
Rational Software Corporation
Java Reference

RATIONAL ROSE® REALTIME

VERSION: 2003.06.00

PART NUMBER: 800-026110-000
support@rational.com
http://www.rational.com

WINDOWS/UNIX

Legal Notices
©1993-2003, Rational Software Corporation. All rights reserved.

Part Number: 800-026110-000
Version Number: 2003.06.00

This manual (the "Work") is protected under the copyright laws of the United States
and/or other jurisdictions, as well as various international treaties. Any reproduction
or distribution of the Work is expressly prohibited without the prior written consent
of Rational Software Corporation.

Rational, Rational Software Corporation, the Rational logo, Rational Developer
Network, AnalystStudio, ClearCase, ClearCase Attache, ClearCase MultiSite,
ClearDDTS, ClearGuide, ClearQuest, ClearTrack, Connexis, e-Development
Accelerators, DDTS, Object Testing, Object-Oriented Recording, ObjecTime,
ObjecTime Design Logo, Objectory, PerformanceStudio, PureCoverage, PureDDTS,
PureLink, Purify, Quantify, Rational Apex, Rational CRC, Rational Process
Workbench, Rational Rose, Rational Suite, Rational Suite ContentStudio, Rational
Summit, Rational Visual Test, Rational Unified Process, RUP, RequisitePro,
ScriptAssure, SiteCheck, SiteLoad, SoDA, TestFactory, TestFoundation, TestStudio,
TestMate, VADS, and XDE, among others, are trademarks or registered trademarks of
Rational Software Corporation in the United States and/or in other countries. All
other names are used for identification purposes only, and are trademarks or
registered trademarks of their respective companies.

Portions covered by U.S. Patent Nos. 5,193,180 and 5,335,344 and 5,535,329 and
5,574,898 and 5,649,200 and 5,675,802 and 5,754,760 and 5,835,701 and 6,049,666 and
6,126,329 and 6,167,534 and 6,206,584. Additional U.S. Patents and International
Patents pending.

U.S. GOVERNMENT RIGHTS. All Rational software products provided to the U.S.
Government are provided and licensed as commercial software, subject to the
applicable license agreement. All such products provided to the U.S. Government
pursuant to solicitations issued prior to December 1, 1995 are provided with
“Restricted Rights” as provided for in FAR, 48 CFR 52.227-14 (JUNE 1987) or DFARS,
48 CFR 252.227-7013 (OCT 1988), as applicable.

WARRANTY DISCLAIMER. This document and its associated software may be used
as stated in the underlying license agreement. Except as explicitly stated otherwise in
such license agreement, and except to the extent prohibited or limited by law from
jurisdiction to jurisdiction, Rational Software Corporation expressly disclaims all
other warranties, express or implied, with respect to the media and software product
and its documentation, including without limitation, the warranties of
merchantability, non-infringement, title or fitness for a particular purpose or arising

from a course of dealing, usage or trade practice, and any warranty against
interference with Licensee’s quiet enjoyment of the product.

Third Party Notices, Code, Licenses, and Acknowledgements
Portions Copyright ©1992-1999, Summit Software Company. All rights reserved.

Microsoft, the Microsoft logo, Active Accessibility, Active Client, Active Desktop,
Active Directory, ActiveMovie, Active Platform, ActiveStore, ActiveSync, ActiveX,
Ask Maxwell, Authenticode, AutoSum, BackOffice, the BackOffice logo, bCentral,
BizTalk, Bookshelf, ClearType, CodeView, DataTips, Developer Studio, Direct3D,
DirectAnimation, DirectDraw, DirectInput, DirectX, DirectXJ, DoubleSpace,
DriveSpace, FrontPage, Funstone, Genuine Microsoft Products logo, IntelliEye, the
IntelliEye logo, IntelliMirror, IntelliSense, J/Direct, JScript, LineShare, Liquid Motion,
Mapbase, MapManager, MapPoint, MapVision, Microsoft Agent logo, the Microsoft
eMbedded Visual Tools logo, the Microsoft Internet Explorer logo, the Microsoft
Office Compatible logo, Microsoft Press, the Microsoft Press logo, Microsoft
QuickBasic, MS-DOS, MSDN, NetMeeting, NetShow, the Office logo, Outlook,
PhotoDraw, PivotChart, PivotTable, PowerPoint, QuickAssembler, QuickShelf,
RelayOne, Rushmore, SharePoint, SourceSafe, TipWizard, V-Chat, VideoFlash, Visual
Basic, the Visual Basic logo, Visual C++, Visual C#, Visual FoxPro, Visual InterDev,
Visual J++, Visual SourceSafe, Visual Studio, the Visual Studio logo, Vizact, WebBot,
WebPIP, Win32, Win32s, Win64, Windows, the Windows CE logo, the Windows logo,
Windows NT, the Windows Start logo, and XENIX, are either trademarks or registered
trademarks of Microsoft Corporation in the United States and/or in other countries.

Sun, Sun Microsystems, the Sun Logo, Ultra, AnswerBook 2, medialib, OpenBoot,
Solaris, Java, Java 3D, ShowMe TV, SunForum, SunVTS, SunFDDI, StarOffice, and
SunPCi, among others, are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

Licensee shall not incorporate any GLOBEtrotter software (FLEXlm libraries and
utilities) into any product or application the primary purpose of which is software
license management.

BasicScript is a registered trademark of Summit Software, Inc.

Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma,
Richard Helm, Ralph Johnson and John Vlissides. Copyright © 1995 by
Addison-Wesley Publishing Company, Inc. All rights reserved.

Additional legal notices are described in the legal_information.html file that is
included in your Rational software installation.

Contents
Preface .xvii
Audience. xvii

Other Resources . xvii

Rational Rose RealTime Integrations With Other Rational Products xviii

Contacting Rational Customer Support . xix

1 Overview .21
Using this Guide . 21

Getting Started with Rational Rose RealTime Java 22

Using Java Code in Models . 22

Code Generation . 23

Java UML Services Library. 23

Compilation. 24

Model Properties . 25

Target Observability . 25

2 Getting Started with Rational Rose RealTime Java27
Building Java Systems in Rational Rose RealTime 27

Creating an Empty Model . 27

Creating a Simple Class . 29

Building Classes . 34

Running a Class Based Application . 38

Creating Capsules . 41

Running a Capsule Based Application . 43

Integrating External Classes. 46

3 Code Generation .53
Model to Code Correspondence. 53

Logical View Packages. 53
Classes. 54
Dependencies. 56
Attributes . 56
Contents v

Associations . 57
Operations . 58
Protocols. 59

In Signal .60
Out Signal .61
Symmetric Signals .62

Capsules. 63
Capsule Roles. .63
Ports .64
State Machine .65
Special Overrideable Capsule Class Operations .67

Build Overview .68
Build Process Flow . 68
Required Third-Party Tools . 69
Components . 69

RTJava Project Component .69
RTJava External Project Component .69

Build Details .71
Generated Makefile Patterns . 71

Makefile Generation .71
Default Directory Layout .71
Guidelines for Efficient Incremental Builds .72

Code Generator Behavior. 73
Command-Line Arguments .73
Efficient Incremental Builds During Code Generation. .74

Compiler Behavior . 74
Invoking the Compiler .74
Class Path. .74
Compiler Wrapper Script. .75
Compile All Script .75
Efficient Incremental Builds During Compilation .75

Build Errors . 76
Converting Compiler Errors into Build Errors .76

Run-Time Overview .77

4 Java UML Services Library . 79
Java UML Services Library Framework .79

Framework Sample Model . 80

Message Processing .81
Events and Messages . 81
Capsule Processing . 82
vi Contents

Message Processing . 82
Threads . 83
Mapping Capsules to Threads . 83

Framework Services. .84

Log Services .84
Implementation Classes. 84
Concepts . 84

Communication Services .85
Implementation Classes. 85
Concepts . 85
Primitives . 85
Asynchronous and Synchronous Communication . 86
Order Preservation. 86
Message Loss . 86
Minimal Overhead in Message Handling . 87
Request-Reply . 87
Message Priority . 87
Wired and Unwired Ports . 88
Published and Unpublished Unwired Ports . 88
Registration by Name. 89
Registration String . 89
Automatic Registration and Application Registration . 90
Deferring and Recalling Messages . 90

Timing Services .90
Implementation Classes. 90
Concepts . 90
Absolute and Relative Time . 91
One Shot Timer . 91
Periodic Timer . 91
Timing Precision and Accuracy . 91

Frame Services .92
Implementation Classes. 92
Concepts . 92
Optional Capsule Roles . 92
Contents vii

Plug-In Capsule Roles . 93
Multiple Containment . 93

Using Multiple Containment .93

Replicated Capsule Roles . 94

5 Command-Line Model Observer . 95
Starting the Run Time Command-Line Observer. .95

Run Time Command-Line Observer Summary .96
taskName . 96
 capsulePath . 96
portId . 97

Thread Commands .98
attach <taskName> . 98
detach <taskName> . 98
newtasks <mode>. 99
tasks . 99

Informational Commands. .99
info <capsulePath> . 99
printstats <taskName> . 101
stats <taskName>. 101
system [<capsulePath> [<depth>]] . 101
unwired . 103

Tracing Commands .103
log <category> . 103

Control Commands .105
continue . 105
exit . 105
step [<n>] . 105
stop . 105

Other Commands. .105
close . 105
help . 105
? . 105
viii Contents

6 Model Properties Reference. 107
RTJava Specific Properties .107

RTJava Properties .107
Class . 107

JavaStatic. 107
JavaFinal . 107
JavaStrictfp . 108
ClassFileHeader . 108
StaticInitializerHeader . 108
StaticInitializerFooter . 108
InstanceInitializerHeader . 108
InstanceInitializerFooter. 108

Attribute . 108
JavaVolatile . 108
JavaTransient . 108
InitializationCode . 108

Association End . 109
JavaFinal . 109
JavaVolatile . 109
JavaTransient . 109
InitialValue . 109
InitializationCode . 109
NameQualification . 109

Operation . 109
JavaFinal . 109
JavaNative . 109
JavaStrictfp . 110
JavaThrows . 110

Generalization . 110
NameQualification . 110

Package . 110
JavaPackage . 110

Transition . 110
GenerateDataParameter . 110
GeneratePortParameter. 111

Choice Point . 111
GenerateDataParameter . 111
GeneratePortParameter. 111
Contents ix

RTJava Component Properties .111
RTJava Project . 112

BuildJar Flag .112
OutputJarFilepath .112
JarCommand. .112
OutputClassDir .112
JavaCompiler .112
OutputDirectory. .112
BootstrapCommand .113
GenerateCommand. .113
CompileCommand .113
CleanAllCommand .113
MakeType .113
ComponentMakeInsert .114
CodeGenMakeInsert. .115
CompileMakeInsert .116
Variable Expansion for Fields .117
Path Map Variables, Environment Variables and Make Macro Variables 118

RTJava External Project . 119
ClassPath .119

File Name Conventions . 119
Backslashes .119
Spaces in Directory Names .120

7 Java UML Services Library Class Reference. 121
Java UML Services Library Class Reference Overview.121

Application .122
Application.getArgCount . 123
Application.getArgString . 124
Application.logicalControllerDeregister. 125
Application.logicalControllerFind . 126
Application.logicalControllerRegister . 127
Application.main . 128
Application.run . 129

Capsule .130
Capsule.rtDeferMessage . 131
Capsule.rtDestroy. 132
Capsule.rtForwardMessage . 133
Capsule.rtGetController . 134
Capsule.rtGetMsgData . 135
Capsule.rtGetMsgPort . 136
x Contents

Capsule.rtGetMsgPortIndex. 137
Capsule.rtGetMsgPriority . 138
Capsule.rtGetMsgSignal . 139
Capsule.rtWasInvoked . 140

Capsule.Message .141
Capsule.Message.forward . 142
Capsule.Message.getData . 143
Capsule.Message.getSignal . 144

CapsuleRole. .145

Controller .146
Controller.abort . 147
Controller.getApplication . 148
Controller.run . 149

Frame.Base .150
Frame.Base.cardinalityOf . 151
Frame.Base.destroy . 152
Frame.Base.incarnate . 153
Frame.Base.incarnationAt . 156
Frame.Base.plugIn . 157
Frame.Base.unplug . 158

Log.Base .159
Log.Base.close. 160
Log.Base.commit . 161
Log.Base.cr . 162
Log.Base.crtab. 163
Log.Base.log . 164
Log.Base.open . 165
Log.Base.show. 166
Log.Base.space . 167
Log.Base.tab . 168

Priority .169

ProtocolRole. .170
ProtocolRole.bindingNotification . 172
ProtocolRole.bindingNotificationRequested. 173
ProtocolRole.cardinality . 174
ProtocolRole.deregister . 175
ProtocolRole.deregisterSAP . 176
Contents xi

ProtocolRole.deregisterSPP. 177
ProtocolRole.getRegisteredName . 178
ProtocolRole.isBoundAt . 179
ProtocolRole.isRegistered . 180
ProtocolRole.purge . 181
ProtocolRole.purgeAt . 182
ProtocolRole.recall . 183
ProtocolRole.recallAll . 184
ProtocolRole.recallAllAt . 185
ProtocolRole.recallAt . 186
ProtocolRole.registerSAP. 187
ProtocolRole.registerSPP. 188
ProtocolRole.resize. 189

ProtocolRole.InSignal. .190
ProtocolRole.InSignal.purge . 191
ProtocolRole.InSignal.purgeAt . 192
ProtocolRole.InSignal.recall . 193
ProtocolRole.InSignal.recallAll . 194
ProtocolRole.InSignal.recallAllAt . 195
ProtocolRole.InSignal.recallAt . 196

ProtocolRole.OutSignal .197
ProtocolRole.OutSignal.invoke . 198
ProtocolRole.OutSignal.invokeAt . 200
ProtocolRole.OutSignal.reply . 202
ProtocolRole.OutSignal.send . 203
ProtocolRole.OutSignal.sendAt . 204

ProtocolRole.SymmetricSignal .205

Timing.Base .206
Timing.Base.cancelTimer . 207
Timing.Base.informAt . 208
Timing.Base.informEvery . 209
Timing.Base.informIn . 210
Timing.Base.timeout . 211
Timing.Base.timeouts . 212
xii Contents

Timing.Request .213

Exceptions .214

Index. 215
Contents xiii

xiv Contents

Figures
Figure 1 New Model Wizard. 28
Figure 2 Rational Rose RealTime with HelloWorldClass.rtmdl 29
Figure 3 Specification for Hello Class . 30
Figure 4 General Specification for Operation “main” . 31
Figure 5 Detail Specification for Operation “main” . 32
Figure 6 RTJava Properties for Operation “main” . 32
Figure 7 Default RTJava Properties for Class “Hello” . 33
Figure 8 General Specification for Component “HelloWorld” 34
Figure 9 References Specification for Component “HelloWorld” 35
Figure 10 RTJava Project Settings for Component “HelloWorld”. 36
Figure 11 Build Dialog Box for Component “HelloWorld”. 37
Figure 12 Default Specification for Processor “LocalCPU” 38
Figure 13 Component Instance Specification for “HelloWorldInstance” 39
Figure 14 Output Console for class “Hello” . 40
Figure 15 Capsule Based Model . 42
Figure 16 Component Instance Specification for Capsule Based Model. 44
Figure 17 UML Debugger on a Running “HelloWorldCapsule” 45
Figure 18 Output Console for “HelloWorldCapsule” . 45
Figure 19 Component Diagram of a System Using AWT and Swing. 47
Figure 20 Package Specification with java Namespace Support. 48
Figure 21 A Java Class . 55
Figure 22 A Java Class Dependency. 56
Figure 23 A Java Class with an Attribute . 57
Figure 24 An Association. 58
Figure 25 A Protocol Class Definition . 60
Figure 26 Build-Time Process Flow Diagram . 68
Figure 27 Build-Time Data Diagram . 70
Figure 28 Run-Time Process Flow Diagram . 77
Figure 29 Run-Time Data Diagram . 77
Figure 30 Java UML Services Library Framework . 80
Figure 31 Ping Pong Model Class Diagram. 81
Figure 32 Container Capsule Structure Diagram. 81
Figures xv

xvi Figures

Preface
This manual provides an introduction to Rational Rose RealTime Java. The Java
module joins the current C and C++ modules to add the ability to design, generate,
build, and debug applications in the Java language to the Rational Rose RealTime
product.

This manual is organized as follows:

■ Overview on page 21
■ Getting Started with Rational Rose RealTime Java on page 27
■ Code Generation on page 53
■ Java UML Services Library on page 79
■ Command-Line Model Observer on page 95
■ Model Properties Reference on page 107
■ Java UML Services Library Class Reference on page 121

Audience

This guide is intended for all readers including managers, project leaders, analysts,
developers, and testers.

This guide is specifically designed for software development professionals familiar
with the target environment they intend to port to.

Other Resources

■ Online Help is available for Rational Rose RealTime.

Select an option from the Help menu.

All manuals are available online, either in HTML or PDF format. To access the
online manuals, click Rational Rose RealTime Documentation from the Start menu.

■ To send feedback about documentation for Rational products, please send e-mail
to techpubs@rational.com.

■ For more information about Rational Software technical publications, see:
http://www.rational.com/documentation.
xvii

http://www.rational.com/documentation/

■ For more information on training opportunities, see the Rational University Web
site: http://www.rational.com/university.

■ For articles, discussion forums, and Web-based training courses on developing
software with Rational Suite products, join the Rational Developer Network by
selecting Start > Programs > Rational Suite > Logon to the Rational Developer Network.

Rational Rose RealTime Integrations With Other Rational
Products

Integration Description Where it is Documented

Rose RealTime–
ClearCase

You can archive Rose RT components in
ClearCase.

■ Toolset Guide: Rational Rose RealTime

■ Guide to Team Development: Rational
Rose RealTime

Rose RealTime–
UCM

Rose RealTime developers can create
baselines of Rose RT projects in UCM and
create Rose RealTime projects from
baselines.

■ Toolset Guide: Rational Rose RealTime

■ Guide to Team Development: Rational
Rose RealTime

Rose RealTime–
Purify

When linking or running a Rose
RealTime model with Purify installed on
the system, developers can invoke the
Purify executable using the Build > Run
with Purify command. While the model
executes and when it completes, the
integration displays a report in a Purify
Tab in RoseRealTime.

■ Rational Rose RealTime Help

■ Toolset Guide: Rational Rose RealTime

■ Installation Guide: Rational Rose
RealTime

Rose RealTime–
RequisitePro

You can associate RequisitePro
requirements and documents with Rose
RealTime elements.

■ Addins, Tools, and Wizards Reference:
Rational Rose RealTime

■ Using RequisitePro

■ Installation Guide: Rational Rose
RealTime

Rose RealTime–
SoDa

You can create reports that extract
information from a Rose RealTime
model.

■ Installation Guide: Rational Rose
RealTime

■ Rational SoDA User’s Guide

■ SoDA Help
xviii Preface

http://www.rational.com/university

Contacting Rational Customer Support

If you have questions about installing, using, or maintaining this product, contact
Rational Customer Support.

Note: When you contact Rational Customer Support, please be prepared to supply the
following information:

■ Your name, company name, telephone number, and e-mail address

■ Your operating system, version number, and any service packs or patches you
have applied

■ Product name and release number

■ Your Service Request number (SR#) if you are following up on a previously
reported problem

When sending email concerning a previously-reported problem, please include in the
subject field: "[SR#XXXXX]", where XXXXX is the Service Request number of the
issue. For example, "[SR#0176528] - New data on rational rose realtime install issue ".

Your Location Telephone Facsimile E-mail

North, Central,
and South
America

+1 (800) 433-5444
(toll free)

+1 (408) 863-4000
Cupertino, CA

+1 (781) 676-2460
Lexington, MA

support@rational.com

Europe, Middle
East, Africa

+31 20 4546-200
Netherlands

+31 20 4546-201
Netherlands

support@europe.rational.com

Asia Pacific +61-2-9419-0111
Australia

+61-2-9419-0123
Australia

support@apac.rational.com
Contacting Rational Customer Support xix

xx Preface

1Overview
Contents

This chapter is organized as follows:

■ Using this Guide on page 21
■ Getting Started with Rational Rose RealTime Java on page 22
■ Using Java Code in Models on page 22
■ Code Generation on page 23
■ Java UML Services Library on page 23
■ Compilation on page 24
■ Model Properties on page 25
■ Target Observability on page 25

Using this Guide

Use this guide to learn how to use Rational Rose RealTime Java to build, compile and
debug Java based Rational Rose RealTime models. Additional information is given on
how to deploy the model to a target system, and how to optimize and configure your
target to fit your project’s needs.

Using Rational Rose RealTime Java, you can produce Java source code, compile it,
then run and debug your Java program using the information contained in a Rose
RealTime model. The code generated for each selected model element is a function of
the element’s specification, model properties, and the model’s design properties.
Model properties provide the language-specific information required to map your
model onto Java.

To understand how Rational Rose RealTime Java works, you need to understand the
main parts of the language add-in that are discussed in this Chapter. In addition, there
are a number of Java example modelsthat demonstrate features of the toolset, the
model properties, and the Java UML Services Library.
21

In this document, a property is identified by the type of the element and the tab where
this property is available. For example, in "Class File Header property (Class,
RTJava)", the property is available on the RTJava tab of the Specification dialog box
for Class elements. In the Options dialog box, this property is available on the
RTJava tab when the Type is set to Class.

Getting Started with Rational Rose RealTime Java

There is an expected sequence of work activities for taking a model from early
prototyping to final production.

During the initial phases of model development, you probably want to run your
models primarily on the host workstation. This keeps the modify-compile-debug
cycle as short as possible. Also, you can take advantage of workstation-based debug
tools, such as Java source-level debugger which may not be available on your target
platform. For many projects, this is the final step, if you are using a workstation-based
target.

The workflow of Rational Rose RealTime is intended to provide as much up-front
verification and debugging as possible in the tool-rich environment of the host
workstation. This environment is typically provided by a combination of Rose
RealTime host-based tools and workstation-based Java tools. This leaves a minimal
amount of debugging to do on the target, where debugging is typically more difficult.
The use of target observability to monitor and control models at the model level
greatly enhances the ability to debug target applications.

For further information on building and running Rational Rose RealTime Java
models, see Getting Started with Rational Rose RealTime Java on page 27

Using Java Code in Models

Java is used as a detail-level coding language in Rational Rose RealTime. At a higher
level of abstraction, the program is described both structurally and behaviorally as a
graphical model using the Unified Modeling Language (UML). Java code can be
added to a variety of behavioral elements in a UML model. The abstract behavior of a
capsule is described as a graphical state diagram, which shows the allowable
sequence of events that the capsule can process. In order to actually carry out less
structured activity, detailed code must be added to the states, transitions, and
operations in the model. There are no restrictions on the code that you enter into your
model. You can also make use of external Java classes (that is, classes defined outside
of Rational Rose RealTime) in your model.
22 Chapter 1 - Overview

Rational Rose RealTime is designed to be the central interface point for developing
Java based models, and provides support for all activities in the development process,
including requirements capture, high-level design, coding, versioning, loadbuilding,
and testing. It does not, however, replace your existing Java tools. Rather, it depends
on the existence of other tools to handle language-specific work. It coordinates and
controls these activities in the context of your model. For example, the toolset does not
include a Java compiler. Rational Rose RealTime requires that you already have a Java
compiler installed and accessible in your environment prior to compiling a Java
model.

Note: Rational Rose RealTime does not support Rational Rose Java models in this
release.

For details on using Java code in models, see User code segment methods on page 65.

Code Generation

This section discusses some aspects of how a model is converted to Java code and
compiled. This should clarify the output you will see in the Build Log window, and
help you browse the generated code.

The Java generator uses the specifications and model properties of elements in the
current model to produce Java source code. You generate code for a component which
in turn references a set of elements from the logical view. The location of the source
files that are generated for elements referenced by (or assigned to) a component is
determined by the name of the component, the location of your model file (.rtmdl),
and the OutputDirectory (Component, Java Generation) property.

For details on the generated code pattern, see Model to Code Correspondence on page 53.

For details on the code generation process, see Build Overview on page 68 and Build
Details on page 71.

Java UML Services Library

The Java UML Services Library is at the heart of Rational Rose RealTime Java. The
Java UML Services Library is a model loaded at Startup. For details, see Java UML
Services Library Framework on page 79. You need to understand its architecture to start
optimizing and configuring the Java UML Services Library for your project.

The behavior of a model is specified using a combination of capsule state diagrams
and operations defined on classes and capsules. The relationships in the model are
specified with a combination of capsule structure and class diagrams. When a model
Code Generation 23

is built, these abstractions are automatically converted to implementation. The
Rational Rose RealTime Java UML Services Library provides a set of built-in services
commonly required in real-time systems.

These services include:

■ State machine handling
■ Message passing
■ Timing
■ Concurrency control
■ Thread management
■ Debugging facilities

In summary, the facilities provided by the Rational Rose RealTime Java UML Services
Library are:

■ The mechanisms that support the implementation of concurrent communicating
state machines.

■ Thread management and concurrency control.
■ Dynamic structure.
■ Timing.
■ Inter-thread communication.
■ Observation and debugging of a running model.

Compilation

Rational Rose RealTime Java converts a model to Java code but does not include the
compiler that will build from the generated source code. Before trying to build a
generated model, ensure that your compiler tools are correctly installed. For example,
try building a simple Java program from the command-line. If that works, then
Rational Rose RealTime Java will be able to properly invoke the configured compiler.

For details on the the compilation process, see Build Overview on page 68 and Build
Details on page 71.
24 Chapter 1 - Overview

Model Properties

The notations supported in Rational Rose RealTime are more abstract than the Java
programming language. Model properties enable you to provide language-specific
information that is not expressed in the notation, but that is necessary for generating
and building source code. Each model property can be assigned a model property
value. When a model element is created, each model property is assigned a default
value, which you can optionally modify.

In order to build source code, the code generator also generates makefiles which
specify how to build the generated source code. Certain properties affect how these
makefiles are to be generated and their contents.

Controlling a particular aspect of code generation may require several model
properties. For detailed reference to the model properties, see Model Properties
Reference on page 107.

Note: Not all model components for which code is generated require model
properties. For example, there are no model properties for inherits relationships, yet
the Java generator produces code from inherits relationships. In such cases,
information obtained from specifications is sufficient to control code generation.

Target Observability

Rational Rose RealTime's graphical observation tools are a sophisticated, yet intuitive
debugging environment allowing you to use the toolset to execute, monitor and
control a model running on the Java UML Services Library, even on a remote target
platform. The Java UML Services Library is a high-performance implementation
intended for use in a wide-range of real-time products.

For details on the the Java UML Services Library, see Java UML Services Library on
page 79.
Model Properties 25

26 Chapter 1 - Overview

2Getting Started with
Rational Rose RealTime
Java
Contents

This chapter is organized as follows:
■ Building Java Systems in Rational Rose RealTime on page 27
■ Creating an Empty Model on page 27
■ Creating a Simple Class on page 29
■ Building Classes on page 34
■ Running a Class Based Application on page 38
■ Creating Capsules on page 41
■ Running a Capsule Based Application on page 43
■ Integrating External Classes on page 46

Building Java Systems in Rational Rose RealTime

This chapter is intended as a quickstart guide for getting started building Java
systems in Rational Rose RealTime. It covers building and running simple data
classes, building and running capsule classes, and integrating external classes into
your model.

The models described here are available in the Rational Rose RealTime home
directory located in the Examples/Models/Java directory.

Creating an Empty Model

The fastest way to get started with Rational Rose RealTime Java is to use the New
Model Wizard that opens when Rational Rose RealTime is first invoked. Figure 1 on
page 28 shows the New Model Wizard startup screen.
27

Figure 1 New Model Wizard

In the Create New Model dialog box, double-click RTJava. The Java classes are
loaded into the model, including:

Logical View/com/rational/rosert: All the classes used to implement the Java UML
Services Library.

Logical View/java/[io,lang,util]: The Java base classes. This package contains only
those classes which are needed for the Java UML Services Library.

Component View/java: The components needed to create applications that reference
the Java base classes.

Component View/rosert: The components needed to create applications that depend
upon the Java UML Services Library.

Note: There may be additional frameworks available from
$ROSERT_HOME/RTJava/.
28 Chapter 2 - Getting Started with Rational Rose RealTime Java

Creating a Simple Class

Figure 2 Rational Rose RealTime with HelloWorldClass.rtmdl

The above diagram shows the results of creating a simple "Hello World" class in
Rational Rose RealTime, and opening the Component Diagram for the Main
component.

To create the new class, right-click Logical View (in the Model View) and click New >
Class. A new Class Diagram appears. In the Component View, right-click on Main,
and click Open. The Component Diagram appears.

You can now open the Class Specification diagram for the new class. In the Class
Diagram, right-click the Hello class, and click Open Specification. The Class
Specification for Hello dialog box appears. This is illustrated in Figure 3.
Creating a Simple Class 29

Figure 3 Specification for Hello Class

In Java, any class can be run if it has an operation named "main" that has the
appropriate scope and signature (that is, class scope, public, one parameter of type
String[], and a return type of void).

To create the "main" operation, right-click in the window of the Operations tab (Class
Specification for Hello dialog box), and click Insert. A new operation appears that
you can rename main, and make void as the Return type.

Figure 4, Figure 5, and Figure 6 show different tabs of the Operation Specification for
main dialog box.
30 Chapter 2 - Getting Started with Rational Rose RealTime Java

Figure 4 General Specification for Operation “main”

Figure 4 shows how to make this a public class scoped operation.

Note: If additional customization of the operation is required, you can make these
customizations in the RTJava tab (shown in Figure 6).
Creating a Simple Class 31

Figure 5 Detail Specification for Operation “main”

Figure 6 RTJava Properties for Operation “main”
32 Chapter 2 - Getting Started with Rational Rose RealTime Java

The RTJava property page shows how to set "final" (JavaFinal), "native" (JavaNative),
and "strictfp" (JavaStrictfp) modifiers for this operation, and also provides a place to
specify the list of exceptions that can be thrown (JavaThrows).

The RTJava tab is used to set other properties of this class.

Figure 7 Default RTJava Properties for Class “Hello”
Creating a Simple Class 33

Figure 7 shows the default RTJava tab for the Hello class. The RTJava tab is used to
set other properties of this class. For further information on the contents of the RTJava
tab, see RTJava Properties on page 107.

Building Classes

To generate the code for this class, and then compile it, you need to create a
component in the Component View. This must be an RTJava Project so that the
classes will be generated and built by this component. For a definition of RTJava
External Project, see Integrating External Classes on page 46. The diagram containing
this component is shown in Figure 2 on page 29. Figure 8, Figure 9 and Figure 10
show the specification of this component.

Figure 8 General Specification for Component “HelloWorld”

Figure 9 shows that this component only has one class ("Hello") that will be included.
You can also add packages in this tab. If a package is added, it is equivalent to adding
individually all the classes in this package, and all the classes contained in all the
subpackages.
34 Chapter 2 - Getting Started with Rational Rose RealTime Java

Figure 9 References Specification for Component “HelloWorld”

Figure 10 shows all the properties that may be used to configure how this set of
classes will be generated and built. Although the RTJava Project tab may appear
complicated, all the values shown are default values. You can use this tab to change
properties, such as, the MakeType or the name or arguments of the JavaCompiler.
For example, you may want to add additional flags to javac.
Building Classes 35

Figure 10 RTJava Project Settings for Component “HelloWorld”

After you have created a valid component, you can build it.
36 Chapter 2 - Getting Started with Rational Rose RealTime Java

Figure 11 Build Dialog Box for Component “HelloWorld”

To build a component, right-click the HelloWorld component (in the Component
View), and click Build > Build. The Build HelloWorld dialog box appears. Click OK,
and the class "Hello" generates and compiles.

The generated code for this class is:

public class Hello

{

public static void main(String[] args)

{

System.out.println("Hello World from Java Class");

try

{

Thread.sleep(10000L);

}

catch (Exception ex) {}

}

public Hello()

{

}

}

Building Classes 37

In the previous code, you can see the sleep function that is called after doing the
println(). This sleep statement is included for illustration purposes, only. If the
toolset is used to start the executable, it will close the Output Window when the
application is finished (for details, see the following section). In this example, the
Output Window would have closed very quickly without the sleep.

Running a Class Based Application

In order to run the generated application, you need a description of the target
environment. Figure 12 shows the default values for a local processor that was created
in the Deployment View.

Note: It is recommended that you start with the default values, and modify the
specification as required.

Figure 12 Default Specification for Processor “LocalCPU”

After you have defined the processor, drag the HelloWorld component onto it. A
component instance, HelloWorldInstance, is created under the LocalCPU processor.

Figure 13 shows a specification of the HelloWorldInstance.
38 Chapter 2 - Getting Started with Rational Rose RealTime Java

Figure 13 Component Instance Specification for “HelloWorldInstance”

In the above diagram, -java indicates that you will use Java as the virtual machine
(VM). Hello is the name of the class that you will run. Ensure you clear the Attach to
target on startup box because only capsule based models can be debugged with this
flag.

The Parameters box has two sections:

■ Commands for Rational Rose RealTime:

■ Arguments for the Java Virtual Machine

Valid commands for Rational Rose RealTime are:

-java

-vm <vm_name>

-classpath <path>

All other commands are passed to the Java Virtual Machine.

If -java is listed, Rational Rose RealTime invokes java.exe as the virtual machine. If
-vm<vm_name> is listed, Rational Rose RealTime uses <vm_name> as the virtual
machine. (For example, -vm kvm.exe or -vm midp.exe.)

Note: Only one occurrence of these commands can be used.
Running a Class Based Application 39

The -classpath argument constructs a classpath argument for the VM. Rational
Rose RealTime may include additional elements to the classpath that are typically
needed to ensure that all the components in the design are used. Unlike most Java
VM’s, there can be many -classpath options. Rational Rose RealTime merges them
into a single classpath before presenting them to the VM.

Valid commands for the Java VM are many and varied. In this document, we will
assume:

<ClassName> [<arguments>]

where <ClassName> is the entry point for Java. This class has a main routine that
will be invoked first. The <arguments> will be passed in as the parameter to main.

In the Deployment View, right-click HelloWorldInstance, and click Run. A console
window opens on the target (using the local host specified in Figure 12), and runs the
Java application in it.

Note: Rational Rose RealTime adds -classpath to the Run command to reflect the
directories used by the build process. For example, if the output directory is
C:\HelloWorld, the following command would be used:

Java -classpath C:\HelloWorld\ Hello

Figure 14 Output Console for class “Hello”

The console window will disappears in ten seconds. To stop the application when it is
running, click Shutdown on the HelloWorldInstance.
40 Chapter 2 - Getting Started with Rational Rose RealTime Java

Creating Capsules

A system that contains capsules is similar to one that does not but has a few important
differences, including:

■ Capsules have state machine behavior.

■ Capsules have structure.

■ Capsules require the Java UML Services Library to compile and run.

■ Systems containing capsules are usually invoked differently from simple class
based systems.

■ Systems containing capsules can be debugged visually by Rational Rose RealTime
at the "message" level, in addition to the more traditional 3GL statement level.

The following diagram shows a capsule based design in Rational Rose RealTime. This
model is located in
$ROSERT_HOME/Examples/Models/RTJava/HelloWorldCapsule.rtmdl.
Creating Capsules 41

Figure 15 Capsule Based Model

This is a very simple model that has a single capsule with a trivial state machine
which outputs "Hello World From Capsule" on its initial transition.

Figure 15 also shows a dependency from the HelloWorld component to the classes
component from the rosert component package. The classes component contains all
the classes necessary to implement the services (that is, frame, log, messaging,
behavior, threading, and so on) needed by capsules. This dependency must be added
by the designer when creating a capsule based system. If the dependency is left out,
and capsules are used, the code generator raises an error message "Use of Capsules
requires Java UML Services Library" on the offending component.
42 Chapter 2 - Getting Started with Rational Rose RealTime Java

The rosert package also contains a component normal that is used to build the classes
in the Java UML Services Library.

Note: These classes are all present in the tool in the Logical View under
com.rational.rosert. If there are any questions about the behavior of the Java UML
Services Library, this is the definitive answer because it is the actual source code. This
behavior differs from the C and C++ versions of Rational Rose RealTime which have
external code that provides these services. You can modify the Java UML Services
Library by changing this model, generating, and compiling it from the normal
component (however, this is beyond the scope of this document).

Running a Capsule Based Application

In addition to the dependency on classes, a capsule based application also needs a
different configuration of its component instance in order to run.

The Java UML Services Library has its own entry points; therefore, the command-line
arguments are more complicated than a simple class name.The Java UML Services
Library requires that you used a predefined entry point and use the top capsule as its
argument. The entry points that should be used are:

■ com.rational.rosert.Application: An entry point for a minimal Java UML
Services Library that does not include event debugging.

■ com.rational.rosert.DebugApplication: An entry point that includes
support for full UML event level debugging. This version will load approximately
twice as much code as the simpler Application.

In the Component Specification, capsule based applications can use the same
Rational Rose RealTime commands but require a few additional argument for the
entry point. In general, the form is one of the following:

com.rational.rosert.Application <Top_Capsule> [<extra args>]

com.rational.rosert.DebugApplication <Top_Capsule> [-obslisten
=<port_num>]

where

-obslisten=<port_num> enables the debugging of UML events using TCP port
number <port_num>. The running application will listen on this port for both toolset
and telnet connections. The menu item on the component instance Attach Console
will open a telnet session to the target allowing a "command-line" debugging
functionality.
Running a Capsule Based Application 43

Figure 16 Component Instance Specification for Capsule Based Model

A debug enabled component instance for the Hello World system is shown in the
above Component Instance Specification. The Attach to target on startup checkbox
has the tool make the debugging connection immediately on startup of the
application.

Click Run in the Runtime View browser, and open the State Monitor for the
0/application:HelloCapsule. The results of these actions are illustrated in Figure 17
and Figure 18.
44 Chapter 2 - Getting Started with Rational Rose RealTime Java

Figure 17 UML Debugger on a Running “HelloWorldCapsule”

Figure 18 Output Console for “HelloWorldCapsule”
Running a Capsule Based Application 45

Integrating External Classes

There are many cases where you may have classes that are not defined in the toolset,
either from a third-party or in code that will be re-used for a new project. These
externally defined classes can be integrated within Rational Rose RealTime, and can
be used for class modeling. They are then available in the type lists, or are used within
detail level code.

Any class or type defined outside the toolset can be used in your model. Before
integrating classes into Rational Rose RealTime, you need to first consider how the
class will be used within the model. Then, based on how the class or type is needed in
your model, you can integrate the class or type within Rational Rose RealTime:

■ Will objects of this type only be used to store information within a single capsule
or data instance?

In this case, the only step required for using this class in your model is to either
refer to the class always by its fully qualified name. For example, use
java.lang.String rather than String. Or, explicitly import the class or
package from the RTJava property ClassFileHeader (see Figure 7) by typing the
exact import command. For example, either import java.lang.*; or import
java.lang.String. After the import statement is added, this external class will
be available to the modeled class so you can use the class within any detailed level
code (or attribute or operation definition).

■ Do objects of this type need to be shown in the UML Diagram? For example, if
they must be sub-classed by classes in your model, or if they are architecturally
significant and you wish to show them is a diagram.

In this case, it is necessary to create "stub" classes so that the code generation
engine can access properties about these classes. The most commonly needed
property is the classes' name.

Note: Figure 19 shows an sample system that has multiple levels of components,
the root of which are the external classes for java and javax. This model is
located in $ROSERT_HOME/Examples/Models/RTJava/PhoneSystem.rtmdl.
46 Chapter 2 - Getting Started with Rational Rose RealTime Java

Figure 19 Component Diagram of a System Using AWT and Swing

Figure 20 illustrates the specification of the java package in the externalJava package
from Figure 19. The property Java Package distinguishes UML packages that have
no namespace implications from Java packages that do have namespace implications.
Integrating External Classes 47

Figure 20 Package Specification with java Namespace Support

With this information we can create the stub class.

To use javax.swing.Jpanel in your model:

1 Create a top level package, externalJava, to contain the new classes. Ensure that
JavaPackage is cleared.

2 In the externalJava package, create a new package, javax. Select JavaPackage.

3 In the javax package, create a New package, swing. Select JavaPackage.

4 In the swing package, create a new class, JPanel.

All properties on this class will be ignored by the code generator, so the user may
either ignore them or set them to the real values (for documentation purposes).

5 Create a component, externalJava.
48 Chapter 2 - Getting Started with Rational Rose RealTime Java

6 In the General tab, do the following:

❑ In the Environment box, select RTJava.

❑ In the Type box, select RTJava External Project.
Integrating External Classes 49

7 In the References tab, add JPanel.

Note: You can add the entire package externalJava as a shortcut.
50 Chapter 2 - Getting Started with Rational Rose RealTime Java

8 In RTJava External Project tab, set the ClassPath to this class

Note: Since JPanel is already on the ClassPath, the following diagram shows the
ClassPath as empty.

9 You must now create a dependency from your component (for example,
HelloWorld) to this component (externalJava).

Note: This ensures that the code generator and deployment technology
understands that you will use these external classes. Figure 19 on page 47
illustrates a more realistic component diagram.
Integrating External Classes 51

52 Chapter 2 - Getting Started with Rational Rose RealTime Java

3Code Generation
Contents

This chapter is organized as follows:

■ Model to Code Correspondence on page 53
■ Build Overview on page 68
■ Build Details on page 71
■ Run-Time Overview on page 77

Model to Code Correspondence

The Java code generator uses the specifications and model properties of elements in
the current model to produce Java source code. You generate code for a component
which in turn references a set of classes from the Logical View. The location of the
source files that are generated for these classes is determined by the OutputDirectory
property (Component, RTJava Project).

If classes have not been assigned to components, either directly or by means of a
dependency on other assigned classes, the Java code generator will not see those
classes and they will not be generated to source.

Logical View Packages

Logical packages may be marked as Java packages using the JavaPackage property
(Package, RTJava), or by setting the stereotype of the package to JavaPackage. The
qualified name formed by the hierarchy of Java packages designates the package for
the classes contained in that package.
53

Classes

Each class is generated in its own Java source file. While there are a number of class
types available in Rational Rose RealTime, only regular classes are supported for Java.

The layout of the file generated from a class is as follows:

■ package declaration based on the containing Java package hierarchy

■ import statements automatically derived from the model

■ contents of the ClassFileHeader property (Class, RTJava) that can be used to place
any additional import statements

■ the class definition

Modifiers for the class are determined as follows:

■ The Visibility setting controls the visibility of the class. The Implementation
setting specifies default access whereby the class is only visible to other classes in
the same package.

■ If the Abstract setting is selected, the class is declared abstract.

■ If the JavaStatic property (Class, RTJava) is selected, the class is declared static.

■ If the JavaFinal property (Class, RTJava) is selected, the class is declared final.

■ If the JavaStrictfp property (Class, RTJava) is selected, the class is declared
strictfp.

Properties are also provided to allow the specification of code for initializers. The
properties are as follows:

■ StaticInitializerHeader specifies code in a static initializer at the beginning of the
class.

■ StaticInitializerFooter specifies code in a static initializer at the end of the class.

■ InstanceInitializerHeader specifies code in an instance initializer at the beginning
of the class.

■ InstanceInitializerFooter specifies code in an instance initializer at the end of the
class.

To quickly create compilable classes, select the GenerateDefaultConstructor property
(Class, RTJava) which causes an empty default constructor to be generated. The
DefaultConstructorVisibility property specifies the visibility of this constructor.
54 Chapter 3 - Code Generation

Figure 21 A Java Class

The settings for the above class are:

■ Visibility is set to pubic.

■ JavaFinal is selected.

■ GenerateDefaultConstructor is selected.

■ DefaultConstructorVisibility is set to public.

■ All remaining settings are cleared.

■ Code is added to StaticInitializerHeader.

The code generated for the class in Figure 21 is:

package A;

public final class Class1

{

static {

// This is static initializer code

}

public Class1()

{

}

};

Note: Nested classes are generated as nested classes in the class definition, and are
defined in a similar manner as the containing class.
Model to Code Correspondence 55

Dependencies

When a uses relationship exists from a generated class to another class, an imports
statement is generated in the generated class.

Figure 22 A Java Class Dependency

If the above dependency is specified, the import statement generated for Class1 is:

import B.Class2;

Attributes

An attribute is generated in code as a field in the client class. The name of the attribute
becomes the name of the field and the type of the attribute becomes the type of the
field.

The following settings affect the generation of the attribute:

■ The visibility of the attribute becomes the visibility of the field. If the Visibility is
set to Implementation, the default access is used.

■ If the Scope is set to Class, then the field is declared static.

■ If the Changeability is set to Frozen, then the field is declared final.

■ If the JavaVolatile property (Attribute, RTJava) is selected, the field is declared
volatile.

■ If the JavaTransient property (Attribute, RTJava) is selected, the field is declared
transient.

■ The InitializationCode property (Attribute, RTJava) may be used to specify code
that is placed in an instance initializer next to the attribute.
56 Chapter 3 - Code Generation

Figure 23 A Java Class with an Attribute

The code generated for Class1 for attribute x is:

private int x;

Associations

An association is a relationship among two or more elements. Rational Rose RealTime
supports binary associations between classes, including capsule and protocol classes.
The ends of each association are called association ends. Ends may be labeled with an
identifier that describes the role that an associate element plays in the association. An
end has both generic and language specific properties that affect the generated code.

The form of code that is generated depends upon the type of classes involved in the
association:

■ Capsule to anything is valid

❑ Capsule to protocol is generated as a port on the capsule class. For more
information, see Ports on page 64.

❑ Capsule to capsule is generated as a capsule role on the capsule class. For
details, see Capsule Roles on page 63.

■ Classes to anything is valid (except classes and protocols)

■ Protocol to Any is invalid.

For capsule and regular class to regular class, if the association end is named and is
navigable, an attribute is generated in the client class of the end (that is, the class at the
other end). The client class may use this attribute to navigate to the supplier objects
designed by the class at the association end.

The settings and properties that control the generation of the association end are:

■ If Aggregation is set to Composite, code is generated to initialize the attribute
with new objects of the supplier class. Otherwise, the attribute is not initialized.

■ The Multiplicity of the association end is used when the Aggregation is
Composite to determine the size of the array to allocate.

■ If Target Scope is set to Class, the attribute is declared static.
Model to Code Correspondence 57

■ If the JavaFinal property (AssociationEnd, RTJava) is selected, the attribute is
declared final.

■ If the JavaVolatile property (AssociationEnd, RTJava) is selected, the attribute is
declared volatile.

■ If the JavaTransient property (AssociationEnd, RTJava) is selected, the attribute is
declared transient.

■ The InitialValue property (AssociationEnd, RTJava) contains an initial value that
is assigned to the generated attribute.

■ The InitializationCode property (AssociationEnd, RTJava) contains code that
appears in an instance initializer for the attribute.

■ The NameQualification property (AssociationEnd, RTJava) determines whether
the supplier class name is to be fully qualified or whether an import statement
should be generated for the class.

Figure 24 An Association

If end2 has Aggregation set to Composite, and Multiplicity set to One, the attribute
generated in Class1 is:

public B.Class2 end2 = new B.Class2();

Operations

Operations in a class is translated by the Java code generator into methods of the
generated class. The name and parameters of the operation become the signature of
the method. The code associated with the operation becomes the code body for the
method.

Other settings and properties that control the generation of operations are:

■ The visibility of the operation becomes the visibility of the generated method. If
the Visibility is set to Implementation, the method is declared with default access.

■ If the Abstract setting is selected, the method is declared abstract, and any code
in the code setting is ignored.

■ If the Scope is set to Class, the method is declared static.

■ If the JavaFinal property (Operation, RTJava) is selected, the method is declared
final.
58 Chapter 3 - Code Generation

■ If the JavaStrictfp property (Operation, RTJava) is selected, the method is
declared strictfp.

■ If the JavaNative property (Operation, RTJava) is selected, the method is declared
native, and any code in the code setting is ignored.

■ If the Concurrency setting is set to Guarded, the method is declared
synchronized.

■ The JavaThrows property (Operation, RTJava) may be used to specify an comma
separated list of exceptions that the operation may throw. This list is placed in the
throws clause of the method declaration.

For example, an operation 'f' that takes an int parameter and returns an int
would generate the following code:

public int f(int x)

{

// Code from the code setting

return x * 2;

}

Protocols

Each protocol is generated as a Java class. This class contains two nested classes for
each of the Base and Conjugate protocol roles. Ports on capsules are instances of the
protocol role classes. The capsules use the methods on the protocol role classes to
access features of the messaging service of the UML Services Library.

Methods and attributes are generated for each signal in a protocol depending on
whether the signal is an In Signal, an Out Signal, or whether the signal is symmetric.
The Conjugate protocol role treats the In Signals as Out Signals, and the Out Signals
as In Signals.
Model to Code Correspondence 59

60
Figure 25 A Protocol Class Definition

The types of signals contained in this Protocol Specification are:

■ In Signals
■ Out Signals
■ Symmetric Signals

In Signal

An attribute and an method are defined for each In Signal. The attribute provides a
numeric identifier for the signal. The method converts the signal into an object that
provides methods to access messaging services for the incoming message.
Chapter 3 - Code Generation

The code generated for the In Signals (not including methods for the symmetric
signals) in Figure 25 on page 60 is:

public class NewProtocol1

{

public static class Base extends ...

{

public static final int rti_ack = 1;

public static final int rti_bye = 2;

public static final int rti_hello = 3;

public static final int rti_test = 4;

public final InSignal bye() ...

public final InSignal hello() ...

public final InSignal test() ...

...

}

public static class Conjugate extends ...

{

public static final int rti_start = 1;

public static final int rti_stop = 2;

public static final int rti_ack = 3;

public final InSignal start() ...

public final InSignal stop() ...

...

}

}

Out Signal

A method is generated for each Out Signal. This method has the same name as the
signal. The method takes as a parameter any data associated with the signal. The data
type may be one of the following:

■ If void, then no data is passed as a parameter.

■ If a Java class, then an instance of that class or a subclass may be passed as a
parameter.
Model to Code Correspondence 61

■ If a Java primitive type, then a value of that type may be passed as a parameter. In
this case, the generated method will create an instance of the appropriate Java
wrapper class and pass this instance to the messaging service.

■ If blank, then the parameter is optional. If present, then it may be an instance of
any Java class.

The method returns an object that provides methods that allow access to the services
provided by the messaging service for outgoing messages.

The code generated for the Out Signals (not including the symmetric signals) in
Figure 25 on page 60 is:

public class NewProtocol1

{

public static class Base extends ...

{

public final OutSignal start(Class1 data) ...

public final OutSignal stop(Class1 data) ...

}

public static class Conjugate extends ...

{

public final OutSignal bye(java.lang.Object data)

public final OutSignal hello(int data) ...

public final OutSignal test() ...

}

}

Symmetric Signals

If a signal is used as both an In Signal and an Out Signal, and the Out Signal does not
take any data, then the methods generated for the signal would only be different by
return type. This is not valid in Java. As a result, the two methods that would be
generated are combined and return an object that could be used to access services for
both incoming and outgoing messages.
62 Chapter 3 - Code Generation

The code generated for the symmetric signal in Figure 25 on page 60 is:

public class NewProtocol1

{

public static class Base extends ...

{

public final SymmetricSignal ack() ...

}

public static class Conjugate extends ...

{

public final SymmetricSignal ack() ...

}

}

Capsules

Capsules are extensions of classes that add ports and capsule roles to enhance
modeling the structure of the classes. Capsules also add state machines to handling
modeling of the behavior of the classes. The generated code for capsules relies on the
UML Services Library to provide a framework for these modeling concepts.

Capsule Roles

Capsule roles are generated as attributes of the Services Library provided type
CapsuleRole. Capsule roles are used by the Frame service for operations that involve
the instantiation, destruction, and importation of capsules referenced by the capsule
roles.
Model to Code Correspondence 63

For example, to incarnate an optional capsule role, the code generated is:

import com.rational.rosert.CapsuleRole;

import com.rational.rosert.Frame;

public class MyCapsule ...

{

protected static final CapsuleRole role;

public Frame.Base frame;

public void f()

{

frame.incarnate(role);

}

}

Ports

Ports are generated as attributes and are typed based on the protocol class of the port
and the role it partakes in that protocol, that is, either Base or Conjugate. The port can
then be used to send messages or to access messaging services for incoming messages.

For example, to send an new message (start) and to recall an incoming message (test),
the code generated is:

public class MyCapsule

{

public MyProtocol.Base port;

public void f()

{

port.start(new Class1(...)).send();

port.test().recall();

}

}

64 Chapter 3 - Code Generation

State Machine

The state machine depicted in the collection of state diagrams associated with a
capsule is translated by the Java code generator into a number of methods on the class
generated for the capsule.

There are three main categories of methods:

■ User code segment methods

■ Chain methods

■ rtBehavior methods

User code segment methods

User code segments may be added for the following state machine elements:

■ Transitions for both Actions and Guard code
■ Choice points
■ State Entry and Exit Actions

These methods are given a name by the Java code generator. They should not be
directly called from user code.

The return type for these methods is void except for:

■ Guard code on triggers that return a boolean value which, if true, allows the
transition to be executed.

■ Choice points that return a boolean to determine whether the outgoing True or
False transition is to be taken.

Transitions and choice points have access to two parameters that are passed to the
method: rtdata and rtport.

rtdata

The rtdata parameter provides access to the data in the message in a type safe
manner. The generation of this parameter is enabled or disabled by the
GenerateDataParameter property (Transition, RTJava) or (Choice Point, RTJava).
The type of this paramter is calculated by the Java code generator to be the common
superclass of the data type on all possible signals that may trigger the transition or
choice point.

It is possible for a subclass of a capsule to introduce additional possible signals. The
code generator will detect if these additional signals would invalidate the parameter
in the superclass, and will raise an error. The rtdata parameter must be disabled in
the superclass to remove the error.
Model to Code Correspondence 65

rtport

The second parameter, rtport, works the same way. It is controlled by the
GeneratePortParameter property (Transition, RTJava) or (Choice Point, RTJava).
The type of this parameter is the common superclass of the protocol role type on all
possible signals that may trigger the transition or choice point.

For example, the code generated for a transition is:

public void transition1_t1(Integer rtdata, MyProtocol.Base rtport)

{

// User code here

System.out.print("In transition t1 with data = ");

System.out.println(rtdata);

}

Chain methods

These methods control the invocation of user code segments and the entering and
exiting of states. They also inform the services layer of the current activity in the state
machine for debugging. For transitions and choice points, the data and port
parameters are cast to their appropriate types given the collection of triggers that can
cause the chain to execute.

For example, the code generated for a chain method is:

protected void chain1_t1()

{

rtChainBegin(1, "t1");

rtExitToChainState(1);

rtTransitionBegin();

transition1_t1((Integer)rtGetMsgData(), (MyProtocol.Base)

rtGetMsgPort());

rtTransitionEnd();

rtProcessHistory();

}

66 Chapter 3 - Code Generation

rtBehavior methods

This is the main method that determines the handles a message dispatch by calling a
specific chain method given the current state, and the signal and port of the incoming
message.

Special Overrideable Capsule Class Operations

There is a special operation that is defined as virtual methods in the root capsule class
(com.rational.rosert.Capsule), and that can be overridden in your capsule class to
handle error conditions.

rtDestroy

Even though java has automatic garbage collection, it is often more efficient to release
resources as early as possible. This is the mechanism whereby capsules can ensure
that resources are not held longer than necessary.

rtUnexpectedMessage()

This operation is called when the rtBehavior method is unable to determine how to
handle the current message.
Model to Code Correspondence 67

Build Overview

Build Process Flow

Figure 26 Build-Time Process Flow Diagram

Figure 26 shows the general process flow while executing a Build > Compile for an
RTJava Project component. Tasks are launched in a top-down, left-to-right traversal.
The tasks typically require success to continue traversing the process flow. The
subtasks of "Build depended-upon project components" are trimmed for diagram
clarity, but it would also have its own "CodeGen Make" and "Compilation Make"
subtasks.

Executing a Build > Generate would trim the "Compilation Make" task. Executing a
Build > Rebuild would prepend the "Makefile Generation" with a task to run the
"CleanAllCommand" which would clean all RTJava Project components.

For further information, see RTJava Component Properties on page 111.
68 Chapter 3 - Code Generation

Required Third-Party Tools

In order to build and run Java programs using Rational Rose RealTime, you will need
to install and configure the following third-party tools:

■ A Make utility, such as Microsoft nmake, Gnu_make, or the make distributed with
any UNIX platform

■ A Java compiler, such as javac from Sun's Java 2 SDK 1.3 or jikes from IBM's Open
Source Java project

■ Optionally, a Java archiver, such as JAR from Sun's Java 2 SDK 1.3.

■ A Java Run-Time Environment, or Virtual Machine, such as java, kvm (for CLDC)
or midp.

You should verify that these tools are available from a command prompt before
starting Rational Rose RealTime.

Components

There are two component types supported in Rational Rose RealTime Java:

■ RTJava Project
■ RTJava External Project

RTJava Project Component

The RTJava Project component type is intended for specifying how to build a
collection of classes. An RTJava Project typically references one or more Java classes
and specifies how to generate and compile code from those classes. An RTJava Project
produces one or more "deliverable" artifacts, such as a Java Archive (JAR) file or a set
of Java Class files.

An RTJava Project component may depend on other RTJava Project components or on
RTJava External Project components. When you build an RTJava Project component,
you also build all of the RTJava Project components upon which it depends, directly
or indirectly.

RTJava External Project Component

The RTJava External Project is intended for re-using modeling elements and their
previously-generated build artifacts. You cannot perform any build activities on
RTJava External Projects because they have been built "externally" for you.
Build Overview 69

An RTJava External Project references zero or more Java classes, and specifies zero or
more additions to the ClassPath. The referenced classes do not need to be referenced
by a depending RTJava Project and will not need to be generated. The specified
ClassPath additions are passed to the Java compiler when building a depending
RTJava Project.

The intended use of the RTJava External Project component is to be depended upon,
directly or indirectly, by an RTJava Project component. An RTJava External Project
may depend upon other RTJava External Projects; if a RTJava Project directly
depends on the former component, it indirectly depends on the latter components.
Consequently, the RTJava External Project component type provides a mechanism to
manage and reuse build artifacts.

Figure 27 Build-Time Data Diagram

The above diagram shows the general data flow between the tasks identified in
Figure 26 on page 68. "Build depended-upon project components" is omitted for
clarity, but the resulting "Class/Jar files from other project components" is not.
70 Chapter 3 - Code Generation

"Class/Jar files from external sources" are referenced in the model by adding their
ClassPath to an RTJava External Project. For further information, see RTJava External
Project on page 119.

Build Details

Generated Makefile Patterns

Java compilers are not typically Makefile-driven. Java adopts a simple strategy of
"compile everything always". Unfortunately, this can become a problem as the size of
your model and the number of generated Java classes increase.

The use of makefiles allows projects to generate only where the model has changed,
and to compile only where the Java code has changed. Consequently, it is a more
scalable solution for large models.

Makefile Generation

The BootstrapCommand that generates the Makefiles is always executed before every
Build.

Default Directory Layout

The default OutputDirectory for a RTJava Project component is
$modelDir/$compName that is a directory named after the component, and is a
subdirectory of the directory where the model is found. After building two
components, MyComponent1 and MyComponent2, a simplified model directory
may appear as follows:

/my_home/my_models/

hello_world.rtmdl

hello_world/ # contains Child Units, if applicable

MyComponent1/ # Output Directory for MyComponent1

MyComponent2/ # Output Directory for MyComponent2

Note: You should specify component Output Directories that do not conflict with the
Child Units directories or the Output Directories of other components in this model,
or in other models stored in the same directory.
Build Details 71

After a build, you can find the generated files under each component's Output
Directory. By default, the compiled Java class files and the Java archive (if
applicable) will also be located in the Output Directory. The files included in the
Output Directory are listed in the following table:

The package property JavaPackage flag can be used to scope the namespace of the
*.java and *.class files (as well as the *.gmk, *.gtg, *.cmk and *.ctg files). For further
information, see JavaPackage on page 110

Guidelines for Efficient Incremental Builds

To generate efficient, incremental builds, the generated Makefile patterns for code
generation and compilation accommodate the following guidelines:

1 Note which files were read (and read as few files as possible). A subsequent Make
will know the file changes that should trigger the rule again.

2 Only write the output files if the content has changed. This is particularly relevant
if there are "downstream" Makefile rules that might be triggered. For example, a
single unnecessary regeneration may trigger a number of unnecessary
recompilations.

Makefile The Component Makefile

*.java Generated Java class.

*.class Compiled Java class or nested class.

MyComponent1.jar The (optional) Java Archive.

RTclasspath.pl The generated class-path needed for run-time.

RTbuild/RTcodegen.mk The CodeGen Makefile (includes *.gmk).

RTbuild/*.gmk Dependency list for each generation rule.

RTbuild/*.gtg Target for each generation rule.

RTbuild/RTcompile.mk The Compilation Makefile (includes *.cmk).

RTbuild/*.cmk Dependency list for each compilation rule.

RTbuild/*.ctg Target for each target rule.

RTbuild/RTcompile.pl Lists all java files and runs a command.
72 Chapter 3 - Code Generation

3 If the command is successful, always update the timestamp of the target. A
subsequent Make will know when this rule was last successfully executed, and
will have a timestamp to compare against the input dependencies in guideline #1.
A separate target file is necessary if none of the output files will reliably change
due to guideline #2.

4 If the command fails, never update the timestamp of the target. Otherwise, a
subsequent Make will assume this rule was successful and skip it.

These guidelines do not apply to the default BootstrapCommand because it directly
runs the Makefile Generation without evaluating the need to do so first. This is the
default for simplicity, since it is error-prone to evaluate the trustworthiness of the
previous Makefile Generation without first reading the artifacts of the previous
Makefile Generation.

Code Generator Behavior

Command-Line Arguments

The code generator has the following usage synopsis:

rtjavagen -model <model_file> -component <component_ name>

[-debug] [-version] [-makegen | -class <class_name>]

The only user serviceable options are the -debug and -version options. For
information on adding these to your code-generation command-line, see Passing
options to the code generator on page 115. The other arguments are discussed here for
informational purposes only:

-model <model_file>: specifies the file-path of the .rtmdl file.

-component <component_name>: specifies the fully qualified UML name
(typically enclosed in double-quotes) of an RTJava Project component.

-debug: turns on verbose debugging information, such as environment variable
expansion and file reads and writes.

-version: echos the version number of the code generator to standard output.

-makegen: instructs the code generator to generate the Makefiles for the given
component, and the RTJava Project components upon which it depends.

-class <class_name>: instructs the code generator to generate the Java file for
the specified class in the model. The specified class_name should be a fully
qualified UML name, and should be referenced by the component.
Build Details 73

If neither the -makegen and -class arguments are provided but the -model and
-component arguments are provided, the code-generator will generate all of the Java
files for the specified component.

Efficient Incremental Builds During Code Generation

The code generator produces a Generation Makefile dependencies (GMK) file when
generating Java files to indicate to the next invocation of Make when the generated
Java files should be regenerated.

The code generator produces a Generation Target (GTG) file upon successfully
generating the Java files for all requested classes without error. If a Java file already
existed from a previous build, it is only rewritten if the content has changed. If an
error occurred, neither the GTG file nor the Java files are written.

Compiler Behavior

Invoking the Compiler

The Java compiler is specified from the JavaCompiler property on the RTJava Project
component specification. For more information, see JavaCompiler on page 112. The
implicit usage pattern is such that the property can be followed by one or more Java
files (for example *.java or subdir/Main.java) to compile those files. The Java
files are not provided in the JavaCompiler property: they are provided by the
Makefile Generation.

A convenient feature of most Java compilers is an option to tell the compiler to put
Java class files in a specific directory. Typically this is given by
-d <output_directory>, and this is reflected in the default property value for
invoking the compiler. If the component's OutputClassDir changes, the -d argument
must reflect the change.

Class Path

The Java compiler's -classpath argument is constructed during Makefile
generation by examining the component's dependencies and appending the user's
CLASSPATH environment variable at build time. Do not modify the ClassPath by
specifying the -classpath argument in the JavaCompiler property unless you
know your Java compiler will concatenate the results. Some compilers will replace
one argument for the other.
74 Chapter 3 - Code Generation

Compiler Wrapper Script

The default compiler wrapper script
$ROSERT_HOME/RTJava/scripts/rtcomp.pl performs the following methods:

■ Uses the compiler's -verbose output to produce a CMK file to discover
compilation dependencies.

■ Converts compiler-generated errors and warnings into Generic Error Stream
messages. For more information, see Build Errors on page 76.

■ Uses the compiler's return code to produce a CTG file upon successful
compilation.

Compile All Script

The RTbuild/RTcompile.pl is a Perl script generated during Makefile Generation.
It lists all of the generated Java files and can pass them to a Java compiler while
circumventing command-line length limitations.

Efficient Incremental Builds During Compilation

The compiler wrapper script produces a Compilation Makefile dependencies (CMK)
file when generating Java class files to indicate to the next invocation of Make when
the compiled Java class files should be recompiled.

The compiler wrapper script produces a Compilation Target (CTG) file upon
successfully compiling the requested Java classes without error. If an error occurred,
neither the GTG file nor the Java files are written.

Some Java compilers (including javac in J2ME) do not write class files incrementally.
They will write new Java class files even when the new content is the same as the old
content. To achieve incremental compilation, you must tell the Compilation Make to
compile every Java file individually. For further information, see Incremental
compilation and individual Java file compilation on page 116.

Note: Individually compiling every file will slow down non-incremental builds (that
is, initial builds and rebuilds).
Build Details 75

Build Errors

The error handler of the toolset allows you to quickly locate the modeling element to
which the error or warning message is attributable. Error and warning messages are
summarized on the Build Errors window of the Output Window after every build.

Click on a message to view and correct the element (such as a transition action code).
Double-click on a message to browse the element's specification, and to correct it as
required.

Converting Compiler Errors into Build Errors

The compiler, or any other third-party tool, is not aware of the model, and produces
messages in its own format. The toolset cannot predict the format of the compiler
messages, and does not normally read the generated code. To handle
compiler-generated messages in a way that is flexible to various compiler vendors, a
compiler wrapper script translates compiler warnings and errors from the compiler
into a format that can be captured by the toolset. The format of the output of the
compiler wrapper script is Generic Error Stream (GES) format, and the GES messages
are passed via standard output to the toolset.

The code generator is aware of the model, and already produces messages in the
Generic Error Stream format. The code generator also provides tags that help the
compiler wrapper script locate the right location and context within the model of a
particular compiler message.

The default compiler wrapper script is a Perl script,
$ROSERT_HOME/RTJava/scripts/rtcomp.pl. Advanced users can test changes
to their own compiler wrapper script by overriding the JAVAC_WRAPPER Make
macro in the CompilationMakeInsert field. The compiler wrapper script performs
other tasks and should be modified carefully. For further information, see Compiler
Wrapper Script on page 75.
76 Chapter 3 - Code Generation

Run-Time Overview

Figure 28 Run-Time Process Flow Diagram

The above diagram shows the general process flow of running a component instance.

Note: Component instances are created under the Deployment View of the model.

The component instance can be configured to run various VMs, for example
java.exe, kvm.exe or midp.exe.

Figure 29 Run-Time Data Diagram
Run-Time Overview 77

The above diagram shows the data flow diagram of running the component instance
from Figure 28. This is particularly relevant to understand how the run-time
ClassPath is derived since it may require more information than the compile-time
ClassPath.
78 Chapter 3 - Code Generation

4Java UML Services
Library
Contents

This chapter is organized as follows:

■ Java UML Services Library Framework on page 79
■ Message Processing on page 81
■ Framework Services on page 84
■ Log Services on page 84
■ Communication Services on page 85
■ Timing Services on page 90
■ Frame Services on page 92

Java UML Services Library Framework

The classes and data types defined in the Java UML Services Library provide an
application framework in which your Rational Rose RealTime application will run.

The framework defines the skeleton of a real-time application:

■ Messaging
■ Timing
■ Dynamic structure
■ Concurrency
■ Event-based processing

As a Rational Rose RealTime developer, your job is to fill in the rest of the skeleton,
that is, the classes, capsules, and protocols that are specific to your system.

The capsules, capsule roles, protocols, ports and classes in a Rational Rose RealTime
model will be generated to Java code, and integrated into the Java UML Services
Library framework.

The following class diagram shows how a set of generated model elements integrate
within the framework. The white boxes are predefined classes in the Java UML
Services Library and the grey boxes are classes generated from the Framework Sample
Model on page 80.
79

Figure 30 Java UML Services Library Framework

This simplified class diagram illustrates:

■ The high level view of the Java UML Services Library classes and their
relationships.

■ How your application level modeling elements (grey boxes) integrate into this
framework

■ The relationships between your modeling elements and the framework.

Framework Sample Model

This model was used as an example of how elements from a model integrate into the
Java UML Services Library Framework. The gray boxes in the above diagram show
classes generated from the model illustrated in Figure 31 and Figure 32:
80 Chapter 4 - Java UML Services Library

Figure 31 Ping Pong Model Class Diagram

Figure 32 Container Capsule Structure Diagram

Message Processing

Events and Messages

An event is a message arriving on a capsule's port. Message-based communication is
the basic mechanism for communication between capsules. Both synchronous and
asynchronous communication are supported allowing a variety of different
interaction semantics to be represented. Messages are also used by the Java UML
Services Library to communicate with the capsules in the model.
Message Processing 81

Information about a message can be accessed through the use of the following
methods:

■ rtGetMsgSignal
■ rtGetMsgPriority
■ rtGetMsgData
■ rtGetMsgPort
■ rtGetMsgPortIndex

Capsule Processing

The heart of the Java UML Services Library is a controller object that dispatches
messages to capsules. The controller object takes the next message from the
outstanding message queue, and delivers it to the destination capsule for processing.
When the message is delivered, the controller object invokes the destination capsule's
state machine to process the message.

Control is not returned to the Java UML Services Library until the capsule's transition
has completed processing the message. Each capsule processes only one message at a
time. It processes the current message to the completion of the transition chain (for
example, guard, exit, transition, choice point, exit, and entry), returns control to the
Java UML Services Library, and waits for the next message. This is referred to as
run-to-completion semantics. Typically, transition code segments are short, and result
in rapid handling of messages.

Message Processing

The Java UML Services Library runs in a loop executed by a system controller object.
This loop waits for messages and delivers them, one at a time, to capsules for
processing. Each physical thread in a Rational Rose RealTime model has its own
controller object, and its own set of message queues. Messages that cross thread
boundaries are placed in special queues and are picked up by the receiving thread in
its processing.

The model is first initialized by queueing a special system-level message (the
initialization message) for the top-level capsule. After the initialization message is
queued, the controller object enters the main processing loop (the run function). In
run, the controller object takes the highest priority message from the message queues,
delivers it to the receiver capsule, and invokes that capsule's behavior to process the
message. During start-up, the highest priority message on the queue of the main
thread will be the initialization message. When a capsule processes the initialization
message, the capsule's initial transition segment is executed.
82 Chapter 4 - Java UML Services Library

When the capsule has completed processing a message, it returns control to the
controller. The controller continues this loop until there are no more messages to be
processed. At that point, it waits for a message from another physical thread in the
model, or for a timeout to expire.

Threads

A capsule has its own logical thread of control, and can operate independently of
other capsules as if each capsule had its own dedicated processor. These independent
capsules synchronize to perform higher-level scenarios through message-passing.
One capsule sends a message to another capsule allowing the other capsule to update
its state based on this outside stimulus. In practice, most Rational Rose RealTime
models run on a machine with a single processor, or possibly in a distributed
environment, with a few processors. In any case, there are almost always more
capsules than processors. Thus, the capsules must share the processor in some
manner.

Mapping Capsules to Threads

Rational Rose RealTime allows designers to make use of the underlying Java threads
so that the processing of a capsule on one thread does not block the processing of
capsules on other threads. Designers can specify the physical Java environment
threads onto which the capsules will be mapped at runtime.

In a system with only one thread, there are situations where a single capsule transition
can block other capsules from running (such as, if the capsule invokes a blocking
system call). By placing some capsules in different threads, the designer can avoid the
problems that arise from these situations, and can make better use of the underlying
processor. For example, capsules that have excessively long processing times, and
those with transitions that may block, should be placed on separate threads. Deciding
which capsules need to execute in different threads is a matter for design
consideration.

Note: Not every capsule should run on a separate thread. Most capsules can be in one
thread, and the Java UML Services Library controller will invoke their behavior as
messages arrive.

Capsules can belong to different logical threads. Logical threads are mapped to a set
of concurrent physical threads defined by the user. No other capsules in a thread can
execute until the currently executing capsule returns control to the main loop of that
thread (except in the case of invoke). However, other capsules on other physical
threads may be executing simultaneously.
Message Processing 83

The Java environment is responsible for switching control among active physical
threads. The Java environment may preempt one physical thread in the middle of
execution to switch to another physical thread. Each thread can be assigned a separate
priority so that the designer has some control over the scheduling.

Framework Services

With Rational Rose RealTime, you develop your application in a high level language
using state diagrams and structure diagrams. These elements are automatically
converted to Java, and are placed in a framework that provides critical real-time
system services.

The key to using the services provided by the framework is to understand how your
application will integrate into the Java UML Services Library skeleton. The
framework provides four main services to our application:

■ Log services: a general purpose logging service.

■ Communication services: the basic mechanism for using message-based
communication via ports.

■ Timing services: provide general purpose timing facilities.

■ Frame services: used to gain control over the dynamic structure of a model.

Services are explained by identifying the classes that are used to implement the
service followed by a discussion of the general concepts related to the service.

Log Services

Implementation Classes
Log.Base

Concepts

The System Log is a stream of ASCII text in which system or application events can be
recorded. Currently, all log output is directed to java.lang.System.out.

Execution speed is affected since each write to the log involves an output system call,
which is a relatively expensive operation.
84 Chapter 4 - Java UML Services Library

Communication Services

Implementation Classes

ProtocolRole

ProtocolRole.InSignal

ProtocolRole.OutSignal

ProtocolRole.SymmetricSignal

Concepts

This fundamental service provides most of the standard communication models
prevalent in concurrent software system design, including asynchronous messaging,
and rendezvous like synchronous inter-capsule communication.

The Communication Service is accessed by referencing a port name that will be an
instance of a subclass of ProtocolRole with the appropriate operations. The port
name is the user defined name of the port declared in the model. The named port is
generated as a member of the capsule containing the port.

Depending on the multiplicity of the port, every named port may actually have a
number of port instances associated with it. Each port instance is capable of sending
and receiving messages, and is encapsulated within each ProtocolRole object.

A service request results in the creation of instances of Message. These messages are
delivered by the Java UML Services Library to the ports at the other ends of the
connections. They are eventually processed by the behavior of the capsules containing
those ports.

Primitives

This service is used for passing messages between capsules in real time. Messages
sent via this service are processed whenever the necessary CPU cycles become
available.

A capsule instance accesses information in the message that was received through
rtGetMsg operations.

When processing a message received at a particular port, the rtGetMsgPortIndex
operation returns an index to the particular port instance that received the message.
An OutSignal.sendAt to the port instance returned by rtGetMsgPortIndex
results in a send to only that particular port instance. The communications services
also provide a number of functions for dealing with replicated ports.
Communication Services 85

Asynchronous and Synchronous Communication

If an asynchronous send is used, the sending capsule will not block while the message
is in transit. This mode is well-suited for high-throughput and fault-tolerant systems.

Conversely, if synchronous communication is desired, a blocking send can be used.
During the invocation of the method, the sender (invoker) is blocked until a reply is
received even if higher-priority messages arrive. At the other end, the receiver does
not normally distinguish between synchronous and asynchronous communications
but replies to either in the same way. In this way, the receiver is decoupled from the
implementation decisions of its clients regarding which communication mode to use
(that is, blocking or non-blocking). However, in practice, the receiver must know
something about the expectations of the sender, and there are three restrictions that
must be observed:

■ The receiver must reply to messages that are synchronous with
rtport.signal(data).reply() within the same transition.

■ Circular invokes are not permitted. For example, if capsule A invokes capsule B,
and capsule B tries to invoke capsule A, the invoke operation in B will fail with an
exception.

■ Invokes across thread boundaries are not permitted.

Order Preservation

Messages of equal priority that are sent along the same binding are delivered in the
same order. This applies to both messages sent to capsules executing within the same
thread, and for messages going to another thread.

Note: Such guarantees may not be available when capsules are in different processes,
or when messages are sent on different bindings.

Message Loss

Messages have a high probability of being delivered to the receiving object but it is
not guaranteed. For example, messages can be lost if they are sent through unbound
ports, or if the destination capsule is destroyed dynamically. In distributed versions of
this service, loss of messages can also be due to temporary resource depletion (such as
no buffer space) or actual loss in the physical communications medium.
86 Chapter 4 - Java UML Services Library

Minimal Overhead in Message Handling

This is due to the relative simplicity of the service, and its lack of any automatic form
of acknowledgment or flow-control protocols.

Request-Reply

A special feature of the communications services is support for a request-reply
communication model. These are message exchanges between a sender capsule and a
receiver in which the specified reply is expected, handles the request, and responds
within the scope of a single transition.

The communications services also support synchronous messaging (similar to a
rendezvous). During a synchronous send or invoke, the sender is blocked until the
receiver has processed the message and has sent back a reply. Run-to-completion
semantics are enforced, and a synchronous invoke has the same semantics as a
procedure call.

The receiver of an invoked message, or an asynchronous message with expected reply,
must respond to it prior to the completion of message processing.

Message Priority

A message priority is interpreted as the relative importance of an event with respect to
all other unprocessed messages on a thread. This is reflected in a bias towards
higher-priority messages over lower-priority messages when scheduling CPU time. If
two or more messages of different priority are queued and waiting to be processed,
messages with a higher priority are usually processed before messages of lower
priority. The slight ambiguity of this definition reflects the variability of scheduling
policies due to the inherent non-determinism of distributed systems, as well as
changing implementations.

In general, good designs should not be critically sensitive to a particular scheduling
policy. The current Java UML Services Library scheduler uses simple priority
scheduling so that messages at a particular priority level are not processed until all
higher-priority messages on that controller have been processed.

Within a given priority level, the Java UML Services Library guarantees that messages
will be processed in the order of arrival.

Note: In a distributed system, the order of arrival may not be the same as the order in
which the messages were sent.

Message priorities do not imply interruption of the processing of the current event
even if a newly-arrived message is of a higher priority. This is due to the
run-to-completion semantics of transition (described above).
Communication Services 87

A user-level message has one of five priority levels associated with it. The following
predefined symbols allow the user to specify the priority of a message by name:

■ Priority.Panic: Highest priority available to users. Used only for emergencies.

■ Priority.High: For high-priority processing.

■ Priority.General: For most processing. The default.

■ Priority.Low: For low-priority.

■ Priority.Background: The lowest priority. Used for background-type
activities.

Message priorities disrupt the temporal order of events, which often leads to
implementation problems. For this reason, it is recommended that applications limit
themselves to a single priority level. If priorities are used, avoid the high and low
extremes of the range in order to save room for subsequent design changes.

In addition to these user-level message priorities, there are some system-level priorities.
System-level priorities are higher than the highest user-level priority in order to
guarantee the correct operation of Java UML Service Library routines.

Wired and Unwired Ports

Ports can be either wired or unwired. Wired ports are explicitly connected to other
wired ports with connectors. Unwired ports are not connected during design: instead,
they are dynamically connected at runtime. Unwired ports are bound to other
unwired ports by a registered name.

Layer communication involves support for managing connections between unwired
ports.

Published and Unpublished Unwired Ports

In the layered communication paradigm, unwired published (SPP) ports can only
connect with unwired unpublished (SAP) ports, or vice versa.

Note: The terms SAP (Service Access Points) and SPP (Service Provision Point) are
used to abbreviate unwired [unpublished|published] port.

A SAP cannot connect to another SAP, and a SPP cannot connect to another SPP. By
convention, a SPP is the server side of a connection, and a SAP is the client. Some of
the communication service operations are named with these abbreviations to
differentiate SAP and SPP operations.

For any given service, there is one server (the SPP), and there may be many clients (the
SAPs). A service is some functionality provided by the server capsule to the client
capsules. The service is uniquely identified by name. There may exist many different
88 Chapter 4 - Java UML Services Library

server capsules, each providing a different service. Any given service (name) may
have only one server (SPP) registered for it at any given time. Any other providers
that attempt to register an SPP of the same name will be declined (that is, the
registration will fail).

SPPs are often replicated, with their multiplicity specifying the maximum number of
clients that can be bound to the server at runtime; otherwise, no SAPs can be bound.
By default, a SAP or SPP is automatically registered under its reference name when
the capsule containing that SAP/SPP is initialized.

Multiplicity may be changed dynamically at runtime with the
ProtocolRole.resize operation. This may destroy bindings if multiplicity is
reduced, and allow new bindings if it is increased.

Registration by Name

The basic element of layer communication is a generic name server. SAPs register to
the layer service for binding to a SPP under a unique name. SPPs need also register to
the layer service in order to publish its unique name for binding with SAPs.

All SAPs are bound to the first SPP that registered for binding under that name. If no
SPP exists, the SAP registrations are queued (usually in order) waiting for the SPP to
register. SAPs will be bound with the SPP up to the maximum multiplicity of that SPP.
SAPs not bound will continue to be queued until an instance of the SPP becomes
available due to a SAP deregistering, a SPP with a larger multiplicity registering, or
the SPP is resized.

Registration String

A registration string is used to identify a unique name and service under which SAPs
and SPPs will connect. The string has the following format:

[<service_name>:]<registration_name>

The first part of the registration string is case sensitive. The interpretation of the
remaining registration string depends on the specified communication service.

For example:

name

service1:name

service2:name

service3://address/name

The default service_name is "". That is, "name" is the same as ":name".
Communication Services 89

Automatic Registration and Application Registration

SAPs and SPPs can be configured to be automatically registered with the layer service,
or to be registered by the application using a name to be determined by the
application at runtime. If automatic registration is chosen, the registration name must
be supplied in the Port Specification dialog box, and the Java UML Services Library
will register the name at startup. In the case of application registration, the SAP or SPP
is registered at runtime by calling a communication service operation (such as,
ProtocolRole.registerSAP and ProtocolRole.deregisterSAP) in the
detail level code of a capsule. The same port may be registered under different names
at different points in the model execution, and as either a SAP or a SPP.

Deferring and Recalling Messages

The Java UML Services Library enforces the reactive model of behavior by
automatically putting a capsule into a receive mode between successive transitions.
This means that there is no need for an explicit user-specified receive method. When a
message is selected for processing, the Java UML Services Library wakes up the
capsule and starts execution of the appropriate transition.

When a message is received, the capsule may decide to postpone the handling of this
event for a later time. For example, the behavior may be in the middle of a complex
sequence of state transitions when it receives an asynchronous request to handle a
new sequence. Instead of trying to execute two sequences in parallel, it may be
simpler to serialize them. To do this, the newly-received message must be held until
the current event-handling sequence is complete, and it is then resubmitted. The Java
UML Services Library allows messages to be deferred, and then recalled later.

Timing Services

Implementation Classes
Timing, Timing.Request

Concepts

The timing services provide users with general-purpose timing facilities based on
both absolute and relative time. To access the timing services, you reference, by name,
a timing port that has been defined on that capsule (that is, by creating a port with the
pre-defined Timing protocol). Service requests are made by operation calls to this port
while replies from the service are sent as messages that arrive through the same port.
If a timeout occurs, the capsule instance that requested the timeout receives a message
90 Chapter 4 - Java UML Services Library

with the pre-defined message signal ’timeout’. A transition with a trigger event for
the timeout signal must be defined in the behavior in order to receive the timeout
message.

Each request to the timer service for a timing event will return a handle to the request.
This handle can be used to cancel the request.

Absolute and Relative Time

Two forms can be used to specify a timer request: absolute time and relative time. This
service defines absolute time as elapsed time since some fixed point in the past.
Relative time is expressed as a number of time units from the current time instant.

One Shot Timer

The one shot timer expires only once: after the specified time duration (that is, relative
time), or at the specified time (that is, absolute time). If subsequent timeouts are
required, the timer must be reset after each expiration.

Periodic Timer

If repeated timeouts are required, the extra time added for processing each timeout
and requesting a new timer may cause some amount of drift in the timing. For
example, requesting a timeout every 10 seconds will result in a timeout occurring
every 10 seconds plus the amount of time required to process the timeout, and to reset
the timer. Round-off of clock ticks may reduce or exaggerate this drift.

The periodic timer is set to timeout repeatedly after the specified duration until the
timer is explicitly cancelled. It does not need to be reset after each expiration. Using
the periodic timing service will generally provide more accurate timing than
repeatedly resetting a one-shot timer.

Timing Precision and Accuracy

The precision of the timing service depends on the granularity of timing supported by
the underlying Java environment. Although you can request timeouts with a
granularity down to the millisecond, this does not mean you will get millisecond
precision.

The service does not guarantee absolute accuracy. This means that intervals can take
slightly longer than specified, and events scheduled for a particular time may in fact
happen slightly after the actual time has occurred. The magnitude of the delay
depends on many factors. However, unless the system is under severe overload, the
discrepancy is usually not significant.
Timing Services 91

Frame Services

This topic is organized as follows:

■ Implementation Classes on page 92
■ Concepts on page 92
■ Optional Capsule Roles on page 92
■ Plug-In Capsule Roles on page 93
■ Multiple Containment on page 93
■ Replicated Capsule Roles on page 94

Implementation Classes
Frame, Capsule, CapsuleRole

Concepts

Capsule roles can be classified into three categories: fixed, optional, and plug-in. The
latter two types of capsule references are used for dynamically changing structures.

The frame service provides the ability to instantiate and destroy optional capsules, to
plugIn and unplug capsule instances to and from plug-in roles, plus a number of
other functions. The rules and definitions governing the frame service can become
quite involved. See the Rational Rose RealTime Modeling Language Guide for more details on
the concepts behind dynamic structure.

A capsule role can contain a specific class if either that class is the role classifier, or the
role has the substitutable property and the class is a subclass of the role classifier.

All the public ports of the class must have protocol roles that are compatible with the
roles to which they are connected.

Optional Capsule Roles

The current number of existing instances of an optional capsule reference at any given
time may be less than the cardinality specified for that capsule role. The rules
governing the instantiation and destruction of optional capsules are as follows:

■ An optional capsule can be instantiated as an instance of a particular class if it
follows the compatibility rule (above).

■ An optional capsule that is explicitly destroyed by the invocation of a method by
the immediate container ceases to exist and does not appear anywhere.
92 Chapter 4 - Java UML Services Library

Plug-In Capsule Roles

The following rules must be satisfied at runtime in order for a capsule instance to
appear as a plug-in capsule role:

■ The capsule instance cannot already be an aspect in the plug-in capsule reference.

■ The class of the capsule instance must be compatible with the role.

■ Capsules may not be imported across model boundaries. That is, a capsule cannot
be imported across a process boundary, although it can be imported across a
thread boundary within the same model.

All of the ports of the capsule instance to be bound in the destination plug-in role
must have sufficient cardinality unbound.

Multiple Containment

Multiple containment allows you to represent capsule roles that are simultaneously
part of two or more capsule collaborations. Specifying that two different capsule roles
are actually bound to the same runtime instance can simplify the structure of the
system by allowing it to be decomposed into different views.

Using Multiple Containment

In order to understand the need for this, it is necessary to examine the meaning of
encapsulation in object-oriented design. When two or more capsule roles are placed
together in a common capsule, the intent is to capture some user-defined relationship
between these components. The simplest example of a relationship between objects is
pure physical containment (such as, a shelf contains a particular card).

The type of relationships that exist in the software domain can be quite diverse. When
two terminals are connected to each other in order to exchange information, they are
involved in a call relationship. The object-oriented approach encourages us to capture
such identifiable relationships as distinct objects.

Note: In physical terms, there is no real entity corresponding to a call; however, it may
be useful to think of it in that way.

Once relationships such as these are captured in unique addressable objects, then it is
possible to conceive of operations on such objects, such as terminating a particular call
or adding another party to it. To the entities invoking the operations, the structure and
implementation within such objects are typically of no concern. Following this line of
thought leads us to conclude that these objects are in fact like any other software
objects: entities with a set of externally accessible operations and an encapsulation
shell that hides their internals. Therefore, capsules can be used to represent arbitrary
user-defined relationships between their component capsules.
Frame Services 93

With this explanation of capsules, the need for multiple containment is more
apparent. It is required to capture situations where a capsule role is involved in
multiple simultaneous relationships with capsule roles in other containments.

Replicated Capsule Roles

Replication semantics are a function of the type of role that is replicated:

■ All instances of a fixed capsule role are created automatically when the containing
capsule is incarnated. The number of instances is equal to the cardinality.

■ Instances of an optional replicated capsule role are created dynamically by the user
at runtime using the frame service. The number of instances can vary from zero to
the number specified by the cardinality. Any attempt to increase the number of
instances beyond the cardinality will fail.

■ Plug-in capsule roles are filled dynamically at runtime. The maximum number of
instances that can be imported into the plug-in capsule role is limited by the
cardinality of the role. Any attempt to increase the number of instances beyond the
cardinality will fail.
94 Chapter 4 - Java UML Services Library

5Command-Line Model
Observer
Contents

This chapter is organized as follows:

■ Starting the Run Time Command-Line Observer on page 95
■ Run Time Command-Line Observer Summary on page 96
■ Thread Commands on page 98
■ Informational Commands on page 99
■ Tracing Commands on page 103
■ Control Commands on page 105
■ Other Commands on page 105

Overview

The Run Time System command-line observer provides a mechanism to allow UML
for Real-Time models executing on the Run Time System to be debugged at the UML
for Real-Time concept level. The Run Time System command-line observer does not
provide source-level debugging. Source code debugging requires an external
source-level debugger for Java, such as jdb.

Starting the Run Time Command-Line Observer

To use the command-line observer, first start the model executable from the toolset or
from the command-line:

java <Java VM options> com.rational.rosert.DebugApplication

<TopCapsule> -obslisten=<portNumber>

This command can be followed by additional command-line arguments that the
model may use.
95

You will see the following banner:

Rational Rose RealTime Java Target Run Time System

Release 6.30.C.00

Copyright (c) 2000-2001 Rational Software

When the model is started, run telnet to the machine that the model is running on,
specifying the port that the model is listening on (portNumber from the command
above). Once the telnet client is connected, press ENTER. You should see the Run
Time System banner in the command-line observer session followed by the prompt.

You may connect additional command-line and toolset observers to a target that is
already running.

Each observer has its own thread of control. If the logging of stdout is enabled, this
may result in the model output being interleaved with the observer output. When
using the observer, the threads related to timing should usually be detached. Other
threads can be attached or detached as required.

Run Time Command-Line Observer Summary

taskName

Physical threads in the application are each identified by a taskName. Listing the
threads in the application using the tasks command shows the taskName of each
task. Use the taskName when referring to a particular thread for commands such as
attach, detach, and printstats.

 capsulePath

Each capsule instance has a unique capsulePath. The capsulePath indicates the
capsule's position in the containment hierarchy. The supercapsule instance always has
a path of /, and the top capsule /0. The instances contained in it are called: /0/0,
/0/1, /0/2, and so on.

Replicated references are shown by a single Id. They can be identified individually by
suffixing the role number with n, where n is the particular instance number (for
example, /0/5.1). The index number of the first instance is 0.

Note: The default replication factor is always 0. For example, /0/5 is exactly the
same as /0.0/5.0.

The capsulePath is used in conjunction with the info command, and sometimes
with the system command. The system command shows the capsulePath
corresponding to each capsule.
96 Chapter 5 - Command-Line Model Observer

portId
Each port is identified by a portId. PortIds are relative to the capsule where they
are defined, and are unique only within this capsule class.

The portIds for a capsule class can be listed using the info command.

Thread commands

■ attach <taskName>: Monitors a thread specified by taskName. TaskNames of the
different physical threads in the model can be determined using the tasks
command.

■ detach <taskName>: Does not monitor a thread specified by taskName. Allows
the thread to run freely.

■ newtasks <mode>: Selects whether the newly created tasks should be started as
attached or as detached.

■ tasks: Prints the list of tasks (threads).

Informational commands

■ info <capsulePath>: Shows information about the capsule instance specified by
the capsulePath.

■ printstats <taskName>: Prints the runtime statistics for thread taskName.

■ stats <taskName>: Alias for printstats <taskName>.

■ system [<capsulePath> [depth>]]: Lists all instantiated capsules in the system,
starting with the one specified by capsulePath to a specific depth.

■ unwired: Shows all registered unwired ports.

Tracing commands

■ log <category>: Logs Java UML Services Library primitives.

The argument category is one of the following: all, communication,
exceptions, frame, none, observability, stdout, timer,

unwired.
Run Time Command-Line Observer Summary 97

Control commands

■ continue: Delivers messages until stopped by the user.

■ exit: Terminates the application.

■ step [<n>]: Delivers n messages.

■ stop: Alias for step 0.

Other commands

■ close: Closes the observer session.

■ help: Prints help information.

■ ?: Alias for help.

Thread Commands

attach <taskName>

Allows the debugger to interact with the specified task (thread). TaskName must be
one of the taskNames listed by the tasks command. When a thread is attached,
messages within that thread are only processed when the step (or continue)
command is given.

RTS Debug ->attach main

RTS Debug ->

detach <taskName>

Allows the thread specified by taskName to run freely. The debugger does not
control the specified thread any longer. The thread processes all outstanding messages
and then waits for new messages.

RTS Debug ->detach main

RTS Debug ->
98 Chapter 5 - Command-Line Model Observer

newtasks <mode>

Specifies how newly created tasks should be started. If the mode is attached, the
observers will have control over the new tasks. If the mode is detached, new tasks
will be allowed to run freely.

RTS Debug ->newtasks attached

RTS Debug ->

tasks

Lists all threads in the model. Each thread is identified with a taskName. The main
thread always appears in the list of threads. Any additional user-defined physical
threads also appear in the list.

RTS Debug -> tasks

0 main attached

1 taskA attached

2 taskB detached

3 taskC attached

4 task5 detached

RTS Debug ->

Informational Commands

info <capsulePath>

The info command displays information about a capsule instance specified by
capsulePath. The info command displays:

■ the name of the capsule class for the identified instantiation
■ the role name (from the container)
■ the current state of the capsule
■ a list of ports, components and attributes.

Note: Ports listed are identified by an Id number.
Informational Commands 99

RTS Debug ->info /0/3

ClassName: FiveStates

RoleName : fiveStates

State : hasEntryExit

Relay Ports:

0: relay(0) (InfoProt$Base)

1: relay(1) (InfoProt$Base)

End Ports:

0: timer (protected unregistered)

1: log (protected unregistered)

2: frame (protected unregistered)

3: prot2 (protected wired)

4: prot1 (protected wired)

5: info (public wired)

Components:

0: echo1

1: echo2

Attributes:

0: boolean BeenThere = false

1: boolean DoneThat = true

2: java.lang.Integer Token = 49

3: int GotResp = 2

RTS Debug ->
100 Chapter 5 - Command-Line Model Observer

printstats <taskName>

Prints information about the number of queued messages and a breakdown of these
messages by priority. The alias stats is mapped to this command.

RTS Debug ->printstats main

main

messages queued

Synchronous 0

System 0

Panic 0

High 0

General 1

Low 0

Background 0

Total 1

RTS Debug ->

stats <taskName>

Alias for printstats <taskName>.

system [<capsulePath> [<depth>]]

The system command lists all the active capsules in the system, starting with capsule,
specified by <capsulePath> (default: / = the supercapsule) and depth
(default: 0 = all) levels down.

Both the parameters capsulePath and depth are optional; however, if you also give
the depth parameter, you must also give the capsulePath parameter.

Each capsule is displayed in the following form:

roleName : className (type) capsulePath [[more]]

Containment is indicated by indentation, and one leading dot for each containment
level.
Informational Commands 101

Example 1

The supercapsule is listed first, followed by all the capsule instances in its
decomposition:

RTS Debug ->system

root : com.rational.rosert.SuperCapsule (system,fixed) /

. application : TopCapsule (optional) /0

. . capsuleA : CapsuleA (optional) /0/0

. . capsuleB : CapsuleB (optional) /0/1

. . capsuleC : CapsuleC (optional) /0/2

. . capsuleC : CapsuleC (optional) /0/2.1

. . fiveStates : FiveStates (optional) /0/3

. . . echo1 : Echo1 (optional) /0/3/0

. . . echo2 : Echo2 (optional) /0/3/1

. . capsuleD : CapsuleD (fixed) /0/4

RTS Debug ->

Example 2

We start with a different capsule:

RTS Debug ->system /0/3

fiveStates : FiveStates (optional) /0/3

. echo1 : Echo1 (optional) /0/3/0

. echo2 : Echo2 (optional) /0/3/1

RTS Debug ->

Example 3

We start with a different capsule, and also limit the depth to 1 level:

RTS Debug ->system /0/3 1

fiveStates : FiveStates (optional) /0/3 [...]

RTS Debug ->
102 Chapter 5 - Command-Line Model Observer

The [...] message after the capsule means that the capsule in question has contained
capsules that were not displayed since the supplied depth parameter limited the
output.

unwired

Lists all registered unwired ports.

RTS Debug ->unwired

name: protUnwired

SAP: application[0]/protUnwired[0]

SPP: echo2[0]/protUnwired[0]

RTS Debug ->

Tracing Commands

log <category>

The log command turns ON the logging of system services. UML-RT events are
displayed as they happen according to the specified category.

The categories are: all, communication, exceptions, frame, none,
observability, stdout, timer, unwired.

Events that will be logged are:

■ all: everything

■ communication: message delivery

■ exceptions: exceptions

■ frame: incarnate, destroy, plugIn, unplug

■ none: stop logging

■ observability: run status change, task attaching/detaching

■ stdout: all log events that normally go only to stdout

■ timer: timeout, cancel timer

■ unwired: register/deregister unwired ports
Tracing Commands 103

The categories are additive. That is, the log timer followed by log frame will cause the
command-line observe to log both timer and frame events.

Each message log shows the direction of the message, the receiving capsule (the 'to'
capsule), the sending capsule (the 'from' capsule), and the data. The form of each
message log is as follows:

message: signal (Priority)

to capsule[index](Class)<state>.portName[index]

from capsule[index](Class)<state>.portName[index]

data (dataType) dataValue

An example of message trace is shown below:

RTS Debug ->log communication

RTS Debug ->step 2

RTS Debug 2>

message: sig_out (General)

to application[0](TopCapsule)<TOP>.portC[0]

from capsuleC[0](CapsuleC)<TOP>.port[0]

message: sig_out_payload(General)

to application[0](TopCapsule)<TOP>.portA[0]

from capsuleA[0](CapsuleA)<TOP>.port[0]

data (java.lang.Integer) 17

RTS Debug ->
104 Chapter 5 - Command-Line Model Observer

Control Commands

continue

Delivers unlimited number of messages.

exit

Exits the process. If you have logs turned ON, you may notice a sequence of
cancellation/stop messages before the process is exited.

step [<n>]

Delivers n messages in the model. If n is omitted, the default is 1.

stop

Alias for step 0.

Other Commands

close

Closes the observer session. The application and other observers continue running.

help

Prints help information.

?

Alias for help.
Control Commands 105

106 Chapter 5 - Command-Line Model Observer

6Model Properties
Reference
Contents

This chapter is organized as follows:

■ RTJava Specific Properties on page 107
■ RTJava Properties on page 107
■ RTJava Component Properties on page 111

RTJava Specific Properties

This chapter provides a guide to using RTJava specific properties for elements in the
Logical View and the Component View.

For an example of class properties, see Figure 8. For an example of operation
properties, see Figure 7.

RTJava Properties

These are properties that control the Java code that is generated for the model
elements.

Class

A class within the model is generated as a Java class. The model's class and any nested
classes within it are typically generated to a single Java file.

JavaStatic

Specifies whether the class is declared with the static modifier.

JavaFinal

Specifies whether the class is declared with the final modifier.
107

JavaStrictfp

Specifies whether the class is declared with the strictfp modifier.

ClassFileHeader

Specifies text that is inserted at the top of the Java file in which this class is generated.

StaticInitializerHeader

Specifies code that is placed in a static initializer at the top of the class definition.

StaticInitializerFooter

Specifies code that is placed in a static initializer at the bottom of the class definition.

InstanceInitializerHeader

Specifies code that is placed in an instance initializer at the top of the class definition.

InstanceInitializerFooter

Specifies code that is placed in an instance initializer at the bottom of the class
definition.

Attribute

An attribute within the model is generated as a Java field.

JavaVolatile

Specifies whether the attribute is declared with the volatile modifier.

JavaTransient

Specifies whether the attribute is declared with the transient modifier.

InitializationCode

Specifies code that is placed in an (instance) initializer for the attribute.
108 Chapter 6 - Model Properties Reference

Association End

An association end within the model is generated as a Java field if the association is
navigable to that end.

JavaFinal

Specifies whether the association end is declared with the final modifier.

JavaVolatile

Specifies whether the association end is declared with the volatile modifier.

JavaTransient

Specifies whether the association end is declared with the transient modifier.

InitialValue

Specifies the initial value for the association end. It is assigned to the association end
in its definition.

InitializationCode

Specifies code that is placed in an initializer for the association end.

NameQualification

Specifies whether the type of the association end is specified using its fully qualified
name or whether an import statement should be generated and only the short name
of the type is used.

Operation

An operation within the model is generated as a Java method.

JavaFinal

Specifies whether the operation is declared with the final modifier.

JavaNative

Specifies whether the operation is declared with the native modifier and without a
code body.
RTJava Properties 109

JavaStrictfp

Specifies whether the operation is declared with the strictfp modifier.

JavaThrows

Specifies a comma separated list of exceptions that can be thrown by this operation.

Generalization

A generalization relationship within the model may be viewed as the inverse of a
specialization relationship. A specialization within the model is generated as a Java
class that inherits from, or extends, another Java class.

NameQualification

Specifies whether the parent class of the generalization is specified using its fully
qualified name or whether an import statement should be generated and only the
short name of the type is used.

Package

A package within the model is a logical grouping of model elements within the
model. Packages are not explicitly generated, but they can affect how their contents
are generated.

JavaPackage

Specifies whether the package is a Java package. This affects the namespace for the
classes contained in the package and, transitively, all of the subpackages.

Transition

GenerateDataParameter

Controls whether or not the rtdata parameter for the transition function is
generated. rtdata is the data parameter of the message cast to the common
superclass for all signals that may cause the transition to execute. This should be
disabled if the rtdata parameter is not used by the user code, or if the Java code
generator detects a situation and raises an error where the parameter would be
invalid.
110 Chapter 6 - Model Properties Reference

GeneratePortParameter

Controls whether or not the rtport parameter for the transition function is
generated. rtport is the port that the message arrived on cast to the common
protocol role class for all signals that may cause the transition to execute. This should
be disabled if the rtport parameter is not used by the user code, or if the Java code
generator detects a situation and raises an error where the parameter would be
invalid.

Choice Point

GenerateDataParameter

Controls whether or not the rtdata parameter for the choice point function is
generated. rtdata is the data parameter of the message cast to the common
superclass for all signals that may cause the choice point to execute. This should be
disabled if the rtdata parameter is not used by the user code, or if the Java code
generator detects a situation and raises an error where the parameter would be
invalid.

GeneratePortParameter

Controls whether or not the rtport parameter for the choice point function is
generated. rtport is the port that the message arrived on cast to the common
protocol role class for all signals that may cause the choice point to execute. This
should be disabled if the rtport parameter is not used by the user code, or if the Java
code generator detects a situation and raises an error where the parameter would be
invalid.

RTJava Component Properties

There are two supported component types:

■ RTJava Project

■ RTJava External Project
RTJava Component Properties 111

RTJava Project

An RTJava Project component allows you to specify build instructions for a set of
UML classes. With this component type, you can generate Java files, compile Java
class files, or produce a single Java Archive (.jar) file.

BuildJar Flag

If this flag is set, the component exports a .jar file containing a set of Java class files
produced by this component. If this flag is not set, the component exports a set of Java
class files.

OutputJarFilepath

Specifies the absolute file path of the .jar file produced, including the file name and
extension. It has no meaning if the BuildJar flag is not set.

JarCommand

Specifies the command to create the .jar file from the compiled Java classes. The field
has no meaning if the BuildJar flag is not set.

OutputClassDir

Specifies the absolute file path for the classes created. Java class files are typically
produced in the specified directory whether the BuildJar flag is set or not set.

If the OutputClassDir is the same as the OutputDirectory for this component, then
all Java and Java class files for this component will share the same directory structure.

If the OutputClassDir is the same as the OutputClassDir of other components, those
Java class files will share the same directory structure, and will only require one
addition to a client's ClassPath.

JavaCompiler

Specifies how the Java compiler will be invoked to compile the generated Java files,
and to produce Java class files in the OutputClassDir.

OutputDirectory

Specifies the directory where the generated files for this component are placed. The
OutputDirectory (once expanded) should not conflict with the OutputDirectory for
other components.
112 Chapter 6 - Model Properties Reference

BootstrapCommand

Specifies the command used to generate the Makefiles for this component, and all
components upon which it depends.

GenerateCommand

Specifies the command used to generate all Java files for this component, and all
components upon which it depends. Since the default GenerateCommand is
Makefile-driven, it requires successful completion of the BootstrapCommand first.

CompileCommand

Specifies the command used to generate and compile all Java files (possibly
producing a .jar file) for this component, and all components upon which it depends.
Since the default CompileCommand is Makefile-driven, it requires successful
completion of the BootstrapCommand first.

CleanAllCommand

During a rebuild, this field specifies the command to clean this component and all
(RTJava Project) components upon which it depends.

When you invoke a "Build > Rebuild" of a component from the toolset, you
effectively invoke the component's CleanAllCommand, then the
BootstrapCommand, and then the CompileCommand (or GenerateCommand).
The default CleanAllCommand is Makefile-driven. If the Component Makefile does
not exist, the CleanAllCommand will fail and a warning is issued.

Note: When you Build > Clean a component, you do not invoke the
CleanAllCommand. A "Build > Clean" will prompt you to delete the
OutputDirectory of the component. A "Build > Clean" only cleans one component at
a time, it does not clean depended-upon components.

MakeType

MakeType may be DefaultMakeType, MS_nmake, Gnu_make, or Unix_make.
There are slight formatting differences between generated Makefiles that necessitate
specifying the (third-party) MakeType you are using.

If you are generating on Windows NT, DefaultMakeType evaluates to MS_nmake. If
you are generating on UNIX, DefaultMakeType evaluates to Unix_make.

Note: Support for Clearcase_clearmake and Clearcase_omake may be added in a
future release.
RTJava Component Properties 113

ComponentMakeInsert

This text block is inserted in the Component Makefile (the Makefile in the
component's OutputDirectory).

Use this text block to add extra rules or to modify any of the generated Make macros.
Some possible uses are described below.

Adding Make flags

If you want to add flags, such as UNIX make's -s (silent) flag, to the RTgenerate
and RTcompile make tasks, add the following to your ComponentMakeInsert.

GMK_OPTS = -s

CMK_OPTS = -s

Replacing the CLEAN_CMD used in rebuild

The default CleanAllCommand ($defaultMake RTcleanall) calls the clean
activity (the RTmyclean rule) for this component, and every RTJava Project
component that it depends upon.

The default clean activity for each component is specified by the RTmyclean rule in
the Component Makefile:

CLEAN_CMD=$(RM) -f -R RTbuild

RTmyclean :

$(CLEAN_CMD)

While you cannot change the RTmyclean rule, you can change its order
dependencies, and you can redefine CLEAN_CMD.

To disable CLEAN_CMD, add the following to your ComponentMakeInsert:

CLEAN_CMD=$(NOP)

Note: To disable the CLEAN_CMD, you do not want to set the CLEAN_CMD to
empty because it is required by the RTmyclean rule.

To cause CLEAN_CMD to do something else instead, add the following to your
ComponentMakeInsert:

CLEAN_CMD=do_this arg1 arg2 arg3
114 Chapter 6 - Model Properties Reference

To cause CLEAN_CMD to do multiple steps, add the following to your
ComponentMakeInsert:

RTmyclean : clean_first

clean_first :

do_step1

do_step2

CLEAN_CMD=do_step3

CodeGenMakeInsert

This text block is inserted in the Makefile responsible for generating this component.

Use this text block to add extra rules or to modify any of the generated Make macros.
For example, to add pre-generation or post-generation steps.

Passing options to the code generator

To include the version number of the code generator in the Build Log, add the
following to your component's CodeGenMakeInsert field:

RTGEN_USER_FLAGS = -version

To obtain (verbose) debugging information about the code generator's internal
activities, add the following to your component's CodeGenMakeInsert field:

RTGEN_USER_FLAGS = -debug

Generating one Java file at a time

To force the code-generator to generate one Java file at a time, add the following to
your component's CodeGenMakeInsert field:

RTGENERATE_TARGET = $(RTGENERATE_EACH_TARGET)

Adding a pre-generation activity

To add an extra rule "myPreRule" to run before all generation, add the following to
your component's CodeGenMakeInsert:

$(RTGENERATE_TARGET) : myPreRule

myPreRule :

echo "Starting generation"
RTJava Component Properties 115

Adding a post-generation activity

To add an extra rule "myPostRule" to run after all generation is successful, add the
following to your component's CodeGenMakeInsert field:

RTGENERATE_TARGET = myrule

myPostRule : $(RTGENERATE_ONE_TARGET)

echo "Finished generation"

CompileMakeInsert

This text block is inserted in the Makefile responsible for compiling this component.

Use this text block to add extra rules or to modify any of the generated Make macros,
for example, to add pre-compilation or post-compilation steps.

Incremental compilation and individual Java file compilation

The Java Compiler for Sun JDK does not write class files incrementally (that is, only
when a real change is necessary to the output files). To achieve incremental
compilation, you must tell Make to compile every Java file individually.

Note: Individually compiling every file will slow down non-incremental builds (that
is, initial builds and rebuilds).

To compile every Java file individually, add the following to the CompileMakeInsert
of your components:

COMPILE_TARGET=$(COMPILE_EACH_TARGET)

Adding a pre-compilation activity

To add an extra rule "myPreRule" to run before all compilation, add the following to
your component's CompileMakeInsert field:

$(COMPILE_TARGET) : myPreRule

myPreRule :

echo "Starting compilation"
116 Chapter 6 - Model Properties Reference

Adding a post-compilation activity

To add an extra rule "myPostRule" to run after all compilation is successful (and
before running the JAR command, if applicable), add the following to your
component's CompileMakeInsert field:

COMPILE_TARGET = myPostRule

myPostRule : $(COMPILE_ONE_TARGET)

echo "Finished compilation"

To add an extra rule "myPostJarRule" to run after building the JAR, add the following
to your component's CompileMakeInsert field:

BUILD_TARGET = myPostJarRule

myPostJarRule : $(JAR_TARGET)

echo "Finished building JAR"

Variable Expansion for Fields

Table 1 Variable Expansion for Fields in RTJava Project

Variable Definition Sample Expansion

$compName The unqualified name of
this component.

NewComponent1

$defaultMake Depends on the value of
MakeType.

nmake (for MS_nmake)

make (for Unix_make)

gmake (for Gnu_make)

$dq or ${dq} Double quotes. Using a
literal double quote will
change the interpretation
of a field to a text-block the
next time the model file is
loaded into the tool-set.

"

$modelDir The directory in which the
model file (or .rtmdl file) is
stored.

C:/MyModelDir/SmallModels
or /home/me/models/
BigModel1

$modelName The name of the model
(the root name of the
.rtmdl file).

TestModel1

$qualifiedName The fully qualified name of
this component.

Component View::
NewComponent1
RTJava Component Properties 117

In cases where the variable's name token is followed by an alphanumeric character, it
is recommended to use ${VARIABLE} notation instead of $VARIABLE notation.

Path Map Variables, Environment Variables and Make Macro
Variables

You may want to use Path Map variables, Environment variables or Make macros for
specifying:

■ directories, such as OutputClassDir

■ paths, such as ClassPath

■ a file-path for JavaCompiler

This avoids hard-coding paths that may differ for another user using the same model.

For example, '${J2ME_CLDC_HOME}/api/classes' (versus
'/java/j2me_cldc/api/classes')

allows other users to specify their own path for J2ME_CLDC_HOME.

Path Map variables and Environment variables look and behave in similar ways, with
a few exceptions. You can view and edit Path Map variables from the toolset,
however, you cannot directly view or modify Environment variables from the toolset.
Also, Path Map variables are exported to the build environment as Environment
variables.

$VARIABLE
or${VARIABLE}

Any Path Map variable or
Environment variable.

Value of Path Map variable, or
value of Environment variable, or
empty if no such variable exists.

$(VARIABLE) Any Make macro variable. Unexpanded by code-generator.
Expanded by Make.

$$ The escape sequence for
dollar-sign, as used in
Make macros (for example:
$$@).

$ (for example: $@)

Table 1 Variable Expansion for Fields in RTJava Project (continued)

Variable Definition Sample Expansion
118 Chapter 6 - Model Properties Reference

Make macro variables can also be used in some component fields to avoid
hard-coding paths. In the above example, you could specify

'$(J2ME_CLDC_HOME)/api/classes'

using parentheses instead of braces. Since Make utilities will typically use the
Environment variable (including Path Map variables) as a default when expanding a
Make macro variable, the distinction between Make macros and Path Map variables
are subtle. The main benefit is that Make macros are unexpanded in the Makefile.
Consequently, a runtime environment (which expands Make macros in ClassPath)
can be different from the generation or compilation environment.

RTJava External Project

An RTJava External Project component represents a set of UML classes,
and/or a .jar file, or a set of Java class files that are not built by this component. This
component type facilitates reuse (without rebuild) by RTJava Project components
that depend upon it.

ClassPath

Specifies optional additions to the ClassPath variable that are necessary to compile or
run another component that depends upon this component.

Multiple entries on the ClassPath may be separated with ';' (on Windows NT) or
':' (on UNIX).

You may want to use Path Map Variables or Make macros for directories to avoid
hard-coding paths that may differ for another user using the same model.

For example,

'$(J2ME_CLDC)/api/classes' (versus 'R:/java/j2me_cldc/api/classes')

allows other users to specify their own path for J2ME_CLDC.

File Name Conventions

The use of backslashes and spaces are important considerations in the RTJava
Project and RTJava External Project component fields.

Backslashes

In fields where paths are expected, it is recommended that you use forward slashes
(even on Windows NT). Most compilation tools will accept both forward and
backward slashes. For consistency, the code generator may convert backward slashes
in specified paths to forward slashes.
RTJava Component Properties 119

Spaces in Directory Names

Spaces can legitimately occur in some fields (such as, directory names, file paths and
UML qualified names). The code generator encloses these tokens in double quotes.

For example, it may seem natural to put double quotes around the directory name's
declaration where the space occurred. Instead, the code generator adds double quotes
wherever the directory name is used, such as:

■ in a file path (as in OutputJarFilepath)

■ in a list of directories (as in the -classpath argument to the Java compiler)

■ a single-token directory name (as in the -d argument to the Java compiler)

Consequently, do not encapsulate the declared directory name with double quotes.
120 Chapter 6 - Model Properties Reference

7Java UML Services
Library Class Reference
Contents

This chapter is organized as follows:

■ Java UML Services Library Class Reference Overview on page 121
■ Application on page 122
■ Capsule on page 130
■ Capsule.Message on page 141
■ CapsuleRole on page 145
■ Controller on page 146
■ Frame.Base on page 150
■ Log.Base on page 159
■ Priority on page 169
■ ProtocolRole on page 170
■ ProtocolRole.InSignal on page 190
■ ProtocolRole.OutSignal on page 197
■ ProtocolRole.SymmetricSignal on page 205
■ Timing.Base on page 206
■ Timing.Request on page 213
■ Exceptions on page 214

Java UML Services Library Class Reference Overview

The Java UML Services Library Class Reference is a reference to the classes that you
will need to use within the detailed code of a capsule class to access the services
provided by the Java UML Services Library.

The Java UML Services Library Framework on page 80 shows the classes in a class
diagram. The remainder of the Class Library Reference consists of an alphabetical
listing of the classes.
121

In the alphabetical listing section, each class description includes a member summary
by category, followed by alphabetical listings of operations and attributes. Nested
classes are then listed in the same fashion. This reference does not describe private or
restricted elements of the Services Library. Some features and classes in the Services
Library are internal to the library itself (even though they may be accessible according
to the Java language rules) and thus are not supported as interfaces available for use
in applications.

Application

An instance of this class is the anchor for an application; it is the main controller
object. Useful extensions would include creating other controller and thread objects.

Operations

Attributes

There are no attributes accessible to user code.

Nested Classes

There are no nested classes.

getArgCount Gets the number of arguments present on the command line.

getArgString Gets the specified argument from the command line. The first
argument is at index zero.

logicalControllerDeregister Destroy the mapping from a name or to a given controller
object.

logicalControllerFind Find the controller registered with the given name or return
null if exists.

logicalControllerRegister Create a mapping from the given name to the given controller
object. Return true if successful. If the name is already in use
false is returned.

main This is the default entry-point to run an application. The first
argument names the top-level capsule class. Remaining
arguments will be available via getArgString().

run The code executed by the associated thread. This is the
implementation of the java.lang.Runnable interface.
122 Chapter 7 - Java UML Services Library Class Reference

Application.getArgCount

public int Application.getArgCount()

Return value

Returns the number of arguments that follow the top capsule class name on the
command line.

Exceptions

None.

Parameters

None.

Remarks

Examples

The operation getArgCount would return the value 3 if the following command were
used to start an application.

java com.rational.rosert.Application example.TopCapsule one two three
Application 123

Application.getArgString

public java.lang.String Application.getArgString(int index)

Return value

Returns the arguments at position “index” that follows the top capsule class name on
the command-line.

Exceptions

None.

Parameters

Remarks

Indexing starts at 0, and ends at Application.getArgCount() -1.

Examples

The operation getArgString(0) would return the string "one" if the following
command were used to start an application.

java com.rational.rosert.Application example.TopCapsule one two three

index The position on the command-line of the argument.
124 Chapter 7 - Java UML Services Library Class Reference

Application.logicalControllerDeregister

void Application.logicalControllerDeregister(Controller controller)

void Application.logicalControllerDeregister(java.lang.String name)

Return value

None.

Exceptions

None.

Parameters

Remarks

The first form removes the mapping from any name to the given controller. The latter
destroys the mapping from the given name to any controller.

Examples

The predefined mapping from "main" to the application object may be removed as
shown below.

rtGetController().getApplication().logicalControllerDeregister
("main");

controller The controller to be deregistered.

name The logical name to be removed.
Application 125

Application.logicalControllerFind

Controller Application.logicalControllerFind(java.lang.String name)

Return value

The controller object associated with the given logical name or null if no controller
was registered with that logical name.

Exceptions

None.

Parameters

Remarks

This operation allows designs to be largely independent of the actual number of
controller objects (and their associated Java threads).

Examples

The following two expressions normally yield the same object.

rtGetController().getApplication();

rtGetController().getApplication().logicalControllerFind("main");

name The logical controller name.
126 Chapter 7 - Java UML Services Library Class Reference

Application.logicalControllerRegister

boolean Application.logicalControllerRegister(java.lang.String name,
Controller controller)

Return value

Returns true if no other controller object is registered with the given name.

Exceptions

None.

Parameters

Remarks

Capsules may be incarnated in the context of distinct controllers. Sometimes it is
beneficial to produce an abstraction of controllers independent of the actual number
of controllers. In this abstraction, we refer to 'logical' controllers. This operation
permits a design to capture that abstraction in the application object. Controllers are
registered with one or more logical names allowing model elements to use the logical
name through use of the logicalControllerFind operation.

Examples

com.rational.rosert.Application application =
rtGetController().getApplication();

com.rational.rosert.Controller secondary = new
com.rational.rosert.Controller(application, "two");

application.logicalControllerRegister("two", secondary);

name The logical controller name.

controller The controller object.
Application 127

Application.main

static void Application.main(java.lang.String[] args)

Return value

None.

Exceptions

None.

Parameters

Remarks

This function can be used as the entry-point to an application. The first element of the
array of strings is interpreted as the name of a class that is to be used to construct the
top capsule.

Examples

Application.main(new java.lang.String[] { "TopCapsule", "foo",
"bar" });

args The command-line arguments.
128 Chapter 7 - Java UML Services Library Class Reference

Application.run

void Application.run()

void Application.run(java.lang.String[] args)

Return value

None.

Exceptions

None.

Parameters

Remarks

This operation is normally invoked by main but an extension of the Application class
might supply its own argument list for operation in environments where there is no
concept of 'command-line'.

Examples

run(new java.lang.String[] { "TopCapsule" });

args The command-line arguments.
Application 129

Capsule

Every capsule class when generated as Java code is a subclass of Capsule. This
common base class for all capsules defines attributes and operations that allow the
Services Library to communicate with the running capsule instances.

Since all detail level code added to a capsule class is generated as part of a capsule
class, the detail level code has direct access to some useful attributes, operations and
nested classes defined in Capsule. You should only use the features described below.

Note: The attributes and operations on Capsule should be considered private. One
capsule instance should not manipulate another capsule's attributes nor invoke its
operations directly.

Operations

Attributes

There are no attributes accessible to user code.

Nested Classes

rtDeferMessage Used to defer processing of the current message.

rtDestroy The Services Library invokes this method as a capsule instance is
destroyed. At the time of the call, all capsule roles have been destroyed
or unplugged, all ports are unbound, and any timing requests have
been cancelled.

rtForwardMessage Used to forward the current message through the given port.

rtGetController Gets the controller for the physical thread on which a capsule instance
is executing.

rtGetMsgData Gets the data associated with the message currently being handled.

rtGetMsgPort Gets the port on which the current message arrived.

rtGetMsgPortIndex Gets the index of the port on which the current message arrived.

rtGetMsgPriority Gets the priority of the current message.

rtGetMsgSignal Gets the code for the signal of the current message.

rtWasInvoked Queries whether the current message was the result of an invoke or
invokeAt operation.

Message Instances represent replies to synchronous communication operations.
130 Chapter 7 - Java UML Services Library Class Reference

Capsule.rtDeferMessage

void Capsule.rtDeferMessage()

Return value

None.

Exceptions

Parameters

None.

Remarks

Only asynchronous messages may be deferred.

Examples

rtDeferMessage();

AlreadyDeferredException A message may only be deferred once.

DeferredInitializationException An initialization message may not be deferred.

DeferredInvokeException An invoked message may not be deferred.
Capsule 131

Capsule.rtDestroy

void Capsule.rtDestroy()

Return value

None.

Exceptions

None.

Parameters

None.

Remarks

Even though java has automatic garbage collection, it is often more efficient to release
resources as early as possible. This is the mechanism whereby capsules can ensure
that resources are not held longer than necessary.

Examples

A capsule that dynamically creates an auxillary controller and its associated thread
must be prepared to clean up when it is destroyed. If we assume the capsule has the
following attributes.

com.rational.rosert.Controller auxController;

java.lang.Thread auxThread;

Then the body of its rtDestroy operation might look like this.

auxController.abort(rtGetController());

for(;;)

{

try

{

auxThread.join();

break;

}

catch(java.lang.InterruptedException ex)

{

// keep trying to join with the other thread

}

}

132 Chapter 7 - Java UML Services Library Class Reference

Capsule.rtForwardMessage

void Capsule.rtForwardMessage(ProtocolRole port)

Return value

None.

Exceptions

Parameters

Remarks

A recurring design pattern seems to involve forwarding messages. This operation
permits it to be done safely.

Examples

//Forward the current message to the port delegate at index “index”

rtForwardMessage(delegate).sendAt(index);

IllegalForwardException The signal type of the message is not an outgoing signal of the
specified port.

port The port via which the message is to be forwarded.
Capsule 133

Capsule.rtGetController

Controller Capsule.rtGetController()

Return value

Returns the controller object for the thread on which this capsule instance is running.

Exceptions

None.

Parameters

None.

Remarks

The controller object is required to gain access to the application object and to
terminate other controllers.

Examples

Application application = rtGetController().getApplication();
134 Chapter 7 - Java UML Services Library Class Reference

Capsule.rtGetMsgData

java.lang.Object Capsule.rtGetMsgData()

Return value

The data given to the signal function used to produce the message currently being
handled.

Exceptions

None.

Parameters

None.

Remarks

The signal is likely associated with a more specific data type: the value will need to be
cast accordingly.

Examples

java.lang.Integer value = (java.lang.Integer)rtGetMsgData();
Capsule 135

Capsule.rtGetMsgPort

ProtocolRole Capsule.rtGetMsgPort()

Return value

Returns the port object on which the current message was received, or null in the case
of the initialization message.

Exceptions

None.

Parameters

None.

Remarks

Transitions are often triggered by events on a single port. In such cases, it is more
efficient to simply use that port name in the action code and avoid the cost of a cast of
the result of this operation.

Examples

((Request.Base)rtGetMsgPort()).granted().send();
136 Chapter 7 - Java UML Services Library Class Reference

Capsule.rtGetMsgPortIndex

int Capsule.rtGetMsgPortIndex()

Return value

Yields the zero-based index of the port on which the current message arrived.

Exceptions

None.

Parameters

None.

Remarks

The port index may be a convenient distinguishing feature when handling multiple
clients.

Examples

port.hello().sendAt(rtGetMsgPortIndex());
Capsule 137

Capsule.rtGetMsgPriority

Priority Capsule.rtGetMsgPriority()

Return value

Yields the priority of the current message.

Exceptions

None.

Parameters

None.

Remarks

It is recommend that only the General priority be used.

Examples

The priority of a message might dictate whether it gets immediate attention.

if(rtGetMsgPriority() == Priority.Panic)

{

// handle this now

}

else

{

rtDeferMessage(); // handle it later

}

138 Chapter 7 - Java UML Services Library Class Reference

Capsule.rtGetMsgSignal

int Capsule.rtGetMsgSignal()

Return value

Signals within the same protocol role are assigned small distinct numeric codes. This
operation returns the signal code of the current message.

Exceptions

None.

Parameters

None.

Remarks

It is recommended that when actions depend on the triggering signal those actions be
coded into separate transitions. Sometimes this is not convenient. In such cases, this
operation can be used to discriminate the different signals.

Examples

// common preface

if(rtGetMsgSignal() == Service.Base.rti_request)

{

// handle small variation for 'request' signal

}

Capsule 139

Capsule.rtWasInvoked

boolean Capsule.rtWasInvoked()

Return value

Answers whether the current message was the result of an invoke or invokeAt
operation.

Exceptions

None.

Parameters

None.

Remarks

In the forwarding pattern, we must know whether we were invoked so that we can
handle a reply properly.

Examples

if(rtWasInvoked())

{

Capsule.Message reply = rtForwardMessage(server).invokeAt(

serverIndex);

if(reply != null)

reply.forward(rtGetMsgPort()).reply();

}

else

{

rtForwardMessage(server).sendAt(serverIndex);

}

140 Chapter 7 - Java UML Services Library Class Reference

Capsule.Message

Instances of this class are only accessible through use of the invoke and invokeAt
operations. They return an array of messages or a single message, respectively,
corresponding to each reply.

Operations

Attributes

There are no attributes accessible to user code.

Nested Classes

There are no nested classes.

forward To forward the reply.

getData Gets the data in a reply.

getSignal Gets the signal code from a reply.
Capsule.Message 141

Capsule.Message.forward

ProtocolRole.OutSignal Capsule.Message.forward(ProtocolRole port)

Return value

The object returned is an OutSignal.

Exceptions

None.

Parameters

None.

Remarks

A recurring design pattern seems to involve forwarding messages. This operation
permits replies to be done safely.

Examples

Capsule.Message reply = server.ping().invokeAt(serverIndex);

if(reply == null)

client.noResponse().sendAt(clientIndex);

else

reply.forward(client).sendAt(clientIndex);
142 Chapter 7 - Java UML Services Library Class Reference

Capsule.Message.getData

java.lang.Object Capsule.Message.getData()

Return value

This operation returns the data associated with a reply message.

Exceptions

None.

Parameters

None.

Remarks

This operation must be used to access any data present in the reply to an invoke or
invokeAt operation.

Examples

Capsule.Message reply = server.ping().invokeAt(serverIndex);

if(reply != null)

{

log.show("reply data is ");

log.show(reply.getData());

log.cr();

}

Capsule.Message 143

Capsule.Message.getSignal

int Capsule.Message.getSignal()

Return value

This operation returns the code used to distinguish among signals of the related
protocol role.

Exceptions

None.

Parameters

None.

Remarks

It is recommended that separate transitions be used to handle distinct signals in
different ways. Unfortunately, this is not possible when handling the reply to
synchronous messages.

Examples

The following illustrates how to identify a particular signal. Be careful to ensure that
the protcol role class matches the port through which the invoke occurred.

Capsule.Message msg = port.request().invokeAt(serviceIndex);

if(msg.getSignal() == Service.Conjugate.rti_Granted)

// handle grant of request
144 Chapter 7 - Java UML Services Library Class Reference

CapsuleRole

This class is used to allow capsules to contain other classes as represented by a
structure diagram. Instances of this class are generated by the code generator.

Operations

There are no operations intended for use in user code.

Attributes

There are no attributes accessible to user code.

Nested Classes

MissingClassError An exception thrown by the constructor if the specified
capsule class cannot be found.
CapsuleRole 145

Controller

Controllers are used to represent groups of capsules running on the same thread.
When controllers are created, they are usually given to a thread to run (controllers
implement the run interface). Controllers may be then used as an argument for the
Frame operation of incarnate.

Operations

Attributes

There are no attributes accessible to user code.

Nested Classes

There are no nested classes accessible to user code.

abort Used to cause the controller to terminate.

getApplication Gets the application (main controller) object.

run The implementation of the java.lang.Runnable interface.
146 Chapter 7 - Java UML Services Library Class Reference

Controller.abort

void Controller.abort()

void Controller.abort(Controller requestor)

Return value

None.

Exceptions

None.

Parameters

Remarks

Calling this operation will cause the controller to terminate. The second form must be
used from threads other than the one associated with the controller that is to be
terminated.

Examples

rtGetController().abort();

secondController.abort(rtGetController());

requestor The controller object associated with the current thread.
Controller 147

Controller.getApplication

Application Controller.getApplication()

Return value

This operation returns the application object (that is, the main controller).

Exceptions

None.

Parameters

None.

Remarks

This operation must be used to access the application object. It is useful for accessing
the command-line arguments, for example.

Examples

Application application = rtController().getApplication();
148 Chapter 7 - Java UML Services Library Class Reference

Controller.run

void Controller.run()

Return value

None.

Exceptions

None.

Parameters

None.

Remarks

Controller instances may be created and destroyed dynamically. Each new controller
must have an associated thread context which will execute this operation.

Examples

Application application = rtController().getApplication();

Controller secondController = new Controller(application, "second");

java.lang.Thread secondThread = new java.lang.Thread
(secondController);

secondThread.start();
Controller 149

Frame.Base

Operations

Attributes

There are no attributes accessible to user code.

Nested Classes

There are no nested classes intended for use in user code.

cardinalityOf Gets the cardinality of the given capsule role.

destroy Destroy one or all capsule instances of the specified capsule
role.

incarnate Create a capsule within the specified optional capsule role.

incarnationAt Retrieves a particular capsule instance of a capsule role.

plugIn Import a capsule instance into a plug-in capsule role.

unplug Remove a capsule instance from a plug-in capsule role.
150 Chapter 7 - Java UML Services Library Class Reference

Frame.Base.cardinalityOf

int Frame.Base.cardinalityOf(CapsuleRole role)

Return value

This operation returns the cardinality of the given capsule role.

Exceptions

None.

Parameters

Remarks

This operation returns the replication size of the specified capsule role whether there
is a capsule instance currently present at any specific location or not.

Examples

To unplug all capsule instances from a plug-in role

for(int index = frame.cardinalityOf(plugInRole); --index >= 0;)

frame.unplug(plugInRole, index);

role The name of the capsule role contained in the structure of the
capsule instance making the call.
Frame.Base 151

Frame.Base.destroy

void Frame.Base.destroy(CapsuleRole role)

void Frame.Base.destroy(CapsuleRole role, int index)

void Frame.Base.destroy(Capsule instance)

Return value

None.

Exceptions

Parameters

Remarks

The first form destroys all instances within the specified capsule role. The other two
destroy at most one capsule instance.

The role must be an optional capsule role in the immediate decomposition of the
capsule instance which owns the frame port. In the third form, the capsule role is
implicitly the one in which the capsule instance was incarnated.

Examples

frame.destroy(terminal);

java.lang.IllegalArgumentException The role is not an optional capsule role in the
immediate decomposition of the capsule which
owns the frame port.

java.lang.IndexOutOfBoundsException The index is negative or not less than the
cardinality of the capsule role.

role The name of the capsule role contained in the
structure of the capsule instance making the call.

index The zero-based index within the capsule role of the
capsule instance.

instance The capsule instance.
152 Chapter 7 - Java UML Services Library Class Reference

Frame.Base.incarnate

void Frame.Base.incarnate(CapsuleRole role)

void Frame.Base.incarnate(CapsuleRole role, java.lang.Class capsuleClass)

Example:

How do I incarnate a Capsule Role specifying a Capsule Class?

The example below assumes you have a Capsule Role called receiverR1 and a Capsule
Class called Receiver.

try {

 frame.incarnate(receiverR1, java.lang.Class.forName(
"Receiver"));

}

catch (com.rational.rosert.FullException ex) {

 System.err.println(ex.toString());

}

catch (java.lang.IllegalAccessException ex) {

 System.err.println(ex.toString());

}

catch (java.lang.InstantiationException ex) {

 System.err.println(ex.toString());

}

catch (com.rational.rosert.IncompatibleClassException ex) {

 System.err.println(ex.toString());

}

catch (java.lang.ClassNotFoundException ex) {

 System.err.println(ex.toString());

}

Frame.Base 153

void Frame.Base.incarnate(CapsuleRole role, java.lang.Object data, Controller
controller)

void Frame.Base.incarnate(CapsuleRole role, java.lang.Class capsuleClass,
java.lang.Object data, Controller controller)

void Frame.Base.incarnate(CapsuleRole role, java.lang.Object data, Controller
controller, int index)

void Frame.Base.incarnate(CapsuleRole role, java.lang.Class capsuleClass,
java.lang.Object data, Controller controller, int index)

Return value

None.

Exceptions

BadIndexException The index is out of bounds or specifies an occupied
location in the role.

FullException There are no unoccupied locations in the role.

IncompatibleClassException The capsuleClass was specified and is incompatible
with the class used to define the role.

java.lang.IllegalAccessException The class or its default constructor are inaccessible.

java.lang.IllegalArgumentException The role is not owned by the same capsule instance
as the frame port.

java.lang.InstantiationException The class is abstract or an interface.
154 Chapter 7 - Java UML Services Library Class Reference

Parameters

Remarks

To use the frame operations, create a protected end port using the Frame protocol.

Examples

try

{

frame.incarnate(terminal);

}

catch(com.rational.rosert.FullException ex)

{

}

. . .

Name Meaning Default

role The name of an optional capsule role contained
in the structure of the capsule instance making
the incarnate call

N/A

capsuleClass The class of the new capsule instance. The class used to define
the role.

data Data to be available during the initial transition
of the new capsule instance.

null

controller The context in which the new instance should
execute. A null value may be used to have the
new capsule instance execute within the same
context as the capsule making the incarnate call.

null

index The zero-based index within the capsule role of
the new capsule instance.

N/A
Frame.Base 155

Frame.Base.incarnationAt

Capsule Frame.Base.incarnationAt(CapsuleRole role, int index)

Return value

The capsule instance at the specified capsule role index, or null if no instance exists at
that location.

Exceptions

Parameters

Remarks

This is the only mechanism available for obtaining a reference to a capsule instance
which is required for use with plug-in roles, for example.

Examples

The code below sends a capsule instance to be plugged into a role in another context.

Capsule capsule = frame.incarnationAt(endpoints, index);

If(capsule != null)

peer.endpoint(capsule).send();

java.lang.IllegalArgumentException The role is not owned by the capsule instance that
owns the frame port.

java.lang.IndexOutOfBoundsException The index must be non-negative and less than the
cardinality of the capsule role.

role The capsule role in the immediate decomposition
of the capsule instance that owns the frame port.

index The zero-based index into the capsule role.
156 Chapter 7 - Java UML Services Library Class Reference

Frame.Base.plugIn

void Frame.Base.plugIn(CapsuleRole role, Capsule instance)

void Frame.Base.plugIn(CapsuleRole role, Capsule instance, int index)

Return value

None.

Exceptions

Parameters

Remarks

A given capsule instance can be plugged into a capsule role at most once.

Examples

frame.plugIn(server, serverCapsule);

BadIndexException The index is out of bounds or specifies an occupied
location in the role.

FullException All locations within the capsule role are occupied.

IncompatibleClassException The class of the capsule instances is incompatible
with the role.

java.lang.IllegalArgumentException The role is not owned by the same capsule instance
as the frame port.

role The capsule role in the immediate decomposition of
the capsule instance that owns the frame port.

instance The capsule instances which is to be plugged into the
capsule role.

index The zero-based index within the capsule role.
Frame.Base 157

Frame.Base.unplug

void Frame.Base.unplug(CapsuleRole role, Capsule instance)

void Frame.Base.unplug(CapsuleRole role, int index)

Return value

None.

Exceptions

Parameters

Remarks

This operation is the inverse of the plugIn operation.

Examples

frame.unplug(caller, 0);

BadIndexException The index is out of bounds or specifies an
unoccupied location in the role.

java.lang.IllegalArgumentException The role is not owned by the same capsule instance
as the frame port.

role The plug-in capsule role from which the capsule
instance is to be removed.

instance The capsule instance to be removed. It must
currently be plugged into the capsule role.

index The zero-based index of the capsule index within the
role.
158 Chapter 7 - Java UML Services Library Class Reference

Log.Base

The System Log is accessed via ports using the Log protocol, which are instances of
the class Log.Base. The log port only takes incoming messages and does not pass any
information in the reverse direction. The operations available for accessing the system
log are listed below.

Operations

Attributes

There are no attributes accessible to user code.

Nested Classes

There are no nested classes intended for use in user code.

close Disable further output.

commit Ensure any buffering is flushed.

cr Begin a new line.

crtab Begin a new line with a number of tab characters.

log Write data and begin a new line.

open Enable output from writing operations.

show Write data.

space Write a space.

tab Write a tab character.
Log.Base 159

Log.Base.close

void Log.Base.close()

Return value

None.

Exceptions

None.

Parameters

None.

Remarks

Temporarily suspends output via this port.

Examples

log.close();
160 Chapter 7 - Java UML Services Library Class Reference

Log.Base.commit

void Log.Base.commit()

Return value

None.

Exceptions

None.

Parameters

None.

Remarks

Ensure all output is written.

Examples

log.commit();
Log.Base 161

Log.Base.cr

void Log.Base.cr()

Return value

None.

Exceptions

None.

Parameters

None.

Remarks

Begin a new line.

Examples

log.cr();
162 Chapter 7 - Java UML Services Library Class Reference

Log.Base.crtab

void Log.Base.crtab()

void Log.Base.crtab(int tabCount)

Return value

None.

Exceptions

None.

Parameters

Remarks

Begin a new line with the specified number of tab characters.

Examples

log.crtab(2);

tabCount The number of tab characters to write. The default is one.
Log.Base 163

Log.Base.log

void Log.Base.log(boolean value)

void Log.Base.log(byte value)

void Log.Base.log(char value)

void Log.Base.log(int value)

void Log.Base.log(long value)

void Log.Base.log(short value)

void Log.Base.log(java.lang.Object object)

Return value

None.

Exceptions

None.

Parameters

Remarks

Convert the argument to a human-readable string which is output. A new line is
begun

Examples

log.log("The time is ");

log.log(java.lang.System.currentTimeMillis());

value A value of a primitive data type.

object A java object reference.
164 Chapter 7 - Java UML Services Library Class Reference

Log.Base.open

void Log.Base.open()

Return value

None.

Exceptions

None.

Parameters

None.

Remarks

Resume writing.

Examples

log.open();
Log.Base 165

Log.Base.show

void Log.Base.show(boolean value)

void Log.Base. show(byte value)

void Log.Base. show(char value)

void Log.Base. show(int value)

void Log.Base. show(long value)

void Log.Base. show(short value)

void Log.Base. show(java.lang.Object object)

Return value

None.

Exceptions

None.

Parameters

Remarks

Convert the argument to a human-readable string which is output. Any following
output will appear on the same line.

Examples

log.show("Hello world!");

log.cr();

value A value of a primitive data type.

object A java object reference.
166 Chapter 7 - Java UML Services Library Class Reference

Log.Base.space

void Log.Base.space()

Return value

None.

Exceptions

None.

Parameters

None.

Remarks

Writes one space.

Examples

log.space();
Log.Base 167

Log.Base.tab

void Log.Base.tab()

Return value

None.

Exceptions

None.

Parameters

None.

Remarks

Writes a tab character.

Examples

log.tab();
168 Chapter 7 - Java UML Services Library Class Reference

Priority

The Priority class is used to specify priority values for the messaging system. This
class consists of five class scoped Final values.

Operations

There are no operations defined by this class.

Attributes

Nested Classes

There are no nested classes.

Panic The highest priority available to user code.

High

General The default priority.

Low

Background The lowest priority available to user code.
Priority 169

ProtocolRole

For each protocol class in your model, two subclasses of the ProtocolRole class are
generated (one for each direction of the protocol or protocol roles). Each port defined
on a capsule becomes an attribute of the generated Java capsule class. The port
attribute has the same name as the port and its type is either the base or conjugate
role.

Operations

bindingNotification Use this operation to request notification of the creation and
destruction of bindings to instances of this port.

bindingNotificationRequested Use this operation to query whether binding notification has
been requested for this port.

cardinality Obtains the cardinality of this port.

deregister Deregisters an unwired end port.

deregisterSAP Deregisters an unpublished unwired end port.

deregisterSPP Deregisters a published unwired end port.

getRegisteredName Get the name that an unwired end port has registered with the
layer service.

isBoundAt Query whether the given replication index is connected.

isRegistered Query whether the unwired end port is registered with the
layer service.

purge Empties the queue of deferred messages that are associated
with this port.

purgeAt Empties the queue of deferred messages that are associated
with this port and the specified replication index.

recall Recall a deferred message associated with this port.

recallAll Recall all deferred messages associated with this port.

recallAllAt Recall all deferred messages associated with this port and the
specified replication index.

recallAt Recall a deferred message associated with this port and the
specified replication index.

registerSAP Registers an unpublished unwired end port with the service
layer.
170 Chapter 7 - Java UML Services Library Class Reference

Attributes

There are no attributes accessible to user code.

Nested Classes

registerSPP Registers a published unwired end port with the service layer.

resize Adjust the cardinality of this port.

InSignal Returned by 'in' signals of protocol roles.

OutSignal Returned by 'out' signals of protocol roles.

SymmetricSignal Returned by 'symmetric' signals of protocol roles.
ProtocolRole 171

ProtocolRole.bindingNotification

void ProtocolRole.bindingNotification(boolean enable)

Return value

None

Exceptions

None.

Parameters

Remarks

Use this operation to request notification of the creation and destruction of bindings
to this port. The signals sent to the port by the Services Library are rtBound and
rtUnbound.

This operation will have no effect on binding notification messages which have
already been queued nor will it cause any messages to be sent for instances which are
already bound.

Examples

port.bindingNotification(true);

enable Specifies whether binding notification messages are desired.
172 Chapter 7 - Java UML Services Library Class Reference

ProtocolRole.bindingNotificationRequested

boolean ProtocolRole.bindingNotificationRequested()

Return value

Answers whether binding notifications messages will be sent to this port.

Exceptions

None.

Parameters

None.

Remarks

The initial state is defined by the 'Notification' property of the port. It can be modified
at run-time.

Examples

The action associated with rtBound and rtUnbound signals can be made to ignore
those events after disabling the feature as shown below.

if(rtport.bindingNotificationRequested())

{

// handle the expected notification message

}

ProtocolRole 173

ProtocolRole.cardinality

int ProtocolRole.cardinality()

Return value

Queries the cardinality of the port.

Exceptions

None.

Parameters

None.

Remarks

The initial cardinality is defined in the model and may be adjusted at run-time with
the resize operation.

Examples

A server might prepare to handle more clients by increasing the cardinality of an
unwired published port as shown below.

port.resize(port.cardinality() + 10);
174 Chapter 7 - Java UML Services Library Class Reference

ProtocolRole.deregister

void ProtocolRole.deregister()

Return value

None.

Exceptions

Parameters

None.

Remarks

This operation calls deregisterSAP or deregisterSPP as appropriate.

Examples

A capsule need not remember whether an unwire port registration published or
unpublished.

port.deregister();

UnsupportedOperationException This operation is only supported for unwired ports.
ProtocolRole 175

ProtocolRole.deregisterSAP

void ProtocolRole.deregisterSAP()

Return value

None.

Exceptions

Parameters

None.

Remarks

This operation removes any registration as an unpublished unwired port. If the port
was not registered via registerSAP, this operation has no effect.

Examples

port.deregisterSAP();

UnsupportedOperationException This operation is only supported for unwired ports.
176 Chapter 7 - Java UML Services Library Class Reference

ProtocolRole.deregisterSPP

void ProtocolRole.deregisterSPP()

Return value

None.

Exceptions

Parameters

None.

Remarks

This operation removes any registration as a published unwired port. If the port was
not registered via registerSPP, this operation has no effect.

Examples

port.deregisterSPP();

UnsupportedOperationException This operation is only supported for unwired ports.
ProtocolRole 177

ProtocolRole.getRegisteredName

java.lang.String ProtocolRole.getRegisteredName()

Return value

Returns the name that an unwired port has registered with the layer service or null if
the port is unregistered.

Exceptions

Parameters

None.

Remarks

The value returned is equal to the name supplied to registerSAP or registerSPP but
will not necessarily be the same object.

Examples

if(! port.getRegisteredName().equals(desirecService))

{

port.registerSAP(desiredService);

}

UnsupportedOperationException This operation is only supported for unwired ports.
178 Chapter 7 - Java UML Services Library Class Reference

ProtocolRole.isBoundAt

boolean ProtocolRole.isBoundAt(int index)

Return value

Returns true if the specified replication of this port is connected to another port and
false otherwise.

Exceptions

None.

Parameters

Remarks

Bindings can be asynchronous created and destroyed by actions of capsules on other
threads. Care must be taken when using this operation not to introduce race
conditions into the application.

Examples

The code below is fragile: the port may become unbound between the call to
isBoundAt and the call to sendAt. It is preferable to catch the PortUnBoundException
of the sendAt operation.

if(port.isBoundAt(index))

port.serviceRequest(data).sendAt(index);

index Specifies the replication index of the port.
ProtocolRole 179

ProtocolRole.isRegistered

boolean ProtocolRole.isRegistered()

Return value

Returns true if the port has been registered and false otherwise.

Exceptions

Parameters

None.

Remarks

This operation merely queries whether the registerSAP or registerSPP operations
have been used without being followed by the corresponding deregisterSAP or
deregisterSPP. It conveys no information about whether other port roles are registered
with the same or matching name.

Examples

if(port.isRegistered())

port.deregister();

UnsupportedOperationException This operation is only supported for unwired ports.
180 Chapter 7 - Java UML Services Library Class Reference

ProtocolRole.purge

int ProtocolRole.purge()

Return value

Returns the number of messages removed from the defer queue.

Exceptions

None.

Parameters

None.

Remarks

This operation selects messages for removal without regard for the signal or the
replication index of the port with which they are associated.

Examples

port.purge();
ProtocolRole 181

ProtocolRole.purgeAt

int ProtocolRole.purgeAt(int index)

Return value

Returns the number of messages removed from the defer queue.

Exceptions

None.

Parameters

Remarks

This operation selects messages for removal without regard for the signal but only if
they are associated with the specified replication index of the port.

Examples

rtport.purgeAt(rtGetMsgPortIndex());

index Specifies the replication index of the related port.
182 Chapter 7 - Java UML Services Library Class Reference

ProtocolRole.recall

boolean ProtocolRole.recall()

boolean ProtocolRole.recall(boolean front)

Return value

Returns true if a matching message was recalled, false otherwise.

Exceptions

None.

Parameters

Remarks

This operation recalls the first deferred message without regard to its signal type or
port replication index.

The first form is equivalent to calling the second with the argument 'false'.

Examples

port.recall(true);

front Specifies whether recalled messages should be queued ahead
of (true) or behind (false) other queued messages.
ProtocolRole 183

ProtocolRole.recallAll

int ProtocolRole.recallAll()

int ProtocolRole.recallAll(boolean front)

Return value

Returns the number of messages taken from the defer queue and requeued for
delivery.

Exceptions

None.

Parameters

Remarks

This operation recalls all deferred messages without regard to their signal type or port
replication index.

The first form is equivalent to calling the second with the argument 'false'.

Examples

port.recallAll(true);

front Specifies whether recalled messages should be queued ahead
of (true) or behind (false) other queued messages.
184 Chapter 7 - Java UML Services Library Class Reference

ProtocolRole.recallAllAt

int ProtocolRole.recallAllAt(int index)

int ProtocolRole.recallAllAt(int index, boolean front)

Return value

Returns the number of messages taken from the defer queue and requeued for
delivery.

Exceptions

None.

Parameters

Remarks

This operation recalls all deferred messages of any signal type at the specified port
replication index.

The first form is equivalent to calling the latter with the 'false' as the second argument.

Examples

port.serviceRequest().recallAllAt(0, true);

index Specifies the replication index of the related port.

front Specifies whether recalled messages should be queued ahead
of (true) or behind (false) other queued messages.
ProtocolRole 185

ProtocolRole.recallAt

boolean ProtocolRole.recallAt(int index)

boolean ProtocolRole.recallAt(int index, boolean front)

Return value

Returns true if a matching message was recalled, false otherwise.

Exceptions

None.

Parameters

Remarks

This operation recalls the first deferred message of any signal type at the specified
port replication index.

The first form is equivalent to calling the latter with the 'false' as the second argument.

Examples

port.serviceRequest().recallAt(0, true);

index Specifies the replication index of the related port.

front Specifies whether recalled messages should be queued ahead
of (true) or behind (false) other queued messages.
186 Chapter 7 - Java UML Services Library Class Reference

ProtocolRole.registerSAP

void ProtocolRole.registerSAP(java.lang.String name)

Return value

None.

Exceptions

Parameters

Remarks

This operation is used to request bindings to one or more other ports which have
announced or will announce their availability with the registerSPP operation. The
number of bindings requested is equal to the cardinality of this port.

If the port was already registered for a different service name, this operation implicitly
calls deregister first.

Examples

service.registerSAP("service");

UnsupportedOperationException This operation is only supported for unwired ports.

name Specifies the service name.
ProtocolRole 187

ProtocolRole.registerSPP

void ProtocolRole.registerSPP

Return value

None.

Exceptions

Parameters

Remarks

This operation is used to provide a place to terminate bindings one or more other
ports which have announced or will announce their availability with the registerSAP
operation. The number of bindings provided is equal to the cardinality of this port.

If the port was already registered for a different service name, this operation implicitly
calls deregister first.

Examples

service.registerSPP("service");

UnsupportedOperationException This operation is only supported for unwired ports.

name Specifies the service name.
188 Chapter 7 - Java UML Services Library Class Reference

ProtocolRole.resize

void ProtocolRole.resize(int newCardinality)

Return value

None.

Exceptions

Parameters

Remarks

This operation is used to adjust the cardinality of an unwired port. The new
cardinality may be larger or smaller than the old cardinality.

If the cardinality is reduced while the port is registered, bindings at replication indices
equal to or larger than the new cardinality are severed and no rtUnbound signal will
be received on this port even if notification is enabled. If the cardinality is increased
while the port is registered, new bindings become possible—perhaps immediately.

Examples

A server might prepare to handle more clients by increasing the cardinality of an
unwired published port as shown below.

port.resize(port.cardinality() + 10);

UnsupportedOperationException This operation is only supported for unwired
ports.

java.lang.IllegalArgumentException The specified cardinality must be non-negative.

newCardinality Specifies the desired cardinality.
ProtocolRole 189

ProtocolRole.InSignal

Instances of this class are created by operations generated for incoming signals of
protocol roles.

Operations

purge Delete all of these deferred signals associated with the related
port.

purgeAt Delete all of these deferred signals associated with the related
port and the specified replication index.

recall Recall one of these deferred signals associated with the related
port.

recallAll Recall all of these deferred signals associated with the related
port.

recallAllAt Recall all of these deferred signals associated with the related
port and the specified replication index.

recallAt Recall one of these deferred signals associated with the related
port and the specified replication index.
190 Chapter 7 - Java UML Services Library Class Reference

ProtocolRole.InSignal.purge

int ProtocolRole.InSignal.purge()

Return value

Returns the number of messages removed from the defer queue.

Exceptions

None.

Parameters

None.

Remarks

This operation selects messages for removal without regard for the replication index
of the port with which they are associated.

Examples

port.rtBound().purge();
ProtocolRole.InSignal 191

ProtocolRole.InSignal.purgeAt

int ProtocolRole.InSignal.purgeAt(int index)

Return value

Returns the number of messages removed from the defer queue.

Exceptions

None.

Parameters

Remarks

This operation selects for removal only those messages associated with the specified
replication index of the port.

Examples

port.rtBound().purgeAt(0);

index Specifies the replication index of the related port.
192 Chapter 7 - Java UML Services Library Class Reference

ProtocolRole.InSignal.recall

boolean ProtocolRole.InSignal.recall()

boolean ProtocolRole.InSignal.recall(boolean front)

Return value

Returns true if a matching message was recalled, false otherwise.

Exceptions

None.

Parameters

Remarks

This operation recalls the first deferred message of this signal type at any port
replication index. To recall the first message of any signal type, use the
ProtocolRole.recall operation.

The first form is equivalent to calling the second with the argument 'false'.

Examples

port.serviceRequest().recall(true);

front Specifies whether recalled messages should be queued ahead
of (true) or behind (false) other queued messages.
ProtocolRole.InSignal 193

ProtocolRole.InSignal.recallAll

int ProtocolRole.InSignal.recallAll()

int ProtocolRole.InSignal.recallAll(boolean front)

Return value

Returns the number of messages taken from the defer queue and requeued for
delivery.

Exceptions

None.

Parameters

Remarks

This operation recalls all deferred messages of this signal type at any port replication
index. To recall all messages of any signal type, use the ProtocolRole.recallAll
operation.

The first form is equivalent to calling the second with the argument 'false'.

Examples

port.serviceRequest().recallAll();

front Specifies whether recalled messages should be queued ahead
of (true) or behind (false) other queued messages.
194 Chapter 7 - Java UML Services Library Class Reference

ProtocolRole.InSignal.recallAllAt

int ProtocolRole.InSignal.recallAllAt(int index)

int ProtocolRole.InSignal.recallAllAt(int index, boolean front)

Return value

Returns the number of messages taken from the defer queue and requeued for
delivery.

Exceptions

None.

Parameters

Remarks

This operation recalls all deferred messages of this signal type at the specified port
replication index. To recall all messages of any signal type, use the
ProtocolRole.recallAllAt operation.

The first form is equivalent to calling the latter with the 'false' as the second argument.

Examples

port.serviceRequest().recallAllAt(0, true);

index Specifies the replication index of the related port.

front Specifies whether recalled messages should be queued ahead
of (true) or behind (false) other queued messages.
ProtocolRole.InSignal 195

ProtocolRole.InSignal.recallAt

boolean ProtocolRole.InSignal.recallAt(int index)

boolean ProtocolRole.InSignal.recallAt(int index, boolean front)

Return value

Returns true if a matching message was recalled, false otherwise.

Exceptions

None.

Parameters

Remarks

This operation recalls the first deferred message of this signal type at the specified
port replication index. To recall the first message of any signal type, use the
ProtocolRole.recallAt operation.

The first form is equivalent to calling the latter with the 'false' as the second argument.

Examples

port.serviceRequest().recallAt(0, true);

index Specifies the replication index of the related port.

front Specifies whether recalled messages should be queued ahead
of (true) or behind (false) other queued messages.
196 Chapter 7 - Java UML Services Library Class Reference

ProtocolRole.OutSignal

Instances of this class are created by operations generated for outgoing signals of
protocol roles.

Operations

invoke Synchronous message broadcast via all port instances.

invokeAt Synchronous message send via a specific port instance.

reply Used to reply to a synchronous or asynchronous message.

send Asynchronous message broadcast via all port instances.

sendAt Asynchronous message send via a specific port instance.
ProtocolRole.OutSignal 197

ProtocolRole.OutSignal.invoke

Capsule.Message[] ProtocolRole.OutSignal.invoke()

Return value

An array of reply messages. The length of the array will correspond to the cardinality
of the associated port. Elements of the array will be null if the message could not be
delivered or no reply was provided by the receiver.

Exceptions

Parameters

None.

Remarks

The communications services also support synchronous messaging (similar to
rendezvous). During a synchronous send, or invoke, the sender is blocked until the
receiver has processed the message and sent back a reply. Run-to-completion
semantics are enforced, such that a synchronous invoke has similar semantics to a
procedure call.

CrossThreadInvokeException Synchronous messages are not supported across thread
boundaries.

IllegalSignalException This is not an out signal of the related protocol role.
198 Chapter 7 - Java UML Services Library Class Reference

Examples

Capsule.Message[] replies = port.ack().invoke();

for(int index = 0; index < replies.length; ++index)

{

if(replies[index] == null)

{

// no reply

}

else

{

// handle reply

}

}

The receiver of the invoke must use ProtocolRole.OutSignal.reply to respond.

rtport.nack().reply();
ProtocolRole.OutSignal 199

ProtocolRole.OutSignal.invokeAt

Capsule.Message ProtocolRole.OutSignal.invokeAt(int index)

Return value

The reply message or null if none was provided by the receiver.

Exceptions

Parameters

Remarks

The communications services also support synchronous messaging (similar to
rendezvous). During a synchronous send, or invoke, the sender is blocked until the
receiver has processed the message and sent back a reply. Run-to-completion
semantics are enforced, such that a synchronous invoke has similar semantics to a
procedure call.

CrossThreadInvokeException Synchronous messages are not supported
across thread boundaries.

IllegalSignalException This is not an out signal of the related protocol
role.

PortUnboundException The is no binding at the specified port
replication index.

java.lang.IndexOutOfBoundsException The index is negative or not less than the
cardinality of the port.

index The port replication index.
200 Chapter 7 - Java UML Services Library Class Reference

Examples

Capsule.Message reply = port.ack().invokeAt(index);

if(reply == null)

{

// no reply

}

else

{

// handle reply

}

The receiver of the invoke must use ProtocolRole.OutSignal.reply to respond.

rtport.nack().reply();
ProtocolRole.OutSignal 201

ProtocolRole.OutSignal.reply

void ProtocolRole.OutSignal.reply()

Return value

None.

Exceptions

Parameters

None.

Remarks

The receiver of the invoke must use this operation to response.

Examples

rtport.nack().reply();

IllegalPortReplyException The reply must be formed using the same port on which the
message arrived.

IllegalSignalException This is not an out signal of the related protocol role.

PortUnboundException There is no binding at the implied port replication index.
202 Chapter 7 - Java UML Services Library Class Reference

ProtocolRole.OutSignal.send

int ProtocolRole.OutSignal.send()

int ProtocolRole.OutSignal.send(Priority priority)

Return value

Returns the number of messages successfully queued.

Exceptions

Parameters

Remarks

Since a port can be replicated, this operation effectively broadcasts via all instances of
the port. If you want to send only via one instance of a replicated port, use the sendAt
operation.

The first form is equivalent to calling the second with the argument Priority.General.

Examples

port.nack().send();

port.nack().send(Priority.General);

IllegalSignalException This is not an out signal of the related protocol role.

priority Specifies the priority at which the messages should be sent.
ProtocolRole.OutSignal 203

ProtocolRole.OutSignal.sendAt

void ProtocolRole.OutSignal.sendAt(int index)

void ProtocolRole.OutSignal.sendAt(int index, Priority priority)

Return value

None.

Exceptions

Parameters

Remarks

This operation attempts to send a single message via the specified instance of the port.

Examples

port.nack().sendAt(1);

port.nack().sendAt(1, Priority.General);

IllegalSignalException This is not an out signal of the related protocol
role.

PortUnboundException There is no binding at the specified port
replication index.

java.lang.IndexOutOfBoundsException The index is negative or not less than the
cardinality of the port.

index The port replication index.

priority Specifies the priority at which the messages
should be sent.
204 Chapter 7 - Java UML Services Library Class Reference

ProtocolRole.SymmetricSignal

Instances of this class are created by operations generated for symmetric signals of
protocol roles. Symmetric signals are those that have no data in the outgoing direction
and are present with or without associated data in the incoming direction.

All operations from InSignal and OutSignal are available.
ProtocolRole.SymmetricSignal 205

Timing.Base

The timing services provide users with general-purpose timing facilities based on
both absolute and relative time. To access the timing services, you reference, by name,
a timing port that has been defined on that capsule (that is, by creating a port with the
pre-defined Timing protocol). Service requests are made by operation calls to this port
while replies from the service are sent as messages that arrive through the same port.
If a timeout occurs, the capsule instance that requested the timeout receives a message
with the pre-defined message signal ’timeout’. A transition with a trigger event for
the timeout signal must be defined in the behavior in order to receive the timeout
message.

Operations

Attributes

Nested Classes

There are no nested classes intended for use in user code.

cancelTimer Used to cancel an outstanding timer.

informAt Requests a timeout at a particular absolute time.

informEvery Requests periodic timeouts.

informIn Requests a timeout at a relative point in time.

timeout Used to refer to incoming timeout events.

timeouts Queries how many timeouts an event represents.

rti_timeout The code used to identify the timeout signal in this protocol
role.
206 Chapter 7 - Java UML Services Library Class Reference

Timing.Base.cancelTimer

boolean Timing.Base.cancelTimer(Timing.Request request)

Return value

Returns true if the request was valid and has been successfully cancelled, or false
otherwise.

Exceptions

None.

Parameters

Remarks

This operation guarantees that no timeout message relating to the given request will
be received from the cancelled timer, even if it had already expired and the message
queued.

Examples

A capsule can request a timeout once a second with the code below.

request = timer.informEvery(1000L);

It can be cancelled sometime later with this code.

timer.cancelTimer(request);

request The timeout request to be cancelled.
Timing.Base 207

Timing.Base.informAt

Timing.Request Timing.Base.informAt(long absoluteTimeMillis)

Timing.Request Timing.Base.informAt(long absoluteTimeMillis,
java.lang.Object data)

Timing.Request Timing.Base.informAt(long absoluteTimeMillis,
java.lang.Object data, Priority priority)

Return value

An object that represents this request is returned or null in the case of a failure.

Exceptions

None.

Parameters

Remarks

The time is expressed in milliseconds with the same time base underlying the function
java.lang.System.currentTimeMillis.

Examples

These two statements have roughly the same effect.

timer.informAt(1000L + System.currentTimeMillis());

timer.informIn(1000L);

absoluteTimeMillis The absolute time when the timeout should occur.

data The data to be associated with the timeout message. The
default is null.

priority The priority of the timeout message. The default is
Priority.General.
208 Chapter 7 - Java UML Services Library Class Reference

Timing.Base.informEvery

Timing.Request Timing.Base.informEvery(long intervalTimeMillis)

Timing.Request Timing.Base. informEvery(long intervalTimeMillis,
java.lang.Object data)

Timing.Request Timing.Base. informEvery(long intervalTimeMillis,
java.lang.Object data, Priority priority)

Return value

An object that represents this request is returned or null in the case of a failure.

Exceptions

Parameters

Remarks

The interval between timeouts is expressed in milliseconds. Successor timeout events
are not queued until handling of the current timeout begins. The timeouts operation
can be used to discover whether other events would have occurred had the resources
been available to handle them.

Examples

The code below requests a timeout event every second.

timer.informEvery(1000L);

java.lang.IllegalArgumentException The specified interval must be positive.

intervalTimeMillis The requested interval to the first and between
successive timeout events.

data The data to be associated with the timeout
messages. The default is null.

priority The priority of the timeout messages. The default
is Priority.General.
Timing.Base 209

Timing.Base.informIn

Timing.Request Timing.Base.informIn(long relativeTimeMillis)

Timing.Request Timing.Base. informIn(long relativeTimeMillis, java.lang.Object
data)

Timing.Request Timing.Base. informIn(long relativeTimeMillis, java.lang.Object
data, Priority priority)

Return value

An object that represents this request is returned or null in the case of a failure.

Exceptions

None.

Parameters

Remarks

The interval is expressed in milliseconds. If the interval is zero or negative, the event
will essentially be queued immediately.

Examples

timer.informIn(100L);

timer.informIn(100L, new String(“Your timeout”));

relativeTimeMillis The requested time interval to the timeout.

data The data to be associated with the timeout message. The
default is null.

priority The priority of the timeout message. The default is
Priority.General.
210 Chapter 7 - Java UML Services Library Class Reference

Timing.Base.timeout

ProtocolRole.InSignal Timing.Base.timeout()

Return value

Returns a ProtocolRole.InSignal object for access to the defer queue management
operations.

Exceptions

None.

Parameters

None.

Remarks

If a timeout message is deferred, this operation is used to gain access to the defer
queue management operations to purge or recall that message.

Examples

timer.timeout().recall();
Timing.Base 211

Timing.Base.timeouts

int Timing.Base.timeouts(Timing.Request request)

Return value

Returns the number of timeout events represented by the current timeout message.

Exceptions

None.

Parameters

Remarks

If the informEvery is used with a small interval or if CPU resources are unavailable,
timeout events may be delayed to a time beyond what was requested. This operation
returns a value that includes those missed events. When no timeout events have been
missed, this operation returns the value one.

This operation always returns -1 when used with timeout requests created via
informAt or informIn or with requests that have been cancelled.

Examples

A capsule might request timeout events every millisecond (at a lower priority) and
adjust a representation of the time using the code below.

advanceTimeDisplay(timer.timeouts(request));

request The timeout request to be queried.
212 Chapter 7 - Java UML Services Library Class Reference

Timing.Request

Instances of this class are returned by the operations Timing.Base.informAt(),
informEvery() and informIn(). They can only be used as the argument to the
cancelTimer() and timeouts() operations of Timing.Base.

Operations

There are no operations accessible to user code.

Attributes

There are no attributes accessible to user code.

Nested Classes

There are no nested classes accessible to user code.
Timing.Request 213

Exceptions

The table below lists the exceptions defined by the Java Services Library and identifies
the primary usage.

AlreadyDeferredException Deferring a message more than once.

BadIndexException The index specified in a call to incarnate or plugIn is out
of bounds or is already in use.

CrossThreadInvokeException A synchronous message send crossed a thread
boundary.

DeferralException The common base class of all deferral exceptions.

DeferredInitializationException Deferring an initialization message.

DeferredInvokeException Deferring an invoked message.

FullException An incarnate or plugIn operation applied to a full
capsule role.

IllegalBindingException An incarnate or plugIn operation would create a
binding between incompatible protocol roles.

IllegalForwardException Forwarding a message via a port which does not have
the required out signal type.

IllegalPortReplyException Replying via a port other than the one on which it
arrived.

IllegalSignalException Sending a signal via a port which does not have the
required out signal type.

IncompatibleClassException An incarnate or plugIn operation involves a class which
is incompatible with the class used to define the capsule
role.

PortUnboundException Sending via a port which is unbound.

RecursiveInvokeException A cycle of synchronous message sends.

UnexpectedException The services library encountered an exception
unexpectedly.

UnrecoverableError The services library encountered an exception from
which it cannot recover.

UnsupportedOperationException Using an unwired operation intended on a wired port.
214 Chapter 7 - Java UML Services Library Class Reference

Index
Symbols
39, 43

/ 96
" 117
$$$ 118
$$@ 118
$(COMPILE_TARGET) 116
$(VARIABLE) 118
${dq} 117
${VARIABLE} 118
$compName 117
$defaultMake 117
$defaultMake RTcleanall 114
$dq 117
$modelDir 117
$modelName 117
$qualifiedName 117
$VARIABLE 118
*.class files 72
*.cmk files 72
*.ctg files 72
*.gmk files 72
*.gtg files 72
*.java files 72
? help commands 98

A
absolute time

definition 91
timing services 90, 206

Abstract 54, 58
accuracy of timing services 91
across thread boundaries

invokes 86
Aggregation 57, 58
all

logged events 103
any to capsule 57

Application 122
Application class

operations 122
application registration

SAPs 90
SPPs 90

Application.getArgCount 123
Application.getArgString 124
Application.logicalControllerDeregister 125
Application.logicalControllerFind 126
Application.logicalControllerRegister 127
Application.main 128
Application.run 129
association classes

capsule to protocol 57
association end

description 109
association ends

definition 57
InitializationCode 109
InitialValue 109
Java 109
JavaFinal 109
JavaTransient 109
JavaVolatile 109
NameQualification 109

AssociationEnd, RTJava 58
associations

definition 57
asynchronous communication 86

restrictions 86
asynchronous messages 81
attach command 96
Attach Console 43
attach taskName

examples 98
thread commands 97

Attach to target on startup 39
attribute

description 108
Index 215

Attribute, RTJava 56
attributes

definition 56
InitializationCode 108
Java 108
Java UML Services Library 121
JavaTransient 108
JavaVolatile 108
Priority class 169
settings 56
Timing.Base class 206

automatic registration
SAPs 90
SPPs 90

B
background

message priorities 88
backslashes

using with code generator 119
Base 64
BootstrapCommand 71, 113

RTJava Project 113
boundaries

model 93
Build Errors window 76
BUILD_TARGET 117
building

overview 68
RTJava Project components 70
third-party tools 69

BuildJar 112
BuildJarFlag 112
builds

generating incremental 74, 75
guidelines 72

C
cancel timer 103
Capsule 92, 130

Capsule class
nested classes 130
operations 130

capsule instances
as plug-in capsule roles 93

capsule roles
cardinality 92, 93
categories 92
compatibility 92
description 64
destruction 92
fixed 94
frame services 92
instantiation 92
multiple containment 93
optional 92, 94
plug-in 92, 94
plug-ins 93
replication 94

capsule to capsule 57
Capsule.Message 141
Capsule.Message class

operations 141
Capsule.Message.forward 142
Capsule.Message.getData 143
Capsule.Message.getSignal 144
capsulePath 96
CapsuleRole 63, 92, 145

implementation classes 92
CapsuleRole class

nested classes 145
Capsule.rtDeferMessage 131
Capsule.rtDestroy 132
Capsule.rtForwardMessage 133
Capsule.rtGetController 134
Capsule.rtGetMsgData 135
Capsule.rtGetMsgPort 136
Capsule.rtGetMsgPortIndex 137
Capsule.rtGetMsgPriority 138
Capsule.rtGetMsgSignal 139
Capsule.rtWasInvoked 140
216 Index

capsules
definition 63
implementation classes 92
processing 82
threads 83
transitions 82

cardinality
capsule roles 92, 93

chain 65
chain functions 65
chain methods 66
Changeability 56
Choice Point, RTJava 65, 66
choice points 65
circular invokes 86
Class 56, 57, 58, 107
-class 73
class

description 107
class dependency 56
class modifiers 54
class references

Java UML Services Library 121
class type 107
Class, RTJava 54
class_name 73
classes

Application 122
Capsule 130
Capsule.Message 141
CapsuleRole 145
ClassFileHeader 108
Controller 146
file layout 54
Frame.Base 150
InstanceInitializerFooter 108
InstanceInitializerHeader 108
Java 107
JavaFinal 107
JavaStatic 107
JavaStrictfp 108
Log.Base 159
Priority 169

ProtocolRole 170
ProtocolRole.InSignal 190
ProtocolRole.OutSignal 197
ProtocolRole.SymmetricSignal 205
StaticInitializerFooter 108
StaticInitializerHeader 108
Timing.Base 206
Timing.Request 213

ClassFileHeader 46, 54, 108
CLASSPATH 74
ClassPath 51, 70, 74, 78, 112, 118, 119
-classpath 39, 40, 74
-classpath argument 120
CLDC 69
CLEAN_CMD 114
CleanAllCommand 68, 113, 114

RTJava Project 113
cleaning

components 113
default activity for components 114

Clearcase_clearmake 113
Clearcase_omake 113
close commands 98, 105
CMK files 75
code generator options 115
code generators

behavior 73
CodeGen Make 68
CodeGenMakeInsert 115

RTJava Project 115
command line observer

control commands 105
informational commands 99
other commands 105
thread commands 98
tracing commands 103

commands
attach 96
control 98
detach 96
info 96, 99
informational 97
other 98
Index 217

printstats 96
step 98
system 96
threads 97
tracing 97

communication
logged events 103

communication services
definition 84
description 85

compatibility
of capsule roles 92
of ports 92

Compilation Make 68
CompilationMakeInsert 76
compile all script 75
COMPILE_TARGET 116
CompileCommand 113

RTJava Project 113
CompileMakeInsert 116

RTJava Project 116
compiler

errors 76
compiler wrapper script 75
compiling

incrementally 116
individual Java files 116

-component 73
Component Makefile 113
component specifications

backslashes 119
spaces 120

component types
RTJava External Project 111
RTJava Project 69, 111

Component View 117
element properties 107

Component View/java 28
Component View/rosert 28
Component, RTJava Project 53
ComponentMakeInsert 114

RTJava Project 114

components
cleaning 113
rebuilding 113
RTJava External Project 69
RTJava Project 69

Composite 57, 58
com.rational.rosert 43
com.rational.rosert.Application 43
com.rational.rosert.DebugApplication 43
Concurrency 59
Conjugate 64
contacting Rational customer support xix
continue

control commands 98
examples 105

control commands
continue 98
examples 105
exit 98
step n 98
stop 98
summary 98

Controller 146
Controller class

operations 146
Controller.abort 147
Controller.getApplication 148
Controller.run 149
CTG files 75

D
-d 74
-d argument 120
-debug 73
debugger

running models 96
DefaultConstructorIs 107
DefaultConstructorVisibility 54, 55
DefaultMakeType 113
deferring messages 90
218 Index

delivering
messages in order 86

deregister unwired ports 103
destroy 103
destruction

of optional capsule roles 92
detach command 96
detach taskName

examples 98
thread commands 97

double quotes
using in RTJava Project 117

E
encapsulation

in object-oriented design 93
Environment 49
environment variables 118
errors

build 76
compiler 76

events
definition 81
logging 103

everything 103
examples

attach taskName 98
continue 105
control commands 105
detach taskName 98
exit 105
info capsulePath 99
informational commands 99
log category 103
newtasks mode 99
other commands 105
printstats taskName 101
stats taskName 101
step n 105
stop 105
system capsulePath depth 101

tasks 99
thread commands 98
tracing commands 103, ??– 104
unwired 103

exceptions 103
logged events 103

exit
control commands 98
examples 105

external Java classes 22

F
file name conventions

Java 119
files

compilation makefile dependencies 75
Generation Makefile dependencies 74
generation target 74

final modifier 107, 109
fixed capsule roles 94
Frame 92

implementation classes 92
frame

logged events 103
frame services

capsule roles 92
definition 84
description 92

Frame.Base 150
Frame.Base class

operations 150
Frame.Base.cardinalityOf 151
Frame.Base.destroy 152
Frame.Base.incarnate 153
Frame.Base.incarnationAt 156
Frame.Base.plugIn 157
Frame.Base.unplug 158
framework

communication services 84
frame services 84
log services 84
timing services 84
Index 219

framework services
Java UML Services Library 84

Frozen 56

G
general

message priorities 88
generalization relationship 110
generalizations

Java 110
NameQualification 110

GenerateCommand 113
RTJava Project 113

generated makefile patterns 71
GenerateDataParameter 65
GenerateDefaultConstructor 54, 55, 107
GeneratePortParameter 66
generating

incremental builds 74, 75
Java source code 53
one java file at a time 115

generating attributes
settings 56

generating operations
settings 58

generic error stream 76
Generic Error Stream messages 75
GES messages 76
gmake 117
GMK files 74
Gnu_make 69, 113, 117
GTG files 74
Guarded 59
guidelines

for incremental builds 72

H
help

other commands 98
help commands 105

I
IBM Open Source Java project 69
Implementation 54, 56, 58
implementation classes

Capsule 92
CapsuleRole 92
Frame 92

import statement 109, 110
In Signal 60
In Signals 59
incarnate 103
Incremental compilation 116
individual Java file compilation 116
info capsulePath

examples 99
informational commands 97

info command 96
capsule instances details 99

informational commands
examples 99
info capsulePath 97
printstats taskName 97
stats taskName 97
summary 97
system capsulePath depth 97
unwired 97

InitializationCode 56, 58, 108, 109
InitialValue 58, 109
Insert 30
instance initializer 108
InstanceInitializerFooter 54, 108
InstanceInitializerHeader 54, 108
instantiation

of optional capsule roles 92
invokes

across thread boundaries 86
circular 86

Logical View/java/ 28

J
J2ME_CLDC_HOME 118
JAR files 69
220 Index

JarCommand 112
RTJava Project 112

-java 39
Java 2 SDK 1.3 69
Java Archive file 69
Java archiver 69
Java association ends 109
Java attributes 108
Java class 107
Java Class files 69
Java classes 107

using external 22
Java code

in UML models 22
using in models 22

Java compiler 70
behavior 74
invoking 74
specifying 74

Java file name conventions 119
Java generalizations 110
Java operations 109
Java packages 110
Java properties 107
Java source code

generating 53
Java UML Services Library 82

attributes 121
class references 121
communication services 85
deferring messages 90
frame services 92
framework services 84
implementing 28
operations 121
recalling messages 90
timing services 90

Java UML Services Library Framework 79
sample model 80

Java UML Services Library scheduler 87
Java Virtual Machine 39
javac 69, 75
JAVAC_WRAPPER 76
JavaCompiler 35, 74, 112, 118

RTJava Project 112

java.exe 39
JavaFinal 33, 54, 55, 58, 107, 109
java.lang.System.out 84
JavaNative 33, 59, 109
JavaPackage 53, 72, 110
JavaStatic 54, 107
JavaStrictfp 33, 54, 59, 108, 110
JavaThrows 33, 59, 110
JavaTransient 56, 58, 108, 109
JavaVolatile 56, 58, 108, 109
jdb 95
jikes 69

K
kvm 69

L
log category

examples 103
tracing commands 97

log services
definition 84
description 84
framework 84

Log.Base 84, 159
Log.Base class

operations 159
Log.Base.close 160
Log.Base.commit 161
Log.Base.cr 162
Log.Base.crtab 163
Log.Base.log 164
Log.Base.open 165
Log.Base.show 166
Log.Base.space 167
Log.Base.tab 168
logged events 103

all 103
communication 103
exceptions 103
frame 103
none 103
Index 221

observability 103
stdout 103
timer 103
unwired 103

Logical View
element properties 107

Logical View/com/rational/rosert 28
loops 82
low

message priorities 88

M
make 117
make macro variables 118
Makefile Generation 68, 74
makefiles 71
-makegen 73
MakeType 35, 113

RTJava Project 113
Message 85
message delivery 103
message handling

overhead 87
message loss 86
message priorities

background 88
general 88
high message priorities 88
low 88
panic 88

message priority
definition 87

message processing
using loops 82

messages
asynchronous 81
deferring 90
order-preserving 86
priority 87
priority levels 88
recalling 90

scheduling 87
serializing 90
synchronous 81

methods
user code segment 65
user code segments 65

midp 69
minimal overhead

in message handling 87
-model 73
model properties 25
models

boundaries 93
running using debugger 96
using Java code 22

MS_nmake 113, 117
multiple containment

capsule roles 93
definition 93

Multiplicity 57, 58
multiplicity

changing at runtime 89
multi-threads 83
myPostJarRule 117
myPostRule 116, 117
myPreRule 115, 116

N
NameQualification 58, 109, 110
namespace

for classes in packages 110
native modifier 109
nested classes 55

Capsule class 130
CapsuleRole class 145
ProtocolRole class 171

New Model Wizard startup screen 27
NewComponent1 117
newtasks mode

examples 99
thread commands 97

nmake 69, 117
222 Index

none
logged events 103

O
object-oriented design

encapsulation 93
observability

logged events 103
-obslisten= 43
one shot timer

expiration 91
operation

description 109
Operation, RTJava 58, 59
Operations

definition 58
operations

Application class 122
Capsule class 130
Capsule.Message class 141
Controller class 146
Frame.Base class 150
generating 58
Java 109
Java UML Services Library 121
JavaFinal 109
JavaNative 109
JavaStrictfp 110
JavaThrows 110
Log.Base class 159
ProtocolRole class 170
ProtocolRole InSignal class 190
ProtocolRole.OutSignal class 197
Timing.Base class 206

optional capsule roles 92, 94
Order Preservation 86
order-preserving

of messages 86
other commands

? 98
examples 105
help 98
summary 98

Out Signal 61
Out Signals 59
Output Window 38, 76
OutputClassDir 74, 112, 118

RTJava Project 112
OutputDirectory 23, 53, 71, 112, 113

RTJava Project 112
OutputJarFilepath 112, 120

RTJava Project 112
OutSignal.sendAt 85
overhead

in message handling 87

P
package

description 110
Package, RTJava 53
packages

Java 110
panic

message priorities 88
Parameters 39
Path Map 119
path map variables 118
periodic timer

expiration 91
platforms

remote target 25
plugIn 92, 103
plug-in capsule roles 92, 93, 94
Port Specification dialog box 90
portId 97
portNumber 95
ports

compatibility 92
description 64
unwired 88
unwired published 88
unwired unpublished 88
wired 88

post-compilation activities 117
post-generation activity

adding 116
Index 223

precision
of timing services 91

pre-compilation acitvities 116
pre-generation activity

adding 115
Primitives 85
printstats command 96
printstats taskName

examples 101
informational commands 97

priorities
of messages 87
system-level 88
user-level 88

Priority 169
Priority class

attributes 169
priority levels

of user-level messages 88
Priority.Background 88
Priority.General 88
Priority.High 88
Priority.Low 88
Priority.Panic 88
processing

capsules 82
properties

in models 25
protocol to any 57
ProtocolRole 85, 170
ProtocolRole class

nested classes 171
operations 170

ProtocolRole InSignal class
operations 190

ProtocolRole.bindingNotification 172
ProtocolRole.bindingNotificationRequested 173
ProtocolRole.cardinality 174
ProtocolRole.deregister 175
ProtocolRole.deregisterSAP 90, 176
ProtocolRole.deregisterSPP 177
ProtocolRole.getRegisteredName 178
ProtocolRole.InSignal 85, 190
ProtocolRole.InSignal.purge 191
ProtocolRole.InSignal.purgeAt 192

ProtocolRole.InSignal.recall 193
ProtocolRole.InSignal.recallAll 194
ProtocolRole.InSignal.recallAllAt 195
ProtocolRole.InSignal.recallAt 196
ProtocolRole.isBoundAt 179
ProtocolRole.isRegistered 180
ProtocolRole.OutSignal 85, 197
ProtocolRole.OutSignal class

operations 197
ProtocolRole.OutSignal.invoke 198
ProtocolRole.OutSignal.invokeAt 200
ProtocolRole.OutSignal.reply 202
ProtocolRole.OutSignal.send 203
ProtocolRole.OutSignal.sendAt 204
ProtocolRole.purge 181
ProtocolRole.purgeAt 182
ProtocolRole.recall 183
ProtocolRole.recallAll 184
ProtocolRole.recallAllAt 185
ProtocolRole.recallAt 186
ProtocolRole.registerSAP 90, 187
ProtocolRole.registerSPP 188
ProtocolRole.resize 89, 189
ProtocolRole.SymmetricSignal 85, 205
protocols

signals 59
public 55

R
Rational customer support

contacting xix
rebuilding

components 113
recalling

messages 90
References 50
register unwired ports 103
registration by name 89
registration strings 89

definition 89
registration_name 89
service_name 89
224 Index

registration_name
registration strings 89

relative time
definition 91
timing services 90, 206

remote target platforms 25
replication

capsule roles 94
replication factor 96
request-reply 87
Rose RealTime Java

overview 21
rtBehavior 65, 67
rtBehavior functions 65
rtBehavior methods 67
RTbuild/RTcompile.pl 75
RTcompile make tasks 114
rtdata parameter 65
rtDestroy 67
RTGEN_USER_FLAGS 115
RTgenerate make tasks 114
RTGENERATE_TARGET 115
rtGetMsg 85
rtGetMsgData 82
rtGetMsgPort 82
rtGetMsgPortIndex 82, 85
rtGetMsgPriority 82
rtGetMsgSignal 82
RTJava 31, 34, 49
RTJava Component Properties 111
RTJava External Project 34, 49, 69, 119

component types 111
RTJava Project 69, 112, 114, 117, 119

BootstrapCommand 113
building 68
BuildJarFlag 112
CleanAllCommand 113
CodeGenMakeInsert 115
CompileCommand 113
CompileMakeInsert 116
component types 111
ComponentMakeInsert 114
GenerateCommand 113
JarCommand 112
JavaCompiler 112

MakeType 113
OutputClassDir 112
OutputDirectory 112
OutputJarFilepath 112
using double quotes 117
variable expansion 117

RTJava Properties 33
.rtmdl

location 23
RTmyclean rule 114
rtport parameter 66
rtport.signal(data).reply() 86
rtUnexpectedMessage() 67
run function 82
run status change 103
Run Time System observer

overview 95
runtime

changing multiplicity 89
run-time data flow 77
run-time environments 77

S
sample expansion 118
SAPs

application registration 90
automatic registration 90

scheduling
messages 87

Scope 56, 58
scripts

compile all 75
compiler wrapper 75
generic error stream 76

serializing
messages 90

service_name 89
Set Properties 107, 112, 119
Shutdown 40
signals

protocols 59
single threads 83
Index 225

spaces
using with code generator 120

specialization relationship 110
SPPs

application registration 90
automatic registration 90

State Entry and Exit Actions 65
State Entry and Exit actions 65
state machine elements

transitions 65
state machines 65
static modifier 107
StaticInitializerFooter 54, 108
StaticInitializerHeader 54, 55, 108
stats 101
stats taskName

examples 101
informational commands 97

stdout 97, 103
logged events 103

step 0 98, 105
step command 98
step n

control commands 98
examples 105

stop
control commands 98
examples 105

stop logging 103
strictfp modifier 108, 110
string

registration 89
supercapsule instance 96
symmetric signals 62
synchronous communication 86

restrictions 86
synchronous messages 81, 87
system capsulePath depth

examples 101
informational commands 97

system command 96
system-level priorities 88

T
Target Scope 57
task attaching 103
task detaching 103
taskName 96
tasks

examples 99
thread commands 97

TestModel1 117
thread commands

attach taskName 97
detach taskName 97
examples 98
newtasks mode 97
summary 97
tasks 97

threads
definition 83
multi 83
single 83

time
absolute 91
relative 91

timeout 103
timer

logged events 103
timestamps

of targets 73
Timing 90
timing precision and accuracy 91
timing services

absolute and relative times 90, 206
definition 84
description 90
one shot timer 91
periodic timer 91
timing precision and accuracy 91

Timing.Base 206
Timing.Base class

attributes 206
operations 206

Timing.Base.cancelTimer 207
Timing.Base.informAt 208
Timing.Base.informEvery 209
226 Index

Timing.Base.informIn 210
Timing.Base.timeout 211
Timing.Base.timeouts 212
Timing.Request 90, 213
tracing commands 104

examples 103, ??– 104
log category 97
summary 97

transient modifier 108, 109
Transition, RTJava 66
transitions

for Actions and Guard code 65
of capsules 82

Type 49
type class 107

U
UML

adding Java code to models 22
Unified Modeling Language

See UML 22
Unix make -s (silent) flag 114
Unix_make 113, 117
unplug 92, 103
unwired

examples 103
informational commands 97
logged events 103

unwired ports 88
definition 88

unwired published ports 88
unwired unpublished ports 88
user code segment functions 65
user code segment methods 65
user-level messages 88
user-level priorities 88
uses relationship 56

V
variable expansion

for fields in RTJava Project 117

variables
environmental 118
make macro 118
path map 118

-verbose 75
-version 73
virtual functions 67
virtual machine 69
Visibility 54, 55, 56, 58
-vm 39
volatile modifier 108, 109

W
wired ports

definition 88
Index 227

	Java Reference
	Preface
	Audience
	Other Resources
	Rational Rose RealTime Integrations With Other Rational Products
	Contacting Rational Customer Support

	Overview
	Using this Guide
	Getting Started with Rational Rose RealTime Java
	Using Java Code in Models
	Code Generation
	Java UML Services Library
	Compilation
	Model Properties
	Target Observability

	Getting Started with Rational Rose RealTime Java
	Building Java Systems in Rational Rose RealTime
	Creating an Empty Model
	Creating a Simple Class
	Building Classes
	Running a Class Based Application
	Creating Capsules
	Running a Capsule Based Application
	Integrating External Classes

	Code Generation
	Model to Code Correspondence
	Logical View Packages
	Classes
	Dependencies
	Attributes
	Associations
	Operations
	Protocols
	In Signal
	Out Signal
	Symmetric Signals

	Capsules
	Capsule Roles
	Ports
	State Machine
	Special Overrideable Capsule Class Operations

	Build Overview
	Build Process Flow
	Required Third-Party Tools
	Components
	RTJava Project Component
	RTJava External Project Component

	Build Details
	Generated Makefile Patterns
	Makefile Generation
	Default Directory Layout
	Guidelines for Efficient Incremental Builds

	Code Generator Behavior
	Command-Line Arguments
	Efficient Incremental Builds During Code Generation

	Compiler Behavior
	Invoking the Compiler
	Class Path
	Compiler Wrapper Script
	Compile All Script
	Efficient Incremental Builds During Compilation

	Build Errors
	Converting Compiler Errors into Build Errors

	Run-Time Overview

	Java UML Services Library
	Java UML Services Library Framework
	Framework Sample Model

	Message Processing
	Events and Messages
	Capsule Processing
	Message Processing
	Threads
	Mapping Capsules to Threads

	Framework Services
	Log Services
	Implementation Classes
	Concepts

	Communication Services
	Implementation Classes
	Concepts
	Primitives
	Asynchronous and Synchronous Communication
	Order Preservation
	Message Loss
	Minimal Overhead in Message Handling
	Request-Reply
	Message Priority
	Wired and Unwired Ports
	Published and Unpublished Unwired Ports
	Registration by Name
	Registration String
	Automatic Registration and Application Registration
	Deferring and Recalling Messages

	Timing Services
	Implementation Classes
	Concepts
	Absolute and Relative Time
	One Shot Timer
	Periodic Timer
	Timing Precision and Accuracy

	Frame Services
	Implementation Classes
	Concepts
	Optional Capsule Roles
	Plug-In Capsule Roles
	Multiple Containment
	Using Multiple Containment

	Replicated Capsule Roles

	Command-Line Model Observer
	Starting the Run Time Command-Line Observer
	Run Time Command-Line Observer Summary
	taskName
	capsulePath
	portId

	Thread Commands
	attach <taskName>
	detach <taskName>
	newtasks <mode>
	tasks

	Informational Commands
	info <capsulePath>
	printstats <taskName>
	stats <taskName>
	system [<capsulePath> [<depth>]]
	unwired

	Tracing Commands
	log <category>

	Control Commands
	continue
	exit
	step [<n>]
	stop

	Other Commands
	close
	help
	?

	Model Properties Reference
	RTJava Specific Properties
	RTJava Properties
	Class
	JavaStatic
	JavaFinal
	JavaStrictfp
	ClassFileHeader
	StaticInitializerHeader
	StaticInitializerFooter
	InstanceInitializerHeader
	InstanceInitializerFooter

	Attribute
	JavaVolatile
	JavaTransient
	InitializationCode

	Association End
	JavaFinal
	JavaVolatile
	JavaTransient
	InitialValue
	InitializationCode
	NameQualification

	Operation
	JavaFinal
	JavaNative
	JavaStrictfp
	JavaThrows

	Generalization
	NameQualification

	Package
	JavaPackage

	Transition
	GenerateDataParameter
	GeneratePortParameter

	Choice Point
	GenerateDataParameter
	GeneratePortParameter

	RTJava Component Properties
	RTJava Project
	BuildJar Flag
	OutputJarFilepath
	JarCommand
	OutputClassDir
	JavaCompiler
	OutputDirectory
	BootstrapCommand
	GenerateCommand
	CompileCommand
	CleanAllCommand
	MakeType
	ComponentMakeInsert
	CodeGenMakeInsert
	CompileMakeInsert
	Variable Expansion for Fields
	Path Map Variables, Environment Variables and Make Macro Variables

	RTJava External Project
	ClassPath

	File Name Conventions
	Backslashes
	Spaces in Directory Names

	Java UML Services Library Class Reference
	Java UML Services Library Class Reference Overview
	Application
	Application.getArgCount
	Application.getArgString
	Application.logicalControllerDeregister
	Application.logicalControllerFind
	Application.logicalControllerRegister
	Application.main
	Application.run

	Capsule
	Capsule.rtDeferMessage
	Capsule.rtDestroy
	Capsule.rtForwardMessage
	Capsule.rtGetController
	Capsule.rtGetMsgData
	Capsule.rtGetMsgPort
	Capsule.rtGetMsgPortIndex
	Capsule.rtGetMsgPriority
	Capsule.rtGetMsgSignal
	Capsule.rtWasInvoked

	Capsule.Message
	Capsule.Message.forward
	Capsule.Message.getData
	Capsule.Message.getSignal

	CapsuleRole
	Controller
	Controller.abort
	Controller.getApplication
	Controller.run

	Frame.Base
	Frame.Base.cardinalityOf
	Frame.Base.destroy
	Frame.Base.incarnate
	Frame.Base.incarnationAt
	Frame.Base.plugIn
	Frame.Base.unplug

	Log.Base
	Log.Base.close
	Log.Base.commit
	Log.Base.cr
	Log.Base.crtab
	Log.Base.log
	Log.Base.open
	Log.Base.show
	Log.Base.space
	Log.Base.tab

	Priority
	ProtocolRole
	ProtocolRole.bindingNotification
	ProtocolRole.bindingNotificationRequested
	ProtocolRole.cardinality
	ProtocolRole.deregister
	ProtocolRole.deregisterSAP
	ProtocolRole.deregisterSPP
	ProtocolRole.getRegisteredName
	ProtocolRole.isBoundAt
	ProtocolRole.isRegistered
	ProtocolRole.purge
	ProtocolRole.purgeAt
	ProtocolRole.recall
	ProtocolRole.recallAll
	ProtocolRole.recallAllAt
	ProtocolRole.recallAt
	ProtocolRole.registerSAP
	ProtocolRole.registerSPP
	ProtocolRole.resize

	ProtocolRole.InSignal
	ProtocolRole.InSignal.purge
	ProtocolRole.InSignal.purgeAt
	ProtocolRole.InSignal.recall
	ProtocolRole.InSignal.recallAll
	ProtocolRole.InSignal.recallAllAt
	ProtocolRole.InSignal.recallAt

	ProtocolRole.OutSignal
	ProtocolRole.OutSignal.invoke
	ProtocolRole.OutSignal.invokeAt
	ProtocolRole.OutSignal.reply
	ProtocolRole.OutSignal.send
	ProtocolRole.OutSignal.sendAt

	ProtocolRole.SymmetricSignal
	Timing.Base
	Timing.Base.cancelTimer
	Timing.Base.informAt
	Timing.Base.informEvery
	Timing.Base.informIn
	Timing.Base.timeout
	Timing.Base.timeouts

	Timing.Request
	Exceptions

	Index

