
Rational Software Corporation
Model Examples

RATIONAL ROSE® REALTIME

VERSION: 2003.06.00

PART NUMBER: 800-026118-000
support@rational.com
http://www.rational.com

WINDOWS/UNIX

Legal Notices
©1993-2003, Rational Software Corporation. All rights reserved.
Part Number: 800-026118-000
Version Number: 2003.06.00

This manual (the "Work") is protected under the copyright laws of the United States
and/or other jurisdictions, as well as various international treaties. Any reproduction
or distribution of the Work is expressly prohibited without the prior written consent
of Rational Software Corporation.

Rational, Rational Software Corporation, the Rational logo, Rational Developer
Network, AnalystStudio, ClearCase, ClearCase Attache, ClearCase MultiSite,
ClearDDTS, ClearGuide, ClearQuest, ClearTrack, Connexis, e-Development
Accelerators, DDTS, Object Testing, Object-Oriented Recording, ObjecTime,
ObjecTime Design Logo, Objectory, PerformanceStudio, PureCoverage, PureDDTS,
PureLink, Purify, Quantify, Rational Apex, Rational CRC, Rational Process
Workbench, Rational Rose, Rational Suite, Rational Suite ContentStudio, Rational
Summit, Rational Visual Test, Rational Unified Process, RUP, RequisitePro,
ScriptAssure, SiteCheck, SiteLoad, SoDA, TestFactory, TestFoundation, TestStudio,
TestMate, VADS, and XDE, among others, are trademarks or registered trademarks of
Rational Software Corporation in the United States and/or in other countries. All
other names are used for identification purposes only, and are trademarks or
registered trademarks of their respective companies.

Portions covered by U.S. Patent Nos. 5,193,180 and 5,335,344 and 5,535,329 and
5,574,898 and 5,649,200 and 5,675,802 and 5,754,760 and 5,835,701 and 6,049,666 and
6,126,329 and 6,167,534 and 6,206,584. Additional U.S. Patents and International
Patents pending.

U.S. GOVERNMENT RIGHTS. All Rational software products provided to the U.S.
Government are provided and licensed as commercial software, subject to the
applicable license agreement. All such products provided to the U.S. Government
pursuant to solicitations issued prior to December 1, 1995 are provided with
“Restricted Rights” as provided for in FAR, 48 CFR 52.227-14 (JUNE 1987) or DFARS,
48 CFR 252.227-7013 (OCT 1988), as applicable.

WARRANTY DISCLAIMER. This document and its associated software may be used
as stated in the underlying license agreement. Except as explicitly stated otherwise in
such license agreement, and except to the extent prohibited or limited by law from
jurisdiction to jurisdiction, Rational Software Corporation expressly disclaims all
other warranties, express or implied, with respect to the media and software product
and its documentation, including without limitation, the warranties of
merchantability, non-infringement, title or fitness for a particular purpose or arising

from a course of dealing, usage or trade practice, and any warranty against
interference with Licensee’s quiet enjoyment of the product.

Third Party Notices, Code, Licenses, and Acknowledgements
Portions Copyright ©1992-1999, Summit Software Company. All rights reserved.

Microsoft, the Microsoft logo, Active Accessibility, Active Client, Active Desktop,
Active Directory, ActiveMovie, Active Platform, ActiveStore, ActiveSync, ActiveX,
Ask Maxwell, Authenticode, AutoSum, BackOffice, the BackOffice logo, bCentral,
BizTalk, Bookshelf, ClearType, CodeView, DataTips, Developer Studio, Direct3D,
DirectAnimation, DirectDraw, DirectInput, DirectX, DirectXJ, DoubleSpace,
DriveSpace, FrontPage, Funstone, Genuine Microsoft Products logo, IntelliEye, the
IntelliEye logo, IntelliMirror, IntelliSense, J/Direct, JScript, LineShare, Liquid Motion,
Mapbase, MapManager, MapPoint, MapVision, Microsoft Agent logo, the Microsoft
eMbedded Visual Tools logo, the Microsoft Internet Explorer logo, the Microsoft
Office Compatible logo, Microsoft Press, the Microsoft Press logo, Microsoft
QuickBasic, MS-DOS, MSDN, NetMeeting, NetShow, the Office logo, Outlook,
PhotoDraw, PivotChart, PivotTable, PowerPoint, QuickAssembler, QuickShelf,
RelayOne, Rushmore, SharePoint, SourceSafe, TipWizard, V-Chat, VideoFlash, Visual
Basic, the Visual Basic logo, Visual C++, Visual C#, Visual FoxPro, Visual InterDev,
Visual J++, Visual SourceSafe, Visual Studio, the Visual Studio logo, Vizact, WebBot,
WebPIP, Win32, Win32s, Win64, Windows, the Windows CE logo, the Windows logo,
Windows NT, the Windows Start logo, and XENIX, are either trademarks or registered
trademarks of Microsoft Corporation in the United States and/or in other countries.

Sun, Sun Microsystems, the Sun Logo, Ultra, AnswerBook 2, medialib, OpenBoot,
Solaris, Java, Java 3D, ShowMe TV, SunForum, SunVTS, SunFDDI, StarOffice, and
SunPCi, among others, are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

Licensee shall not incorporate any GLOBEtrotter software (FLEXlm libraries and
utilities) into any product or application the primary purpose of which is software
license management.

BasicScript is a registered trademark of Summit Software, Inc.

Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma,
Richard Helm, Ralph Johnson and John Vlissides. Copyright © 1995 by
Addison-Wesley Publishing Company, Inc. All rights reserved.

Additional legal notices are described in the legal_information.html file that is
included in your Rational software installation.

Contents
Preface . xi
Audience. xi

Other Resources . xi

Rational Rose RealTime Integrations With Other Rational Productsxii

Contacting Rational Customer Support . xiii

1 Examples Introduction .15
Overview. 15

Tips for Browsing Model Examples . 16

Referenced Configurations . 17

2 C++ Model Examples .19
Overview. 19

Callbacks . 20
Background Information . 21
Rational Rose RealTime Constraints . 22
Capsule Encapsulation. 22
Capsule Concurrency. 22
Common, Unprotected Data Access During a Send . 22
Recommended Design Approach . 25
Simple, Single Callback Approach . 26
Multiple Callback Approach . 27
Callbacks Returning Data. 28
Sample Model Outline . 28

CoffeeMachine . 29

DynamicForwarding . 29

DynamicStructurePatterns . 30

GameOfLife . 31

IntegratingData . 31

IsrExample . 32
Background Information . 33
The ISR Interfacing Strategy . 33
The Strategy . 34
ISR Interface Example Model. 36
Contents v

Example Model Description .37
Class Descriptions .38
Expanding on the Example .42

ObserverPattern. .43

SendReceiveData .43

SocketInterfaceExample .44
Why use IPC? .44
Build Versus Buy .44
Pre-requisites .45
Overview .45
Socket Example Description .45

Operational Concept of IOMonitor . 51
Overall Operational Profile of the Example. 52

waitForEvents .53

Notes on Message Passing in Rational Rose RealTime 55

TrafficLights .56

UserPrompt .56

External Port Service .57

3 C Model Examples . 61
Overview .61

CardGame .61

SendReceiveData .62

External Port Service .62

4 Java Model Examples . 63
Overview .63

5 RRTEI Examples . 65
Overview .65

Various SummitBasic Sample Scripts .66

CreateCapsule1State. .66

6 Patterns . 67
Gang of Four Design Patterns .67

Mediator Pattern . 69
Chain of Responsibility Pattern. 71
Factory Method Pattern . 72
Observer Pattern . 72
vi Contents

Safe Dynamic Structure Pattern. .74
Motivation . 75

Design Problem . 75
Forces . 76

Applicability . 79
Participants . 79

ClientManager . 79
Client . 80
Accessor . 80
ServiceAccessor . 80
ConnectionManager . 80
ServiceConnectionManager . 80
Service. 81

Consequences . 81
1. Safe Dynamic Structure . 81
2. High Cohesion . 81
3. Low Coupling . 82
4. Testable . 82
5. Scalable and flexible . 83

Implementation. 83
1. ServiceAccessor . 83
2. Use of the Coordination Capsule Role . 83
3. Service Role Cardinality . 84
4. ServiceConnectionManager . 84
5. Fixed Client and ServiceAccessor Capsule Roles in the ClientManager. 84
Building an Application Using the Safe Dynamic Structure Pattern 85

Accessor Capsules . 86
What is an Accessor . 86
Some Uses for Accessors . 87

Index. 91
Contents vii

viii Contents

Figures
Figure 1 Figure: Inter-Thread Messaging . 24
Figure 2 Figure: OTServiceProxy Capsule . 25
Figure 3 Figure: CallbackActor capsule behavior . 26
Figure 4 Structure Diagram: IPCSender . 46
Figure 5 State Diagram: IPC Sender . 46
Figure 6 Behavior of a Capsule Monitoring a TCP/IP Socket Connection. 47
Figure 7 waitForEvents . 49
Figure 8 Operation Specification for wakeup . 50
Figure 9 Wakeup control flow of inter-thread message send with

RTCustomController . 50
Figure 10 Capsule structure diagram . 57
Figure 11 Class diagram . 57
Figure 12 Sequence diagram. 58
Figures ix

x Figures

Preface
The information in this document supersedes all other manuals and documentation
included in this release.

This manual is organized as follows:

■ Examples Introduction on page 15
■ C++ Model Examples on page 19
■ C Model Examples on page 61
■ RRTEI Examples on page 65
■ Patterns on page 67

Audience

This guide is intended for all readers including managers, project leaders, analysts,
developers, and testers.

This guide is specifically designed for software development professionals familiar
with the target environment they intend to port to.

Other Resources

■ Online Help is available for Rational Rose RealTime.

Select an option from the Help menu.

All manuals are available online, either in HTML or PDF format. To access the
online manuals, click Rational Rose RealTime Documentation from the Start menu.

■ To send feedback about documentation for Rational products, please send e-mail
to techpubs@rational.com.

■ For more information about Rational Software technical publications, see:
http://www.rational.com/documentation.
xi

http://www.rational.com/documentation/

■ For more information on training opportunities, see the Rational University Web
site: http://www.rational.com/university.

■ For articles, discussion forums, and Web-based training courses on developing
software with Rational Suite products, join the Rational Developer Network by
selecting Start > Programs > Rational Suite > Logon to the Rational Developer Network.

Rational Rose RealTime Integrations With Other Rational
Products

Integration Description Where it is Documented

Rose RealTime–
ClearCase

You can archive Rose RT components in
ClearCase.

■ Toolset Guide: Rational Rose RealTime

■ Guide to Team Development: Rational
Rose RealTime

Rose RealTime–
UCM

Rose RealTime developers can create
baselines of Rose RT projects in UCM and
create Rose RealTime projects from
baselines.

■ Toolset Guide: Rational Rose RealTime

■ Guide to Team Development: Rational
Rose RealTime

Rose RealTime–
Purify

When linking or running a Rose
RealTime model with Purify installed on
the system, developers can invoke the
Purify executable using the Build > Run
with Purify command. While the model
executes and when it completes, the
integration displays a report in a Purify
Tab in RoseRealTime.

■ Rational Rose RealTime Help

■ Toolset Guide: Rational Rose RealTime

■ Installation Guide: Rational Rose
RealTime

Rose RealTime–
RequisitePro

You can associate RequisitePro
requirements and documents with Rose
RealTime elements.

■ Addins, Tools, and Wizards Reference:
Rational Rose RealTime

■ Using RequisitePro

■ Installation Guide: Rational Rose
RealTime

Rose RealTime–
SoDa

You can create reports that extract
information from a Rose RealTime
model.

■ Installation Guide: Rational Rose
RealTime

■ Rational SoDA User’s Guide

■ SoDA Help
xii Preface

http://www.rational.com/university

Contacting Rational Customer Support

If you have questions about installing, using, or maintaining this product, contact
Rational Customer Support.

Note: When you contact Rational Customer Support, please be prepared to supply the
following information:

■ Your name, company name, telephone number, and e-mail address

■ Your operating system, version number, and any service packs or patches you
have applied

■ Product name and release number

■ Your Service Request number (SR#) if you are following up on a previously
reported problem

When sending email concerning a previously-reported problem, please include in the
subject field: "[SR#XXXXX]", where XXXXX is the Service Request number of the
issue. For example, "[SR#0176528] - New data on rational rose realtime install issue ".

Your Location Telephone Facsimile E-mail

North, Central,
and South
America

+1 (800) 433-5444
(toll free)

+1 (408) 863-4000
Cupertino, CA

+1 (781) 676-2460
Lexington, MA

support@rational.com

Europe, Middle
East, Africa

+31 20 4546-200
Netherlands

+31 20 4546-201
Netherlands

support@europe.rational.com

Asia Pacific +61-2-9419-0111
Australia

+61-2-9419-0123
Australia

support@apac.rational.com
Contacting Rational Customer Support xiii

xiv Preface

1Examples Introduction
Contents

This chapter is organized as follows:

■ Overview on page 15
■ Tips for Browsing Model Examples on page 16
■ Referenced Configurations on page 17

Overview

Rational Rose RealTime comes installed with a variety of example models and sample
RRTEI scripts. You can access the sample models and scripts in one of two ways:

■ Look through the documentation abstracts included in the help. When you find an
interesting sample, click on the link at the top of the abstract to view or download
sample files.

■ Browse the Rational Rose RealTime examples directory structure in the installation
directory:

$ROSERT_HOME/Examples (on UNIX)

%ROSERT_HOME%/Examples (on Windows)

Note: On UNIX, the links at the top of the example abstracts do not work. You will
have to browse the directory structure to open a sample.

There are four categories of examples:

■ C++ Model Examples on page 19
■ C Model Examples on page 61
■ RRTEI Examples on page 65
■ Patterns on page 67
15

Tips for Browsing Model Examples

The model examples have been developed using a set of conventions that allow you
to easily navigate and understand each model:

■ On the main use case diagram in the Use Case View, every model contains a
textual explanation of the models domain requirements and what is demonstrated
by the model. Large models may even have use cases.

■ Browse model elements documentation. The documentation is meant to explain
the responsibility of the element, and any special instructions that is relevant.
Using the documentation pane is a good way of browsing documentation.

■ Each capsule, which was designed as the top level container for the example
model, is stereotyped as “Top Level”. Generally, these are the capsules you should
look at first to understand the structure of the example model. The top level
capsule will usually contain sequence diagrams that should be viewed to
understand the main interactions between the contained capsule roles.

■ Each model contains sequence diagrams that illustrate example communication
scenarios in the example model. A quick way of browsing sequence diagrams is
via the Browse > Sequence Diagrams menu item.

■ Before building and running a component review the component diagram named
“Tips for building and running the model”. The diagram contains text outlining
any special requirements for building and running the model.

■ Each component view will contain a package for each platform (operating system)
on which the model example was tested. Each operating system component
package will contain a set of components named using the following convention:

<component name>_<libset name>

For example:

AutoTestMarkI_x86VisualCpp60

(Meaning the AutoTest capsules for the MarkI coffee
machine compiled for the x86 processor with the Visual
C++ 6.0 compiler)

MarkI_sparcgnu281

(Meaning the MarkI coffee machine capsules compiled for
the sparc processor with the gnu 2.8.1 compiler)
16 Chapter 1 - Examples Introduction

The example models have been tested with each configuration that exists in the
Component View.

■ The deployment view contains a package for each OS and processor that was used
to test the example models. Each processor contains the component instances that
can be run on it.

Referenced Configurations

Each model example contains the components on which the example was tested. If
you want to build the example for another platform, make a copy of a component and
configure appropriately.

Some models will require more work then others to port to other platforms, for this
reason it may be best that you are very familiar with the model example, any
supporting files, and your target environment before trying to port an example.
Referenced Configurations 17

18 Chapter 1 - Examples Introduction

2C++ Model Examples
Contents

This chapter is organized as follows:

■ Overview on page 19
■ Callbacks on page 20
■ CoffeeMachine on page 29
■ DynamicForwarding on page 29
■ DynamicStructurePatterns on page 30
■ GameOfLife on page 31
■ IntegratingData on page 31
■ IsrExample on page 32
■ ObserverPattern on page 43
■ SendReceiveData on page 43
■ SocketInterfaceExample on page 44
■ TrafficLights on page 56
■ UserPrompt on page 56
■ External Port Service on page 57

Overview

Listed in the following table are the C++ model examples currently available. See the
C++ Reference for more information regarding the use of C++ within Rational Rose
RealTime models.

Model Description

Callbacks on page 20 Provides an example of using callbacks within a Rational Rose
RealTime application.

CoffeeMachine on page 29 Models a simple coffee machine that includes a complete set of
use cases and test harnesses. This is a good intermediate level
model.

DynamicForwarding on
page 29

Demonstrates how to implement dynamic forwarding.
19

Callbacks

The Callback example is intended to provide an overview of issues and development
approaches/strategies related to using callback/RPC mechanisms with code
developed using Rational Rose RealTime. Though this approach is neither
recommended, nor demonstrates good OO practice, it has nonetheless become a
communications mechanism many of our customers are familiar with and need to
make use of.

DynamicStructurePatterns on
page 30

Provides examples of the dynamic structure patterns.

GameOfLife on page 31 Is an implementation of the classic Game of Life invented by the
mathematician John Conway around 1970.

IntegratingData on page 31 Demonstrates how any kind of well formed data class can be
integrated with Rational Rose RealTime. Uses external libraries
and template classes.

IsrExample on page 32 Provides and example of using interrupt service routines within
a Rational Rose RealTime model.

ObserverPattern on page 43 Demonstrates an implementation of the Observer pattern
explained in Gang of Four Design Patterns on page 67.

SendReceiveData on page 43 Provides an example of sending data between capsules.
Example includes sending by value, sending by reference, and
sending subclasses.

SocketInterfaceExample on
page 44

Demonstrates how to use the CustomPeerControler to integrate
sockets into a model.

TrafficLights on page 56 This is a good starter model. It shows simple structure,
inheritance, and nested behavior used in the implementation of
a simple traffic light simulation.

UserPrompt on page 56 Demonstrates approaches for getting user input into a model.
Uses MFC on Windows and stdin on UNIX.

Model Description
20 Chapter 2 - C++ Model Examples

For this example model, review the following topics:

■ Background Information on page 21
■ Rational Rose RealTime Constraints on page 22
■ Simple, Single Callback Approach on page 26
■ Multiple Callback Approach on page 27
■ Callbacks Returning Data on page 28

The example contains the following supporting files:

For the example, there is some external code that accompanies it in the form of .cc and
.h files. The external code provides the shared data resources (for this example, global
variables, and a callback interface simulation functions). The files are sufficiently
documented, so no further explanation is provided here.

■ External_CPP.h, .cpp - Source files for callback interface simulation stub.

■ External.mk - Compilation overrides file for compiling the external source code at
the same time as the model is built from within the toolset.

Background Information

The callback approach to communication between application components has been
used quite successfully in many different environments. Windowing systems often
use callbacks to facilitate the processing involved with handling window events.
Signal handlers use this approach to allow users to "register" the routine responsible
for reacting to the signal. As well, many off the shelf communications packages are
based on an RPC mechanism. Application users of the package register their
"services" with a controller, which in turn makes these registered interfaces available
to all applications needing the services. The user of this mechanism should be familiar
with the Services Library and the thread architecture on their target platform. The
user should also be familiar with the callback concepts.

Please note that although signal handlers (interrupt service routines) use a callback
type approach, the strategy explained by this application note is not suitable for use
by signal handlers. The strategy requires use of the Services Library in a way that uses
system calls that are normally not allowed to be called from within a signal handler.

The example model provided is intended to be an example only and is only supported
as such.
Callbacks 21

Rational Rose RealTime Constraints

The callback approach violates several key architectural premises of the capsule
paradigm. The use of this mechanism with software developed using Rational Rose
RealTime will thus require careful consideration as to the extent of this violation and
the resultant constraints which must be placed upon the code which implements the
callback mechanism. The following discussion outlines many of the areas the user will
have to be aware of when using callbacks with Rational Rose RealTime.

Capsule Encapsulation

The developer using callbacks in Rational Rose RealTime must build some knowledge
about the implementation of the callback mechanism into the model. Thus, you are
creating a dependency between the capsule exporting a function to a callback
mechanism, the Rational Rose RealTime capsule ultimately performing the work, and
some piece of external code. Changes to any of those components will lead to
cascading changes in other areas of your model.

Capsule Concurrency

Rational Rose RealTime maintains the concept of all capsules being separate "units of
concurrency" within a model. For the most part, this is accomplished in the use of
asynchronous messaging between capsules requiring the services of other capsules.
By their nature, callbacks introduce a synchronous restriction into the system, since in
many cases, the service being provided by the Rational Rose RealTime capsule
handling the callback, will have to ensure that all necessary actions have been
performed to satisfy the request and then return data to the caller. As well, all
developers involved in this endeavor must also have a fairly sound understanding of
how work is to be serialized in both the model and the external process.

Common, Unprotected Data Access During a Send

The Services Library is designed and implemented such that each physical thread
used by the application has a single thread of control, implemented by an instance of
the RTPeerController object. All access, to Services Library data and capsules
allocated on that thread, is managed by this instance of the controller, i.e. the
controller has the thread of control. Rational Rose RealTime uses "Run to Completion"
semantics which specify that a capsule, in the process of executing a transition on a
thread, must complete the transition, including entry, exit, guard, and choice-point
code segments, before any other capsule on that thread may begin handling a
message. Thus, there is no need to protect the access of these elements. Interactions
between Services Library threads (messaging between capsules on different threads)
access globally shared data through mutual exclusion resources (mutex). In this case,
22 Chapter 2 - C++ Model Examples

the shared data is an inbox (queue) for dropping off messages. During a message
send, the Services Library determines if the destination port is on another thread and
uses the appropriate mutex to protect the drop off of the message.

A callback runs on the external thread of control, which can be defined as some
non-Rational Rose RealTime thread of control, such as some other user application or
system services providing the callback functionality. In the next section, reference is
made to a Callback Capsule. This is defined as the capsule containing the function
(callback function) which is exported to the external application and used by the
external application to "call" into the model to perform some action. This presents a
problem to the Services Library since the assumption, as noted above, is that a
component of the Services Library (the RTPeerController) is always in control. When
the callback runs, and executes a send() call, as one would expect it to do, it will be
obtaining a message from a list of free messages, populating the message information,
including data, and then dropping it in the destination thread’s InQueue.

If a capsule, running on the same thread on which the Callback capsule is incarnated,
is performing a send() at the same time as the callback is executing, the freeList
message queue for the thread can become corrupted. This would occur if the
operating system preempted the running capsule’s thread and allowed the thread on
which the callback is occurring to become active and perform the callback. The
corruption of the message queue can also occur if the simultaneous access were to
occur when the message is freed up and returned to the free message list. Beyond just
the messaging corruption, a callback executing while a capsule is executing a
transition, can corrupt the data of the capsule if the callback function and the
transition code both alter the data element, leaving the capsule and the thread in an
indeterminate state. As mentioned above, this is a violation of the Capsule
Run-to-completion semantics. Please refer to Figure Inter-Thread Messaging below for
the sequence involved in performing a send() operation from a capsule on one thread
to another thread.

Note: A callback function should only perform a send() call to a capsule on another
thread. (As explained above, the Services Library uses a mutex during a message send
to another thread. Most signal handlers (interrupt service routines) do not allow
access to a mutex and that is why this approach is not suitable when using them.)
Capsules incarnated on the callback thread must not process any messages. As well,
access to data in a callback function, such as extended state variables of the callback
capsule, needs to be carefully controlled and should be protected with a mutex,
especially if the data needs to be updated.
Callbacks 23

Figure 1 Figure: Inter-Thread Messaging

Control Flow of an inter-thread message send:

1 Get next message from the freeList.

2 Fill in signal and priority.

3 If sending an RTDataObject: make a copy of the data.

4 Fill in data field with pointer to data.

5 Queue the message on the receiving thread’s inQueue and update inPriority if
necessary.

6 Call receive() on the receiver (destination capsule’s RTPeerController).

7 Receiver thread moves messages from the inQueue to internal message queues by
calling retrieveEvents().
24 Chapter 2 - C++ Model Examples

Recommended Design Approach

Given the constraints outlined above, the following points need to be taken into
consideration when developing the software in Rational Rose RealTime to handle a
callback mechanism. Please refer to the diagrams below for clarification of the
structure and behavior described.

Figure 2 Figure: OTServiceProxy Capsule

Note: The callbackConfig port is used in the sample model to indicate to the
callbackActor to register the callback function.
Callbacks 25

Figure 3 Figure: CallbackActor capsule behavior

Simple, Single Callback Approach

This approach assumes that there will be only one possible callback occurring at a
time and that no data is returned from the callback function.

■ The Callback interface should be encapsulated in a Proxy Capsule
(OTServiceProxy). This Proxy capsule will contain an optional instance of the
capsule which contains the callback function (callbackActor) along with an
instance of the capsule which will handle the actual servicing of the callback, from
a Rational Rose RealTime perspective (serviceProvider).

■ The OTServiceProxy capsule must incarnate the callbackActor on it’s own thread.
This has the effect of indicating to the Services Library that the message queues
will have to be protected since messages sent from this callbackActor will be
cross-thread sends. Inter-thread message sends are thread-safe.

■ The Callback Capsule (callbackActor) will have no behavior, other than an initial
transition (see Figure: Callback Capsule behavior above). On this initial transition,
it will register its services, i.e. exported functions, with the external system
through whatever mechanism is provided. The callbackActor must not have any
entry code, exit code, or transitions handling incoming signals. This effectively
means that after the initial transition is run, the normal processing of the thread, on
which the callbackActor is incarnated, is never executed.

■ If the callback must be de-registered when the capsule is destroyed, this could be
done in a separate function which is designated as a destructor function on the
callbackActor capsule.
26 Chapter 2 - C++ Model Examples

■ Registered functions of a Callback Capsule may access extended state variables,
other functions defined on the callbackActor, and perform port.send() calls
destined to capsules on other threads. No messaging to capsules on the same
thread as the callbackActor is permitted. The amount of work done in the actual
function should be minimal. Some data preparation, followed by a port.send() to
the serviceProvider capsule is the recommended approach.

Note: Note that if a class (as opposed to instance) scoped operation (static
function) is registered with the callback mechanism, the capsule will have to store
a pointer to the instance in some global variable so that during the callback you
can access the capsule instances attributes (ports …) and operations. This
mechanism is used in the example model.

■ All work done to actually service the callback must be done by capsules, other
than the callback capsule, running on other threads. Specifically, the
serviceProvider will handle the message sent from the callbackActor ’s callback
function, converting it into the messages and function calls needed to satisfy the
service request, within the rest of the Rational Rose RealTime developed
application.

Multiple Callback Approach

This approach assumes that there will be multiple callbacks occurring concurrently,
but that no data is returned from the callback function.

1 Similar setup to the Simple case.

2 The Scenarios for this are:

❑ Callback Capsule (callbackActor) may have several functions it registers.

❑ Several different Callback capsules and thus Proxy capsules are developed with
different exported services for each, and/or

❑ Several external application threads may call back using the published
functions(s) concurrently.

3 In these situations, the access to these exported callback functions must be
serialized to ensure that no two functions are active at the same time. This is
accomplished through one of the following methods:

■ Each Callback capsule has a single function and is placed on a separate thread
from every other capsule. This approach is very heavy on task resources. A
separate thread is needed for each of the external threads which can access the
callbacks. This approach assumes that no two external threads will access the same
Callbacks 27

callback thread at the same time. It will thus not address this third situation of
concurrent calls to the same service function on the same callbackActor from
separate external threads.

■ All Callback Capsules are incarnated on the same callback thread, but access, to
the published service functions, is serialized through the use of a mutex. On entry
to a service function, the mutex is set, restricting all other access, the function
processing is completed, and the mutex is released, allowing the next caller to run
it’s function.

The second approach, outlined in (3) is recommended for most situations since it will
address all the concurrent access concerns. If there are a large number of callback
capsules, service functions, and/or calling threads, placing multiple callback capsules
on several callback threads, each protected with a separate mutex, would improve
concurrency aspects of this approach, allowing several callbacks to be active, on
separate threads, at the same time.

Callbacks Returning Data

This approach assumes that there will be multiple callbacks occurring concurrently
and that data of some sort is returned from the callback function.

■ Extension of either the Simple or Multiple cases. (see Appendix A: Callback Function)

■ In this case, the callbackActor passes a pointer to the data item which needs to be
returned, when the message is sent (port.send()) to the serviceProvider.

■ A separate mutex (for synchronization purposes as opposed to mutual exclusion)
is configured to allow the callbackActor to block, after the send, until the
serviceProvider has finished processing the callback and has filled in the data.

■ The serviceProvider capsule then releases the mutex, freeing the callbackActor’s
callback function to complete, returning the data. The code segment in Appendix B:
Callback WaitForData Function, is an example of the code needed to wait for the
data to be prepared by the serviceProvider.

Sample Model Outline

The sample model for Callbacks is provided in CallbacksDemo.rtmdl, which needs to
be loaded into Rational Rose RealTime

The Semaphore class contains macros (in the HeaderPreface property of the C++ tab
of this class) defines MUTEX_INIT, MUTEX_LOCK, and MUTEX_UNLOCK to
handle the serialization. These macros must be tailored to the mutex/semaphore
support for the target system.
28 Chapter 2 - C++ Model Examples

There are 3 top level capsules (can be found in the TestHarnesses package) in the
sample model. The SimpleExampleTop demonstrates the simplest callback scenario,
whereby the callback capsule is placed on its own thread and access is made by a
single simulated external application thread (actually a Rational Rose RealTime
Capsule on it’s own Rational Rose RealTime thread for testing). The
SimpleProtectedExampleTop is the next level of complexity whereby the access to
the callback function(s) is serialized by a mutex. The
SimpleProtectedDataExampleTop capsule contains the capsules which demonstrate
the last level of complexity in which the callbacks are serialized with a mutex and the
callback needs to return some data.

For additional information, see the External Port Service on page 57 example.

CoffeeMachine

This is a model of a coffee machine that includes a variety of sensors and actuators,
including a money box.

This is an introductory to moderate-level model. It is a good example of requirements
capture and use cases, traceability from requirements to testing, automated testing,
inheritance and layering. It also shows how a simple model, the MarkI coffee
machine, can be scaled to include a new feature, the money box.

DynamicForwarding

This is a model that demonstrates how to implement dynamic forwarding. Dynamic
forwarding allows the maintenance of a protocol class to be de-coupled from the
places where it is used to forward messages. Static forwarding requires you to look at
the signal that was received then decide how to forward, this is fine if the protocol is
known at design time. However if the protocol is not known, or you don’t want to
couple your detail level code with the protocol you can use the dynamic forwarding
method illustrated in this example model.
CoffeeMachine 29

DynamicStructurePatterns

This is a large model that includes examples of the Dynamic Structure Pattern, and of
the Accessor Mechanism discussed in more detail in Safe Dynamic Structure Pattern on
page 74.

A common problem in many systems is a resource with limited availability to which a
wide variety of other elements require access. There is a need to dynamically
coordinate access to the limited resource. When access to the resource is required you
want to set up a dynamic connection (binding) to it if the resource is available. When
the use of the limited resource is complete, you want to tear down the dynamic
connection. This frees up the resource and enables it to participate in a different
connection. The relationship between the resource and its user is independent of the
problem of managing access to the resource. The relationship could be peer-to-peer,
client-server, etc.

Use the dynamic structure pattern when:

■ The binding required between 2 elements is temporary in nature.

■ You need to dynamically coordinate access between 2 elements.

➑ Dynamically arrange the connection.

➑ Coordinate the use of the connection.

➑ Tear-down the connection.

■ The 2 elements that need to be bound together reside in the same physical process.
If distributed communication is required, you need to use the layer services
(unwired ports). You may still want to use this pattern when controlling client
access to the proxies or controlling proxy access to the service.

■ A scalable, testable, safe solution for dynamic structure through the use of
multiple containment is required.

An Accessor is a general mechanism that can be used to dynamically connect
capsules.
30 Chapter 2 - C++ Model Examples

GameOfLife

This is the classic Game of Life invented by the mathematician John Conway around
1970.

This model includes a large and variable array of capsule roles, which interact with
each other through a mediator. It also shows a class utility that controls how many
capsule roles are instantiated at runtime, and includes game observer and game
initialization capsules.

IntegratingData

This example shows how any kind of well formed data class can be integrated with
Rational Rose RealTime, so that it can be safely sent, received, and optionally
observed in a Rational Rose RealTime model.

This example demonstrates integrating the following data types:

■ a class with pointers
■ a class with smart memory management
■ a simple class (no pointers) defined outside the toolset
■ a complex class defined outside the toolset
■ the STL string class
■ an instance based on the STL vector template class

The example also shows how to use externally created libraries as components of type
External Library.

The example contains the following supporting files:

■ extclasses.h - Defines two sample classes called Sample1, and Sample2.

■ extclasses.cpp - Contains the implementation for the two sample classes.

■ sstream.h - Contains a class which implements a string stream.

lib/<platform>/extclasses.lib, extclasses.a - there is a library for each platform on
which the example was tested. The library contains the compiled classes defined in
extclasses.h. This library is referenced from within the External Library Component
defined in the toolset.
GameOfLife 31

IsrExample

This model is intended to provide a simple demonstration of a strategy for interfacing
a Rational Rose RealTime model and an ISR (Interrupt Service Routine).

Note: This example is intended for Unix only.

It is recommended that you read the rest of this topic before viewing the model. The
rest of this topic will provide an explanation of the strategy, an overview of what the
example does, and provides some detail on specific portions of the model that are
important to the strategy being demonstrated.

■ Background Information on page 33

■ The ISR Interfacing Strategy on page 33

■ ISR Interface Example Model on page 36

■ Example Model Description on page 37

■ Expanding on the Example on page 42

In addition, this example discusses and makes use of a Rational Rose RealTime
Services Library class named RTCustomController.

The example contains the following supporting files:

For the example, there is some external code that accompanies it in the form of .cc and
.h files. There is a Solaris version and a Tornado version of the external code. The
external code provides the shared data resources (for this example, global variables
ISRFired and ISRCounter) and the ISR operation itself. The files are sufficiently
documented, so no further explanation is provided here.

■ ISR_Interface_SUN5T.h, .cc - Source files for Solaris-specific external code.

■ SUN5T_With_External.mk - Makefile insert file for compiling the
Solaris-specific external code. This is called from the Component::C++
Compilation::CompilationMakeInsert property.

■ ISR_Interface_TORNADO101T.h, .cc - Source files for Tornado-specific external
code

■ TORNADO101T_With_External.mk - Makefile insert file for compiling the
Tornado-specific external code.
32 Chapter 2 - C++ Model Examples

Background Information

Many real-time applications require interaction with interrupts/ISRs and developing
such applications with Rational Rose RealTime does not change those requirements.
In general, using ISRs with an application requires knowledge of concurrency issues.
When attempting to use ISRs with a Rational Rose RealTime model, this is still the
case. The underlying Services Library and how a model uses them must be
considered. It is expected that readers and users of the example are knowledgeable
about concurrency issues and about the Services Library. Of course, it is also assumed
that the readers already understand the use of ISRs, especially in their target
environment.

This specific strategy and example only applies to a multi-threaded Services Library
application.

The example model provided is intended to be an example only and is only supported
as such.

The ISR Interfacing Strategy

Overview of the Issues

Applications that interact with devices of any kind often need to be notified of certain
events. Common approaches for receiving this notification are: polling, i.e.,
continuously and explicitly checking for an occurrence of something, and blocking,
i.e., using an operating system call to block the application (or the task) until an
interrupt/ISR causes the call to unblock. From a Rational Rose RealTime model
perspective, both of these approaches are still valid. Both of these approaches force
the application to perform some operation to receive the event. It is never safe to
attempt to call directly into the model from an ISR (or any external thread of control).

A polling approach is very simple to implement in a Rational Rose RealTime model
and no special knowledge about concurrency or the Services Library is required. The
simplest idea for this is to declare a Timing port (creating a port with the predefined
Timing protocol) on a capsule and use it to trigger self transitions at whatever interval
desired, where the self transition would check for event occurrence. However, any
polling approach causes unnecessary CPU consumption. Implementing a blocking
approach in a Rational Rose RealTime model is possible; however, in the simplest case
of blocking in a transition, it would cause the model to block such that inter-capsule
messages could not be delivered and/or processed. Placing the blocking capsule on
its own Rational Rose RealTime physical thread may appear to be a quick solution.
However, there are issues with this approach as well: dedicating a task or thread
consumes additional resources (memory, CPU, etc.) and, the Services Library
implementation uses internal messages to perform some of its operations, specifically
IsrExample 33

incarnation and destroy. Blocking the capsule would not allow these messages to be
processed. For some applications these approaches and accompanying
limitations/restrictions may be suitable. There is a third approach that can be used
that addresses some of the issues mentioned above. This document describes the third
approach.

The Strategy

The strategy explained and demonstrated by this ISR interfacing example uses a
combination of polling and blocking. The strategy provides the polling portion via the
normal message dispatching loop of the RTPeerController of the Services Library
when delivering messages and the blocking portion via the normal waiting
mechanism used by the RTPeerController when there are no messages to deliver.
Using the RTCustomController class as the implementation class of a Rational Rose
RealTime physical thread and an accompanying "ISR layer" capsule, one can provide
capsule operations that change the control flow of the thread such that interaction
with an ISR can be accomplished easily and efficiently. (The RTCustomController
class is derived from the RTPeerController class.)

There are several model elements that need to be provided for this approach:

■ A wakeup operation in the ISR layer capsule

■ A waitForEvents operation in the ISR layer capsule

■ A high priority event processing operation in the ISR layer capsule

■ A shared data resource for passing information from the ISR to the model

A description of each of the model elements listed above, followed by a runtime
scenario is a suitable way to explain them. A later description of the example model
will give more concrete details because the example actually implements the scenario
(and strategy) described. Knowledge of the Services Library message passing
algorithm will be helpful in understanding these descriptions.

The ISR layer capsule must implement and provide two operations (as part of its
interface to the RTCustomContoller): waitForEvents() and wakeup (). The purpose
of these operations is to provide a way for the custom controller to wait and to be
woken up. A semaphore is a commonly used resource that can be used for blocking
(waiting) on and signaling to unblock, so the ISR layer capsule must provide this
resource. The waitForEvents() operation simply waits on or takes a token from the
semaphore and the wakeup() operation posts to or gives a token to the semaphore.
These operations are used in the normal processing and control flow of the Services
Library during inter-thread message sending. When a controller (controlling delivery
of all messages on a Rational Rose RealTime physical thread) has no messages to
34 Chapter 2 - C++ Model Examples

deliver it sleeps by calling waitForEvents(). When a message from another Rational
Rose RealTime thread is delivered to the sleeping controller, the delivering controller
calls the sleeping controller’s wakeup(). The ISR layer capsule also provides a high
priority event processing operation that will be called from the custom controller’s
dispatching loop. This operation can be used to determine if an ISR has been called
since the last time it checked. Detection of an ISR being called can be as simple as
checking a global or shared resource such as a variable or queue that both the capsule
and the ISR can access. This shared resource would preferably be something that is
thread-safe or interrupt-safe. The ISR can place information in this shared resource,
indicating that the ISR has been called and also providing the data of interest.

At runtime, the ISR layer capsule provides a pointer to its wakeup() operation for the
ISR to access (as it will later call it). At some time later, the model (could be the ISR
layer capsule) sets up an ISR to be called upon occurrence of some interrupt. While
there are no interrupts the model, and in particular, the capsules on the Custom
Controller thread, can send and receive messages as normal. During this normal
processing, the ISR capsule’s high priority processing operation is called each time
through the Custom Controller’s dispatching loop, that is prior to each message
delivery. The processing operation checks the shared data resource to determine if the
ISR has been called. Assuming that no interrupts have occurred, then the operation
returns immediately and the dispatch loop carries on with normal processing.

At some time later the interrupt occurs and the ISR is called. The ISR places some
information in the shared data resource and then uses the capsule’s wakeup()
operation to attempt to wake up the custom controller. It is not easy for the ISR to
determine whether or not the custom controller is actually sleeping. Some scheme or
protocol can be arranged between the ISR and the ISR layer capsule such that ISR only
attempts to wake up the custom controller if the shared data resource is empty. For
this to work, the ISR layer capsule’s processing operation would always empty the
resource upon detection that there is new data contained in it. For the ISR and the
processing operation to be more efficient, the "detection" mechanism should not be a
costly call. (A call to check an RTOS queue for example may be too time consuming.
The detection mechanism should just be a global variable.)

When the ISR layer capsule’s processing operation is called during execution of the
custom controller’s dispatch loop, the operation detects that the ISR has been called
(the shared data resource has data in it), and then performs whatever processing is
required as a result of the interrupt. There are several ways for the processing to occur.
If the processing is time critical (although not critical enough that it all had to occur in
the ISR), then it can occur right in the ISR layer capsule’s processing operation. If the
processing is not too time critical, the processing operation can send a message to
another capsule in the model for processing.
IsrExample 35

This can be done with a send or invoke. For a send, being asynchronous, the actual
processing of the interrupt notifications would occur later because the message will
be queued within the Services Library for delivery to some other capsule, but quick,
repeated notifications would be detected/picked up sooner. For an invoke, being
synchronous, the processing of individual notifications will be faster, but detection of
quick, repeated notifications would not be. (Invokes also require the invoked capsule
to be on the same thread as the ISR layer capsule.) It basically comes down to whether
queuing is desired in the model (asynchronous sends) or in the data resource
(assuming a buffer or queue required in this case) shared by the ISR layer capsule and
the ISR. The amount of processing done in the ISR itself must be kept to the absolute
minimum. In most cases hopefully, the only processing done in the ISR is to set the
shared data resource.

This strategy provides a way for an ISR to indirectly and quickly notify a capsule that
an interrupt has occurred, while maintaining the run-to-completion event handling
model of the Rational Rose RealTime runtime system. The capsule or model does not
have to continually poll or block just for the purpose of interrupt or ISR detection.
This strategy could also be used for interfacing with any external thread of control if
receiving input from the external thread is considered high in priority. (High in
priority refers to higher than message processing because the high priority processing
operation is actually called before attempting to deliver a message.)

Please note that capsule operation providing the wakeup functionality must not do
anything more than perform the wakeup, whatever that may be, because the thread
of control is the ISR, not a Rational Rose RealTime thread.

ISR Interface Example Model

Overview of the Example Model

The example model for demonstrating the ISR Interface strategy is a very simple one.
However, it should still provide a good example of the basic strategy that can be built
upon for developing and using the strategy in real applications. The basic
requirement of the example model (application) is that it must be notified of an
interval-based timer interrupt occurring twice per second for a period of time. An ISR
layer capsule, working with the RTCustomController, receives (detects) the
notification from the ISR/interrupt. The ISR layer also interacts with the application
layer. The application layer requests with the ISR layer that it be notified of the
interrupts. The ISR layer starts the interval-based timer, detects the interrupts (ISR
called), and notifies the application layer upon each detection. After a period of time,
the application layer requests that the notifications stop.
36 Chapter 2 - C++ Model Examples

The current example has a VxWorks ISR layer and a Solaris ISR layer. (Knowledge of
VxWorks and/or UNIX would be beneficial in understanding the example
description and the example itself.) The VxWorks ISR layer uses a semaphore
(VxWorks) for the wait/wakeup mechanism and uses a watchdog timer for the
interval-based timer interrupts. (When the watchdog timer expires, a previously
user-registered operation (ISR) is called.) The Solaris ISR layer uses a semaphore
(POSIX) for the wait/wakeup mechanism and uses an interval timer (itimer) for the
timer interrupts. (When the itimer expires, a SIGALRM signal is sent to the
process/thread, and then a previously user-registered operation (signal handler for
SIGALRM) is called.) All of the target-specific code (except for ATTRIBUTEs) is
located in capsule operations. The shared data resources used for both are simply two
global variables, one to provide a "detection" mechanism and one to provide what
may be considered as the data of interest. While it may be suitable to use a global
variable for the detection mechanism, it would be better to choose a thread/task-safe
or interrupt-safe data resource for sharing any interesting data, especially to allow
buffering of such data. An example of such a data resource is an operating system
message queue, which can often be written/sent to from an ISR. However, for the
convenience of developing this example the global variable approach is acceptable.

Example Model Description

Packages and Classes of the Model

The model consists of the following packages and classes:

Package ISRLayer

■ Capsule BaseCustomIPCLayer: skeleton behavior for set up of a capsule to use
with the RTCustomController

■ Capsule SolarisISRLayer (derived from BaseCustomIPCLayer): Solaris-specific
capsule for providing set up and management of a Solaris itimer and for detecting
itimer ISR calls

■ Capsule TornadoISRLayer (derived from BaseCustomIPCLayer):
Tornado-specific capsule for providing set up and management of a VxWorks
watchdog timer and for detecting watchdog ISR calls

■ Protocol InterruptControl: protocol for ISR and application layers to use for
interrupt requests and notifications

Package Application

■ Capsule SomeInterruptProcessor: simple capsule for requesting interrupt
notifications and for processing the notifications
IsrExample 37

Package TestSolarisItimer

■ Capsule TopSolarisItimer: test capsule (harness) for Solaris

Package TestTornadoWD

■ Capsule TopTornadoWD: test capsule (harness) for Tornado

The ISR itself and the shared data resources used are actually located in external code
(.h and .cc) that must be compiled and linked with model. (For simplicity, the
compilation of the external file is accomplished by using a Target override file (see
Overrides in the Online Help for a description of override files).

Class Descriptions

It is recommended that the example model be available in the toolset while reading
this so that the model can easily be viewed and navigated to provide a better
understanding of the descriptions. The detailed code is commented and some of the
specification dialogs contain some description.

ISRLayer – BaseCustomIPCLayer:

This capsule has no detailed behavior. It simply provides a skeleton FSM that can be
used for setup of a capsule to use the RTCustomController. It also provides three
empty capsule operations that are to represent the wakeup, wait, and high priority
event processing operations. Detailed behavior and additional states can be added to
this capsule to provide the ISR layer capsule or a class can be derived from it to
provide the specific ISR interfacing (and application layer interfacing) that is desired.
The latter approach is used for this example.

ISRLayer – SolarisISRLayer:

This capsule’s main purpose is to detect ISR calls and pass notification on to a capsule
that previously requested such notification.

External files (source code) contain the ISR itself and the shared data resources (global
variables chosen for this example).

This capsule provides the structural interface for a capsule to request and receive
interrupt. This interface is provided through the InterruptControl protocol.

This capsule provides the behavior for:

■ set up of internal wait/wakeup mechanism resource (semaphore)

■ set up and management of an itimer

■ set up of data by the itimer ISR
38 Chapter 2 - C++ Model Examples

■ set up of its capsule operations for use by the RTCustomController

■ responding to interrupt notification requests

■ sending notification requests

■ detection of ISR call (via change in global variable)

The capsule contains the following attributes:

■ semaForSync: semaphore id

■ internalSetupSucceeded: flag to indicate whether set up of the semaphore
succeeded

■ externalSetupSucceeded: flag to indicate whether set up of the itimer ISR
succeeded

The capsule has the following states:

■ Reset: all set up fails

■ Operational: all set up succeeds and the capsule is ready to respond to capsules
and to detect ISR calls

■ WaitInterruptRequests: awaiting request for interrupt notification from other
capsule

■ InformingOfInterrupts: other capsule has requested notifications; notifications
are sent

The capsule provides the following capsule operations for registration with
RTCustomController:

■ wakeup(): called to wake up the controller the capsule is on

■ waitForEvents(): called by the controller to have itself wait while there is nothing
to do

■ checkInterrupts(): called by the controller, prior to dispatching a message, for the
purposes of detecting and processing "high priority events"

The setup of the semaphore and the ISR both occur during the initial transition chain.
The first to occur is the internal set up - creation and initialization of the semaphore. If
it fails, then the first choice point will fail, causing the entry into the Reset state. The
false chain or the Reset state is where any error handling or recovery would take
place. For this example, the handling only provides consumption of all received
messages. If the internal set up succeeds, the first choice point passes and the external
set up is attempted - set up of the itimer ISR (signal handler for SIGALRM). This set
up also includes registering its wakeup() operation via the external operation
IsrExample 39

registerWakeupWithISR() such that the ISR can access it. If the external set up fails,
then the second choice point will fail causing a change to the Reset state. If it succeeds,
then the true chain is executed, at which time the capsule’s three "controller"
operations waitForEvents(), wakeup(), and checkInterrupts() are registered with the
RTCustomController. Upon completion of the true chain, the Operation state is
entered.

When the Operational state is entered, the WaitInterruptRequests state is
immediately entered. At this time, the capsule waits for a request to be notified of
interrupts. Note that at this time, although the RTCustomController is using the
capsule’s wakeup() and waitForEvents(), the capsule (and thread) can send and
receive inter-thread and intra-thread messages as per normal. Upon reception of a
notifyOfInterrupts signal, the notifyOfInterrupts transition is taken and the
InformingOfInterrupts state is entered. In the transition the itimer is activated and
the notification is replied to with an interruptAccept signal

While in the InformingOfInterrupts state, a noMoreInterrupts signal can be
received, at which time the noMoreInterrupts transition is taken. In the transition, the
itimer is deactivated. However, the main purpose of the InformingOfInterrupts state
is for the capsule to detect itimer ISR calls. The detection is in the checkInterrupts()
operation, which is actually called from the RTCustomController’s dispatching loop
each time around, as opposed to from within a transition upon arrival of a message.
The detection of the ISR call is determined by the ISRFired global variable being
non-zero. If it is non-zero then (post-) processing of the interrupt occurs. First, the
ISRFired variable is set to zero such that the ISR can set it again on the next call. (This
is the detection protocol that has been arranged between the capsule and ISR. It
would be practical to disable the interrupt around the section of code that accesses
ISRFired in the capsule, but this example does no do that.) The processing that this
capsule provides is only to invoke, with the interruptOccurred signal, the capsule
that requested notifications. An invoke was chosen because it is faster than an
asynchronous send.

ISRLayer - TornadoISRLayer:

This capsule is very similar to the SolarisISRLayer. The difference is the use of
Tornado specific types and operating systems calls. The types are used for declaration
of the attributes. The operating system calls are all isolated to capsule operations.
Given that the two capsules are so similar it probably would not take too much extra
effort to wrap the attributes and operating system calls into two external classes that
provide a common interface and then just use one capsule. But for this example, the
two capsules do contain target specific code. With these two capsules behaving the
same, a description of this capsule is not required. It should only be noted that this
capsule uses a Tornado specific semaphore (binary) and uses a Tornado watchdog
40 Chapter 2 - C++ Model Examples

timer for the interval timer. The watchdog timer is not really an interval timer, but is
only triggered once per start/activation. Because of this some special handling is
required to pass information to the watchdog timer ISR such that it can start another
timer within the ISR. Starting the next watchdog in the ISR instead of the capsule will
provide for better accuracy (less drift) in the interrupt occurring at the desired
interval.

External files (source code) contain the ISR itself and the shared data resources (global
variables chosen for this example).

Application - SomeInterruptProcessor:

This capsule’s main operations are to receive interrupt (interval-based timer
interrupts twice per second) notification and to perform appropriate processing. This
capsule uses the InterruptControl protocol to request interrupt notification and to
receive interrupt notification.

This capsule provides the behavior for:

■ requesting interrupt notification

■ processing interrupt notifications for a period of time

■ canceling interrupt notification

The capsule contains the following attributes:

■ waitForAcceptTID: RTTimerId used to cancel repeated timeout requests while
attempting to request interrupt notifications

The capsule has the following states:

■ Idle: awaiting to attempt interrupt notification requests

■ WaitServiceAcceptance: repeatedly request interrupt notifications until accepted

■ WaitForInterrupts: receive notifications and process them

While in the WaitServiceAcceptance state, the capsule responds to Timing port
timeouts. On a timeout transition, an interruptRequest signal is sent via the
InterruptControl protocol and another timeout is set. Also in this state, the capsule
responds to an interruptAccepted signal, at which time the interruptAccepted
transition is taken and the WaitForInterrupts state is entered. In the transition, the
previously requested timeout for retry of interrupt requests is canceled. In addition, a
new timeout is set that represents the period of time that the capsule will respond to
the interrupt notifications. For this example, 20 seconds was chosen.
IsrExample 41

In the WaitForInterrupts state, the capsule receives interruptOccurred signals. For
these signals, the interruptOccurred self transition is taken and the interrupt
notification is processed. For this example, the processing is simply to set a global
variable, ISRCounter, to zero that was previously incriminated by the ISR. (In a real
application, a global variable for data transfer would probably not be appropriate in
order to avoid simultaneous access of the data buffer by the user (capsule) and the
ISR. Instead, interrupt/thread safe buffers would be used.) After a period of time, the
Timing port timeout signal arrives, the timeToStop transition is taken, and the Idle
state is entered again. In the transition, a noMoreInterrupts signal is sent via the
InterruptControl protocol to cancel the notifications.

In the Idle state, the capsule can receive some late interruptOccurred signals. They
can occur because in this example it is possible (if the interval used by the ISR layer is
small enough) that an interrupt notification can be sent after the cancellation of
notifications has been sent.

TestSolarisItimer and TestTornadoWD:

The capsules in these test packages do nothing more than incarnate the capsules
under test. There are two important things to note about the test capsules. They each
contain a reference to an appropriate ISRLayer capsule and a
SomeInterruptProcessor capsule with a binding connecting the references to the
InterruptControl port on each. They incarnate the ISR layer capsule onto a Rational
Rose RealTime physical thread that uses the RTCustomController as the
implementation class.

External Code:

For the example, there is some external code that accompanies it in the form of .cc and
.h files. There is a Solaris version and a Tornado version of the external code. The
external code provides the shared data resources (for this example, global variables
ISRFired and ISRCounter) and the ISR operation itself. The files are sufficiently
documented, so no further explanation is provided here.

Expanding on the Example

When the strategy and example are understood, the strategy can be used for much
bigger and better things. Here is a list of some of things one may want to use it for:

■ Single interrupt notification to a single capsule (basically the example provided)

■ Single interrupt notification to multiple capsules

■ ISR layer could maintain a list (replicated ports) of those to be notified

■ Multiple interrupt notifications to single/multiple capsules
42 Chapter 2 - C++ Model Examples

■ ISR layer could maintain a list of interrupt data (ISRs, shared data resources, and
so on) and can detect calling of any of the ISRs

■ ISR layer on multiple threads (each requiring the use of a RTCustomController on
separate threads)

This ISR interfacing strategy provides a reasonably efficient approach for interfacing a
Rational Rose RealTime model with an interrupt/ISR. However, it is still up to the
designer/project to determine what the real performance, reliability, and response
requirements are for any interrupts that may be used in their application. The strategy
should be reviewed for possible incorporation, and if it appears suitable, it should be
fully prototyped in the target environment to ensure that it is tested to determine if it
can meet expected requirements.

For additional information, see the External Port Service on page 57 example.

ObserverPattern

Sometimes in a system, two or more objects need to simultaneously present different
views of the same data. Whenever the data changes, often through some action of one
of the observing objects, all observers need to be notified of the change. The Observer
Pattern is presented in the book: Gamma, E., et al, Design Patterns - Elements of
reusable object-oriented software, Addison-Wesley, 1995. This book is often referred
to as the Gang of Four (GOF) Patterns Book.

This example is one of many possible implementations of the Observer Pattern. It is
capsule rather than class based, and therefore differs in some ways from the
class-centric implementation presented in the GOF patterns book.

This example uses dynamically incarnated capsules that are subsequently imported
into an observer plug-in role.

The ability to broadcast a message to all capsules that are bound to a port with a
multiplicity greater than one.

SendReceiveData

This is a simple model that includes Sender and Receiver capsules that demonstrate
how to send and receive a variety of built-in data types.
ObserverPattern 43

Have a look at this example for information on message sends, on the correct syntax
for sending a variety of data types, how to receive each of these types in another
capsule, how to log the received data to the console, and how to observe these
messages at run-time.

SocketInterfaceExample

This example is intended to provide a simple example of integrating socket-based IPC
into a Rational Rose RealTime application.

Why use IPC?

Socket based communication appears at first glance to provide an ideal mechanism
for implementing a distributed application. If connectivity were the only requirement,
then sockets might be ideal, however many projects often have other, difficult to
realize requirements, like:

■ ease of use, including ease of changing the distribution architecture;
■ the mapping of object-to-object communication and sockets;
■ rerouting messages when transports fail;
■ a name service so that the sender can find the receiver;
■ fault tolerance so that when something fails there is a back-up;
■ dealing with data representation issues in a mixed CPU environment;
■ fault reporting so that when things go wrong the application can react;
■ optimization for memory and performance

It is important that the reader realize that the IPC example in this note is not intended
to serve as a robust IPC implementation guideline, but an illustration of a simple
design technique. Building and maintaining a robust distribution infrastructure can
require the resources of a dedicated team. An example of a robust, industrial strength
IPC implementation designed to meet the application needs for reliability, availability,
performance, fault-tolerance, and ease of use, is beyond the scope of this note.

Build Versus Buy

If you require more than a simple IPC mechanism, then you should consider Rational
Connexis. Connexis works together with Rational Rose RealTime to let you model
and build distributed Rational Rose RealTime applications. Built-in middleware
provides an off-the-shelf communication infrastructure that solves many of the
challenges common to distributed applications including object-to-object connectivity,
fault tolerance, name lookup service, reliability and performance. Capsules continue
44 Chapter 2 - C++ Model Examples

to communicate with each other in the same way as with Rational Rose RealTime - by
sending messages to ports -however the receiving capsule can be in another process,
or even on another processor. For more information on Rational Connexis see
http://www.rational.com/products.

Pre-requisites

To understand this IPC example the reader should be familiar with sockets, IPC in
general, multi-threaded applications and the Rational Rose RealTime C++ Services
Library. This example discusses and makes use of a C++ Services Library subclass of
RTPeerController known as RTCustomController. For detailed information on the
RTCustomController and its usage please consult the Rational Rose RealTime Online
Help.

Overview

In this simple example, the main loop of a RTCustomController waits on a socket for
messages. The key benefit to this approach is that no capsule is required to block on
the socket interface. In addition the capsule receiving messages from a socket can also
receive messages from other capsules. To keep the example simple, the messages
received will be a stream of bytes over a socket at a specific IP and socket address.
There is no attempt to decompose the stream into a sequence of messages destined for
other ports or capsules, nor is any encoding or decoding of data performed. This is
not an example of a robust IPC solution.

Socket Example Description

This section presents an example of how a TCP/IP socket connection can be
monitored by a capsule (TCPClient) incarnated on a RTCustomController thread.
The server side of the connection uses the same monitoring mechanism and will not
be presented here.

The client consists of three capsules:

■ SenderSameThread (top level capsule) - Incarnates an IPCSender capsule on the
RTCustomController thread.

■ IPCSender - Controls the number of messages exchanged with the server through
the contained optional capsule 'customIPCLayer' (Figure 2).

■ TCPClient - Capsule monitoring the IPC channel when incarnated on the
RTCustomController. It overrides only the 'waitForEvents' and 'wakeup'
controller functions.
SocketInterfaceExample 45

Figure 4 Structure Diagram: IPCSender

Figure 5 State Diagram: IPC Sender

The IPCSender incarnates an IPC monitoring capsule on the RTCustomController
thread.
46 Chapter 2 - C++ Model Examples

Figure 6 Behavior of a Capsule Monitoring a TCP/IP Socket Connection

This example uses two Services Library implementation classes. RTTcpSocket
represents the IPC channel used in this example. The following methods are used:

■ int RTTcpSocket::create() - makes the system call 'socket()' and sets
channel attributes.

■ int RTTcpSocket::connect() - makes the system call 'connect()'.

■ int RTTcpSocket::state() - returns '::Established' if the socket file descriptor
is usable.
SocketInterfaceExample 47

■ int RTTcpSocket::read() - reads a socket file descriptor (using the system
call 'read').

■ int RTTcpSocket::write() - writes on a socket file descriptor (using the
system call 'write').

■ int RTTcpSocket::close() - closes the underlying socket descriptor.

RTIOMonitor is the other Services Library implementation component used and is
constructed to contain the parameters required by the 'select' system call.

This example uses these Services Library implementation classes for the convenience
of providing a quick and simple example. However, it is recommended that
customers provide their own implementation for socket related interfaces.

The attribute 'c_socket' (of class RTTcpSocket) represents the application-specific IPC
channel. 'ioMonitor' (of class RTIOMonitor) is used here to monitor the external
channel ('c_socket') and the internal socket descriptor, 'internalFd', used by other
threads to wake-up the Custom Controller thread. 'internalFd' is a UDP socket, which
is connectionless and has no flow control, but is suitable to use for the purpose of local
host (board) communication.

Please note that for this example there is no behavior provided in the transitions
leading to the Reset state (of TCPClient) nor in the Reset state itself. However, this is
where one may want to provide error handling and recovery.

The macro REGISTER_LAYER takes three arguments - pointers to the 'waitFunc',
'wakeupFunc' and 'processFunc' functions to be called by the RTCustomController. If
any of these are null pointers, the default values are used.

Figures 4 and 5 show the implementation of the functions 'wakeup' and
'waitForEvents'. In this case, IPC data is processed at the end of 'waitForEvents',
conferring this channel a lower priority than for Rational Rose RealTime messages.
48 Chapter 2 - C++ Model Examples

Figure 7 waitForEvents

An implementation for the waitForEvents function called when the
RTCustomController has no messages left to deliver (TCPClient::waitForEvents).
SocketInterfaceExample 49

Figure 8 Operation Specification for wakeup

Figure 8 shows an implementation for the wakeup function called when the
RTCustomController receives an inter-thread message (TCPClient::wakeUp).

Figure 9 shows an example of the wakeup control flow of an inter-thread message
send related to the usage of the RTCustomController.

Figure 9 Wakeup control flow of inter-thread message send with
50 Chapter 2 - C++ Model Examples

RTCustomController

Operational Concept of IOMonitor

To further understand this example, it is important to identify what the RTIOMonitor
is doing for the IPC example. The example is based on the premise that we need to be
able to cause an RTCustomController (essentially a thread) to block, and then to
"wake up" when either an "internal" message (such as a message from a Rational Rose
RealTime capsule on another thread/controller), or some communication from an
external application (IPC – perhaps from a non-Rational Rose RealTime application)
occurs.

We need to block the Customer Controller we are interested in, and then have the
ability to re-activate that thread when one of two possible events occurs (internal or
external comms)

The example uses two sockets to make this happen. One socket is created purely for
internal purposes and uses UDP. The other socket is used for the external
communication channel, and uses TCP/IP.
SocketInterfaceExample 51

We have two sockets – the UDP socket to wake up the thread due to internal capsule
communication, while incoming data on the TCP socket must wake up the thread to
handle the IPC.

To monitor both of these sockets simultaneously, use an RTIOMonitor. This class is
essentially a wrapper for the operating system select function. The select function
allows the system to block "waiting for incoming data" on one of multiple sockets.
RTIOMonitor wraps this function in a portable RRT construct for us. We add sockets
to an IOMonitor instance, and then invoke the RTIOMonitor ‘wait’ command. If you
use a parameter for wait of NULL, the IOMonitor blocks indefinitely until one of the
sockets it is monitoring receives some data.

RTIOMonitor is used in the example to monitor a UDP and a TCP socket, and block
waiting for either of them to receive some data.

Overall Operational Profile of the Example

The TCPClient and Server capsules both include a function called
makeUDPConnection, which is called during the internal set-up stage. Running this
function, uses direct operating system calls to create a socket (using the constant
SOCK_DGRAM to specify this as UDP). After the UDP socket is created, it is added
to IOMonitor’s list of sockets using the command :

ioMonitor.add(internalFd, RTIOMonitor::CanRead);

This code appears in the Choice Point at the end of the internal set-up transition.

Note: The reason for using a Datagram/UDP socket is that it is connecitonless. This
means that anything can write to the UDP socket without having to go through a
notification procedure making it ideal for allowing multiple capsules to write to
another thread without having to configure the connection.

At this stage, the IOMonitor knows about the UDP socket and nothing more.

Then, we proceed to set up the actual IPC communication mechanism. The IPC
mechanism is TCP/IP-based. In this example, we use some of the TCP Socket utilities
provided in the Rational Rose RealTime Run-Time Service Library. These functions
are subject to change by Rational without notice, so they are not recommended for
general use and as such, are not documented.

We use the RTTCPSocket class and related functions because it provides a portable
wrapper for platform native socket implementations.

In the external configuration phase, we create one or more RTTCPSockets to
communicate - Client and Server variants differ in their implementation here. The
Server capsule creates two Sockets – one to listen for incoming communication
requests (local variable called Listener), and the other is the socket which will actually
52 Chapter 2 - C++ Model Examples

be connected when an incoming request is handled (Capsule Attribute called
c_socket). The client capsule does not listen for incoming requests, so the client uses
just one RTTCPSocket instance (also called c_socket).

Now, we have a UDP socket to detect internal Capsule messages, and we have some
TCP sockets used for IPC. All of these sockets are registered with the IOMonitor.

After the listener socket on the server has accepted a connection from the client, the
listener socket is destroyed (this example only supports a single socket connection).
At this stage Client and Server capsules both use the REGISTER_LAYER macro, to
register new waitForEvents and wakeup functions.

Now, we need to consider the operation of the waitForEvents and wakeup functions.

waitForEvents

When a Controller has consumed all available capsule messages (there are no more
messages for capsules on that Thread/Controller to process) the Controller’s
mainLoop function calls the waitForEvents function.

In the example, the waitForEvents function blocks the thread by waiting for some
incoming data on either the UDP or the TCP/IP socket. This blocking functionality is
achieved with the following code :

if(ioMonitor.wait((RTTimespec *)0) <= 0) // error

return;

We invoke the IOMonitor ’s wait function with a time value pointer of NULL, which
causes the IOMonitor to wait indefinitely for incoming data on any of the sockets it
monitors.

The Controller/Thread is blocked at this stage, allowing the processor to handle other
threads.

When some data arrives at either the UDP or TCP socket, the IOMonitor unblocks the
thread, and processing will continue.
SocketInterfaceExample 53

Two possible outcomes can occur :

1 Data arrives at the internal UDP port

The following code is evaluated in the waitForEvents function:

if((ioMonitor.status(internalFd) & RTIOMonitor::CanRead) != 0)

{

::recv(internalFd, &anything, 1, 0);

return; // waked up

}

The if statement uses the IOMonitor status function to obtain the latest status of
the internal UDP socket. In this example, the UDP socket received some data, so
the status returned by the status command is the equivalent of
RTIOMonitor::CanRead. The if statement performs a bitwise AND operation of
the status function result against the CanRead constant - because these are the
same, we know the UDP socket received some data and the if statement block is
executed.

Execution of the if statement block reads whatever data is there (it is discarded)
and returns from the waitForEvents function. Control is returned to the mainLoop
function of the controller, which will then obtain the real message (which will have
been inserted on the Controller’s Message Queue) and processing continues from
there.

2 Data arrives across the TCP/IP channel

For this situation, there is no internal capsule message to handle, instead some
data has come across the IPC link to our TCP Socket.

The IOMonitor detects the incoming data and unblocks the thread. The following
code is executed:

if((ioMonitor.status(internalFd) & RTIOMonitor::CanRead) != 0)

{

::recv(internalFd, &anything, 1, 0);

return; // waked up

}

// custom IPC data to process here:

processIPCData();
54 Chapter 2 - C++ Model Examples

When we evaluate the if statement, the status of the UDP port is not CanRead,
since there is no data to be read on that socket. As a result, the if fails, and we
continue to the processIPCData function call.

In the ProcessIPCData function, we read the data from the TCP/IP socket into a
buffer and proceed to send a message to notify a capsule of the data received.
Processing continues as normal from this point.

Notes on Message Passing in Rational Rose RealTime

When one Rational Rose RealTime Thread/Controller, wishes to send a message to
another thread, the following short sequence is followed:

1 The sending thread/controller places a message construct on the message queue of
the receiving thread/controller.

2 The sending thread/controller calls the target thread/controller’s wakeup
function.

The effect then, is that a thread/controller blocked waiting for a message, is woken up
by the sender, and it then checks its message queue, finds the transmitted message
and processes it (dispatching it to the correct capsule).

What we have described here, is handled in the IPC example solely by the UDP socket
- we use a UDP socket simply because the IOMonitor can use a UDP socket as a
‘blockable’ construct.

To accommodate IPC, we not only need to configure the communication channel, but
we need to decide where it will fit into the message handling process. Essentially,
there are two options:

■ Option 1: We can treat IPC as ‘lower’ priority than internal capsule messages

■ Option 2: We can treat IPC as higher priority than internal messages.

The IPC example implements Option 1 – IPC is lower priority than internal comms.
The rationale is that in the waitForEvents function, we first check whether the
incoming socket data was on the UDP channel. Only after verifying that there was no
internal comms via the UDP wakeup mechanism, do we then check for TCP/IP data.
Additionally, we only check for incoming IPC data when we run the waitForEvents
function. The waitForEvents function is only called when we have exhausted the
processing of all internal messages.

For this situation, for ecample, if we were to receive ten internal messages and ten IPC
messages, the internal messages would be handled first, and only after the controller
had completed the processing of these messages, would the waitForEvents function
be invoked and the IPC messages detected and handled.
SocketInterfaceExample 55

To ensure that IPC messages are dealt with first, we can use the third parameter of the
REGISTER_LAYER macro. This parameter is a function pointer to a function that will
be executed every time the controller runs its mainLoop before dispatching internal
messages.

For this situation, for example, if we had ten internal and ten external messages
arriving simultaneously, we can handle the ten IPC messages first, and then handle
the internal capsule messages.

The danger of this method is that it has an impact on performance. In this example,
every time we iterate through the mainLoop (once for each internal message), we will
run the specified function – if that situation uses processor time, the entire mainLoop
algorithm will be slowed down.

For additional information, see the External Port Service on page 57 example.

TrafficLights

Traffic Lights captures the behavior of a set of traffic lights at an intersection in
Austria, as observed by a North American visitor. It also includes the North American
behavior for comparison.

Traffic Lights is a good starter model. It shows simple structure, inheritance, and
nested behavior.

UserPrompt

This example demonstrates:

1 Two approaches for getting user input into a Rational Rose RealTime executable,
one generic and the other specific to Windows configurations.

2 Integration of a Rational Rose RealTime executable with a graphical dialog DLL on
the Windows configurations.
56 Chapter 2 - C++ Model Examples

External Port Service

The External Port service example provides an API that lets non-Rational Rose
RealTime threads call a function to raise an event on a port of a Capsule in a Rational
Rose RealTime application.

There can be any number of external ports in any number of capsules in a Rational
Rose RealTime application, however the external ports may not be replicated. Figure
10 and Figure 11 show a Class diagram and Capsule structure diagram that identify
the declaration of an external port.

Figure 10 Capsule structure diagram

Figure 11 Class diagram

The capsule application must pass an external port pointer to the external thread so
that the external thread can raise events on the port. The external thread raises an
event by calling the port function int raise(), a non zero return value indicates
that the event was successfully raised. Before an event can be raised, the capsule must
enable the port to receive events. It does this by calling the port function enable().
External Port Service 57

The port is automatically disabled every time an event is raised, and the port must be
re-enabled before another event can be raised. Figure 12 shoes the Sequence diagram
that illustrates this functionality.

Figure 12 Sequence diagram

You can find the C++ API in the following location:

$ROSERT_HOME/C++/TargetRTS/include/RTExternal.h
58 Chapter 2 - C++ Model Examples

The following code is an extract of the relevant API from the file RTExternal.h:

/* For use with CPPExternal ports */

// These two functions may be used only by the thread on which the

// owner capsule executes.

void enable(void);

void disable(void);

// This function may be used only on threads other than the one on

// which the owner capsule executes.

int raise(void);

The C API can be found in the following location:

$ROSERT_HOME/C/TargetRTS/include/RTPublic/RTPort.h

The following code is an extract of the relevant API from the file RTPort.h:

/* For use with CExternal ports */

// These two functions may be used only by the thread on which the

// owner capsule executes.

void RTPort_disableExternal(RTPort *);

void RTPort_enableExternal(RTPort *);

// This function may be used only on threads other than the one on

// which the owner capsule executes.

int RTPort_raiseExternal(RTPort *);

The default mutual exclusion mechanism used by the External Port mechanism is a
mutex. If this mechanism is not appropriate, for example for notification events from
interrupt handlers, then the mechanism can be changed by overriding the unload
function for the specific target, and replacing the calls to enter and leave the critical
section with code specific to your environment (such as disable/enable interrupts).

For details on how to override a TargetRTS operation, see the book Adapting Rational
Rose RealTime for Target Environments, Rational Rose RealTime.

The default implementations for the unload function are:

■ For C++ (using
%ROSERT_HOME%\C++\TargetRTS\src\RTExternal\unload.cc):

#include <RTExternal.h>
#include <RTMutex.h>

// This mutex prevents a race condition between calls to disable
and raise.

// More efficient implementations may be available in some
configurations.

static RTMutex critical;

RTMessage * External::Base::unload(void)
External Port Service 59

{

critical.enter();

RTMessage * oldMsg = msg;

msg = (RTMessage *)0;

critical.leave();

return oldMsg;

}

■ For C (using %ROSERT_HOME%\C\TargetRTS\src\Port\unload.c):

#include <RTPriv/Port.h>
#include <RTPubl/Control.h>
#include <RTPriv/Mutex.h>

RTMessage *
RTPort_unloadExternal(RTExternalEndPort * external,RTController
* controller)

{

RTMutex * mutex = controller->_mutex;
RTMessage * msg;
RTMutex_enter(mutex);
msg = external->msg;
external->msg = (RTMessage *)0;
RTMutex_leave(mutex);
return msg;

}

60 Chapter 2 - C++ Model Examples

3C Model Examples
Contents

This chapter is organized as follows:

■ Overview on page 61
■ CardGame on page 61
■ SendReceiveData on page 62
■ External Port Service on page 62

Overview

Listed in the following table are the C model examples currently available. See the C
Language Guide for more information regarding use of C within Rational Rose
RealTime models.

CardGame

This is a C version of the model developed in the Card Game tutorial. In addition the
model contains extended functionality to demonstrate how to use replication, threads,
inheritance in C models. This is a good model to understand before starting your own
C models.

Model Description

CardGame on page 61 Provides a C version of the Card Game tutorial model. In addition
contains extended functionality to show threads, and replication in C
models.

SendReceiveData on
page 62

Provides an example of sending data between capsules. Example
includes sending by value and sending by reference.
61

SendReceiveData

This is a simple model that includes Sender and Receiver capsules that demonstrate
how to send and receive a variety of built-in data types.

Have a look at this example for information on message sends, on the correct syntax
for sending a variety of data types, how to receive each of these types in another
capsule, how to log the received data to the console, and how to observe these
messages at run-time.

External Port Service

Fordetailed information on the External Port Service example, see the External Port
Service on page 57.
62 Chapter 3 - C Model Examples

4Java Model Examples
Contents

This chapter is organized as follows:

■ Overview on page 63

Overview

Rational Rose RealTime includes several Java model examples. You can find the
example Java model files in the following location:

$ROSERT_HOME/Examples/Models/Java/

You can open and view the following example Java model files:

■ HelloWorldCapsule.rtmdl
■ HelloWorldClass.rtmdl
■ PhoneSystem.rtmdl
■ ReliableServiceJava.rtmdl
■ RTJavaPingPong.rtmdl
63

64 Chapter 4 - Java Model Examples

5RRTEI Examples
Contents

This chapter is organized as follows:

■ Overview on page 65
■ Various SummitBasic Sample Scripts on page 66
■ CreateCapsule1State on page 66

Overview

Listed in the following table are the Rational Rose Extensibility examples currently
available. See the RRTEI Guide for more information regarding the RRTEI and the
SummitBasic script reference.

See the Tutorials for related step by step instructions for building SummitBasic scripts
and using Rational Rose RealTime as an automation server.

The $ROSERT_HOME/Scripts directory contains source files for utility scripts that
are used within Rational Rose RealTime. These provide good examples of using
SummitBasic and the RRTEI. We recommend that you make a backup copy before
modifying any of these scripts.

Script Description

Various SummitBasic
Sample Scripts on page 66

Demonstrates how to use the RRTEI to write SummitBasic scripts.

CreateCapsule1State on
page 66

Visual Basic example of using Rational Rose RealTime as an
automation server.
65

Various SummitBasic Sample Scripts

There are a number of simple SummitBasic scripts that demonstrate particular aspects
of BasicScript syntax and the RRTEI interface. See the examples in the /Examples
directory.

CreateCapsule1State

This example uses Visual Basic to use Rational Rose RealTime as an automation
server. You can also consult the Tutorials for related step by step instructions for using
Rational Rose RealTime as an automation server.
66 Chapter 5 - RRTEI Examples

6Patterns
Contents

This chapter is organized as follows:

■ Gang of Four Design Patterns on page 67
■ Safe Dynamic Structure Pattern on page 74

Gang of Four Design Patterns

Software Designers have found patterns to be a useful concept. This interest has
spawned a considerable patterns literature, including the book Design Patterns -
Elements of Reusable Object-Oriented Software by Erich Gamma, Richard Helm,
Ralph Johnson, John Vlissides, commonly referred to as the Gang of Four (GOF)
Patterns book.

Patterns become more visually apparent when you use a visual modeling tool such as
Rational Rose RealTime. In the literature patterns are usually presented using a visual
notation, such as UML. With Rational Rose RealTime the visual notation is also the
model from which executable code is generated.

Every domain or application can have its own characteristic patterns. This section
does not claim to provide a set of patterns that will be generally useful across all
domains. What we have done is to explore the patterns presented in one popular
book, and see how they apply to a variety of models that have been done using
Rational Rose RealTime.

The patterns in the GOF Patterns book are presented in the context of a user interface
domain, which is quite different from what is typically found in real-time
applications. However the abstract aspects of some of these patterns are obviously of
general interest to real-time developers.

In this section, we briefly present five concrete examples loosely based on the patterns
presented in the GOF Patterns book. These are not necessarily the patterns that will
make sense in your applications, and we are not suggesting that you take any of these
and blindly apply them to your projects. Instead the intent here is to present the
67

concept of patterns as they apply to systems built using capsules. We hope that these
examples will get you thinking about the patterns that apply within your own
applications.

We suggest that you look over this section and the sample models in conjunction with
a copy of the GOF Patterns book.

Several GOF patterns are at least partially contained as part of the Rational Rose
RealTime paradigm - for example the Façade and State patterns. A capsule has much
in common with a Façade. State is a first class concept within Rational Rose RealTime.

The four examples presented here are:

■ Mediator Pattern on page 69
■ Chain of Responsibility Pattern on page 71
■ Factory Method Pattern on page 72
■ Observer Pattern on page 72

For more information on The Gang of Four design patterns and book, you may want
to visit the following site:

http://hillside.net/patterns/DPBook/DPBook.html

Complete information on the book is as follows:

Title: Design Patterns : Elements of Reusable Object-Oriented Software

Authors: Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides

ISBN: 0-201-63361-2

Details: Addison-Wesley, 1994
68 Chapter 6 - Patterns

Mediator Pattern

A Mediator capsule mediates or controls the interactions between a set of two or more
colleague capsules. It provides for very loose coupling between capsules.

See the MarkI_Container or MarkII_Container capsules in the
CoffeeMachine_MoneyBox example model. The MarkI_Brewer and MarkII_Brewer
capsules function as concrete mediators, while CUSprayer, CUFrontPanel,
CUWarmer and CUCashBox function as concrete colleagues.
Gang of Four Design Patterns 69

Mediator capsules tend to have modeless behavior; they forward messages between
ports and do not retain any state history. The state diagram of MarkI_Brewer is:

The Game of Life example model provides another example of a Mediator. The
SpaceTime capsule mediates between a large number of identical Cell capsules. Cells
have no direct knowledge of who their neighbors are. SpaceTime does know who
every Cell’s neighbors are, and is able to forward each message from one Cell to all of
that Cell’s neighbors.
70 Chapter 6 - Patterns

Chain of Responsibility Pattern

The GOF book describes the intent of the Chain of Responsibility pattern as follows:

“Avoid coupling the sender of a request to its receiver by giving more than one object
a chance to handle the request. Chain the receiving objects and pass the request along
the chain until an object handles it.”

The Message Forwarding example model is a very simple example of this. Capsules
are always de-coupled from the receiver of the messages they send, because all that a
capsule does is send a message out a port, and the capsule has no knowledge of how
or even if the port is bound. In the Message Forwarding example, CapsuleA sends a
message to CapsuleB which directly forwards it to CapsuleC.

A somewhat more complex example is found in the AlarmClock model used in the
Rational Rose RealTime Evaluation Workshop. This model is connected to an external
Java application which includes a number of buttons that users can press to update
the time and adjust various alarm settings. It also displays the currently set time and
various status messages. It allows the user to control the Rational Rose RealTime
model, and immediately view the results. All interaction with the Java GUI passes
through one capsule, called CapsuleX in the diagram below.

Some of the messages arriving at CapsuleX have to do with setting up a socket
connection between the Rational Rose RealTime model and the Java GUI. These
messages are processed directly by CapsuleX. Any other messages it forwards out its
port which is bound to CapsuleY. CapsuleY is responsible for converting certain
combinations of GUI button presses into higher level commands which it eventually
passes on to CapsuleZ through its port. CapsuleY immediately forwards all messages
that it doesn’t process on to CapsuleZ. CapsuleZ in turn processes some messages,
but directly forwards everything having to do the setting of alarms on to CapsuleQ.

Thus, there’s a chain of responsibility starting with CapsuleX and continuing on to
CapsuleQ. Each capsule in the chain has a chance to process each received message if
that is part of its responsibility. Otherwise it forwards it on to the next capsule in the
chain.
Gang of Four Design Patterns 71

Factory Method Pattern

The GOF Patterns GOF says about the Factory Method pattern:

“Define an interface for creating an object, but let subclasses decide which class to
instantiate. Factory Method lets a class defer instantiation to subclasses.”

The CoffeeMachine_MoneyBox model includes an example of the Factory Method
Pattern. MarkII_Container is a subclass of MarkI_Container, and MarkII_Brewer is
a subclass of MarkI_Brewer. At the same time, MarkI_Brewer is part of
MarkI_Container, and MarkII_Brewer is part of MarkII_Container. This sets up
parallel inheritance hierarchies as shown in the following class diagram:

Observer Pattern

Sometimes in a system, two or more objects need to simultaneously present different
views of the same data. Whenever the data changes, often through some action of one
of the observing objects, all observers need to be notified of the change.

For an example of one quite simplistic implementation of the Observer Pattern using
capsules in Rational Rose RealTime, please load and run ObserverPattern.rtmdl.
Mirroring the description in the GOF Patterns book, this model includes four capsules
- Subject, Observer, ConcreteSubject and ConcreteObserver, related as shown in the
following diagram. The SOProtocol protocol class includes signals that allow
concrete subjects and observers to communicate with each other.
72 Chapter 6 - Patterns

The following diagram shows the structure diagram for ObserverPattern, the top
capsule in the system. There is one subject, with some variable number of observers.

The observers are dynamically incarnated at runtime, and are then imported into the
observerP capsule plug-in role, which has a connector to the subject. The reason for
doing this is to simulate a larger system where a capsule might be incarnated at one
location in the model, and then imported into a different role for connection to a
subject.

In this example, the subject does not keep track of the observers that it is connected to.
When it receives a Modification message from any one of the observers, it simply
sends a ChangeNotification message back out the so port. This acts a broadcast to
any capsules that happen to be connected to the so port, because the message send is
not to any specific instance of the port, which effectively makes it a broadcast.
Gang of Four Design Patterns 73

To clarify what’s happening, look at the transition code for this simple model. Then
build and run the model. Follow the instructions contained in the “Tips on running
this model” diagram within the Component View.

Safe Dynamic Structure Pattern

A common problem in many systems is a resource with limited availability to which a
wide variety of other elements require access. There is a need to dynamically
coordinate access to the limited resource. When access to the resource is required you
want to set up a dynamic connection (binding) to it if the resource is available. When
the use of the limited resource is complete, you want to tear down the dynamic
connection. This frees up the resource and enables it to participate in a different
connection. The relationship between the resource and its user is independent of the
problem of managing access to the resource. The relationship could be peer-to-peer,
client-server, etc.
74 Chapter 6 - Patterns

Use the dynamic structure pattern when:

■ The binding required between 2 elements is temporary in nature.

■ You need to dynamically coordinate access between 2 elements.

➑ Dynamically arrange the connection.

➑ Coordinate the use of the connection.

➑ Tear-down the connection.

■ The 2 elements that need to be bound together reside in the same physical process.
If distributed communication is required, you need to use the layer services
(unwired ports). You may still want to use this pattern when controlling client
access to the proxies or controlling proxy access to the service.

■ A scalable, testable, safe solution for dynamic structure through the use of
multiple containment is required.

An Accessor is a general mechanism that can be used to dynamically connect
capsules.

■ Motivation on page 75 - The forces and types of design problems which led to the
development of the safe dynamic structure pattern.

■ Applicability on page 79 - When you should use safe dynamic structure.

■ Participants on page 79 - Description of the capsules and their purpose.

■ Consequences on page 81 - The benefits of using safe dynamic structure.

■ Implementation on page 83 - Things to consider when applying the pattern to your
problem.

■ Accessor Capsules on page 86 - An Accessor capsule is a general mechanism, that
amongst other uses, can be used to help implement safe dynamic structure.

Motivation

Design Problem

A common problem found in many systems is that there is a resource with limited
availability to which a wide variety of other elements require access. There is a need to
dynamically coordinate access to the limited resource. When access to the resource is
required you want to set up a dynamic connection (binding) to it if the resource is
available. When the use of the limited resource is complete, you want to tear down the
dynamic connection. Thus freeing up the resource and enabling it to participate in a
Safe Dynamic Structure Pattern 75

different connection. The relationship between the resource and its user is
independent of the problem of managing access to the resource. The relationship
could be peer-to-peer, client-server, etc.

For example, consider a client-service type of system. We have a service that can
handle MaxServiceRequests from clients at any point in time and a MaxClients
number of clients that want to make use of the service. MaxClients is greater than
MaxServiceRequests, making the service a limited resource. The service is
implemented by a capsule and will respond to requests from other capsules. We want
to dynamically arrange a connection (binding) between the Client capsule and the
Service capsule only when the client requires the service to perform one of its tasks.

Usually designs which require dynamic structure make use of multiple containment.
With multiple containment, a single capsule instance can exist in more than one
capsule role at a point in time. This allows you to dynamically configure the structure
of the system during execution.

In our example, the client identifies that it needs to perform some work that requires
the use of the service. A request for access to the service is then made. If the service is
available, it is expected that the bindings between the client and the service be
dynamically setup. When the client finished its task, it provides notification that the
service is no longer needed. It is expected that the bindings between the client and the
service then be dynamically torn down.

Forces

When we make use of dynamic structure, we want to do so in a safe fashion.
Therefore, we need to carefully consider how will the connection be arranged. Which
capsule should be involved in two roles (that is, be imported to create the dynamic
binding)? Where is the dynamic relationship to be managed? Can we take full
advantage of structure to set up the dynamic binding and minimize the amount of
detail code required? How scalable is the solution? Will it handle increases in the
number of clients, number of clients requests, etc.?

Below is a simplified view of a safe dynamic structure framework. The
ClientManager implements the policy for obtaining access to the service. The
ServiceConnectionManager manages the access to the service. The ServiceAccessor
is the same capsule instance contained in both aspects at run-time (i.e. multiple
containment). The Client communicates directly with Service through the
ServiceAccessor.
76 Chapter 6 - Patterns

In a simple scenario, the client identifies that it has a task to perform. The
ClientManager decides what service is required and makes a request to the
ServiceManager. The request contains the id of the ServiceAccessor. The
ServiceManager decides if the service was available. If it is, it imports the
ServiceAccessor so that it is bound with the service. This results in a connection
between the client and the service (they are dynamically bound). Messages coming
from the client go through the ServiceAccessor and arrive at the Service. Similarly, the
messages from the Service go through the ServiceAccessor and arrive at the client.
The ServiceAccessor acts as a conduit for the messages. The ServiceAccessor also acts
as a conduit for future messages (regarding this particular connection) between the
ServiceManager and ClientManager. There is a ClientManager- ServiceManager
communication path on a per-client-service interaction basis.

We wanted the Client of the service to concentrate on its primary responsibilities. The
policy for establishing a connection in the model example is simple, but in a full
robust system it can become quite complex. Therefore ClientManager is responsible
for requesting the establishment of the connection. It knows what services are
required for the task (there could be more than 1), where to obtain particular kinds of
services, what the retry policy is if the service is initially unavailable, the order in
which to obtain and release the services, and so on. This allows the Client to
concentrate on its primary responsibilities.
Safe Dynamic Structure Pattern 77

The ServiceConnectionManager manages the access to the service. It is responsible
for importing/deporting the user of the service into a multiple containment
relationship. We don't want the service to be imported/deported elsewhere because
this would result in the ServiceConnectionManager losing control over it, leaving it
vulnerable to errors in the user of the service. For example what if the user of the
service never gives it up, what if they destroy the service, what if they import the
service again after they release it, etc. These types of errors would not only affect the
ServiceConnectionManager, but they could potentially cause unexplained behavior
for other users of the service.

We also don't want to try and import the client directly into a slot connecting to the
service either. In the system, there are likely to be many different types of clients each
having different interfaces (ports) for communicating with other areas of the system.
It would be difficult for all of them to share the same inheritance hierarchy in order for
them all to be compatible with a single slot with which to access the server. Instead the
element that is to be imported is a ServiceAccessor. The ServiceAccessor has only
relay ports which are bound to conjugated relay ports on the other side of the capsule.
The binding passes straight through the capsule. The ServiceAccessor also does not
have any behavior. This type of capsule is also sometimes known as a pass-through
capsule. It is essentially a "proxy" object that allows two completely independent
capsules to band together.

We wanted to use structure (multiple containment) and explicit binding between
ports rather than unwired ports. This way the connections are visible, observable and
highly controllable. The layer service used by unwired ports does not have these
properties.

We want to minimize the amount of detail code necessary and instead take advantage
of structure. We want to avoid the use of data structures to keep track of requests
issued, which services are in use, etc. These data structures don't usually scale up. As
the number of clients and services in the executing model grows, the size of these
structures increases along with the time to manage and maintain them. They are a
source of hidden complexity and potential error.

The ServiceAccessor has relay ports for the communication between the Client and
the Service, plus it has relay ports to allow for communication between the
ClientManager and the ServiceConnectionManager. ClientManager has a
communication path directly to ServerManager on a per-client-service interaction
basis. Messages regarding the establishment and tearing down of the dynamic
connection are sent along this path. Using the ServiceAcessor in this fashion provides
the "context of the request" to both the ClientManager and the
ServiceConnectionManager allowing us to minimize the amount of detail code they
have and the amount of data sent in messages.
78 Chapter 6 - Patterns

Applicability

Use Safe dynamic structure when:

■ The binding required between 2 elements is temporary in nature.

■ You need to dynamically coordinate access between 2 elements.

➑ Dynamically arrange the connection.

➑ Coordinate the use of the connection.

➑ Tear-down the connection.

■ The 2 elements that need to be bound together reside in the same physical process.
If distributed communication is required, you need to use the layer services
(unwired ports). You may still want to use this pattern when controlling client
access to the proxies or controlling proxy access to the service.

■ A scalable, testable, safe solution for dynamic structure through the use of
multiple containment is required.

An overview of the solution and the forces that led to its development are described
in Motivation on page 75. The benefits of using this safe dynamic structure pattern are
discussed in the Consequences section.

Participants

ClientManager

The ClientManager is responsible for requesting the establishment and destruction of
a connection(s) needed by a client to do work. It manages the policy for the
establishment of a connection(s) between the client and the service(s)

■ can determine the best place to obtain a service if offered by more than one
ServiceConnectionManager.

■ can implement the policy for setting up the connections if more than one dynamic
connection is required (for example, order of setup, what to do if one of the
connections can not be made, etc.). It also ensures all connections have been setup
before the client performs its task.

■ implement the retry policy when the service connection can not be obtained. (i.e.
wait and retry, abort, retry immediately, etc.).

■ implement the tear down policy when the client is finished its task. (i.e. release the
services in a particular order, delay releasing some of the services in case the client
requires them again very soon after, etc.)
Safe Dynamic Structure Pattern 79

Client

The Client capsule represents the element requiring the use of a service in order to
perform a task. It does not know which specific service is required, it simply identifies
the task it wants to perform and waits for notification to go ahead. In the model
example it is a very simple capsule for purposes of showing the dynamic structure
pattern. Its complexity does not impact the solution. It might have ports for
interfacing with other capsules. It may in turn contain capsule roles. It may be a fixed
capsule role (as shown in the model example), but is more likely to be incarnated or
imported into the capsule role in the ClientManager.

Accessor

The Accessor is an abstract capsule. It contains the relay ports needed for the
coordination and tear down of the connection. It does not have any behavior.

ServiceAccessor

The ServiceAccessor is a subclass of the Accessor capsule. It additionally contains the
relay ports specific to the protocol between the Client and Service capsules. It also
does not have any behavior. It simply acts as a conduit for messages. The solution
easily allows different accessors to be derived based on the nature of interfaces of the
services.

ConnectionManager

The ConnectionManager is an abstract capsule. It is responsible for providing the
framework for establishing and tearing down a dynamic connection. Its client and
coordination capsule roles are based upon the Accessor capsule (also abstract).

ServiceConnectionManager

The ServiceConnectionManager specializes ConnectionManager to support a
connection to the Service Capsule. It is responsible for controlling access to the
service. The framework easily allows different service connection managers to be
derived based on the nature of the service to be accessed.
80 Chapter 6 - Patterns

The ServiceConnectionManager:

■ determines if the service is unavailable (busy), and notifies the requestor.

■ sets up the dynamic connection between the client and the service and notifies
when the connection is complete.

■ destroys the dynamic connection between a user and the service when notified the
service is no longer required.

■ confirms when the dynamic connection is about to be torn down.

Service

The Service is a component in the sense that it is a non-trivial, nearly independent,
and reusable part of a system that fulfills a clear function. The Services fulfils this
function for numerous and possibly different types of clients. The Service has a
restriction that it can interact with only MaxServiceRequests clients at any point in
time.

Consequences

Safe Dynamic Structure has the following benefits:

1. Safe Dynamic Structure

It is ensured that the connection will be set up before the client attempts to use it. The
connection will be torn down only when the user of the connection is finished with
the service. There is very little detail code and no connection data is maintained
reducing the risk of coding errors. The complexity regarding the state of the
connection is not implemented by detail code, but rather by structure. The service
library's information is used rather than the application duplicating the information
(further reducing the risk the information getting out of sync with the actual system).

2. High Cohesion

Each capsule has a single well defined responsibility. The ClientManager manages
only the policy for establishing the connections. It does not create or destroy the
connections. The ServiceConnectionManager is responsible only for the controlling
access to the service. The ServiceAccessor acts only as a conduit for messages. There
is no behavior in this capsule. The capsules being connected require no knowledge of
who or how they are being connected. The user of the service must however adhere to
the clientTransaction protocol ("go" and "done" messages).
Safe Dynamic Structure Pattern 81

3. Low Coupling

Capsules are communicating only with the other capsules in their layer of abstraction
or lower. The communication between capsules is specific to the purpose of their
functions. None of the capsules are acting as routers of messages. The number of
messages to setup and terminate a connection is minimal.

Only the serviceAccessor capsule id is sent as data in the initial request for service.
The communication between the capsules involved is purely signal based (no detailed
data required). The protocols are request - success/failure in nature. The results of the
request do not need to be interpreted nor analyzed.

The capsules do not know or depend upon how the other capsules perform their tasks
in response to messages sent. The ClientManager does not know anything about the
service's implementation nor how the connection will be built. The
ServiceConnectionManager does not need to know all the client's interfaces (only the
serviceAccessor is imported). The client identifies the task it wants to perform, it does
not need to know which particular services are needed, where they are located in the
system, how to connect to them, the retry policy, etc. It is completely isolated from the
details of the connection policy that is implemented by the ClientManager. Both ends
of the dynamic connection are unaware that they are part of a multiple containment
hierarchy.

The Client, ClientManager, ServiceConnectionManager, and Service capsules can be
developed independently. This is due in part to the low coupling and high
cohesiveness of the elements and in part to the logical layering of the model. The
elements being developed do not mix low level concerns from the problem domain
with the high level concerns of the solution domain. The teams working on the Client
and Service can be specialists in the intricacies of the client and service. While the
teams working on the ClientManager and ServiceConnectionManager can be
specialists for higher level solution concerns such as connection policies.

4. Testable

You can easily test the capsules which make use of the connection without
establishing a connection. Neither the client nor the service participate in the
establishment nor tear down of the connection. The interaction protocol between the
client and service is independent of the manner in which they are connected. If they
could be tested independently before introducing the dynamic relationship, they still
can. For unit testing purposes, you can use fixed capsule roles for the connection
between the client and the service in a test container. The test container would tell the
client to go immediately in response to the needToDoWork request.
82 Chapter 6 - Patterns

The establishment of the dynamic relationship can be easily tested. The parties being
connected are independent of the dynamic relationship. The example model uses very
simple client and service capsules to focus on illustrating the safe dynamic structure
pattern.

5. Scalable and flexible

The subclass hierarchy allows you to easily customize the solution for different types
of and services. The use of the ServiceAccessor allows you to easily customize the
solution for many different types of clients.

The high level of cohesiveness results in a flexible solution. The ClientManager and
ServiceConnectionManager capsules can be customized according to your system's
particular requirements.

The solution is scalable since it takes advantage of the structure information
maintained by the service library. Increasing the number of clients, services, etc. do
not cause any internal data structures to grow.

Increasing the number of client results in an increased number of service accessors,
there is no affect on the ServiceConnectionManager. Increasing the number of
ClientManagers results in an increase in the replication factor of the serviceAccess
port on the ServiceConnectionManager only. Increasing the number of Service
capsules instead of replicating the port on the Service capsule has no affect.

Implementation

Consider the following when implementing Safe Dynamic Structure pattern:

1. ServiceAccessor

When using the ServiceAccessor as a conduit for messages, the messages appear to
need to pass through an extra pair of ports before they arrive at their destination.
While it may look like there is overhead in the use of the ServiceAccessor, this is not
the case. When the UML model is compiled (i.e. code is generated to represent the
model), the relay ports are optimized away in the generated code. Thus messages sent
from either side of the ServiceAccessor arrive directly at their destination's message
queue.

2. Use of the Coordination Capsule Role

The coordination capsule role is used to convey the result of the request to access the
service (serviceReady, serviceUnavailable). In the success situation, the result is the
serviceAccessor is imported twice (once as a coordinator, once as a client). The benefit
of using the coordination role is it makes it simple to ensure the serviceAvailable
Safe Dynamic Structure Pattern 83

message is sent to the right requestor. If you wanted to send this message when the
serviceAccessor is in its client role, you would need to know which slot it was
imported into (in order to know the port index on which to send the message). This
can still be determined, it requires looking at each client instance and determining if it
equals the one which was just imported. Use the frame service's incarnationAt
method to get each client instance's id. If MaxServiceRequests is small you may find
this more efficient than doing the second import. Keep in mind though that the
improvement would only be noticeable if the ServiceConnectionManager handled a
high volume of requests and the cardinality of the client capsule role is low.

3. Service Role Cardinality

The example shows a single service with a port with a cardinality greater than one.
There are no restrictions in the pattern preventing the Service from having a
cardinality greater than one. In the end the cardinality of the client capsule role just
needs to match the number of bindings to the Service supported.

4. ServiceConnectionManager

The example shows a ServiceConnectionManager which does not interact with the
service. When building your model, you will want to determine if the your Service
needs to notify the ServiceConnectionManager of errors. Whether the
ServiceConnectionManager needs to reset it on termination of a connection, and so
on. As well, the ServiceConnectionManager may also implement some usage
restrictions, for example limiting the length of the access. The
ServiceConnectionManager could be extended to support your requirements.

5. Fixed Client and ServiceAccessor Capsule Roles in the
ClientManager

The example shows fixed Client and ServiceAccessor capsule roles in the
ClientManager. Depending on your requirements, you can instead import or
dynamically incarnate the Client and ServiceAccessor in the ClientManager. In fact if
you are importing the Client, you may prefer to import a pass through representative
of the Client. Possibly even reusing this pattern.
84 Chapter 6 - Patterns

Building an Application Using the Safe Dynamic Structure Pattern

When applying the pattern to your application, you may find it easier to start with the
sample implementation given in the example model.

■ Import the safe dynamic structure package from the model example into your
model.

■ Determine the capsules which correspond to the "Client" and "Service"
components. Determine the protocol(s) which govern their communication.

■ Create a subclass of the Accessor capsule. Specialize it by adding the relay ports
for the protocol(s) just identified.

■ Create a subclass of the ConnectionManager capsule. Specialize it for your service
by:

➑ overriding the client capsule role's class with the Accessor subclass just
created.

➑ overriding the client capsule role's cardinality with a constant that
represents the maximum number of users of your service allowed.

➑ creating a capsule role for your capsule representing the service. Connect up
the bindings between the client and the service.

➑ overriding the choice point in the behavior to check if active is less than the
constant representing the maximum number of users allowed.

■ Modify your client component to utilize the ClientTransaction protocol.

■ Create a new capsule representing your ClientManager. This capsule will be very
specific to your application since it implements your connection and retry policies.
The ClientManager in the example shows a simple implementation of such a
capsule. When creating your ClientManager, you may find it easier to create it
from a copy of the ClientManager capsule. To create a copy of the ClientManager,
create a subclass of the ClientManager capsule and then delete the inheritance
relationship. When you delete the inheritance relationship, activate the check box
to absorb all superclass properties. This way you will have a copy of the
ClientManager that you can modify as drastically as desired.
Safe Dynamic Structure Pattern 85

Accessor Capsules

This document briefly introduces the concept of an Accessor capsule. For detailed
examples, please look at and run the various systems contained in the Rational Rose
RealTime AccessorExample model.

What is an Accessor

An Accessor is a capsule that contains two or more relay ports. It must be possible to
legally connect each relay port to at least one other compatible relay port on the
Accessor. A pure Accessor contains no end ports and no internal behavior. At least
two ports must be internally connected for an Accessor to be usable at run-time.

This is the simplest possible Accessor:

The following diagram shows a more complex Accessor:
86 Chapter 6 - Patterns

The following diagram shows a family of Accessors that belong to the same
inheritance hierarchy:

Some Uses for Accessors

An Accessor can be used to dynamically bind pairs of capsules at run-time.

In the following simple configuration, the optional Accessor functions as an on/off
switch. If the Accessor is currently incarnated (if the switch is on), then messages
between capsules one and two will arrive at their destination. If the Accessor is not
currently incarnated (if the switch is off), then messages will not be able to get
through. The containing capsule controls whether or not messages arrive by
dynamically incarnating and destroying the Accessor.
Safe Dynamic Structure Pattern 87

In the next configuration, the Accessor serves as a three-way switch.

■ If the Accessor is not incarnated, then the switch is off.

■ If the Accessor’s pOneConj port is internally connected to port pOneAltA, then
message flow will be switched between capsules one and two.

■ If the Accessor’s pOneConj port is internally connected to port pOneAltB, then
message flow will instead be between capsules one and three.

An Accessor can also be used to dynamically connect capsules contained within
multiple subsystems, using multiple containment. An Accessor is incarnated within
Subsystem X and is then passed in a message to Subsystem Y using either a wired or
unwired communication path (not shown in diagram). Subsystem Y imports the
Accessor into one of several possible plug-in capsule roles, effectively connecting
capsules contained within the two subsystems.
88 Chapter 6 - Patterns

In the following diagram, at run-time, capsule one can be connected to either capsule
two or three depending on whether the SubsystemX accessor is imported into
SubsystemY is accessorTwo or accessorThree plug-in capsule role.
Safe Dynamic Structure Pattern 89

90 Chapter 6 - Patterns

Index
A
Accessor

Capsules 86
defined 86
uses 87

Accessor Capsules 86

B
building

using the Safe Dynamic Structure pattern 85

C
C model examples 61

CardGame 61
SendReceiveData 61

C++ Model examples 19
Callbacks 19
CoffeeMachine 19
DynamicForwarding 19
DynamicStructurePatterns 20
GameOfLife 20
IntegratingData 20
IsrExample 20
ObserverPattern 20
SendReceiveData 20
SocketInterfaceExample 20
TrafficLights 20
UserPrompt 20

callback
external port service example 57

Callbacks 19
Callbacks example model

Callbacks Returning Data 28
Capsule concurrency 22

Capsule encapsulation 22
Common, Unprotected Data access during a

send 22
Control Flow of an inter-thread message

send 24
information 21
Multiple Callback Approach 27
Recommended Design Approach 25
Rose RealTime constraints 22
Sample Model Outline 28
Simple, Single Callback Approach 26

Callbacks model example (C++) 19, 20
CardGame model example (C) 61
Chain of Responsibility Pattern 71
CoffeeMachine model example 19
CoffeeMachine model example (C++) 19, 29
Command Line Model Debugger 15, 19, 61,

65, 67
Command line model debugger 15, 19, 61, 65,

67
contacting Rational customer support xiii
coordination capsule role 83

D
design patterns

applicability 79
building using Safe Dynamic Structure

patterns 85
chain of responsibility 71
consequences 81
factory method 72
implementation 83
Mediator 69
motivation 75
observer 72
participants 79
safe dynamic structure 74
Index 91

design patterns (example models) 67
DynamicForwarding model example (C++) 19,

29
DynamicStructurePatterns model example

(C++) 20, 30

E
event

external port service example 57
example models

C model examples 61
design patterns 67

examples
C++ models 19
directory 15
external port service 57
Java models 63
tips for browsing 16
Unix directory 15
Windows directory 15

extclasses.a 31
extclasses.cpp 31
extclasses.h 31
External Port Service 57
external protocol

external port service example 57
external threads

external port service example 57

F
Factory Method Pattern 72

G
GameOfLife model example (C++) 20, 31

I
IntegratingData model example (C++) 20, 31
ISR interfacing strategy (C++ model example) 33

IsrExample model example
Application - SomeInterruptProcessor 41
class descriptions 38
example model 36
expanding on the Example 42
External Code 42
information 33
ISR interfacing strategy 33
ISRLayer - BaseCustomIPCLayer 38
ISRLayer - SolarisISRLayer 38
ISRLayer - TornadoISRLayer 40
model description 37
Package Application 37
Package ISRLayer 37
Package TestSolarisItimer 38
Package TestTornadoWD 38
strategy 34
supporting files 32
TestSolarisItimer and TestTornadoWD 42

IsrExample model example (C++) 20, 32

J
Java

example models 63
Java model examples 63

M
Mediator Pattern 69
model

C++ examples 19
model examples

RRTEI 65
models

tips for browsing model examples 16

O
Observer Pattern 72
ObserverPattern model example (C++) 20, 43
92 Index

P
patterns 85

design 67

R
Rational customer support

contacting xiii
referenced configurations

model examples 17
RRTEI example models

CreateCapsule1State 66
Various SummitBasic sample scripts 66

RRTEI model examples 65

S
Safe Dynamic Structure Pattern 74
SendReceiveData model example (C) 62
SendReceiveData model example (C++) 20, 43
Service role cardinality 84
ServiceAccessor 83
ServiceConnectionManager 84
SocketInterfaceExample example model

Build Versus Buy 44
description 45
IPC 44
overview 45
Pre-requisites 45

SocketInterfaceExample model example
(C++) 20, 44

sstream.h 31

T
TrafficLights model example (C++) 20, 56

U
UserPrompt model example (C++) 20, 56
Index 93

	Model Examples
	Preface
	Audience
	Other Resources
	Rational Rose RealTime Integrations With Other Rational Products
	Contacting Rational Customer Support

	Examples Introduction
	Overview
	Tips for Browsing Model Examples
	Referenced Configurations

	C++ Model Examples
	Overview
	Callbacks
	Background Information
	Rational Rose RealTime Constraints
	Capsule Encapsulation
	Capsule Concurrency
	Common, Unprotected Data Access During a Send
	Recommended Design Approach
	Simple, Single Callback Approach
	Multiple Callback Approach
	Callbacks Returning Data
	Sample Model Outline

	CoffeeMachine
	DynamicForwarding
	DynamicStructurePatterns
	GameOfLife
	IntegratingData
	IsrExample
	Background Information
	The ISR Interfacing Strategy
	The Strategy
	ISR Interface Example Model
	Example Model Description
	Class Descriptions
	Expanding on the Example

	ObserverPattern
	SendReceiveData
	SocketInterfaceExample
	Why use IPC?
	Build Versus Buy
	Pre-requisites
	Overview
	Socket Example Description
	Operational Concept of IOMonitor
	Overall Operational Profile of the Example
	waitForEvents

	Notes on Message Passing in Rational Rose RealTime

	TrafficLights
	UserPrompt
	External Port Service

	C Model Examples
	Overview
	CardGame
	SendReceiveData
	External Port Service

	Java Model Examples
	Overview

	RRTEI Examples
	Overview
	Various SummitBasic Sample Scripts
	CreateCapsule1State

	Patterns
	Gang of Four Design Patterns
	Mediator Pattern
	Chain of Responsibility Pattern
	Factory Method Pattern
	Observer Pattern

	Safe Dynamic Structure Pattern
	Motivation
	Design Problem
	Forces

	Applicability
	Participants
	ClientManager
	Client
	Accessor
	ServiceAccessor
	ConnectionManager
	ServiceConnectionManager
	Service

	Consequences
	1. Safe Dynamic Structure
	2. High Cohesion
	3. Low Coupling
	4. Testable
	5. Scalable and flexible

	Implementation
	1. ServiceAccessor
	2. Use of the Coordination Capsule Role
	3. Service Role Cardinality
	4. ServiceConnectionManager
	5. Fixed Client and ServiceAccessor Capsule Roles in the ClientManager
	Building an Application Using the Safe Dynamic Structure Pattern

	Accessor Capsules
	What is an Accessor
	Some Uses for Accessors

	Index

