute Time . 113
Timing Precision and Accuracy . 114

Frame Service .114
Optional Capsules . 115
Plug-in Capsule Roles: Multiple Containment . 115
Multiple Containment . 115
Replicated Capsule Roles . 116

Exception Service .117

RTController Error Codes .117
Error Enumeration . 118

alreadyDeferred . 119
badActor . 119
badClass . 119
badId . 120
badIndex . 120
badRef . 120
badSignal . 120
badValue . 120
deferInvoke . 120
dereg . 120
imported. 120
noConnect . 121
noMem . 121
noReply . 121
notImported . 121
notOptional . 121
prio. 121
recursiveInvoke . 121
refFull . 122
reg . 122
replRef . 122
xRtsInvoke . 122

External Port Service .122
Contents ix

7 Running Models on Target Boards . 123
Step 1: Verify Tool Chain Functionality. .123

How to Test . 124

Step 2: Kernel Configuration .124

Step 3: Verify main.cpp .125

Step 4: Try Manual Loading .125

Step 5: Running with Observability .126

8 Command Line Model Debugger . 129
Starting the Run Time System Debugger .129

URTS_DEBUG Parameter .129

Differences Between Single-Threaded and Multi-Threaded Run Time System
Debugger. 130

Application-Specific Command-Line Arguments . 130
Accessing .131
Providing Arguments on Targets That Do Not Support Command-Line Arguments .131

Run Time System Debugger Command Summary131
Help . 131
taskId, capsuleId, portId . 131
Running a Model . 132
Thread Commands. 132
tasks . 132
attach <taskId> . 133
detach <taskId> . 133
Informational Commands . 133
saps . 134
system [<capsuleId> [<depth>]] . 134
info . 135
printstats <taskId> . 136
Tracing Commands. 137
log <category> <detail-level> . 137
Control Commands. 139

exit. .139
go [<n>]. .139
step [<n>] .139
quit .139
continue. .139
x Contents

9 Inside the C++ Services Library . 141
Organization of the Services Library Source .141

$RTS_HOME . 141
Configuration Naming Convention . 141

Platform Name (or Configuration) . 142
Target Base Name . 142
Libset Name. 142
Summary . 143

Directory Structure . 143
codegen . 143
include . 143
config . 143
target . 144
lib . 144
libset . 144
src . 144
tools . 144

Configuration Preprocessor Definitions .144
USE_THREADS. 145
RTS_COUNT . 145
DEFER_IN_ACTOR . 145
INTEGER_POSTFIX . 145
LOG_MESSAGE . 146
OBJECT_DECODE . 146
OBJECT_ENCODE . 146
OTRTSDEBUG . 146
RTREAL_INCLUDED. 147
PURIFY . 147
RTS_INLINES . 147
RTS_COMPATIBLE . 147
HAVE_INET . 147
INLINE_CHAINS . 148
INLINE_METHODS . 148
RTFRAME_CHECKING. 148
RTFRAME_THREAD_SAFE . 149
RTFRAME_USE_FREELIST . 150
RTMESSAGE_PAYLOAD_SIZE. 150
OBSERVABLE . 150
Contents xi

Creating the Minimum Services Library Configuration 151

Integrating External IPC Into a Model .151
Build Versus Buy. 152
IPC Basics . 152

Single-Threaded IPC .153
Using Signal Handlers .153
Polling a Flag .153
Multi-Threaded IPC .153
Dedicated Blocking Capsule .154
Processing Overhead .154

Custom Peer Controller . 154
Enhancement to the RTPeerController Class .155
Adding Support For New IPC Mechanisms. .155
Design Components .156
Concurrency Note .157
Controller Usage .158
Usability Note .158

IPC Options Summary . 159

Optimizing Designs .160
Capsule Instances and Capsule Behavior . 160

Incarnation (Frame::Base::incarnate()) .160
Guards .161
State Machines .161
Capsules versus Data .161
Capsule Functions .162
RTDataObjects .162
Unnecessary Sends .162
Sending Data by Value in Messages .162
Cross Thread Message Sending .163

General C++ Performance Notes . 163
Additional Design Considerations. 164

Hardware Differences .164
Availability of External Library on Different Platforms .164

Toolchains. 165

10 Configuring and Customizing the Services Library 167
Configuration and Customization .167

Changing Pre-Processor Macros . 168
Changing Build Options . 170
Overriding Virtual RTActor Operations From the Toolset 171
xii Contents

Overriding or Adding Operations and Classes. 172
Overriding Operations Within a Model . 173
Overriding Operations by Creating a New Target. 174

Building the Services Library .175

Updating a Component to Use a Different Services Library 176

11 Model Properties Reference. 177
Generalization and Properties .177

Expanded Property Symbols .178
Environment Variables and Pathmap Symbols . 178

C++ Model Element Properties .179
GenerateClass (Class, C++) . 181
ClassKind (Class, C++) . 181
ImplementationType (Class, C++) . 182
HeaderPreface (Class, C++) . 182
HeaderEnding (Class, C++) . 182
ImplementationPreface (Class, C++) . 183
ImplementationEnding (Class, C++) . 183
PublicDeclarations (Class, C++) . 183
ProtectedDeclarations (Class, C++). 183
PrivateDeclarations (Class, C++) . 183
GenerateDefaultConstructor (Class, C++) . 184
DefaultConstructorVisibility (Class, C++) . 184
DefaultConstructorExplicit (Class, C++). 184
DefaultConstructorInline (Class, C++) . 184
GenerateCopyConstructor (Class, C++) . 184
CopyConstructorVisibility (Class, C++) . 185
CopyConstructorExplicit (Class, C++) . 185
CopyConstructorInline (Class, C++) . 185
GenerateDestructor (Class, C++) . 185
DestructorVisibility (Class, C++) . 185
DestructorVirtual (Class, C++) . 186
DestructorInline (Class, C++). 186
GenerateAssignmentOperator (Class, C++) . 186
AssignmentOperatorVisibility (Class, C++) . 186
AssignmentOperatorInline (Class, C++) . 186
GenerateEqualityOperator (Class, C++) . 187
EqualityOperatorsVisibility (Class, C++) . 187
Contents xiii

EqualityOperatorInline (Class, C++) . 187
GenerateInequalityOperator (Class, C++) . 187
AttributeKind (Attribute, C++) . 187
InitializerKind (Attribute, C++). 188
OperationKind (Operation, C++). 188
Inline (Operation, C++) . 188
ConstructorInitializer (Operation, C++) . 189
CallFromDestructor (Operation, C++). 189
AssociationEndKind (Role, C++) . 189
InitializerKind (Role, C++). 189
InitialValue (Role, C++). 190
HeaderPreface (Capsule, C++) . 190
HeaderEnding (Capsule, C++) . 190
ImplementationPreface (Capsule, C++) . 190
ImplementationEnding (Capsule, C++). 191
PublicDeclarations (Capsule, C++). 191
ProtectedDeclarations (Capsule, C++) . 191
PrivateDeclarations (Capsule, C++) . 191
KindInHeader (Uses, C++) . 192
KindInImplementation (Uses, C++). 192
Declaring a Private Copy Constructor or Assignment Operator in C++ Classes . .

192

C++ TargetRTS Properties. .195
GenerateDescriptor (Class, C++ TargetRTS) . 196
Version (Class, C++ TargetRTS). 196
InitFunctionBody (Class, C++ TargetRTS) . 196
CopyFunctionBody (Class, C++ TargetRTS) . 197
DestroyFunctionBody (Class, C++ TargetRTS) . 197
DecodeFunctionBody (Class, C++ TargetRTS) . 197
EncodeFunctionBody (Class, C++ TargetRTS) . 199
GenerateDescriptor (Attribute, C++ TargetRTS). 201
TypeDescriptor (Attribute, C++ TargetRTS) . 201
NumElementsFunctionBody (Attribute, C++ TargetRTS) 201
GenerateDescriptor (Role, C++ TargetRTS). 202
TypeDescriptor (Role, C++ TargetRTS) . 202
NumElementsFunctionBody (Role, C++ TargetRTS) . 202
xiv Contents

Version (Protocol, C++ TargetRTS) . 202
BackwardsCompatible (Protocol, C++ TargetRTS) . 203
TypeSafeSignals (Protocol, C++ TargetRTS) . 203

Type Descriptors .203
What are Type Descriptors?. 203
When are Type Descriptors Used? . 204
Example Usage Patterns and Associated Type Descriptors 206

C++ Generation Properties .215
OutputDirectory (Component, C++ Generation) . 215
CodeGenDirName (Component, C++ Generation) . 215
ComponentUnitName (Component, C++ Generation) 216
CommonPreface (Component, C++ Generation). 216
CodeGenMakeType (Component, C++ Generation) . 217
CodeGenMakeCommand (Component, C++ Generation) 217
CodeGenMakeArguments (Component, C++ Generation) 217
CodeGenMakeInsert (Component, C++ Generation) 217
CodeSyncEnabled (Component, C++ Generation) . 218
Generate Model Tags (Component, C++ Generation) 218

C++ Compilation Properties. .218
CompilationMakeType (Component, C++ Compilation) 219
CompilationMakeCommand (Component, C++ Compilation) 219
CompilationMakeArguments (Component, C++ Compilation) 220
CompilationMakeInsert (Component, C++ Compilation) 220
CompileCommand (Component, C++ Compilation). 220
CompileArguments (Component, C++ Compilation) . 221
InclusionPaths (Component, C++ Compilation) . 221
TargetServicesLibrary (Component, C++ Compilation) 222
TargetConfiguration (Component, C++ Compilation) . 222

C++ Executable Properties .223
TopCapsule (Component, C++ Executable) . 223
PhysicalThreads (Component, C++ Executable) . 223

Physical Thread Properties . 224
Logical Threads . 225
Physical Threads . 225

ExecutableName (Component, C++ Executable). 225
DefaultArguments (Component, C++ Executable) . 226
LinkCommand (Component, C++ Executable). 226
LinkArguments (Component, C++ Executable) . 226
Contents xv

UserLibraries (Component, C++ Executable). 226
UserObjectFiles (Component, C++ Executable). 227

C++ Library Properties. .227
LibraryName (Component, C++ Library) . 227
BuildLibraryCommand (Component, C++ Library) . 228
BuildLibraryArguments (Component, C++ Library) . 228
LogicalThreads (Component, C++ Library) . 228

C++ External Library Properties .229
GenerateClassInclusions (Component, C++ External Library). 229
CodeGenDirName (Component, C++ External Library) 229
InclusionPaths (Component, C++ External Library) . 230
Libraries (Component, C++ External Library). 230
LogicalThreads (Component, C++ External Library) . 231

12 Services Library Class Reference . 233
RTDataObject Subclasses .234

RTActor .234
RTActor::msg and RTActor::getMsg . 235
RTActor::logMsg . 236
RTActor::unexpectedMessage . 236
RTActor::context . 237
RTActor::getError . 237
RTActor::getIndex . 238
RTActor::getName . 238
RTActor::getTypeName. 238
RTActor::isType. 239
RTActor::getCurrentStateString . 239

RTActorClass .239

RTActorRef. .240
RTActorRef::size . 241

RTActorId .241
RTActorId::isValid . 242

RTController. .242
RTController::getError . 243
RTController::strerror . 244
xvi Contents

RTController::perror . 244
RTController::name . 244
RTController::abort . 245

Exception .245
Exception Signals. 246
RTExceptionSignal. 247

Frame. .247
Frame::classIsKindOf . 248
Frame::className . 248
Frame::classOf . 249
Frame::deport. 249
Frame::destroy . 250
Frame::import. 251
Frame::incarnate . 253
Frame::incarnationAt . 257

RTInSignal .257
RTInSignal::purge . 258
RTInSignal::purgeAt . 258
RTInSignal::recall . 259
RTInSignal::recallAt . 259
RTInSignal::recallAll . 260
RTInSignal::recallAllAt . 261

Log .261
Log::show and Log::log . 262
Log Miscellaneous Operations. 263

RTMessage .264
RTMessage::getPriority . 265
RTMessage::getSignalName . 265
RTMessage::getData . 266
RTMessage::getType . 266
RTMessage::sapIndex0 . 266
RTMessage::sap . 267
RTMessage::isValid . 267
RTMessage::defer . 268

RTObject_class .268
Contents xvii

RTOutSignal. .270
RTOutSignal::send . 270
RTOutSignal::sendAt . 271
RTOutSignal::invoke . 272
RTOutSignal::invokeAt . 274
RTOutSignal::reply . 275

RTProtocol .275
RTProtocol::size . 277
RTProtocol::purge. 277
RTProtocol::purgeAt . 278
RTProtocol::recall . 278
RTProtocol::recallAt . 279
RTProtocol::recallFront . 279
RTProtocol::recallAll . 280
RTProtocol::recallAllAt . 280
RTProtocol::recallAllFront . 281
RTProtocol::bindingNotification . 281
RTProtocol::bindingNotificationRequested . 281
RTProtocol::registerSAP. 282
RTProtocol::deregisterSAP. 282
RTProtocol::registerSPP. 283
RTProtocol::deregisterSPP. 284
RTProtocol::isIndexTo. 284
RTProtocol::indexTo . 284
RTProtocol::isBoundAt . 285
RTProtocol::isRegistered . 286
RTProtocol::getRegisteredName . 286

RTSymmetricSignal .286
Example . 286

RTTimerId .287
RTTimerId::isValid . 287

RTTimespec. .287
tv_sec and tv_nsec. 288
RTTimespec::RTTimespec . 289
RTTimespec::getclock . 289
xviii Contents

RTTimespec Basic Comparison Operators . 290
RTTimespec Assignment Operators . 291
RTTimespec Basic Arithmetic Operators . 291

Timing .291
Timing::informAt . 292
Timing::informIn . 293

Passing Data in a Timer Message . 294

Timing::informEvery . 295
Timing::currentTime . 296
Timing::cancelTimer. 297
Timing System Clock Operations . 298

RTTypedValue .299

Port Services .299
External Port Service . 299

Index. 301
Contents xix

xx Contents

Figures
Figure 1 Target Observability . 32
Figure 2 Protocol Definition for NewProtocol1 . 47
Figure 3 Generated Protocol Class for NewProtocol1 . 48
Figure 4 Simplified RTOutSignal Definition . 49
Figure 5 Simplified RTInSignal Definition . 49
Figure 6 Compilation Paradigm for Producing C++ Executable. 51
Figure 7 Component Diagram . 58
Figure 8 Association Between Two Capsules . 79
Figure 9 Association Between a Capsule and a Class . 79
Figure 10 An Array Data Member . 81
Figure 11 Macro Usages . 85
Figure 12 Single-Threaded Services Library . 97
Figure 13 Multi-Threaded Services Library . 98
Figure 14 C++ Services Library Framework . 100
Figure 15 PingPong Protocol and Talk Port . 104
Figure 16 Ping Pong Model Class Diagram. 105
Figure 17 Container Capsule Structure Diagram. 106
Figure 18 Information Flow for the Custom Controller Based IPC Mechanism . . 155
Figures xix

xx Figures

Tables
Table 1 Visibility Level Descriptions . 62
Table 2 Summary of Rules for Unit Visibility . 63
Table 3 Definitions for Minimum Services Library Configuration 151
Table 4 IPC Options . 159
Table 5 Operations . 300
Tables xxi

xxii Tables

Preface
This manual provides an introduction to Rational Rose RealTime C++. The C++
module joins the current C and Java modules to add the ability to design, generate,
build, and debug applications in the C++ language to the Rose RealTime product.

This manual is organized as follows:

■ Overview on page 27
■ Using C++ Code in Models on page 33
■ Code Generation on page 39
■ Generating and Sharing External Library Interfaces on page 57
■ Classes and Data Types on page 73
■ C++ Services Library on page 93
■ Running Models on Target Boards on page 123
■ Command Line Model Debugger on page 129
■ Inside the C++ Services Library on page 141
■ Configuring and Customizing the Services Library on page 167
■ Model Properties Reference on page 177
■ Services Library Class Reference on page 233

Audience

This guide is intended for all readers, including managers, project leaders, analysts,
developers, and testers.

Other Resources

■ Online Help is available for Rational Rose RealTime.

Select an option from the Help menu.

All manuals are available online, either in HTML or PDF format. To access the
online manuals, click Rational Rose RealTime Documentation from the Start menu.

■ To send feedback about documentation for Rational products, please send e-mail
to techpubs@rational.com.
xxiii

■ For more information about Rational Software technical publications, see:
http://www.rational.com/documentation.

■ For more information on training opportunities, see the Rational University Web
site: http://www.rational.com/university.

■ For articles, discussion forums, and Web-based training courses on developing
software with Rational Suite products, join the Rational Developer Network by
selecting Start > Programs > Rational Suite > Logon to the Rational Developer Network.

Rational Rose RealTime Integrations With Other Rational
Products

Integration Description Where it is Documented

Rose RealTime–
ClearCase

You can archive Rose RT components in
ClearCase.

■ Toolset Guide: Rational Rose RealTime

■ Guide to Team Development: Rational
Rose RealTime

Rose RealTime–
UCM

Rose RealTime developers can create
baselines of Rose RT projects in UCM and
create Rose RealTime projects from
baselines.

■ Toolset Guide: Rational Rose RealTime

■ Guide to Team Development: Rational
Rose RealTime

Rose RealTime–
Purify

When linking or running a Rose
RealTime model with Purify installed on
the system, developers can invoke the
Purify executable using the Build > Run
with Purify command. While the model
executes and when it completes, the
integration displays a report in a Purify
Tab in RoseRealTime.

■ Rational Rose RealTime Help

■ Toolset Guide: Rational Rose
RealTime

■ Installation Guide: Rational Rose
RealTime
xxiv Preface

http://www.rational.com/documentation/
http://www.rational.com/university

Contacting Rational Customer Support

If you have questions about installing, using, or maintaining this product, contact
Rational Customer Support.

Note: When you contact Rational Customer Support, please be prepared to supply the
following information:

■ Your name, company name, telephone number, and e-mail address

■ Your operating system, version number, and any service packs or patches you
have applied

■ Product name and release number

■ Your Service Request number (SR#) if you are following up on a previously
reported problem

Rose RealTime–
RequisitePro

You can associate RequisitePro
requirements and documents with Rose
RealTime elements.

■ Addins, Tools, and Wizards
Reference: Rational Rose RealTime

■ Using RequisitePro

■ Installation Guide: Rational Rose
RealTime

Rose RealTime–
SoDa

You can create reports that extract
information from a Rose RealTime
model.

■ Installation Guide: Rational Rose
RealTime

■ Rational SoDA User’s Guide

■ SoDA Help

Integration Description Where it is Documented

Your Location Telephone Facsimile E-mail

North, Central,
and South
America

+1 (800) 433-5444
(toll free)

+1 (408) 863-4000
Cupertino, CA

+1 (781) 676-2460
Lexington, MA

support@rational.com

Europe, Middle
East, Africa

+31 20 4546-200
Netherlands

+31 20 4546-201
Netherlands

support@europe.rational.com

Asia Pacific +61-2-9419-0111
Australia

+61-2-9419-0123
Australia

support@apac.rational.com
Contacting Rational Customer Support xxv

When sending email concerning a previously-reported problem, please include in the
subject field: "[SR#XXXXX]", where XXXXX is the Service Request number of the
issue. For example, "[SR#0176528] - New data on rational rose realtime install issue ".
xxvi Preface

1Overview
Contents

This chapter is organized as follows:

■ Using this Guide on page 27
■ Workflows for Your Host Workstation and Embedded Target on page 28
■ Using C++ Code in Models on page 28
■ Model Properties on page 29
■ C++ Services Library on page 30
■ Code Generation on page 30
■ Compilation on page 31
■ Model Executables on page 31
■ Target Observability on page 32

Using this Guide

Use this guide to learn how to use the C++ Language Add-in to build, compile and
debug C++ based Rational Rose RealTime models. Information is provided on how to
deploy the model executables to a target system, and how to optimize and configure
your target to fit your project’s needs.

Using the C++ Language Add-in, you can produce C++ source code, compile it, then
build an executable from the information contained in a Rational Rose RealTime
model. The code generated for each selected model element is a function of the model
specification, model properties, and the model’s design properties. Model properties
provide the language-specific information required to map your model onto C++.

To understand how the C++ language add-in works, first you should understand the
main aspects of the language add-in. In addition, there are a number of C++ example
models that demonstrate features of the toolset, the model properties, and the C++
Services Library.

Note: You can find example models in the Examples directory located in the root
Rational Rose RealTime installation directory.
27

Workflows for Your Host Workstation and Embedded Target

There is an expected sequence of work activities for taking a model from early
prototyping to final production.

During the initial phases of model development, it is advisable to run your models
primarily on the host workstation to keep the modify-compile-debug cycle as short as
possible. You can then take advantage of workstation-based debug tools, such as C++
source-level debuggers and C++ analysis tools (such as PurifyTM) that may not be
available on your target platform. For many projects, this is the final step, if you are
using a workstation-based target.

The final step for projects using some form of RTOS-based embedded target platform
is to compile the model for that target platform, and download and run it on the
target. These tasks are explained in Running Models on Target Boards on page 123.

The workflow of Rational Rose RealTime is intended to provide as much up-front
verification and debugging as possible in the the host workstation environment. This
environment is typically provided by a combination of Rose RealTime host-based
tools and workstation-based C++ tools. This leaves a minimal amount of debugging
to do on the target, where debugging is typically more difficult. The use of target
observability to monitor and control models at the model level greatly enhances the
ability to debug target applications.

Using C++ Code in Models

C++ is used as a detail-level coding language in Rational Rose RealTime. At a higher
level of abstraction, the program is described both structurally and behaviorally as a
graphical model using the Unified Modeling Language (UML). C++ code can be
added to a variety of behavioral elements in a UML model. A graphical state diagram
shows the allowable sequence of events that a capsule can process. Detailed code
must be added to the states, transitions, and operations in the model. There are no
restrictions on the code that you enter into your model. You can also make use of
external C++ classes (that is, classes defined outside of Rational Rose RealTime) and
libraries in your model.

Rational Rose RealTime is designed to be the central interface point for developing
C++ based models, and provides support for all activities in the development process,
including requirements capture, high-level design, coding, versioning, loadbuilding,
and testing. Rational Rose RealTime depends on your existing C++ tools to handle
language-specific work - it coordinates and controls these activities in the context of
28 Chapter 1 - Overview

your model. For example, the toolset does not include a C++ compiler or linker.
Rational Rose RealTime requires that you already have a C++ compiler or linker
installed and accessible in your environment prior to compiling a C++ model.

Model Properties

The notations supported in Rose RealTime are more abstract than the C++
programming language. Model properties enable you to provide language-specific
information that is not expressed in the notation, but that is necessary for generating
and building source code. Each model property can be assigned a model property
value. When a model element is created, each model property is assigned a default
value, which you can optionally modify.

See the property set mechanism in the Toolset Guide.

In order to build source code, the code generator also generates makefiles that specify
how to build the generated source code. Certain properties affect how these makefiles
are to be generated and their contents.

You can use model properties to:

■ Add an #include directive automatically to more than one file.
■ Suppress the generation of default or copy constructors.
■ Specify the format of a constructor or relational operator.
■ Suppress the generation of a class.
■ Add compilation flags, include paths, and other build related settings.

Controlling a particular aspect of code generation may require several model
properties.

Not all model components for which code is generated require model properties. For
example, there are no model properties for inheritance relationships, yet the C++
generator produces base lists and #include directives from inheritance relationships.
In such cases, information obtained from specifications is sufficient to control code
generation.
Model Properties 29

C++ Services Library

The C++ Services Library is at the heart of the C++ Language Add-in. It is essential
that you understand its architecture if you are to start optimizing and configuring it
for your project’s needs.

The behavior of a model is specified using a combination of capsule state diagrams
and operations defined on classes and capsules. The relationships in the model are
specified with a combination of capsule structure and class diagrams. When a model
is built, these abstractions are automatically converted to implementation. The
Rational Rose RealTime Services Library provides a set of built-in services commonly
required in real-time systems. These services include: state machine handling,
message passing, timing, concurrency control, thread management, and debugging
facilities. The Rational Rose RealTime Services Library provides a standard set of
services across all supported platforms, so that your model can be readily ported to
different target platforms.

The Rational Rose RealTime Services Library provides the following facilities:

■ The mechanisms that support the implementation of concurrent communicating
state machines.

■ Thread management and concurrency control.
■ Dynamic structure.
■ Timing.
■ Inter-thread communication.
■ Observation and debugging of a running model.

Code Generation

This section discusses some aspects of how a model is converted to C++ code and
compiled. This should clarify the output you will see in the Build Log window and
help you browse the generated code.

The C++ generator uses the specifications and model properties of elements in the
current model to produce C++ source code. You generate code for a component which
in turn references a set of elements from the logical view. The location of the source
files that are generated for elements referenced by (or assigned to) a component is
determined by the name of the component, the location of your model file (.rtmdl),
and the OutputDirectory (Component, C++ Generation) property.

For more information on code generation, see Code Generation on page 30.
30 Chapter 1 - Overview

Modifying Generated Code

Rational Rose Real Time with Code Sync provides a means to modify certain
identified sections of the generated code from outside the toolset. You can make
changes to specific portions of the generated code using an external editor and, using
Code Sync, have these changes propagated back into the model. Do not make changes
to the generated code outside of the identified sections because you may lose these
changes. For more information, see Using C++ Code in Models on page 28.

Compilation

The C++ Language Add-in will convert a model to C++ code but does not include the
compiler which will build from the generated source code. Before trying to build a
generated model ensure that your compiler tools are correctly installed. For example,
try building a simple C++ program from the command line. If that works, then the
C++ Language Add-in will be able to properly invoke the configured compiler.

Linking the Model with the Services Library

Rose RealTime models are created by linking the user-compiled model files with the
pre-compiled C++ Services Library into a single executable file. All the versions of the
pre-compiled Services Libraries are available for all supported hosts. In addition the
Services Library can be ported and built for new hosts as required.

Model Executables

Compiling a Rose RealTime model results in a stand-alone executable. The generated
executable is not connected to the Rose RealTime session unless specified. If targeted
for a workstation platform, the model can be run simply by typing the name of the
generated executable on the command line. If targeted for a real-time operating
system, the resulting executable must be downloaded to the target and executed using
the tools particular to that target operating system.

For more information,see Running Models on Target Boards on page 123.
Compilation 31

Target Observability

Rational Rose RealTime's graphical observation tools are a sophisticated, yet intuitive
debugging environment allowing you to use the toolset to execute, monitor and
control a model running on the Services Library, even on a remote target platform.
The Services Library is a high-performance implementation intended for use in a
wide-range of real-time products.

Figure 1 Target Observability
32 Chapter 1 - Overview

2Using C++ Code in
Models
Contents

This chapter is organized as follows:

■ Adding C++ Code to Models on page 33
■ The Syntax of Code Segments on page 34
■ Encapsulating Target Specific Behavior on page 34
■ Code Sync on page 34
■ Macros and Arguments Available to State Machine Code on page 35

Adding C++ Code to Models

You can use C++ in your Rational Rose RealTime model to:

■ Perform detailed actions that occur on transitions.

■ Perform detailed actions that occur on state entry or exit.

■ Code capsule operations that can then be invoked from any other code segment
(the common name for the C++ code contained inside any one model element,
such as a transition code segment). Capsule functions can be used to capture
common operations, which may be performed as part of several different
transitions, state entry actions, and so forth, or to simplify the transition code.

■ Perform condition tests as part of choice points or event guard conditions.

■ Write operations on classes.

You can also define C++ classes and functions outside of your model and make use of
them within your model, or make calls to other existing C/C++ libraries from your
model. As long as the external C++ code is visible to the compiler and linker you can
use them in a model.
33

The Syntax of Code Segments

C++ code is added to your model by filling-in the body portion of operations,
transitions, etc. You do not need to add curly braces to the beginning and end of any
action code segments. These will be added automatically by the code generator.

Choice Point Code Condition Segment

The choice point segments are created as operations which return an int. The
condition C++ code that is entered in a choice point must have a return statement that
returns true 1 or false 0. You can have any number of other C++ statements in the
choice point segment as long as it returns an int.

Encapsulating Target Specific Behavior

The workflow of Rational Rose RealTime is intended to provide as much up-front
verification and debugging as possible in the tool-rich environment of the host
workstation. This environment is typically provided by a combination of Rose
RealTime host-based tools and workstation-based C++ tools. This leaves a minimal
amount of debugging to do on the target, where debugging is typically more difficult.

Isolate any platform-specific behavior in a few well-encapsulated places. If direct calls
to native OS functions or target-specific libraries are spread throughout your model,
you are restricted to compiling and testing on target. This can cause serious
bottlenecks for testing and bug-fixing at the most crucial times in the project as
developers line up for lab time, or unstable hardware makes target testing difficult. By
encapsulating target-specific calls to a few key parts, the rest of the model can readily
be tested on the workstation.

Code Sync

Code Sync lets you make changes to the generated code from outside the toolset
within an IDE (Integrated Development Environment) or text editor of your choice,
and update your model with your changes.

For more information, see Using Code Sync to Change Generated Code in the Toolset
Guide.
34 Chapter 2 - Using C++ Code in Models

Making Changes Outside the Toolset

In order for the changes to be recaptured into the model, Code Sync must be enabled,
and the changes must be made to designated Code Sync areas.

Identifying Designated Code Sync Areas

Designated Code Sync areas are always delimited by the Code Sync identification
tags. These areas may be modified from the generated code and captured into the
model using the Code Sync feature.

User modifiable code for C++ is identified as follows:

// {{{USR

<insert or modify code here>

// }}}USR

In some cases where a field is omitted or left as its default, the code generator may
generate an optimized code pattern that does not provide the empty Code Sync areas
or its identification tags. If you use Code Sync area for an area which has been
optimized out, you must provide a non-default value for the field (such as a
comment) within the model, then re-generate before you can modify that Code Sync
area.

De-activating Code Sync

Each component, by default, has Code Sync activated. To de-activate Code Sync,
change the CodeSyncEnabled property of the Generation tab for the component.

Macros and Arguments Available to State Machine Code

The following macros and variables can be used in transition C++ code segments.

CALLSUPER

You can make a call to the superclass version of the same transition that has the same
parameters from within any C++ transition code segment. CALLSUPER is redefined
for each transition to point to the correct code segment name in the superclass.
CALLSUPER cannot be used to invoke the superclass version of a different function.
Use the SUPER::func() syntax to call the superclass version of a different function
explicitly.

Note: You can only use CALLSUPER when the transition triggering event is the same
for the base and derived classes.
Macros and Arguments Available to State Machine Code 35

SUPER

SUPER can be used to reference the generated superclass name from a capsule
transition code segment, rather than having to type in the full capsule name.

Use the SUPER::func() syntax to call the superclass version of a function.

The SUPER macro is only defined for capsules. You cannot use this macro with data
classes.

RTDATA and rtdata

RTDATA is used for backwards compatibility, and is defined as rtdata.

The rtdata parameter available to all transition code is a cast version of the data in a
message. The rtdata parameter is cast to the highest common superclass of the
possible data classes for the given code segment.

If the data class of a signal that triggered a transition was int, the RTDATA macro or
rtdata parameter would be used as follows:

// both these statements are equivalent

const int * i = rtdata;

const int * j = RTDATA;

Note: RTDATA should only be used for backwards compatibility in models
developed with previous versions of the C++ Services Library. In new models, use
rtdata.

rtport

In each transition code block, you have access to a variable called rtport which is a
pointer to the (common base class) RTProtocol for the port on which the message
which triggered this transition was received. The primary purpose of rtport is for
replying to messages:

rtport->ack().reply();
36 Chapter 2 - Using C++ Code in Models

Limitations

Opening Rational Rose Models in Rose RealTime

When opening a Rational Rose model in Rose RealTime, C++ properties are ignored.
This means that if you defined classes as structs, enums, typedefs, and unions in
Rational Rose using the Implementation Type or ClassKey C++ properties, when
you bring these classes into Rose RealTime, these property types are lost. You must
manually modify these classes to change these properties.

Using the C++ Analyzer in Rose RealTime

The C++ Analyzer cannot properly model structs, enums, typedefs, unions, and
#defines in Rose RealTime. An alternative is to import the code into Rose RealTime.
Limitations 37

38 Chapter 2 - Using C++ Code in Models

3Code Generation
Contents

This chapter is organized as follows:

■ Model to Code Correspondence on page 39
■ Code Generator Behavior on page 50

Model to Code Correspondence

This chapter discusses some relevant aspects of the Rational Rose RealTime code
generation interface to clarify the output that users will see in the compiler output
and for browsing the generated code. Developers who need to start debugging their
C++ designs through external debugging tools also need to understand the generated
code structure.

The C++ generator uses the specifications and model properties of elements in the
current model to produce C++ source code. You generate code for a component which
in turn references a set of elements from the logical view. The location of the source
files that are generated for elements referenced by (or assigned to) a component is
determined by the name of the component, the location of your model file (.rtmdl),
and the OutputDirectory (Component, C++ Generation) property.

If logical view elements have not been assigned to components, either directly or by
means of a dependency to other elements that are, the C++ code generator will not see
those elements and they will never be generated to source.

Associations

An association is a relationship among two or more elements. The ends of each
association are called association ends. Ends may be labeled with an identifier that
describes the role that an associate element plays in the association. An end has both
generic and language specific properties that affect the generated code which
traverses to that end. For example, marking an end navigable means that traversal
from the opposite role's class to this role's class is to be implemented.
39

By default if an end is named, association, aggregation, and composition relationships
are represented in code as an attribute in the client class. The code generation does not
generate attributes for ends which are not named.

Valid Code Generation Associations

Only the association relationships described below are considered by the C++ code
generator.

Capsule to protocol (port)

For these associations, the code generator generates a port on the capsule.
Associations between capsules and protocols are only navigable from the capsule to
the protocol. The port specification page controls the specific characteristics of the
port: public, protected, wired, etc.

Class to class (data member)

By default, the code generator generates a data member (attribute) for navigable and
named ends of associations. Several factors affect the code that is actually generated:

■ the AssociationEndKind (Role, C++) property affects if a member or global data
member is generated

■ the cardinality affects whether an array of attributes should be created

■ the containment affects whether the attribute should be a reference (pointer) or an
object

Capsule to class (data member)

For these associations, the code generator by default generates a data member
(attribute) on the capsule. A class cannot navigate to a capsule. The same factors
affecting class to class associations affect capsule to class.

Capsule to capsule (capsule role)

For these associations, the code generator generates a capsule role on the client
capsule. Associations between capsules are always unidirectional. The capsule role
specification page controls the specific characteristics of the capsule role: optional,
fixed, plug-in, cardinality, etc.
40 Chapter 3 - Code Generation

Dependencies

When the C++ generator produces code for an element (the client) that uses another
element (the supplier), the C++ generator can produce either an include directive
referencing the file that contains the supplier class or a forward reference to the
supplier.

You can configure which directive (include statement, forward reference, or nothing)
is generated in the header file (.h) and in the implementation file (.cpp) with the
KindInHeader (Uses, C++) and KindInImplementation (Uses, C++) properties.

Classes

The different kinds of classes that can exist in a model are:

■ parameterized
■ utility
■ parameterized utility
■ instantiated
■ instantiated utility
■ normal meta

Currently, the C++ code generator only supports classes and utility classes. There is
no support for code generation of the other kinds of classes. They are ignored by the
code generator, and a warning is issued.

Each class is generated in its own .h and .cpp file.

Header file (.h)

The following code is generated in the header file:

■ Inclusions, forward references, value of the HeaderPreface (Class, C++) property.

■ Class definition and base list (taken from any generalization relationships).

■ Attributes generated from class associations or explicitly defined as attributes.

■ Standard operations.

■ User-defined operations.

■ If GenerateDescriptor (Class, C++ TargetRTS) property, extern statement for a
class type descriptor of type RTObject_class.

■ A RTTypedValue struct for type descriptor.

■ Value of the HeaderEnding (Class, C++) property.
Model to Code Correspondence 41

Implementation file (.cpp)

The following code is generated in the implementation file:

■ Inclusions, forward references, value of the ImplementationPreface (Class, C++)
property.

■ Operation bodies for Standard operations and User-defined operations.

■ If GenerateDescriptor (Class, C++ TargetRTS) property set, default and
user-defined type descriptor function bodies are generated.

■ If GenerateDescriptor (Class, C++ TargetRTS) property set, the type descriptor
structure is initialized.

■ Value of the ImplementationEnding (Class, C++) property.

Properties that affect the way classes are generated

■ The GenerateClass (Class, C++) property is used to turn off generation of a class.

■ The ClassKind (Class, C++) property can be used to generate typedefs, structs,
and unions instead of a class.

■ The GenerateDescriptor (Class, C++ TargetRTS) property controls the generation
of the classes type descriptor.

Logical Packages

No code is actually generated for logical packages. They provide a good way of
assigning a set of elements to a component.

In the logical design of a system, related classes are grouped into packages. In a Rose
RealTime model you define the mapping from logical design to a physical design via
components. You can explicitly assign a logical package to a component. This
assignment is contained in the logical package’s specification. Assigning a package to
a component is a shorthand method of assigning every element contained within the
package to the component.
42 Chapter 3 - Code Generation

User-defined Operations

When generating code for a class, the C++ generator produces a member function for
each operation that is listed in the class or capsule specification. For each such
operation, the C++ generator produces:

■ A member function declaration in the header file for the class.

■ A function body in the implementation file containing the C++ code added to the
Code region. You should never modify generated code, unless Generate (C++) is
"declaration only".

The C++ generator uses the information in the operation's specification as well as
operation Model properties, to generate the member function. For example, the
OperationKind (Operation, C++), Inline (Operation, C++), ConstructorInitializer
(Operation, C++) properties can affect the way in which operations are generated.

Note: The C++ Generator Constructor Explicit automatically generates code for
Standard operations that are generated based on the values of class properties. You do
not need to list these operations in the class specification unless you want to override
them.

Overriding Virtual Operations

To override an operation defined in a parent class from within a subclass, do the
following:

1 Ensure that the operation on the parent has the Polymorphic option checked.

2 Create a new operation on the subclass with the same signature as the operation in
the parent.

The term signature designates the combination of operation name, the types and
order of its parameters, and, if the operation is instance scoped, its query and/or
qualifiers.

Standard Operations

When generating code for a class, the C++ generator may also generate an
implementation for one or more standard operations. The C++ generator determines
whether and how to generate member functions for standard operations from class
property values and operations already defined on the class.
Model to Code Correspondence 43

For example, the class properties GenerateAssignmentOperator (Class, C++),
AssignmentOperatorVisibility (Class, C++), and AssignmentOperatorInline (Class,
C++) determine whether or not the C++ generator produces an assignment operation
for a class and, if so, its definition and visibility.

For each standard operation that is enabled, the C++ generator produces:

■ A member function declaration in the header file for the class.

■ A function body in the implementation file containing the implementation of the
standard operation.

Overloading a standard operation

You create an operation on the class with the same name and signature as a standard
operation. In this case, the C++ generator will determine that you have defined your
own standard operation and will not generate a default.

Attributes

By default, an attribute is represented in code as an attribute in the client class. It is a
private implementation data member whose type is specified in the model, and
whose name is based on the value of the attribute name property.

The derived property controls whether or not a data member is generated.

The type of the data member is affected by:

■ The type specified.

■ Class scope causes the static keyword to be generated for the data member.

■ An initial value may be specified for the attribute.

■ Visibility adornments and model properties affect access of the data member.

If the type of the attribute references declarations of other classes, you must draw a
dependency relationship from the class containing the attribute to the referenced
class.
44 Chapter 3 - Code Generation

Capsules

The C++ generator converts capsule structures and state diagrams into C++ code that
will integrate into the C++ Services Library Framework. A metaclass RTActorClass,
which represents a capsule’s properties that belong to a class as a whole (rather than
to any of the instances), is generated for each capsule.

Some of the code segments can be modified from the generated code and captured
into the model using the Code Sync feature. For more information, see Using Code
Sync to Change Generated Code in the Toolset Guide.

Each capsule is generated in its own .h and .cpp file.

Header file (.h)

The following code is generated in the header file:

■ Inclusions, forward references, value of the HeaderPreface (Capsule, C++)
property.

■ Capsule definition (capsule class name generated as CapsuleName_Actor) and
base list (taken from any generalization relationships). All capsules are subclasses
of the RTActor class.

■ Attributes generated from class associations or explicitly defined as attributes.

■ Ports generated as attributes of a protocol role type.

protected:

// {{{RME protocolClass 'Timing' port 'NewPort1'

Timing::Base NewPort1;

■ User-defined operations.

■ Support operations for state behavior implementation.

■ Value of the HeaderEnding (Capsule, C++) property.
Model to Code Correspondence 45

Implementation file (.cpp)

The following code is generated in the implementation file:

■ Inclusions, forward references, value of the ImplementationPreface (Capsule,
C++) property.

■ Operation bodies for standard and user-defined operations.

■ Transition code, choice point code.

■ State behavior implementation.

■ Value of the ImplementationEnding (Capsule, C++) property.

Capsule State Diagrams

Capsule state diagrams are parsed by the C++ generator and included in the
generated code for the owning capsule C++ class. All C++ code added to a state
diagram is added to operations defined on the capsule class.

Note: Protocol and class state diagrams are ignored by the C++ generator.

The following is an example definition for an operation generated for a transition
named ReceiveInt.

INLINE_METHODS void NewCapsule1_Actor::transition2_ReceiveInt(const
void * rtdata, Timing::Base * rtport)

{

int i = *(const int *)rtdata;

cout << "Received an int: " << i;

}

You should never modify code directly in the generated source files. It may however
be useful to understand that transitions are generated as operations when debugging
code using source code debuggers.
46 Chapter 3 - Code Generation

Protocols

Each protocol is generated in its own .h and .cpp file. The protocol is generated as
Base and Conjugate protocol roles. Since ports will be a instance of a protocol role, it is
important that you understand how a protocol is generated so that you can use the
Communication services to send and receive messages via the port objects.

Figure 2 is a sample protocol definition, and Figure 3 shows a simplified version of
the classes that get generated. These examples should help you understand how to
use the communication service within the detail code of your models.

Figure 2 Protocol Definition for NewProtocol1
Model to Code Correspondence 47

Figure 3 Generated Protocol Class for NewProtocol1

For each signal in the protocol, an operation returning an RTOutSignal (for outgoing
signals), a RTInSignal (for incoming signals), or a RTSymmetricSignal (for both
incoming and outgoing) is generated in either the base or conjugate protocols. The
data class (as specified in the Protocol Specification dialog box) becomes an
argument to the operations.

The RTOutSignal and RTInSignal structures contain definitions for the actions that
you can perform with the signals. For example, outgoing signals can be sent, and
incoming signals can be deferred and recalled.
48 Chapter 3 - Code Generation

Figure 4 Simplified RTOutSignal Definition

If you have a port assigned to the NewProtocol1 base role, you would send a start
signal out of the aPort in the following way:

AClass1 mdata(43, 1.34);

aPort.start(mdata).send();

Figure 5 Simplified RTInSignal Definition

If you have a port assigned to the NewProtocol1 base role, you could recall all
previously deferred bye signals on all port instances in the following way:

aPort.bye().recallAll();

Components

When generating a component, the C++ code generator creates a set of makefiles that
contain rules for generating and building all elements referenced by the component.
In addition, a component-wide .cpp and .h file may be created for certain types of
components. These source files contain initialization, thread creation, and other
classes and operations required by the C++ Services Library.
Model to Code Correspondence 49

When the C++ Generator produces code for the elements referenced by a component,
the resulting files are stored in a directory structure. The location and name of the root
of this directory structure can be configured using the OutputDirectory (Component,
C++ Generation) property.

By default, the directory is created in the same directory containing the model file
(.rtmdl), and the name is derived from the name of the corresponding component.

Relationships and Elements Ignored by C++ Code Generation

The following elements in a model are ignored by the C++ code generator:

■ Realizes relationships
■ Package dependencies
■ State diagrams on protocols and classes
■ Collaboration diagrams
■ Sequence diagrams
■ Actors
■ Use-cases
■ Deployment diagrams

Code Generator Behavior

Code generation produces source files and makefiles for the items referenced by the
component. When the source files are compiled, object code files are produced.
Finally in the link stage, the object files from the top level component and all the
components contained by aggregation (the whole component hierarchy) are then
linked together to form an executable. The source code, object files, and executable are
all build results.

Note: The source code generation, compilation, and linking is managed by the make
utility, and is external from the Rose RealTime toolset. These build makefiles are
called from within Rose RealTime to build a component.

The compilation paradigm for producing a working C++ executable is shown in
Figure 6.
50 Chapter 3 - Code Generation

Figure 6 Compilation Paradigm for Producing C++ Executable

Incremental Generation

The code generation and compilation processes are driven by a third-party Make
utility, whose behavior is dependent on makefile dependencies and file timestamps.
Without makefile dependencies, incremental builds would produce incorrect builds.
The code generator takes steps to reduce development churn and produce
incremental builds quickly and reliably.

The code-generator reduces incremental compilation time by preserving previously
generated files that do not need to change. When you build a component that has
been previously built (or even partially built), the code generator attempts to preserve
the previously built results. If the generated C++ files (header files and
implementation files) do not need changing, they are not updated. This improves
compilation performance because:

■ if an implementation file does not need to be updated, its corresponding object file
does not need to be recompiled, and

■ if a header file does not need to be updated, all object files which depend on that
header file do not need to be recompiled.
Code Generator Behavior 51

Consequently, the incremental generation behavior of the code generator greatly
improves compilation performance.

The code generation also allows incremental code-generation by tracking its own
dependencies for each invocation. Some Make utilities (such as ClearCase’s clearmake
and omake) can automatically track dependencies of build scripts. For other Make
utilities, the code generator tracks all of the controlled units (CUs) that were read
during each invocation. All of these model elements become dependencies (in a
makefile sense) of the files generated by each invocation of the code generator. This
dependency information is then available for the next incremental build, and the
Make utility will only invoke the code generator to re-examine, and (if necessary)
regenerate source code that depends on a CU that has changed. Consequently, the
incremental behavior of the code generator safely reduces the time to generate
subsequent builds.

The Effect of Controlled Units

Any single invocation of the code-generator will generate:

■ a single specific classifier stored in its own controlled unit (CU), or

■ all classifiers (that are referenced by the component) in a specific package, except
for classifiers that are stored in their own CU, or

■ all classifiers (that are referenced by the component) in the model, except for
classifiers that are stored in their own CU or in a package CU

If a model is saved into one monolithic .rtmdl file, then every time you change
anything in the model, every model element has to be re-examined during generation.
To improve code generation performance it is recommended that you save your
model as controlled units.

See Working with Controlled Units in the Guide to Team Development, Rational Rose
RealTime for instructions on how to save models as controlled units.

The choice of controlled units does not affect compilation performance because the
compiler reads generated source files (not controlled units), and the incremental
generation behavior is independent of controlled units. The incremental behavior of
the compiler is independent of the choice of controlled units.
52 Chapter 3 - Code Generation

Generated Code Directory Layout

The build output is contained in a separate directory from the model file. Each
Component in a model is built in its own directory structure. There is an option in the
Component Specification dialog box that allows the user to specify a different
directory for this purpose.

Note: It is recommended that each component has a different output path. This is to
avoid overwriting files for other components.

In the Component directory, there is a directory tree that separates the model files,
generated source files, and build results, including the executable.

After building a Component, named "Component1", the default directory structure
below the output directory would look like:

Component1\

src\

build\

src

This directory contains all C++ source files that have been generated for the
component. Depending on the value of the component C++ Generation property
called CodeGenDirName, source files may either appear directly in src or in a
sub-directory of src as specified by the CodeGenDirName property. The generated
code consists primarily of C++ representations of the classes from the users model.
The code segments that contain the C++ code entered in various portions of the model
are included in the generated source, including the transition actions, choice points,
state entry and exit actions, operations, and so on.

There will be a header and source file generated for each model element referenced by
the component. The files will have the same name as the elements from the model. In
most cases, generated classes and other constructs will be named as defined in the
model.

For each capsule, a class is generated with the name:

<capsule name>_Actor

The best way to understand the generated source code is to build one of the example
models, or tutorials, and then browse the generated source code.
Code Generator Behavior 53

build

The build directory contains the result of the compilation. The object files as well as
the linked executable are included in these results. By default the executable name
will be the name of the top-level capsule for the Component. You can change this by
specifying a different name in the General tab of the Component Specification dialog
box.

Code Generator Command-Line Arguments

There are three methods of passing command-line parameters to the external code
generator:

1 Adding the command-line options to the ROSERT_RTGENOPTS environment
variable.

OR

2 Modifying the $RTS_HOME/codegen/rtgen.mk file by adding the command-line
parameters to the RTGEN macro. The macro defined in this file will be included by
all generated makefiles and used to generate source and build files. For example,
to add command-line parameters, include to the macro definition:

RTGEN = rtcppgen -crlf

This will pass the -crlf command to the code generator.

3 Define RTGEN in CodeGenMakeInsert.

Command-Line Arguments

The rtcppgen program accepts the following arguments:

-crlf

-forcewrite

-spacedeps bs | dq | fail | none

-version

There are other options for internal use only.

-crlf

The -crlf flag forces files to be written Windows style, with lines terminated with a
carriage return and line feed. By default, files are written with UNIX style end-of lines
conventions.
54 Chapter 3 - Code Generation

-forcewrite

The -forcewrite flag disables the code-generator's incremental file output and is
useful for producing incremental load-builds. It is typically only used within the
environment variable ROSERT_RTGENOPTS, when integrating a new set of changes
on top of a previously-built load-build.

-spacedeps

The -spacedeps flag tells the code generator how to write code generation
dependencies for file paths that contain spaces, such that the Code Generation Make
Type can read it. This would typically be overridden by users of a generic Unix Make
utility who have experimented with space-handling in their Make variant. For the
Compilation Make Type, there is a corresponding option to the rtcomp.pl script
(except that "-spacedeps none" is replaced by "-nodeps").

■ bs: precede space with backslash (for Gnu_make).

■ dq: surround filename with double-quotes (for MS_nmake).

■ fail: cause a fatal error (for Unix_make).

■ none: no escape sequence (intended for ClearCase_omake and
ClearCase_clearmake whose dep files need not be Clearmake-readable).

-version

The -version flag prints the version identifier of the code-generator to stdout.

Command-Line Build Interface

Rose RealTime uses an external build engine for code generation, compilation, and
linking. To mimic the toolset's build mode, you can run the build from the command
line. This might be useful if the build host is different then the toolset host. Before
generating and building an existing model, it is important that the model has been
validated by the toolset. If a model is valid (that is, there are no unresolved
references), then you can generate and build a component from the command line.

The main steps that must be performed from outside the toolset are:

1 Create the makefiles

2 Generate the source code

3 Build the generated source files

Refer to the Guide to Team Development for extensive syntax examples on how to
build a model from outside the toolset.
Code Generator Behavior 55

56 Chapter 3 - Code Generation

4Generating and Sharing
External Library
Interfaces
Contents

This chapter is organized as follows:

■ Overview on page 57
■ Phase 1: Providing the Library Interface Specification on page 59
■ Phase 2: Publishing the Interface on page 66
■ Phase 3: Sharing and Using the External Library Interface on page 68
■ Considerations and Known Issues on page 70

This chapter explains the Rational Rose RealTime Library Interface Generation
feature.

Overview

Before using this functionality, we recommend that you review the chapter "Storage of
Model Data" in the Guide to Team Development, Rational Rose RealTime for information
on control units and shared packages.

Purpose

The purpose of generating and sharing external library interfaces is to build
components of a system in separate models while maintaining the interfaces required
between them. Figure 7 shows a single model which has a <C++ Executable>>
component with a dependency on a <<C++ Library>>. These components can be
modeled and built in separate Rational Rose RealTime models. The ClientModel
would build the <<C++ Executable>> component, and the SourceModel would build
the <<C++ Library>> component. To do this, the dependency that the
<<C++ Executable>> component has on modeling elements within the
<<C++ Library>> component needs to be represented in the ClientModel. This is
made possible by publishing an external library interface.
57

Figure 7 Component Diagram

The following terms are used to discuss the types of models involved in this process.

SourceModel

Contains a model that generates a library for use in a client model.

ClientModel

Contains a model that uses the interface generated by the source model.

InterfaceModel

The model which owns the interface modeling elements shared into a ClientModel.

Phases of Generating an External Library Interface

There are three phases involved in generating an external library interface.

Phase 1 involves creating the specification for the interface within the SourceModel.

Phase 2 publishes the external library interface.

Phase 3 involves setting up a ClientModel to use the interface published in Phase 2.

Note: The Generate External Library Add-In depends on the C++ TargetRTS Add-in.
By default, they are enabled. You can ensure that you have both Add-ins enabled in
your Add-in Manager. For further information, see the Rational Rose RealTime Toolset
Guide.
58 Chapter 4 - Generating and Sharing External Library Interfaces

Phase 1: Providing the Library Interface Specification

To provide the library interface specification, complete the following sections:

■ Creating a Library Component on page 59
■ Setting the Target Configuration and References on page 60
■ Setting the Visibility Level of External Library Interfaces on page 60
■ Redefining Visibility Settings for Unit Interfaces on page 64
■ Setting Inclusion Paths and Library Paths on page 65
■ Specifying the Names of Shared Packages on page 66

Creating a Library Component

If a candidate library component does not already exist, create the library component
in the SourceModel.

To create a library component:

1 Open your existing SourceModel in Rational Rose RealTime.

2 In the Toolbar, select the Browse Component Diagram button .

3 For the Component View package, select Component Diagram: Component
View / Main in the Component diagrams list, and click OK.

4 From the Toolbox, select the Component tool , then click in the diagram.

A new component appears in your diagram. By default this component is a
<<C++ Executable>> component.

5 Right-click on this executable component and select Open Specification.

6 Click the General tab.

7 In the Type box, select C++ Library.

8 Click Apply.

The tabs on the Specification dialog change to reflect the change in the component
type.

Note: You must click apply to update the Component Specification dialog with
the C++ Library tab.
Phase 1: Providing the Library Interface Specification 59

Setting the Target Configuration and References

To set the target configuration and the references:

1 If the Component Specification dialog is not open, right-click on the library
component and select Open Specification.

2 Click the References tab.

3 From the Model View tab in the browser, drag all of the modeling elements used
to build the library to the References tab.

Note: Referencing a package includes all elements within that package.

4 Click the C++ Compilation tab.

For additional information, see C++ Compilation Properties in the Rational Rose
RealTime C++ Reference.

5 Select a target configuration and click OK.

6 Click Apply.

Next, you will modify fields at the bottom of the C++ Library tab on the Component
Specification dialog that contain information specific to the interface that will be
generated by the library interface generator.

Setting the Visibility Level of External Library Interfaces

Before you generate the external library interface for a library, set the visibility level of
elements within the library component in the SourceModel. The visibility level
determines what, if any, representation Logical View elements from the SourceModel
will have in the ClientModel. This specifies the Logical View interface to the
<<C++ External Library>> from the perspective of the ClientModel. It also defines
the contract of services (interface) that is realized by the <<C++ Library>> from the
perspective of the SourceModel.

To set the visibility:

1 On the Component Specification dialog for the library component.

2 Click the C++ Library tab.

Note: You can either expand this dialog, or use the scrolls bars to move to the
bottom of this tab.

3 Click the Edit button opposite SetInterface.
60 Chapter 4 - Generating and Sharing External Library Interfaces

By default, SetInterface uses the value set in the DefaultInterfaceVisibility box,
unless you previously specified units in the Set External Library Interface dialog.
If most of your library is implementation details, and only a small portion of it
needs to be represented in the ClientModel, we recommended that you change the
DefaultInterfaceVisibility box to Private.

The Set External Library Interface diagram shows all the interface elements
included in the reference section for the library, including those interface elements
indirectly referenced by the package name.

The Set External Library Interface dialog also includes all the elements available in
libraries that this library depends on. Elements from subcomponents should never be
published as interface elements; set the visibility of these elements to Private. Because
there is no indication in the graphical user interface of where the element is being
listed from, it is important to note which elements should be published as interface
elements before using this dialog.

You can set the default visibility level for all interface units by selecting a visibility
level from the DefaultInterfaceVisibility box on the C++ Library tab in the
Component Specification dialog.

When being used in ClientModel, there is no indication as to which elements were
generated with Limited Public visibility and those with Public visibility. A problem
can occur when a developer in the ClientModel attempts to use an inheritance
Phase 1: Providing the Library Interface Specification 61

relationship with an interface element generated using Limited Public visibility.To
use the items in an external library, some library elements will need to be visible, and
Rational Rose RealTime must be aware of them. Table 1 shows the levels of visibility.

Note: The external library interface consists of the Public and the Limited Public
units. Private units are not part of the generated external library interface.

The generated external library interface does not include the internal details of
Limited Public interface units that do not need to be included with the external
library.

The following internal details are deleted from Limited Public interface units:

❑ State machines for capsules, protocols and classes (if one exists).

❑ Protected and private operations for capsules and classes.

❑ Public operations code.

❑ Protected and private attributes for capsules and classes.

❑ Protected ports for capsules.

4 Set the appropriate level of visibility for each unit in the library.

When setting visibility, there are rules regarding the visibility of related elements.
For example, if a Capsule that you would like to publish as part of an interface
with Limited Public visibility has a Public Port, then the Protocol on which that
port is based must also be set to Limited Public.

Table 1 Visibility Level Descriptions

Level Description

Public Indicates that the unit (a capsule, class, or protocol referenced by the
development library) is visible in any user model, and can be used as the
parent in an inheritance relationship.

Limited Public Indicates that the unit is visible in other user models, and can be used in
any relationship other than an inheritance relationship.

Note: In client models, there is no method to determine which interface
elements were generated using Limited Public or Public visibility. Do not
use an inheritance relationship with an interface element generated using
Limited Public visibility.

Private Indicates that the unit is not visible in any user model, and cannot be seen
by a model as part of the external library interface.
62 Chapter 4 - Generating and Sharing External Library Interfaces

Reading from the eighth row (after the heading) of Table 2 from right to left, the
suggested minimum visibility is Limited Public for a Protocol that is involved in
an Association relationship with a Limited Public Capsule as in the example
above.

Note: If the event a Dependent Unit is defined in a subcomponent, the visibility
rule should be used as outlined in Table 2 instead of setting the element to Private.
Use Table 2 as a guide to set the levels of visibility for your unit.

Table 2 Summary of Rules for Unit Visibility

Unit Visibility
Relationship to
Dependent Unit

Dependent Unit

Suggested
Minimum
Visibility for
Dependent
Unit

Capsule Public Generalization Capsule Public

Association Protocol (public ports) Public

Association Protocol (protected ports) Public

Capsule Role Capsule Public

Association (public) Class Public

Dependency (public) Class Public

Limited
Public

Generalization Capsule Limited Public

Association Protocol (public ports) Limited Public

Association Protocol (protected ports) Private

Capsule Role Capsule Private

Association (public) Class Private

Dependency (public) Class Private

Class Public Generalization Class Public

Association (public) Class Public

Dependency (public) Class Public

Limited
Public

Generalization Class Limited Public

Association (public) Class Private

Dependency (public) Class Private
Phase 1: Providing the Library Interface Specification 63

5 Click OK to implement your changes.

Note: If the visibility settings that you select do not conform to the rules outlined
in Table 2, the Set External Library Interface dialog box appears. Clicking OK
again will override the rule checking algorithm and accept the visibility values as
you set them.

Redefining Visibility Settings for Unit Interfaces

If the visibility settings of your unit dependencies are not set according to the rules
specified in Table 2 on page 63, the Set External Library Interface dialog box appears.
This dialog box allows you to set the visibility level of your unit according to the unit
visibility requirements, and provides suggestions that can help you correctly define
the rules for the selected unit.

If you do not want to reset the visibility level of the interface unit, click OK to override
the suggestions listed in the Set External Library Interface dialog box.

To reset the visibility of the unit:

1 In the Set External Library Interface dialog box, select the interface unit that you
want to change.

2 Read the description that appears to the bottom-left of the Set External Library
Interface dialog box.

3 If you agree with the suggested change to the visibility level of the unit, click the
visibility level listed for the unit and select the new level.

4 Repeat steps 1 to 3 until all units are set according to the visibility rules.

5 Click Recalculate.

Protocol Public Generalization Protocol Public

Data Type Class Limited Public

Limited
Public

Generalization Protocol Limited Public

Data Type Class Limited Public

Table 2 Summary of Rules for Unit Visibility (continued)

Unit Visibility
Relationship to
Dependent Unit

Dependent Unit

Suggested
Minimum
Visibility for
Dependent
Unit
64 Chapter 4 - Generating and Sharing External Library Interfaces

Setting Inclusion Paths and Library Paths

InclusionPaths and Libraries are fields used to generate the <<C++ External
Library>> component in the shared Component View package. These fields are
located at the bottom of the C++ Library tab for a component specification, and
provide information used to locate the actual library and included header files that
are necessary for the build process.

The information in InclusionPaths and Libraries populates the fields in the
<<C++ External Library>> component. When shared into a client model, these
elements are read-only and the buttons are grayed out; the information contained
within the dialogs for these buttons is not available in client models.

The InclusionPaths property specifies the location of the definitions for the external
library. Components which reference this external library will automatically include
the definitions header file.

The Libraries property specifies the location and names of the libraries that this
external component represents. The libraries listed in this field will be added to the
link line for any executable component that references this external library. You have
to specify the complete path and filename.

As part of the publishing phase, you are prompted for a location to copy the
definitions header files, and a location to copy the generated library file.

To set the inclusion path and libraries properties for the interface:

1 In the Component Specification dialog box, click the C++ Library tab and scroll to
the bottom of the tab.

2 Click the Edit button opposite InclusionPaths.

The Inclusion Paths dialog box appears.

3 Click Insert Path.

4 Type a path in the highlighted area.

Note: Enter the location of where you will be copying the header files generated
by the build process for use by ClientModels. We recommend that you use
pathmap symbols or environment variables for path names in this property. For
additional information, see Environment variables and pathmap symbols. For
Example:

$(MYINTERFACES)/ALibrary/include

5 Click OK.
Phase 1: Providing the Library Interface Specification 65

6 Click the Edit button opposite Libraries.

The External Libraries dialog box appears.

7 Click Insert Library.

8 Type the location and the name of the library in the highlighted area.

Note: Enter the fully-qualified location of where you will be copying the library
for use in ClientModels. For example:

$(MYINTERFACES)/lib/$(LIB_PFX)ALibrary$(LIB_EXT).

9 Click OK to add the path for the library.

10 Click OK to close the Component Specification dialog.

Specifying the Names of Shared Packages

The interface of the generated library is packaged in two shared packages: one in the
Logical View, and the other in the Component View. If you can specify a name for
these packages in the ShareLogcialViewPackageName and the
ShareComponentViewPackageName fields, the shared package will be created in the
InterfaceModel with the new name. If you do not specify a name, the packages are
created in the InterfaceModel with the default names,
<LibraryComponentName>SharedLVPkg and
<LibraryComponentName>SharedCVPkg.

To specify the name of shared packages:

1 In the Component Specification dialog box, type the name of the
ShareLogicalViewPackageName and the ShareComponentViewPackageName
in the specified text area.

2 Click Apply to implement your changes.

Phase 2: Publishing the Interface

The interface is published as a new model, the InterfaceModel.

In a Logical View package, the interface elements are generated representing the
elements which are realized in the library component, based on the visibility set
during Phase 1: Providing the Library Interface Specification. The hierarchy of
enclosing packages remains the same under this new package as they were under the
Logical View in the SourceModel.
66 Chapter 4 - Generating and Sharing External Library Interfaces

In a Component View package, a <<C++ External Library>> component is created.
The external library component references the elements in the interface.

To create an external library component:

These two new packages are set as controlled units.

1 Right-click the library from which you are generating the external library, or from
the Build menu, and click Generate External Library Interface.

Note: If you use the Build menu to generate the external library interface, the
library from which you generate the external library must be Set As Active.

You will receive a message requesting that you build the library before you
generate the external interface.

2 Click Yes if you need to build the library component.

Check the build results in the Build Log tab. If the first line does not read "Build
Successful", click the Errors tab and correct the errors in your model before
proceeding.

If the build was successful the Save External Library Model To dialog appears.

3 Specify the location for the InterfaceModel. This location must be accessible to
ClientModels. For example:

w:\interfaces\aLibrary\InterfaceModel

4 Click Save.

Rational Rose RealTime will now generate your external library interface.
Depending on the size of your model, this can be a lengthy operation.

If the InterfaceModel was generated previously, you are notified that the contents of
the existing InterfaceModel will be deleted. This will also remove any subdirectories
associated with the InterfaceModel.

After the InterfaceModel is successfully created, you are prompted to select a
destination for the header and binary files.
Phase 2: Publishing the Interface 67

Selecting the Destination for Header and Binary Files

Only the minimum set of header files required by the external library model are
copied. The visibility level of the interface element determines which files are copied.

1 Use the Select Folder to Store Binary File dialog box to specify the desired
location to copy the library where it is accessible to ClientModels. For example:

w:\interfaces\lib

2 Click Open.

The Select Folder to Store Header Files dialog box appears.

3 Use the Select Folder to Store Header File dialog box to specify the desired
location to copy header files where they are accessible to ClientModels. For
example:

w:\interfaces\ALibrary\include

4 Click Open.

Phase 3: Sharing and Using the External Library Interface

To provide the library interface specification, complete the following sections:

■ Sharing the Interface on page 68
■ Using the Interface on page 69

Sharing the Interface

To share the external library: See Known Issue (below) before proceeding.

1 In the ClientModel, right-click a component package, and click Share External
Library Interface, or on the Build menu, click Share External Library.

The Share External Library dialog box appears.

2 Select the name of the external library model, and click Open.

Note: The SharedLVPkg and SharedCVPkg packages appear as part of the User
Model classes. Do not re-share the same library more than once. Instead of
re-sharing the library, re-sync the packages that are shared.
68 Chapter 4 - Generating and Sharing External Library Interfaces

Known Issue

Packages shared into a model using Share Library Interface or Share External
Library Interface do not correctly store the path to the shared packages in the
properties for the element. This causes problems for code generation and for
subsequent loads of the model in other Rational Rose RealTime sessions.

The current workaround is to:

1 Use the context menu item File > Share External Package on the LogicalView
package.

2 Browse under the LogicalView directory of the InterfaceModel and select the
generated Logical View package SharedLVPkg.

3 Use the context menu item File > Share External Package on the Component
View package.

4 Browse under the ComponentView directory of the InterfaceModel and select the
generated Component View package SharedCVPkg.

To re-sync shared packages:

1 Right-click the shared package.

2 On the File menu, click Reload From File.

Note: If you are re-syncing an already shared InterfaceModel, the Logical View
Shared Package should be re-loaded before the Component View Shared
Package.

Using the Interface

Logical view elements from the interface can be referenced by other elements in your
ClientModel. You must put an explicit dependency from a component that uses these
elements on the <<C++ External Library>> component shared into the Component
View.

1 Drag the <<C++ External Library>> component onto a Component diagram.

2 Drag the component being built in the ClientModel that relies on the
<<C++ External Library>> component onto the same diagram.

3 Click the dependency tool and draw a dependency from the component to the
<<C++ External Library>> component.
Phase 3: Sharing and Using the External Library Interface 69

For example:

Note: When building the component in the ClientModel, if no dependency is drawn
on the <<C++ External Library>> component, the toolset prompts you to add
elements from the Logical View shared package to the references section of the
component. This is an indication that the dependency is missing. Do not add the
elements to the reference list to the component. Abort the build process and add the
dependency before trying again.

Considerations and Known Issues

■ When sharing an external library interface in a client model, the path relative to
the library interface model is stored in the Specification for the Logical View and
Component View packages. Unless the path is also relative to the client model,
neither the code generator or subsequent loading of the toolset will be able to find
the control units.

■ When generating multiple library interfaces from the same model, you may
encounter an error message that indicates that there are multiple objects with the
same unique ids.

The elements generated in the InterfaceModel have the same quids (unique
identifiers) as elements in the SourceModel. Two or more interfaces created from
the same model with common elements such as packages cannot be shared into
the same model.
70 Chapter 4 - Generating and Sharing External Library Interfaces

■ Component names

Component names are used by default for the name of the binary and the name of
the parent directory for the build process.

To name the <<C++ External Library>> component the same as the library, the
name of the InterfaceModel must be the same as the Library because the <<C++
External Library>> component - when generated in an InterfaceModel - is named
after the InterfaceModel.

Since the InterfaceModel is used to share packages, the model is broken into
control units. The parent directory for control units is named after the model.

In this scenario, if the InterfaceModel is stored in the same directory as the
SourceModel, there will be a conflict between the directory used to store the build
output from building the <<C++ Library>> component and the directory used to
store the control units for the InterfaceModel.

■ Code generation from the ClientModel

The code generator needs to be able to find all subcomponents that the target
component depends on when it is trying to build. The header files and the Library
need to be available where the code generator expects them. This is defined in the
Libraries and InclusionPaths properties for the <<C++ External Library>>
component, information hidden to the end-user. To determine if these properties
are set properly, it may be necessary to open the InterfaceModel.
Considerations and Known Issues 71

72 Chapter 4 - Generating and Sharing External Library Interfaces

5Classes and Data Types
Contents

This chapter is organized as follows:
■ Sending Data in Messages on page 73
■ C++ Data Type Examples on page 77

Overview

In most models, capsules require the use of lower-level data types (or classes) to create
and maintain internal data structures and variables, to send and receive data values in
messages, and to interact with legacy code or third-party code libraries. With Rational
Rose RealTime, you can use any C++ data classes or types within your model whether
it is defined within the toolset or not as long as the type is visible to the compiler.
Although the toolset can generate classes and type descriptors, you are responsible for
ensuring that any classes that are created are well formed. For example, classes that
do not leak memory must have appropriate constructors and destructors defined.

Note: The terminology for data type and class may cause some confusion.
Throughout this book, we will use the term data type for the generic concept of a
named definition that encompasses a notion of storage of values, and of operations
that may be performed on those values.

Sending Data in Messages

In order to implement the behavior of a system, capsules send messages to either
request a service or provide a service to other interconnected capsules. The messages
that are sent between capsules contain:

■ A signal name that identifies the message.

■ An priority (relative importance of this message compared to other unprocessed
messages on the same thread: default to General).

■ Optional application data.
73

Messages do not have to be sent with application data. This is similar to operations
that do not always require parameters. When operations require parameters, the
developer must decide whether to pass the parameters by value or by reference. The
same applies when sending application data in messages.

Protocols

The protocol definition is where you specify the type of data that is to be sent with a
specific signal:

■ To send data by value, specify the data type in the Data Class field of the signal.
■ To send data by reference, clear the Data Class field of the signal.

Sending by Value

Sending data by value means that a deep copy of the data is sent with a signal. This
option is less efficient than sending by reference but it simplifies concurrency issues.

Note: The fact that a data type is sent by deep or shallow copy depends on the
constructor, copy constructor, and destructor defined on the data class.

To send data by value, the C++ Services Library must know how to copy, initialize,
and destroy the objects that it sends. Type descriptors describe data types to the C++
Services Library to allow it to manipulate the objects that it sends. For further
information, see RTObject_class on page 268.

Sending by Reference

Sending data by reference is primarily used for efficiency. Instead of copying a block
of memory, a pointer to the memory is passed.

When sending pointers in messages:

■ Do not send pointers across thread boundaries without considering concurrency
access issues.

■ Do not send pointers across process or processor boundaries unless you have
shared memory. You must also consider concurrency issues.

■ Do not send pointers to stack objects. The stack object gets deleted when the
transition code segment completes, and most sends are asynchronous. When the
receiving capsule instance de-references the pointer, the data it is pointing to has
been deleted.
74 Chapter 5 - Classes and Data Types

Memory Leaks

If you decide to send pointers in messages, you can easily introduce memory leaks
into your model if you are not careful. If you plan on sending pointers in messages,
carefully review the following dangers:

■ When a message send operation fails, and you had expected the receiver to free the
memory, this will cause a memory leak. The proper action is to verify all message
sends and take appropriate action if the send fails.

■ If a capsule is destroyed before it has processed all its buffered messages and the
receiver was expected to free the memory, then memory will be leaked for any
unprocessed message containing pointers. The most robust method for preventing
these memory leaks is to create a smart pointer wrapper that manages the memory
for the pointer being sent. Smart pointers can manage the pointer and
automatically free any memory once the pointer is no longer referenced.

■ You can also easily leak memory if you pass a pointer to a timing request
operation, for example Timing::informIn or Timing::informEvery, and then
cancel the timer before it fires.

If you do not address these dangers when sending pointers, your model may run for a
while, but might crash unexpectedly. Most real-time systems are designed to run for
long periods, which causes small memory leaks to accumulate over time and causes
disasters that are hard to reproduce.

See Sending and Receiving Data By Reference on page 78 for an example of the send
syntax.
Sending Data in Messages 75

Creating Data Types

When using data in Rose RealTime, you should provide well-formed data types so
that the memory that is allocated is deleted, and copy constructors work as intended.

The sending, receiving, and integrating data model examples provides examples of
how to integrate different kinds of data types within Rose RealTime.

You can create data types that are:

■ Sendable by Value: A data type can safely be sent between capsules within the
same process using copy semantics for objects.

■ Observable: A data type can be safely output via the observability in the Rose
RealTime (watches and message traces), and via the log service.

■ Marshallable: A data type can be safely decoded (injected from the toolset).

Data class rule #1

Simple data types that do not contain pointers (any indirect attributes) are by default
sendable, observable, and marshallable. External data types are not necessarily
sendable, observable, or marshallable by default. For details, see Integrating an
External Class on page 88.

Data class rule #2

Classes that contain pointers can be made sendable by value, observable, and
marshallable. Add details to your class to make it well formed by creating or
modifying the following functions:

C++ data class methods:

■ constructor

■ copy constructor

■ destructor

The toolset can automatically generate these
operations, however, they will not safely handle
classes that contain pointers. If a class contains
pointers you must provide your own constructor,
copy constructor, and destructor methods.

Type descriptor functions, defined on
each class in the C++ TargetRTS tab.

The functions define how a data class is initialized,
copied, destroyed, decoded, and encoded. By
default, the init, copy, and destroy functions call the
class’ constructor, copy constructor, and destructor.
Generally, you only need to modify the data class’
methods for these functions.

NumElementsFunctions, defined on
an attribute in the C++ TargetRTS tab.

At runtime, this function determines the size of an
indirect field (the number of things a pointer
references). If unspecified, this will be set to 1. Used
by the encode/decode functions.
76 Chapter 5 - Classes and Data Types

Marshallable Data Classes

In addition to making data classes sendable by value, they can be made observable.
Marshallable means that the object can be encoded and decoded into a string of bytes.
This functionality allows the toolset to display the contents of objects at runtime, and
can also be useful for interprocess communication. Objects can be inspected at
runtime from within the Rose RealTime execution environment.

When you are debugging a running model and request that an attribute or data
within a message is shown in the toolset (similar to the watch facility available in most
source debuggers), the toolset sends a request to the running model. The Services
Library calls the encode function (defined within the type descriptor) on the object
instance. The result of the encode function is passed to the toolset, and is shown in
either a watch window, or a message trace.

Basic Structures

Simple data classes are by default encoded using an ASCII encoder meaning that they
are observable. For data classes containing attributes of types that are not known by
the toolset, these functions must be written by the user and cannot be automatically
generated by the toolset.

This flexibility allows for almost every kind of class or data type to be used within
Rose RealTime.

C++ Data Type Examples

The following examples demonstrate the different methods of creating and using data
types within Rose RealTime:

■ Syntax Examples of Sending Data Classes Between Capsule Instances on page 78.
■ Class Modeling Examples on page 79.
■ Creating and Using Common C++ Constructs on page 81.
■ Class Creation Examples on page 86.

Note: Before reviewing the examples, you should be familiar with the basic
information described in the section, Sending Data in Messages on page 73
C++ Data Type Examples 77

Syntax Examples of Sending Data Classes Between Capsule Instances

Sending and Receiving Data By Value

When sending data by value, you send a copy of the data instead of a pointer to the
data. This is the preferred method of sending data between capsules, and simplifies
concurrency issues.

The examples below demonstrate how to send and receive data by value. We assume
that the detail code is part of transitions on both the sender and receiver capsules.

When not using the rtdata parameter, the onus is on the programmer to supply the
correct type cast. With rtdata, the generated code handles the type cast.

Sender

SomeClass data("hello");

// Given a port called 'port' based on a protocol with a

// signal 'start' with data class 'SomeClass'.

port.start(data).send();

Receiver

// The following statements are equivalent

const SomeClass & data2 = *rtdata;

const SomeClass & data3 = *(const SomeClass *)getMsg()->getData();

// Accessing the pointer directly (a reference does not involve a copy)

const SomeClass * data3 = rtdata;

Sending and Receiving Data By Reference

For performance reasons, sending data by reference can be an effective way of
sending data. However, you need to be aware of all the issues pertaining to sending
data by reference. For more information, see Sending by Reference on page 74.
78 Chapter 5 - Classes and Data Types

The following examples demonstrate how to send and receive data by reference. We
assume that the detail code is part of transitions on both the sender and receiver
capsules. You should never pass a pointer to an object allocated on the stack (local
variable). You will also have to coordinate who is responsible for freeing the allocated
memory. (In the example below, the receiver does).

Sender

SomeClass * pdata = new SomeClass("hello");

// Given a port called 'port' based on a protocol with a

// signal 'stop' with data class left empty.

port.stop(pdata).send();

Receiver

SomeClass * data2 = (SomeClass *) getMsg()->getData();

//use data

delete data2;

Class Modeling Examples

Creating a Class Data Member From the Class Diagram

Given an association between two classes (Figure 8) or between a capsule and a class
(Figure 9), an attribute is created in the generated source code for the classes
participating in the relationship.

Figure 8 Association Between Two Capsules

Figure 9 Association Between a Capsule and a Class
C++ Data Type Examples 79

The aggregation kind determines if the attribute is contained by reference (aggregate)
or by value (composite).

The above relationships result in the creation of data members named: end2 in
NewClass1, end1 in NewClass2, and end3 in NewCapsule1. The properties for the
end (association end) control how the code will be generated for the data member.

Note: The end affects the class at the other end of the association.

Assuming that end1 and end2 are contained by reference, a simplified version of the
code that would be generated is:

class NewClass1

{

public:

//{{{RME associationEnd 'end2'

NewClass2 * end2;

//}}}RME

};

class NewClass2

{

public:

//{{{RME associationEnd 'end1'

NewClass1 * end1;

//}}}RME

};

You can specify the aggregation kind (that is, aggregate or composite), visibility, and
other attribute features that control how attributes are generated to source code. These
features are found in the Association Specification dialog box.

A data member is not generated if:

■ The association end name is not specified.
■ The end is not navigable.
■ Both ends are aggregated by composition.
■ The Derived option is selected.
80 Chapter 5 - Classes and Data Types

Specifying Arrays Using Association Multiplicity

The association end multiplicity specifies the number of instances of this end that will
appear in the related class. The data member that is created is an array with its size
being the largest possible value in the specified multiplicity range. If the multiplicity
is unspecified (such as, 1..*) the association is forced to be an aggregate (by
reference).

Figure 10 An Array Data Member

Assume aggregation for end1 is aggregate and end2 is composite. The following
code will be generated for the association:

class NewClass1

{

public:

NewClass2 end2[10];

};

class NewClass2

{

public:

NewClass1 * end1;

};

Creating and Using Common C++ Constructs

Creating Array and Pointer Attributes

Attributes can be created either as arrays or as pointers.

Tasks

Create an attribute and set the type to any valid C++ type. If it is an array, specify the
array identifier and size with the type.
C++ Data Type Examples 81

Creating a Constant

You can create C++ constants that are either scoped globally, or scoped to a class.

Example

const int num_retries(4);

class Constants

{

public:

const int max_connnections(10);

};

The above source code fragments show both a global and instance scoped constants.

Note: The names for these constants are examples only. You can create a constant with
different names.

Tasks

To create a global constant:

1 Create a class and name it appropriately.

Note: You can also create a constant on any class that is already defined. It is
recommended that you create a constant with the class where it is used.

2 Create an attribute in this new class. This will be the constant.

3 In the New Attributes C++ Properties tab, change the AttributeKind field to
Global.

4 In the Attributes Detail tab, set the Type and Initial Value for the constant. Set the
Changeability option to Frozen.

5 Add a dependency between the class where the constant is defined, and the
capsules or classes that use the constant. If the constant is Global, ensure that the
Dependency C++ Properties are: KindInHeader = inclusion, and
KindInImplementation = none.

Note: To also create a class scoped constant, follow the above steps with the exception
of step 3.
82 Chapter 5 - Classes and Data Types

Usage

You can use constants to specify the cardinality of replicated capsule roles, ports, and
bindings by adding the class scoped name (even if the constant is global) of the
constant to the Cardinality field in the Capsule Role Specification dialog box.

Note: Constant values have to be specified using the class name of the class in which
they have been created so that Rose RealTime can resolve and verify cardinalities
before generating the source code. In the generated source code the actual value of the
constant is used and not the expression class::constant.

Apart from specifying cardinalities, constants can be used in any C++ program.

Creating a Typedef

Example

typedef unsigned int u_int;

The above source code fragment shows an example C++ typedef. The name of the
typedef and the type used are examples only. You can create a typedef of any
name and type.

Tasks

1 Create a class with the name of the typedef.

2 In the Class C++ Properties tab, change the ClassKind property to typedef, and
add the desired type to the ImplementationType field.

Usage

You can create attributes of this type by setting the Type of the attribute to this new
typedef (the typedef appears in the type drop-down list for Attributes).

Note: Add a dependency between the typedef class element and the capsules or
classes that use the type as attribute types or in detail level code.

Creating an Enumeration

Example

enum e { a = 1, b };
C++ Data Type Examples 83

Tasks

1 Create a class named e.

2 In the General tab of the Class Specification dialog box, set the Stereotype of the
class to enumeration.

3 Create an attribute named a in the class.

4 In the Detail Properties sheet of this new attribute, change the Initial Value field
to 1.

5 Create an attribute named b in the class.

Creating a #define

Example

#define MAX_CONNECTIONS 24

The above source code fragment shows an example of a C++ macro, or #define
statement. The syntax of the macro definition is:

#define <macro name> <expression>

Tasks

1 Create a class.

Note: You can also create a constant on any class that is already defined. It is
recommended that you create a constant with the class where it is used.

2 Add an attribute to the class.

The name of this attribute will become the macro name.

3 Set the initial value of the attribute.

This will be generated as the macro expression.

4 In the C++ tab of the Attribute Specification dialog box, set the AttributeKind
field to constant.

5 Add a dependency between the class where the constant is defined and the
capsules or classes that use the constant. If the constant is Global, ensure that the
Dependency C++ properties are: KindInHeader = inclusion, and
KindInImplementation = none.
84 Chapter 5 - Classes and Data Types

Use the above steps to define constants and not complex macros. This method does
not allow macros to have names with brackets '(' or ')', or to have complex
expressions. To define more complex macros, add them to the Class C++ tab
HeaderPreface property.

Usage

You can use macros to specify the cardinality of replicated capsule roles, ports, and
bindings by adding the class scoped name of the macro to the Cardinality field.
Macros have to be specified using the class name of the class in which they have been
created so that Rose RealTime can resolve and verify cardinalities before generating
the source code. In the generated source code, the actual value of the macro is used
and not the name.

Note: You can specify any valid C++ expression in the Initial Value field for the
macro. However, if the macro is used to specify a cardinality, the initial value must be
a literal integer (such as, 1,50,100). If the cardinality cannot be understood by the
toolset, a warning will be generated when the model is compiled.

If the macros are to be used in detail level code, attribute array sizes, or other common
C++ usages, ensure that there is a dependency added between the class containing the
macros and the elements that reference the macros.

Figure 11 Macro Usages
C++ Data Type Examples 85

Creating a Struct

You can create a C++ struct instead of a class.

Example

struct ConnectionParameters

{

int port;

unsigned long address;

short id;

};

Tasks

1 Create a class.

2 In the Class C++ Properties tab, change the ClassKind property to struct.

3 Fill in the attributes.

Class Creation Examples

Creating and Using Classes With No Pointer Attributes

These classes are:

■ Sendable by value.
■ Marshallable (can be observed and injected).

Classes without pointers have the above properties if all of their attributes are of types
that do not have pointers, or are well-formed data classes.

Usage

The ConnectParams and Nodes classes are composed of predefined types. The C++
Services Library understands how to copy, initialize, destroy, encode, and decode
because of generated type descriptors. The type descriptor generated by the toolset
will be called RTType_<class name> and can be referenced directly in detail level code
where an RTObject_class is required by a Services Library operation.

// Here the class is sent by value to another capsule instance
86 Chapter 5 - Classes and Data Types

// Given a port called ’port’ based on a protocol with a

// signal 'connect' with data class 'ConnectParams'.

ConnectParams conn_p;

port.connect(conn_p).send();

// The encode function is called when the log service is used

log.log(&conn_p, &RTType_ConnectParams);

Creating and Using Classes With Attributes That Are Pointers

If you provide a copy constructor, destructor, and NumElementsFunctionBody
(Attribute, C++ TargetRTS), you can make these classes:

■ Sendable by value.
■ Marshallable (can be observed and injected).

If you only provide the above C++ operations, and not the
NumElementsFunctionBody (Attribute, C++ TargetRTS), the class will be Sendable
by value (deep).

Note: Observing and injecting will cause memory leaks.

If you do not provide any of the operations, the class should never be sent by value
because it will cause incorrect behavior.

Note: If a class has attributes that are pointers, ensure that the memory is managed
properly by the class. Rose RealTime will not create a destructor that knows how to
delete allocated memory. You will have to write your own destructor/constructor.

When attributes are pointers, extra steps are required. You will have to help the
Services Library.

Example

The integrating data C++ model example contains an example of a class that contains
a pointer. This class has well-defined default, copy, and destructor operations, as well
as, the NumElementsFunctionBody (Attribute, C++ TargetRTS) property defined for
the pointer attribute.
C++ Data Type Examples 87

Integrating an External Class

You may have classes that are not defined in the toolset, either in third-party libraries
or in code that will be reused for a new project. These externally defined classes can be
integrated within Rose RealTime, and can be used for class modeling. They can be
available in the drop-down type lists, or used within detail level code.

Any class or type defined outside the toolset can be used in your model. Depending
on how the class or type is needed in your model, the class or type can be integrated
within Rose RealTime in several ways.

Note: All integration examples are contained in the C++ model example, Integrating
Data.

Integration Questions

Before integrating classes into Rose RealTime, consider how the class or data type will
be used within the model.

1 Will objects of this type only be used to store information within a single capsule
instance, or will they only be sent by reference and will never be observed,
injected, or sent between processes?

2 Will objects of this type need to be sent by value between capsule instances?

3 Will objects of this type need to be observed during debugging, or
encoded/decoded because they are injected or sent to other processes?

Integration for Case #1

In the first case, the only step required for using this class in your model is to make the
external class definitions visible to the compiler by adding the include files to the
HeaderPreface field in the Class Properties or to the Component Compiler
Inclusions page.

After the definition is visible to the compiler, you can use the class or type within any
detail level code.
88 Chapter 5 - Classes and Data Types

Integration for Case #2 and Case #3

If you answered Yes to questions 2 and 3, a type descriptor will have to be created for
the external types in order to describe the types to the Services Library.

There are two possibilities for handling an externally defined class or data type:

■ You create a class within Rose RealTime with the same attributes as the external
class, and then Rose RealTime can generate the type descriptor.

OR

■ You add the code for describing how to copy, initialize, destroy, encode, and
decode an instance of this type.

Integration Options

An external class can be made sendable by value without being observable, and vice
versa. You have two integration options:

1 Describing an external type to Rose RealTime.

2 Providing own marshalling functions.

Option 1: Describing an External Type to Rose RealTime

If the class is described to Rose RealTime, the class can be made marshallable.

If your external class has a well-defined default constructor, copy constructor, and
destructor, then the class can be sendable by value, and the default type descriptor
will use the operations already defined on the class.

Example

The following class is defined in a header file outside of the toolset.

// This is an example definition of a class in a user-defined

external library

class Ext_Simple

{

public:

int a;

char b[80];

float c[8];

};
C++ Data Type Examples 89

Tasks

A class is sendable by value and observable if all attributes are also sendable by value
and observable. In the above example, Ext_simple attributes are all types that are
sendable by value and observable. The toolset can generate a complete type
descriptor for this class. After the class is integrated within Rose RealTime, it can be
used to create other more complex classes.

1 Create a class with the same name as the external class.

2 In the Class C++ tab, clear the GenerateClass option.

Note: You do not want to generate another class because the class is already
defined outside the toolset. You are only describing the type to Rose RealTime.

3 In the Class C++ tab, make the header file containing the actual class definition
visible to this class by adding an #include statement to include the definition of
the external class or type to the HeaderPreface property.

4 In the Class C++ TargetRTS tab, set the GenerateDescriptor property to True.

Note: Step 5 allows the C++ code generator to create marshalling functions for the
external class, and is only required to encode/decode the class.

5 Add all the attributes that are defined in the external class to the class you have
just created in Rose RealTime. The attributes must have the same names as in the
external class but do not have to be declared in the same order.

If the external class contains pointers, follow the steps for creating attributes as arrays
and pointers to correctly define the attribute, and to ensure that the external class has
a well-formed (that is, no memory leaks) constructor and destructor.

Rose RealTime cannot describe non-public fields in classes that are externally defined.
To integrate classes with non-public fields, you have to integrate the class using the
method described in the following integration Option 2 example.

Option 2: Providing Own Marshalling Functions

A data type can be integrated for marshalling with Rose RealTime if it already
contains operations to encode and decode to and from a string of bytes. This also
applies when you want to describe an external class which has non-public fields (for
encode/decode).

Note: Use this option instead of redefining all the attributes defined in an external
class to allow an external data type to be marshalled (as described in the Option 1
above).
90 Chapter 5 - Classes and Data Types

To integrate classes in this manner, you must understand the usage of the two
functions defined in the Class C++ TargetRTS tab:

■ DecodeFunctionBody (Class, C++ TargetRTS).

■ EncodeFunctionBody (Class, C++ TargetRTS).

When writing the type descriptor functions, you have access to a pointer to an
instance of the class (target), and in some cases, both a target and a source object
instances (the source can not be modified).

Note: Ensure that the external class has well-defined default constructor, copy
constructor, and destructor functions.

Tasks

1 Create a class with the same name as the external class.

2 In the Class C++ tab, clear the GenerateClass property.

3 In the same tab, add #include <An_External.h> to the HeaderPreface property to
make the header file (containing the actual class definition) visible to this class.

4 In the Class C++ TargetRTS tab, set the GenerateDescriptor property to True.

5 In the Class C++ TargetRTS tab, edit the EncodeFunctionBody (Class, C++
TargetRTS) property. Add code to encode the data class.

6 In the Class C++ TargetRTS tab, edit the DecodeFunctionBody (Class, C++
TargetRTS) property. Add code to decode the data class.

Note: Because the GenerateClass property was cleared, only a type descriptor will
be generated for this new type. The class definition in the external header file should
be visible to the compiler.
C++ Data Type Examples 91

92 Chapter 5 - Classes and Data Types

6C++ Services Library
Contents

This chapter is organized as follows:

■ C++ Services Library Framework on page 93
■ Log Service on page 106
■ Communication Services on page 106
■ Timing Service on page 112
■ Frame Service on page 114
■ Exception Service on page 117
■ RTController Error Codes on page 117
■ External Port Service on page 122

C++ Services Library Framework

Together, the classes and data types defined in the C++ Services Library provide an
application framework - the framework in which your Rational Rose RealTime
application runs.

In general, the framework defines the skeleton of a real-time application: messaging,
timing, dynamic structure, concurrency, event based processing, platform
independence. You provide the classes, capsules, and protocols which are specific to
your system.

The Big Advantage

Rational Rose RealTime lets you develope using state diagrams and structure
diagrams which are automatically converted to C++ and placed in a framework that
provides critical real-time system services.
93

Before you start developing, the key to using the services provided by the framework,
is to understand how your application will integrate into the C++ Services Library
skeleton. The framework provides:

■ Communication services are the basic mechanism for using message-based
communication via ports.

■ Timing service provides general purpose timing facilities.

■ Frame service is used to gain control over the dynamic structure in a model.

■ Log service is a general purpose logging service.

■ Exception service provides the ability to define custom policies to recover from
exceptions.

Services are explained by introducing the general concepts related to the service
followed by the classes that are used to implement that service. You should become
familiar with the C++ syntax and notational conventions used in these sections as well
as the Services Library Class Reference on page 233.

Message Processing

Events and Messages

An event is a message arriving on a capsule's port. Message-based communication is
the basic mechanism for communication between capsules. Both synchronous and
asynchronous communication are supported allowing a variety of different
interaction semantics to be represented. Messages are also used by the Services
Library to communicate with the capsules in the model.

The pre-defined capsule instance variable msg contains a pointer to the current
message just received by the behavior. It is defined at the highest scope in the
behavior. A message has three attributes:

■ A signal that succinctly conveys the application-specific “meaning” of the
message.

■ A priority that indicates the “urgency” of the message. The priority of a message is
determined by the sender.

■ An optional data attribute, which contains additional information. This attribute
can consist of an arbitrarily complex composite data object.
94 Chapter 6 - C++ Services Library

Processing Overview

The Services Library does not preempt capsule processing. The heart of the Services
Library is a controller object that dispatches messages to capsules. Its basic mode of
operation is to take the next message from the outstanding message queue and deliver
it to the destination capsule for processing. When it delivers the message, it invokes
the destination capsule's state machine to process the message.

Control is not returned to the Services Library until the capsule's transition has
completed processing the message. Each capsule processes only one message at a
time. It processes the current message to the completion of the transition chain (for
example, guard, exit, transition, Choice Point, exit, and entry) and then returns control
to the Services Library and waits for the next message. This is referred to as
run-to-completion semantics. Typically, transition code segments are short, and result
in rapid handling of messages.

Single and Multi-Threaded Message Processing

The Services Library runs in a loop executed by a system controller object. This loop
waits for messages and delivers them, one at a time, to capsules for processing. Each
physical thread in a Rose RealTime model has its own controller object and its own set
of message queues. Messages that cross threads are placed in a special queue and
picked up by the receiving thread in its processing.

The model is first initialized by queueing a special system-level message (the
initialization message) for the top-level capsule. This causes initialization messages to
be queued for all fixed capsules contained inside the top-level capsule. This continues
recursively for all contained fixed capsules, so that all the fixed capsules in the model
(those that aren't contained in optional capsules) are initialized.

After the initialization message is queued, the controller object enters its main
processing loop (the mainLoop function). In mainLoop, it takes the next highest
priority message from the message queues and delivers it to the receiver capsule and
invokes that capsule's behavior to process the message. During start-up, the highest
priority message on the queue of the main thread will be the initialization message.
When a capsule processes the initialization message, the capsule's initial transition
segment is executed.

When the capsule has completed processing a message, it returns control to the
controller. The controller continues this loop until there are no more messages to be
processed. At that point, it waits for a message from a timer or another physical
thread in the model.
C++ Services Library Framework 95

Introduction to Threads

A capsule can be thought of as having its own logical thread of control, and operating
independently of other capsules, as if each capsule had its own dedicated processor.
These independent capsules synchronize to perform higher-level scenarios through
message-passing. One capsule sends a message to another capsule allowing the other
capsule to update its state based on this outside stimulus. In practice, most Rose
RealTime models run on a machine with a single processor, or possibly in a
distributed environment, with a few processors. Capsules must share the single
processor in some manner.

Types of Concurrency

The underlying operating system provides preemption to allow concurrent programs
to share the processor so that each program is guaranteed to get some processing time
depending on the prioritization of the programs, and any program that blocks does
not stop processing of other programs. Many operating systems support one or both
of the following forms of concurrency:

1 A heavy-weight unit of concurrency (usually referred to as a process), which has
its own memory space, is completely separate from other processes (for integrity),
and which communicates with other processes through special mechanisms
(shared memory, sockets, signals, and so forth). Processes usually have a
significant amount of protection such that if one process crashes it does not affect
any other processes.

2 A light-weight unit of concurrency, referred to as a thread (or task on most RTOSs),
shares a common memory space with other threads, and is not as robust (can be
corrupted by other threads). Threads do not have as much protection as processes.
Depending on the type of failure, an error in one thread may affect other threads.

Mapping Capsules to Threads

Rational Rose RealTime allows designers to make use of the underlying multi-tasking
operating system so that the processing of a capsule on one thread does not block the
processing of capsules on other threads. Designers can specify the physical operating
system threads onto which the capsules will be mapped at run-time. In a system with
only one thread, there are situations where a single capsule transition can block other
capsules from running, such as if the capsule invokes a blocking system call. By
96 Chapter 6 - C++ Services Library

placing some capsules in different threads, the designer can avoid the problems that
arise from these situations, and make better use of the underlying processor. Not
every capsule should run on a separate thread. For most capsules, it is sufficient to
leave them in one thread and allow the Services Library controller to invoke their
behavior as messages arrive.

Capsules with transitions that may block, or that have excessively long processing
times, should be placed on separate threads. Deciding which capsules need to execute
in different threads is a matter for design consideration.

Single-Threaded Services Library

The use of threads is not supported for certain targets, and may not be desirable for
some applications. There is a single-threaded version of the Services Library, which is
used for these situations. In the single-threaded model there is a single controller
object that is responsible for queueing and delivering messages among capsules. The
main processing loop runs inside this object. The single-threaded Services Library has
the basic structure shown in Figure 12.

Figure 12 Single-Threaded Services Library
C++ Services Library Framework 97

Multi-Threaded Services Library

Capsules can belong to different logical threads. Logical threads are mapped to a set
of concurrent physical threads defined by the developer. No other capsules in a thread
can execute until the currently executing capsule returns control to the main loop of
that thread (except for the case of invoke). However, other capsules on other physical
threads may be executing simultaneously (at least, from the designer's perspective).
The operating system is responsible for switching control among active physical
threads. The operating system may preempt one physical thread in the middle of
execution to switch to another physical thread. Each thread can be assigned a separate
priority, so that the designer has some control over the scheduling. In the
multi-threaded model there is a separate controller object for each physical thread.
This controller object contains the basic message delivery and processing loop. The
basic structure of the multi-threaded Services Library is shown in Figure 13.

Figure 13 Multi-Threaded Services Library
98 Chapter 6 - C++ Services Library

Naming Considerations

The C++ Services Library contains class names and operation names that may not
exactly line up with the terminology used in the rest of the product. This is a holdover
from previous versions of the Services Library, which was based on terminology used
in the Real-time Object-Oriented Modeling (ROOM) method. Briefly, the changes in
terminology are:

■ actor = capsule instance
■ actor reference = capsule role
■ actor class = capsule
■ SAP = unwired port for accessing a service
■ SPP = unwired port for providing a service

C++ Services Library Framework

The capsules, capsule roles, protocols, ports and classes in a Rational Rose RealTime
model will be generated to C++ code and integrated into the C++ Services Library
framework. The class diagram below shows how a set of generated model elements
integrate within the framework.

The white boxes are predefined classes in the C++ Services Library and the grey boxes
are classes generated from a Framework Sample Model on page 105.
C++ Services Library Framework 99

Figure 14 C++ Services Library Framework

From this simplified class diagram, observe the following:

■ The high level view of the C++ Services Library classes and their relationships.

■ How your application level modeling elements integrate into this framework (grey
boxes).

■ The relationships between your modeling elements and the framework.

Because most modeling elements will become subclasses of framework base classes,
elements will have access to operations and attributes that are defined in the base
classes. Here are the main relationships that you should understand:

■ Capsules become subclasses of RTActor
■ Special Overrideable capsule class operations
■ Capsule class information is stored in instances of RTActorClass
■ Capsule roles are attributes of type RTActorRef
■ Protocols become two classes - Base and Conjugate
■ Ports are Protocol type attributes in RTActor subclasses
100 Chapter 6 - C++ Services Library

■ Signals become operations in protocol classes
■ Capsule roles are place holders for zero or more capsule instances
■ Capsule instances have access to a RTMessage object
■ Capsule instances have access to their controller

Capsules Become Subclasses of RTActor

All capsules are generated as subclasses of RTActor. This common base class contains
state machine processing and messaging behavior that is used by all capsules.

Capsule state machines, operations, and attributes are included in the generated
RTActor subclass. Since there can possibly be many instances of the same capsule in
an application, capsule class information is kept separate from the RTActor instances,
in a RTActorClass metaclass.

You can access public operations of RTActor within a capsule’s behavior. For example
it is common to have the following C++ code in a capsule state transition where the
operations RTActor::getError and RTActor::context can be used because they are
defined on the RTActor class:

switch(getError())

{

case RTController::noConnect:

log.log("Unable to send message");

break;

default:

log.show("Unexpected error sending to peer: ");

log.show(context()->strerror());

log.cr();

break;

}

C++ Services Library Framework 101

Special Overrideable Capsule Class Operations

There are two special operations that are defined as virtual functions on the C++
Services Library root class, RTActor, of all capsules. These functions can be used to
customize the capsule's response to certain conditions.

■ RTActor::unexpectedMessage
■ RTActor::logMsg

Note: See the RTActor class reference for details on how to use these operations.

Capsule Class Information is Stored in Instances of RTActorClass

Characteristics common to all capsules, for example a name and external interfaces,
are kept in a RTActorClass structure. All operations in the C++ Services Library which
require you to specify a capsule class will take a parameter of type RTActorClass.
There is only one instance of a RTActorClass for each capsule, whereas there are
usually many RTActor capsule instances. The obvious advantage is that all capsule
instances of the same capsule can share the capsule information stored in the
RTActorClass.

The RTActorClass structures are named exactly as the capsules in your model. So if
you have a capsule called Device in your model you can directly refer to this class in
your model as Device. For example a common usage of RTActorClass is in the
Frame::incarnate method where you can specify which type of capsule to incarnate
into an optional capsule role. You specify the type by using the name of the capsule
directly in the operation call. The first parameter specifies the capsule role and the
second the capsule class:

frame.incarnate(device, Printer);

Capsule Roles are Attributes of Type RTActorRef

A capsule’s structure is defined by a number of communicating capsule roles. In the
framework the capsule roles become attributes of type RTActorRef in the containing
capsule.

The attribute name is kept the same as the role name, which means that you can
reference a capsule role by name in detail C++ code of the containing capsule.
102 Chapter 6 - C++ Services Library

Protocols Become Two Classes: Base and Conjugate

For each protocol two classes are generated to represent the base and conjugate
protocol roles. The protocol role classes are generated as subclasses of the root
protocol class and are filled in with operations specific to the in and out signals
defined in the protocol roles.

In the C++ Services Library Framework diagram you can see that the Ping_Actor and
Pong_Actor each have a port of the same type but assigned to different protocol roles.

Ports are Protocol Type Attributes in RTActor Subclasses

A port on a capsule becomes an attribute in the generated RTActor subclass. The port
attribute has the same name as the port in the model. The port attribute will be a
subclass of the common base class, RTProtocol. It be directly referenced by name in a
capsule’s C++ detail code. Here a port named talk is defined on a capsule.

The port definition in the capsule class:

public:

// {{{RME protocolClass 'Commands' port 'talk'

Commands::Base talk;

The port being referenced in detail code on the capsule:

talk.ping().send();

Signals Become Operations in Protocol Classes

Each signal defined in a protocol is generated as an operation with the same name as
the signal in the generated protocol class. The return value of the operation dictates
the actions that can be performed with the signal. Incoming signals RTInSignal and
outgoing signals RTOutSignal will obviously differ in allowed actions.
C++ Services Library Framework 103

Figure 15 PingPong Protocol and Talk Port

From this class diagram you see that the Pong capsule has a port named talk of type
PingPong. The port is not conjugated. The unconjugated generated protocol class
PingPong::Base will have operations for each signal and will allow you to reference
them from the talk attribute generate on the Pong_Actor class.

talk.pong().send();

This line of code calls the generated signal operation on the port, which returns a
RTOutSignal object. Then the common action on an out signal is to send it.

Capsule Roles are Place Holders for Zero or More Capsule Instances

Capsule roles, or RTActorRef classes, are basically place holders for capsule instances.
Replicated capsule roles are place holders for multiple instances of compatible
RTActor subclasses.

See RTActorRef on page 240 for more information on the main uses of capsule roles in
your model.

Multiple Containment

Often a capsule instance will only run in the context of a single capsule role, but with
multiple containment, a single instance can exist in two or more capsule roles
simultaneously.
104 Chapter 6 - C++ Services Library

Capsule Instances Have Access to a RTMessage Object

An RTActor class has access to the current message, RTMessage, that it received. You
will often want to access this message in your capsule C++ detail code.

Capsule Instances Have Access to their Controller

Each capsule instance has access to the controller for the thread on which it is running.
The RTController class provides several operations that can be useful in a capsule’s
implementation.

Framework Sample Model

This is the model which was used as an example of how elements from a model will
integrate into the C++ Services Library Framework. The grey boxes in the diagram on
the C++ Services Library Framework page show classes generated from this model:

Figure 16 Ping Pong Model Class Diagram
C++ Services Library Framework 105

Figure 17 Container Capsule Structure Diagram

Log Service

Implementation classes

Log

Concepts

The System Log is a stream of ASCII text in which system or application events can be
recorded. Currently all log output is directed to stderr.

Execution speed is affected since each write to the log involves an output system call,
which is a relatively expensive operation.

Communication Services

Implementation classes

RTProtocol, RTOutSignal, RTInSignal, RTSymmetricSignal

Concepts

This fundamental service provides most of the standard communication models
prevalent in concurrent software system design including asynchronous messaging
and rendez-vous like synchronous inter-capsule communication.

The Communication Service is accessed by referencing, by name, a port (which will be
a subclass of the RTProtocol class) with the appropriate operation. The port name is
the user defined name of the port declared in the model. The named port is generated
as a member of the capsule containing the port.
106 Chapter 6 - C++ Services Library

Every named port may actually have a number of port instances associated with it
(depending on the multiplicity of the port). Each port instance is capable of sending
and receiving messages. The port instances are encapsulated within each RTProtocol
object.

A service request results in the creation of instances of RTMessage. These messages
are delivered by the Services Library to the ports at the other ends of the connections.
They are eventually processed by the behavior of the capsules containing these ports.

Primitives

This service is used for message passing between capsules in real time. Messages sent
via this service are processed whenever the necessary CPU cycles become available.

A capsule instance accesses the message that was just received by accessing the msg
variable.

Upon processing a message received at a particular end port, the
RTMessage::sapIndex0 operation returns an index to the particular port instance that
received the message. A RTOutSignal::sendAt to the port instance returned by
RTMessage::sapIndex0 results in a send to only that particular port instance. The
communications services also provide a number of functions for dealing with
replicated ports.

Asynchronous and Synchronous Communication

If an asynchronous send is used, the sending capsule will not block while the message
is in transit. This mode is well-suited for high-throughput and fault-tolerant systems.

Conversely, if synchronous communication is desired, a blocking send can be used.
The semantics of this send are such that during the invocation of the method, the
sender (invoker) is blocked until a reply is received even if higher-priority messages
arrive in the meantime. At the other end, the receiver does not distinguish between
synchronous and asynchronous communications but replies to either in the same way.
This has the advantage that it de-couples the receiver from the implementation
decisions of its clients regarding which communication mode to use (blocking or
non-blocking). In practice, though, the receiver must know something about the
expectations of the sender. There are two restrictions that must be observed:

■ The receiver must reply with rtport->signal(data).reply() (within the same
transition) to messages that are synchronous.

■ Circular invokes are not allowed (if capsule A invokes capsule B, and capsule B
tries to invoke capsule A, the invoke operation on B will fail with a return code).
Communication Services 107

Order-Preserving

Messages of equal priority sent along the same binding are delivered in the same
order both for messages sent to capsules executing within the same thread and for
messages going to another thread.

Note: Such guarantees may not be available when capsules are in different processes.

Lossy

Messages have a high probability of delivery to the receiving object, but it is not
guaranteed. For example, messages may be lost if they are sent through unbound
ports or if the destination capsule is destroyed dynamically. In distributed versions of
this service, loss of messages may also be due to temporary resource depletion (no
buffer space) or actual loss in the physical communications medium.

Minimal overhead in message handling

This is due to the relative simplicity of the service and its lack of any automatic form
of acknowledgment or flow-control protocols.

Request-Reply

A special feature of the communications services is support for a "request-reply"
communication model. These are message exchanges between a sender capsule and a
receiver in which the specified reply is expected, handles the request, and responds
within the scope of a single transition. See the description of send() and invoke()
functions for detailed limitations.

The communications services also support synchronous messaging (similar to a
rendez-vous). During a synchronous send, or invoke, the sender is blocked until the
receiver has processed the message and sent back a reply. Run-to-completion
semantics are enforced, such that a synchronous invoke has the same semantics as a
procedure call.

The receiver of an invoked message, or an asynchronous message with expected reply,
must respond to it prior to the completion of message processing.
108 Chapter 6 - C++ Services Library

The Semantics of Usage of Message Priorities

A message priority is interpreted as the relative importance of an event with respect
to all other unprocessed messages on a thread. This is reflected in a bias towards
higher-priority messages over lower-priority messages when scheduling CPU time. If
two or more messages of different priority are queued and waiting to be processed,
messages with a higher priority are usually processed before messages of lower
priority. The slight ambiguity of this definition reflects the variability of scheduling
policies due to the inherent non-determinism of distributed systems, as well as
changing implementations. In general, good designs should not be critically sensitive
to a particular scheduling policy. (The current Services Library scheduler, in fact, uses
simple priority scheduling so that messages at a particular priority level are not
processed until all higher-priority messages on that controller have been processed.)

Within a given priority level, the Services Library guarantees that messages will be
processed in the order of arrival. (Keep in mind, however, that in a distributed system,
the order of arrival is not necessarily the same as the order in which the messages
were sent.)

Message priorities do not imply interruption of the processing of the current event
even if a newly-arrived message is of a higher priority. This is due to the
“run-to-completion” semantics of transitions as described in the previous section.

A user-defined message has one of five priority levels associated with it. The
following predefined symbols allow the user to specify the priority of a message by
name:

■ Panic - highest priority available to users; to be used only for emergencies
■ High - for high-priority processing
■ General - for most processing; also the default
■ Low - for low-priority
■ Background - lowest priority used for background-type activities

Message priorities disrupt the temporal order of events, which, in practice, often leads
to implementation problems. For this reason, it is recommended that, as much as
possible, applications limit themselves to a single priority level. However, if priorities
are used, then it is good programming practice to avoid the high and low extremes of
the range in order to leave room for subsequent design changes. In addition to these
user-defined message priorities, there are some system-level priorities. System-level
priorities are higher than the highest user-level priority in order to guarantee the
correct operation of Service Library routines.
Communication Services 109

Support for Unwired Ports

Ports can be either wired or unwired. Wired ports are explicitly connected to other
wired ports with connectors. But unwired ports are not connected during design.
Instead they are dynamically connected at run-time. Unwired ports are bound to
other unwired ports by a registered name.

Layer communication therefore involves support for managing connections between
unwired ports.

Published Versus Unpublished Unwired Ports

In the layered communication paradigm, unwired published ports (SPP) can only
connect with unwired unpublished ports (SAP), or vice versa. A SAP cannot connect
to another SAP, and a SPP cannot connect to another SPP. You can think of an SPP as
being the server side of a connection and the SAP as being the client. The client always
initiates the communication with the server. The terms SAP and SPP are used to
abbreviate 'unwired [unpublished|published] port'. You will see that some of the
communication service operations are named with these abbreviations to differentiate
SAP and SPP operations.

The basic model is that for any given service, there is one server (the SPP), and there
may be many clients (the SAPs). The notion of a "service" here is a loose one—a
service is some functionality provided by the server capsule to the client capsules. The
service is uniquely identified by name. There may exist many different server
capsules, each providing a different service. Any given service (name) may have only
one server (SPP) registered for it at any given time. Any other providers that attempt
to register an SPP of the same name will be declined (the registration will fail).

SPPs are often replicated, with their multiplicity specifying the maximum number of
clients that can be bound to the server at run-time. By default, a SAP or SPP is
automatically registered under its reference name when the capsule containing that
SAP/SPP is initialized.

Note: Multiplicity may be changed dynamically at run-time with the
RTProtocol::resize() operation. This may destroy bindings if multiplicity is reduced
and allow new bindings if it is increased.
110 Chapter 6 - C++ Services Library

Registration by Name

The basic element of layer communication is a generic name server. SAPs register to
the layer service for binding to a SPP under a unique name. SPPs need also register to
the layer service in order to publish its unique name for binding with SAPs.

All SAPs are bound to the first SPP that registered for binding under that name. If no
SPP exists, the SAP registrations are queued (usually in order) waiting for the SPP to
register. SAPs will be bound with the SPP up to the maximum multiplicity of that SPP.
SAPs not bound will continue to be queued until an instance of the SPP becomes
available due to either a SAP de-registering, an SPP with a larger multiplicity
registering, or the SPP is resized.

Registration String

A registration string is used to identify a unique name and service under which SAPs
and SPPs will connect. The string has the following format:

[<service_name>:]<registration_name>

The first part of the registration string is case sensitive. The interpretation of the
remaining registration string depends on the specified communication service. Here
are some examples:

name

service1:name

service2:name

service3://address/name

Automatic Versus Application Registration

SAPs and SPPs can be configured to be automatically registered with the layer service,
or to be registered by the application using a name to be determined by the
application at run-time. If automatic registration is chosen, the registration name must
be supplied in the port specification dialog and the Services Library will register the
name at startup. In the case of application registration, the SAP or SPP is registered at
run-time by calling a communication service operation, such as
RTProtocol::registerSAP and RTProtocol::deregisterSAP, in the detail level code of a
capsule. The same port may, in fact, be registered under different names at different
points in the model execution.
Communication Services 111

Deferring and Recalling Messages

The Services Library enforces the reactive model of behavior by automatically putting
a capsule into a receive mode between successive transitions. This means that there is
no need for an explicit user-specified receive method. When a message is selected for
processing, the Services Library wakes up the capsule and starts execution of the
appropriate transition.

In some cases, a message may be received and the capsule may decide that it would
be more convenient to postpone the handling of this event for some later time. For
example, the behavior may be in the middle of a complex sequence of state transitions
when it receives an asynchronous request to handle a new sequence. Instead of trying
to execute two sequences in parallel, it is often simpler to serialize them. To do this,
the newly-received message must be held somehow until the current event-handling
sequence is complete and then resubmitted. The Services Library allows messages to
be deferred and then recalled at a more convenient time.

Timing Service

Implementation classes

RTTimespec, Timing, RTTimerId, RTTime

Concepts

The timing services provide users with general-purpose timing facilities based on
both absolute and relative time. To access the timing services, you reference, by name,
a timing port that has been defined on that capsule, that is, by creating a port with the
pre-defined Timing protocol. Service requests are made by operation calls to this port,
while replies from the service are sent as messages that arrive through the same port.
If a timeout occurs, the capsule instance that requested the timeout receives a message
with the pre-defined (and reserved) message signal timeout. Of course, a transition
with a trigger event for the 'timeout' signal must be defined in the behavior in order to
receive the timeout message.

One shot timer

This kind of timer expires only once, after the specified time duration (relative time),
or at the specified time (absolute time). If subsequent timeouts are required, the timer
must be reset after each expiration. If repeated timeouts are required, the extra time
added for processing each timeout and requesting a new timer may cause some
112 Chapter 6 - C++ Services Library

amount of drift in the timing (for example, requesting a timeout every 10 seconds will
result in a timeout occurring every 10 seconds + the amount of time required to
process the timeout and reset the timer). Round-off of clock ticks may reduce or
exaggerate this drift.

Periodic timer

This kind of timer is set to timeout repeatedly after the specified duration until the
timer is explicitly cancelled. It does not need to be reset after each expiration. Using
the periodic timing service will provide more accurate timing than repeatedly
resetting a one-shot timer.

Relative Versus Absolute Time

Two forms can be used to specify a timer request: absolute time and relative time. This
service defines absolute time as elapsed time since some fixed point in the past.
Relative time is expressed as a number of time units from the current time instant.

In the example below for RTTimespec used with InformAt, a timer is set to expire at a
given time represented by alarm. Timeout takes place on the hour after the occurance
of alarm.

RTTimespec alarm;

RTTimespec::getclock(alarm);

alarm.tv_sec += 3600L - (alarm.tv_sec % 3600L);

alarm.tv_nsec = 0L;

timer.informAt(alarm); // at the top of the next hour

Relative time is represented in seconds and nanoseconds. The RTTimespec class is
used to hold relative times.

// relative timer example: can specified with informIn() or

// informEvery().

timer.informIn(RTTimespec(10, 0));

// one-shot timer in 10 seconds
Timing Service 113

timer.informEvery(RTTimespec(10, 0));

// periodic timer every 10 seconds

The examples above assume that a non-wired port named timer using the timing
protocol has been defined on the capsule invoking the timing service.

Timing Precision and Accuracy

The precision of the timing service depends on the granularity of timing supported by
the underlying operating system. Although you can request timeouts with a
granularity down to the nanosecond, this does not mean you will get nanosecond
precision. Most operating system timing facilities only have a granularity in the
millisecond range. Further, the granularity of timing supported on most real-time
operating systems is much finer than that of general-purpose workstation operating
systems, such as UNIX and WindowsNT.

The service does not guarantee absolute accuracy. This means that intervals can take
slightly longer than specified, and events scheduled for a particular time may in fact
happen slightly after the actual time has occurred. The magnitude of the delay
depends on many factors. However, unless the system is under severe overload, the
discrepancy is usually not significant.

Frame Service

Implementation classes

RTActorId, Frame, RTActorClass, RTActorRef

Concepts

Capsule roles can be classified into three categories: fixed, optional, and plug-in.

The latter two types of capsule references are used for dynamically changing
structures.

The Frame Service provides the ability to instantiate and destroy optional capsules, to
import and deport capsule instances to and from plug-in roles, plus a number of other
functions. The rules and definitions governing the Frame Service can become quite
involved in some cases. See the Modeling Language Reference Guide for more details on the
concepts behind dynamic structure.
114 Chapter 6 - C++ Services Library

Optional Capsules

Optional capsules differ from fixed capsules in that the current number of existing
instances of an optional capsule reference at any given time may be less than the
cardinality specified for that capsule role. The rules governing the instantiation and
destruction of optional capsules are as follows:

■ An optional capsule can be instantiated as an instance of a particular class only if it
is a compatible subclass of the class specified as the capsule role classifier.

■ An optional capsule that is explicitly destroyed by the invocation of a method by
the immediate container ceases to exist and does not appear anywhere.

Plug-in Capsule Roles: Multiple Containment

The following rules must be satisfied at run time in order for a capsule instance to
appear as a plug-in capsule role:

■ The capsule instance cannot already be an aspect in the imported capsule
reference.

■ The class of the capsule instance must be one of the compatible subclasses of the
plug-in capsule.

Note: To be compatible with its superclass, a subclass must have a matching
compatible port for every connected interface of the superclass reference.

■ Capsules may not be imported across model boundaries. That is, a capsule cannot
be imported across a process boundary, though it can be imported across a thread
boundary within the same model.

None of the ports of the capsule instance to be bound in the destination plug-in role
can currently be fully bound in another aspect.

Multiple Containment

Multiple containment allows you to represent capsule roles that are simultaneously
part of two or more capsule collaborations. Specifying that two different capsule roles
are actually bound to the same run-time instance can simplify the structure of the
system by allowing it to be decomposed into different views.
Frame Service 115

When to use multiple containment

When two or more capsule roles are placed together in a common capsule, the intent
is to capture some user-defined relationship between these components. The simplest
example of a relationship between objects is pure physical containment; for example,
a shelf contains a particular card. When we move into the domain of software,
however, the types of relationships that exist can be quite diverse. In communications,
for instance, when two terminals are connected to each other in order to exchange
information, they are involved in a call relationship. The object-oriented approach
encourages us to capture such identifiable relationships as distinct objects. Note that,
in physical terms, there is no real entity corresponding to a call; however, it is quite
useful to think of it in that way.

Once relationships such as these are captured in unique addressable objects, then it is
possible to conceive of operations over such objects, such as terminating a particular
call or adding another party to it. To the entities invoking the operations, the structure
and implementation within such objects are typically of no concern. Following this
line of thought leads us to conclude that these objects are in fact like any other
software objects: entities with a set of externally accessible operations and an
encapsulation shell that hides their internals. Therefore, capsules can be used to
represent arbitrary user-defined relationships between their component actors.

Multiple containment is required to capture situations where a capsule role is
involved in multiple simultaneous relationships with capsule roles in another
containment.

Replicated Capsule Roles

Replication semantics are a function of the type of role that is replicated:

■ All instances of a fixed capsule role with cardinality > 1 are created automatically
when the containing capsule is incarnated. The number of instances is equal to the
cardinality.

■ Instances of an optional replicated capsule are created dynamically, as needed, by
the user at run time using the Frame Service. The number of instances can vary
from zero up to the number specified by the cardinality. Any attempt to increase
the number of instances beyond the cardinality will fail.

■ Plug-in capsule roles are filled dynamically at run time as required. However, the
maximum number of instances that can be imported into the plug-in capsule role
is limited by the cardinality of the role. As is the case for optional capsules, trying
to import beyond this limit will fail.
116 Chapter 6 - C++ Services Library

Exception Service

Implementation classes

Exception

Concepts

The Exception Service gives the user the ability to define custom policies to recover
from exceptions. Exceptions are program errors that normally make it impossible for a
piece of code to proceed. In Rose RealTime exceptions are always raised by the
application. The Services Library does not automatically raise exceptions for errors
that are detected in the Services Library.

RTController Error Codes

Many of the Services Library operations can set an error code. If any operation in a
controller fails, an internal variable is set with an error code. The error values are
defined with an enumeration in the RTController class. For a detailed description
of the defined error values and their meaning, see Error Enumeration on page 118.

Accessing the Error Value

The error enum identifier for the current error can be obtained via
RTController::getError() or RTActor::getError() which are available
directly from capsule code blocks. A description of the current error code can be
accessed by calling the operation RTController::strerror() or printed via
RTController::perror() on the current controller object. The controller object
for any instance, port or capsule, can be retrieved by calling the RTActor::context()
operation on the instance.

Example

The initialization phase of an application might include a transition with code like
that shown below where a capsule instance must establish contact with a peer before
beginning a more involved exchange. The relevant portions include testing the return
value from the send primitive and choosing the appropriate reaction by examining
the reason for failure.
Exception Service 117

The following is an example of how to obtain an error and how to recover with a send
on a unconnected port:

if(! peer.Hello().send())

{

switch(context()->getError())

{

case RTController::noConnect:

timer.informIn(RTTimespec(1, 0)); // try again later

break;

default:

log.show("Unexpected error sending to peer: ");

log.show(context()->strerror());

log.cr();

break;

}

}

Error Enumeration

The error values are defined with an enum, Error, which is defined in the
RTController class as follows:

enum Error

{

ok,

// code triggered by

// ==== ============

alreadyDeferred, // CommDefer

badActor, // FrameDeport FrameDestroy FrameImport

badClass, // FrameImport FrameIncarnate

badId, // TimerCancel

badIndex, // FrameIncarnate and Frame Destroy

badRef, // FrameImport FrameIncarnate

badSignal, // CommInvoke CommReply CommSend

badValue, // LayerResize
118 Chapter 6 - C++ Services Library

deferInvoke, // CommDefer CommInvoke

dereg, // LayerDeregister

imported, // FrameDestroy FrameIncarnate

noConnect, // CommInvoke CommRelpy TimerInform

noMem, // all

noReply, // CommInvoke

notImported, // FrameDeport FrameImport

notOptional, // FrameDestroy

prio, // CommReply CommSend TimerInform

recursiveInvoke, // CommInvoke

refFull, // FrameImport FrameIncarnate

reg, // LayerRegister

replRef, // FrameImport

xRtsInvoke, // CommInvoke

};

alreadyDeferred

A message can only be deferred once within the chain of transitions it triggers.
Subsequent deferrals will fail and will set the error code to this value.

badActor

An invalid RTActorId was used with the frame service import, deport or destroy
primitives. The Services Library currently only recognizes nil pointers as invalid.

badClass

The frame service incarnate and import primitives validate the request to ensure that
references contain only compatible classes. In the case of import, the operation must
not introduce a cycle in the dynamic structure of the system and the imported capsule
must have sufficient unbound replications of the necessary interface ports. This error
results when any of these conditions are not met.
RTController Error Codes 119

badId

The cancelTimer primitive of the timing service requires a valid timer identifier
returned by one of the informAt, informEvery, or informIn primitives. These
identifiers are invalidated by the cancelTimer primitive and, except for the case of
informEvery, during the delivery of the time-out message. This error is recorded if
cancelTimer is applied to an expired or cancelled timer identifier.

badIndex

The frame service incarnate and import primitives accept an optional index argument
that specifies where, within the reference, the incarnated or imported capsule instance
should go. If a capsule instance already occupies the specified index, this error is
signalled.

badRef

This signals an inconsistency in the generated code in the capsule class that owns the
reference into which a component is being incarnated or imported. If you encounter
this error, contact Rational Rose RealTime support.

badSignal

The signal is not valid for the protocol.

badValue

The specified replication factor is invalid. It must be greater than zero.

deferInvoke

Invoked messages may not be deferred. Attempting to use the defer primitive on a
message in behavior that was invoked leads to this error.

dereg

Attempting to deregister an unwired port that is not currently registered results in
this error.

imported

Only optional components may be dynamically incarnated or destroyed. Applying
the incarnate or destroy primitives to an imported reference triggers this error.
120 Chapter 6 - C++ Services Library

noConnect

Successful use of the send, invoke, and reply primitives requires an established
binding involving the port instance referenced in the primitive. This error results
when that binding does not exist. Remember that send and invoke, applied to a
replicated port, are equivalent to the use of the same primitive on each instance within
the reference. If any port is unbound, this error will result.

noMem

RTController instances each maintain a local list of unused RTMessage objects. When
this list is exhausted, and a request for more messages from the associated
RTResourceMgr object is not satisfied, the result is this error. This usually indicates
that available free memory on the target is exhausted. RTMessage objects are required
in many Services Library primitives.

noReply

When a message is invoked, a reply is expected. If the receiver does not produce a
reply, this error is recorded. As with noConnect, this error can occur if any incarnation
fails to reply.

notImported

Only plug-in capsules may be the targets of the import and deport frame service
primitives. Attempts to import into, or deport from, other types of references are
disallowed and result in this error.

notOptional

Only optional capsules may be destroyed by the frame service.

prio

Each of the send, informAt, informIn, and informEvery primitives accept an
argument that is interpreted as a message priority. Applications are restricted to the
use of the five priorities: Panic, High, General, Low, and Background. Other values
are disallowed and trigger this error.

recursiveInvoke

In Rose RealTime, behavior semantics are run-to-completion. While a capsule instance
is reacting to one event, it is unavailable for handling other events. Normally, this
does not present any problems. In the case of synchronous interactions, through the
RTController Error Codes 121

use of the invoke primitive, a chain of invocations might lead back to a capsule which
is an earlier part of that chain. That capsule is not in a well-defined (application) state
and thus cannot have specified an appropriate reaction to this event. The runtime
system detects this situation, records this error, and causes the offending invoke call to
fail.

refFull

The incarnate and import frame service primitives require a reference that has room
for the new link to be created. This error results when the target reference is already
full.

reg

A name must be given in the application of the register primitive of unwired ports. A
nil pointer is illegal, and is the source of this error.

replRef

One variant of the frame service import primitive accepts a capsule reference. If the
replication factor of that reference is not one (1), the usage is ambiguous and
disallowed. This error is used to signal this condition.

xRtsInvoke

The current implementation of the Services Library does not support the use of the
invoke primitive with bindings that span physical thread boundaries. This error is the
result of an attempt to use invoke in such a context.

External Port Service

The External Port service example provides an API that lets non-Rational Rose
RealTime threads call a function to raise an event on a port of a Capsule in a Rational
Rose RealTime C++ application.

For additional information, see Port Services on page 299, and the C++ Examples
chapter in the book Model Examples, Rational Rose RealTime.
122 Chapter 6 - C++ Services Library

7Running Models on
Target Boards
Contents

This chapter is organized as follows:

■ Step 1: Verify Tool Chain Functionality on page 123
■ Step 2: Kernel Configuration on page 124
■ Step 3: Verify main.cpp on page 125
■ Step 4: Try Manual Loading on page 125
■ Step 5: Running with Observability on page 126

Overview

This chapter describes what you need to know to successfully compile, build, and run
models with the C++ Services Library on target boards. Because of the different
brands of embedded operating systems, and varying configurations found on each, it
is critical that you understand your target operating system and what services the
C++ Services Library will expect of the target operating system before you try to run a
model on your target RTOS.

The C++ Services Library ships with supported configurations for a set of target
processors, operating systems, and compilers. See the Installation Guide, Rational
Rose RealTime for a listing of the supported targets. You may however have to
configure and customize the shipped libraries to work with your specific
configuration.

Before trying to compile and download a complex model from Rational Rose
RealTime, run through the following steps to validate that your environment,
operating system, kernel, and C++ Services Library is setup correctly.

Step 1: Verify Tool Chain Functionality

A functioning development environment must be in place prior to building and
running models with Rose RealTime. You should be able to compile, load, and execute
non Rose RealTime programs from the command line. This includes the correct
installation of tools such as compilers, linkers, assemblers, debuggers included with
123

your RTOS installation. In addition, it is important to ensure that all environment
variables are defined to provide access to the header files and library files shipped
with your compiler.

Often you will need to setup environment variables that point to the root of the RTOS
tools installation directory and also to the include and library directories.

Rational Rose RealTime expects all tools to be available from the command line.

How to Test

An easy way to test that your tool chain is setup properly is to create, build, and run a
simple "Hello World" program which prints something to the console. This program
should not use (be linked with) the C++ Services Library.

Write, compile, link, download, and run the "Hello World" program on the target. If it
executes successfully then your tool chain is setup properly. Your RTOS usually comes
with a set of example programs that you can also use to validate your environment.

Step 2: Kernel Configuration

The standard configuration of the Services Library anticipates that the target
operating system will support a set of services, for example: mutual exclusion
mechanisms, multi-thread support, timing, standard input/output, memory
management, and TCP/IP. In general, most commercial real-time operating systems
(RTOS) have these services.

Ensure that the RTOS has the following minimum services built into the kernel:

■ A service which provides infinite and timed blocking.

■ A function that returns the current time.

■ Task/thread creation with a specified stack size and priority.

■ Standard input/output.

■ For observability, TCP/IP support is required.

■ Some support for memory management is required.

■ Main function, some RTOS have their own defined. If so then the main function in
the Services Library must be redefined. See the next step for more information.

If your RTOS kernel does not support these services then read your RTOS
documentation on how to rebuild your kernel to include them.
124 Chapter 7 - Running Models on Target Boards

Step 3: Verify main.cpp

In order for the execution of the model to begin, code must be provided to call
RTMain::entryPoint(int argc, const char * const * argv) passing in
arguments to the program. This code is placed in the file
$RTS_HOME/src/target/<target name>/MAIN/main.cpp.

On many platforms this is the code for the main function, which simply passes argc
and argv directly. However, on other platforms, these parameters must be
constructed. For example, with VxWorks, the arguments to the program are placed on
the stack, thus an array of strings must be explicitly created before calling
RTMain::entryPoint. Look at the implementation added to the
$RTS_HOME/src/target/TORNADO1/MAIN/main.cpp file.

A C++ Services Library model assumes that it is the root task in the system. The
model will define the root task, initialize the C++ run-time, the system timer and
other things. For some targets you may have to modify this behavior in main.cpp.

If your platform does not provide a mechanism for passing arguments to an
executable, the arguments for RTMain::entryPoint can be defined from within the
toolset in the DefaultArguments (Component, C++ Executable) property.

Step 4: Try Manual Loading

At this point you should be able to build a simple “Hello World” model in Rose
RealTime. Build it for your target board. Then load, and run it manually.

Note: With some target operating systems when a Rose RealTime model is built you
still aren’t finished. In some cases, as with pSOS+, the Rose RealTime model is built as
a library and you have to compile and link the board support package with the Rose
RealTime model library to create an executable. The simplest way to do all of this is to
see your target board documentation, sample makefiles and programs.

To compile for a specific platform, ensure that a C++ Executable component is created
in Rose RealTime with the correct TargetConfiguration set to the library for your
platform. This will tell the code generator which build scripts and libraries to use.

Once the simple model is built, download to the target board and run it. See your
target documentation for steps required to download and run an executable.

On some target boards the root process or the main function is spawned
automatically, but on others, for example with Tornado, you have to specify the entry
point function. Look in main.cpp for your target to see what function to call to start
the model. For example, on Tornado it is rtsMain.
Step 3: Verify main.cpp 125

When the executable is run you will see the C++ Services Library banner and the
debugger prompt:

Rational Rose RealTime C++ Target Run Time System

Release 6.40.C.00 (+c)

Copyright (c) 1993-2001 Rational Software

rosert: observability listening not enabled

RTS debug: ->

Type ‘quit’ to let your model run.

At this point you have successfully verified that the environment is setup properly
and that your RTOS is configured correctly.

Step 5: Running with Observability

Next you can try running the model with observability and watch the execution of the
model from within the toolset.

Try to connect the toolset to the running model. First, download the model and run it
with the following command line parameter:

-obslisten=<portnumber>

For example:

-obslisten=12345

If your RTOS does not support command line arguments, you must add this
argument to the DefaultArguments (Component, C++ Executable) property on the
component you create to build this model.

When the model is started with -obslisten it won’t start actually running the
model until you have connected to the model via the toolset and pressed the start
button. You should see the following banner after running the model executable with
the -obslisten command line parameter:

Rational Rose RealTime C++ Target Run Time System

Release 6.40.C.00 (+c)

Copyright (c) 1993-2001 Rational Software

rosert: observability listening at TCP port 12345

**

* Please note: STDIN is turned off.
126 Chapter 7 - Running Models on Target Boards

* To use the command line, telnet to the above mentioned port.

* The _output_ of any command will be displayed in _this_

* window.

After the telnet client has connected to the target, you must press ENTER a few times
to give the target a chance to recognize that this is a telnet connection rather than a
toolset connection.

Next, within Rational Rose RealTime create a processor and component instance from
the component that you used to build your model. In the component instance
specification, change the Target Observability Port to the value you specified from
the command line <portnumber>. Click OK, right-click on the component instance,
and select Attach Target. The RTS Browser will appear. Press the Start button, and
you can use the observability tools to watch the execution of your model.
Step 5: Running with Observability 127

128 Chapter 7 - Running Models on Target Boards

8Command Line Model
Debugger
Contents

This chapter is organized as follows:

■ Starting the Run Time System Debugger on page 129
■ Run Time System Debugger Command Summary on page 131
■ Thread Commands on page 132
■ Informational Commands on page 133
■ Tracing Commands on page 137
■ Control Commands on page 139

Overview

This section describes the Run Time System debugger commands. The Run Time
System debugger provides a mechanism to allow UML for Real-Time models
executing on the Run Time System to be debugged at the UML for Real-Time concept
level. The Run Time System debugger does not provide source-level debugging.
Source code debugging requires an external source level debugger for C++, such as
gdb. Some versions of the Run Time System libraries are supplied with the command
line debugger disabled for optimum efficiency. You can recompile the Run Time
System source code to configure the Run Time System without the debugger. This
saves some space in the executable model. For further information, see Configuring
and Customizing the Services Library on page 167. The debugger must be configured in
order for Observability to be enabled.

Starting the Run Time System Debugger

URTS_DEBUG Parameter

You can use the URTS_DEBUG parameter to initialize the Run Time System debugger
with a set of commands to run at start-up. This is used most commonly to tell the
debugger to quit, causing the model to run without the Run Time System interaction.
The URTS_DEBUG parameter can be passed on the command line to the executable.
Add the -URTS_DEBUG= parameter on the command line. For example, to run the
129

executable without the debugger interaction, set the debug command to “quit” before
starting the executable as follows: MyTopLevel_Capsule -URTS_DEBUG=quit.
You can also set URTS_DEBUG as an environment variable. This variable is used by
default whenever no -URTS_DEBUG parameter is passed on the command line. The
URTS_DEBUG variable should be set to a command sequence to be performed by the
debugger on start-up. Multiple commands should be separated by semicolons (;).

Differences Between Single-Threaded and Multi-Threaded Run Time
System Debugger

In single-threaded mode - that is, when using a Run Time System which has been
configured to support only a single thread - the debugger must share the same thread
of control as the user's capsules. This has two fundamental implications. Input to the
debugger is accepted only when the system is in a stopped state, and blocking calls in
user transitions may prevent the debugger from operating correctly. The system can
be considered to be in a stopped state when one of the following occurs:

■ The top capsule is about to be instantiated.

■ A trace point is encountered.

■ The debugger has accepted a command from the user to allow N messages, and N
messages have been dispatched.

In multi-threaded mode, the debugger has its own thread of control. This may lead to
the case where any model output is interleaved with the debugger output. In general,
the thread related to timing should be detached when using the debugger; other
threads can be attached or detached as desired.

Application-Specific Command-Line Arguments

You can supply additional command-line arguments for use by your model, as you
would for any other application. The arguments are passed on the command line after
the name of the executable, for example:

myTopCapsule -URTS_DEBUG=quit foo 99

Alternatively, they can be specified in the Parameters text box on the component
instance specification dialog.

The first item on the command line is the name of the executable. Several arguments
can be supplied for the Services Library (-obslisten), while another argument can
be passed to the debugger (-URTS_DEBUG). All arguments are made accessible to the
application.
130 Chapter 8 - Command Line Model Debugger

Accessing

The following static functions are provided on the class RTMain to allow the user
model to examine the argument list:

int RTMain::argCount()

const char * const * RTMain::argStrings()

Use argCount() to return the number of arguments passed on the command line.
RTMain::argCount() is equivalent to argc in a traditional C/C++ program.

Use argStrings() to return an array of pointers to the actual arguments. Each
argument is stored in a char *. RTMain::argStrings() is equivalent to argv in a
traditional C/C++ program.

Providing Arguments on Targets That Do Not Support
Command-Line Arguments

Some targets do not provide the ability to start up a program with command-line
arguments. Rose RealTime provides an interface within the toolset that allows you to
specify startup arguments that are made available to the program at run-time. You can
specify arguments via the component property DefaultArguments (Component, C++
Executable).

Run Time System Debugger Command Summary

■ Thread Commands

■ Informational Commands

■ Tracing Commands

■ Control Commands

Help

help: Prints help information.

taskId, capsuleId, portId

Physical threads in the application are each identified by a taskId. Listing the
threads in the application using the tasks command shows the Id of each task. Use
this Id when referring to a particular thread for commands such as attach, detach,
and printstats.
Run Time System Debugger Command Summary 131

Each capsule instance has a unique capsuleId. The capsuleId indicates the
capsule's position in the containment hierarchy. The top-level capsule instance always
has an Id of 1. The instances contained in it are called 1/1, 1/2 and so on. Replicated
references, however, are shown by a single Id. They can be identified individually by
suffixing the Id number with n, where n is the particular instance number (for
example, 1/5.1). Note that the default replication factor is always 1; for example,
1/5 is exactly the same as 1.1/5.1. The capsuleId is used in conjunction with the
info and system commands. The system command shows the capsuleId
corresponding to each capsule.

Each port is identified by its portId. These portIds are relative to the capsule
where they are defined and unique only within this capsule class.

The portIds for a capsule class can be listed using the info command.

Running a Model

When running a model using the command-line debugger, you will see the following
setup:

Rational Rose RealTime C++ Target Run Time System

Release 6.40.C.00 (+c)

Copyright (c) 1993-2001 Rational Software

rosert: observability listening not enabled

RTS debug: ->

Thread Commands

tasks: Prints the list of tasks (threads).

detach [<taskId>]: Do not monitor a thread specified by taskId. Allows the thread
to run freely. If taskId is not specified, it detaches all tasks.

attach <taskId>: Monitor a thread specified by taskId. TaskIds of the different
physical threads in the model can be determined using the tasks command.

The example used in the following description has been configured to use threads.
The output is slightly different for applications compiled in a non-threaded world.

tasks

Lists all threads in the model. Each thread is identified with a taskId. The main
thread always appears in the list of threads. Any additional user-defined physical
threads also appear in the list.

RTS debug: -> tasks
132 Chapter 8 - Command Line Model Debugger

0: stopped main

1: stopped Thread1

2: stopped Thread2

3: detached time

RTS debug: ->

attach <taskId>

Allows the debugger to interact with the specified task (thread). TaskId must be one
of the taskIds listed by the tasks command. When a thread is attached, messages
within that thread are only processed when the go command is given.

RTS debug: ->attach 1

Attached Task 1

RTS debug: ->

detach <taskId>

Allows the thread (taskId) to run freely. The debugger does not control the specified
thread any longer. The thread processes all outstanding messages and then waits for
new messages.

RTS debug: ->detach 1

Task 1 detached

RTS debug: ->

Informational Commands

saps: Shows all registered SPPs and the corresponding SAPs.

system [<capsule> [depth>]]: Lists all instantiated capsules in the system, starting
with the specified capsule, to a specific depth.

info <capsuleId>: Shows information about the capsule instance specified by the
capsuleId.

printstats <taskId>: Prints the run-time statistics for thread taskId.
Run Time System Debugger Command Summary 133

saps

Lists all registered unwired ports (SAPs and SPPs).

RTS debug: ->saps

Service: ’:’

Name (SAPs, SPPs)

prot2 (1,1)

RTS debug: ->

system [<capsuleId> [<depth>]]

The system command lists all the active capsules in the system, starting with
<capsuleId> (default: 1 = the top capsule) and <depth> (default: 0 = all) levels
down.

Both the parameters <capsuleId> and <depth> are optional; however, if you give
the <depth> parameter, you must give the <capsuleId> parameter as well.

Each capsule is displayed in the following form:

refName : className (type = fixed) capsuleId [more]

Containment is indicated by indentation and one leading dot for each containment
level. For example, in the following output, the top level capsule is listed first,
followed by all the capsule instances in its decomposition:

RTS debug: ->system

Main_OnTop : Main (fixed) 1

. gen1 : Generator (fixed) 1/1

. gen2 : Generator (fixed) 1/2

. echo : Echo (fixed) 1/3

. . logger : LogBuffer (fixed) 1/3/1

. . . servus : GreetServer (fixed) 1/3/1/1

. . logger : LogBuffer (fixed) 1/3/1.2

. . . servus : GreetServer (fixed) 1/3/1.2/1

RTS Debug: ->
134 Chapter 8 - Command Line Model Debugger

In the following example, we want to start with a different capsule:

RTS debug: ->system 1/3

echo : Echo (fixed) 1/3

. logger : LogBuffer (fixed) 1/3/1

. . servus : GreetServer (fixed) 1/3/1/1

. logger : LogBuffer (fixed) 1/3/1.2

. . servus : GreetServer (fixed) 1/3/1.2/1

RTS Debug: ->

And in this example, we start with a different capsule, and also limit the depth to 1
level:

RTS debug: ->system 1/3 1

echo : Echo (fixed) 1/3 [2 more]

RTS Debug: ->

In the last example, we can see the [2 more] message after the capsule. This means that
the capsule in question has 2 contained capsules that were not displayed since the
depth parameter we supplied limited the output. This [N more] message is not
recursive, so it only indicates the number of hidden capsules in the next immediate
level.

info

The info command returns information about a particular capsule instance. The info
command displays the name of the capsule class for the identified instantiation, the
role name (from the container), the current state of the capsule, the memory address of
the capsule, whether any probes are attached to the capsule, and a list of ports,
components and attributes. As with capsules, ports listed are identified by an Id
number.

RTS debug: ->info 1/3/1

ClassName: LogBuffer

ReferenceName: logger

CurrentState: wait4activity

Address: (LogBuffer_InstanceData *)0x42beef

No Capsule Probe attached.

Relay ports:

0: commandPort[10]
Run Time System Debugger Command Summary 135

End ports:

0: commandPort[10] (wired)

1: echoAccess (SPP, prot2)

Components:

1: servus

Attributes:

0: attribute1 == 0

RTS debug: ->

printstats <taskId>

Prints information about the number of queued messages and a breakdown of these
messages by priority. The alias stats is mapped to this command. The output about
a timing task also informs about the number of unexpired timers as well as the time to
the next timeout.

RTS debug: ->printstats 0

main

No error.

RTS debug: ->

Messages queued incoming messages

Synchronous 0 0

System 0 0

Panic 0 0

High 0 0

General 1 1

Low 0 0

Background0 0

Total 1
136 Chapter 8 - Command Line Model Debugger

In this command, the output consists of the name of the thread, the last error
encountered, and the number of outstanding messages available to be delivered for
each of the distinct priorities, and the number of incoming messages at each priority.

Additional statistics can be gathered if the macro RTS_COUNT is set to 1 in the
RTConfig.h and the Target RTS recompiled.

The additional statistics are:

■ number of incarnated capsules
■ number of destroyed capsules
■ number of created ports
■ number of destroyed ports
■ number of allocated messages
■ peak message allocation
■ number of delivered messages and their breakdown by priority
■ number of timers requested (number of calls to informIn)
■ number of expired timers (number of timeouts)
■ number of cancelled timers
■ number of unexpired timers

Tracing Commands

log <category> <detail-level>: Logs UML for Real-Time primitives. Selects the
service to log (communication, layer, timer, system, all) and the detail (none,
errors, all).

log <category> <detail-level>

The log command turns ON the logging of system services.

The categories are communication, exception, frame, layer, timer, system,
and all. The detail levels are none, errors, and all.

Each message log shows the direction of the message, the receiving capsule (the `to'
capsule), the sending capsule (the `from' capsule), and the data. The form of each
message log is as follows:

RTS debug: 0>

message

 to capsule(Class)<state>.portName[index]:signalName

 from capsule(Class)<state>.portName[index]

 data dataValue An example of message trace is shown below:

An example of message trace is shown below:
Run Time System Debugger Command Summary 137

RTS debug: ->log comm all

RTS debug: -> go 1

 go 1

message

to client(Client)<Dozing>.cliServComm[0]:hello

from server(Server)<S1>.cliServComm[0]

data (void *)0

RTS debug: ->log comm none

RTS debug: ->go 1

go 1

RTS debug: 1>

Events that will be logged are:

■ Communications: Defer, Recall, RecallAll, Send, Invoke, reply.

■ Layer: Register SAP, Deregister SAP, Register SPP, Deregister SPP, resize.

■ Timer: Cancel, InformIn.

Note that the detail levels are as follows:

■ none - suppresses all log messages

■ errors - logs only events that raise an error code

■ all - logs all events as described above.
138 Chapter 8 - Command Line Model Debugger

Control Commands

exit: Terminates the Run Time System process

go [<n>]: Delivers n messages

step [<n>]: Delivers n messages.

quit: Quits debug mode. Allows all tasks to run freely.

continue: Allows you to start running the target and make TO connections at a later
time.

exit

Exits the process. If you have logs turned ON, you may notice a sequence of
cancellation/stop messages before the process is exited.

go [<n>]

Delivers n messages in the model. If <n> is omitted, the default is 10.

step [<n>]

Delivers <n> messages in the model. If <n> is omitted, the default is 1.

quit

Detaches the debugger and lets the model run freely. The command line debugger is
turned off and the program is run to completion (all messages are delivered).

continue

Allows you to start running the target and make TO connections at a later time. From
the command line, continue is similar to clicking Run in the Toolset; it starts the
execution while retaining control (unlike quit which gives up control). For example:

MyTopCapsule -obslisten=1234 -URTS_DEBUG=continue
Run Time System Debugger Command Summary 139

140 Chapter 8 - Command Line Model Debugger

9Inside the C++ Services
Library
Contents

This chapter is organized as follows:

■ Organization of the Services Library Source on page 141
■ Configuration Preprocessor Definitions on page 144
■ Integrating External IPC Into a Model on page 151
■ Optimizing Designs on page 160

Organization of the Services Library Source

This chapter provides extended details regarding the C++ Services Library. For those
who want to configure the C++ Services Library for speed or size, see the Configuring
and Customizing the Services Library on page 167.

Much of the configurability of the C++ Services Library is done at the source code
level. Understanding the organization of the source code and build files will help you
navigate the directory structures.

The Services Library is organized to be highly configurable, not only for customers
but also to provide an easy way to support a large number of different platforms and
configurations.

$RTS_HOME

The C++ Services Library source files are by default installed in the
$ROSERT_HOME/C++/TargetRTS directory. $RTS_HOME will be used often in this
document to refer to this directory.

For further information, see Directory Structure on page 143.

Configuration Naming Convention

When you start browsing the directories and files that make up the Services Library,
you will notice directory names and file names that may seem cryptic. These names
are actually based on an easy to use naming scheme to uniquely identify the many
library configurations.
141

Platform Name (or Configuration)

A specific Services Library configuration is identified by its platform name. The
platform name is made up of two parts:

■ the target base name
■ the libset name.

<platform name> ::= <target base name>.<libset name>

For example:

AIX4T.ppc-gnu-2.8.1

SUN5T.sparc-gnu-2.7.1

NT40T.x86-VisualC++-6.0

Target Base Name

The target base name identifies the operating system, and its configuration and
version. For this reason, the target base name is made up of three parts that describe
the operating system (os):

■ the os name
■ the os version
■ the os configuration (single (S), multi-threaded (T))

<target base name> ::= <os name><os version><os configuration>

For example:

AIX4T -> AIX 4.X Multi-threaded

SUN5T -> Solaris 5.X Multi-threaded

NT40T -> WindowsNT 4.x Multi-threaded

Libset Name

The libset name identifies a processor architecture and compiler. The libset name is
made up of three parts:

■ the processor

■ the compiler name

■ the compiler version

<libset name> ::= <processor>-<compiler>-<compiler version>

For example:

ppc-gnu-2.8.1 ->

PowerPC processor using Free Software Foundation gnu version 2.8.1
142 Chapter 9 - Inside the C++ Services Library

sparc-gnu-2.7.1 ->

Sparc processor using Free Software Foundation gnu version 2.7.1

x86-VisualC++-6.0 ->

X86 processor using Microsoft Visual C++ version 6.0

Summary

You would therefore read the platform name introduced in the first section as:

AIX4T.ppc-gnu-2.8.1 ->

For the AIX 4.X Multi-threaded RTOS running on a PowerPC processor
using Free Software Foundation gnu version 2.8.1

This naming scheme is used throughout the C++ Services Library.

Directory Structure

The source structure contains directories that mirror the convention described in the
Library Configuration Naming Convention on page 141. For example, the libset
directory contains libset specific files (processor, compiler), the same goes for the
target directory (operating system).

The best way to understand the directory structure is to browse it yourself.

codegen

This directory contains scripts for compiling models on different platforms.

include

This directory contains interface definitions for the Services Library classes and
structures. These headers are used for both model and Services Library compilation.

config

This directory contains platform specific (operating system and compiler)
configurations. Each platform has its own directory that contains the platform specific
scripts and configuration files. For further information, see Platform Name (or
Configuration) on page 142.
Organization of the Services Library Source 143

target

This directory contains target (operating system) configurations. Each target has its
own directory that contain the target specific scripts and configuration files. For
further information, see Target Base Name on page 142.

lib

This directory contains the compiled libraries.

libset

This directory contains processor and compiler specific configurations. Each libset has
its own directory that contains the libset specific scripts and configuration files. For
further information, see Libset Name on page 142.

src

This directory contains the generic (code which is platform independent) source files
for the library. Each class has a directory that contains the class implementation.
Within the src directory is a target directory which contains target specific (os)
implementation files. Each target has its own directory that contains target specific
source files. For further information, see Target Base Name on page 142.

tools

This directory contains scripts used for building models and building the libraries.

Configuration Preprocessor Definitions

Much of the configurability of the Services Library is done at the source code level
within a source file using C preprocessor definitions. The configuration is set in two
C++ header files:

■ $RTS_HOME/target/<target>/RTTarget.h for specifying operating system
specific definitions.

■ $RTS_HOME/libset/<libset>/RTLibSet.h for specifying compiler specific
definitions. This is not required for many compilers.
144 Chapter 9 - Inside the C++ Services Library

These files override macros whose defaults appear in
$RTS_HOME/include/RTConfig.h. The macros and their default values are listed in
the following pages.

Note: In general, defining a symbol with the value 1 enables the feature the symbol
represents, and defining it with the value 0 disables the feature.

USE_THREADS

Default value: none, must be defined in the platform headers (usually RTTarget.h).

Possible value: 0 or 1.

Description: Determines whether the single-threaded or multi-threaded version of the
Services Library is used. If USE_THREADS is 0, the Services Library is single-threaded.
If USE_THREADS is 1, the Services Library is multi-threaded.

RTS_COUNT

Default value: 0.

Possible value: 0 or 1.

Description: If this flag is 1, the Services Library will keep track of the number of
messages sent, the number of capsules incarnated, and other statistics. Naturally,
keeping track of statistics adds overhead.

DEFER_IN_ACTOR

Default value: 0.

Possible value: 0 or 1.

Description: If this flag is 1, then the defer queues will be kept in each capsule. If not
then all deferred messages will be kept in one queue per thread. This is a size/speed
trade-off. Separate queues for each capsule use more memory but result in better
performance.

INTEGER_POSTFIX

Default value: 1.

Possible value: 0 or 1.

Description: Set whether or not the compiler understands the post increment and
decrement operators on classes.
Configuration Preprocessor Definitions 145

That is:

Class x;

x++;

x--;

LOG_MESSAGE

Default value: 1.

Possible value: 0 or 1.

Description: Set whether or not RTActor::logMsg() is called before the delivery
of each message. This operation is used by the debugger.

OBJECT_DECODE

Default value: 1.

Possible value: 0 or 1.

Description: Enable the conversion of strings to objects, needed for the external IPC.

OBJECT_ENCODE

Default value: 1.

Possible value: 0 or 1.

Description: Enable the conversion of objects to strings, needed for the IPC, and log
services.

OTRTSDEBUG

Default value: DEBUG_VERBOSE.

■ Possible value: DEBUG_VERBOSE.

This flag is used to enable the Services Library debugger. It will make it possible to
log all important internal events such as the delivery of messages, the creation and
destruction of capsules, and so on. This is necessary for the target observability
feature.

■ Possible value: DEBUG_TERSE.

This will reduce the size of the resulting executable at the expense of limiting the
amount of debug information.
146 Chapter 9 - Inside the C++ Services Library

■ Possible value: DEBUG_NONE.

This will further reduce the executable size, while increasing performance.
However, the Services Library debugger will not be available.

RTREAL_INCLUDED

Default value: 1.

Possible value: 0 or 1.

Description: If 1, this flag allows the use of the RTReal class.

PURIFY

Default value: 0.

Possible value: 0 or 1.

Description: If 1, this flag indicates that the Purify tool is being used. This tells the
Services Library to disable all object caching which will degrade performance but
allow Purify to monitor RTMessage objects.

RTS_INLINES

Default value: 1.

Possible value: 0 or 1.

Description: Controls whether Services Library header files define any inline
functions.

RTS_COMPATIBLE

Default value: 520.

Possible value: 520 or 600.

Description: Used to indicate whether the ObjecTime Developer 5.2 features are to be
included in the Services Library.

HAVE_INET

Default value: 1.

Possible value: 0 or 1.

Description: Used to indicate whether the TCP/IP stack is available. Required for
Target Observability.
Configuration Preprocessor Definitions 147

INLINE_CHAINS

Default value: <blank>.

Possible values: inline or <blank>.

Description: This macro is used to indicate whether transition code chains are to be
inserted directly into the code or invoked as functions. The basic trade-off is
performance against memory. Preliminary measurements indicate that with this
feature disabled, the size of a capsule class definition is reduced by 0.5 Kilobytes on
the average.

Note: This cost is incurred only once for each capsule class.

INLINE_METHODS

Default value: inline.

Possible values: inline or <blank>.

Description: This causes transition functions to be inlined for better performance at
the expense of potentially larger executable memory size. Note that not all compilers
will handle this option correctly. Failures will generally be in the form of link errors.

RTFRAME_CHECKING

Default value: RTFRAME_CHECK_STRICT.

■ Possible value: RTFRAME_CHECK_NONE.

This has the same behavior as pre-ObjecTime Developer 5.2 releases.

■ Possible value: RTFRAME_CHECK_LOOSE.

This ensures that the reference to the capsule being operated on is in the same
thread as the Frame SAP.

■ Possible value: RTFRAME_CHECK_STRICT.

This ensures that the reference to the capsule being operated on is in the same
capsule as the Frame SAP.

Description: The frame service is intended to provide operations on components of
the capsule which has the frame SAP. The checking can be relaxed or removed.

Notes:

■ Needs to be at least LOOSE if free list is disabled.

■ ROOM semantics enforced.
148 Chapter 9 - Inside the C++ Services Library

Example:

// Possible values for RTFRAME_CHECKING:

// The frame service is intended to provide operations on components

// of the actor which has the frame SAP. The checking can be relaxed

// or removed.

#define RTFRAME_CHECK_NONE 0

// no checking (pre-5.2 compatible)

define RTFRAME_CHECK_LOOSE 2

// references must be in the same thread

#define RTFRAME_CHECK_STRICT 4

// reference must be in the same actor

#ifndef RTFRAME_CHECKING

#define RTFRAME_CHECKING RTFRAME_CHECK_STRICT

#endif

RTFRAME_THREAD_SAFE

Default value: 1.

Possible value: 0 or 1.

Description: Setting this macro to 1 guarantees that the frame service is thread safe.
This is an option because some applications may use the frame service in ways that
don't require this level of safety.

Notes:

■ If disabled then bindings may be inconsistent if there are concurrent frame service
calls.

■ ROOM semantics enforced. Potential for increased latency time before a higher
priority frame service call can start.

Example:

// Setting this macro to 1 guarantees that the frame service is thread
// safe. This is an option because some applications may use the frame
// service in ways that don't require this level of safety.

#ifdef RTFRAME_THREAD_SAFE

#define RTFRAME_THREAD_SAFE 1

#endif
Configuration Preprocessor Definitions 149

RTFRAME_USE_FREELIST

Default value: 1.

Possible value: 0 or 1.

Description: This maintains a free list in RTActorRefs for plug-in components. The
free list costs at most two pointers per replication but avoids a linear search in
incarnate and import operations. Pre-ObjecTime Developer 5.2 compatible behavior is
available by making RTFRAME_USE_FREELIST set to 0.

Notes:

■ Also provides mutual exclusion when dealing with Actor references. If disabled
then RTFRAME_CHECKING should be enabled.

■ 2n extra pointers for both optional and imported Actor references. Access time to a
free slot is constant.

Example:

// Maintain a free list in RTActorRefs for optional components?

// The free list costs two pointers per replication but avoids

// a linear search in incarnate and import operations.

// Pre-5.2 compatible behavior is available by making

// RTFRAME_USE_FREELIST zero.

#ifndef RTFRAME_USE_FREELIST

#define RTFRAME_USE_FREELIST 1

#endif

RTMESSAGE_PAYLOAD_SIZE

Default value: 100.

Possible value: 0..N (where N is the size of the largest data object that can be copied to
the payload).

Description: This defines the size of the area in RTMessage where small objects are
copied for better performance.

OBSERVABLE

Default value: 1.

Possible value: 1 or 0.

Description: This controls availability of Target Observability.
150 Chapter 9 - Inside the C++ Services Library

Creating the Minimum Services Library Configuration

Configuring the Services Library with the minimum services allows you to most often
reduce the size and/or increase the speed of the resulting Rose RealTime model using
the library.

To create the minimum configuration, the values described below should be defined
to the values in the Minimum Configuration column. This is not the only minimum
configuration, you are free to configure the Services Library to fit your project needs.

Note: Disabling the LOG_MESSAGE definition will turn off the logging capability of
the debugger.

Integrating External IPC Into a Model

Often applications are required to communicate with other applications. There are
several communication mechanisms that exist for this purpose.

For communication between applications on different hosts, you can use:

■ sockets
■ remote procedure calls
■ named pipes

For communication between applications on the same host, you can use:

■ message queues
■ shared memory
■ pipes
■ streams
■ interrupts

Table 3 Definitions for Minimum Services Library Configuration

Definition Default Minimum Configuration

LOG_MESSAGE 1 0

OBJECT_DECODE 1 0

OTRTSDEBUG DEBUG_VERBOSE DEBUG_NONE

INLINE_CHAINS <blank> inline
Integrating External IPC Into a Model 151

This section describes the different options available for integrating external IPC
mechanisms within a model using the C++ Services Library. In this module you will:

■ Understand the differences between using IPC in single-threaded and
multi-threaded models.

■ Understand the Custom Controller capabilities and how to use the Custom
Controller in a model.

■ Understand the pros and cons of the different options that are available for
integrating an IPC mechanism into a model.

The C++ model examples show how to use what is discussed in this chapter to
integrate IPC with a model. The examples include a callback mechanism, use of
sockets, and implementation of a Interrupt Service Routine. The example models are
meant to be simple, so that you can easily understand them, and at the same time they
provide enough details to allow you to expand them for your own use.

See the Model Examples for detail descriptions of the sockets, callbacks, and ISR C++
models examples.

Build Versus Buy

If you require more than a simple IPC mechanism, then you should consider Rational
Connexis. Connexis works together with Rational Rose RealTime to let you model
and build distributed Rose RealTime applications. Built-in middleware provides an
off-the-shelf communication infrastructure that solves many of the challenges
common to distributed applications including object-to-object connectivity, fault
tolerance, name lookup service, reliability and performance. Capsules continue to
communicate with each other in the same way as with Rose RealTime—by sending
messages to ports. However, the receiving capsule can be in another process, or even
on another processor. For more information on Rational Connexis see the User’s
Guide, Rational Rose RealTime Connexis.

IPC Basics

An application can wait for an IPC event to occur on a specific resource by:

■ Blocking on a system call.

■ Continuously polling a resource.

The blocking method is the preferred approach because it leaves the application in an
idle state until the event occurs. The polling method uses more processor cycles.
152 Chapter 9 - Inside the C++ Services Library

Single-Threaded IPC

In a single-threaded model, the system cannot block while waiting for an external
event. A flag/resource must be polled at some regular interval.

Using Signal Handlers

On a POSIX compliant system that supports registration and detection of Unix-style
signals. Normally interrupt handlers would be separate functions that would notify
the capsule when the interrupt occurred (through a semaphore, for example).

For Windows NT, a console control handler could be installed to intercept signals
(such as <Ctrl>+<C>) from a console. Windows NT events cannot be used in a
single-threaded situation as blocking is required.

Polling a Flag

The flag/resource that is set can be checked in one of two ways within a Rose
RealTime model:

1 The flag status could be checked each time through the main processing loop.

This is done by modifying the mainLoop() function on the RTSoleController
capsule class. This mechanism involves making the following changes to the C++
Services Library source code:

❑ the mainLoop() function must be modified to define the global flag/resource
variable that will be set when an event is detected

❑ to define a port for communicating the arrival of the signal to the Rose
RealTime model

❑ to check the flag/resource each time through the main processing loop.

2 Create a capsule that is on a timing loop that checks the flag at regular intervals.
This is done by using the informEvery() call on the timing service. The interval
at which the flag is checked is easily changed by changing the timer interval.

Multi-Threaded IPC

Using IPC mechanisms in a multi-threaded environment is more flexible than in a
single-threaded environment. Using a dedicated thread to isolate the blocking on a
resource can be a solution to not have the entire application block. With Rose
RealTime, the same solution is available. However, some additional constraints
should be considered.
Integrating External IPC Into a Model 153

Dedicated Blocking Capsule

Calling a blocking function in capsule detail code is equivalent to blocking in user
code of existing applications (that is, the whole thread is blocked).

This means that:

■ All capsules on the thread are also blocked.

■ Outstanding messages on the thread cannot be delivered.

■ Messages from capsules on other threads cannot be processed.

■ Includes internal messages such as the Frame Service destroy signal.

Although this behavior might be sufficient for some applications, there is a
mechanism within Rose RealTime that allows a thread to block on a user resource
without encountering the above issues.

Processing Overhead

The amount of processing overhead incurred by having a dedicated blocking capsule
should be relatively small. This is because the signal handling threads should be idle
for the most part since they are just waiting for events to occur.

Custom Peer Controller

This section describes an enhancement to the Services Library RTPeerController
that facilitates building application-specific inter process communication (IPC)
channels. These channels can be used to communicate between a number of different
entities: interrupt handlers, threads, processes (separate memory space) or even
processors.

The Customer Controller allows functions on capsules to be bound to the control flow
of the Peer Controller so that you don’t have to override the mainloop() function in
the Services Library but simply add mainloop behavior from within a capsule. The
controller is responsible for message processing on a physical thread. Thus, there will
be one controller instance for each physical thread in your model.

Note: The Peer Controller class provides all of the messaging support that a Rose
RealTime thread requires.

If a capsule registers selected operations with the controller, they will be called instead
of the normal wakeup() and waitForEvents() controller operations. This would
allow a capsule to integrate its IPC blocking behavior into the controller.

Note: This is only applicable to the multi-threaded Service Library implementation.
154 Chapter 9 - Inside the C++ Services Library

Enhancement to the RTPeerController Class

The enhancement to the Peer Controller class is called the Custom Peer Controller.
The Custom Peer Controller allows functions on capsules to be bound into the control
flow of the Peer Controller. Controller classes, from which the Peer Controller is
derived, are responsible for message delivery and processing in an executing model.
During execution, there is one instance of an RTController subclass for each
physical thread. When a new thread is spawned, the thread executes the mainloop of
its associated controller. This main loop checks its queues for outstanding messages,
and delivers messages to capsule instances.

The Peer Controller encapsulates all aspects of inter-task communication in a
multi-threaded environment.

■ Wait for events (when there is nothing to deliver, wait until an event occurs.
Usually this would be the arrival of a message from another thread.)

■ Wakeup peer controller (when a message is delivered from a controller on another
thread, the other controller will call this operation to wakeup the receiving
controller.)

■ Handle high priority message source (for example, interrupts).

These functions facilitate building/integrating various IPC mechanisms.

Adding Support For New IPC Mechanisms

Figure 18 Information Flow for the Custom Controller Based IPC Mechanism
Integrating External IPC Into a Model 155

The capabilities of the custom IPC integration approach are represented by numbers
in Figure 18:

1 Ability to treat an IPC message source with a higher priority than capsule
messages, retrieves IPC messages and is called before dispatching messages.

2 IPC messages can be treated with a lower priority than any capsule messages if
they are retrieved inside the waitFunc (such is the case in the Socket example).

3 The Monitoring Capsule's attributes and other associated functions are accessible
when IPC data is processed.

4 Same as above.

5 This represents the ability of the Monitoring Capsule to block while
simultaneously waiting for IPC data and messages.

6 It is possible for the Monitoring Capsule to receive messages from capsules
situated on the same thread.

7 It is possible for the Monitoring Capsule to receive messages from capsules
situated on different threads.

Design Components

Each thread in a Rose RealTime model executes the mainLoop() function of a
RTController subclass. The RTPeerController enables the integration of
application-specific IPC messages and capsule messages. A RTPeerController
subclass was added to the Services Library: the RTCustomController.

An application capsule designated to send/receive information over a specific IPC,
can be incarnated on a thread which executes
RTCustomController::mainLoop(). The new type of controller allows the
override of RTPeerController::wakeup(), and
RTPeerController::waitForEvents(). An IPC Monitoring Capsule could then
register new _wakeupFunc and _waitFunc functions to service internal and
external (IPC) messages at the same time.

The RTCutomController also provides the ability to process IPC messages at a
higher priority than inter-capsule messages.

Most of the structure of the RTCustomController::mainLoop() is identical to
that of the RTPeerController::mainLoop(). If present, the function
_processFunc() is called before dispatching messages and so it is conferred a
higher priority. Special attention should be given to the design of this function
considering that it is frequently called.
156 Chapter 9 - Inside the C++ Services Library

The override mechanism is based on pointers to capsule class operations that take no
arguments and return no value. There are no restrictions on the attributes of these
functions (public, private, ...).

To see the definition of the custom controller, see the header file
$RTS_HOME/include/RTCustomController.h.

The custom controller registerLayer operation allows capsules to bind in to the
mainloop a custom waitForEvents, wakeup, and a high priority processing
function. Each time registerLayer is called (using the macro REGISTER_LAYER
for convenience), the previously registered pointer values are overridden. If any of the
(operation pointers) macro arguments are null values (or the macro is not called at
all), the following defaults apply:

if (waitFunc == (RTActorFunction *)0) then

RTPeerController::waitForEvents() called;

if(wakeupFunc == (RTActorFunction *)0) then

RTPeerController::wakeup() called;

if(processFunc == (RTActorFunction *)0) then

no special processing function called;

For example, in order to register only a high priority IPC processing function named
'processIPC', the macro call to be used is:

REGISTER_LAYER(0, 0, processIPC);

Note: Always ensure to de-register operations when the capsule that had registered
its operations is destroyed. If not, the controller will try to call operations that no
longer exist, this will cause a run-time exception.

To de-register operations, use the following macro call:

REGISTER_LAYER(0, 0, 0);

Concurrency Note

RTCustomController::wakeup() can only be called from other threads, whereas
RTCustomController::waitForEvents() is called only from the Custom Peer
Controller's thread.
Integrating External IPC Into a Model 157

Controller Usage

The main actions a designer needs to take in order to use the RTCustomController
are as follows:

1 Create a physical thread from within the Component Specification dialog box. Set
the Implementation Class in the physical thread specification dialog to
RTCustomController.

2 Create a capsule dedicated to monitoring a custom IPC channel.

3 Incarnate this capsule on a RTCustomController thread.

4 Determine (create) an IPC channel.

Depending on the nature of the IPC and the desired system performance, write
functions to:

■ block the current thread while waiting for IPC data.

■ unblock the thread waiting for IPC data when capsule messages are received.

■ process IPC data (read / write, ...).

Usability Note

These functions are invoked at run-time by RTCustomController::mainloop()
and not via RTMessage::deliver(). Therefore, the variable 'msg' cannot be used.
The RTCustomController::wakeup() function is called from another thread;
therefore, the registered 'wakeupFunc' body should not access capsule attributes and
functions directly.

Register needed functions with the Custom Peer Controller using the
REGISTER_LAYER macro (defaults are provided when any of the above functions is
not registered).

Before the capsule that registered operations with the customer controller is
destroyed, you must free or return any IPC resources allocated by the capsule for any
communication it provided.
158 Chapter 9 - Inside the C++ Services Library

of

ode.

s

d

e
s to
IPC Options Summary

It is very important to prototype a couple of IPC approaches to determine which one
best meets your project requirements. Although the Custom Controller allows the best
integration with the C++ Services Library, any other IPC option can be used.

Table 4 IPC Options

IPC Option Advantage Disadvantage

Polling in capsule using
a timer.

■ Simple.

■ All code in capsule.

■ Can be used for
single-threaded targets.

■ No guarantee of timely processing
IPC events.

■ Wasted processor cycles.

Polling using mainloop
modifications.

■ Can be used for
single-threaded targets.

■ Can handle high-priority
events.

■ Starvation of event detection when
controller is blocked.

■ Design coupled to Service Library c

■ Need to manage code modification
outside of model.

■ Wasted processor cycles.

Dedicated capsule
blocking on a thread.

■ Simple.

■ All code in capsule.

■ All capsules on the thread are also
blocked.

■ Outstanding messages on the threa
cannot be delivered.

■ Messages from capsules on other
threads cannot be processed.

■ Only one capsule can execute on th
thread, it is fairly costly on resource
have a dedicated thread simply for
monitoring.
Integrating External IPC Into a Model 159

d

rite.
For details of the sockets, callbacks, and ISR C++ models examples that use the
Custom Controller, see the Model Examples.

Optimizing Designs

Performance is usually a significant consideration in any real-world design. This
section provides some guidelines for improving the performance of your Services
Library-based models in the following areas:

■ Capsule Instances and Capsule Behavior on page 160
■ General C++ Performance Notes on page 163
■ Additional Design Considerations on page 164
■ Toolchains on page 165

Capsule Instances and Capsule Behavior

Incarnation (Frame::Base::incarnate())

Problem

Instantiating capsules incurs some run-time performance overhead. The processing
time required to instantiate a capsule depends on the number of capsule instances it
recursively contains, the number and replication factor of bindings it contains, and the
number and types of extended state variables it contains.

Recommendation

Importation is a much faster approach. If possible pre-allocate the capsule and import
it into the context where it is used.

Custom Controller. ■ Several capsules can run on
the same thread.

■ No extra context switches
due to monitoring internal
and external messages.

■ Internal and external
messages can be processed.

■ Cannot be used with single-threade
targets.

■ Requires implementation of
internal/external synchronization
mechanism - more source code to w

Table 4 IPC Options (continued)

IPC Option Advantage Disadvantage
160 Chapter 9 - Inside the C++ Services Library

Guards

Problem

Guard conditions can incur significantly more performance overhead than choice
points. A guard condition has an associated function, which is called each time the
trigger event is evaluated. Because many events may be evaluated before the
transitions are executed, placing guard conditions on triggers will cause the guard
functions to be called for every message delivery, regardless of whether the associated
transition is being fired. Event triggers are evaluated until a matching event is found.
At that point, evaluation of events stops. The order in which event triggers on a given
state are evaluated is arbitrary.

Recommendation

Do not use guards unless absolutely necessary.

State Machines

Problem

State machines are traversed from an innermost state to an outermost state when
searching for transition triggers, which match the current event. This means that if a
transition is placed on an “outer” state boundary, and that transition fires frequently
while the capsule is in an “inner” state, many other transition triggers may be
evaluated before the correct one is found.

Recommendation

Place frequently executed transitions on leaf states.

Capsules versus Data

Problem

Capsules and message sending have more overhead (both processing and memory)
than simple data objects. You must decide at what point in your design the use of
simple objects with no state machine to achieve performance becomes more important
than the abstractions provided by capsules.

Recommendation

Capsules with minimal state machines and few ports may be converted to data
classes.
Optimizing Designs 161

Capsule Functions

Problem

Capsule functions can be inlined. Inline functions eliminate the overhead of a function
call, but they may also increase the memory footprint of the executable.

Recommendation

Frequently called capsule functions may be declared as inline to increase speed.

RTDataObjects

Problem

Invoking constructors or assignment operators on RTDataObjects causes new
objects to be allocated.

Recommendation

Using basic C++ data types (such as int) for variables will in most instances be more
efficient (in both time and memory utilization) than RTDataObjects.

Unnecessary Sends

Problem

Broadcasting on replicated ports involves a send on every replication.

Recommendation

If you have a replicated port with only a few known connections, a send on only the
connected instances may be much quicker than a broadcast.

Sending Data by Value in Messages

Problem

When an object is sent by value in a message, the object is deep copied before being
sent. For large objects, this operation involves several new allocations and memory
copies.
162 Chapter 9 - Inside the C++ Services Library

Recommendation

For best performance when sending between capsules within the same model (that is,
not across process boundaries), you should consider sending pointers instead of
objects. This will introduce more complexity into the design and coding (with respect
to memory management), but is more efficient for performance. In particular, if a few
messaging interactions are identified as happening very frequently, these interactions
could be optimized to send pointers rather than objects.

Cross Thread Message Sending

Problem

Message sends across thread boundaries involve more overhead than message sends
within the same thread.

Recommendation

This should be taken into consideration when determining the allocation of capsules
to threads. Lower latency is achieved between two capsules on the same thread, than
is obtained with two capsules on different threads.

Note: When using threads, time-ordering of messages is not preserved. That is, if you
send messages to a capsule within the same thread and a capsule on another thread,
subsequent messages within the same thread may be processed before the context
switch occurs to allow the other thread to begin processing its messages.

General C++ Performance Notes

Problem

File input and output functions (printf, scanf, <<, >>, etc.) are quite expensive
(about 100 x function call overhead)

Recommendation

In performance-critical software these IO functions should only be used in exceptional
circumstances, or as part of optional debugging code (calls that can be avoided). You
may also consider using a low priority logging thread to do the IO when the system is
idle.

Problem

Dynamic creation and destruction of objects (new and delete), particularly of large
composite objects (for example, composite capsules with fixed replicated capsule
roles) is expensive (relative to a function call).
Optimizing Designs 163

Recommendation

Do not dynamically create objects on the critical data path. Pre-allocation and
application level management of objects can provide a substantial performance gain.

Additional Design Considerations

This section has probably just whetted your appetite for other ideas that will help
solve your particular integration problem. As food for thought, an initial checklist of
design areas to consider is provided. Many of these areas may not be critical to your
application but all have been proven to be important in at least one project using Rose
RealTime. Complete discussion of these topics is beyond the scope of this document.

Hardware Differences

In many cases, a key difference between the application running on a
workstation-based Services Library and a RTOS-based Services Library is the
presence of special hardware in the RTOS case. Before just stubbing out non-existent
hardware functionality, it is important to understand its impact on the overall
execution of the model in terms of the range of functionality that can be tested.

For example, real-time platforms often have integrated Non-Volatile-Store (NVS).
While it is easy to stub out this behavior on the workstation (for example, use RAM)
this eliminates a whole range of recovery/restart functionality. A better “stub” would
be to simulate the NVS using the UNIX file system thereby allowing the full model to
be tested on the workstation.

The key point here is to always consider hardware availability when using Rose
RealTime so as to take full advantage of the ease of moving a model from one
platform to another. It is often the case that there are more developers than there is
hardware available for testing.

Availability of External Library on Different Platforms

Sometimes, for whatever technical reasons, an external library cannot be integrated
with the workstation-based Services Library. In this case, the option of integrating
external libraries only with the Services Library should be considered. In many cases,
this allows all the capabilities of the underlying OS to be utilized and this is important
when the goal is to use the library unmodified. In the cases where the library is
available only as a binary (for example, CORBA ORB) this may be the only
alternative.

You can use a hybrid approach to building your model, where a small portion of the
model runs only on the target, and performs the interfacing to the external library,
while the rest of the model executes on the workstation. Proper thought must be put
164 Chapter 9 - Inside the C++ Services Library

into how the external library interface can be encapsulated within the target-based
portion of the model, so that the rest of the model can run independently on the
workstation.

Toolchains

As a project moves through its life-cycle, it is important that any conflicts that may
arise from the integration of external libraries be discovered as soon as possible. It is
recommended that regular builds be done for the workstation, Services Library on the
workstation, and for the Services Library on RTOS so that even if the actual target
board or processor is not available, the compilation and linking step can be exercised.
Optimizing Designs 165

166 Chapter 9 - Inside the C++ Services Library

10Configuring and
Customizing the Services
Library
Contents

This chapter is organized as follows:

■ Configuration and Customization on page 167
■ Building the Services Library on page 175
■ Updating a Component to Use a Different Services Library on page 176

Configuration and Customization

This chapter discusses the different ways that are available for configuring and
customizing the C++ Services Library.

The difference between configuring and customizing is that configuring modifies
pre-defined parameters built-in to the Services Library to increase speed, or reduce
the size of your model. Whereas with customization you are changing the behavior of
the Services Library by adding source files or overriding existing operations.

There are several different ways of changing the functionality of the Services Library:

Configuration options

■ Changing Pre-Processor Macros on page 168

This is useful for optimizing the library for speed or size. The library must be
rebuilt, as well as your model.

■ Changing Build Options on page 170

This is useful for rebuilding the library with different build options, for example to
turn on or off compiler optimizations or add debug information to the library. The
library must be rebuilt, as well as your model.
167

Customization options

■ Overriding Virtual RTActor Operations From the Toolset on page 171

This is useful to change behavior of certain capsules without the need to modify
the Services Library files. The model must be rebuilt.

■ Overriding or Adding Operations and Classes on page 172

You can override any Services Library operation. This is most often used to change
the way the library is initialized, to modify the main processing loop, or to add
platform specific implementations.

Changing Pre-Processor Macros

Before you start

Ensure that you understand the following concepts:

■ Organization of the Services Library Source on page 141
■ Configuration Naming Convention on page 141
■ Directory Structure on page 143

Why

Modify pre-defined parameters built-in to the Services Library. This is often useful for
configuring the library for optimal speed or size.

Where

The file $RTS_HOME/include/RTConfig.h contains all Configuration preprocessor
definitions, or pre-processor macros with their default values. You can override any of
these macros by adding a definition in one of these files:

❑ To change for a specific processor and compiler: $RTS_HOME/libset/<libset
name>/RTLibSet.h.

❑ To change for all libraries for an operating system:
$RTS_HOME/target/<target name>/RTTarget.h.

It is usually preferable to perform a libset configuration (that is, to reconfigure only
for a specific processor and compiler).
168 Chapter 10 - Configuring and Customizing the Services Library

How

Follow these steps to reconfigure the Services Library, to build, and to update your
model to use the new library.

In this example, we will create a new libset to localize the changes to a compiler. To
make changes at the target level follow the same steps but create a new target instead
of a new libset.

In this example, assume that the current platform is: SUN5T.sparc-gnu-2.8.1.

1 Select a name for the new libset.

Usually you can just append to the existing libset name. In this example, we will
name the new libset, sparc-gnu-2.8.1-minimal.

2 Create a new directory, $RTS_HOME/libset/sparc-gnu-2.8.1-minimal.

3 Create a new directory, $RTS_HOME/config/SUN5T.sparc-gnu-2.8.1-minimal.

4 Copy all the files from the original libset and config directories to the new
directories:

❑ From $RTS_HOME/libset/sparc-gnu-2.8.1 to
$RTS_HOME/libset/sparc-gnu-2.8.1-minimal.

❑ From $RTS_HOME/config/SUN5T.sparc-gnu-2.8.1 to
$RTS_HOME/config/SUN5T.sparc-gnu-2.8.1-minimal.

5 In the new libset directory, add pre-processor statements to RTLibSet.h, and
save the file.

For example, to turn off logging messages you would add: #define
LOG_MESSAGE 0.

6 Build the new Services Library.

For details, see Building the Services Library on page 175.

7 Update components in the model to use the new Services Library.

For details, see Updating a Component to Use a Different Services Library on page 176.
Configuration and Customization 169

Changing Build Options

Before you start

Ensure that you understand the following concepts:

■ Organization of the Services Library Source on page 141
■ Configuration Naming Convention on page 141
■ Directory Structure on page 143

Why

This is useful for rebuilding the library with different build options, for example to
turn on or off compiler optimizations or add debug information to the library.

Where

The build options used to compile both the Services Library and the model can be
found in these makefiles:

■ To change for a specific processor and compiler: $RTS_HOME/libset/<libset
name>/libset.mk.

■ To change for all libraries for an operating system: $RTS_HOME/target/<target
name>/target.mk.

■ To change for a specific platform: $RTS_HOME/config/<platform
name>/config.mk.

It is usually preferable to perform a libset configuration, that is to reconfigure only for
a specific processor and compiler.

How

Follow these steps to build a Services Library with debug symbols.

In this example, we will create a new libset to localize the changes to the compiler. To
make changes at the target level follow the same steps but create a new target instead
of a new libset.

For this example, we will assume that our current platform is:
SUN5T.sparc-gnu-2.8.1.

1 Select a name for the new libset.

Usually you can just append to the existing libset name. In this example, we will
name the new libset: sparc-gnu-2.8.1-debug.

2 Create a new directory, $RTS_HOME/libset/sparc-gnu-2.8.1-debug.
170 Chapter 10 - Configuring and Customizing the Services Library

3 Create a new directory, $RTS_HOME/config/SUN5T.sparc-gnu-2.8.1-debug.

4 Copy all the files from the original libset and config directories to the new
directories:

❑ From $RTS_HOME/libset/sparc-gnu-2.8.1 to
$RTS_HOME/libset/sparc-gnu-2.8.1-debug.

❑ From $RTS_HOME/config/SUN5T.sparc-gnu-2.8.1 to
$RTS_HOME/config/SUN5T.sparc-gnu-2.8.1-debug.

5 In the new libset directory, open the libset.mk file and change the -04 flag from
LIBSETCCEXTRA and replace with -g. LIBSETCCEXTRA should now look like:

LIBSETCCEXTRA=-g -finline -finline-functions -fno-builtin \

-Wall -Winline -Wwrite-strings

6 Build the new Services Library.

For details, see Building the Services Library on page 175.

7 Update components in the model to use the new Services Library.

For details, see Updating a Component to Use a Different Services Library on page 176.

Now you have a Services Library with debug information. You can use your source
level debugger to step through the code.

Overriding Virtual RTActor Operations From the Toolset

Why

Some operations defined on the capsule base class RTActor can be overridden from
within the toolset. The advantage being that you do not have to modify Services
Library files, and you can scope the changes to specific components.

Where

The following operations can be overridden:

■ void RTActor::unexpectedMessage(void);

This operation is called if a message is received that can't be handled by the
capsule given its current state.

■ void RTActor::logMsg(void);

This operation is called before each message is delivered to a capsule.
Configuration and Customization 171

How

To override one of these operations in an ANSI compliant way, the header code needs
to be commented out. Use the HeaderPreface and the HeaderEnding of the "override"
class to place code at the beginning and end of the header file.

By placing "#if 0 // Declarations disabled for ANSI compliance." in
the HeaderPreface and "#endif // Declarations disabled for ANSI
compliance." in the HeaderEnding, the following ANSI compliant code is
generated.

#if 0 // Declarations disabled for ANSI compliance.

void RTActor::unexpectedMessage(void);

#endif // Declarations disabled for ANSI compliance.

Overriding or Adding Operations and Classes

Why

You can override any Services Library operation. This is most often used to change the
way the Service Library is initialized, to modify the main processing loop, or to add
platform specific implementations.

Where

There are two ways of modifying operations and classes:

1 Override at the model level:

❑ Changes are local to the model.

❑ No need to recompile the Services Library.

❑ Changes can easily be added to source control with the model.

❑ Packages which contain the overrides can be shared.

2 Override at the target level:

❑ Everyone can easily access the changes.

❑ You have to rebuild the Services Library.

❑ Changes are added to source control outside of the toolset.
172 Chapter 10 - Configuring and Customizing the Services Library

The most interesting operations that can be candidates for overriding are the
following:

■ RTMain::targetStartup/RTMain::targetShutdown

These operations are typically overridden to initialize/cleanup drivers specific to
the target environment, startup OS services (such as clock or timings etc.),
initialize specific libraries or structures that are needed by the Services Library, or
initialize signal handlers.

■ RTController::mainloop(), RTPeerController::mainloop()

This operation is typically overridden if you want a message handling strategy
that is different than the default. For example, you could perform regular sanity
checks or audits, or receive message from other applications.

Note: If you override the mainloop on the controller class all controllers incarnated
from that class will have the same overrides. This may or not be desirable.

Because of the way the Services Library is organized you can override any operation.

How

Overriding Operations Within a Model on page 173

Overriding Operations by Creating a New Target on page 174

Overriding Operations Within a Model

In general you can override any operation defined within the Services Library by
creating an alternate implementation and linking it into your model. For example, to
override the RTMain::targetStartup() operation you would:

1 Create a class named as you like, deselect the C++ property GenerateClass. Set the
C++ Target RTS property GenerateDescriptor to False.

2 Create an operation, RTMain::targetStartup, that returns void and has no
arguments.

3 Add code to the operation.

4 Set OperationKind to global.

5 Drag the class onto a component for which you use to build your model and
rebuild the component.
Configuration and Customization 173

6 The operation you created will override the one defined in the Services Library,
and in this case the code you added to targetStartup will be called before the
Services Library initializes the model.

You can repeat this same process to override any operation in the Services Library.

Overriding Operations by Creating a New Target

In general any operation in the Services Library can be overridden by placing an
override version of the operation into the following subdirectory:

$RTS_HOME/src/target/<target name>/<class name>/

The target base directory mirrors the $RTS_HOME/src directory, thus must have a
directory for each class. When the library is built the directories in
$RTS_HOME/src/target/<target name> are searched first then $RTS_HOME/src.
For more informations, see Organization of the Services Library Source on page 141.

Tasks

In this example, you will override the RTActor::logMsg() operations by creating a
new target configuration. You can also override for an existing target configuration
but you won’t be able to easily go back and forth between the original libraries and
the customized versions.

For this example, assume that the current platform is: SUN5T.sparc-gnu-2.8.1.

1 Select a name for the new target.

Usually you can just append to the existing libset name. In this example, you will
name the new libset: SUN5NEWT.

2 Create a new directory, $RTS_HOME/target/SUN5NEWT.

3 Create a new directory, $RTS_HOME/config/SUN5NEWT.sparc-gnu-2.8.1.

4 Create a new directory, $RTS_HOME/src/target/SUN5NEW/RTActor.

5 Copy all the files and subdirectories from the original target and config directories
to the new directories:

❑ From $RTS_HOME/target/SUN5T to $RTS_HOME/target/SUN5NEWT.

❑ From $RTS_HOME/config/SUN5T.sparc-gnu-2.8.1 to
$RTS_HOME/config/SUN5NEWT.sparc-gnu-2.8.1.

❑ From $RTS_HOME/src/target/SUN5 to $RTS_HOME/src/target/SUN5NEW.
174 Chapter 10 - Configuring and Customizing the Services Library

6 Edit config/setup.pl

$target - base=’SUN5NEW, SUN5

7 Copy the file that contains the logMsg() operation from the generic source
directory to the new target source directory:

❑ From $RTS_HOME/src/RTActor/logMsg.cc to
$RTS_HOME/src/target/SUN5NEW/RTActor/logMsg.cc.

8 Edit $RTS_HOME/src/target/SUN5NEW/RTActor/logMsg.cc.

9 Build the new Services Library.

For details, see Building the Services Library on page 175.“

10 Update components in model to use the new Services Library.

For details, see Updating a Component to Use a Different Services Library on page 176.

Building the Services Library

When you create a new libset or target, you have to build the Services Library to
include the modifications that you have made. The Services Library is always built
from the $RTS_HOME/src directory and the target for the make utility is the Platform
name (or configuration) (<target name>.<libset name>).

Assuming we are using a custom configured Diab C++ compiler version 4.2b for the
Motorola PowerPC platform, the name of our reconfigured platform is
PSOS2T.ppc603-Diab-4.2b-Debug.

To build this Services Library perform the following commands:

UNIX:

cd $ROSERT_HOME/C++/TargetRTS/src

make CONFIG=PSOS2T.ppc603-Diab-4.2b-Debug

Windows:

cd %ROSERT_HOME%\C++\TargetRTS\src

nmake CONFIG=PSOS2T.ppc603-Diab-4.2b-Debug

Note: You may encounter instances when you should not use nmake. For example, if
you compile for Tornado on Windows NT, you should use make instead of nmake.
Building the Services Library 175

After the Services Library has been re-built, you must rebuild your Rose RealTime
models to link against the new Services Library libraries. For details, see Updating a
Component to Use a Different Services Library on page 176.

Note: If your new Services Library changed the debugging, logging, or target
observability functionality, visibility into the model is removed. Debugging the
resulting model via the toolset is no longer possible.

Updating a Component to Use a Different Services Library

After building a new Services Library, you must ensure that your components
reference the new library.

1 Open the Component Specification dialog box.

2 On the C++ Compilation tab, press the Select... button.

3 A list of built libraries found in the current Services Library root ($RTS_HOME)
directory are listed. If your library built properly it should be listed. Select it and
click OK.

4 Rebuild your model.
176 Chapter 10 - Configuring and Customizing the Services Library

11Model Properties
Reference
Contents

This chapter is organized as follows:

■ Generalization and Properties on page 177
■ Expanded Property Symbols on page 178
■ C++ Model Element Properties on page 179
■ C++ TargetRTS Properties on page 195
■ C++ Generation Properties on page 215
■ C++ Compilation Properties on page 218
■ C++ Executable Properties on page 223
■ C++ Library Properties on page 227
■ C++ External Library Properties on page 229

Overview

Using the C++ code generator, you can produce C++ source code from the
information contained in a model. The code generated for each selected model
component is a function of that component's specification, and C++ Language Add-in
model properties. The model properties provide the language-specific information
required to map your model on to C++.

To facilitate the management of C++ code generation properties, use the property set
mechanism. This mechanism establishes settings for each of the properties associated
with a model element type. This allows you to create your own property sets, each
new set having its own default values for any of the properties.

Generalization and Properties

Custom properties that are added to a model element, for example code generation
properties, are not inherited when two model elements participate in a generalization
relationship. For example, if class A is the parent and B the child, and class A has
overridden the default value of the Class::C++::ClassKind property to typedef, this
177

property in class B will remain set to the default. For this reason it is important that
you use property sets to define default values that can be re-used in different model
elements.

Expanded Property Symbols

When the C++ code generator parses the properties, it expands a set of pre-defined
symbols. To delimit these symbols within a composite property string, use curly
braces ‘{‘ and ‘}’. For example, the Component::C++ Generation::OutputDirectory
property is defined as:

$@/${name}

If the component name is Component1, and the .rtmdl file is saved in
/home/projects/, this property will be expanded by the code generator to:

/home/projects/Component1

The following symbols are recognized by the code generator and are expanded as
defined below:

Environment Variables and Pathmap Symbols

You can use environment variables and pathmap symbols in property fields.
Environment variables are not interpreted by the code generator, instead they are
passed as is into the generated files. Naturally, environment variables don’t make
sense in .cpp and .h files, however they do in makefiles. For this reason we encourage

If you enter: Gets expanded to:

${name}

or $name

The name of the model element on which the property is
defined.

$@ The full directory path to where the owning model file is
saved. The model file name is not included when the symbol
is expanded.

$defaultMakeCommand On Windows expands to nmake and on all others to make.

$(MACRO) $(MACRO) This may be useful in some Makefile fields so that
Make can expand MACRO.

$$ $ (a single dollar sign) This may be useful for some Makefile
fields such as CodeGenMakeInsert or CompileCommand.

$VARIABLE This is expanded to whatever the toolset’s Path Map is defined
for VARIABLE. If no such Path Map variable exists, this is
evaluated to nothing.
178 Chapter 11 - Model Properties Reference

that environment variables be primarily used with components. For example, it is
very common to define inclusion paths as an environment variable instead of a
hard-coded value.

Pathmap symbols are expanded by the code generator into the generated source files.
Use these to avoid having to hard code paths information into a component.

Note: The Rational Rose RealTime pathmap symbol is $ not $&. Pathmap symbols are
only expanded when building a model from within the toolset. If you are building
from the command line, you must ensure that equivalent environment variables exist
for each pathmap symbol.

The following properties are usually defined using environment variables or pathmap
symbols:

■ InclusionPaths (Component, C++ Compilation) on page 221
■ TargetServicesLibrary (Component, C++ Compilation) on page 222
■ UserLibraries (Component, C++ Executable) on page 226
■ UserObjectFiles (Component, C++ Executable) on page 227
■ InclusionPaths (Component, C++ External Library) on page 230
■ Libraries (Component, C++ External Library) on page 230

C++ Model Element Properties

This group of model properties is used to control the general aspects of the C++
language. For example, several C++ properties applying to classes are used to control
the generation of operations, and class kinds. This page contains a summary of the
C++ properties grouped by model element to which they are associated.

Class

■ GenerateClass (Class, C++) on page 181
■ ClassKind (Class, C++) on page 181
■ ImplementationType (Class, C++) on page 182
■ HeaderPreface (Class, C++) on page 182
■ HeaderEnding (Class, C++) on page 182
■ ImplementationPreface (Class, C++) on page 183
■ ImplementationEnding (Class, C++) on page 183
■ PublicDeclarations (Class, C++) on page 183
■ ProtectedDeclarations (Class, C++) on page 183
■ PrivateDeclarations (Class, C++) on page 183
■ GenerateDefaultConstructor (Class, C++) on page 184
■ DefaultConstructorVisibility (Class, C++) on page 184
C++ Model Element Properties 179

■ DefaultConstructorExplicit (Class, C++) on page 184
■ DefaultConstructorInline (Class, C++) on page 184
■ GenerateCopyConstructor (Class, C++) on page 184
■ CopyConstructorVisibility (Class, C++) on page 185
■ CopyConstructorExplicit (Class, C++) on page 185
■ CopyConstructorInline (Class, C++) on page 185
■ GenerateDestructor (Class, C++) on page 185
■ DestructorVisibility (Class, C++) on page 185
■ DestructorVirtual (Class, C++) on page 186
■ DestructorInline (Class, C++) on page 186
■ GenerateAssignmentOperator (Class, C++) on page 186
■ AssignmentOperatorVisibility (Class, C++) on page 186
■ AssignmentOperatorInline (Class, C++) on page 186
■ GenerateEqualityOperator (Class, C++) on page 187
■ EqualityOperatorsVisibility (Class, C++) on page 187
■ EqualityOperatorInline (Class, C++) on page 187
■ GenerateInequalityOperator (Class, C++) on page 187

Attribute

■ AttributeKind (Attribute, C++) on page 187
■ InitializerKind (Attribute, C++) on page 188

Operation

■ OperationKind (Operation, C++) on page 188

■ Inline (Operation, C++) on page 188

■ ConstructorInitializer (Operation, C++) on page 189

■ CallFromDestructor (Operation, C++) on page 189

Association End

■ AssociationEndKind (Role, C++) on page 189
■ InitializerKind (Role, C++) on page 189
■ InitialValue (Role, C++) on page 190
180 Chapter 11 - Model Properties Reference

Capsule

■ HeaderPreface (Capsule, C++) on page 190
■ HeaderEnding (Capsule, C++) on page 190
■ ImplementationPreface (Capsule, C++) on page 190
■ ImplementationEnding (Capsule, C++) on page 191
■ PublicDeclarations (Capsule, C++) on page 191
■ ProtectedDeclarations (Capsule, C++) on page 191
■ PrivateDeclarations (Capsule, C++) on page 191

Dependency

■ KindInHeader (Uses, C++) on page 192
■ KindInImplementation (Uses, C++) on page 192

GenerateClass (Class, C++)

Determines if a class is generated by the code generator. If GenerateClass is not
checked, the C++ code generator does not generate a definition for this class. This
should be used when modeling code that has already been implemented external to
the tool, and hence doesn't need to be generated.

For example, it is common to create a class within the toolset which is a placeholder
for an external data type. This allows you to specify the data type in a protocol and
use it for modeling purposes. If you leave the GenerateDescriptor (Class, C++
TargetRTS) property set, a type descriptor can still be generated even if the class won’t
be.

Even if the GenerateClass property is not checked you should set the ClassKind
(Class, C++) so that the C++ code generator can generate forward references when
needed.

ClassKind (Class, C++)

Defines the kind of C++ construct generated for the class element. Possible values are:
class, struct, union, typedef, none.

If ClassKind = typedef, the ImplementationType (Class, C++) property is used to
specify the type
C++ Model Element Properties 181

ClassKind set to none is only used for backwards compatibility. If you don’t want a
class element to be generated use the GenerateClass (Class, C++) property to turn off
code generation. The code generator will issue a warning when ClassKind is set to
none. When ClassKind is set to none the code generator won’t be able to create
forward references to the class.

Note: If you still have to set ClassKind to none, then you should set the class kind to
ClassUtility. A ClassUtility with ClassKind of none will not cause a warning.

ImplementationType (Class, C++)

Provides the type for the typedef when the ClassKind (Class, C++) property is set to
typedef.

Example:

typedef char MyString[30];

Would be generated by creating a class named MyString, setting the ClassKind to
typedef, and setting the ImplementationType to char[30].

HeaderPreface (Class, C++)

Specifies the text that will appear immediately before the declaration of the class in
the header file.

This field may also be modified from the generated code and captured into the model
using the Code Sync feature. For more information, see Using Code Sync to Change
Generate Code in the Toolset Guide.

HeaderEnding (Class, C++)

Specifies the text that will appear immediately after the declaration of the class in the
header file.

This field may also be modified from the generated code and captured into the model
using the Code Sync feature. For more information, see Using Code Sync to Change
Generate Code in the Toolset Guide.
182 Chapter 11 - Model Properties Reference

ImplementationPreface (Class, C++)

Specifies the text that will appear immediately before the class implementation.

This field may also be modified from the generated code and captured into the model
using the Code Sync feature. For more information, see Using Code Sync to Change
Generate Code in the Toolset Guide.

ImplementationEnding (Class, C++)

Specifies the text that will appear immediately after the class implementation.

This field may also be modified from the generated code and captured into the model
using the Code Sync feature. For more information, see Using Code Sync to Change
Generate Code in the Toolset Guide.

PublicDeclarations (Class, C++)

Specifies text that will appear in a public section in the class.

This field may also be modified from the generated code and captured into the model
using the Code Sync feature. For more information, see Using Code Sync to Change
Generate Code in the Toolset Guide.

ProtectedDeclarations (Class, C++)

Specifies text that will appear in a protected section of the class.

This field may also be modified from the generated code and captured into the model
using the Code Sync feature. For more information, see Using Code Sync to Change
Generate Code in the Toolset Guide.

PrivateDeclarations (Class, C++)

Specifies text that will appear in a private section of the class.

This field may also be modified from the generated code and captured into the model
using the Code Sync feature. For more information, see Using Code Sync to Change
Generate Code in the Toolset Guide.
C++ Model Element Properties 183

GenerateDefaultConstructor (Class, C++)

Specifies whether the default constructor will be automatically generated. The
generated default constructor simply initializes the attributes of the class with their
initial values.

The way in which the class attributes are initialized depends on the kind of attribute
(for example, array or other) combined with the value of the InitializerKind
(Attribute, C++) property. Arrays are initialized using a memberwise assignment loop
and other attributes can either be initialized via the constructor initialization list or by
assignment.

You can overload this property by creating your own default constructor on the class.
In these cases even if the GenerateDefaultConstructor is checked, the C++ code
generator will notice that one already exists and won’t generate another.

Note: When you overload the default constructor on a class, all attributes’ initial
values will no longer be used during code generation.

DefaultConstructorVisibility (Class, C++)

Specifies the visibility of the generated constructor.

DefaultConstructorExplicit (Class, C++)

Specifies whether the generated constructor will be declared as explicit.

DefaultConstructorInline (Class, C++)

Specifies whether the generated constructor will be declared as inline.

GenerateCopyConstructor (Class, C++)

Specifies whether the copy constructor is automatically generated. The generated
copy constructor provides a memberwise construction of each attribute from the
source object.

Note: The generated copy constructor copies only pointers and not pointed-to values.
If a class has pointers, you should create your own explicit copy constructor.
184 Chapter 11 - Model Properties Reference

You can overload this property by creating your own copy constructor on the class. If
you create you own copy constructor and the GenerateCopyConstructor option is
selected, the C++ code generator will realize that a copy constructor already exists,
and will not generate another one.

Note: If you declare a private copy constructor, ensure that the
GenerateCopyConstructor option is not selected. For information on how to declare a
private copy constructor, see Declaring a Private Copy Constructor or Assignment
Operator in C++ Classes on page 192.

CopyConstructorVisibility (Class, C++)

Specifies the visibility of the generated copy constructor.

CopyConstructorExplicit (Class, C++)

Specifies whether the generated copy constructor will be declared as explicit.

CopyConstructorInline (Class, C++)

Specifies whether the generated copy constructor will be declared as inline.

GenerateDestructor (Class, C++)

Specifies whether the destructor will be automatically generated. The generated
destructor will be empty unless any operations have the CallFromDestructor
(Operation, C++) property checked.

You can overload this property by creating your own destructor on the class. In these
cases even if the GenerateDestructor is checked, the C++ code generator will notice
that one already exists and won’t generate another.

DestructorVisibility (Class, C++)

Specifies the visibility of the generated destructor.
C++ Model Element Properties 185

DestructorVirtual (Class, C++)

Specifies whether the generated destructor will be declared as virtual.

DestructorInline (Class, C++)

Specifies whether the generated destructor will be declared as inline.

GenerateAssignmentOperator (Class, C++)

Specifies whether the assignment operator is automatically generated.The generated
assignment operator provides a memberwise assignment of each attribute from the
source object.

Note: The generated assignment operator copies only pointers, and not pointed-to
values. If a class has pointers, you should create your own explicit assignment
operator.

You can overload this property by creating your own assignment operator on the
class. If you create your own assignment operator and if the
GenerateAssignmentOperator option is selected, the C++ code generator will realize
that an assignment operator already exists and will not generate another one.

Note: If you declare a private assignment operator, ensure that the
GenerateAssignmentOperator option is not selected. For information on how to
declare a private assignment operator, see Declaring a Private Copy Constructor or
Assignment Operator in C++ Classes on page 192.

AssignmentOperatorVisibility (Class, C++)

Specifies the visibility of the generated assignment operator.

AssignmentOperatorInline (Class, C++)

Specifies whether the generated assignment operator will be declared as inline.
186 Chapter 11 - Model Properties Reference

GenerateEqualityOperator (Class, C++)

Specifies whether the equality operator will be automatically generated. The
generated equality performs a memberwise equality check.

If you choose not to have Rational Rose RealTime generate these, you can define your
own. If both == and != are generated, the Inline check box for != is meaningless, as
Rose RealTime generates the != as an inline call to the negation of ==.

EqualityOperatorsVisibility (Class, C++)

Specifies the visibility of the generated equality operator.

EqualityOperatorInline (Class, C++)

Specifies whether the generated equality operator will be declared as inline.

GenerateInequalityOperator (Class, C++)

Specifies whether the inequality operator will be automatically generated.

If you choose not to have Rational Rose RealTime generate these, you can define your
own. If both == and != are generated, the Inline check box for != is meaningless, as
Rose RealTime generates the != as an inline call to the negation of ==.

AttributeKind (Attribute, C++)

Specifies whether the attribute is generated as a member of the class, as a global
variable defined within the file generated for the class, or as a #define defined within
the file generated for the class. Options are member, global, and constant.

If an attribute is set to global or constant and is to be used in detail level code,
attribute array sizes, or other common C++ usages, ensure that there is a dependency
added between the class containing the definition and the elements which use the
definitions.
C++ Model Element Properties 187

InitializerKind (Attribute, C++)

Specifies how the code generator should initialize the attribute. Options are
constructor or assignment. Use this property to configure how the attribute generated
for this association end is initialized. When the owner class generates and uses a
constructor function, then the constructor will try and initialize its attributes however
it can.

If InitializerKind = assignment then in the owner’s constructor the attribute will be
initialized by assignment with the attribute’s initial value as defined in the
Attribute::General Page::Initial value.

If InitializerKind = constructor then the class constructor will initialize the attribute
in the initializer list calling the attribute’s constructor with the parameters defined in
the Attribute::General Page::Initial value.

OperationKind (Operation, C++)

Determines whether the operation is generated as:

■ A member function of the class
■ A global function defined in the same file as the class
■ A friend allowing access to non-public operations.

Note: If an operation is set to global and used in detail level code, or other common
C++ usages, ensure that there is a dependency added between the class containing the
definition and the elements that use the operations. Also ensure that you set the
dependencyKindInHeader (Uses, C++) property to inclusion.

To specify an operation as member, global, or friend using the GUI, open the
Operation Specification dialog, select the C++ tab, and select the desired option from
the OperationKind list.

Inline (Operation, C++)

Specifies whether the inline function specifier is applied to the function. Options are
True or False.
188 Chapter 11 - Model Properties Reference

ConstructorInitializer (Operation, C++)

Provides the initialization parameters for this operation if it is a constructor. This is
used to control the initialization of parent classes and member variables.

Example

: _length(9), _angle(4.556)

Note: Be sure to add the colon to start the initializer list.

This field may also be modified from the generated code and captured into the model
using the Code Sync feature. For more information, see Using Code Sync to Change
Generate Code in the Toolset Guide.

CallFromDestructor (Operation, C++)

Options are True or False. If set to True, this property specifies that the operation
should be called from the automatically generated destructor for the class. In order to
be called from the destructor, the operation must not have any parameters. More than
one operation in a class may be invoked by the destructor. The operations will be
invoked in the order in which they are listed in the Operations list.

AssociationEndKind (Role, C++)

Specifies whether the association end is generated as a member of the other end's
class or as a global variable defined within the file generated for the association end
class. Options are member or global.

InitializerKind (Role, C++)

Use this property to configure how the attribute generated for this association end is
initialized. Possible values are by assignment and call constructor. When the owner
class generates and uses a constructor function, then the constructor will try and
initialize its attributes however it can.

If InitializerKind = by assignment then in the owners constructor the attribute will
be initialized by assignment with the association ends initial value as defined in
InitialValue (Role, C++).
C++ Model Element Properties 189

If InitializerKind = call constructor then the classes constructor will initialize the
attribute in the initializer list calling the attributes constructor with the parameters
defined in InitialValue (Role, C++).

InitialValue (Role, C++)

Use this property to define an initial value that will be used by the target class
constructor when initializing the attribute generated for this association end.

HeaderPreface (Capsule, C++)

Specifies a block of C++ code to be included in the generated code of the capsule class
header, just after any generated #include's and just before the generated capsule
declarations. Code can include: comments, #define's, #include's, declarations, etc.

This field may also be modified from the generated code and captured into the model
using the Code Sync feature. For more information, see Using Code Sync to Change
Generate Code in the Toolset Guide.

HeaderEnding (Capsule, C++)

Specifies a block of C++ code to be included at the end of the generated code for the
capsule class header. The HeaderEnding is generated after the generated capsule
declarations.

This field may also be modified from the generated code and captured into the model
using the Code Sync feature. For more information, see Using Code Sync to Change
Generate Code in the Toolset Guide.

ImplementationPreface (Capsule, C++)

Specifies a block of C++ code to include in the generated code of the capsule class
implementation, just after any generated #include's and before the generated capsule
definitions. Code can include: comments, #define's, #include's, declarations, etc.

This field may also be modified from the generated code and captured into the model
using the Code Sync feature. For more information, see Using Code Sync to Change
Generate Code in the Toolset Guide.
190 Chapter 11 - Model Properties Reference

ImplementationEnding (Capsule, C++)

Specifies a block of C++ code to be included at the end of the generated code for the
capsule class implementation. The ImplementationEnding is generated after the
generated capsule definitions.

This field may also be modified from the generated code and captured into the model
using the Code Sync feature. For more information, see Using Code Sync to Change
Generate Code in the Toolset Guide.

PublicDeclarations (Capsule, C++)

Specifies text that will appear in a public section in the capsule class.

This field may also be modified from the generated code and captured into the model
using the Code Sync feature. For more information, see Using Code Sync to Change
Generate Code in the Toolset Guide.

ProtectedDeclarations (Capsule, C++)

Specifies text that will appear in a protected section of the capsule class.

This field may also be modified from the generated code and captured into the model
using the Code Sync feature. For more information, see Using Code Sync to Change
Generate Code in the Toolset Guide.

PrivateDeclarations (Capsule, C++)

Specifies text that will appear in a private section of the capsule class.

This field may also be modified from the generated code and captured into the model
using the Code Sync feature. For more information, see Using Code Sync to Change
Generate Code in the Toolset Guide.
C++ Model Element Properties 191

KindInHeader (Uses, C++)

Specifies the representation of the dependency in the header file of the source class.

The options are:

■ Inclusion: include the header file for the target class

■ Forward reference: declare a forward reference to the target class

■ None: dependency is not generated in header

KindInImplementation (Uses, C++)

Specifies the representation of the dependency in the implementation file of the
source class.

The options are

■ Inclusion: include the header file for the target class

■ Forward reference: declare a forward reference to the target class

■ None: dependency is not generated in implementation

Declaring a Private Copy Constructor or Assignment Operator in C++
Classes

If a copy constructor is not specified, C++ compilers provide a default copy
constructor and assignment operator for a class. Typically, you will not want to have
the copy constructor and assignment operator called for a specific class. To ensure that
the copy constructor and assignment operator are not called, declare them as private
methods of the class.

For information on declaring a copy constructor or assignment operator as private,
see:

■ To declare a private copy constructor: on page 193

■ To declare a private assignment operator: on page 194

Note: Although C++ compilers provide a default copy constructor and assignment
operator for a class, the implementation for these methods is not mandatory.
192 Chapter 11 - Model Properties Reference

To declare a private copy constructor:

1 In a Class Diagram, right-click on a class object, and then click Open
Specification.

2 In the Class Specification dialog box, click the C++ tab.

3 In the Item Properties area, scroll down to the bottom and clear the
GenerateCopyConstructor option.

Note: When the text for a label appears in bold font, this means that the option is
overridden from the default setting.

4 Click Apply.

5 Click the C++ TargetRTS tab.

6 In the CopyFunctionBody box, create a new operation for the class and assign it a
name and signature for the copy constructor.

For example:

target->myAttribute = source->myAttribute;

Note: You must add your own operation to override this box because the copy
function uses the copy constructor, by default.

7 Click Apply.

Next, you want to insert a new operation for the class and assign it a name and
signature of the copy constructor.

8 Click the Operations tab.

9 Right-click and select Insert and press ENTER.

10 Select the new operation, right-click and select Open Specification.

11 Cick the Detail tab.

12 Right-click in the Parameters box and select Insert.

13 In the Name column, type source.

14 Double-click in the Type column opposite source.

15 In the Type box, type the following:

const NewClass1 &

16 Click OK.

17 Click the General tab.
C++ Model Element Properties 193

18 In the Visibility box, select Private.

19 Click Apply.

20 Click the C++ tab.

21 In the Generate box, select declaration only.

22 Click OK.

To declare a private assignment operator:

1 In a Class Diagram, right-click on a class object, and then click Open
Specification.

2 Click the C++ tab.

3 In the Item Properties box, scroll down to the bottom and clear the
GenerateAssignmentOperator option.

Note: When the text for a label appears in bold font, this means that the option is
overridden from the default setting.

4 Click Apply.

5 Click the Operations tab.

Next, you want to insert a new operation for the class and assign it a name and
signature for the assignment operator.

6 Right-click and select Insert and type the following:

operator=

7 Select the new operation, right-click and select Open Specification.

8 Cick the Detail tab.

9 Right-click in the Parameters box and select Insert.

10 In the Name column, type source.

11 Double-click in the Type column opposite source.

12 In the Type box, type the following:

const NewClass1 &

13 Click OK.

14 In the Return Type box, type the following:

NewClass1 &
194 Chapter 11 - Model Properties Reference

15 Click Apply.

16 Click the General tab.

17 In the Visibility box, select Private.

18 Click the C++ tab.

19 In the Generate box, select declaration only.

20 Click OK.

C++ TargetRTS Properties

This group of model properties is used to control the C++ Service Library aspects of
the code generation. For example, several C++ Target RTS properties applying to
classes are used to control the generation of specialized classes and structures which
describe the class to the Services Library. This page contains a summary of the C++
TargetRTS properties grouped by model element to which they are associated.

Class

■ GenerateDescriptor (Class, C++ TargetRTS) on page 196
■ Version (Class, C++ TargetRTS) on page 196
■ InitFunctionBody (Class, C++ TargetRTS) on page 196
■ CopyFunctionBody (Class, C++ TargetRTS) on page 197
■ DestroyFunctionBody (Class, C++ TargetRTS) on page 197
■ DecodeFunctionBody (Class, C++ TargetRTS) on page 197
■ EncodeFunctionBody (Class, C++ TargetRTS) on page 199

Attribute

■ GenerateDescriptor (Attribute, C++ TargetRTS) on page 201
■ TypeDescriptor (Attribute, C++ TargetRTS) on page 201
■ NumElementsFunctionBody (Attribute, C++ TargetRTS) on page 201

Association End

■ GenerateDescriptor (Role, C++ TargetRTS) on page 202
■ TypeDescriptor (Role, C++ TargetRTS) on page 202
■ NumElementsFunctionBody (Role, C++ TargetRTS) on page 202
C++ TargetRTS Properties 195

Protocol

■ Version (Protocol, C++ TargetRTS) on page 202
■ BackwardsCompatible (Protocol, C++ TargetRTS) on page 203
■ TypeSafeSignals (Protocol, C++ TargetRTS) on page 203

GenerateDescriptor (Class, C++ TargetRTS)

If checked the C++ code generator will create a type descriptor (RTObject_class) for
the class. The type descriptor will allow marshalling (encode/decode) of the class.

The type descriptor contains information that the C++ Services Library requires to
initialize, copy, destroy, encode, and decode data types. If the GenerateDescriptor
property is False, the data type cannot be sent by value in messages and won’t be
observable or injected.

Version (Class, C++ TargetRTS)

Specifies the version of the data type.

InitFunctionBody (Class, C++ TargetRTS)

Specifies the body of a function to initialize a data type. By default the C++ code
generator generates a function which calls the data types default constructor.

static void rtg_AClass1_init(const RTObject_class * type, AClass1 *
target)

{

(void)new(target) AClass1;

}

You should only have to modify this property if your data type cannot be initialized
with a default constructor.

This field may also be modified from the generated code and captured into the model
using the Code Sync feature. For more information, see the topic Using Code Sync to
Change Generate Code in the Rational Rose RealTime Toolset Guide.
196 Chapter 11 - Model Properties Reference

CopyFunctionBody (Class, C++ TargetRTS)

Specifies the body of a function to copy a data type. By default the C++ code
generator generates a function which calls the data type’s copy constructor.

static void rtg_AClass1_copy(const RTObject_class * type, AClass1 *
target, const AClass1 * source)

{

(void)new(target) AClass1(*source);

}

This field may also be modified from the generated code and captured into the model
using the Code Sync feature. For more information, see Using Code Sync to Change
Generate Code in the Toolset Guide.

DestroyFunctionBody (Class, C++ TargetRTS)

Specifies the body of a function to destroy a data type. By default the C++ code
generator calls the data types default constructor.

static void rtg_AClass1_destroy(const RTObject_class * type, AClass1
* target)

{

target->~AClass1();

}

This field may also be modified from the generated code and captured into the model
using the Code Sync feature. For more information, see Using Code Sync to Change
Generate Code in the Toolset Guide.

DecodeFunctionBody (Class, C++ TargetRTS)

Specifies the body of a function to decode a data type from a stream of bytes. By
default the C++ code generator uses a built-in function. If the C++ Services Library
does not know about a data type, because it may be externally defined, or have
private fields, then you can write your own decoder. The function is passed a pointer
to an object of the RTDecoding class called coding and a pointer is passed to an object
of the externally defined type called target. the RTDecoding class has a number of
operations that can be used to decode different data values to the target argument.

Note: The C++ code generator does not automatically generate proper decode
functions for classes which have more than one base class.
C++ TargetRTS Properties 197

Because Enumerations (type enum) are defined in C and C++ as type int, they are
internally represented as integers in the application generated from the model. To
display these values in a trace window an additional step, called encoding, is required
to map the values from their literal to their symbolic representations. A second step,
called decoding, is used to map the symbol to the value when injecting signals using a
probe.

On the C++ (or C) TargetRTS Tab of the Class Specification Dialog for MotorStatus,
the DecodeFunctionBody field contains the code used to decode information injected
while the model is running using a Probe. If present, code in this field will trigger the
generation of a static function called rtg_MotorStatus_decode. The complete signature
for the function is:

static int rtg_MotorStatus_decode(const RTObject_class * type,
enum MotorStatus * target,
RTDecoding * coding)

The parameters "type" and "coding" are defined as above. The parameter "target"
provides access to the data field of the signal.

In the following example, the injected data (contained in "coding") is used to generate
the proper enum value for the signal. The return value of the function indicates the
success or failure of the decode.

// BEGIN CODE EXAMPLE
char * StringValue;
int ReturnValue = 0;

coding->get_string(StringValue);

if(strcmp(StringValue,"On") == 0)
{
*target = On;
ReturnValue=1;
}

else if(strcmp(StringValue,"Off") == 0)
{
*target = Off;
ReturnValue=1;
}
else if(strcmp(StringValue, "Standby") == 0)
198 Chapter 11 - Model Properties Reference

{
*target = Standby;
ReturnValue=1;
}

return ReturnValue;
// END CODE EXAMPLE

Refer to the following files for more information in the decode function:
$ROSERT_HOME/C++/TargetRTS/include/RTDecoding.h
$ROSERT_HOME/C/TargetRTS/include/RTPubl/Decoding.h

You will also have to provide encode/decode functions for attributes that have
double indirection (for example, int **).

This field may also be modified from the generated code and captured into the model
using the Code Sync feature. For more information, see Using Code Sync to Change
Generate Code in the Toolset Guide.

EncodeFunctionBody (Class, C++ TargetRTS)

Specifies the body of a function to encode a data type to a stream of bytes. By default
the C++ code generator uses a built-in function. If the C++ Services Library does not
know about a data type, because it may be externally defined, or have private fields,
then you can write your own encoder. The function is passed a pointer to an object of
the RTEncoding class called coding and a pointer is passed to an object of the
externally defined class called source. The RTEncoding class has a number of
operations that will encode different data values from the source argument.

Note: The C++ code generator does not automatically generate proper encode
functions for classes which have more than one base class.

Because Enumerations (type enum) are defined in C and C++ as type int, they are
internally represented as integers in the application generated from the model. To
display these values in a trace window an additional step, called encoding, is required
to map the values from their literal to their symbolic representations. A second step,
called decoding, is used to map the symbol to the value when injecting signals using a
probe.
C++ TargetRTS Properties 199

To demonstrate this concept, we will declare a new class called "MotorStatus" using
the stereotype "enumeration" that has three public attributes: On, Off, and Standby.
The class will generate the following code:

enum MotorStatus { On, Off, Standby };

On the C++ (or C) TargetRTS Tab of the Class Specification Dialog for MotorStatus,
the EncodeFunctionBody field contains the code used to encode the data. If present,
code in this field will trigger the generation of a static function called
rtg_MotorStatus_encode. The complete signature for this function is:

static int rtg_MotorStatus_encode(const RTObject_class * type,

const enum MotorStatus * source,
RTEncoding * coding)

The parameter "type" points to a data structure that provides an internal description
of MotorStatus. The parameter "source" is a pointer to the data being sent in the
signal, and "coding" provides a pointer to the data structure used to hold the
descriptive information that will be used in a trace window.

In the following code example, the signal data (contained in "source") is used to enter
the proper string representation in "coding" using the "put_string" function:

// BEGIN CODE EXAMPLE

switch(*source)
{
case On :
coding->put_string("On");
break;
case Off:

coding->put_string("Off");
break;
case Standby:
coding->put_string("Standby");
break;
default:

coding->put_string("ERROR");
}
return 1;
// END CODE EXAMPLE
200 Chapter 11 - Model Properties Reference

Refer to the following files for more information in the encode function:
$ROSERT_HOME/C++/TargetRTS/include/RTEncoding.h
$ROSERT_HOME/C/TargetRTS/include/RTPubl/Encoding.h

Note: You will also have to provide encode/decode functions for attributes that have
double indirection (for example, int **).

This field may also be modified from the generated code and captured into the model
using the Code Sync feature. For more information, see Using Code Sync to Change
Generate Code in the Toolset Guide.

GenerateDescriptor (Attribute, C++ TargetRTS)

Specifies whether to generate a descriptor for the attribute. If a descriptor is not
generated the C++ Services Library won’t be able to encode/decode the attribute.

TypeDescriptor (Attribute, C++ TargetRTS)

Specifies an explicit descriptor for the attribute. Normally the code generator will
determined which descriptor should be used for the attribute, but in some cases you
may want to override this.

NumElementsFunctionBody (Attribute, C++ TargetRTS)

If the attribute is a pointer to an object, this pointer may point to one or many objects.
The NumElementsFunctionBody property provides the body of the function which
calculates the number of objects the pointer points to. If the body is empty, the pointer
is assumed to point to only one object.

This function is required to make attributes which are pointers to arrays observable in
the execution monitors.
C++ TargetRTS Properties 201

In the function body you have access to the attributes containing object. In the
example below the attribute is part of a PointerInts object. You will usually use
information contained in the containing object to determine how many things the
pointer is pointing to.

static int rtg_nefb_PointerInts_ints(const RTTypeModifier * modifier,
const PointerInts * source)

{

return(source->n_ints);

}

This field may also be modified from the generated code and captured into the model
using the Code Sync feature. For more information, see Using Code Sync to Change
Generate Code in the Toolset Guide.

GenerateDescriptor (Role, C++ TargetRTS)

Specifies whether to generate a descriptor for the attribute. If a descriptor is not
generated the C++ Services Library won’t be able to encode/decode the attribute.

TypeDescriptor (Role, C++ TargetRTS)

Specifies an explicit descriptor for the attribute. Normally the code generator will
determined which descriptor should be used for the attribute, but in some cases you
may want to override this.

NumElementsFunctionBody (Role, C++ TargetRTS)

If the association end is generated as a pointer, the pointer may point to one or many
objects. For more details, see NumElementsFunctionBody (Attribute, C++ TargetRTS) on
page 201.

This field may also be modified from the generated code and captured into the model
using the Code Sync feature. For more information, see Using Code Sync to Change
Generate Code in the Toolset Guide.

Version (Protocol, C++ TargetRTS)

Specifies the version of the data type.
202 Chapter 11 - Model Properties Reference

BackwardsCompatible (Protocol, C++ TargetRTS)

If checked the protocol class will be generated with code to allow use of previous
release communication services syntax.

TypeSafeSignals (Protocol, C++ TargetRTS)

If this property is unchecked then all signal data classes specified for the signals in the
protocol are ignored. Instead it is assumed that you can send anything (for example,
void *) with the signals.

This turns off all compile and run-time type safety checks. This is meant for
backwards compatibility.

Type Descriptors

This topic describes type descriptors as follows:

■ What are Type Descriptors? on page 203
■ When are Type Descriptors Used? on page 204
■ Example Usage Patterns and Associated Type Descriptors on page 206

What are Type Descriptors?

Type descriptors are used to describe a class to the Services Library, so that the
Services Library can manipulate the objects in order to send them or use them in the
UML debugger. Specifically, the Service Library needs to be able to initialize, copy,
destroy, encode, and decode objects of the corresponding type. A type descriptor is
implemented in the code through RTObject_class. For additional information, see
RTObject_class on page 268.

Type descriptors are generated for most classes which are defined using basic types.
The code generator is not able to generate a type descriptor for classes that:

■ contain pointers

■ contain non-basic types (e.g. unions)*,

■ are externally defined

■ are typedefs
Type Descriptors 203

For a complete list of basic types, see the file RTObject_class.h in the
$ROSERT_HOME/C++/TargetRTS/include directory. The basic types all have a type
descriptor of the form RTType_<type> defined in this file.

If the type descriptor cannot be generated automatically for a class, the five functions
(init, copy, destroy, encode, and decode) used by the type descriptor can be
implemented by the user. For additional information, see C++ TargetRTS Properties on
page 195.

When are Type Descriptors Used?

Type descriptors are used whenever data is passed to the Services Library. In
particular, this occurs in the following situations:

■ Scenario 1 - Sent by value in a message between capsules
■ Scenario 2 - Observed at run-time (for example, in a Watch or Trace window)
■ Scenario 3 - Output via the log service
■ Scenario 4 - Injected in a message on a probe.
■ Scenario 5 - Sent by value in a message between capsules in different processes

using Connexis

If scenarios 2 to 5 are not required, then it is not necessary to provide encoding and
decoding functionality.

Problem:

A type descriptor is not available for the implementation type of this typedef.

Symptom:

The following code generation error is output:

Error: A type descriptor is not available for the implementation type of this typedef
(perhaps the implementation type is non-trivial or the RT functions are partially
overridden). Either provide overrides for zero or five of the RT function bodies, or
turn off descriptor generation for this typedef.

Cause:

The code generator is not able to determine how to create the type descriptor for
classes which are typedefs.

In earlier versions of Rose RealTime, some assumptions were made when generating
the type descriptor for classes that are typedefs. These assumptions were not
necessarily valid. Therefore, it is now necessary for the user to provide the
implementation of the five functions used by the type descriptor if a type descriptor is
to be generated.
204 Chapter 11 - Model Properties Reference

Resolution:

If it is not necessary to generate a type descriptor, then the GenerateDescriptor
property on the C++ TargetRTS tab of the typedef class can be set to False.

If it is necessary to generate a type descriptor, then the five function bodies (init, copy,
destroy, encode, and decode) on the C++ Target RTS tab must be implemented.

Here are some examples of how to implement the five type descriptor functions.

Basic Example 1:

The class is a typedef to an int (for example, typedef int MyInteger;)

InitFunctionBody:

 RTType_int._init_func(type, target);

CopyFunctionBody:

 RTType_int._copy_func(type, target, source);

DestroyFunctionBody:

 RTType_int._destroy_func(type, target);

DecodeFunctionBody:

 return coding->get_int(*target);

EncodeFunctionBody:

 return coding->put_int(*source);

Basic Example 2:

The class is a typedef to a pointer (for example, typedef foo * fooPtr;)

There are many different ways that you can use fooPtr. It could be a pointer to a single
object, or a pointer to an array of objects (with fixed length, length determined by
other variables, or some form of null termination). The operations on this pointer may
also be "by value" or "by reference". This makes it impossible to generate a descriptor
for all cases.
Type Descriptors 205

Example Usage Patterns and Associated Type Descriptors

Example: typedef Person * PersonPtr;

There are many different ways to use PersonPtr. It could be:

1 A pointer with no explicit definition of what it points at.

❑ a) passed by reference,

2 A pointer to a single object which passed by value,

3 A pointer to an array of objects (the only interesting cases are pass by value – by
reference these cases reduce to the equivalent of case 1a).

❑ a) with fixed length,

❑ b) with length determined by null termination

❑ c) with length determined by other variables

It is it impossible to automatically generate a descriptor for all cases since the
descriptor is tied to the usage pattern.

This topic provides the usage at the call site, the usage at the Receipt site, and the type
descriptors necessary for this behavior. It is important to note that in all cases (except
case 1) the system takes care of memory management.

All of these cases are implemented in the model Example.rtmdl which should
accompany this document.

Case 1: The object was a simple pointer that would be copied by reference

In this case the user must explicitly manage the allocation and de-allocation of
memory. This is the most flexible semantics, since the target of the pointer can be a
single object, an array of object, or any user defined interpretation of the pointer.

This example shows the case where the pointer points to a single value

typedef Person * PersonRefPtr;

Call Site

log.log("Sending Tim:10 by reference");

Person * aPerson = new Person("Tim", 10);

commPort.sendRef(aPerson).send();
206 Chapter 11 - Model Properties Reference

Receipt

Person * aPerson = *rtdata;

log.log("Receiving byRef");

log.log(aPerson, &RTType_Person);

delete aPerson;

Descriptors

static void rtg_PersonRefPtr_init(const RTObject_class * type,
PersonRefPtr * target)

{

 *target = (Person *)0;

}

static void rtg_PersonRefPtr_copy(const RTObject_class * type,
PersonRefPtr * target, const PersonRefPtr * source)

{

*target = *source;

}

static int rtg_PersonRefPtr_decode(const RTObject_class * type,
PersonRefPtr * target, RTDecoding * coding)

{

return 0;

}

static int rtg_PersonRefPtr_encode(const RTObject_class * type, const
PersonRefPtr * source, RTEncoding * coding)

{

return coding->put_address(source);

}

static void rtg_PersonRefPtr_destroy(const RTObject_class * type,
PersonRefPtr * target)

{

*target = (Person *)0;

}

Type Descriptors 207

Case 2: The object was a pointer to a single object that would be copied by
value

For this case, the user does not need to manage memory. A copy of the data is made at
the send site, and this copy is reclaimed at the end of the receiving transition.

typedef Person * PersonValPtr;

Call Site

log.log("Sending Tim:10 by reference");

Person * aPerson = new Person("Tim", 10);

commPort.sendRef(aPerson).send();

Receipt

log.log("Recieved Person by Value");

Person * aPerson = *rtdata;

log.log(aPerson, &RTType_Person)

Descriptors

static void rtg_PersonValPtr_init(const RTObject_class * type,
PersonValPtr * target)

{

*target = new Person;

}

static void rtg_PersonValPtr_copy(const RTObject_class * type,
PersonValPtr * target, const PersonValPtr * source)

{

*target = new Person(**source);

}

static int rtg_PersonValPtr_decode(const RTObject_class * type,
PersonValPtr * target, RTDecoding * coding)

{

return coding->get_indirect(target, &RTType_Person);

}

static int rtg_PersonValPtr_encode(const RTObject_class * type, const
PersonValPtr * source, RTEncoding * coding)

{

return coding->put_indirect(source, &RTType_Person);
208 Chapter 11 - Model Properties Reference

}

static void rtg_PersonValPtr_destroy(const RTObject_class * type,
PersonValPtr * target)

{

delete *target;

*target = (Person *)0;

}

Case 3a: The object was a pointer to an array of objects of fixed length that
would be copied by value

typedef Person * PersonArray4Ptr;

Call Site

log.log("sending array of length 4");

Person people[4] =

{

Person("Tim", 10),

Person("Mary", 20),

Person("Tom", 30),

Person("Monique", 40)

};

commPort.sendArray4(people).send();

Receipt

log.log("Received Array4 of names");

log.log(rtdata, &RTType_PersonArray4Ptr);

Descriptors

static void rtg_PersonArray4Ptr_init(const RTObject_class * type,
PersonArray4Ptr * target)

{

*target = PersonArrayUtil::allocate(4, true);

}

static void rtg_PersonArray4Ptr_copy(const RTObject_class * type,
PersonArray4Ptr * target, const PersonArray4Ptr * source)

{

Person * people = PersonArrayUtil::allocate(4, false);
Type Descriptors 209

*target = people;

for(int i = 0; i < 4; ++i, ++people)

(void)new(people) Person((*source)[i]);

}

static int rtg_PersonArray4Ptr_decode(const RTObject_class * type,
PersonArray4Ptr * target, RTDecoding * coding)

{

return coding->get_array(*target, 4, &RTType_Person);

}

static int rtg_PersonArray4Ptr_encode(const RTObject_class * type,
const PersonArray4Ptr * source, RTEncoding * coding)

{

return coding->put_array(*source, 4, &RTType_Person);

}

static void rtg_PersonArray4Ptr_destroy(const RTObject_class * type,
PersonArray4Ptr * target)

{

PersonArrayUtil::release(4, *target);

*target = (Person *)0;

}

Case 3b - the object was a pointer to an array of objects of variable length (with
null termination) that would be copied by value.

typedef Person * PersonArrayNullPtr;

Call Site

log.log("Sending Null Terminated list");

Person people[3] =

{

Person("Tim", 10),

Person("Mary", 20),

Person("nobody", 0)

};
210 Chapter 11 - Model Properties Reference

commPort.sendArrayNull(people).send();

Receipt

log.log("Received ArrayNull of names");

log.log(rtdata, &RTType_PersonArrayNullPtr);

Descriptors

static int countPeople(const Person * people)

{

int count = 0;

for(; people->getAge() != 0; ++count, ++people) { }

return count;

}

static void rtg_PersonArrayNullPtr_init(const RTObject_class * type,
PersonArrayNullPtr * target)

{

*target = PersonArrayUtil::allocate(1, true);

}

static void rtg_PersonArrayNullPtr_copy(const RTObject_class * type,
PersonArrayNullPtr * target, const PersonArrayNullPtr * source)

{

Person * src = *source;

int count = 1 + countPeople(src);

Person * people = PersonArrayUtil::allocate(count, false);

Person * dst = people;

while(--count >= 0)

(void)new(dst++) Person(*src++);

*target = people;

}

static int rtg_PersonArrayNullPtr_decode(const RTObject_class * type,
PersonArrayNullPtr * target, RTDecoding * coding)

{

int length = 0;

Person * people;

if(coding->get_int(length) == 0)
Type Descriptors 211

{

}

else if(length < 0)

{

}

else if((people = PersonArrayUtil::allocate(length + 1, true)) ==
(Person *)0)

{

}

else if(coding->get_array(people, length, &RTType_Person) == 0)

{

PersonArrayUtil::release(length + 1, people);

}

else

{

Person * trash = *target;

if(trash != (Person *)0)

PersonArrayUtil::release(countPeople(trash) + 1, trash);

*target = people;

return 1;

}

return 0;

}

static int rtg_PersonArrayNullPtr_encode(const RTObject_class * type,
const PersonArrayNullPtr * source, RTEncoding * coding)

{

int count = countPeople(*source);

return coding->put_int(count) != 0

&& coding->put_array(*source, count, &RTType_Person) != 0;

}

static void rtg_PersonArrayNullPtr_destroy(const RTObject_class *
type, PersonArrayNullPtr * target)

{

Person * people = *target;
212 Chapter 11 - Model Properties Reference

if(people != (Person *)0)

{

*target = (Person *)0;

PersonArrayUtil::release(countPeople(people) + 1, people);

}

}

Case 3c: The object was a pointer to an array of objects of variable length
(determined by another variable) that would be copied by value

This particular case is simpler if the pointer is contained within a class. For this
example the length of the array will be another field within the same class. This class
is defined as follows:

class PersonArrayObj

{

public:

PersonArrayObj(void);

~PersonArrayObj(void);

PersonArrayObj & operator=(const PersonArrayObj & rhs);

PersonArrayObj(int num);

PersonArrayObj(const PersonArrayObj & other);

int length;

Person * people;

};

Call Site

log.log("Sending variable length array");

PersonArrayObj obj(4);

log.log(&obj, &RTType_PersonArrayObj);

commPort.sendArrayObj(obj).send();

Receipt

log.log("Received ArrayObj");

log.log(rtdata, &RTType_PersonArrayObj);

Descriptors

// Use default “init”, “copy”, and “destroy”
Type Descriptors 213

static int rtg_PersonArrayObj_decode(const RTObject_class * type,
PersonArrayObj * target, RTDecoding * coding)

{

int length = 0;

Person * people;

if(coding->get_int(length) == 0 || length < 0)

{

}

else if((people = PersonArrayUtil::allocate(length, true)) ==
(Person *)0)

{

}

else if(coding->get_array(people, length, &RTType_Person) == 0)

{

PersonArrayUtil::release(length, people);

}

else

{

PersonArrayUtil::release(target->length, target->people);

target->length = length;

target->people = people;

return 1;

}

return 0;

}

static int rtg_PersonArrayObj_encode(const RTObject_class * type,
const PersonArrayObj * source, RTEncoding * coding)

{

return coding->put_int(source->length) != 0

&& coding->put_array(source->people, source->length,
&RTType_Person) != 0;

}

214 Chapter 11 - Model Properties Reference

C++ Generation Properties

Code generation properties are used to configure the way in which a component is
generated to C++. These properties apply equally to Executable and Library
component types.

Component

■ OutputDirectory (Component, C++ Generation) on page 215
■ CodeGenDirName (Component, C++ Generation) on page 215
■ ComponentUnitName (Component, C++ Generation) on page 216
■ CommonPreface (Component, C++ Generation) on page 216
■ CodeGenMakeType (Component, C++ Generation) on page 217
■ CodeGenMakeCommand (Component, C++ Generation) on page 217
■ CodeGenMakeArguments (Component, C++ Generation) on page 217
■ CodeGenMakeInsert (Component, C++ Generation) on page 217
■ CodeSyncEnabled (Component, C++ Generation) on page 218
■ Generate Model Tags (Component, C++ Generation) on page 218

OutputDirectory (Component, C++ Generation)

The output path can be changed to allow you to set the directory into which the
generated files resulting from a component build will be written. By default this
property is set to $@/$name where $@ is the model file directory, and $name is the
name of the component.

CodeGenDirName (Component, C++ Generation)

Specifies the name of the directory that will be created to hold the generated source
code for the component elements. This directory will be generated as a subdirectory
of <output directory>/src.

By default this property is left blank, meaning that source files can be found in the src
subdirectory.

Note: Output directory is specified in the OutputDirectory (Component, C++
Generation) property.
C++ Generation Properties 215

ComponentUnitName (Component, C++ Generation)

Specified the name of the source files generated for the component itself. You should
only have to modify this property if the component has the same name as another
model element, or conflicts with other source files. The name given here will change
the name of the generated component .cpp and .h files.

CommonPreface (Component, C++ Generation)

Component level inclusion files are entered as inclusions in this list. Any number can
be specified and are entered independently of any directory search list. The list of
directories to search for these inclusions is entered through the InclusionPaths
(Component, C++ Compilation). Inclusions items can be added and deleted as
desired.

The scope of inclusions is system level. For example, if all elements being built by this
component make use of a set of math routines, the math header file can be specified
here instead of on each individual element. In addition, the inclusions are declared in
exactly the sequence they appear in the list (top to bottom). One way this ordering can
be useful is by using it to have normal system include files specified before user
includes. Specifying system includes in this way can aid visibility and ensure
completeness.

Note: The compiler you are using may search some paths automatically; for example,
a compiler hosted on UNIX often searches /usr/include.

Generally, inclusions can be declared at both the component and class level. The
former specified in this inclusion list, the latter specified through the classes
specification dialog. In either case the directory search list is taken from the
InclusionPaths (Component, C++ Compilation) property.

You can add class level inclusions via the ImplementationPreface (Class, C++) and
HeaderPreface (Class, C++) properties on classes and capsules.

This field may also be modified from the generated code and captured into the model
using the Code Sync feature. For more information, see Using Code Sync to Change
Generate Code in the Toolset Guide.

Both inclusion types get dropped into the global space. However, the only semantic
difference between them is the scope guarantee: the component-level inclusions are
guaranteed to have all classes in their scope, while the class-level inclusions guarantee
that only that class and its subclasses will have the declared inclusion in scope (that is,
216 Chapter 11 - Model Properties Reference

visible). These includes are actually in the global space regardless of type, so we
recommend that you restrict usage of these inclusions to extern and type declarations;
otherwise, multiple definition are reported at link time.

CodeGenMakeType (Component, C++ Generation)

Can be one of <default>, Unix_make, MS_nmake, ClearCase_clearmake or
Gnu_make. This influences the format of the generated makefiles so they conform to
differences in the make variants.

Leaving the entry as <default> will allow the code generator to automatically select
the make type based on the platform on which the component is being generated.
Either Unix_make (for Unix) or MS_nmake (for WindowsNT) will be substituted for
<default>. If you require another make type, then you should explicitly specify the
make type in this field.

CodeGenMakeCommand (Component, C++ Generation)

The name of the make utility being used to control the code generation. The make
name must be the exact name of the make command. By default the default make
command is $defaultMakeCommand which will allow the code generator to
automatically select the make type based on the platform on which the component is
being generated. Either make (for UNIX) or nmake (for Windows) will be substituted
for <default>. If you require a different make utility, just type it in.

When a model is built, Rose RealTime generates the model files, and then invokes the
make utility to generate the source code from the model files. Code generation is,
therefore, external. Make handles incremental code generation by using the
timestamps on the toolset generated model files.

CodeGenMakeArguments (Component, C++ Generation)

Any flags supported to be passed to the make utility.

CodeGenMakeInsert (Component, C++ Generation)

The make insert is a makefile fragment which is included in the compilation makefile
that allows for the addition of user-defined dependencies, compile, and link options.
C++ Generation Properties 217

CodeSyncEnabled (Component, C++ Generation)

Specifies whether codesync is enabled for a component. Disabling this feature
removes tags from the code making it easier to read. Codesync tags annotate the
generated code with tags that show you where you can edit code, and then let you
synchronize it back into the model using the codesync feature. Codesync tags look
like the following:

// {{{USR

// }}}USR

You can make modifications between the tags, and then synchronize these changes
back into the model.

This option is available in the Item Properties area on the C++ Generation tab for a
component.

See Also C++ TargetRTS properties, Code Generation

Generate Model Tags (Component, C++ Generation)

Specifies whether to annotate the generated code with information used to correlate
the lines of code back to specific model elements. For example, if there is a compiler
error or warning in the generated code, you can find that associated model element.
Model tags look like the following:

// {{{RME operation 'main(int,const char *)'

int main(int argc, const char * argv);

// }}}RME

C++ Compilation Properties

Compilation properties are used to configure the way in which the generated source
files for a component are compiled. These properties apply equally to Executable and
Library component types. Both executables and libraries require compilation.

Component

■ CompilationMakeType (Component, C++ Compilation) on page 219
■ CompilationMakeCommand (Component, C++ Compilation) on page 219
■ CompilationMakeArguments (Component, C++ Compilation) on page 220
■ CompilationMakeInsert (Component, C++ Compilation) on page 220
■ CompileCommand (Component, C++ Compilation) on page 220
218 Chapter 11 - Model Properties Reference

■ CompileArguments (Component, C++ Compilation) on page 221
■ InclusionPaths (Component, C++ Compilation) on page 221
■ TargetServicesLibrary (Component, C++ Compilation) on page 222
■ TargetConfiguration (Component, C++ Compilation) on page 222

CompilationMakeType (Component, C++ Compilation)

Can be one of <default>, Unix_make, MS_nmake, ClearCase_clearmake or
Gnu_make. This influences the format of the generated makefiles so they conform to
differences in the make variants. For example, if nmake on Windows NT is being
used, then MS_nmake must be selected as the make type.

Leaving the entry as <default> will allow the code generator to automatically select
the make type based on the platform on which the component is being generated.
Either Unix_make (for UNIX) or MS_nmake (for WindowsNT) will be substituted for
<default>. If you require another make type, then you should explicitly specify the
make type in this field.

CompilationMakeCommand (Component, C++ Compilation)

When a model is built, Rational Rose RealTime generates the model files then invokes
the make utility to generate the source code from the model files. Code generation is,
therefore, external. Make handles incremental code generation by using the
timestamps on the toolset generated model files.

The name of the make utility being used to control the code generation. The make
name must be the exact name of the make command. By default the default make
command is $defaultMakeCommand which defaults to nmake on Windows and
make on UNIX. If you want to use a different make utility than what is shown just
type it in.

By default, the CompilationMakeCommand box contains the following command:

rtperl -S rtsetup.pl $defaultMakeCommand

You use the Perl script rtsetup.pl to reuse the environment used to build the
TargetRTS. The script examines the generated makefile to determine the
TargetConfiguration specified for the current component, executes
$RTS_HOME/config/<TargetConfiguration>/setup.pl to re-create the environment
required to build the TargetRTS, and then, in that environment, executes the
command that follows. It is useful for designers who must build components for
different targets which depend on conflicting environment variable definitions.
C++ Compilation Properties 219

To use vssetup.pl, add the following to the CodeGenMakeCommand:

rtperl -S vssetup.pl $defaultMakeCommand

CompilationMakeArguments (Component, C++ Compilation)

Any flags supported to be passed to the make utility.

CompilationMakeInsert (Component, C++ Compilation)

The make insert is a makefile fragment which is included in the compilation makefile
that allows for the addition of user-defined dependencies, compile, and link options.

Refer to the generated makefiles to understand what make macros and variables are
generated and can be used when writing the make insert. In addition both the
Callbacks and ISR C++ example models use make inserts. You can use these as a
starting point.

For additional information on the ISR C++ example, see the book Model Examples,
Rational Rose RealTime.

CompileCommand (Component, C++ Compilation)

The compiler command property is used to replace the pre-configured compiler shell
command defined in libset.mk. You would normally leave this entry (usually set to
$(CC))and use the default compiler specified in the libset makefile.

When building your model, a compiler will be used to compile the generated code
and a linker will be used to link the executable. By default, when you specify the
Service Library, you identify the make files to be used to build the component and the
tools are specified in the makefile called:

$ROSERT_HOME/RTSType/TargetLibrary/libset/Library/libset.mk
220 Chapter 11 - Model Properties Reference

While you can override in the component, the compiler and/or the linker to be used,
the new tools used should be compatible with the ones being overridden. Typically
you want to override the compiler/linker to:

■ perform preprocessing.

For example, instead of invoking the compiler straight away, you can invoke a
script that will perform some preprocessing, as well as compiling (such as running
the source file through lint before invoking the compiler).

■ qualify the path to the compiler/linker because they are not in the current path.

If you want to choose a completely different type of compiler (gnu vs. greenhills),
or even a different release of a compiler, you should be changing instead the
Service Library specification. That way the make files used will pass flags
understood by the compiler/linker. As well, you will be sure the precompiled
Service Library that is to be linked will have been compiled with the compiler you
are using.

CompileArguments (Component, C++ Compilation)

Any flags supported by your compiler utility. This is where you would specify a
parallel make flag to increase compilation efficiency.

InclusionPaths (Component, C++ Compilation)

Any number of entries can appear as inclusion path items. As a group they comprise
the directory search set used by the compiler to find user-specified inclusion files.
They are searched in the order specified in the list. The inclusion paths property has
an advanced property dialog. When the Edit... button is pressed, in the dialog that
opens, you can directly edit existing include paths from within the list and add and
remove entries using the Insert and Remove buttons.

You should avoid adding unnecessary inclusion paths to this list. The number of
directories that need to be searched for a file can slow down the compilation process
because of the file access that is required for searching all the directories.

It is recommended that pathmaps/shell/environment variables be used when
specifying the inclusion paths. This way other team members can configure their
environment without having to modify the component.

Note: Path map variables, those defined within the toolset, can be used to specify
indirect inclusion paths.
C++ Compilation Properties 221

If Compute Dependencies is set to Yes, then the make depends utility will be used to
calculate dependencies in that directory and the object file for the model becomes
dependent on the inclusion files in this directory that it needs.

Note: The only time you should set Compute Dependencies to No is if the inclusion
file timestamp changes artificially and you don’t want this to trigger a recompile, or if
the inclusion is a system level which very rarely changes.

TargetServicesLibrary (Component, C++ Compilation)

The text field is used to specify the path to the root directory for the specific Services
Library desired. This can be any legal directory name. This name must be specified as
a full path to the root directory of the Services Library root.

The Target Services directory contains all the scripts and programs to generate and
compile a component. Hence, if this directory is not configured correctly, you won't be
able to generate or compile. You are likely to see the “name not found” or “Build
Failed” error appear in the Build Log Window if it is incorrectly configured.

By default this field references the Services Library in your Rose RealTime home
directory $ROSERT_HOME/C++/TargetRTS. This can be changed to any other
directory that contains the C++ Services Library.

TargetConfiguration (Component, C++ Compilation)

This property is used to uniquely identify the configuration of the Services Library
that will be used to compile and link the component. The configuration name is
composed of three parts: os.processor-compiler-version.

For example, the configuration for a WindowsNT 4.0 multi-threaded platform with an
x86 processor built with version 6.0 of Microsoft Visual C++ would be called:

NT40T.x86-VisualC++-6.0

If you would like to see the valid configuration names, look at the directories located
in the lib subdirectory of the Services Library root. If you build different
configurations of the Services Library the new configuration will appear in this list.
222 Chapter 11 - Model Properties Reference

C++ Executable Properties

This group of model properties is used to control the aspects of generating an
executable from a C++ model. C++ Executable properties apply only to components
which are of type C++ Executable. This page contains a summary of the C++
Executable properties grouped by model element to which they are associated.

Component

■ TopCapsule (Component, C++ Executable) on page 223
■ PhysicalThreads (Component, C++ Executable) on page 223
■ ExecutableName (Component, C++ Executable) on page 225
■ DefaultArguments (Component, C++ Executable) on page 226
■ LinkCommand (Component, C++ Executable) on page 226
■ LinkArguments (Component, C++ Executable) on page 226
■ UserLibraries (Component, C++ Executable) on page 226
■ UserObjectFiles (Component, C++ Executable) on page 227

TopCapsule (Component, C++ Executable)

Specifies the top capsule to be compiled for this component. The top capsule defines
the compilation closure for the component. All classes, including capsule and protocol
classes referenced directly or indirectly by the top capsule will be compiled as part of
the component. Dependencies are verified before every component build, and are
added to this list before the build. The top capsule also defines the default executable
name to be produced by the compilation.

This property uses an advanced property editor. When you click Select, a dialog lists
all capsules referenced by the component. Select the desired top level capsule, and
click OK.

PhysicalThreads (Component, C++ Executable)

On some platforms, the Services Library supports multiple threads. Optional capsule
roles can be assigned to different logical threads. These logical threads can then be
assigned to a physical thread configuration for the target system. The physical thread
configuration can be changed without affecting the logical thread design of the model.

By default, all capsules are assigned to a pre-defined thread called MainThread. If you
want a capsule to run in another user-defined thread, you must incarnate that capsule
in that thread at run-time. Only optional capsules may be placed on threads other
than the MainThread. Fixed capsules reside in the same thread as their container.
When an optional capsule is incarnated on another thread, all fixed capsules
C++ Executable Properties 223

contained inside the optional capsule are also placed on that thread. The top-level
capsule is always fixed, so it, and all fixed capsules that it contains, are placed on the
MainThread.

To incarnate an optional capsule in a particular thread, there is an optional parameter
that should be specified for the Frame Service incarnate method.

The physical threads property is edited with an advanced property editor which
opens when you press the Edit... button.

The physical threads list contains the list of physical threads that are defined for this
component and shows which logical threads are associated with each physical thread.
Depending on the implementation of threads provided by the Target Real-Time
Operating System, each physical thread is a light-weight, time-sliceable process,
running in a shared address space with the Services system threads and the other
physical threads in the model.

By default, every configuration defines the following physical threads :

■ MainThread: Where all of the capsules in your model execute by default. If you
want capsules to execute in a thread other than the MainThread, you must define
additional physical threads.

■ TimerThread: Where the system timer service executes. TimerThread is always
present, even if you do not use the timer services.

At this point you can create new physical threads, and either drag and drop logical
threads to other physical threads or use the Logical threads list at the bottom of the
dialog to assign the logical threads to physical threads.

Physical Thread Properties

For each physical thread you define you can also modify the following thread
properties:

Note: Although stack size is configurable, for some target operating systems this stack
size is effective at the time the main thread is created. This is because on some targets
the OS creates the main thread with a default thread size, and this thread size cannot
be modified at run-time. In these situations, the desired stack size for the main thread
can be set by configuring the OS kernel or by the way in which the executable is
spawned on the target.

Stack Size Size (in bytes) of the call stack allocated for this thread.
By default is set to 20KB.

Priority The priority at which this thread will run.
224 Chapter 11 - Model Properties Reference

Logical Threads

The logical threads list shows the different threads in the architectural design of the
model. It also shows all logical threads defined in any component on which the
executable component depends (e.g. any library or external library components). The
name of the component in which the logical thread is defined is shown in brackets
beside the logical thread name. You can’t modify these logical threads from within
this dialog. Thus, if a library was build with references to logical threads, you must
ensure that you list the names of the logical threads in the library LogicalThreads
(Component, C++ Library) property and for external library components in
LogicalThreads (Component, C++ External Library).

Each logical thread is a conceptually independent thread of execution. Logical threads
may be mapped to different actual physical thread configurations for generating the
executable implementation. However, the model entities are defined purely in terms
of logical threads. That is, in the design, the model entities get allocated to a particular
logical thread. Only at implementation time does the designer have to worry about
mapping these to physical threads on the target system.

Physical Threads

The physical threads list contains the list of physical threads that are defined for this
component. Depending on the implementation of threads provided by the Target
Real-Time Operating System, each physical thread is a light-weight, time-sliceable
process, running in a shared address space with the Services system threads and the
other physical threads in the model.

ExecutableName (Component, C++ Executable)

You can specify the name, or a name with an absolute path, of the executable that will
be created as a result of the component being built. If left unspecified, the executable
name is set to the name of the component's top-level capsule.

If an absolute path is not used in the executable name, the executable will be located
in the following component build output directory:

<output_dir>/build
C++ Executable Properties 225

DefaultArguments (Component, C++ Executable)

Some platforms do not allow command line arguments to be passed to an executable
at load time (namely, on some real-time operating systems). In this case, the default
arguments provides a mechanism for getting execution arguments into the
executable. You can use RTMain::argStrings() to retrieve any passed command line
argument within your model. Enter a comma separated list of quoted arguments into
this field.

"134.434.344.4","barneyht","delay=98"

The default arguments field will only be used for targets that cannot accept command
line arguments. Targets that accept command line arguments will ignore the content
of this field.

LinkCommand (Component, C++ Executable)

The linker override field is used to replace the pre-configured linker shell command
defined in libset.mk. You would normally leave this entry and use the default linker
specified in the libset makefile.

LinkArguments (Component, C++ Executable)

Any flags supported by your linker utility.

UserLibraries (Component, C++ Executable)

Specifies libraries that are to be passed to the linker. You have to specify the library
prefix, path, and extension correctly. The code generator does not modify these library
names. For example, you can either add libraries on separate lines or separated by a
space on the same line:

$@/userfiles.lib

$PROJECTX/lib/userfiles.lib

-lmath

Note: Enclose pathnames with spaces in double quotes ‘”’.

This property is intended for backwards compatibility. We recommend that you
model externally created libraries with external library components instead of adding
them to this property. This will allow libraries to be visible in the toolset and more
easily re-used with different executable components.

UserObjectFiles (Component, C++ Executable)

Specifies object that are to be passed to the linker. You have to specify the library
prefix, path, and extension correctly. The code generator does not modify these object
names. For example:

$@/userfiles.o

$PROJECTX/lib/userfiles.o

Note: Enclose pathnames with spaces in double quotes ‘”’.

This property is intended for backwards compatibility. It would be more flexible to
create libraries for object files and then create external library components to model
externally created libraries. This will allow libraries to be visible in the toolset and
more easily re-used with different executable components.

C++ Library Properties

This group of model properties is used to control the aspects of generating a library
from a C++ model. C++ Library properties apply only to components which are of
type C++ Library. This page contains a summary of the C++ Library properties.

Component

■ LibraryName (Component, C++ Library) on page 227

■ BuildLibraryCommand (Component, C++ Library) on page 228

■ BuildLibraryArguments (Component, C++ Library) on page 228

■ LogicalThreads (Component, C++ Library) on page 228

LibraryName (Component, C++ Library)

The name of the generated library file. By default this name is
${LIB_PFX}$name${LIB_EXT}. The library file is written to a directory called build
which is located in the directory specified by the OutputDirectory (Component, C++
Generation) property.
C++ Library Properties 227

LIB_PFX is defined as “lib” and can be configured. You can change the default setting
for this make macro by modifying its definition in either of the following files:

$RTS_HOME/libset/default.mk

$RTS_HOME/libset/<libset name>/libset.mk.

LIB_EXT is defined as the default library extension for your platform. You can change
the default setting for this make macro by modifying the following file:

$RTS_HOME/libset/<libset name>/libset.mk.

Note: $RTS_HOME is the location of your Services Library root directory. For more
details about the Services Library directory, see TargetServicesLibrary (Component, C++
Compilation) on page 222.

BuildLibraryCommand (Component, C++ Library)

Specifies the archiving command. You would normally leave this entry and use the
pre-configured linker shell command defined in libset.mk.

BuildLibraryArguments (Component, C++ Library)

Any flags supported by your archiver utility. They are passed as is to the archiver.

LogicalThreads (Component, C++ Library)

If the capsules referenced by this library component reference logical thread names,
you have to list them here, one per line. For example:

LogicalThread1

LogicalThread2

LogicalThread3

If the logical thread names are not listed here your library component will not
compile. The mapping from logical to physical threads is done on executable
components. If an executable component uses a library (has a dependency between
executable and library component) then the logical threads defined in this property
will show in the logical threads list of the executable components threads dialog. This
is where you can map the logical threads defined in the library to physical threads.
228 Chapter 11 - Model Properties Reference

C++ External Library Properties

This group of model properties is used to control the aspects of generating the
makefile fragments which allow pre-built libraries to be re-used when building an
executable. C++ External Library properties apply only to components of type C++
External Library.

Component

CodeGenDirName (Component, C++ External Library) on page 229

InclusionPaths (Component, C++ External Library) on page 230

Libraries (Component, C++ External Library) on page 230

LogicalThreads (Component, C++ External Library) on page 231

After creating an external library component and configuring the properties, draw a
dependency relationship between an executable component and the external library
component to have the executable use the library referenced by the external
component.

GenerateClassInclusions (Component, C++ External Library)

Turn this property off if you don’t want inclusions generated in classes and capsules
that use the elements referenced by the external library. This is useful if the inclusion
is actually provided somewhere. Normally this should stay on.

CodeGenDirName (Component, C++ External Library)

This property is only required if GenerateClassInclusions (Component, C++ External
Library) is turned on and the external library represents a library build from the
toolset. This is the prefix directory for the generated source code. This should be set to
the same value as CodeGenDirName (Component, C++ Generation) for the library
component that was used to create the library which this external library references.

Having this prefix will ensure that all inclusions generated for model elements that
reference elements in the external library will be prefixed with this value. This will
reduce the chance of having inclusion conflicts. For example if this property is set to
rtg, then inclusions will be generated as:

#include <rtg/foo.h>
C++ External Library Properties 229

InclusionPaths (Component, C++ External Library)

Specifies the location of the definitions for the external library. Components which
reference this external library will automatically include the definitions header file.

$@/include

$PROJECTX/include

$@/ALibraryComponent/src

It is recommended that you use pathmap symbols or environment variables for
pathnames in this property. For details, see Environment Variables and Pathmap Symbols
on page 178.

If Compute Dependencies is set to Yes, then the make depends utility will be used to
calculate dependencies in that directory and the object file for the model becomes
dependent on the inclusion files in this directory that it needs.

Libraries (Component, C++ External Library)

Specifies the location and names of the libraries that this external component
represents. The libraries listed in this field will be added to the link line for any
executable component that references this external library.You have to specify the
complete path and filename. For example:

On UNIX:

/home/projectX/lib/classes.a

$@/lib/classes.a

$PROJECTX/lib/classes.a

-L@/lib

-lclasses

On Windows:

$@/lib/classes.lib

C:\local\projects\ProjectX\lib\classes.lib

We recommend that you use pathmap symbols or environment variables for
pathnames in this property.

For details, see Environment Variables and Pathmap Symbols on page 178.

If Generate Dependencies is set to Yes, the executable for the model becomes
dependent on the library files. You must set Generate Dependencies to False for any
entries which are directories (-L) or prefixed libraries (-lmath).
230 Chapter 11 - Model Properties Reference

LogicalThreads (Component, C++ External Library)

If the capsules referenced by this external library component reference logical thread
names, you have to list them here, one per line. For example:

LogicalThread1

LogicalThread2

LogicalThread3

The mapping from logical to physical threads is done on executable components. If an
executable component uses a external library (a dependency exists between
executable and external library component) then the logical threads defined in this
property will show in the logical threads list of the executable components threads
dialog. This is where you can map the logical threads defined in the external library to
physical threads.
C++ External Library Properties 231

232 Chapter 11 - Model Properties Reference

12Services Library Class
Reference
Contents

This chapter is organized as follows:

■ RTDataObject Subclasses on page 234
■ RTActor on page 234
■ RTActorClass on page 239
■ RTActorRef on page 240
■ RTActorId on page 241
■ RTController on page 242
■ Exception on page 245
■ Frame on page 247
■ RTInSignal on page 257
■ Log on page 261
■ RTMessage on page 264
■ RTObject_class on page 268
■ RTOutSignal on page 270
■ RTProtocol on page 275
■ RTSymmetricSignal on page 286
■ RTTimerId on page 287
■ RTTimespec on page 287
■ Timing on page 291
■ RTTypedValue on page 299
■ Port Services on page 299

Overview

The C++ Services Library Class Reference is a reference to the structures and classes
that you will need to use within the detailed code of a capsule to access the services
provided by the C++ Services Library.

The C++ Services Library Framework on page 93 shows the classes in a class diagram.
The remainder of the Class Library Reference consists of an alphabetical listing of the
classes.
233

In the alphabetical listing section, each class description includes a member summary
by category, followed by alphabetical listings of operations and attributes. This
reference does not describe private or restricted operations and attributes from the
Services Library. Some features and classes in the Services Library are internal to the
library itself and thus are not supported as interfaces into a user’s application.

RTDataObject Subclasses

Classes derived from RTDataObject are only required for backwards compatibility
with previous releases of ObjecTime Developer. These subclasses include RTInteger,
RTString, RTByteBlock, RTPointer, RTReal, RTCharacter, RTEnumerated,
RTSequence, and RTSequenceOf. In Rose RealTime you can create your own classes
or you can import third-party class libraries into the Data Modeler. Classes no longer
have to be derived from RTDataObject.

RTActor

Every capsule when generated as C++ code is a subclass of RTActor. This common
base class for all capsules defines attributes and operations which allow the Services
Library to communicate with the running capsule instances.

Since all detail level code added to a capsule class is generated as part of a capsule
class, the detail level code has direct access to some useful attributes and operations
that are defined on RTActor. You should only be calling the operations of RTActor or
using attributes that are defined below:

The attributes and operations on RTActor are private. One capsule may not
manipulate another capsule’s attributes.

Operations

RTActor::context Gets the controller for the physical thread on
which a capsule instance is executing.

RTActor::getCurrentStateString Gets the current state name containing the
executing segment.

RTActor::getError Gets the last error value for this thread.

RTActor::getIndex Gets the replication index of this capsule instance
in the home capsule role.

RTActor::getName Gets the capsule role name in which this capsule
instance is running.
234 Chapter 12 - Services Library Class Reference

RTActor::msg and RTActor::getMsg

const RTMessage * msg;

const RTMessage * getMsg(void);

Return value

The msg attribute can be accessed via the getMsg operation. A pointer to the message
is returned.

Remarks

Every capsule class has an attribute msg which contains a pointer to the current
message delivered to a capsule instance. This attribute can be used within transition
detail level code to retrieve a message that was sent to the capsule instance.

Examples

Retrieve the void * pointer to the data portion of the message.

const void *data_ptr = msg->data;

You can also use getMsg to access the current message.

const void *data_ptr = getMsg()->getData();

For most cases, the data can be accessed directly using the rtdata parameter that is
passed to every transition code segment:

// The following is commonly needed to make a copy of the data

// that was sent with a message

const ADataClass & data1 =

*((const ADataClass *)getMsg()->getData());

RTActor::getTypeName Gets the capsule class name of this capsule
instance.

RTActor::isType Queries the capsule class of this capsule instance.

RTActor::logMsg Called before every message is delivered to a
capsule instance (if configured in Services Library).

RTActor::msg and RTActor::getMsg Accesses the msg attribute.

RTActor::unexpectedMessage Called when a message is delivered to a capsule
instance for which there is no trigger defined.
RTActor 235

// the above statement can be written using the

// rtdata parameter available in all state

// transition segments.

const ADataClass & data1 = *rtdata;

RTActor::logMsg

virtual void logMsg(void);

Remarks

This operation is called by the Services Library before a received message is processed
by a capsule instance (if so configured).

As implemented by the RTActor class, this operation prints to the log every message
that was delivered to the capsule, depending on the debug level. Since this operation
is defined as virtual, it can be useful in some circumstances to override this operation
within a capsule class in order to provide some alternative processing for each
message.

To override this operation, simply add a new operation to the capsule class with the
same name and prototype (it takes no parameters and returns void). It can also be
overridden for the entire model by creating a new RTActor::logMsg() operation,
compiling it, and including it in the model using the model link options.

RTActor::unexpectedMessage

virtual void unexpectedMessage(void);

Remarks

This operation is called by the Services Library when there is no transition event
found that is triggered by the current message about to be delivered. This happens
when the capsule's rtsBehavior() function is called to process a message and no
corresponding trigger event is found. The default unexpectedMessage() behavior
prints a message to stderr. This operation can be overridden on a capsule class basis to
provide any additional functionality that may be required.
236 Chapter 12 - Services Library Class Reference

To override this function, simply add a new function to the capsule class with the
same name and prototype. It can also be overridden for the entire model by creating a
new RTActor::unexpectedMessage() operation, compiling it, and including it in the
model using the model link options.

RTActor::context

RTController * context(void);

Return value

A pointer to the controller for the thread on which this capsule instance is running.

Remarks

There are some public operations on the RTController class that can be accessed this
way. In particular, you may find it useful for printing error information, as in the
example below.

Examples

if(! port.ping().send())

{

log.show("Error on physical thread: ");

log.log(context()->name());

context()->perror("send");

}

RTActor::getError

RTController::Error getError(void) const;

Return value

The value of the most recent error within a particular thread. The Error enumeration
is defined within the RTController class.
RTActor 237

Remarks

The error code is not reset by a subsequent successful primitive operation call. It
should be called immediately following the failure of a Services Library operation
call.

Examples

See the example shown in the error codes descriptions.

RTActor::getIndex

int getIndex(void) const;

Return value

The replication index of this capsule instance in its “home” role (where it was
incarnated). The replication value is zero (0) based.

RTActor::getName

const char * getName(void) const;

Return value

The name of the capsule role in which this capsule instance is running (where it was
incarnated).

RTActor::getTypeName

const char * getTypeName(void) const;

Return value

Returns the class name of this capsule instance.
238 Chapter 12 - Services Library Class Reference

RTActor::isType

int isType(const char * class_name) const;

Return Value

Returns 1 (true) if this capsule instance is of class class_name, and 0 (false) otherwise.

Parameters

class_name

The name of a capsule class.

Example

if(isType("PhoneManagerCapsule"))

{

log.log(“This capsule role is of type: “);

log.log(getTypeName());

}

RTActor::getCurrentStateString

const char * getCurrentStateString(void) const;

Return value

The name of the current state containing the executing segment.

RTActorClass

This class is created to represent the common external features (interface ports and
capsule name) of each capsule in your model. Only one instance of a RTActorClass
structure exists for all capsule instances. This way common information about the
capsule class can be stored only once.

You can reference this capsule information object in detail level code, by referencing it
by name.
RTActorClass 239

Common usage

The RTActorClass object is commonly required when using the Frame::incarnate
operation. When incarnating (creating a new capsule instance) you always have to
specify which capsule class should be instantiated in an optional capsule role.

Below the first parameter is the capsule role (RTActorRef) and the second the capsule
class (RTActorClass):

frame.incarnate(aCapsuleRoleName, ACapsuleClass);

You should not create new instances of RTActorClass, but you can reference existing
class objects.

Objects of type RTActorClass cannot be passed as message data, but it is safe to pass
an address within a process.

Operations

This class does not have any operations available, and is only used in conjunction
with the frame service to refer to specific capsule classes for manipulating the
dynamic structure of a model.

RTActorRef

The RTActorRef class maintains information about each capsule role in your model.
For each capsule role in the structure of a capsule an attribute of this type is added to
the RTActor subclass generated C++ capsule class.

You can reference this capsule role in detail-level code of the containing capsule by
referencing the capsule role by name. There are basically only two reasons why you
would want to directly access capsule roles:

1 To incarnate a capsule instance into a capsule role

For example to specify which role to incarnate a capsule you would use the name of
the capsule role directly in the incarnate operation:

frame.incarnate(devices, Device);

Where devices is the target capsule role in which you want to incarnate a capsule of
type Device.
240 Chapter 12 - Services Library Class Reference

2 To find the replication of a capsule role

It is also commonly useful to use the replication size of a replicated capsule role:

Operations

RTActorRef::size

int size(void) const;

Return value

The replication value of the capsule role.

Remarks

The operation returns the replication size whether or not there is a capsule instance
currently incarnated at a specific slot or not.

RTActorId

The Frame service operations Frame::incarnate return an object of type RTActorId to
identify a particular capsule instance. The RTActorId object instance is used as a
handle to import the capsule into a plug-in capsule role, and to destroy or deport a
capsule instance.

In a capsule that has a Frame SAP called “frame”, the capsule gets it’s RTActorId as
follows:

RTActorId id = frame.me();

Note: RTActorId is a pointer to the capsule. If the capsule is destroyed, the pointer is
invalid and the functions that use it will crash. It is important to guarantee, at the
application level, that the capsule will not be destroyed.

Operations

RTActorRef::size Returns the replication size of a capsule role.

RTActorId::isValid Used to test whether the id contains a valid
capsule reference.
RTActorId 241

RTActorId::isValid

int RTActorId::isValid(void) const

Return Value

Returns 0 (false) if the id refers to an invalid capsule instance, and 1 (true) otherwise.

Remarks

This operation should not be used to test for the state of a capsule instance (regardless
of whether it is still alive). It should only be used immediately after a call to the
Frame::incarnate operation. Once the capsule instance has been created, isValid
always returns 1 (true), even if the capsule instance is subsequently destroyed.

Example

The example shows how the capsule instance id is checked after the incarnate
operation. If the incarnation fails an error message is printed to the log, and if the
incarnation is successful the capsule instance is immediately destroyed.

RTActorId capsule_id = frame.incarnate(terminal,
LongDistanceTerminal, RTTypedValue(), callThread, 0);

if(! capsule_id.isValid())

{

context()->perror("Incarnation failed: ");

}

else

frame.destroy(capsule_id);

RTController

The RTController is an abstract class that defines the interface to a group of executing
capsule instances within a single thread of concurrency. There is one controller object
for each physical thread in the system. The controller object maintains information
about the state of the thread as a whole, including the most recent error. Since the
majority of operations in the Services Library return either 1 (true) if successful, and 0
(false) otherwise, the controller object can provide the precise cause of failure.
242 Chapter 12 - Services Library Class Reference

Refer to the error values description for a complete listing of the Services Library
run-time errors.

Note: From within a capsule instance, you can retrieve a pointer to its controller by
calling the RTActor::context operation. You can also use RTActor::getError to obtain
the error value maintained by the controller.

Operations

RTController::getError

Error getError(void) const;

Return Value

The value of the most recent error within the thread.

Remarks

The error code is not reset by a subsequent successful primitive operation call. It
should be called immediately following the failure of a Services Library operation
call.

Examples

See the example shown in the RTController error codes descriptions.

RTController::abort Terminates the current process.

RTController::getError Returns the value of the most recent error within a
particular thread.

RTController::name Obtains the name of the controller (physical thread
name).

RTController::perror Prints a user-supplied error message along with
the string for the current error as returned by
getError.

RTController::strerror Describes the current error code.
RTController 243

RTController::strerror

const char * strerror(void) const;

Return Value

A description of the current error code on the current RTController, that is, the
controller for a physical thread.

Examples

See the example shown in the RTController error codes descriptions.

RTController::perror

void perror(const char * error_string = "error");

Parameters

error_string [optional]

The string to be printed to stderr along with the current error string as returned by the
RTController::strerror operation. By default, the string "error" will be printed.

Example

if(! aPort.ack().send())

context()->perror("Error sending ack");

Output

Error sending ack: Port not connected.

RTController::name

const char * name(void) const;

Return value

Returns the name of the controller. Controllers are named based on the physical
thread on which they run. The assigned physical thread names are taken from the
physical thread specification dialog. This method is a way of allowing capsules to find
out what thread they are running on.
244 Chapter 12 - Services Library Class Reference

RTController::abort

void abort(void);

Remarks

Calling this operation on any controller will terminate the controller on which the
capsule instance is running which in turn destroys all capsule instances running on
that controller. Messages that have not been processed are deleted.

If this is called on the main thread then all threads are destroyed, and the process
quits.

Examples

context()->abort();

Exception

The Exception Service, like other run-time system services, is accessed through an
exception port. Exceptions manifest themselves in the form of Services Library
messages arriving on appropriate Exception Service ports. Any capsule class that
needs to raise or handle exceptions must define an exception port in its structure.
Exception Service ports are instances of the class Exception.

Exceptions in Rose RealTime are defined as signals in the Exception Service Protocol
class. The input signals are those exceptions that an application may handle or raise.

Exception signals

These are a set of valid signals that are defined on the exception protocol class. A
special RTExceptionSignal is defined with the only action that is allowed on a
Exception signal, that is to raise an error.
Exception 245

Exception Signals

RTExceptionSignal arithmeticError(const RTTypedValue &);

RTExceptionSignal error(const RTTypedValue &);

RTExceptionSignal notFoundError(const RTTypedValue &);

RTExceptionSignal notUnderstoodError(const RTTypedValue &);

RTExceptionSignal serviceAccessError(const RTTypedValue &);

RTExceptionSignal streamError(const RTTypedValue &);

RTExceptionSignal subclassResponsibilityError(const RTTypedValue &);

RTExceptionSignal timeSliceError(const RTTypedValue &);

RTExceptionSignal userError(const RTTypedValue &);

Return value

Returns 1 (true) if the operation was successful, and 0 (false) otherwise

Parameters

Remarks

The exception must be raised by the application. The Services Library does not
automatically raise any exceptions by itself.

With userError(), you can provide any relevant data that is required to send along with
the exception.

Examples

// How to handle service errors using the exception service

if(! myPort.start().send())

ex.userError(RTString("Send on ring port failed.")).raise();
246 Chapter 12 - Services Library Class Reference

RTExceptionSignal

The RTExceptionSignal contains the raise operation that can be called on the signals
defined within the Exception protocol class.

raise

The only action (operation) that can be called on an exception signal is to raise it.

Example

exception.userError(RTString("Send on ring port failed")).raise();

Frame

The Frame service is accessed via Frame service ports, declared in the structure of a
capsule class. Frame service ports are instances of the class Frame. The operations
take, as their parameters, either of:

■ static capsule role names RTActorRef (design-time names of capsule roles), and
capsule class names RTActorClass

■ dynamic capsule instance idsRTActorId (generated at run time)

The Frame class also provides a number of query primitives that can be used to get
information about the structure of the model. These functions may be useful in some
circumstances, particularly for writing generic capsules that must deal with very
dynamic structures.

Operations

Frame::classIsKindOf Tests whether a particular capsule class is a
subclass of another.

Frame::className Finds the string name of a capsule class.

Frame::classOf Determines the class of a given capsule instance.

Frame::deport Removes a capsule instance from a plug-in capsule
role.

Frame::destroy Destroys an instance of an optional capsule.

Frame::import Imports a capsule instance into a plug-in capsule
role.
Frame 247

Frame::classIsKindOf

Return value

The function returns 1 if parent is equal to or an ancestor of child, and returns 0
otherwise.

Parameters

child

Child is the name of the capsule class in question

parent

Parent is an capsule class which, if it is the same as, or a superclass of, the class in
question, the method returns 1.

Frame::className

const char * className(const RTActorClass & capsule_class)

Return value

The operation returns the name of the specified capsule class in the form of a
null-terminated string.

Parameters

capsule_class

Is the name of a capsule class.

Frame::incarnate Creates optional capsule role instances. This
operation must be used to create and run capsule
instances on different logical threads.

Frame::incarnationAt Retrieves a particular capsule instance of a capsule
role.

int classIsKindOf(const RTActorClass & child,

const RTActorClass & parent);
248 Chapter 12 - Services Library Class Reference

Remarks

The Services Library stores run-time information about each capsule class in the
model using a separate class (often referred to as a metaclass. The information is
contained within a RTActorClass object. There is one object for each capsule class,
having the same name as that of the class that it represents.

Frame::classOf

const RTActorClass & classOf(const RTActorId & instance);

Return value

The function returns the class of the specified actor. If an error occurs the
EmptyActorClass is returned.

Parameters

instance

Capsule instance id

Frame::deport

Return value

These functions return false (0) if an error occurred, and true (non-0) otherwise.

The operation can fail if:

■ the capsule instance being removed was not present in the role.
■ the role is not uniquely identified.

int deport(const RTActorId & instance,

RTActorRef & role);
Frame 249

Parameters

instance

Is the id of the capsule instance to be removed.

role

Is the capsule role name from which the capsule instance is to be removed.

Frame::destroy

int destroy(RTActorId & capsule_instace);

int destroy(RTActorRef & capsule_role);

Return value

These functions return false (0) if an error occurred, and true (non-0) otherwise.

Parameters

RTActorId

Using destroy with the capsule id will destroy the capsule instance and all of its
component capsule roles.

RTActorRef

Instead of destroying one capsule instance, you can destroy all instances represented
by a capsule role. Any and all instances of this capsule role will be destroyed. The
capsule role can only be destroyed by the immediate container of that role.

Examples

// receive capsule instance identifier from

// the capsule instance to destroy.

RTActorId cid = rtdata;

frame.destroy(cid);

// or you can destroy all instances by specifying the

// capsule role instead of a specific instance.

frame.destroy(terminal);
250 Chapter 12 - Services Library Class Reference

Frame::import

Return value

These functions return false (0) if an error occurred, and true (non-0) otherwise.

The operation fails in the following cases:

■ if the capsule identified no longer exists.
■ the class of the capsule instance is not a compatible class.
■ a port of the instance that is bound in the imported capsule role is already bound

elsewhere.
■ the target capsule is not uniquely identified.

Parameters

instance

Is the instance id of the capsule instance which is to be imported.

dest

Is the name of the capsule role into which the capsule instance will be imported. The
capsule role must be in the immediate decomposition frame within the calling capsule
instance.

index

Is the replication index within the plug-in capsule role into which the capsule instance
is to be imported. If unspecified, the capsule instance is imported into the first
available index.

int import(const RTActorId & instance,

RTActorRef & dest,

nt index = -1);

int import(RTActorRef & role,

RTActorRef & dest,

int index = -1);
Frame 251

role

Using an alternate form of the operation, you can provide a capsule role name instead
of the capsule instance id. To use this form of importation, the capsule role must not
be replicated, and a valid capsule instance for this role must be active. This operation
will import the capsule instance represented by the role (it cannot be a replicated role)
into the destination capsule role.
252 Chapter 12 - Services Library Class Reference

Frame::incarnate

RTActorId incarnate(RTActorRef & capsule_role);

RTActorId incarnate(RTActorRef & capsule_role ,

const RTActorClass & capsule);

RTActorId incarnate(RTActorRef & capsule_role,

const void * data,

const RTObject_class * type,

RTController * log_thread,

int index);

RTActorId incarnate(RTActorRef & capsule_role,

const RTActorClass & capsule,

const void * data,

const RTObject_class * type,

RTController * log_thread,

int index);

RTActorId incarnate(RTActorRef & capsule_role,

const RTActorClass & capsule_class,

const RTDataObject & rtdata,

RTController * log_thread = 0,

int index = -1);

RTActorId incarnate(RTActorRef & capsule_role,

const RTDataObject & rtdata,

RTController * log_thread = 0,
Frame 253

Return value

The operations returns a valid RTActorId if the operation is successful. To test if the
returned operation failed, use the RTActorId::isValid operation on the returned object.
For example:

RTActorId ind = frame.incarnate(mySubcapsule);

if (ind.isValid())

...//use index

else

...//getError() to see what's wrong, don't use index

If the operation fails you can use the RTActor::getError operation to find out why the
operation failed.

Parameters

There are alternate forms of the incarnate which leave out the RTActorClass
parameter (defaulting to the class specified for the capsule role) and for sending
different types of initialization data to the new instance, either as RTDataObject
classes or anything with a descriptor.

capsule_role

Is the name of the optional capsule role contained in the structure of the capsule
instance making the incarnate call.

int index = -1);

RTActorId incarnate(RTActorRef & capsule_role,

const RTActorClass & capsule_class,

const RTTypedValue & info,

RTController * log_thread = 0,

int index = -1);

RTActorId incarnate(RTActorRef & capsule_role,

const RTTypedValue & info,

RTController * log_thread = 0,

int index = -1);
254 Chapter 12 - Services Library Class Reference

capsule_class [optional]

Is the name of the class that should be instantiated into the optional capsule role. If
absent, the incarnated class defaults to the class of the capsule role. You can also use
the predefined variable EmptyActorClass to specify that the incarnated class default
to the class of the capsule role.

data, type, rtdata, info [optional]

Is the data to be sent to the created capsule instance. The data sent is accessible in the
capsule instances initial transition. Be sure to specify if no data is to be sent. See the
examples below.

thread

Is the name of the logical thread (given in the thread configuration dialog) where you
want the incarnated capsule instance to run. If no thread is specified the capsule
instance is incarnated in the thread of the caller.

index

Is the replication index into which the new capsule instance should be incarnated.
This is only valid when incarnating capsule instances into replicated capsule roles.
Indexing begins at 0, that is index 0 is the first capsule instance. If specified as -1,
capsule will be incarnated in first free slot.

The first free slot is the last slot number that was made available after a capsule was
deleted. For example, you create and then deleted capsules 0, 1, 2, 3 in this order. The
list of free slots is as follows in order: 3, 2, 1, 0, 4, 5, 6, 7, 8, 9.

Remarks

To use the frame operations, create a private end port using the Frame protocol.

Examples

This will incarnate a capsule instance into the optional capsule role named 'terminal'.
No initialization data is sent to the capsule instance. The incarnated class defaults to
the class of the capsule role:

RTActorId capsule_id;

capsule_id = frame.incarnate(terminal);

if(! capsule_id.isValid())

context()->perror("Incarnation failed: ");
Frame 255

If you want to incarnate the incarnated class of the capsule role and send initialization
data you can specify the EmptyActorClass variable as the second argument:

RTActorId capsule_id;

ControlData data(15, 8.98);

capsule_id = frame.incarnate(terminal, EmptyActorClass, &data,
&RTType_ControlData, (RTController *)0, -1);

This will incarnate a capsule instance into the terminal optional capsule role at index
0, with initialization data, on a specific logical thread.

RTActorId capsule_id;

PrinterData data(14, “ott05”);

capsule_id = frame.incarnate(

device, // capsule role name

Printer, // capsule

&data, // initialization data

&RTType_PrinterData, // type descriptor

callThread, // logical thread name

0 // index

);

if(! capsule_id.isValid())

context()->perror("Incarnation failed: ");

The following could be used to incarnate a capsule instance without initialization
data, but with a specific logical thread or a replication index:

RTActorId capsule_id;

PrinterData data(14, “ott05”);

capsule_id = frame.incarnate(

device,

Printer,

(const void *) 0, // initialization data

(const RTObject_class *) 0, // type descriptor

PrintThread, // logical thread
256 Chapter 12 - Services Library Class Reference

0 // replication index

);

if(! capsule_id.isValid())

context()->perror("Incarnation failed: ");

Frame::incarnationAt

RTActorId incarnationAt (const RTActorRef & role, int index);

Return value

The instance id of the capsule instance at the specified capsule role index.

Parameters

role

Capsule role name for which you want to find a particular instance.

index

Index of the desired capsule instance. The index is zero-based.

RTInSignal

This class is used to work with incoming signals defined within a protocol. As
explained in RTProtocol, each signal defined on a protocol becomes an operation. For
incoming signals the operations return an RTInSignal object on which you can
specify what action to perform with the signal.

The only actions defined on incoming signals are to manipulate the defer queue, that
is to retrieve specific messages that have been deferred.

For example if a message was deferred at some point in a capsules behavior:

getMsg()->defer();

You can recall the specific signal by calling:

aPort.ack().recall();
RTInSignal 257

Operations

RTInSignal::purge

int purge(void);

Return value

Returns the number of deleted messages from the defer queue.

Remarks

If a port is replicated then the purge operation will delete all deferred signals on all
port instances.

RTInSignal::purgeAt

int purgeAt(int index);

Return value

Returns the number of deleted messages from the defer queue.

Parameters

index

Port instance index on which to delete deferred messages.

RTInSignal::purge Delete all of these deferred signals for all port
instances.

RTInSignal::purgeAt Delete all of the deferred signals on a specific port
instance.

RTInSignal::recall Recall one deferred signal on all port instances.

RTInSignal::recallAll Recall all deferred signals on all port instances.

RTInSignal::recallAllAt Recall all deferred signals on a specific port
instance.

RTInSignal::recallAt Recall one deferred signal on a specific port
instance.
258 Chapter 12 - Services Library Class Reference

Remarks

If a port is replicated then this operation will delete deferred signals on only the
specified port instance.

RTInSignal::recall

int recall(int front = 0);

Return value

Returns the number of recalled messages.

Parameters

front [optional]

Front is a boolean int that indicates whether the message should be recalled to the
front of the system message queue. If false or left unspecified, the message is sent to
the back of the message queue. By recalling to the front, it is possible to avoid
overtaking of messages.

Remarks

There is no time-limit on deferral. Applications must take precautions against
forgetting messages on defer queues.

This operation recalls the first deferred message of this signal type on any port
instance. To recall the first message of any signal type then use the RTProtocol::recall
operation.

RTInSignal::recallAt

int recall(int index, int front = 0);

Return value

Returns the number of recalled messages.
RTInSignal 259

Parameters

index

Port instance index on which to recall a deferred message.

front [optional]

Front is a boolean int that indicates whether the message should be recalled to the
front of the system message queue. If false or left unspecified, the message is sent to
the back of the message queue. By recalling to the front, it is possible to avoid
overtaking of messages.

Remarks

There is no time-limit on deferral. Applications must take precautions against
forgetting messages on defer queues.

This operation recalls the first deferred message of this signal type on a specific port
instance. To recall the first message of any signal type then use the
RTProtocol::recallAt operation.

RTInSignal::recallAll

int recallAll(int front = 0);

Return value

Returns the number of recalled messages.

Parameters

front [optional]

Front is a boolean int that indicates whether the message should be recalled to the
front of the system message queue. If false or left unspecified, the message is sent to
the back of the message queue. By recalling to the front, it is possible to avoid
overtaking of messages.

Remarks

There is no time-limit on deferral. Applications must take precautions against
forgetting messages on defer queues.
260 Chapter 12 - Services Library Class Reference

This operation recalls ALL deferred messages of this signal type on ALL port
instances. To recall all messages of any signal type, use the RTProtocol::recallAll
operation.

RTInSignal::recallAllAt

int recallAllAt(index index, int front = 0);

Return value

Returns the number of recalled messages.

Parameters

index

Port instance index on which to recall all deferred messages.

front [optional]

Front is a boolean int that indicates whether the message should be recalled to the
front of the system message queue. If false or left unspecified, the message is sent to
the back of the message queue. By recalling to the front, it is possible to avoid
overtaking of messages.

Remarks

There is no time-limit on deferral. Applications must take precautions against
forgetting messages on defer queues.

This operation recalls ALL deferred messages of this signal type on a specific port
instance. To recall all messages of any signal type, use the RTProtocol::recallAllAt
operation.

Log

The System Log is accessed via ports using the Log protocol, which are instances of
the class Log. The log port only takes incoming messages and does not pass any
information in the reverse direction. The operations available for accessing the system
log are listed below.

Note: Currently all log service output is directed to stderr. Meaning that the open(),
clear(), and close() operations should not be used
Log 261

Operations

Log::show and Log::log
■ void show(const char * data);
■ void show(char data);
■ void show(double data);
■ void show(float data);
■ void show(int data);
■ void show(long data);
■ void show(short data);
■ void show(unsigned data) ;
■ void show(ushort data) ;
■ void show(ulong data) ;
■ void show(const RTDataObject & data);
■ void show(const void * data, const RTObject_class * type);
■ void show(const RTTypedValue & data);
■ void log(const char *);
■ void log(const RTString &);
■ void log(char);
■ void log(double);
■ void log(float);
■ void log(int);
■ void log(long);
■ void log(short);
■ void log(const RTDataObject &);
■ void log(const void *, const RTObject_class *);
■ void log(const RTTypedValue &);

Parameters

data, type

Is the object, type information, or simple type that is to be displayed to the log.

Log miscellaneous operations Various utility operations.

log

Log::show and Log::log

Writes an object as an ASCII string to the log with a
trailing carriage return.

show

Log::show and Log::log

Writes an ASCII string to the log with no leading
or trailing carriage returns.
262 Chapter 12 - Services Library Class Reference

Remarks

The log knows how to display simple types, but it can also display any user-defined
type as well. To display a user-defined type, it must have type information defined
with a function to encode the object. The log will simply call this encode function.

The only difference between the log() and show() operations is that log() outputs a
carriage return after the data is output to the log.

Examples

// Print as an ASCII string the contents of a class

log.show(&SubscriberData, &RTType_SubscriberData);

// Print a string

log.show("Timer has expired");

// Print an int

log.show(19);

Log Miscellaneous Operations

void cr(void);

void crtab(int num_tabs = 1);

void space(void);

void tab(void);

void commit(void);

Parameters

num_tabs

Is the number of tabs to insert, the default is one (1). Tab settings are defined by the
system and cannot be altered by the user.
Log 263

Remarks

These are various operations that can be used to output predefined characters to the
log. commit()will output all buffered characters in the log.

Examples

log.cr();

log.space();

log.tab();

log.commit();

// The previous commands can be supplied using show()

log.show("\n \t");

log.commit();

RTMessage

This class is the data structure used within the Services Library to represent messages
that are communicated between capsule instances. The messages that are sent
between capsules contain a required signal name (which identifies the message), a
optional priority (relative importance of this message compared to other unprocessed
messages on the same thread - default to General), and optional application data.

You will most often use the operations on the RTMessage class to manipulate the
messages that trigger transitions.

Do not treat an RTMessage as an object that can be stored, instead, you should extract
the relevant information from the message and store it separately.

Note: Applications should treat the msg field of an RTActor and all data addressed
beyond that pointer as read-only.

Operations

RTMessage::defer Defer the current message against the receiving
ports defer queue.

RTMessage::getData Returns a pointer to the data that was sent along
with a message.
264 Chapter 12 - Services Library Class Reference

RTMessage::getPriority

int getPriority(void) const;

Return value

Returns the numeric value of the priority of the message.

RTMessage::getSignalName

const char * getSignalName(void) const;

Return value

Returns the name of the signal that was sent with the message. This name will be the
same as the name of the signal defined in the protocol.

Example

log.show(“Signal named: “);

log.log(getMsg()->getSignalName());

RTMessage::getPriority Returns the priority of the message.

RTMessage::getSignalName Returns the name of the message signal.

RTMessage::getType Returns a pointer to the type information
describing the data contained within the message.

RTMessage::isValid Determines if the message contains a valid signal
and data.

RTMessage::sap Retrieves a pointer to the port which received the
message.

RTMessage::sapIndex0 Finds the index of the port on which the message
was received (0 based).
RTMessage 265

RTMessage::getData

void * getData(void) const;

Return value

Returns the pointer to the data that was sent along with a message.

Remarks

It is recommended to use the predefined rtdata parameter to access the data of a
message in a transition. The rtdata parameter is already casted for you

const ADataType & dt = *rtdata;

Examples

In cases where there are multiple triggers for a transition you will have to cast the
received data depending on the signal that triggered the transition.

const ADataType & dt2 = *(ADataType *)(getMsg()->getData());

RTMessage::getType

const RTObject_class * getType(void) const;

Return value

Returns a pointer to an RTObject_class which contains the type information that
describes the data in the message, or (RTObject_class *)0 if not type was specified.

RTMessage::sapIndex0

int sapIndex(void) const;

int sapIndex0(void) const;

Return Value

Returns the index of the port on which the message was received. The sapIndex
function returns a one-based index (index values begin at 1) and sapIndex0 is 0 based.
266 Chapter 12 - Services Library Class Reference

Example

Use to send a message to a particular port instance, as follows:

int idx = msg->sapIndex0();

port.hello().sendAt(idx);

RTMessage::sap

RTOutSignal * sap(void) const;

Return Value

Returns a pointer to the port instance on which this message was received, or
(RTProtocol *)0 if called in the initial transition.

Examples

// find out where the message was received, and send a message

// back.

RTProtocol * port = msg->sap();

if(port != (RTProtocol *)0)

((MyProtocol::Base *)port)->hello().send();

RTMessage::isValid

int isValid(void) const;

Return Value

Returns 1 (true) if the message has been initialized with a valid signal and potentially
some data, and 0 (false) otherwise.

Remarks

This method is intended to verify that the returned message has been properly filled
by the reply to a RTOutSignal::invoke() operation call.

Examples

See RTOutSignal::invoke for an example.
RTMessage 267

RTMessage::defer

int defer(void) const;

Return value

Returns true (1) if the message was successfully deferred and false (0) otherwise. An
error will be returned if you try and defer an invoked message or a message which
has already been deferred.

Remarks

Deferred messages can be recalled using the operations defined on the RTInSignal
class.

Examples

In the transition where a message is to be deferred you would defer the message as
follows:

getMsg()->defer();

RTObject_class

The RTObject_class is a structure that contains information describing a data type.
These type descriptors may be generated automatically for any class created in the
toolset. The Services Library uses the information in the descriptors to initialize, copy,
destroy, encode, and decode objects of the corresponding type.

Using type descriptors has several advantages:

■ Arbitrary structures can be used in models even if they cannot be expressed in the
toolset or are provided by third-parties.

■ Encoding and decoding can be extended to arbitrary data structures.

■ More efficient handling of data is possible by avoiding memory allocation and
de-allocation. By adding the size to the type descriptor, the Library Services can
decide when a payload area of a message is large enough to hold the data to be
sent.

■ Any user-defined type can be sent (by value), using the copy, and destroy
functions in the type descriptor, and inspected via the observability interface using
the init, encode, and decode functions.
268 Chapter 12 - Services Library Class Reference

The important thing to remember is that the toolset will generate these descriptors for
most classes which are defined using basic types (see the list defined in the
RTObject_class.h file located in RoseRT/C++/TargetRTS/include). If classes
contain more complicated structures you can write your own type descriptor
functions from within the toolset. For further details, see C++ TargetRTS Properties on
page 195.

// A type is described by one of these structures.

//

// Field Meaning

// ----- -------

// _super The base type of this type

// _name The name of this type

// _version The version of this type

// _size The byte size of this type (sizeof)

// _init_func The default constructor for this type

// _copy_func The copy constructor for this type

// _decode_func The decode function for this type

// _encode_func The encode function for this type

// _destroy_func The destructor for this type

// _num_fields The number of fields or array elements

// _fields The field types or array element type

When would you use the type descriptor?

Whenever data is passed to the Services Library, you need to provide the type
descriptor, along with the data to be sent. If the type descriptor is not provided to the
Services Library, data objects will not be observed with the debugger, or sent to
another process.

RTType_<typename> structure

For every generated class in your model there is a type descriptor created which is
called RTType_<typename>. For example, if you define a class called
RobotControlData the generated type descriptor would be:

const RTObject_class RTType_RobotControlData;

You can provide the generated type descriptor for a generated class to any Service
Library operation that requires it.
RTObject_class 269

RTOutSignal

This class is used to work with outgoing signals defined within a protocol. As
explained in RTProtocol, each signal defined on a protocol becomes an operation. For
outgoing signals the operations return an RTOutSignal object on which you can
specify what action to perform with the signal. For example to send a signal first call
initialize the RTOutSignal by calling the operation on the port then specify an action
to perform with the signal:

port.ack().send();

port.hello(1089).sendAt(1);

Operations

RTOutSignal::send

int send(int priority = General) const;

Return value

The operation returns a count of the successful sends (remember that ports can be
replicated in which case this operation will broadcast to all port instances). A send can
fail if the port is not connected (no connection to the receiver end port).

Parameters

priority [optional]

Specify the priority at which this message should be sent. A message priority is
interpreted as the relative importance of an event with respect to all other
unprocessed messages on a thread. The priority evaluates to one of the defined global
priority values.

RTOutSignal::invoke Synchronous message broadcast to all port
instances.

RTOutSignal::invokeAt Synchronous message send to a specific port
instance.

RTOutSignal::reply Used to respond to a synchronous message.

RTOutSignal::send Asynchronous message broadcast to all port
instances.

RTOutSignal::sendAt Asynchronous message send to a specific port
instance.
270 Chapter 12 - Services Library Class Reference

Remarks

Since a port can be replicated, the send operation effectively sends a message through
all instances of the port - broadcast. If you want to send to only one instance of a
replicated port, use the RTOutSignal::sendAt operation.

Examples

// In this case the ack signal does not require

// data to be sent with the signal.

aPort.ack().send();

It is always good practice to check the return codes.

if(! aPort.ack().send())

context()->perror("Error with send");

You can also send data with a message.

// Sending some data by value, that is a copy of the data is

// sent.

SomeDataClass mdata("123-4356", "Ottawa");

aPort.Info(mdata).send();

RTOutSignal::sendAt

int sendAt(int index, int priority = General) const;

Return value

The operation returns 1 (true) if the operation succeeded and 0 (false) otherwise. A
send can fail if the port is not connected (no connection to the receiver end port) or an
invalid replication index was provided.

Parameters

index

The port replication index of the port instance on which the message should be sent.

priority [optional]

Specify the priority at which this message should be sent. Default is General. A
message priority is interpreted as the relative importance of an event with respect to
all other unprocessed messages on a thread. The priority evaluates to one of the
defined global priority values.
RTOutSignal 271

Remarks

This operation is used instead of RTOutSignal::send to send a message to a specific
instance of a replicated port.

Examples

// In this case the ack signal does not require

// data to be sent with the signal.

aPort.ack().sendAt(5);

// Send to a specific port instance

aPort.ack().sendAt(1);

// send to the port instance on which the current

// message was received

int idx = getMsg()->sapIndex0();

rtport->ack().sendAt(idx);

RTOutSignal::invoke

int invoke(RTMessage * replyBuffers) const;

Return value

The operation returns the number of replies received. If it returns 0 (false), the
operation failed. An invoke can fail if the port is not connected (no connection to the
receiver end port). An error will be returned if you try and invoke across a physical
thread boundary.

Parameters

replyBuffer

A user-supplied message object that stores the reply message resulting from the
invoke. The user is responsible for allocating and deleting the message when it is no
longer required. Typically a local variable will be declared to hold the returned
message. To verify that the returned message is valid call RTMessage::isValid once the
invoke returns.
272 Chapter 12 - Services Library Class Reference

Remarks

If a port is replicated all port instances will be invoked. Use RTOutSignal::invokeAt to
invoke a specific port instance.

The communications services also support synchronous messaging (similar to a
rendezvous). During a synchronous send, or invoke, the sender is blocked until the
receiver has processed the message and sent back a reply. Run-to-completion
semantics are enforced, such that a synchronous invoke has the same semantics as a
procedure call. Note that the data field is not copied on invoke.

Note: Do not use invoke in the initial transition of a capsule as the system may still be
processing initialization messages. Also, because of its blocking nature, invoke cannot
be used across threads or capsules connected through a network.

Examples

RTMessage replies[aPort.size()];

aPort.ack().invoke(&replies);

for(int i = 0; i < aPort.size(); i++)

{

if(replies[i].isValid())

{

//code to handle valid reply

}

else

{

//code to handle invalid reply

}

}

The receiver of the invoke must use RTOutSignal::reply to respond to the invoke. Data
can be optionally sent back with the reply.

rtport->nack().reply();
RTOutSignal 273

RTOutSignal::invokeAt

int invokeAt(int index, RTMessage * replyBuffer) const;

Return value

The operation returns 1 (true) if the invoke is successful and 0 (false), if the operation
failed. An invoke can fail if the port is not connected (no connection to the receiver
end port). An error will be returned if you try and invoke across a physical thread
boundary.

Parameters

index

The port replication index of the port instance on which the message should be sent.

replyBuffer

A user-supplied message object that stores the reply message resulting from the
invoke. The user is responsible for allocating and deleting the message when it is no
longer required. Typically a local variable will be declared to hold the returned
message. To verify that the returned message is valid call RTMessage::isValid once the
invoke returns.

Remarks

The communications services also support synchronous messaging (similar to a
rendezvous). During a synchronous send, or invoke, the sender is blocked until the
receiver has processed the message and sent back a reply. Run-to-completion
semantics are enforced, such that a synchronous invoke has the same semantics as a
procedure call. Note that the data field is not copied on invoke.

Note: Do not use invoke in the initial transition of a capsule as the system may still be
processing initialization messages. Also, because of its blocking nature, invoke cannot
be used across threads or capsules connected through a network.

Examples

RTMessage reply;

aPort.ack().invokeAt(0, &reply);

if(reply.isValid())

{

// code to handle valid reply

}

274 Chapter 12 - Services Library Class Reference

else

{

// code to handle invalid reply

}

The receiver of the invoke must use RTOutSignal::reply to respond to the invoke. Data
can be optionally sent back with the reply.

rtport->nack().reply();

RTOutSignal::reply

int reply (void);

Return Value

Returns 1 (true) if the reply is successful, and 0 (false) otherwise.

Examples

The receiver of the invoke must use RTOutSignal::reply to respond to the invoke. Data
can be optionally sent back with the reply.

rtport->nack().reply();

RTProtocol

For each protocol class in your model, two subclasses of the RTProtocol class are
generated for each direction of the protocol or protocol roles. Each port defined on a
capsule is generated as an attribute of the generated C++ capsule class. The port
attribute has the same name as the port, with the type as either the base or conjugate
protocol role.

For an example of the code generated for a protocol, and protocol roles, see Protocols
Become Two Classes: Base and Conjugate on page 103.

A RTProtocol instance (port) class contains a list of all the individual instances of that
port.
RTProtocol 275

Operations

RTProtocol::bindingNotification Use this operation to request notification of the
creation and destruction of bindings to instances
of this port.

RTProtocol::bindingNotificationRequested Use this operation to request status of
notification for this port.

RTProtocol::deregisterSAP Deregisters an unwired end port (SAP).

RTProtocol::deregisterSPP Deregisters an unwired end port (SPP).

RTProtocol::getRegisteredName Get the name that an un-wired port has
registered with the layer service.

RTProtocol::indexTo Find the smallest replication index (0-based)
which is connected to the given actor.

RTProtocol::isBoundAt Is the given replication index (0-based)
connected?

RTProtocol::isIndexTo Is the given replication index (0-based)
connected to the actor?

RTProtocol::isRegistered Find out if an unwired port has been registered
with the layer service.

RTProtocol::purge Empties the defer queue of all port instances
without recalling any deferred message.

RTProtocol::purgeAt Empties the defer queue of a specified port
instance recalling any deferred messages.

RTProtocol::recall To recall a deferred message on all instances of
this port for processing. Recalls from back of
queue.

RTProtocol::recallAll To recall all deferred messages on all instances of
this port for processing. Recalls from back of
queue.

RTProtocol::recallAllAt To recall all deferred messages on a specified
port instance. Recalls to back or front of queue.

RTProtocol::recallAllFront To recall all deferred messages on all port
instances. Recalls to front of queue.

RTProtocol::recallAt To recall a deferred message on specific instance
of this port for processing. Can recall to back or
front of queue.

RTProtocol::recallFront To recall a deferred message on all instances of
this port for processing. Recalls to front of
queue.
276 Chapter 12 - Services Library Class Reference

RTProtocol::size

int size(void) const;

Return Value

Returns the multiplicity factor of the port.

Remarks

Remember that port instances are indexed in the Services Library as 0 based. That
means that if a port has a cardinality of N, you should only reference instances using
index numbers 0..N-1.

for(int i = 0 ; i < port.size(); i++)

port.ack().sendAt(i);

RTProtocol::purge

int purge(void);

Return Value

Returns the number of messages deleted from the defer queue.

Remarks

To delete deferred messages for one port instance use RTProtocol::purgeAt.

RTProtocol::registerSAP Registers a unwired end port (SAP) with the
layer service (as a "client").

RTProtocol::registerSPP Registers an unwired end port (SPP) with the
layer service (as the "provider").

RTProtocol::size Obtains the replication factor of a port.
RTProtocol 277

RTProtocol::purgeAt

int purgeAt(int index);

Parameters

index

The port index for which deferred messages should be purged.

Return Value

Returns the number of messages deleted from the port instance defer queue.

Remarks

To delete deferred messages for all port instance use RTProtocol::purge.

RTProtocol::recall

int recall(void);

Return Value

Returns the number of messages recalled from the defer queue (either 0 or 1).

Remarks

Calling recall on a port gets the first deferred message from one of the port instances.
Messages are recalled behind other queued messages.

There is no time-limit on deferral so that applications must take precautions against
forgetting messages on defer queues.

This operation recalls the first deferred message on any port instances. To recall the
first message on one port instance of a replicated port, use the RTProtocol::recallAt
operation.

Examples

The first deferred message on any instance of the replicated port named port1 is
recalled as follows:

port1.recall();
278 Chapter 12 - Services Library Class Reference

RTProtocol::recallAt

int recallAt(int index, int front = 0);

Return Value

Returns the number of recalled messages (either 0 or 1).

Parameters

index

Port instance index for which to recall a deferred message.

front

Specifies whether recalled messages should be queued ahead (non-zero) or behind (0)
other queued messages.

Examples

The first deferred message on any instance of the replicated port named port1 is
recalled as follows:

port1.recallAt(3);

RTProtocol::recallFront

int recallFront(void);

Return Value

Returns the number of recalled messages (either 0 or 1).

Remarks

This operation recalls the first deferred message on any port instances. Calling recall
on a port gets the first deferred message from one of the port instances, starting from
the first (instance 0). Messages are recalled to the front main queue.
RTProtocol 279

RTProtocol::recallAll

int recallAll(void);

Return Value

Returns the number of recalled messages.

Remarks

Calling recallAll on a port will get all the deferred message from each of the port
instances. Messages will be recalled starting to the back of the main queue.

To recall all messages on only one port instances of a port with replication factor > 1,
use the RTProtocol::recallAllAt operation.

RTProtocol::recallAllAt

int recallAllAt(int index, int front = 0);

Return Value

Returns the number of recalled messages.

Parameters

index

Port instance index for which to recall all deferred messages.

front

Specifies whether recalled messages should be queued ahead (non-zero) or behind (0)
other queued messages.

Remarks

To recall all messages on only one port instances of a port with replication factor > 1,
use the RTProtocol::recallAllAt operation.
280 Chapter 12 - Services Library Class Reference

RTProtocol::recallAllFront

int recallAllFront(void);

Return Value

Returns the number of recalled messages.

Remarks

To recall all messages on only one port instances of a port with replication factor > 1,
use the RTProtocol::recallAllAt operation.

RTProtocol::bindingNotification

void bindingNotification(int on_off);

Parameters

on_off

If called with 1 (true) the port will receive messages as ports become bound. Calling
the function with 0 (false) will prevent such messages from being sent, but will not
purge any messages already queued.

Remarks

Use this operation to request notification of the creation and destruction of bindings
to this port. The signals sent to the port by the Services Library are rtBound and
rtUnbound.

Note: No messages are sent for ports which are bound prior to the call to this
function.

RTProtocol::bindingNotificationRequested

int bindingNotificationRequested(void) const;

Return Value

Returns 1 (true) if notification has been enabled for this port, and 0 (false) otherwise.
RTProtocol 281

RTProtocol::registerSAP

int registerSAP(const char * service);

Return Value

Returns 1 (true) if the registration of the service name was successful, and 0 (false)
otherwise. The registration can fail if this operation is called on a port instance which
is not an unwired end port. If this SAP is already registered with this same name, the
operation returns 1.

Parameters

service

This parameter is a string that is used to identify a unique name and service under
which SAPs and SPPs will connect.

Remarks

If this operation is invoked on a SAP which is already registered with a different
name, then the original registered name is automatically deregistered, and the SAP is
registered with the new name.

When a SAP is registered, it does not necessarily mean that the port has been
connected to a SPP. The successful completion of the register operation simply
indicates that the name has been registered. For example, if the SAP is registered with
no corresponding SPP, the connection is only made later when a SPP is registered. The
SAP registration is buffered until a SPP is registered with the same service name.

If application registration has been selected from the Port Specification dialog for a
SAP (protected unwired end port) or SPP (public unwired end port) registration is
handled automatically by the Services Library.

RTProtocol::deregisterSAP

int deregisterSAP(void);

Return Value

Returns 1 (true) if the deregistration of the service name was successful, and 0 (false)
otherwise.
282 Chapter 12 - Services Library Class Reference

Remarks

When a SAP is deregistered if it is currently connected to a SPP, the connection is
terminated.

RTProtocol::registerSPP

int registerSPP(const char * service);

Return Value

Returns 1 (true) if the registration of the service name was successful, and 0 (false)
otherwise. The registration can fail if this operation is called on a port which is not an
unwired end port. If this SPP is already registered with this same name, the operation
returns 1.

Parameters

service

This parameter is a string that is used to identify a unique name and service under
which SAPs and SPPs will connect.

Remarks

If this operation is invoked on a SPP which is already registered with a different
name, then the original registered name is automatically deregistered, and the SPP is
registered with the new name.

When a SPP is registered, it does not necessarily mean that the port has been
connected to a SAP. The successful completion of the register operation simply
indicates that the name has been registered. For example, if a SPP is registered with no
corresponding pending SAP registrations, the connection will be made later when a
SAP is registered. The SPP registration is buffered until a SAP is registered with the
same service name.

If application registration has been selected from the Port Specification dialog for a
SAP (protected unwired end port) or SPP (public unwired end port) registration is
handled automatically by the Services Library.
RTProtocol 283

RTProtocol::deregisterSPP

int deregisterSPP(void);

Return Value

Returns 1 (true) if the deregistration of the service name was successful, and 0 (false)
otherwise.

Remarks

When a SPP is deregistered all connected port instances are disconnected from all
connected SAPs. Although the SAPs are disconnected they remain registered, and
available to be re-connected.

RTProtocol::isIndexTo

int isIndexTo(int index, RTActor * capsule_instance) const;

Return Value

Returns true (1) if the given port instance is bound to the specified capsule instance?

Parameters

index

A port instance index (0 based).

capsule_instance

A pointer to an capsule instance.

RTProtocol::indexTo

int indexTo(RTActor * capsule_instance) const;

Return Value

Find the smallest replication index (0-based) on the given port which is connected to
the given capsule instance. The result is -1 if there is no such index or the id is invalid.
284 Chapter 12 - Services Library Class Reference

Parameters

capsule_instance

The capsule instance for which you are trying to find a port that is connected to it.

Example

This example demonstrates how to find the port index that is connected to a newly
incarnated capsule role. In this example port is a replicated port and role1 is a capsule
role in the structure of a capsule on which this code is run:

RTActorId aid = frame.incarnate(role1);

int port_index;

if(aid.isValid())

{

port_index = port.indexTo(aid);

if(port_index != -1)

port.Signal().sendAt(port_index);

}

else

context()->perror(“Error incarnating role1:”);

RTProtocol::isBoundAt

int isBoundAt(int index) const;

Return Value

Return true (1) if the given replication index (0-based) is connected to another port
and false (0) if it is not connected.

Parameters

index

A port instance index (0 based).
RTProtocol 285

RTProtocol::isRegistered

int isRegistered(void) const;

Return Value

Returns true (1) if an un-wired port has been registered with the layer service and
false (0) otherwise.

RTProtocol::getRegisteredName

const char * getRegisteredName(void) const;

Return Value

Returns the name that an un-wired port has registered with the layer service.

RTSymmetricSignal

This class is used for symmetric signals defined within a protocol. Symmetric signals
are defined where a signal is both incoming and outgoing in the same protocol and
both have the same data class.

As explained in RTProtocol, each signal defined on a protocol becomes an operation.

Since symmetric signals can be both incoming and outgoing you can perform the
combined actions of both RTOutSignal and RTInSignal on these classes.

Example
// to send the talk signal

port.talk.send();

// to recall all deferred talk signals

port.talk.recall();
286 Chapter 12 - Services Library Class Reference

RTTimerId

The Rose RealTime Timing services use RTTimerId as an identifier for timer requests.
The timer identifier is returned by a request to Timing::informIn, Timing::informAt or
Timing::informEvery. The timer identifier can be used subsequently to cancel the
timer.

Operations

RTTimerId::isValid

int isValid(void);

Return value

Returns true (1) if the timer identifier is a valid timer id, and 0 (false) otherwise.

Remarks

This operation should be used to test the result of a timer request. This operation
should not be used to test the state of a timer after the timer has been successfully
started.

Examples

RTTimerId tid = timer.informIn(RTTimespec(4,0));

if(! tid.isValid())

context()->perror("Error requesting periodic timer");

RTTimespec

The RTTimespec class is used to create timer values for passing to the Timer Service. It
is intended for compatibility with POSIX.

RTTimespec is a struct with two fields: tv_sec and tv_nsec, where tv_sec is the
number of seconds for the timer setting, and tv_nsec is the number of nanoseconds.

RTTimerId::isValid Determines if a timer request was successful.
RTTimerId 287

Operations

tv_sec and tv_nsec

long tv_sec;

long tv_nsec;

Remarks

Where tv_sec is the number of seconds for the timer setting, and tv_nsec is the
number of nanoseconds. There are 10e9 nanoseconds in one second.

Examples

This will initialize an RTTimespec with one second.

RTTimespec t1(1,0);

This class is used most often in conjunction with the Timing Service to specify time
values. For example to set a one-shot timer to go off in 5 seconds you would use the
RTTimespec constructor.

timer.informIn(RTTimespec(5,0));

RTTimespec assignment operators Assignment operators

RTTimespec basic arithmetic operators Arithmetic operators

RTTimespec basic comparison operators Comparison operators

RTTimespec::getclock Returns the current time

RTTimespec::RTTimespec Constructs an RTTimespec object
288 Chapter 12 - Services Library Class Reference

RTTimespec::RTTimespec

RTTimespec(void);

RTTimespec(long sec, long nsec);

RTTimespec(const RTTimespec & ts);

Parameters

sec

Is the number of seconds.

nsec

Is the number of nanoseconds.

ts

Initializes an RTTimespec with the value of another RTTimespec object.

Examples

A RTTimespec of two seconds can be created and passed to the Timing Service
informEvery() as follows:

// 2 seconds

RTTimespec t(2 , 0);

// 6am coordinated universal time (UTC)

RTTime abst(6,0,0);

timer.informEvery(t);

timer.informAt(RTTimespec(abst));

RTTimespec::getclock

static void getclock(RTTimespec & tspec);

Parameters

tspec

The values of this RTTimespec parameter are filled in with the current time.
RTTimespec 289

Remarks

This is a class-scoped operation.

Examples

RTTimespec t;

RTTimespec::getclock(t);

RTTimespec Basic Comparison Operators

int operator==(const RTTimespec & t1, const RTTimespec & t2);

int operator!=(const RTTimespec & t1, const RTTimespec & t2);

int operator<=(const RTTimespec & t1, const RTTimespec & t2);

int operator> (const RTTimespec & t1, const RTTimespec & t2);

int operator>=(const RTTimespec & t1, const RTTimespec & t2);

int operator< (const RTTimespec & t1, const RTTimespec & t2);

Return value

Nonzero if the objects meet the comparison condition; otherwise 0.

Parameters

t1, t2

RTTimespec objects used to compare.

Example

RTTimespec t1(2,0), t2(3,0);

if (t1 < t2)

//t1 is less than t2
290 Chapter 12 - Services Library Class Reference

RTTimespec Assignment Operators

RTTimespec & operator=(const RTTimespec & t1);

Remarks

The RTTimespec assignment (=) operator re-initializes an existing RTTimespec object
with new second and nanosecond values.

RTTimespec Basic Arithmetic Operators

RTTimespec & operator+=(const RTTimespec & t1);

RTTimespec & operator-=(const RTTimespec & t1);

RTTimespec operator+ (const RTTimespec & t1, const RTTimespec & t2);

RTTimespec operator- (const RTTimespec & t1, const RTTimespec & t2);

Parameters

t1, t2

RTTimespec objects used to add or subtract.

Examples

RTTimespec t1(2,0), t2;

RTTimespec::getclock(t2);

t2 += t1;

Timing

All service methods through which the user requests timeout, at an absolute time or
in a time interval, return a unique handle which can be used to construct an
RTTimerId. The timer id is used to identify a timing request to be cancelled.

Timing ports are instances of the class Timing.
Timing 291

Operations

Timing::informAt

RTTimerNode * informAt(const RTTimespec & when, const void * data, const
RTObject_class * type, int prio = General);

RTTimerNode * informAt(const RTTimespec & when, int prio = General);

RTTimerNode * informAt(const RTTimespec & when, const RTDataObject &
data, int prio = General);

RTTimerNode * informAt(const RTTimespec & when, const RTTypedValue &
info, int prio = General);

Return value

A timer handle is returned which can be used to construct an RTTimerId. It can be
used to cancel the timer prior to expiry. A NULL pointer is returned if the timer
request fails.

Parameters

when

Is the desired absolute time when the timer is to expire.

data, info, type [optional]

Is the message data that will be added to the timeout message and delivered to the
capsule when the timer expires. These parameters are optional.

Timing system clock operations Used to adjusts the internal real-time system clock.

Timing::cancelTimer Cancels an outstanding timer.

Timing::currentTime Determines the current absolute time.

Timing::informAt Starts a timer which expires at a particular absolute
time.

Timing::informEvery Starts a periodic timer.

Timing::informIn Starts a timer which expires in some time interval
from the current time.
292 Chapter 12 - Services Library Class Reference

prio [optional]

Is the priority at which the timeout message will be delivered. The prio parameter is
optional.

Example

RTTimespec now;

RTTimespec::getClock(&now);

timer.informAt(now + RTTimespec(15, 0));

Timing::informIn

RTTimerNode * informIn(const RTTimespec & delta, const void * data, const
RTObject_class * type, int prio = General);

RTTimerNode * informIn(const RTTimespec & delta, int prio = General);

RTTimerNode * informIn(const RTTimespec & delta, const RTDataObject & data,
int prio = General);

RTTimerNode * informIn(const RTTimespec & delta, const RTTypedValue & info,
int prio = General);

Return value

A timer handle which can be used to construct an RTTimerId object is returned. It can
be used to cancel the timer prior to expiry. A NULL pointer is returned if the timer
request fails.

Parameters

delta

Represents the desired time interval (in seconds and nanoseconds as an RTTimespec)
from the current time at which a timer will expire. If the timer interval is less than or
equal to zero, the timer will expire immediately.

data, info, type [optional]

Is the message data that will be added to the timeout message and delivered to the
capsule when the timer expires. These parameters are optional.
Timing 293

prio [optional]

Is the priority at which the timeout message will be delivered. The prio parameter is
optional.

Examples

// request a timer to expire in 10 seconds

if(! timer.informIn(RTTimespec(10, 0)))

log.log("error requesting a timer");

If the timer is to be cancelled, then an RTTimerId must be constructed for use when
canceling the timer. Ensure that if the timer is going to be cancelled in another
transition, that the timer id is saved in a class attribute, and not in a transition local
variable.

if(! (tid = timer.informIn(RTTimespec(10, 0))))

log.log("error requesting a timer");

// this could be done in an other transition

timer.cancelTimer(tid);

Passing Data in a Timer Message

Data can be passed in a timer message using the following informIn signatures:

RTTimerNode * informIn(const RTTimespec & delta, const void * data, const
RTObject_class * type, int prio = General);

RTTimerNode * informIn(const RTTimespec & delta, const RTDataObject & data, int
prio = General);

RTTimerNode * informIn(const RTTimespec & delta, const RTTypedValue & info, int
prio = General);
294 Chapter 12 - Services Library Class Reference

To pass an int in a timer message, you can use one of two methods:

myint = 5; // myint is an attribute of type int

RTTimespec t(2,0);

timer.informIn(t, &myint, &RTType_int);

Or

myint = 5; // myint is an attribute of type int

RTTimespec t(2,0);

RTTypedValue typevalue(&myint, &RTType_int);

timer.informIn(t, typevalue);

This code can be easily modified to pass other data. For example, to send a class
instead of an integer, replace RTType_int with RTType_<myClassName> where
myClassName is the name of the class of the type of data to be passed.

Timing::informEvery

RTTimerNode * informEvery(const RTTimespec & delta, const void * data, const
RTObject_class * type, int prio = General);

RTTimerNode * informEvery(const RTTimespec & delta, const RTDataObject &
data, int prio = General);

RTTimerNode * informEvery(const RTTimespec & delta, const RTTypedValue &
info, int prio = General);

RTTimerNode * informEvery(const RTTimespec & delta);

Return value

A timer handle which can be used to construct an RTTimerId is returned. It can be
used to cancel the timer prior to expiry. A NULL pointer is returned if the timer
request fails.
Timing 295

Parameters

delta

represents the desired time interval from the current time at which a periodic timer
will expire. If the timer interval is less than or equal to the current time or equal to
zero, the timer will expire immediately.

data, info, type [optional]

is the message data that will be added to the timeout message and delivered to the
capsule when the timer expires. These parameters are optional.

prio [optional]

is the priority at which the timeout message will be delivered. The prio parameter is
optional.

Examples

if(! timer.informEvery(RTTimespec(10, 0))

log.log("error requesting a periodic timer");

If the timer is to be cancelled, then an RTTimerId object must be constructed for use
when canceling the timer. Ensure that if the timer is going to be cancelled in another
transition, that the timer id is saved in a class attribute, and not in a transition local
variable.

if(! (tid = timer.informEvery(RTTimespec(10, 0))))

log.log("error requesting a periodic timer");

// this could be done in an other transition

timer.cancelTimer(tid);

Timing::currentTime

RTTimespec currentTime(void) const;

Remarks

It is recommended, for performance reasons, that you use the RTTimespec::getclock
operations instead of currentTime.

Example

RTTimespec ctime = timer.currentTime();
296 Chapter 12 - Services Library Class Reference

Timing::cancelTimer

int cancelTimer(RTTimerId &tid);

Return value

Returns true (1) if a pending request was cancelled, and false (0) if no outstanding
request was found.

Parameters

tid

Is the identifier of the timer that was provided when the service request was made.

Remarks

Note that this operation guarantees that no timeout message will be received from the
cancelled timer, even if the timer had already expired, that is, was waiting to be
processed, when the command was issued.

Examples

If timer is the name of a timing port, you can create, and subsequently delete, a timing
request as follows:

RTTimerId tid = timer.informEvery(RTTimespec(2, 0));

timer.cancelTimer(tid);
Timing 297

Timing System Clock Operations

void adjustTimeBegin(void);

void adjustTimeEnd(const RTTimespec & delta);

Parameters

delta

Stop all timing services in preparation for adjusting the clock time used by the timing
service.

Remarks

If there is a need to adjust system time, you must stop the timing service, compute the
new time, and then restart the timing service with the new time. The Services Library
will make adjustments to its internal data structure so that relative timeouts are not
affected by the system clock change. Use adjustTimeBegin to stop the timing service
and adjustTimeBegin to restart it at the new time.

Examples

The application must coordinate time changes through a capsule with a timing port
(meaning that it has access to the timing service). The example below encapsulates the
clock adjustment behavior in a capsule operation. We assume that the timing port is
called timer and that there are operating system primitives for reading and writing to
the system clock which we term as sys_getclock() and sys_setclock(), respectively.

void AdjustTimeCapsule::setClock(const RTTimespec & new_time)

{

RTTimespec old_time;

RTTimespec delta;

// Stop Services Library timer service

timer.adjustTimeBegin();

sys_getclock(old_time);

sys_setclock(new_time);

delta = new_time;
298 Chapter 12 - Services Library Class Reference

delta -= old_time;

// Resume Services Library timer service

timer.adjustTimeEnd(delta);

}

RTTypedValue

RTTypedValue is a struct which is used to encapsulate a data and type pair. For each
generated class a structure named RTTypedValue_<class name> is generated. The
only time you will have to use this structure is when sending subclass data with a
signal that was defined with a data class of the parent class. For example, given class
A and a subclass B, with the signal ack defined with a data class of A, you would have
to use to following syntax to send B with the ack signal:

B subclass;

port.ack(RTTypedValue_A(subclass,&RTType_B)).send();

If you do not explicitly specify the type descriptor for class B, the Services Library will
use the type descriptor for class A.

Port Services

Note: For additional information on the External Service Example, see the
"C++ Examples" chapter in the book Model Examples, Rational Rose RealTime.

External Port Service

The External Port service example provides an API that lets non-Rational Rose
RealTime threads call a function to raise an event on a port of a Capsule in a Rational
Rose RealTime C++ application.
RTTypedValue 299

External ports are instances of the class External

Table 5 Operations

Example

Given an External port named external:

//Enable the external port to receive events

external.enable();

//Disable the external port to receive events

external.disable();

And from the external thread

if (theExternalPort->raise()==0){

//fail

}

else {

//pass

}

External API Operations Used to enable/disable events external events

External::enable Enables the port to receive an event from the external thread. May
be used only by the thread on which the owner capsule executes

External::disable Disables the port from receiving an event from the external thread.
May be used only by the thread on which the owner capsule
executes

Extenal::raise If the port is enabled, delivers one event to the port, and then
disables the port. The port must be re-enabled before another event
can be raised. This function may be used only on threads other than
the one on which the owner capsule executes. Returns zero if the
event was not successfully raised.
300 Chapter 12 - Services Library Class Reference

Index
Symbols
go 139
step 139
#define

creating 84
#define_macro name_expression 84
#include 90
#include An_External.h 91
$RTS_HOME 141
_processFunc() 156
_waitFunc 156
_wakeupFunc 156

A
absolute time 113
adding

operations and classes 172
aggregate 80

attributes 80
See also by reference

aggregations
types 80

alreadyDeferred 119
application registration

of SAPs and SPPs 111
application registrations 111
argCount() 131
array data member 81
arrays

creating 81
multiplicity 81
specifying 81

ASCII encoder 77
assignment operator

setting as private 192
AssignmentOperatorInline (Class, C++) 186
AssignmentOperatorVisibility (Class, C++) 186

association ends
properties 80

Association Specification dialog box 80
AssociationEnd 195
AssociationEndKind (Role, C++) 189
associations

between capsules and classes 79
between two classes 79

asynchronous communication 107
attach 132
attach

thread commands 133
Attach Target 127
Attribute Specification dialog box 84
Attribute, C++ TargetRTS 87
AttributeKind 82, 84
AttributeKind (Attribute, C++) 187
attributes

aggregate 80
array 81
composite 80
creating arrays 81
creating pointers 81
pointer 81
pointers 86, 87

Attributes Detail 82
automatic registration 111

SAPs and SPPs 111

B
BackwardsCompatible (Protocol, C++

TargetRTS) 203
badActor 119
badClass 119
badId 120
badIndex 120
badRef 120
badSignal 120
badValue 120
Index 301

Binary files 68
bindings

cardinality 83, 85
blocking functions 154
boundaries

process 74
threads 74

build (C++) 54
build options

changing 170
building

Services Library 175
BuildLibraryArguments (Component, C++

Library) 228
BuildLibraryCommand (Component, C++

Library) 228
by reference

examples 79
sending data 74

by value
sending 86
sending data 74

C
C++

performance issues 163
C++ classes

externally defined 88
C++ constants

creating 82
using 83

C++ constructs
examples 81

C++ data types
examples 77

C++ Executable Properties 223
C++ Generation Properties 215
C++ Library Properties 227
C++ macros 84, 85

defining complex 85
C++ Services Library 74, 86

configuring 167
customizing 167

integrating external IPC mechanisms 152
naming considerations 99
processing overview 95

C++ Services Library class reference 233
C++ Services Library Framework 93

graphic overview 100
C++ Services Library framework 99
C++ struct

creating 86
C++ tab 84
C++ Target RTS 173
C++ TargetRTS 76
C++ TargetRTS Properties 195
C++ TargetRTS properties 195
CallFromDestructor (Operation, C++) 189
CALLSUPER 35
Cancel 138
cancelTimer 120
capsule functions 162
capsule instances

placeholders 104
Capsule Role Specification dialog box 83
capsule roles

cardinality 83, 85
capsuleId 131
system 134
capsules

associations with classes 79
sending messages 73
subclasses of RTActor 101

capsules versus data 161
Cardinality 83, 85
cardinality 83, 85
Changeability 82
class

constant 83
Class C++ 90, 91
Class C++ Properties 83
Class C++ Properties tab 86
Class C++ tab 85
Class C++ TargetRTS 90, 91
class creation

examples 86
class modeling

examples 79
302 Index

Class Properties 88
class scoped constants

creating 82
Class Specification dialog box 84
Class, C++ TargetRTS 91
classes

associations with capsules 79
complex 90
constant values 83
containing pointers 76
marshallable 87, 89
non-public fields 90
overriding and adding 172
sendable by value 87
with pointers 87
without pointers 86

classes with no pointer attributes 86
ClassKind 83, 86, 181
ClassKind (Class, C++) 181
ClassKind = typedef 181
Code Generator

command line arguments 54
Code Generator command line arguments

-crlf 54
-forcewrite 55
-spacedeps 55
-version 55

Code Sync
deactivating 35

codegen directory 143
CodeGenDirName (Component, C++

Generation) 215
CodeGenMakeArguments (Component, C++

Generation) 217
CodeGenMakeCommand (Component, C++

Generation) 217
CodeGenMakeInsert 178
CodeGenMakeInsert (Component, C++

Generation) 217
CodeGenMakeType (Component, C++

Generation) 217
CodeSyncEnabled (Component, C++

Generation) 218

command line arguments 130
code generator 54
providing on targets that do not support com-

mand line arguments 131
command line build interface 55
command summary (RTS debugger) 131

capsuleId 131
control commands 139
help 131
informational commands 133
portId 131
running a model 132
taskId 131
thread commands 132
tracing commands 137

CommonPreface (Component, C++
Generation) 216

Communication Services 106
communication services 106

application registration 111
automatic registration 111
concepts 106
deferring messages 112
Lossy 108
message priorities 109
order-preserving 108
ports 110
primitives 107
published ports 110
recalling messages 112
register by name 111
registration string 111
request reply 108
support for unwired ports 110
unpublished ports 110
unwired ports 110

CompilationMakeArguments (Component, C++
Compilation) 220

CompilationMakeCommand (Component, C++
Compilation) 219

CompilationMakeInsert (Component, C++
Compilation) 220

CompilationMakeType (Component, C++
Compilation) 219
Index 303

CompileArguments (Component, C++
Compilation) 221

CompileCommand 178
CompileCommand (Component, C++

Compilation) 220
compiler

external class definitions 88
complex classes 90
Component

C++ Generation - OutputDirectory 178
Component Compiler Inclusions 88
ComponentUnitName (Component, C++

Generation) 216
composite 80

attributes 80
See also by value

config directory 143
configuration naming convention (Services

Library) 141
configuration processor definitions 144
configuring

C++ Services Library 167
ConnectionParameters 86
ConnectParams classes 86
constant 84

creating 82
constant values

specified 83
constants

creating 82
scoped globally 82
scoped to classes 82
usage 83
using 83

constructor
setting as private 192

constructor operations 76
ConstructorInitializer (Operation, C++) 189
contacting Rational customer support xxv
continue 139
control commands 139

exit 139
go 139
quit 139
step 139

controlled units
effect 52

Controller
capsule instances 105

copy constructor 192
setting as private 192

copy constructor operations 76
CopyConstructorExplicit (Class, C++) 185
CopyConstructorInline (Class, C++) 185
CopyConstructorVisibility (Class, C++) 185
CopyFunctionBody (Class, C++ TargetRTS) 197
creating

array attributes 81
class scoped constants 82
classes with attributes that are pointers 87
classes with no pointer attributes 86
constants 82
data types 76
enumeration 83
external library component 67
global constants 82
Library Component for External Library

Interface 59
pointer attributes 81
Struct 86
typedef 83

cross thread message sending 163
Custom Peer Controller 155
custom peer controller

Services Library 154
customizing

C++ Services Library 167

D
data by value

examples 78
Data Class 74
data class

basic structures 77
copied 76
decoded 76
destroyed 76
encoded 76
304 Index

initialized 76
marshallable 77

data class rules 76
data classes

marshallable 77
syntax examples 78

data type
examples 77

data types
creating 76
decoding 88
definition 73
encoding 88
marshallable 76
observable 76
sendable by value 76

data versus capsules 161
deactivating Code Sync 35
DEBUG_NONE 147, 151
DEBUG_TERSE 146
DEBUG_VERBOSE 146, 151
debugging

objects 88
running models 77

DecodeFunctionBody 91
DecodeFunctionBody (Class, C++

TargetRTS) 197
decoding

data types 88
DefaultArguments (Component, C++

Executable) 131, 226
DefaultConstructorExplicit (Class, C++) 184
DefaultConstructorInline (Class, C++) 184
DefaultConstructorVisibility (Class, C++) 184
Defer 138
DEFER_IN_ACTOR 145
deferInvoke 120
deferring messages 112
dependencies 83, 84
Dependency C++ 84
Dependency C++ Properties 82
dereg 120
deregister operations 157
Deregister SAP 138
Deregister SPP 138

Derived 80
design considerations 164
DestroyFunctionBody (Class, C++

TargetRTS) 197
destructor operations 76
DestructorInline (Class, C++) 186
DestructorVirtual (Class, C++) 186
DestructorVisibility (Class, C++) 185
detach 132
detach

thread commands 133
Detail Properties 84
directory structure

Services Library 143

E
encode function 77
EncodeFunctionBody 91
EncodeFunctionBody (Class, C++

TargetRTS) 199
encoding

data types 88
ends

association 80
enumeration

creating 83
enumerations

creating 83
environment variables 178
EqualityOperatorInline (Class, C++) 187
EqualityOperatorsVisibility (Class, C++) 187
error codes

C++ Services Library 117
error enumeration 118
events 94
examples

of class creation 86
of class modeling 79
of common C++ constructs 81
of sending data by reference 79
of sending data by value 78
of sending data classes 78
type descriptors 206
Index 305

Exception 245
exception service 117

concepts 117
Exception Signals 246
ExecutableName (Component, C++

Executable) 225
exit 139

control commands 139
external C++ classes

integrating 88
external class definitions

making visible to compiler 88
external classes 88

creating type descriptors 89
integration options 89

external data types
marshalling 90

external library
platforms 164

External Library Interface
Binary files 68
client model 58
Considerations and Known Issues 70
creating a library component 59
creating an external library component 67
DefaultInterfaceVisibility 61
Header files 68
InclusionPaths 65
interface model 58
Library Interface Specification 59
Library Paths 65
Limited Public visibility 62
overview 57
pathmap symbols 65
Phase 1 59
Phase 2 66
Phase 3 68
phases to generate 58
Private visibility 62
Public visibility 62
Publishing the interface 66
purpose 57
redefining visibility settings 64

References 60
SetInterface 61
setting inclusion paths and library paths 65
setting the Target Configuration and

References 60
setting visibility level 60
shared package names 66
sharing 68
sharing - known issue 69
source model 58
unit visibility rules 63
using 68
using the Interface 69
visibility level 60
visibility level descriptions 62
visibility rules 63

external port service example (C++) 122, 299

F
flags

polling 153
Frame 114, 247

classIsKindOf 248
className 248
classOf 249
deport 249
destroy 250
import 251
incarnate 253
incarnationAt 257

Frame Service 114
frame service

114
concepts 114
implementation classes 114
multiple containment 115
optional capsules 115
plug-in capsule roles (multiple

containment) 115
replicated capsule roles 116

Frozen 82
306 Index

G
General tab 84
generate

model tags 218
GenerateAssignmentOperator (Class, C++) 186
GenerateClass 90, 91, 173
GenerateClass (Class, C++) 181
GenerateCopyConstructor (Class, C++) 184
GenerateDefaultConstructor (Class, C++) 184
GenerateDescriptor 90, 91, 173
GenerateDescriptor (Attribute, C++

TargetRTS) 201
GenerateDescriptor (Class, C++ TargetRTS) 196
GenerateDescriptor (Role, C++ TargetRTS) 202
GenerateDestructor (Class, C++) 185
GenerateEqualityOperator (Class, C++) 187
GenerateInequalityOperator (Class, C++) 187
GenerateModelTags 218
Generating an External Library Interface 57
Global 82, 84
global constants

creating 82
go

control commands 139
guard conditions 161

H
hardware differences 164
HAVE_INET 147
Header files 68
HeaderEnding (Capsule, C++) 190
HeaderEnding (Class, C++) 182
HeaderPreface 85, 88, 90, 91
HeaderPreface (Capsule, C++) 190
HeaderPreface (Class, C++) 182
heavy-weight unit of concurrency 96
help 131
help commands 131

I
implementation classes for exception service 117
implementation classes for frame service 114
implementation classes for timing service 112
ImplementationEnding (Capsule, C++) 191
ImplementationEnding (Class, C++) 183
ImplementationPreface (Capsule, C++) 190
ImplementationPreface (Class, C++) 183
ImplementationType 83
ImplementationType (Class, C++) 181, 182
imported 120
Incarnation - RTFrame

incarnate() 160
include directory 143
InclusionPaths (Component, C++

Compilation) 221
InclusionPaths property 65
info 133

informational commands 135
informAt 120
informAt primitive 121
informational commands 133, 134

info 135
printstats 136
saps 133
system 134

informEvery 120
informEvery primitive 121
informEvery() 153
InformIn 138
informIn 120
informIn primitive 121
InitFunctionBody (Class, C++ TargetRTS) 196
Initial Value 82, 84, 85
InitializerKind (Attribute, C++) 188
InitializerKind (Role, C++) 189
InitialValue (Role, C++) 190
Inline (Operation, C++) 188
INLINE_CHAINS 148, 151
INLINE_METHODS 148
INTEGER_POSTFIX 145
Index 307

integrating
external classes 88, 89

integration
case 1 88
case 2 89
options 89
questions 88

integration options 89
IPC

multi-threaded 153
single-threaded 153

IPC events 152
IPC mechanisms

adding support 155
IPC options summary 159
IPC processing 157

K
kernel configuration 124
KindInHeader 82, 84
KindInHeader (Uses, C++) 192
KindInImplementation 82, 84
KindInImplementation (Uses, C++) 192

L
lib directory 144
Libraries property 65
Library Interface Specification 59
LibraryName (Component, C++ Library) 227
libset directory 144
libset name

Services Library 142
light-weight unit of concurrency 96
limitations

opening Rose models in Rose RealTime 37
using the C++ Analyzer in Rose RealTime 37

Limited Public visibility 62
LinkArguments (Component, C++

Executable) 226
LinkCommand (Component, C++

Executable) 226

literal integer 85
Log 106, 261

log 262
show 262

log 137
log

tracing commands 137
Log Miscellaneous Operations 263
Log Service 106
log service 106
LOG_MESSAGE 146, 151
logical threads 225
LogicalThreads (Component, C++ Library) 228
logMsg() 175
loss of messages 108

M
macro usage 85
macros 85

defining complex 85
in C++ 84

main.cpp 125
mainLoop() 153, 154, 156
manual loading 125
mapping capsules to threads 96
marshallable 86

classes 87, 89
data classes 77

marshallable data classes 77
marshalling

external data types 90
marshalling functions 90
memory

managed by class 87
memory leaks 75
message

processing 94
message pointers 74
message priorities 109
308 Index

message priority 109
background 109
general 109
high 109
low 109
panic 109

message processing 94
message trace 77
messages 94

cross thread 163
deferring 112
from capsules 73
minimal overhead in handling 108
recalling 112
sending data by value 162

model
generate tags 218
running 132

models
debugging 77
overriding operations 173

MS_nmake 219
msg 158
multiple containment 104, 115
multiplicity

arrays 81
multi-threaded IPC 153
multi-threaded message processing 95
multi-threaded Services Library 98

N
naming considerations

C++ Services Library 99
New Attributes C++ Properties 82
NewCapsule1 80
NewClass1 80
noConnect 121
Nodes classes 86
noMem 121
non-public fields

in classes 90

Non-Volatile-Store 164
noReply 121
notImported 121
notOptional 121
NumElementsFunctionBody 87
NumElementsFunctionBody (Attribute, C++

TargetRTS) 201
NumElementsFunctionBody (Role, C++

TargetRTS) 202
NumElementsFunctions 76
NVS 164

O
object instances

source 91
target 91

OBJECT_DECODE 146, 151
OBJECT_ENCODE 146
objects

debugging 88
OBSERVABLE 150
-obslisten 126
one shot timer 112
opening

Rose models in Rose RealTime 37
OperationKind (Operation, C++) 188
operations

overriding and adding 172
operator

setting assignment as private 192
optional capsules 115
order-preserving

messages 108
OTRTSDEBUG 146, 151
OutputDirectory (Component, C++

Generation) 215
overriding

operations and classes 172
operations with targets 174
operations within models 173
Index 309

P
pathmap (External Library Interface) 65
pathmap symbols 178
Peer Controller class 155
periodic timer 113
physical threads 225
platform name

Services Library 142
plug-in capsule roles 115
pointers

classes 87
classes without 86
creating 81
in classes 76
sending in messages 74

polling a flag 153
port services 122, 299
portId 131
ports 110

cardinality 83, 85
published 110
unpublished 110
unwired 110

POSIX 153
pre-processor macros

changing 168
printf 163
printstats 133
printstats

informational commands 136
prio 121
private

setting assignment operator 192
setting copy constructor 192

private assignment operator 194
Private visibility 62
PrivateDeclarations 191
PrivateDeclarations (Class, C++) 183, 191
process boundaries 74
processing overhead

blocking capsule 154
ProtectedDeclarations 191
ProtectedDeclarations (Class, C++) 183, 191
Protocol 196

protocols
base class 103
conjugate class 103
sending data by reference 74
sending data by value 74
signals 103

Public visibility 62
PublicDeclarations 191
PublicDeclarations (Class, C++) 183, 191
published ports 110
Publishing the interface 66
PURIFY 147

Q
quit 139

control commands 139

R
Rational customer support

contacting xxv
Recall 138
RecallAll 138
recalling messages 112
receiver 78
recursiveInvoke 121
Redefining Visibility Settings 64
refFull 122
reg 122
Register SAP 138
Register SPP 138
REGISTER_LAYER 157
REGISTER_LAYER macro 158
registering operations 157
registerLayer 157
registration by name 111
registration by name (communication services -

C++) 111
registration string 111
relative time 113
replicated capsule roles 116
replRef 122
request-reply 108
310 Index

RTActor 234
context 237
context() 117
getCurrentStateString 239
getError 237
getError() 117
getIndex 238
getMsg 235
getName 238
getTypeName 238
isType 239
logMsg 236
logMsg() 146, 174
msg 235
overrideable operations 102
unexpectedMessage 236

RTActor subclasses
ports 103

RTActorClass 114, 239
capsule class information 102

RTActorId 114, 241
isValid 242

RTActorRef 114, 240
capsule roles 102
size 241

RTController 105, 121, 155, 156, 242
abort 245
getError 243
getError() 117
mainLoop() 173
name 244
perror 244
perror() 117
strerror 244
strerror() 117

RTController class 117
RTCustomController 156

mainLoop() 156, 158
waitForEvents() 157
wakeup() 157, 158

RTDATA 36
rtdata 36, 78
RTDataObject subclasses 234
RTDataObjects 162
RTExceptionSignal 247

RTFRAME_CHECK_LOOSE 148
RTFRAME_CHECK_NONE 148
RTFRAME_CHECK_STRICT 148
RTFRAME_CHECKING 148
RTFRAME_THREAD_SAFE 149
RTFRAME_USE_FREELIST 150
RTInSignal 106, 257

purge 258
purgeAt 258
recall 259
recallAll 260
recallAllAt 261
recallAt 259

RTMain
argCount() 131
entryPoint 125
targetShutdown 173
targetStartup 173
targetStartup() 173

RTMessage 121, 147, 264
defer 268
deliver() 158
getData 266
getPriority 265
getSignalName 265
getType 266
isValid 267
sap 267
sapIndex0 266

RTMessage object
capsule instances 105

RTMESSAGE_PAYLOAD_SIZE 150
RTObject_class 86, 268
RTOutSignal 106, 270

invoke 272
invokeAt 274
reply 275
send 270
sendAt 271

RTPeerController 154, 156
enhancement 155
mainloop() 173
waitForEvents() 156
wakeup() 156

rtport 36
Index 311

RTProtocol 106, 275
bindingNotification 281
bindingNotificationRequested 281
deregisterSAP 282
deregisterSPP 284
getRegisteredName 286
isBoundAt 285
isIndexTo 284
purge 277
purgeAt 278
recall 278
recallAll 280
recallAllAt 280
recallAllFront 281
recallAt 279
recallFront 279
registerSAP 282
registerSPP 283
size 277

RTReal 147
RTREAL_INCLUDED 147
RTResourceMgr 121
RTS debugger command summary 131
RTS_COMPATIBLE 147
RTS_COUNT 145
RTS_INLINES 147
RTTimerId 112
RTTimespec 112

getclock 289
RTTimespec 289

RTTimespec assignment operators 291
RTTimespec basic arithmetic operators 291
RTTimespec basic comparison operators 290
RTType_class name 86
Run Time system debugger

starting 129
running

model 132
with observability 126

run-time system debugger
differences between Single and

Multi-threaded 130

S
SAP 110
saps 133

informational commands 134
scanf 163
Send 138
send

sending and receiving data by value 78
sending data classes between capsule

instances 78
send primitive 121
sendable by value 86

classes 87
sender 78
sending data by reference 74

examples 79
sending data by value 74

examples 78
sending data by value in messages 162
sends

unnecessary 162
Services Library 86, 89

building 175
custom peer controller 154
directory structure 143
error codes 117
libset name 142
minimum services 151
naming conventions 141
overriding operations 172
overriding operations with targets 174
overriding operations within models 173
platform name 142
target base name 142

Services Library Framework
C++ 93

Services Library Source 141
$RTS_HOME 141
codegen 143
config 143
directory structure 143
include 143
lib 144
libset 144
312 Index

Libset Name 142
Naming Convention 141
Platform Name 142
src 144
target 144
Target Base Name 142
tools 144

setting
header and binary files 68

shared package names 66
Sharing an External Library Interface 57
sharing the External Library Interface 68
signal handlers

using 153
single-threaded IPC 153
single-threaded message processing 95
single-threaded Services Library 97
source object instances 91
SPP 110
src (C++) 53
src directory 144
starting

Run Time system debugger 129
state machines 161
step

control commands 139
Stereotype 84
Struct 86
struct

creating 86
SUPER 36
synchronous communication 107
syntax examples

of sending data classes 78
system 133

T
tags

generate model tags 218
target base name

Services Library 142
target directory 144
target object instances 91

Target Observability Port 127
TARGETRTS properties 195
targets

overriding operations 174
targetStartup 174
taskId 131
tasks 132

thread commands 132
thread boundaries 74
thread commands 132

attach 133
detach 133
tasks 132

threads 96
Timing 112, 291

cancelTimer 297
currentTime 296
informAt 292
informEvery 75, 295
informIn 75, 293

timing accuracy 114
timing precision 114
Timing Service 112
timing service 112

absolute time 113
accuracy 114
concepts 112
implementation classes 112
one shot timer 112
periodic timer 113
precision 114
relative time 113

tool chain functionality 123
tool chains 165
tools directory 144
TopCapsule (Component, C++ Executable) 223
tracing commands 137

log 137
tv_nsec 288
tv_sec 288
Type 82, 83
type descriptors

Associated Type Descriptors 206
defined 203
examples 206
Index 313

for external classes 89
usage 204
Usage patterns 206
what are they? 203
when are they used? 204

typedef 83
creating 83

TypeDescriptor (Attribute, C++ TargetRTS) 201
TypeDescriptor (Role, C++ TargetRTS) 202
types of concurrency 96
TypeSafeSignals (Protocol, C++ TargetRTS) 203

U
Unit Visibility rules 63
Unix_make 219
unnecessary sends 162
unpublished ports 110
unwired ports 110

support for 110
unwired support 110
URTS_DEBUG 129
URTS_DEBUG Parameter 129
USE_THREADS 145
UserLibraries (Component, C++ Executable) 226
UserObjectFiles (Component, C++

Executable) 227
using the C++ Analyzer in Rose RealTime 37
using the External Library Interface 68

V
Version (Class, C++ TargetRTS) 196
Version (Protocol, C++ TargetRTS) 202
Visibility Level

External Library Interfaces 60
Visibility Level Descriptions 62
visibility rules (External Library Interface) 63

W
waitForEvents 157
waitForEvents() 154

wakeup() 154
wakeupFunc 158
wired ports 110

X
xRtsInvoke 122
314 Index

	C++ Reference
	Preface
	Audience
	Other Resources
	Rational Rose RealTime Integrations With Other Rational Products
	Contacting Rational Customer Support

	Overview
	Using this Guide
	Workflows for Your Host Workstation and Embedded Target
	Using C++ Code in Models
	Model Properties
	C++ Services Library
	Code Generation
	Modifying Generated Code

	Compilation
	Linking the Model with the Services Library

	Model Executables
	Target Observability

	Using C++ Code in Models
	Adding C++ Code to Models
	The Syntax of Code Segments
	Choice Point Code Condition Segment

	Encapsulating Target Specific Behavior
	Code Sync
	Making Changes Outside the Toolset
	Identifying Designated Code Sync Areas
	De-activating Code Sync

	Macros and Arguments Available to State Machine Code
	CALLSUPER
	SUPER
	RTDATA and rtdata
	rtport

	Limitations
	Opening Rational Rose Models in Rose RealTime
	Using the C++ Analyzer in Rose RealTime

	Code Generation
	Model to Code Correspondence
	Associations
	Valid Code Generation Associations

	Dependencies
	Classes
	Logical Packages
	User-defined Operations
	Standard Operations
	Attributes
	Capsules
	Capsule State Diagrams
	Protocols
	Components
	Relationships and Elements Ignored by C++ Code Generation

	Code Generator Behavior
	Incremental Generation
	The Effect of Controlled Units

	Generated Code Directory Layout
	src
	build

	Code Generator Command-Line Arguments
	Command-Line Arguments

	Command-Line Build Interface

	Generating and Sharing External Library Interfaces
	Overview
	Phase 1: Providing the Library Interface Specification
	Creating a Library Component
	Setting the Target Configuration and References
	Setting the Visibility Level of External Library Interfaces
	Redefining Visibility Settings for Unit Interfaces
	Setting Inclusion Paths and Library Paths
	Specifying the Names of Shared Packages

	Phase 2: Publishing the Interface
	Phase 3: Sharing and Using the External Library Interface
	Sharing the Interface
	Using the Interface

	Considerations and Known Issues

	Classes and Data Types
	Overview
	Sending Data in Messages
	Protocols
	Sending by Value
	Sending by Reference

	Memory Leaks
	Creating Data Types
	Marshallable Data Classes
	Basic Structures

	C++ Data Type Examples
	Syntax Examples of Sending Data Classes Between Capsule Instances
	Sending and Receiving Data By Value
	Sending and Receiving Data By Reference

	Class Modeling Examples
	Creating a Class Data Member From the Class Diagram
	Specifying Arrays Using Association Multiplicity

	Creating and Using Common C++ Constructs
	Creating Array and Pointer Attributes
	Creating a Constant
	Creating a Typedef
	Creating an Enumeration
	Creating a #define
	Creating a Struct

	Class Creation Examples
	Creating and Using Classes With No Pointer Attributes
	Creating and Using Classes With Attributes That Are Pointers
	Integrating an External Class

	Integration Questions
	Integration for Case #1
	Integration for Case #2 and Case #3

	Integration Options
	Option 1: Describing an External Type to Rose RealTime
	Option 2: Providing Own Marshalling Functions

	C++ Services Library
	C++ Services Library Framework
	The Big Advantage
	Message Processing
	Events and Messages

	Processing Overview
	Single and Multi-Threaded Message Processing
	Introduction to Threads
	Types of Concurrency
	Mapping Capsules to Threads
	Single-Threaded Services Library
	Multi-Threaded Services Library
	Naming Considerations
	C++ Services Library Framework
	Capsules Become Subclasses of RTActor
	Special Overrideable Capsule Class Operations
	Capsule Class Information is Stored in Instances of RTActorClass
	Capsule Roles are Attributes of Type RTActorRef
	Protocols Become Two Classes: Base and Conjugate
	Ports are Protocol Type Attributes in RTActor Subclasses
	Signals Become Operations in Protocol Classes
	Capsule Roles are Place Holders for Zero or More Capsule Instances
	Multiple Containment

	Capsule Instances Have Access to a RTMessage Object
	Capsule Instances Have Access to their Controller
	Framework Sample Model

	Log Service
	Communication Services
	Asynchronous and Synchronous Communication
	Order-Preserving
	Lossy
	Request-Reply
	The Semantics of Usage of Message Priorities
	Support for Unwired Ports
	Published Versus Unpublished Unwired Ports
	Registration by Name
	Registration String
	Automatic Versus Application Registration
	Deferring and Recalling Messages

	Timing Service
	Relative Versus Absolute Time
	Timing Precision and Accuracy

	Frame Service
	Optional Capsules
	Plug-in Capsule Roles: Multiple Containment
	Multiple Containment
	Replicated Capsule Roles

	Exception Service
	RTController Error Codes
	Error Enumeration
	alreadyDeferred
	badActor
	badClass
	badId
	badIndex
	badRef
	badSignal
	badValue
	deferInvoke
	dereg
	imported
	noConnect
	noMem
	noReply
	notImported
	notOptional
	prio
	recursiveInvoke
	refFull
	reg
	replRef
	xRtsInvoke

	External Port Service

	Running Models on Target Boards
	Step 1: Verify Tool Chain Functionality
	How to Test

	Step 2: Kernel Configuration
	Step 3: Verify main.cpp
	Step 4: Try Manual Loading
	Step 5: Running with Observability

	Command Line Model Debugger
	Starting the Run Time System Debugger
	URTS_DEBUG Parameter
	Differences Between Single-Threaded and Multi-Threaded Run Time System Debugger
	Application-Specific Command-Line Arguments
	Accessing
	Providing Arguments on Targets That Do Not Support Command-Line Arguments

	Run Time System Debugger Command Summary
	Help
	taskId, capsuleId, portId
	Running a Model
	Thread Commands
	tasks
	attach <taskId>
	detach <taskId>
	Informational Commands
	saps
	system [<capsuleId> [<depth>]]
	info
	printstats <taskId>
	Tracing Commands
	log <category> <detail-level>
	Control Commands
	exit
	go [<n>]
	step [<n>]
	quit
	continue

	Inside the C++ Services Library
	Organization of the Services Library Source
	$RTS_HOME
	Configuration Naming Convention
	Platform Name (or Configuration)
	Target Base Name
	Libset Name
	Summary

	Directory Structure
	codegen
	include
	config
	target
	lib
	libset
	src
	tools

	Configuration Preprocessor Definitions
	USE_THREADS
	RTS_COUNT
	DEFER_IN_ACTOR
	INTEGER_POSTFIX
	LOG_MESSAGE
	OBJECT_DECODE
	OBJECT_ENCODE
	OTRTSDEBUG
	RTREAL_INCLUDED
	PURIFY
	RTS_INLINES
	RTS_COMPATIBLE
	HAVE_INET
	INLINE_CHAINS
	INLINE_METHODS
	RTFRAME_CHECKING
	RTFRAME_THREAD_SAFE
	RTFRAME_USE_FREELIST
	RTMESSAGE_PAYLOAD_SIZE
	OBSERVABLE
	Creating the Minimum Services Library Configuration

	Integrating External IPC Into a Model
	Build Versus Buy
	IPC Basics
	Single-Threaded IPC
	Using Signal Handlers
	Polling a Flag
	Multi-Threaded IPC
	Dedicated Blocking Capsule
	Processing Overhead

	Custom Peer Controller
	Enhancement to the RTPeerController Class
	Adding Support For New IPC Mechanisms
	Design Components
	Concurrency Note
	Controller Usage
	Usability Note

	IPC Options Summary

	Optimizing Designs
	Capsule Instances and Capsule Behavior
	Incarnation (Frame::Base::incarnate())
	Guards
	State Machines
	Capsules versus Data
	Capsule Functions
	RTDataObjects
	Unnecessary Sends
	Sending Data by Value in Messages
	Cross Thread Message Sending

	General C++ Performance Notes
	Additional Design Considerations
	Hardware Differences
	Availability of External Library on Different Platforms

	Toolchains

	Configuring and Customizing the Services Library
	Configuration and Customization
	Changing Pre-Processor Macros
	Changing Build Options
	Overriding Virtual RTActor Operations From the Toolset
	Overriding or Adding Operations and Classes
	Overriding Operations Within a Model
	Overriding Operations by Creating a New Target

	Building the Services Library
	Updating a Component to Use a Different Services Library

	Model Properties Reference
	Generalization and Properties
	Expanded Property Symbols
	Environment Variables and Pathmap Symbols

	C++ Model Element Properties
	GenerateClass (Class, C++)
	ClassKind (Class, C++)
	ImplementationType (Class, C++)
	HeaderPreface (Class, C++)
	HeaderEnding (Class, C++)
	ImplementationPreface (Class, C++)
	ImplementationEnding (Class, C++)
	PublicDeclarations (Class, C++)
	ProtectedDeclarations (Class, C++)
	PrivateDeclarations (Class, C++)
	GenerateDefaultConstructor (Class, C++)
	DefaultConstructorVisibility (Class, C++)
	DefaultConstructorExplicit (Class, C++)
	DefaultConstructorInline (Class, C++)
	GenerateCopyConstructor (Class, C++)
	CopyConstructorVisibility (Class, C++)
	CopyConstructorExplicit (Class, C++)
	CopyConstructorInline (Class, C++)
	GenerateDestructor (Class, C++)
	DestructorVisibility (Class, C++)
	DestructorVirtual (Class, C++)
	DestructorInline (Class, C++)
	GenerateAssignmentOperator (Class, C++)
	AssignmentOperatorVisibility (Class, C++)
	AssignmentOperatorInline (Class, C++)
	GenerateEqualityOperator (Class, C++)
	EqualityOperatorsVisibility (Class, C++)
	EqualityOperatorInline (Class, C++)
	GenerateInequalityOperator (Class, C++)
	AttributeKind (Attribute, C++)
	InitializerKind (Attribute, C++)
	OperationKind (Operation, C++)
	Inline (Operation, C++)
	ConstructorInitializer (Operation, C++)
	CallFromDestructor (Operation, C++)
	AssociationEndKind (Role, C++)
	InitializerKind (Role, C++)
	InitialValue (Role, C++)
	HeaderPreface (Capsule, C++)
	HeaderEnding (Capsule, C++)
	ImplementationPreface (Capsule, C++)
	ImplementationEnding (Capsule, C++)
	PublicDeclarations (Capsule, C++)
	ProtectedDeclarations (Capsule, C++)
	PrivateDeclarations (Capsule, C++)
	KindInHeader (Uses, C++)
	KindInImplementation (Uses, C++)
	Declaring a Private Copy Constructor or Assignment Operator in C++ Classes

	C++ TargetRTS Properties
	GenerateDescriptor (Class, C++ TargetRTS)
	Version (Class, C++ TargetRTS)
	InitFunctionBody (Class, C++ TargetRTS)
	CopyFunctionBody (Class, C++ TargetRTS)
	DestroyFunctionBody (Class, C++ TargetRTS)
	DecodeFunctionBody (Class, C++ TargetRTS)
	EncodeFunctionBody (Class, C++ TargetRTS)
	GenerateDescriptor (Attribute, C++ TargetRTS)
	TypeDescriptor (Attribute, C++ TargetRTS)
	NumElementsFunctionBody (Attribute, C++ TargetRTS)
	GenerateDescriptor (Role, C++ TargetRTS)
	TypeDescriptor (Role, C++ TargetRTS)
	NumElementsFunctionBody (Role, C++ TargetRTS)
	Version (Protocol, C++ TargetRTS)
	BackwardsCompatible (Protocol, C++ TargetRTS)
	TypeSafeSignals (Protocol, C++ TargetRTS)

	Type Descriptors
	What are Type Descriptors?
	When are Type Descriptors Used?
	Example Usage Patterns and Associated Type Descriptors

	C++ Generation Properties
	OutputDirectory (Component, C++ Generation)
	CodeGenDirName (Component, C++ Generation)
	ComponentUnitName (Component, C++ Generation)
	CommonPreface (Component, C++ Generation)
	CodeGenMakeType (Component, C++ Generation)
	CodeGenMakeCommand (Component, C++ Generation)
	CodeGenMakeArguments (Component, C++ Generation)
	CodeGenMakeInsert (Component, C++ Generation)
	CodeSyncEnabled (Component, C++ Generation)
	Generate Model Tags (Component, C++ Generation)

	C++ Compilation Properties
	CompilationMakeType (Component, C++ Compilation)
	CompilationMakeCommand (Component, C++ Compilation)
	CompilationMakeArguments (Component, C++ Compilation)
	CompilationMakeInsert (Component, C++ Compilation)
	CompileCommand (Component, C++ Compilation)
	CompileArguments (Component, C++ Compilation)
	InclusionPaths (Component, C++ Compilation)
	TargetServicesLibrary (Component, C++ Compilation)
	TargetConfiguration (Component, C++ Compilation)

	C++ Executable Properties
	TopCapsule (Component, C++ Executable)
	PhysicalThreads (Component, C++ Executable)
	Physical Thread Properties
	Logical Threads
	Physical Threads

	ExecutableName (Component, C++ Executable)
	DefaultArguments (Component, C++ Executable)
	LinkCommand (Component, C++ Executable)
	LinkArguments (Component, C++ Executable)
	UserLibraries (Component, C++ Executable)
	UserObjectFiles (Component, C++ Executable)

	C++ Library Properties
	LibraryName (Component, C++ Library)
	BuildLibraryCommand (Component, C++ Library)
	BuildLibraryArguments (Component, C++ Library)
	LogicalThreads (Component, C++ Library)

	C++ External Library Properties
	GenerateClassInclusions (Component, C++ External Library)
	CodeGenDirName (Component, C++ External Library)
	InclusionPaths (Component, C++ External Library)
	Libraries (Component, C++ External Library)
	LogicalThreads (Component, C++ External Library)

	Services Library Class Reference
	RTDataObject Subclasses
	RTActor
	RTActor::msg and RTActor::getMsg
	RTActor::logMsg
	RTActor::unexpectedMessage
	RTActor::context
	RTActor::getError
	RTActor::getIndex
	RTActor::getName
	RTActor::getTypeName
	RTActor::isType
	RTActor::getCurrentStateString

	RTActorClass
	RTActorRef
	RTActorRef::size

	RTActorId
	RTActorId::isValid

	RTController
	RTController::getError
	RTController::strerror
	RTController::perror
	RTController::name
	RTController::abort

	Exception
	Exception Signals
	RTExceptionSignal

	Frame
	Frame::classIsKindOf
	Frame::className
	Frame::classOf
	Frame::deport
	Frame::destroy
	Frame::import
	Frame::incarnate
	Frame::incarnationAt

	RTInSignal
	RTInSignal::purge
	RTInSignal::purgeAt
	RTInSignal::recall
	RTInSignal::recallAt
	RTInSignal::recallAll
	RTInSignal::recallAllAt

	Log
	Log::show and Log::log
	Log Miscellaneous Operations

	RTMessage
	RTMessage::getPriority
	RTMessage::getSignalName
	RTMessage::getData
	RTMessage::getType
	RTMessage::sapIndex0
	RTMessage::sap
	RTMessage::isValid
	RTMessage::defer

	RTObject_class
	RTOutSignal
	RTOutSignal::send
	RTOutSignal::sendAt
	RTOutSignal::invoke
	RTOutSignal::invokeAt
	RTOutSignal::reply

	RTProtocol
	RTProtocol::size
	RTProtocol::purge
	RTProtocol::purgeAt
	RTProtocol::recall
	RTProtocol::recallAt
	RTProtocol::recallFront
	RTProtocol::recallAll
	RTProtocol::recallAllAt
	RTProtocol::recallAllFront
	RTProtocol::bindingNotification
	RTProtocol::bindingNotificationRequested
	RTProtocol::registerSAP
	RTProtocol::deregisterSAP
	RTProtocol::registerSPP
	RTProtocol::deregisterSPP
	RTProtocol::isIndexTo
	RTProtocol::indexTo
	RTProtocol::isBoundAt
	RTProtocol::isRegistered
	RTProtocol::getRegisteredName

	RTSymmetricSignal
	Example

	RTTimerId
	RTTimerId::isValid

	RTTimespec
	tv_sec and tv_nsec
	RTTimespec::RTTimespec
	RTTimespec::getclock
	RTTimespec Basic Comparison Operators
	RTTimespec Assignment Operators
	RTTimespec Basic Arithmetic Operators

	Timing
	Timing::informAt
	Timing::informIn
	Passing Data in a Timer Message

	Timing::informEvery
	Timing::currentTime
	Timing::cancelTimer
	Timing System Clock Operations

	RTTypedValue
	Port Services
	External Port Service

	Index

