
Rational Software Corporation
Model Integrator Guide

RATIONAL ROSE® REALTIME

VERSION: 2003.06.00

PART NUMBER: 800-026120-000
support@rational.com
http://www.rational.com

WINDOWS/UNIX

Legal Notices
©2002-2003, Rational Software Corporation. All rights reserved.
Part Number: 800-026120-000
Version Number: 2003.06.00

This manual (the "Work") is protected under the copyright laws of the United States
and/or other jurisdictions, as well as various international treaties. Any reproduction
or distribution of the Work is expressly prohibited without the prior written consent
of Rational Software Corporation.

Rational, Rational Software Corporation, the Rational logo, Rational Developer
Network, AnalystStudio, ClearCase, ClearCase Attache, ClearCase MultiSite,
ClearDDTS, ClearGuide, ClearQuest, ClearTrack, Connexis, e-Development
Accelerators, DDTS, Object Testing, Object-Oriented Recording, ObjecTime,
ObjecTime Design Logo, Objectory, PerformanceStudio, PureCoverage, PureDDTS,
PureLink, Purify, Quantify, Rational Apex, Rational CRC, Rational Process
Workbench, Rational Rose, Rational Suite, Rational Suite ContentStudio, Rational
Summit, Rational Visual Test, Rational Unified Process, RUP, RequisitePro,
ScriptAssure, SiteCheck, SiteLoad, SoDA, TestFactory, TestFoundation, TestStudio,
TestMate, VADS, and XDE, among others, are trademarks or registered trademarks of
Rational Software Corporation in the United States and/or in other countries. All
other names are used for identification purposes only, and are trademarks or
registered trademarks of their respective companies.

Portions covered by U.S. Patent Nos. 5,193,180 and 5,335,344 and 5,535,329 and
5,574,898 and 5,649,200 and 5,675,802 and 5,754,760 and 5,835,701 and 6,049,666 and
6,126,329 and 6,167,534 and 6,206,584. Additional U.S. Patents and International
Patents pending.

U.S. GOVERNMENT RIGHTS. All Rational software products provided to the U.S.
Government are provided and licensed as commercial software, subject to the
applicable license agreement. All such products provided to the U.S. Government
pursuant to solicitations issued prior to December 1, 1995 are provided with
“Restricted Rights” as provided for in FAR, 48 CFR 52.227-14 (JUNE 1987) or DFARS,
48 CFR 252.227-7013 (OCT 1988), as applicable.

WARRANTY DISCLAIMER. This document and its associated software may be used
as stated in the underlying license agreement. Except as explicitly stated otherwise in
such license agreement, and except to the extent prohibited or limited by law from
jurisdiction to jurisdiction, Rational Software Corporation expressly disclaims all
other warranties, express or implied, with respect to the media and software product
and its documentation, including without limitation, the warranties of
merchantability, non-infringement, title or fitness for a particular purpose or arising

from a course of dealing, usage or trade practice, and any warranty against
interference with Licensee’s quiet enjoyment of the product.

Third Party Notices, Code, Licenses, and Acknowledgements
Portions Copyright ©1992-1999, Summit Software Company. All rights reserved.

Microsoft, the Microsoft logo, Active Accessibility, Active Client, Active Desktop,
Active Directory, ActiveMovie, Active Platform, ActiveStore, ActiveSync, ActiveX,
Ask Maxwell, Authenticode, AutoSum, BackOffice, the BackOffice logo, bCentral,
BizTalk, Bookshelf, ClearType, CodeView, DataTips, Developer Studio, Direct3D,
DirectAnimation, DirectDraw, DirectInput, DirectX, DirectXJ, DoubleSpace,
DriveSpace, FrontPage, Funstone, Genuine Microsoft Products logo, IntelliEye, the
IntelliEye logo, IntelliMirror, IntelliSense, J/Direct, JScript, LineShare, Liquid Motion,
Mapbase, MapManager, MapPoint, MapVision, Microsoft Agent logo, the Microsoft
eMbedded Visual Tools logo, the Microsoft Internet Explorer logo, the Microsoft
Office Compatible logo, Microsoft Press, the Microsoft Press logo, Microsoft
QuickBasic, MS-DOS, MSDN, NetMeeting, NetShow, the Office logo, Outlook,
PhotoDraw, PivotChart, PivotTable, PowerPoint, QuickAssembler, QuickShelf,
RelayOne, Rushmore, SharePoint, SourceSafe, TipWizard, V-Chat, VideoFlash, Visual
Basic, the Visual Basic logo, Visual C++, Visual C#, Visual FoxPro, Visual InterDev,
Visual J++, Visual SourceSafe, Visual Studio, the Visual Studio logo, Vizact, WebBot,
WebPIP, Win32, Win32s, Win64, Windows, the Windows CE logo, the Windows logo,
Windows NT, the Windows Start logo, and XENIX, are either trademarks or registered
trademarks of Microsoft Corporation in the United States and/or in other countries.

Sun, Sun Microsystems, the Sun Logo, Ultra, AnswerBook 2, medialib, OpenBoot,
Solaris, Java, Java 3D, ShowMe TV, SunForum, SunVTS, SunFDDI, StarOffice, and
SunPCi, among others, are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

Licensee shall not incorporate any GLOBEtrotter software (FLEXlm libraries and
utilities) into any product or application the primary purpose of which is software
license management.

BasicScript is a registered trademark of Summit Software, Inc.

Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma,
Richard Helm, Ralph Johnson and John Vlissides. Copyright © 1995 by
Addison-Wesley Publishing Company, Inc. All rights reserved.

Additional legal notices are described in the legal_information.html file that is
included in your Rational software installation.

Contents
Preface . xi
Audience. xi

Other Resources . xi

Rational Rose RealTime Integrations With Other Rational Productsxii

Contacting Rational Customer Support . xiii

1 Introduction .15
Overview of Model Integrator . 15

Memory Requirements and Performance. 16

Starting Model Integrator . 17

Using the Model Integrator Graphical User Interface 18

A Quick Start to Comparing or Merging Models . 21

Using Model Integrator from the Command-Line . 22

Using Model Integrator and Rational ClearCase . 24

2 User Interface Overview .25
File Menu . 25

Edit Menu . 26

View Menu . 26

Options Menu . 28

Merge Menu . 29

Help Menu . 30

Contributors Dialog Box . 30

Subunits Dialog . 31

Diff Merge Dialog Box. 34

Merge Errors Dialog Box . 34

Filter Properties Dialog Box . 35
Contents v

Virtual Path Maps (Overview) .36
How Do Virtual Paths Work? . 36
Where Are Virtual Paths Defined? . 36
The & and * Symbols . 36

Defining Virtual Paths .37

Edit Path Map (File Menu) .39

3 Examining the Composition of Model Files 41
Overview .41

Composition of Model Files .41
Basic Objects . 42
Diagram Objects . 42
View Objects. 42
Mechanism . 42
Quids . 42
References . 42
Unnamed Objects . 43
Add-in Properties . 43
Rational Rose RealTime Model File Versions . 43

Understanding Subunits and Controlled Units .44

4 Considerations for Comparing and Merging 45
Merging Changes from Multiple Streams. .45

Example: Adding Dependency Issues . 47
Example: Changing Language Semantics . 48

Understanding When Merging is Necessary .50

Merging Detailed Code Before Using Model Integrator50

Merging When Using Unique Ids .52

5 Selecting Contributors. 57
Contributors .57

Specifying Files in the Contributors Dialog Box .58

Base Model .59

Node .59

6 Choosing a Mode . 61
Compare Mode .61

Merge Mode. .61
vi Contents

Subtree Mode. .62

View Mode .62

7 Loading and Saving Subunits . 65
Subunits and Controlled Units .65

Subunit Status .66

Loading Subunits .66
Understanding Subunit File and Path Names . 67
Setting a New Context for Subunits . 67
Resolving Subunit Loading Errors . 68

Pathmaps .68
How Do Virtual Pathmaps Work?. 69
When Do You Need a Pathmap? . 69

Saving Subunits .70

8 Comparing and Merging Models . 71
Comparing Models .71

Merging Models .72
Automatic Merge . 72
Merging Models Without a Base Model . 73

Understanding Differences and Conflicts .73

Interpreting Compare and Merge Results .74

Starting a Merge .75

Semantic Checking .76
Using Semantic Checking On-the-Fly . 77
Limitations of Semantic Checking . 78

Resolving Merge Errors .78
Merging Models with Controlled Subunits . 80

Merging Options. .81
Accepting Changes from Contributors . 81
Deciding Which Contributor to Use . 82
Changing Nodes with Differences . 82
Reversing Changes to Nodes . 83
Performing a Partial Merge . 83

Differencing and Merging Model Elements .84
Contents vii

9 Navigating through Models . 85
Filtering .85

Searching for a Model Element .86

Finding Nodes that Have Moved .86
Viewing Model Elements that Have Moved . 86

Finding Referenced Nodes .86
Viewing Nodes Referenced by a Node . 87

Viewing Conflicts and Differences .87

Viewing Conflicts and Differences with Auto Advance88

Viewing the Parent of a Node .88

10 Using the Rational ClearCase Diff Merge Tool 89
Overview .89

Merge Source Code Example .90
Specifying Contributors . 93
Starting the ClearCase Diff Merge Tool - Merge Source Code. 96

Recommendations .100

Index . 101
viii Contents

Figures
Figure 1 Model Integrator Graphical User Interface for Compare Mode 18
Figure 2 Model Integrator Graphical User Interface for Merge Mode 19
Figure 3 Diff Merge Dialog Box . 34
Figure 4 Merging Changes Prior to Check-In . 45
Figure 5 Comparison Between Versions . 46
Figure 6 Removing Required Dependencies . 47
Figure 7 Code Example Showing Changes to Language Semantics 48
Figure 8 Resulting File After Merging Changes. 49
Figure 9 Figure 9 Incorrect Merge Scenario . 54
Figure 10 Correct Merge Scenario . 55
Figure 11 Merging Changes - Parallel Development . 90
Figure 12 Model Integrator Window for Merge Mode . 95
Figure 13 Diff Merge Notification . 97
Figure 14 Model Integrator Merge Mode Window . 99
Figures ix

x Figures

Preface
This manual describes how Rational Rose RealTime Model Integrator allows you to
compare and merge Rational Rose RealTime models. You can compare model
elements, discover their differences, and merge them into a recipient model.

This manual is organized as follows:

■ Introduction on page 15
■ User Interface Overview on page 25
■ Examining the Composition of Model Files on page 41
■ Considerations for Comparing and Merging on page 45
■ Selecting Contributors on page 57
■ Choosing a Mode on page 61
■ Loading and Saving Subunits on page 65
■ Comparing and Merging Models on page 71
■ Navigating through Models on page 85
■ Using the Rational ClearCase Diff Merge Tool on page 89

Audience

This guide is intended for all readers including managers, project leaders, analysts,
developers, and testers.

This guide is specifically designed for software development professionals familiar
with the target environment they intend to port to.

Other Resources

■ Online Help is available for Rational Rose RealTime.

Select an option from the Help menu.

All manuals are available online, either in HTML or PDF format. To access the
online manuals, click Rational Rose RealTime Documentation from the Start menu.

■ To send feedback about documentation for Rational products, please send e-mail
to techpubs@rational.com.
xi

■ For more information about Rational Software technical publications, see:
http://www.rational.com/documentation.

■ For more information on training opportunities, see the Rational University Web
site: http://www.rational.com/university.

■ For articles, discussion forums, and Web-based training courses on developing
software with Rational Suite products, join the Rational Developer Network by
selecting Start > Programs > Rational Suite > Logon to the Rational Developer Network.

Rational Rose RealTime Integrations With Other Rational
Products

Integration Description Where it is Documented

Rose RealTime–
ClearCase

You can archive Rose RT components in
ClearCase.

■ Toolset Guide: Rational Rose RealTime

■ Guide to Team Development: Rational
Rose RealTime

Rose RealTime–
UCM

Rose RealTime developers can create
baselines of Rose RT projects in UCM and
create Rose RealTime projects from
baselines.

■ Toolset Guide: Rational Rose RealTime

■ Guide to Team Development: Rational
Rose RealTime

Rose RealTime–
Purify

When linking or running a Rose
RealTime model with Purify installed on
the system, developers can invoke the
Purify executable using the Build > Run
with Purify command. While the model
executes and when it completes, the
integration displays a report in a Purify
Tab in RoseRealTime.

■ Rational Rose RealTime Help

■ Toolset Guide: Rational Rose RealTime

■ Installation Guide: Rational Rose
RealTime

Rose RealTime–
RequisitePro

You can associate RequisitePro
requirements and documents with Rose
RealTime elements.

■ Addins, Tools, and Wizards Reference:
Rational Rose RealTime

■ Using RequisitePro

■ Installation Guide: Rational Rose
RealTime

Rose RealTime–
SoDa

You can create reports that extract
information from a Rose RealTime
model.

■ Installation Guide: Rational Rose
RealTime

■ Rational SoDA User’s Guide

■ SoDA Help
xii Preface

http://www.rational.com/documentation/
http://www.rational.com/university

Contacting Rational Customer Support

If you have questions about installing, using, or maintaining this product, contact
Rational Customer Support.

Note: When you contact Rational Customer Support, please be prepared to supply the
following information:

■ Your name, company name, telephone number, and e-mail address

■ Your operating system, version number, and any service packs or patches you
have applied

■ Product name and release number

■ Your Service Request number (SR#) if you are following up on a previously
reported problem

When sending email concerning a previously-reported problem, please include in the
subject field: "[SR#XXXXX]", where XXXXX is the Service Request number of the
issue. For example, "[SR#0176528] - New data on rational rose realtime install issue ".

Your Location Telephone Facsimile E-mail

North America (800) 433-5444
(toll free)

(408) 863-4000
Cupertino, CA

(781) 676-2460
Lexington, MA

support@rational.com

Europe, Middle
East, Africa

+31 (0) 20-4546-200
Netherlands

+31 (0) 20-4546-201
Netherlands

support@europe.rational.com

Asia Pacific +61-2-9419-0111
Australia

+61-2-9419-0123
Australia

support@apac.rational.com
Contacting Rational Customer Support xiii

xiv Preface

1Introduction
Contents

This chapter is organized as follows:

■ Overview of Model Integrator on page 15
■ Starting Model Integrator on page 17
■ Using the Model Integrator Graphical User Interface on page 18
■ A Quick Start to Comparing or Merging Models on page 21
■ Using Model Integrator from the Command-Line on page 22
■ Using Model Integrator and Rational ClearCase on page 24

Overview of Model Integrator

Rational Rose RealTime Model Integrator lets you compare and merge Rational Rose
RealTime models. You can compare model elements, discover their differences, and
merge them into a recipient model.

Model Integrator is a ClearCase-type manager, and it will automatically attempt to
resolve differences between models.

Typically, you will merge different versions of the same source (models, packages,
classes); however, we recommend that you divide models into controlled units, then
merge. For additional information on controlled units, see Subunits and Controlled
Units on page 65.

Contributors are the models that form the input to Model Integrator. You can compare
a maximum of seven contributor files.

For example, two developers can modify a shared model at the same time. They can
either:

■ Make a copy of the model, modify it separately, and then use Model Integrator to
merge their changes into a single, shared copy of the model, or preferably,
controlled units.

■ Use Model Integrator to compare their models and identify the differences
between them.
15

Model Integrator also lets you view the contents of a single model file; it provides a
different way of looking at the model than is provided by Rational Rose RealTime.
Model Integrator provides a low-level textual view of all the model elements and their
properties. This means that you can examine a model quickly to view all of the
property settings currently in use.

Note: Model Integrator is not a visual model or UML semantic-level merge tool,
therefore, it lacks certain features that can make the merging of models more efficient
and more accurate. For every Model Integrator use-case that fails to do what you may
expect, there are many other use-cases that do add value or do what is expected, and
will save you time. When using Model Integrator, you must understand what it can
do efficiently and properly. For additional information about merging, see
Considerations for Comparing and Merging on page 45.

Memory Requirements and Performance

For a typical merge operation, Model Integrator must load models (a minimum of two
models when comparing without a base model, and a minimum of three models with
a base model), and then compile additional information from the loaded models to
compare and merge them. This requires an amount of memory proportionate to the
number and the size of the contributors. The exact proportion varies, however, you
can estimate the maximum amount of memory required.

To determine the amount of memory Model Integrator requires to complete a merge
operation, calculate the sum of the sizes of all model files being merged and multiply
that number by five (5x). This number represents the amount of memory that you
must have to complete a merge operation, in addition to that used by your operating
system and other programs.

Loading large models, for example 30 MB (megabyte) models, can put a strain on
your system. A serious memory deficiency may be evident when loading models
takes a very long time. Model Integrator may appear to be frozen while the disk drive
is busy. This condition is known as thrashing. Thrashing occurs because Model
Integrator constantly requires access to the entire data set for all models being merged
but because of the physical memory shortage, much of this data is stored in virtual
memory on your hard disk (in your computer’s pagefile or swap file depending on
which operating system you are using). The computer is busy reading and writing the
disk, and very little real work is done. If your virtual memory configuration is also
insufficient, you may need to reboot your computer to recover.
16 Chapter 1 - Introduction

To improve Model Integrator performance, consider the following:

■ Configure your computer with enough RAM to meet or exceed the 5x requirement
stated above. If you have 30 MB of models to merge, you should have at least 150
MB of RAM in your computer. Anything less will compromise performance
because Model Integrator will have to store its data to disk.

■ Use fine-grained controlled units (see Subunits and Controlled Units on page 65).

■ If there is not enough physical memory to meet the requirements of Model
Integrator, ensure that you allocate enough virtual memory. Consult your
operating system documentation .

■ Close other programs to free-up memory. If you have sufficient RAM and virtual
memory in your computer, other programs may use large portions of it. In some
extreme cases, applications may load system components that are not unloaded
even when the application exits. If you continue to encounter memory problems,
try running Model Integrator immediately after rebooting your computer and
prior to starting other applications.

■ Use your operating system’s tools to measure and report on memory usage.

Starting Model Integrator

You can start Model Integrator by launching the application as follows:

■ From within Rational Rose RealTime, click Tools > Model Integrator.

■ From within Rational ClearCase as part of a ClearCase compare or merge
operation.

For information on using Model Integrator with ClearCase, see Using Model
Integrator and Rational ClearCase on page 24.

■ From a UNIX shell process or a Windows console process, use the command-line.

For information on command-line options for Model Integrator, see Using Model
Integrator from the Command-Line on page 22.
Starting Model Integrator 17

Using the Model Integrator Graphical User Interface

The two Model Integrator windows Compare Mode and Merge Mode. Figure 1 shows
the Compare mode window, and Figure 2 shows the Merge mode window.

Figure 1 Model Integrator Graphical User Interface for Compare Mode

Note: In Compare mode, the Merge icons are not displayed, you cannot make any
changes to the model, and the Merge menu and toolbar buttons are disabled.
18 Chapter 1 - Introduction

Figure 2 Model Integrator Graphical User Interface for Merge Mode

The following components comprise the GUI for Model Integrator:

■ Browser View

The left pane contains the primary objects that comprise the model. The objects
displayed in the Browser View are not identical to the hierarchical tree structure
on the Model View tab in Rational Rose RealTime. Model Integrator displays
Using the Model Integrator Graphical User Interface 19

some objects that Rational Rose RealTime hides from your Model View. For
additional information on the objects that Model Integrator displays, see
Composition of Model Files on page 41.

Although there are several models loaded into Model Integrator’s memory, the
Browser View displays only a single view of the model hierarchy. The Browser
View shows all of the objects from all of the contributing models and it attempts to
partner objects that are the same across all the models. If all of the Contributors
have the same model element in the same location in the hierarchy, the browser
will only display a single entry for that node of the model. If different Contributors
have the same model element in different locations in the model, there will be a
node in the Browser View for each location where the model element exists in the
merged model. Only one of these locations is written to the final merged output
model file which you determine when you resolve the conflict for that node.

The left side of the window has icons that display the results of the comparing and
merging of the models. For detailed information on these icons, see Interpreting
Compare and Merge Results on page 74.

■ Property View. The upper right pane displays the set of properties that belong to
the currently selected object in the Browser View. In this view, there is a column
for each contributor and recipient model (in merge mode). There is also a column
of icons to help you see the comparison state of the properties provided by the
different contributors. These icons are the same as the comparison icons described
earlier.

■ Text Views. These windows along the lower right side of the main window
display the values from each contributor for the property currently selected in the
Property View. In Merge mode, the left-most text view displays the value for the
recipient model, with the other contributors following it to the right in numerical
order. These windows are for viewing purposes only; you cannot change the
values.

■ Other GUI Features. The Toolbar along the top makes some commonly used
functions available as buttons. All of these functions are also available from the
menus. If you position the cursor over the icons in the Browser View, a message
explains the compare or merge state. At the bottom of the screen, a status bar
displays the merge status of the node currently selected in the Browser View.
20 Chapter 1 - Introduction

A Quick Start to Comparing or Merging Models

Follow these steps for a quick start to comparing or merging your models.

To compare or merge models:

1 Start Model Integrator. For information on how to start Model Integrator, see
Starting Model Integrator on page 17.

Note: If you started Model Integrator from Rational ClearCase, continue with
Step 3.

2 Click File > Contributors.

3 Select a maximum of seven files that you want to compare or merge. For
information on how to specify files, see Differencing and Merging Model Elements on
page 84.

The Compare/Merge Against Base Model option allows you to specify whether to
compare or merge:

❑ All contributor models against each other (requires a minimum of two models).
The result is a recipient model where all changes between the contributor files
are merged together.

❑ Two or more contributor files against a base model (the version of the model
that existed before any changes were made). The result is a recipient file that
merges the contributor files against the base model.

Note: You must click in the empty area in the Base box for the Compare button to
appear on the Contributors dialog box.

4 Click the Compare or Merge button to display the main window.

For a description of Compare mode, see Compare Mode on page 61, and for Merge
mode, see Merge Mode on page 61.

5 If the Subunits dialog box appears, load or unload the appropriate units. For
information on how to load and save subunits, see Loading Subunits on page 66
and Saving Subunits on page 70.

Note: Subunits for each contributor are loaded separately, so you will see a separate
Subunits dialog box for each contributor .rtmdl file containing subunits. You can
specify whether to load or unload an item by changing the type in the Status column
between > LOAD < and unloaded by clicking on the text with your left mouse button.
By default, Model Integrator loads all non-shared subunits for a model.
A Quick Start to Comparing or Merging Models 21

After the Model Integrator main window appears, you are ready to begin working.

Note: The bottom right corner of the Model Integrator window indicates the number
of differences it encountered during the compare process.

Using Model Integrator from the Command-Line

Model Integrator supports a simplified command-line interface that you can use from
DOS and UNIX command lines.

Note: To use Model Integrator from the command-line, the Rational Rose RealTime
bin directory must be in your path.

To Launch Model Integrator from the command line:

■ For Windows, type modelintRT.

■ For UNIX, type RoseRT -modelintRT.

Table 1 shows the different options available for launching Model Integrator from the
command line.

Table 1 Launching Model Integrator from the Command-Line

Command Description

Windows:

ModelintRT file.mdl

UNIX:

RoseRT -modelintRT file.mdl

Starts Model Integrator with file.mdl in
the View mode.

Windows:

ModelintRT file1.mdl file2.mdl

UNIX:

RoseRT -modelintRT file1.mdl file2.mdl

Starts Model Integrator in Compare
mode for the two files specified.

Windows:

ModelintRT file1.mdl file2.mdl filen.mdl

UNIX:

RoseRT -modelintRT file1.mdl file2.mdl filen.mdl

Starts Model Integrator in Merge mode
with the first file named on the
command-line selected as the base
contributor. You can have a maximum
number of seven contributor files.
22 Chapter 1 - Introduction

Additionally, you can use the command-line options in Table 2. You can include the
command line options immediately before or after specifying the files.

Note: Prefix each command with a forward slash (/) for Windows, or a minus sign (-)
character for UNIX.

Table 2 Command-Line Options for Model Integrator

Command Description

/xcompare Starts Model Integrator in Compare mode for the files specified on the
command line. Since this option is the default mode for two files, you do not
need to specify this option but it must be specified when comparing three or
more files.

/xmerge Starts Model Integrator in Merge mode for the files specified on the
command-line. This is the default mode for three or more files.

/compare Starts Model Integrator in Compare mode but does not display the results in
graphical mode. Graphical mode performs the compare operation and then
exits to the operating system with an exit code indicating the result of the
compare operation: 0 for identical models or 1 for models with differences.

/merge Starts Model Integrator in Merge mode but does not display the results in
graphical mode.

If the merge algorithm detects conflicts, the merge is aborted and the
program returns an exit code of 1.

If the merge can be completed without conflicts, the merged file is saved
using the file named by the /out command.

If you do not specify an /out command, the Save dialog box appears. The
Subunits dialog box will also appear unless a subunit policy choice is made.

/out filename Specifies the name of the file to write to the merged output file. You must
specify an absolute or relative path name for the file. The following examples
are valid commands:

/out c:\models\test.rtmdl

/out .\test.rtmdl

This command is not valid:

/out test.rtmdl

/ask

/all

/none

Subunit policy options.

The /ask command is the default for the graphical mode of Model Integrator.
By default, when reading and writing models, Model Integrator displays a
Subunit dialog box that allows you to specify whether to load or save
subunits.

The /all command loads or saves all the subunits without prompting you
with the Subunit dialog box.

The /none option suppresses the loading and saving of subunits.
Using Model Integrator from the Command-Line 23

Using Model Integrator and Rational ClearCase

Model Integrator is designed to work with Rational ClearCase to allow you to
compare and merge individual model files from within the ClearCase environment.
You can use the standard ClearCase tools such as the Version Tree Browser or the
ClearCase context menus in Windows Explorer to compare model file versions and
merge branched versions of models.

For example, you can do one of the following:

■ Right-click on a model file version displayed in the ClearCase Version Tree
Browser to display a context menu. Then, select Compare > with Previous
Version. ClearCase invokes Model Integrator to show the differences.

■ From the Windows Explorer, right-click on a model file in a ClearCase view and
select ClearCase > Compare with Previous Version.

Note: Model Integrator is a ClearCase type manager. It will automatically resolve
differences, where possible. If there are no conflicts to resolve, Model Integrator will
not display the GUI. To configure Model Integrator with ClearCase, see the Rational
Rose RealTime Guide to Team Development and the Rational ClearCase documentation.
24 Chapter 1 - Introduction

2User Interface Overview
Contents

This chapter is organized as follows:

■ File Menu on page 25
■ Edit Menu on page 26
■ View Menu on page 26
■ Options Menu on page 28
■ Merge Menu on page 29
■ Help Menu on page 30
■ Contributors Dialog Box on page 30
■ Subunits Dialog on page 31
■ Diff Merge Dialog Box on page 34
■ Merge Errors Dialog Box on page 34
■ Filter Properties Dialog Box on page 35
■ Virtual Path Maps (Overview) on page 36
■ Defining Virtual Paths on page 37
■ Edit Path Map (File Menu) on page 39

File Menu

New Session

Clears previous results in preparation for a new compare/merge session.

Contributors

Specify the input (contributor) files to compare or merge.

Save

Saves the merged model.
25

Save As

Saves the merged model with the option to specify a new file name for the model or to
change the subunit configuration of the model.

Edit PathMap

Open the Virtual PathMap Editor Dialog Box.

Exit

Exits Model Integrator; prompting you to save the merged model if it has not been
saved.

Edit Menu

Undo

Restores the previous value for the most recent change made to the merged model. All
of your undo choices are remembered for the entire session.

Redo

Reverses the action of the Undo command.

Select All

Selects all items in the current window. Selected items are highlighted.

Search

Highlights all instances of a search word or phrase in the Model Integrator windows.

View Menu

Toolbar

Displays or hides the toolbar.

Status Bar

Displays or hides the status bar.
26 Chapter 2 - User Interface Overview

Expand

Expands the selected node of the browser view to display the model hierarchy.

Elide

Collapses the selected node of the browser view.

Expand All

Expands all nodes of the browser view to display the entire model hierarchy.

First Conflict

Goes to the first conflict, difference, or item in the browser view, depending on the
setting of Options > Auto Advance.

Previous Conflict

Goes to the previous conflict (if any) in the browser view.

Previous Difference

Goes to the previous difference or item in the browser view, depending on the setting
of Options > Auto Advance.

Next Difference

Goes to the next difference or item in the browser view, depending on the setting of
Options > Auto Advance.

Next Conflict

Goes to the next conflict (if any) in the browser view.

Last Conflict

Goes to the last conflict, difference, or item in the browser view, depending on the
setting of Options > Auto Advance.

Parent Node

Changes the current selection in the browser view to be the parent of the current node.
View Menu 27

Other Location

Changes the current selection in the browser view to show you another location
where this same node exists in the model. Applies to nodes which have been moved
by one or more contributors.

Referenced Node

Changes the current selection in the browser view to show you the node referenced as
the "client", "quidu", or "supplier" by the current node.

Previous Location

Changes the current selection in the browser view to return to the node you were at
before the last View > Parent, View > Other Location, or View > Referenced Node
command.

Options Menu

Merge Mode

Changes Model Integrator to use Merge mode. Activates the Merge menu. Before
exiting the program, you will be prompted to save the merged model.

Compare Mode

Changes Model Integrator to use Compare mode. In this mode, models are compared
but no merge results are saved.

Show Differences Only

Filters the nodes displayed in the browser view. In Merge mode, it filters the browser
view to displays only nodes with conflicts. In Compare mode, it filters the browser
view to display only nodes with differences. In either case, parents of the selected
nodes are also displayed.

Hide Deleted Nodes

Hides nodes that are deleted, which can make it easier to see what the model will look
like if there are many deletions. The command does not hide nodes deleted by a user
merge choice.
28 Chapter 2 - User Interface Overview

Auto Advance

After accepting a change, the Auto Advance function moves the current selection in
the browser view to the next conflict or difference (depends on the Auto Advance
option selected). Auto Advance > None turns Auto Advance off. The Auto Advance
selection also affects the operation of the View > Next/Prev/First/Last commands.

Filtering

Opens the Filtering Properties dialog box, where filters can be set that allow small
changes in the position of objects in a Rational Rose RealTime diagram to exist
without creating a conflict when merging models.

Merge Menu

Resolve All Conflicts Using

Resolves all unresolved conflicts by accepting changes from the selected contributor.
Conflicts which have been previously resolved will not be affected by this command.

Resolve Selected Nodes Using

Resolves unresolved conflicts of the selected node by accepting changes from the
selected contributor. Conflicts which have been previously resolved will not be
affected by this command.

Revert Selection

Changes the selected nodes back to their unmerged state, erasing any previous merge
decisions made either by you or by Model Integrator.

AutoMerge Selection

Applies Model Integrator’s automatic merge algorithm to the selected nodes. This
command will only operate on nodes that have been reverted (see Merge > Revert).
Nodes with differences will select the contributor that causes the difference. Nodes
with conflicts will remain unresolved.

Subtree Mode

Turns Subtree mode on and off. Subtree mode allows you to apply merge mode
commands to both the current node and all of its children.
Merge Menu 29

Semantic Checking

Toggle to enable or disable on-the-fly reference checking. When enabled, merge the
choices which would cause a reference to a deleted node are not allowed.

Check Merge

Displays the Merge Errors dialog box.

Merge Source Code

Merges the source code of the contributor models.

Help Menu

Help Topics

Displays the online help for Model Integrator.

About Model Integrator

Displays the copyright information, version number and build identifier for Model
Integrator.

Contributors Dialog Box

Files

Dispalys a list of files to compare or merge. You can enter file names or browse your
computer to find files to add to the list. Files can be complete model files (.mdl) or
subunit files, including .rtclass, .rtlogpkg, .rtcmppkg, .rtdeploy, .rtcollab,
.rtdeploydgm, .rtclassdgm, .rtcmp, .rtprcsr or .rtdev.

Click the Browse button to open the Add Contributor dialog from which you can
browse for the file that contains the model or controlled unit you want to add to the
Files list.

New (Insert)

Adds a file to the Files list.

Note: When selecting a base model, it should be the common ancestor of the models
you are comparing or merging. The common ancestor is the model from which the
other contributors have evolved.
30 Chapter 2 - User Interface Overview

Delete

Removes a file from the Files list.

Move Up

Changes the order of the currently selected file by moving it up in the Files list

Move Down

Changes the order of the currently selected file by moving it down in the Files list.

View

Uses Compare mode to view the differences between the files in the contributors list.

Merge

Compares files and creates a recipient into which changes can be merged. If Model
Integrator encounters a conflict, it will mark the conflict and allow you to decide how
to resolve it.

Cancel

Closes the dialog without performing a compare or merge of the files.

Help

Displays the online help for the Contributors Dialog Box.

Compare/Merge Against Base Model

When checked, Model Integrator compares the other contributors to the base model
(the first contributor) to determine differences and conflicts. This is the normal mode
of operation when merging models that represent different branches derived from a
common parent.

Subunits Dialog

Context

Displays the path of the subunit you are working with.

Load all nested subunits

Shows all of the subunits that belong to a file specified in the Contributors dialog box.
Subunits Dialog 31

Unit

Shows all of the subunits that belong to a file specified in the Contributors dialog box.

Click the package name in the Units column and then click Browse to find the actual
path of the controlled unit.

Status

Shows the status of each subunit that belongs to a file specified in the Contributors
dialog.

The Status values are:

■ Loaded - Indicates that the package is a controlled unit and that the unit is
currently loaded.

■ Unloaded - Indicates that the package is a controlled unit that is not currently
loaded. To be considered during the compare or merge, the unit must be loaded.

■ Not a unit - Indicates that the package is not a controlled unit and therefore does
not need to be loaded or unloaded. It is always considered during the compare or
merge.

■ LOAD - Is the default value for controlled units that are not currently loaded. If
you click on LOAD, its value toggles to Unloaded. Any unit whose status is LOAD
will be loaded when you click Apply or OK.

Actual Path

Contains the actual path of each controlled unit for which a valid virtual path has
been defined. If the actual path does not appear or is incorrect, it may be because no
virtual path map entry exists for the unit.

Virtual Path

Contains the PathMap symbol, if any, defined for each controlled unit. If you need to
define a new PathMap symbol, click PathMap to start the Rose RealTime PathMap
Editor. When you return to the Subunits dialog, it will include a correct virtual and
actual path for the unit.

OK

Loads any subunits whose status is LOAD and displays the next Subunits Dialog Box
or completes the Compare or Merge operation.
32 Chapter 2 - User Interface Overview

Cancel

Continues without loading any subunits.

If another contributor file also has subunits, the Subunits dialog displays again, this
time for the next contributor file.

When there are no more contributor files with subunits, Model Integrator completes
the Compare or Merge, without loading subunits.

Apply

Loads any units whose status is set to LOAD without closing the dialog

PathMap

Starts the Rational Rose RealTime PathMap editor to add an appropriate PathMap
symbol for the controlled unit. You can use the PathMap editor to add or change
PathMap symbols as required. For detailed instructions, click Help in the Virtual
PathMap dialog. When you return to the Subunits dialog, it will include a correct
virtual and actual path for the unit.

Browse

Select a subunit to load; then click Browse to find its actual path.
Subunits Dialog 33

Diff Merge Dialog Box

Figure 3 Diff Merge Dialog Box

Merge Errors Dialog Box

Errors List

Displays the list of errors which resulted from the last merge.

View Error

For the item currently selected in the error list, shows you the node of the model
where a dangling reference is being defined. Depending on the error condition, either
this node or one of its parents has been deleted or moved by the contributor currently
selected for the recipient. To repair the problem, you must accept changes from a
different contributor at either the error definition node (to define the missing node) or
at the referencing node (to eliminate the reference).
34 Chapter 2 - User Interface Overview

View Parent

For the node currently selected in the browser view, this button shows you the parent
of that node. It is the same as the View > Parent menu command. It is useful when
the error condition states that the parent of a referenced node has been deleted. Use
this button to view the parent nodes.

View Definition

View Definition takes you to the referenced element in the browser tree. This is useful
if you don't know where the referenced item/element is located in the browser tree.

View Other Locations

For the item currently selected in the error list, shows you another place in the model
where this same node is defined (because different contributors have defined the
same object in different places). This command is useful when the error condition is a
forward reference error. In this situation the contributor that is currently accepted
into the recipient has moved the object to a place in the model where it is being used
before it is defined. Use this command to view all the locations.

Refresh List

Updates the Merge Errors list.

Filter Properties Dialog Box

All Coordinates - When enabled, differences in position between diagram elements in
the model files that are less than the filter value will not result in a conflict. Vertical
and horizontal differences are calculated separately.

Max_width - When enabled, differences in the maximum width of Label tags in the
model files that are less than the filter value will not be reported.

Filter Value - Sets the level in pixels, at which differences in the Property value will
result in a conflict. Changes to the Property of pixel values less than the Filter Value
will not create a conflict.
Filter Properties Dialog Box 35

Virtual Path Maps (Overview)

The references to controlled units are stored as file paths in the model file or parent
units. To allow models to be moved between different folder structures and to be
updated from different workspaces, Rational Rose provides a mechanism called
virtual path maps. Virtual path maps are used to reference controlled units using a
virtual path instead of an absolute path.

How Do Virtual Paths Work?

When Rational Rose saves a model, it tries to substitute every absolute path with a
virtual path. When Rational Rose opens a controlled unit, or uses a path specified in a
model property, each virtual path is transformed back into an absolute path. (For
more information about the substitution algorithm, see Path Map Algorithm.)

For example, if a user has defined a virtual path,

$MYPATH=Z:\ordersystem,

and saves a package as

Z:\ordersystem\user_services.cat,

the model file will refer to the package as

$MYPATH\user_services.cat.

When another user, who has defined $MYPATH as

$MYPATH=X:\ordersystem,

opens the same model from his/her "X" drive, Rational Rose resolves the internal
reference to the controlled unit and loads the following file:

X:\ordersystem\user_services.cat.

Where Are Virtual Paths Defined?

Select File >Edit Path Map to display the Virtual Path Map dialog box you use to
create virtual paths. The dialog box contains a list of entries; each entry represents a
mapping between a virtual path symbol and an absolute path.

The & and * Symbols

A leading "&" in a path map definition represents the folder where the enclosing
controlled unit or model file is located, and can be used to reference units relative to
model files and other units. For example, the virtual path symbol, $CURDIR, in the
illustration above is defined as the actual path &. If you save a package as

Z:\ordersystem\units\user_services.cat
36 Chapter 2 - User Interface Overview

and the model file as

Z:\ordersystem\ordersys.mdl,

the model file will refer to the unit as

$CURDIR\units\user_services.cat.

When another user, which has defined $CURDIR in the same way, opens the same
model, Rational Rose interprets the reference to the unit’s file in the context of that
user’s workspace, for example

X:\ordersystem\units\user_services.cat.

Also, a wildcard, "*", in the path map can be used to parameterize a virtual path.

Defining Virtual Paths

The references to controlled units are stored as absolute file paths in the model. If you
control a logical package in a ClearCase view, the model’s reference to that controlled
unit will include the view name (for example, X:\ordersystem\units\user_serv.cat).
When another member in the team opens the model in another view (for example, Y:),
Rational Rose cannot find the referenced unit. In order to allow different users to
access the model from different workspaces, virtual path maps should be used.

The dialog box contains a list of entries; each entry represents a mapping between a
virtual path symbol and an actual pathname.

To define a virtual path:

1 Open the model in Rational Rose. Make sure that the model file and all of its
controlled units are write-enabled. That is, if they are under version control, you
must check them out.

2 Click File > Edit Path Map to open the Virtual Path Map dialog.

3 Type the name of the virtual path in the Symbol box (for example, "MYPATH"),
but omit the leading "$" character.

4 In the Actual Path box, enter the folder where the model file is located. In the
picture below, the path map symbol, $MYPATH, points to the folder
X:\ordersystem.

5 Click Add. You have now defined a virtual path map symbol, $MYPATH.
Defining Virtual Paths 37

6 To substitute the current physical paths to any existing controlled units in the
model file, save the model and all of its controlled units.

Note: Note: Each user that is going to work on this model will have to define the
same path map symbol before opening the model. For example, another user with
the private workspace Y:\ordersystem, must define $MYPATH=Y:\ordersystem.

When anyone in the team opens or saves a model hereafter, Rational Rose will try to
match the longest possible file path to the symbols in the path map. For example, if a
model references the controlled unit X:\ordersystem\units\data_serv.cat, the actual
reference in the model file will be $MYPATH\units\data_serv.cat. Thus, when
another user opens the model in his/her private workspace, $MYPATH will be
substituted with the path defined by that user’s path map.

To define a path map relative to the location of the model file:

A leading "&" on a path name indicates that the path is relative to the model file or the
enclosing controlled unit (if any). For example, suppose you have created a model:

X:\ordersystem\ordersys.mdl

and a controlled unit:

X:\ordersystem\units\data_serv.cat.

To allow different users to open the model and load the unit in different
workspaces, each user can create a path map:

$CURDIR=&.

When the model is saved, the reference from the model file to the package is stored as:

$CURDIR\units\data_serv.cat

When the model is opened in another workspace, $CURDIR is expanded to the
physical path to the model in that specific workspace, for example:

Z:\ordersystem.

Note: The "&" requires that the controlled units are located in the same folder as the
model file or in a subfolder to the model file.

To define a new path map using another path map symbol:

The actual path in a path map definition can contain previously defined path map
symbols. For example, if there is a path map, $ROOT=X:\model_vob, you can define
a path map for the path X:\model_vob\ordersys by simply adding the path map
$MYPATH=$ROOT\ordersys.
38 Chapter 2 - User Interface Overview

To define a parameterized path map:

A wildcard character, "*", in the path map can be used to parameterize a virtual path.
For example, if the following virtual path is defined:

$SUBSYSTEM=\\server\models\project*\fred

and each user working on "project" has his/her own set of model files within each
subsystem, then a controlled unit belonging to the display subsystem may have the
following path:

\\server\models\project\display\fred\diagrams.cat

the model file will refer to the unit as:

$SUBSYSTEM(display)/diagrams.cat

When the model is opened by user "susanne," who has the following virtual path
definition:

$SUBSYSTEM=\\server\models\project*\susanne

the virtual path reference to the unit is transformed back to the actual path:

\\server\models\project\display\susanne\diagrams.cat

This allows different users to work on the same files, with the same contents, but in
different folders, without having to define a virtual path symbol for each such folder.

To use virtual paths in the value of a model property:

Rational Rose does not convert actual paths in model properties to virtual paths. In
order to use a virtual path in the value of a model property, you must manually enter
the virtual path map symbol, including the "$" sign - for example, $CURDIR - into the
value of the model property.

Edit Path Map (File Menu)

The Edit Path Map dialog lets you create an entry to represent a mapping between a
virtual path symbol and an actual pathname.

This feature allows you to work with models moved or copied among workspaces
and archives by redefining the actual directory associated with a user-defined symbol.

The dialog box contains a list of entries; each entry represents a mapping between a
virtual path symbol and an actual pathname.

To display the Edit Path Map dialog box, click File > Edit Path Map.
Edit Path Map (File Menu) 39

40 Chapter 2 - User Interface Overview

3Examining the
Composition of Model
Files
Contents

This chapter is organized as follows:

■ Overview on page 41
■ Composition of Model Files on page 41
■ Understanding Subunits and Controlled Units on page 44

Overview

To understand how Model Integrator works, you must first understand the
composition of the model files generated by Rational Rose RealTime. A Rational Rose
RealTime model consists of a set of objects (also called model elements, items, or
nodes). Each object has its own set of properties that define attributes of the object.
Model Integrator exposes all of the objects and properties defined in the models that
you are comparing or merging.

Composition of Model Files

A Rational Rose RealTime model can include the following object types:

■ Basic Objects on page 42
■ Diagram Objects on page 42
■ View Objects on page 42
■ Mechanism on page 42
■ Quids on page 42
■ References on page 42
■ Unnamed Objects on page 43
■ Add-in Properties on page 43
■ Rational Rose RealTime Model File Versions on page 43
41

Basic Objects

Basic objects are the main objects in your model. They are the objects that represent
things in your model, such as actors and classes.

Diagram Objects

All of the diagrams you create in a model are objects. Diagrams are displayed
differently in Model Integrator than in Rational Rose RealTime. The diagram titles
will be the same in the Browser View area, but the diagrams are not shown as
graphics. They are displayed as text lists of their component objects. Some of these
components you are already familiar with, such as labels. Others are new because
Rational Rose RealTime does not display them for you; these objects include the View
Objects.

View Objects

Every basic object is represented by a view object when it appears in a diagram. For
example, a class appears on a diagram in your model. The diagram object will have a
child of the ClassView object for that class, and so on for every type of basic object.
Other view objects exist for items that are part of a Mechanism.

Mechanism

A mechanism is a hidden part of a model which contains a set of objects used
internally to implement the parts of the model you created. A mechanism will contain
more child objects.

Quids

A QUID is a unique identifying number that distinguishes the object it is attached to,
regardless of the object’s name. Rational Rose RealTime generates a QUID property
for each object when as it is first created in the model. QUIDs are unique, because they
identify an object when the name of the object changes, or when the object is moved in
the model. Model Integrator uses QUIDs extensively to determine whether objects are
the same; if the QUID is the same, then the objects have a common ancestry.

For information on setting the unique id option, see To set the Generate unique identifiers
for all elements option: on page 53.

References

Much of the power of the Rational Rose RealTime model comes from the relationships
that exist between objects. These relationships are identified by reference properties
(or just references) based on QUIDs, that enable one object to point to another. A given
object in a model may have no references at all, or it may have many. Reference
42 Chapter 3 - Examining the Composition of Model Files

properties have names such as client and supplier. Model Integrator provides a
View > Referenced Nodes command that lets you to view the referenced model
elements.

Note: It is essential to maintain valid references between the objects in the model after
a merge is completed. When objects are deleted or moved, Model Integrator must
check to ensure that references from other objects continue to be valid. This semantic
checking function is performed before the model is saved.

Unnamed Objects

Virtually every object in a Rational Rose RealTime model has its own unique name.
However, you are not required to name every object that you create. For objects that
you do not name, Rational Rose RealTime creates a name of the form:

$UNNAMED$nn

where nn is a number for that object.

Often, a model will contain many unnamed objects that you are not aware of because
Rational Rose RealTime never shows you the string $UNNAMED$. Model Integrator
displays the name of every object including unnamed objects where nn represents an
object’s name. Usually you can tell what an object is by looking at its icon in the
Browser View, its properties (the object type will be at the top of the Property View),
and in some cases, by looking at the children of the object.

Add-in Properties

Models can contain properties specific to, for example, language add-ins. During a
compare or merge, these properties are also considered and compared.

Rational Rose RealTime Model File Versions

Each model is assigned a number that corresponds to the version of Rational Rose
RealTime in which it was created. You can see the model file version information
listed in the property view of the first node of the model in the Browser View, under
the @Petal property.

Models must have the same version number to be successfully merged.
Composition of Model Files 43

Understanding Subunits and Controlled Units

Rational Rose RealTime stores all or part of a model in one or more files. If a model is
divided into separate files, the files other than the main .rtmdl file are called subunits.
In a team environment, these files would be under version control. When under
version control, these subunit files are called controlled units. Subunits and controlled
units are created to define portions of the model upon which individual developers
can work. Breaking up a model into controlled units allows a project team to develop
a model in parallel.

Note: For optimum merge results, use controlled units (fine-grained controlled units
are best).

If the files that you are attempting to compare or merge contain subunits or controlled
units, Model Integrator prompts you to determine whether to load or unload these
units.

Rational Rose RealTime supports the following controlled units as separate units (file
extensions for corresponding files are shown in parentheses):

■ Model (.rtmdl)
■ Package (.rtlogpkg), (includes Use Case Packages and Logical Packages)
■ Class Diagram (.rtclassdgm) (includes Use Case Diagram)
■ Class (.rtclass)
■ Capsule (.rtclass)
■ Protocol (.rtclass)
■ Use Case (.rtclass)
■ Actor (.rtclass)
■ Collaboration (.rtcollab)
■ Component Package (.rtcmppkg)
■ Component Diagram (.rtcmpdgm)
■ Component (.rtcmp)
■ Deployment Package (.rtdeploy)
■ Deployment Diagram (.rtdeploydgm)
■ Processor (.rtprcsr)
■ Device (.rtdev)

For additional information on subunits, see Loading and Saving Subunits on page 65.
44 Chapter 3 - Examining the Composition of Model Files

4Considerations for
Comparing and Merging
Contents

This chapter is organized as follows:

■ Merging Changes from Multiple Streams on page 45
■ Understanding When Merging is Necessary on page 50
■ Merging Detailed Code Before Using Model Integrator on page 50
■ Merging When Using Unique Ids on page 52

Merging Changes from Multiple Streams

You can use Model Integrator to apply a combined set of changes in situations where
changes have been made to multiple versions of a single file in different streams.
Figure 4 shows how you can merge two changes made to the same file. A file X is
modified in stream A. A version of the same file is also modified in stream B. Later,
the changes are merged together to create X’ with both results merged.

Figure 4 Merging Changes Prior to Check-In
45

Considerations

■ It may be difficult to remove a set of changes that occurred in a previous version of
a file.

■ When merging, a conflict may result with another change if it removes a
dependency that one or more other files rely on. For additional information on this
type of merging conflict, see Example: Adding Dependency Issues on page 47.

■ The changes made may affect the language semantics of the file. For additional
information, see Example: Changing Language Semantics on page 48.

The situation in Figure 5 shows us three versions of a file. If you want to remove all
changes applied to the second version (the changes occurring between the two
diagonal lines), you may encounter difficulties.

Figure 5 Comparison Between Versions

Considerations

■ For example, the changes between version 1 and version 2 must be compared to
the changes between version 1 and version 3.

■ Obtaining adequate permission to modify files helps to ensure that unintentional
changes do not occur. Configuration management can choose to implement and
enforce this type of policy.

■ Practice ownership of files. This means that changes can only be made by the
owner of the file. This makes it easier to resolve merge conflicts since the owner is
aware of the files and what changes should be made.
46 Chapter 4 - Considerations for Comparing and Merging

Example: Adding Dependency Issues

Modifying an file may cause a conflict with another change if it removes a
dependency that one or more other files rely on. Figure 6 shows how this type of
problem can occur.

Figure 6 Removing Required Dependencies

Files A and B are checked out to different streams. In stream A, a developer creates a
new dependency in foo() by adding myBar-> bar().

In stream B, a developer makes changes to bar() in class A by changing the
parameter signature to integer.
Merging Changes from Multiple Streams 47

Changes to bar - from bar() to bar(int) - cause any references to this function to
fail. The changes made by the developer in stream B (to file B) that are referenced by
foo in file A in stream A are not valid.

Note: Most merge tools are unable to identify a conflict here because they compare
items of work individually and not against all referenced work.

Example: Changing Language Semantics

When product maintenance is underway and feature development is concurrently
managed, the developer may be unsure of all dependencies involved in a proposed
change. Rather than search all the dependencies associated with the file, they do not
modify the original stream. Instead, they create a new item with the proposed
changes.

When modifying a file, team members must be aware that subsequent changes can
affect the language semantics of the file. This type of change is common and may have
serious implications. Figure 7 shows an example of how changes can produce
unexpected results.

Figure 7 Code Example Showing Changes to Language Semantics
48 Chapter 4 - Considerations for Comparing and Merging

Unless your merge tool knows something of the language semantics used, it may
produce a file like that in Figure 8.

Figure 8 Resulting File After Merging Changes

The function dothat() is called only when there is trouble, and the function
dotheotherthing() is called only when okay is true. Since most developers do not
comment ending braces, it is difficult to identify the problem created by merging.
Figure 8 only illustrates a small example. A much more complex code block may
present a situation where it is difficult to see the unintended change.

Considerations

Rational Rose RealTime Model Integrator is aware of the language semantics/model
syntax of model files, but it is not aware of the language semantics for any language
add-ins, or the UML.

Note: Although Rational Rose RealTime files are text files, standard text file merge
tools are not aware of the Rational Rose RealTime language semantics or model
syntax, and should not be used to merge model files because it will likely corrupt
model files.

If you require merging, perform it outside of these integration streams, and sanity test
it before integrating it as a new version.

Note: You can use merge tools, such as Model Integrator, for merging simple,
non-conflicting changes. We recommend that:

❑ changes be made in a controlled manner

❑ you be aware of the expected results of a merge

❑ merges be reviewed for correctness after all merge operations, including
non-conflicting merges.
Merging Changes from Multiple Streams 49

Understanding When Merging is Necessary

Merging is necessary when changes are made to two or more versions of a file.
Perform the merge as often as possible. Every developer involved in a concurrent
change must regularly work with a merged version of the ongoing work to identify
adverse or unintended changes.

The intention is to reduce the amount of effort required to resolve a merge conflict.

With the method used by Rational ClearCase to facilitate integration branches, it is
wise to choose a special integration stream for verifying merges for a configuration
item. This isolates the remaining files in your system from these changes until the
configuration has been verified.

Note: After every merge, we recommend that you assess changes to semantic
relationships and other dependencies.

Merging Detailed Code Before Using Model Integrator

In Model Integrator, some model elements include detailed code, textual
documentation, and other elements, and you must select one contributor over
another. When you use Model Integrator with Rational ClearCase, you can resolve
these textual merges, see Using the Rational ClearCase Diff Merge Tool on page 89.

When comparing models, Model Integrator looks at the model elements which it then
compares with other elements based on properties. For example, for a base model,
called ModelX, there are two contributors, Contrib1 and Contrib2. If property A of
element A from Contrib1 is equal to element A of property A for Contrib2, then all
code associated with the transition is in a single property; the base model has
element A.

When property A of element A from Contrib1 is not equal to element A of property A
for Contrib2, Model Integrator detects the difference and allows you to select a
contributor. Selecting a contributor causes the base model to change.The result is a
merged model with the changes from a single contributor.

To merge before using Model Integrator:

1 Abandon the merge.

2 Export the code from Contrib1 to a file.

3 Export the code from Contrib2 to another file.
50 Chapter 4 - Considerations for Comparing and Merging

4 Use another merge tool, such as Rational ClearCase, to merge the source code from
the two files.

5 Import the merged source code into Contrib1 in Rational Rose RealTime Model
Integrator.

6 Use Model Integrator to merge Contrib1.

Primary edits that involve more than one controlled unit are the most troublesome,
and is more common in projects where the recommendation of not practicing file
ownership is not followed. When this situation arises, there are typically two
approaches to resolving change:

■ The user making the primary edits performs a private check-out of all affected
controlled units. The affected controlled units are then later merged into another
stream, possibly at integration time. Unfortunately, the type of merging that must
be performed is less predictable and planned. It is difficult for any tool to properly
and completely address the complexities of these merges in a reliable and robust
manner.

■ The user making the primary edits coordinates with the owners of the other
affected controlled units to implement a change; ultimately, to avoid the necessity
for a merge later. This approach is difficult to do and does not take advantage of
the change management features of the tools in the tool chain. Important
considerations for this approach to implementing a change are who will do the
changes and when.

Considerations

When more than one user needs to make changes to the same file, they can make the
changes at the same time. The changes are merged back into one file at a later date.
The benefit of this approach is that work goes on in parallel, and it saves time. The
problem is that arbitrary and uncoordinated changes on the copies of the same file can
be difficult to resolve during the merge process. In fact, they may never be resolved,
and the changes from only one contributor are accepted and from the other are
discarded.

We recommend practicing ownership of files so that the impact of the changes to the
multiple streams is understood and can be more easily resolved.

Note: We recommend that these types of changes be coordinated and merged often.

Invest time in understanding what Rational Rose RealTime Model Integrator will, and
will not do during a merge.

Resolve all issues relating to merging parallel changes prior to integration.
Merging Detailed Code Before Using Model Integrator 51

Merging When Using Unique Ids

Unique ids are unique internal names associated with model elements. They are used
internally by Rational Rose RealTime. Not all model elements require unique ids.
Rational Rose RealTime includes a feature that helps Model Integrator by generating
unique ids for internal use for those model elements that would otherwise not require
them. For Model Integrator, an element with a unique id is easier to merge.

Rational Rose RealTime Extensibility Interface (RRTEI) users will find traceability
easier when they set this option. Unique ids improve the traceability of model
elements of other tool integrations that use RRTEI.

It is necessary to plan and choose when to incorporate the new unique ids into the
project model since virtually all controlled units will be modified implicitly.
Additionally, the generated new ids are dependent on time and location. For example,
generating unique ids for a given model at different times or on different machines
produces different ids.

The following model elements do not have unique ids, unless you set the
Generate unique identifiers for all elements option:

■ Protocol In Signals ()
■ Protocol Out Signals ()
■ States (CompositeState)
■ Capsule Roles (CapsuleRole)
■ Ports (Port)
■ Port Roles (PortRole)
■ Capsule Structure diagram (CapsuleStructure)
■ Classifier Role (ClassifierRole)
■ Transitions (Transition)
■ Junction Point (JunctionPoint)
■ Choice Point (ChoicePoint)
■ Connectors (Connector)
■ (Guards)
■ (Events)
■ (EventGuards)
■ Parameters ()
■ Element hyperlinks (ExternalDocument)

Note: We strongly recommend that any team using multi-stream development use the
Generate unique identifiers for all elements option.
52 Chapter 4 - Considerations for Comparing and Merging

To set the Generate unique identifiers for all elements option:

1 In the Model View tab in the browser, right-click on Model, and then click Open
Specification.

2 Set the Generate unique identifiers for all elements option.

3 Click OK.

Setting this option creates unique ids for model elements that currently do not have
them. This typically affects most of the model so that you are prompted to check out
those model components when setting this option.

When saving the model, the size of the affected file increases by approximately 20%,
and the time to load the model also increases.

Note: Set this option in the base model before branching development streams.
Merging When Using Unique Ids 53

For existing projects, collapse all streams to a single unique id stream, set the
Generate unique identifiers for all elements option, and then branch the developer
streams.

Figure 9 Figure 9 Incorrect Merge Scenario
54 Chapter 4 - Considerations for Comparing and Merging

Figure 10 shows an example of when it is appropriate to set the Generate unique
identifiers for all elements option.

Figure 10 Correct Merge Scenario

Note: This option must be set prior to branching.

For information on how to enable unique ids, see Model Specification in the online
Help.
Merging When Using Unique Ids 55

To clear the unique id option, follow the same procedure specified in Figure 10.

Note: If you clear this option, Model Integrator will merge based on the string names
of the model elements. Merging will not succeed for situations where the names
change or the names are not unique.

Considerations

■ We recommend that you plan for conflicting merges and attempt to minimize
them throughout the development life-cycle.

■ Only merge controlled units with primary edits back into the integration stream.

■ If you plan for a graphical change (a layout change) to a diagram within a model,
only one person should make this change. This ensures that during the merge
process, all of the graphical changes are accepted by one contributor and merging
at a lower level of detail is not allowed.
56 Chapter 4 - Considerations for Comparing and Merging

5Selecting Contributors
Contents

This chapter is organized as follows:

■ Contributors on page 57
■ Specifying Files in the Contributors Dialog Box on page 58

Contributors

Contributors are the models that form the input to Model Integrator. Model Integrator
accepts up to a maximum of seven contributor models for merging. The first
contributor (Contributor 1) has special significance to Model Integrator; it is the base
model used for comparing the differences between the other contributor models.

Note: All contributors must be of the same type. This means that, for example, you
cannot compare a .rtmdl file with a .rtclass file. All contributors should be different
versions of the same file.

A contributor can be any of the following:

■ A model file, with or without its associated controlled units or subunits.

Note: If you specify a model file (.rtmdl) as the contributor, and this model
contains subunits, you are prompted to load its subunits.

■ A controlled unit of a model.

For a detailed list of controlled units, see Understanding Subunits and Controlled
Units on page 44.

Note: You can specify a single controlled unit as a contributor.
57

Specifying Files in the Contributors Dialog Box

The easiest way to specify contributor files is to drag-and-drop the files from the
Windows Explorer onto the Model Integrator window (Windows platform only). If
the Contributors dialog box is not open, Model Integrator will open it for you. If it is
currently open, drag-and-drop the files into the Contributors dialog box, not the main
Model Integrator window.

To specify files to view, compare, or merge:

1 In Model Integrator, click File > Contributors.

By default, the Compare/Merge Against Base Model option is selected. When
selected, the first file that you specify in the list must the base model. For
additional information, see Base Model on page 59.

Note: Model Integrator can provide a base model for you if you do not have one to
use. For additional information, see Merging Models Without a Base Model on
page 73.

2 Determine the files that you want to view, compare, or merge.

Note: You can select a maximum of seven files.

3 Do one of the following to specify the first .rtmdl, .rtclass, .rtlogpkg, .rtcmppkg,
.rtdeploy, .rtcollab, .rtdeploydgm, .rtclassdgm, .rtcmpdgm, .rtcmp, .rtprcsr or
.rtdev file in the Files list.

❑ Specify the fully qualified file name directly in the blank area of the Files box.

❑ Click Browse () and use the file browser to find a file to add to the list.

4 Click below the previously selected file (in the white space), and then click ()
to create a new file input field.

5 Repeat Step 1 through Step 5 until all files are specified.

6 Click the type of mode to use:

❑ View Mode. See Merging Models on page 72.

❑ Compare Mode. See Comparing Models on page 71.

❑ Merge Mode. See Merging Models on page 72.

Note: If you select a single file and the Compare/Merge Against Base Model option is
not selected, the View button is available for View mode. If you select more than one
contributor file, the View button changes to Compare. You may have to click in the
empty area in the Base box for the Compare button to appear on the Contributors
dialog box. If you select a single file, the View button is available for View Mode.
58 Chapter 5 - Selecting Contributors

If the first file listed is not the base model, you can use the move buttons () to
change the order of filenames in the Files list so that the base model is first. Select a
file by clicking on the name, and then click a move button to change the order of the
files.

Base Model

The base model is the ancestor to the other contributor models being merged. That is,
the base model is the version of the model that existed before any changes were made.
When used, the base model must always be specified as the first contributor,
Contributor 1.

Node

A node is another name for an object in the model hierarchy. Examples of nodes are
classes, use cases, objects, operations, components, and diagrams. Nodes are
displayed in the Browser View. Each node has properties that display in the Property
View when the node is selected from the Browser View.
Base Model 59

60 Chapter 5 - Selecting Contributors

6Choosing a Mode
Contents

This chapter is organized as follows:

■ Compare Mode on page 61
■ Merge Mode on page 61
■ Subtree Mode on page 62

Compare Mode

Use Compare mode to scroll through the model and observe the differences between
the contributor models. If you decide to merge the models, you can change to Merge
mode () and continue, or you can exit Model Integrator without merging.

Merge Mode

In Merge mode, Model Integrator attempts to automatically merge models for you.
Your next step depends on the results of the automatic merge.

In the bottom right corner of the main window, you will see a message in the status
bar indicating the following:

Unresolved items nn

where nn is the number of unresolved items Model Integrator encountered when it
attempted to merge the specified models.

If the number of unresolved items is greater than zero, you must resolve these items
before the merge process completes. Use the Next Conflict button () to find the
first merge conflict. Examine the contributors for this model element, determine what
action to take, and accept your choice to resolve the conflict. For detailed information
on merging, see Comparing and Merging Models on page 71.
61

If the number of unresolved items is zero, you can save the model. Before saving your
model, Model Integrator checks the model for errors. If it encounters errors, you must
correct them before the model can be saved.

Note: The Merge Errors dialog box has the tools and topics to help you correct these
problems. After you are finished, close the Merge Errors dialog box and click Save.
Model Integrator prompts you to specify the location to save the main model file (the
merged results file).

If your model has subunits and you loaded them, the Subunits dialog box appears to
let you save the subunits. Click OK to continue the save operation. After the Subunits
dialog box closes, the merge is complete and saved.

Subtree Mode

Subtree mode automatically applies Merge mode commands to both the current node
and all of its children. Subtree mode is useful when you want to accept a group of
related objects from a particular contributor. For example, you can accept an entire
diagram from a contributor by selecting the top level node for that diagram, enabling
Subtree mode, and then clicking Merge > Resolve Selected Nodes Using.

To activate Subtree mode, click in the Toolbar, or click Merge > Subtree Mode.

When Subtree mode is not selected, you can visit each subtree node and make
independent choices for the contributor for each node. When Subtree mode is
selected, Model Integrator automatically applies the selected command to all of the
children of the current node.

Note: Subtree mode is very powerful; use it with caution. When the merge is
complete, ensure that you select this option so that it is not set (you can click Edit >
Undo to undo any unwanted changes).

View Mode

Model Integrator supports a View mode for viewing the contents of a single model
file. The purpose of View mode is that Model Integrator shows you more information,
such as QUIDS and mechanisms, that is not available for display in Rational Rose
RealTime.
62 Chapter 6 - Choosing a Mode

To view a single model file:

1 In Model Integrator, click File > Contributors.

2 Specify or select a single file in the Contributors dialog box.

3 Click inside the empty area in the Base box.

Note: You must click in the empty area in the Base box for the View button to
appear on the Contributors dialog box.

4 Click View.

Note: If you have begun to enter a second filename, the button text will change from
View to Compare. If the button text is Compare, but you entered a single file name,
clicking the Compare button will continue to enter View mode.
View Mode 63

64 Chapter 6 - Choosing a Mode

7Loading and Saving
Subunits
Contents

This chapter is organized as follows:
■ Subunit Status on page 66
■ Loading Subunits on page 66
■ Setting a New Context for Subunits on page 67
■ Understanding Subunit File and Path Names on page 67
■ Pathmaps on page 68
■ Saving Subunits on page 70

Subunits and Controlled Units

Rational Rose RealTime stores all or part of a model in one or more files. If a model is
divided into separate files, the files other than the main model file (.rtmdl) are called
subunits. In a team environment, these files would be under version control. When
the files are under version control, they are called controlled units. Subunits and
controlled units define portions of the model upon which individual developers can
work. Breaking up a model into controlled units allows a project team to develop a
model in parallel.

Model Integrator refers to both controlled and uncontrolled units as subunits.

If one or more of the contributor files you specify have controlled units, Model
Integrator displays the Subunits dialog box. From this dialog box, you can specify
whether to load or not load (unload) those units before comparing or merging your
files, and to save them again when you save the merged model.
65

Subunit Status

The Status column in the Subunits dialog box displays the subunit status for each
potential subunit in the files you are loading or saving. The Status column can display
the following status types when loading or saving subunits:

Loading Subunits

Subunits for each contributor load separately. This means that you are presented with
a separate Subunits dialog box for each contributor .rtmdl file that has subunits. For
each item, you can change the Status between > LOAD < and unloaded by clicking
on the item with your left mouse button.

By default, Model Integrator attempts to load all non-shared subunits for a model.
Shared units are not loaded by default. If there are units that you do not want to load,
click on the Status value to change the status to unload, and the subunit will be
skipped. If you do not want to load any subunits, click Cancel in the Subunits dialog
box.

After you address the items in the Status column in the Subunits dialog box, and
click OK, Model Integrator attempts to load the subunits specified with the > LOAD
< status. If there is an error and some of the subunits cannot be loaded, the Subunits
dialog box appears.

Table 3 Status Types for Loading and Saving Subunits

Subunit status Loading Saving Description

loaded X This subunit was successfully loaded.

not a unit X This item is not currently a separate subunit. This model
section is part of the parent unit.

> LOAD < X Model Integrator loads this entry when you click OK or
Apply.

> SAVE UNIT < X Model Integrator saves this entry to a separate file when you
click OK.

unloaded X This subunit will not be loaded.

> SAVE SHARED
UNIT <

X Model Integrator saves this entry to a separate file, shared
within the merged model when you click OK. The parent unit
must be controlled for this option to be available.

> DO NOT SAVE < X Model Integrator considers this entry as a controlled unit
when saving the parent unit of this item but does not save the
actual item.
66 Chapter 7 - Loading and Saving Subunits

For help with errors encountered when loading subunits, see Resolving Subunit
Loading Errors on page 68.

Note: Model Integrator cannot perform reference checking for subunits that are not
loaded.

For every contributor with subunits, a Subunits dialog box will appear. When you
complete the final Subunits dialog box, Model Integrator immediately begins the
Compare or Merge session.

Understanding Subunit File and Path Names

The Subunits dialog box displays two columns of path-related information about the
subunits in this model. The Virtual Path column shows the value of the path stored in
the parent model. This value may be an absolute path or it may contain a pathmap
variable. The Actual Path column displays the path that Model Integrator uses to load
the subunit.

If pathmap variables appear in the Actual Path column, you must use the Pathmap
function to set a value for the pathmap variable. For additional information, see
Pathmaps on page 68.

You can left-click on an item in the Actual Path column and directly edit the path
name that Model Integrator uses to find the subunit.

When saving a subunit, we recommend that you define a pathmap variable (in the
Pathmap dialog box) and set it to the value "&". Creating this type of variable
prevents absolute path names from being stored in the .rtmdl file for the subunits, and
this makes it easier to move the files to new storage locations in the future.

Setting a New Context for Subunits

The Context box at the top of the Subunits dialog box shows the default path that
Model Integrator uses to substitute for the "&" pathmap symbol. For a discussion of
how to use pathmap symbols, see the topic Virtual Path Maps in the Rational Rose
RealTime online Help.

If you created models using a pathmap symbol, you can define the value of the
symbol to be "&" in the PathMap dialog box. Model Integrator will replace the "&"
symbol in the definition of a pathmap with the actual path specified in the Context
box.

By default, the value of the Context box is the path for the base model file (.rtmdl). If
you move the files to a new location, you can change the contents of the Context box;
Model Integrator will attempt to load the files from the new context.
Loading Subunits 67

You can select a new Context path by either specifying a new value directly in the
Context box, or by clicking Browse to locate the desired drive and folder.

Resolving Subunit Loading Errors

If you specified a load status for an item in the Subunits dialog box and this load fails,
Model Integrator displays the Subunits dialog box again for you to correct the
problem. The Status column shows the current status of each subunit.

Note: You may need to scroll down the Subunits dialog box to find a subunit that was
not loaded.

Items that continue to display > LOAD < in the Status column were not loaded. To
resolve the problem:

■ You can directly edit the Actual Path column to change the path for that particular
subunit.

■ If the subunit is utilizing a pathmap variable, you can change the value of the
pathmap variable by clicking PathMap on the Subunits dialog box and modifying
the variable in the Virtual Pathmap dialog box. For additional information on
pathmaps, see Pathmaps on page 68.

■ Select the subunit from the list and click Browse to search for the file. Select a file
and click OK. The filename will appear in the Subunits dialog box.

■ You can change the current directory for pathmap variables that take the value "&"
by changing the Context box located at the top of the Subunits dialog box.

Note: A leading "&" in a path map definition represents the folder where the
enclosing controlled unit or model file is located, and can be used to reference
units relative to model files and other units.

■ You can decide not to load the subunit. Click on the Status field for the subunit to
change the status from > LOAD < to unloaded. This subunit will not be included
in the merge.

Pathmaps

When controlled units are created in Rational Rose RealTime, the names of the
subunits are stored in the main model file (.rtmdl). To avoid storing absolute path
names in the model file (and making it difficult to move them to a new location later),
Rational Rose RealTime provides the pathmap facility. Pathmaps let you specify a
variable name used as the path that prefixes the location of a file. The pathmap
68 Chapter 7 - Loading and Saving Subunits

variable is stored in the model instead of the absolute path. You can then move the
main file and its subunits to another storage location without having to edit the path
names stored in the model.

How Do Virtual Pathmaps Work?

When Rational Rose RealTime saves a model, it attempts to substitute every absolute
path with a virtual path. When Rational Rose RealTime opens a controlled unit, each
virtual path is transformed into an absolute path.

For example, if you define the following virtual path:

$MYPATH=Z:\ordersystem,

and save a package as:

Z:\ordersystem\user_services.cat

The model file will refer to the package as:

$MYPATH\user_services.cat

When another user defines $MYPATH as:

$MYPATH=X:\ordersystem

If they open the same model from their "X" drive, Rational Rose RealTime resolves the
internal reference to the controlled unit and loads the following file:

X:\ordersystem\user_services.cat

When Do You Need a Pathmap?

Model Integrator shares pathmap variables with Rational Rose RealTime, and uses
the same values transparently. However, Model Integrator may require you to enter a
value for a pathmap variable if that variable was not previously defined on your
computer. This situation is evident when you see a literal pathmap variable listed in
the Actual Path column of the Subunits dialog box, such as C:\Models.

In the Actual Path column, when the pathmap variable $ROSERT_HOME prefixes the
path for each subunit, click PathMap and define a value for the pathmap variable
$ROSERT_HOME in the Virtual PathMap dialog box.

A typical (and useful) value to use is the "&" (ampersand) character. The "&" instructs
Model Integrator to use the same path as the main model file uses (also known as the
context path). After defining $ROSERT_HOME, Model Integrator displays the actual
path you defined, instead of the pathmap symbol.
Pathmaps 69

Saving Subunits

When you save a model using File > Save, Model Integrator saves any subunits to the
same location relative to the main .rtmdl file. When you click the Save subunits in
Root unit’s folder option in the Subunits dialog box, these subunits are saved in
subdirectories whose name is that of the parent unit or model. Otherwise, Model
Integrator uses the childDirName property and the Subunit dialog box is not
displayed when saving. If you want to change the subunit configuration of your
model, use File > Save As to display the Subunits dialog box. Using Save As allows
you to:

■ Save your existing subunits configuration by clicking OK in the Subunits dialog
box.

■ Create new subunits by clicking on the Status column for the subunit that you
want to create. Model elements eligible to become subunits appear in the Subunits
dialog box with not a unit. Click on this value to change it to > SAVE <. After you
click OK or Apply, a new subunit is created.

■ Eliminate subunits by clicking on an item in the Status column and changing the
> SAVE < to not a unit. When you click OK, this part of the model is saved in the
main .rtmdl file, instead of a separate subunit file.

■ Save the shared unit by changing > SAVE < to save shared unit.

■ Not save the unit while keeping it controlled, (different from not a unit which
releases control of the unit), by changing > SAVE < to do not save.

Regardless of whether you use the Subunits dialog box, if you save subunits to a
directory that already contains copies of the same subunits, Model Integrator warns
you that you are overwriting the subunits, prompts you to continue, and then
prompts you to overwrite the main model file (.rtmdl).
70 Chapter 7 - Loading and Saving Subunits

8Comparing and Merging
Models
Contents

This chapter is organized as follows:

■ Comparing Models on page 71
■ Merging Models on page 72
■ Interpreting Compare and Merge Results on page 74
■ Starting a Merge on page 75
■ Semantic Checking on page 76
■ Resolving Merge Errors on page 78
■ Merging Options on page 81
■ Differencing and Merging Model Elements on page 84

Comparing Models

In Model Integrator, the purpose of Compare mode is to identify the differences
between two or more models (maximum of seven). Conflicts are displayed as well,
but in Compare mode, the Merge icons do not appear.

For a description of the icons that appear on the Model Integrator window after
comparing or merging models, see Interpreting Compare and Merge Results on page 74.

In Compare mode, you cannot make any changes to the model, and the Merge menu
and toolbar functions are disabled. You can easily change between Compare mode
() and Merge mode (); this means that you can begin a work session in
Compare mode, and later change to Merge mode if you decide to merge the models.

Note: If you change from Merge mode to Compare mode, and then exit Model
Integrator, you are not prompted to save the work you did while in Merge mode.
71

Merging Models

Merge mode incorporates all of the features of Compare mode, along with additional
information to support the decisions you need to successfully merge model files. By
models files, we mean models or sub-models (controlled units/model files).

When merging, we strongly recommend that you divide models into controlled
units, and then merge the controlled units for finer granularity. Merging entire models
will likely cause merge conflict, complex merges, and require additional memory
resources.

Note: Before merging models, check each model by clicking Tools > Check Model in
Rational Rose RealTime. If errors are encountered in a model, correct the errors before
performing a merge in Model Integrator.

Model Integrator supports two types of merge functionality:

■ Automatic Merge - Model Integrator merges all changes that do not produce
conflicts.

■ Selective Merge - Model Integrator allows the user to optionally choose the
contributors for every difference found between the models being merged.

Automatic Merge

Automatic merge takes affect when Model Integrator first enters Merge mode. It
creates a recipient model and automatically merges all unchanged or minor changes
to nodes into the recipient model for you. The recipient model is the model that holds
the result of a Model Integrator merge session. When merging is complete, this model
is given a name and saved to disk.

If the merged model has nodes that have conflicts, Model Integrator displays an icon
() at the location of the conflict in the Browser View. As you make choices to
resolve these conflicts, Model Integrator shows you the results of your merge.

For a description of the icons that appear on the Model Integrator window after
comparing or merging models, see Interpreting Compare and Merge Results on page 74.

Selective Merge

The selective merge feature lets you change the contributor on nodes that have
differences, as well as conflicts. This can be useful when you do not want to accept all
of the changes that a contributor makes to your model. It is also useful when you need
to correct more complex errors, such as those discovered by semantic checking. For
addition information on semantic checking, see Semantic Checking on page 76.
72 Chapter 8 - Comparing and Merging Models

Model Integrator merges models that have a common ancestor (that is, the base
model). This is necessary when you keep your model under version control, and for
parallel development, when changes are made in multiple streams. Model Integrator
also supports the merging of models that do not have a base model.

Merging Models Without a Base Model

Model integrator allows you to merge models without having a common base model.
Model Integrator automatically creates a base model that is empty. The base model
will occupy the first item in the Files box on the Contributors dialog box
(for Contributor 1)

Note: The base model it is not normally displayed and you cannot accept
changes from it during the merge process.

To merge two files that do not have a common base model as an ancestor:

1 In the File > Contributors dialog box, select a single file and click in the empty
area of the Files list.

2 Select the Compare/Merge Against Base Model option so that it is not set.

3 Click Merge.

4 Load the models as appropriate.

Note: Because a base model was not specified and the Compare/Merge Against Base
Model option is not set, Model Integrator lets you specify a merge session with the
minimum number of files (only two contributor files).

When merging models using this feature, all nodes in the contributors that do not
conflict with each other appear with the icon indicating that they are added to the
merged model.

Understanding Differences and Conflicts

Model Integrator uses the concept of a base model to identify the kinds of changes
that were made to the models during compare or merge. Each contributor is first
compared to the base model. Model Integrator shows additions, changes, and
deletions between a contributor and its base model as differences. Symbols identify
the type of differences found. These symbols display in the C column in the Browser
View and the Property View.

In Compare mode, Model Integrator only shows differences; but in Merge mode,
Model Integrator also shows conflicts. A conflict occurs when there are two or more
differences at the same node of the model. When Model Integrator finds a conflict, it
Understanding Differences and Conflicts 73

cannot determine which contributor to incorporate into the recipient model. Conflicts
appear in the M column of the Browser View, along with other status information
about the merge.

For information on the meaning of the icons for comparing (C column) and merging
(M column), see Interpreting Compare and Merge Results on page 74.

In Merge mode, Model Integrator automatically incorporates differences into the
recipient. However, it requires that you resolve conflicts by selecting the contributor
from which to accept changes.

Model Integrator also supports comparing and merging models without using a base
model as a reference point. However, in this mode, every node of the model shows as
a difference.

Interpreting Compare and Merge Results

Model Integrator shows you the results of comparing or merging the contributing
models by displaying an icon to the left of each node in the Browser View. Icons
indicating the results of comparing models appear in the C column. Icons indicating
the results of merging models appear in the M column.

Table 4 shows the status icons for comparing models, and Table 5 shows status icons
for merging models.

Note: The icons for differences are yellow, and the icons for conflicts are red.

Note: The merge results do not appear in Compare mode.

Table 4 Status Icons for Comparing Models

Symbol Description

No Symbol A common item (same values in all contributors).
New item added by a single contributor.

Item deleted in a single contributor.

Item changed in a single contributor.

Item moved to a new location in a single contributor.

Item added by multiple contributors (each having different property values).

Item deleted in a contributor, item changed by another contributor.

Item changed in multiple contributors.

Item moved in a contributor, item changed by another contributor.

Item moved in a contributor, item deleted by another contributor.
74 Chapter 8 - Comparing and Merging Models

Starting a Merge

When Model Integrator starts Merge mode, it applies the AutoMerge procedure to
the entire set of contributors. By default, Model Integrator uses automatic merge to
merge all changes that do not produce conflicts into your merged model. You can also
use the Merge > AutoMerge command to re-apply automatic merging to nodes, or a
property of the model that you previously reverted using Merge > Revert. The
AutoMerge procedure follows the rules illustrated in Table 6; a typical case using
three contributors.

Item moved by multiple contributors (to different locations).

Item was resolved using merge source code.

Table 5 Status Icons for Merging Models

Symbol Description

No Symbol A common item and the recipient is set to the common property values.

The recipient item is not set. This can occur because of an unresolved conflict,
or after applying the Merge > Revert command.

Item was resolved using merge source code.

The recipient item is set with values from contributor n, where n is a number
between 1 and 7.

The recipient item is set for deletion by contributor n, where n is a number
between 1 and 7 and where this contributor has no values set for the selected
item, as indicated by the minus sign.

Table 4 Status Icons for Comparing Models

Symbol Description

Table 6 AutoMerge Rules for Three Contributors

AutoMerge State Contributor 1 (Base) Contributor 2 Contributor 3 Result

No change A A A A

Added -- A -- A

Changed A A A* A*

Deleted A A -- --
Starting a Merge 75

Where:

■ A is a model element (for example, a class).

■ a is a property (for example, a class visibility property).

■ A* is model element A, with one or more modified properties.

■ - - indicates not present.

Note: Only the role of the base model is fixed in the AutoMerge procedure. The order
of the other contributors does not matter. For example, changing Contributor 2 and
Contributor 3 does not affect the results.

If a contributor that is not the base model introduces a change (that is, adds, modifies,
moves, or deletes an object), that change is copied to the merged output instead of the
original object. Model Integrator can select properties from different contributors and
merge them. If two or more contributors change the same property, then the
AutoMerge procedure does not know how to determine which one to choose. Instead
it generates a conflict.

Semantic Checking

Semantic checking is a Merge mode feature that helps ensure that the merge choices
you make are valid.

There are two forms of semantic checking available in Model Integrator:

■ The first is performed by the CheckMerge function, called automatically before a
merged model is saved. It cross-references all of the nodes of the recipient model to
ensure that the final result is complete.

■ The second form of semantic checking is an optional, real-time version of the
Check Merge feature. This function checks references on the nodes as you access
them, and it disables merge choices that would introduce errors into the model.

For example, a base model contains class A. Contributors 2 and 3 each make a change
to one of the members of this class, while contributor 4 deletes the class. If you
previously accepted changes from Contributor 4 to delete the class, you should not be
able to accept one of the changes that Contributors 2 or 3 made to the class. However,

Conflict

Conflict

Conflict

a

a

--

a*

a*

a*

a**

--

a**

?

?

?

Table 6 AutoMerge Rules for Three Contributors
76 Chapter 8 - Comparing and Merging Models

if semantic checking is not selected, Model Integrator allows you to make these
contradictory changes. Model Integrator would not discover the problem until either
you decided to save the recipient model, or you used Check Merge to verify the
model.

In a large, complex model, it may be difficult to remember exactly which contributors
present valid choices at a particular node of the model. This problem can also arise
when Model Integrator makes automatic merge choices at nodes that do not have
conflicts. If a node is deleted automatically, you may not be aware of that fact when
you view a conflict at one of its dependent nodes. Semantic checking helps you avoid
these problems by making your choices clear at each step.

When semantic checking is activated, and if you move the current selection to a new
node of the model tree, the semantic checker determines which choices of contributor
(if any) would result in an invalid model, if they were chosen you. These choices are
then disabled in the GUI by disabling the appropriate menu items and Toolbar
buttons.

When working with a very large model, you may want to make a change now and fix
it later. In this case, semantic checking can be disabled and merge choices can then be
made. After making the merge choices, select Merge > Check Merge to check and
repair the model. The model is always checked for validity before saving.

Using Semantic Checking On-the-Fly

Model Integrator automatically performs semantic checking before you save the
merged model (using Check Merge); however, you can also perform a check while
you work. Click Merge > Semantic Checking to perform some reference checking
when you select a new node in the Browser View. For this type of check, Model
Integrator will disable those merge choices that will result in merge errors later in the
session.

Click Merge > Semantic Checking when you want to avoid accepting changes that
may produce errors. However, the checking performed by this function is not
complete because it would take too long to check the entire model every time you
select a different node. Consequently, Model Integrator may continue to find errors
when saving, even if semantic checking is selected.
Semantic Checking 77

If the contributor you want to choose is currently disabled by Semantic Checking, you
can either:

■ Investigate the reason the choice is disabled by looking at the model elements
referenced by this node (click View > Referenced Node) or the parents of this
node, or its referenced nodes (click View > Parent). Typically, one of these nodes is
already being deleted by another contributor. Choose a new contributor that does
not delete the node, and click View > Previous Location to return to the original
node and make the choice you want.

■ Clear Semantic Checking, and make the choices you want. Rely on the Check
Merge function to identify any errors when you finish your merge.

Limitations of Semantic Checking

For performance reasons, on-the-fly semantic checking is limited to checking only the
nodes of the model that you are currently viewing. Consequently, it is necessary to
perform a check of the entire model before saving it, and this check may reveal errors
that require your attention.

References to subunits that are not loaded into the current merge session cannot be
checked.

Resolving Merge Errors

Use the Merge > Check Merge command to check your merged model for internal
consistency. Inconsistency can occur during a merge operation when, for example,
one of the contributor models being merged deletes model elements used by one of
the other contributors to your merged model. This can occur because of:

■ Decisions you make when you resolve conflicts between contributors.

■ Decisions made by the Model Integrator automatic merging feature.

The Merge Errors dialog box provides a set of tools that can help you find and correct
errors that Model Integrator detected in the merged model. After clicking Merge >
Check Merge, the Merge Errors dialog box appears only when there are errors with
the merge. You must address these errors by resolving the contributor.
78 Chapter 8 - Comparing and Merging Models

To resolve an error:

1 Select an error message in the list of errors in the Merge Errors dialog box.

2 To correct a merge error, you must select a different contributor for some node of
the model. For additional information, see Accepting Changes from Contributors on
page 81.

In the Merge Errors dialog box, you can find the node you need to change by
selecting the following buttons:

❑ View Error - Takes you to the node of the model where the error was
encountered, called the error node.

❑ View Definition - Takes you to the node of the model which defines the
reference made by the error node.

❑ View Parent - Takes you to the parent of the currently selected node in the
browser. Use this option to search for the parent of a definition node. Click this
button when you have a node whose parent is deleted.

❑ View Other Locations - If the node you are viewing was moved to different
locations by another contributor, View Other Locations will take you to one of
the other locations where the node exists. Only one of these locations will
actually exist in the merged output model; the other nodes are marked for
deletion.

❑ Refresh List - Clears the error list and performs the Check Merge function
again. If new errors are encountered, they will appear in the errors list. Use this
command after fixing all the errors, because there may be additional errors in
the merge that were hidden by the first set of errors. The same node of the
model could have several errors, but only one is reported at a time.
Occasionally, you will resolve one error, and that may resolve other errors as
well.

The Check Merge function detects two types of merge errors:

■ This node references a node that is deleted.

This message means that the error node references another node in the model that
was deleted in the merged model. Click View Definition to display the location
where the deletion occurred. You must resolve this error because the error node
requires the other node to exist. To correct this error, choose either:

❑ A contributor at the definition node that does not delete the node.

❑ A contributor which deletes the error node (if one is available).

Typically, choosing the same contributor at both locations is the preferred solution.
Resolving Merge Errors 79

■ This node references a node whose parent is deleted.

This message means that the error node references another node in the model
where one of the parent nodes of the defining node was deleted, rather than the
defining node itself. When the parent node is deleted, all of its children are deleted
as well. To change the parent node so that it is not deleted, click View Definition
to go to the defining node in the model, then click View Parent to move up the
model tree until you find the parent node being deleted. Choose a contributor for
this node that contains a definition of the node rather than deleting it.

Merging Models with Controlled Subunits

Rational ClearCase and Model Integrator support the comparing and merging of
individual model files or controlled units directly from ClearCase. This is desirable in
a team environment (parallel development) because modelers only work with
individual component files of the model.

For example, you can divide use cases into logical packages so that developers only
need to check out the .rtlogpkg file that contains their use cases. They can branch
these files privately, and subsequently merge them back into the main development
branch without having to merge the entire model.

However, it can be desirable to merge the entire model because semantic checking
works best when the whole model is loaded into Model Integrator. To accomplish this,
construct a separate ClearCase view for each full contributor to the merge session.
Each view is constructed to make the correct version of the model files for that
contributor visible within the view. Check out the model files in the view which will
receive the merge result.

Model Integrator starts, not from a ClearCase menu, but from the Rational Rose
RealTime Tools menu or by the standard method for the system you use. The merge
session proceeds in the same way it would if ClearCase were not involved. When
completed, the merged model files are saved and checked back into ClearCase.

For instructions on how to configure ClearCase Integration, see Team Development
Guide > Source Control Tools > Rational ClearCase in the online Help.
80 Chapter 8 - Comparing and Merging Models

Merging Options

When merging in Model Integrator, you have the following merging options:

■ Accepting Changes from Contributors on page 81
■ Deciding Which Contributor to Use on page 82
■ Changing Nodes with Differences on page 82
■ Reversing Changes to Nodes on page 83
■ Performing a Partial Merge on page 83

Accepting Changes from Contributors

The results of a merge appear in the main Model Integrator window. The icon
indicates a node that must be resolved before the merge can be completed. To resolve
the conflict, you must specify the contributor to accept. The following commands
allow you to accept changes from a contributor:

■ Resolve all the remaining conflicts by clicking Merge > Resolve All Conflicts
Using. This command lets you choose a single contributor to resolve all the
remaining unresolved items. It operates over the entire merged model regardless
of where you are when you select it. However, it only operates on unresolved
conflicts. Nodes that you have previously accepted changes for, or nodes that are
displaying only differences are not affected.

■ Resolve an individual conflict or difference by selecting its node and then clicking
Merge > Resolve Selected Nodes Using or one of the corresponding Toolbar
buttons . This command copies one of the available contributor
choices to the recipient. Unlike the Resolve All Conflicts command, this
command operates on any node that shows either a conflict or a difference and
overwrites previous choices.

You can also use this command with Subtree mode to resolve an entire subtree of
model nodes at one time or with a set of nodes selected using the mouse and SHIFT
and CTRL keys. The results of this command also affects all nodes displaying either
conflicts or differences, and it changes values that were previously set.

Note: Subtree mode is very powerful. Use it with caution.

When semantic checking is selected, Model Integrator disables choices of contributors
that may produce errors in the recipient model. If you want to make this change
regardless of any potential errors that may result, you must click Merge > Semantic
Checking so that it is not selected. You can always click Edit > Undo to undo any
merge choices you make.

If you choose a contributor from the Browser View, all properties for that object are
merged into the recipient. This becomes the default contributor for the object.
Merging Options 81

From the Property View, you can select and override the default contributor’s
property value for any desired property of the object.

Deciding Which Contributor to Use

The crucial issue in performing a merge is deciding the changes that you want to
keep, and those that you want to discard. There are a few simple rules you can follow
that will make this job easier:

■ Merge often.

■ Partition the activities and the model so that people can work on different parts
without interfering with others. This will reduce the number of conflicts you have
to resolve.

■ Know the models that you are merging. You should try to know in advance which
of the contributors you want to select for major components of the model, such as
classes and diagrams. This will help guide the choices that you must make.

■ You may encounter internal parts of the model that you do not necessarily
understand; this means making merge decisions about these objects that are
normally hidden. For the unfamiliar items, use the same contributor you selected
for the items you are familiar with.

For example, you have a use-case with an associated interaction diagram, and you
select Contributor 3 for this diagram (because it has the most recent set of
changes). If conflicts arise among the hidden objects, such as the Mechanism or
one of its components, that are also part of this use-case, select Contributor 3 for
those objects as well. This will maintain consistency in the final merged model.

Changing Nodes with Differences

You can accept changes from nodes that do not have conflicts, but do have differences
because Model Integrator (AutoMerge feature) already made a choice for you. The
choice of the contributor is not shown in the M column of the Browser View, but you
can see the current contributor by looking at the Property View. The Recipient
column displays the values for the chosen contributor. The AutoMerge choice will be
the contributor that is different from the others.

You can override the Model Integrator choice by selecting the node in the Browser
View, and clicking Merge > Resolve Selected Nodes Using to select a different
contributor. The effect of this command is to not accept the change because you are
choosing a contributor that did not change the model. This is useful when, for
example, you do not want to delete a model element deleted in one of the
contributors. When you apply this command to a node with a difference, the M
column shows the contributor that you chose for the result.
82 Chapter 8 - Comparing and Merging Models

Reversing Changes to Nodes

If you change a node, you can click Edit > Undo to restore it to its original state. If you
want to undo a change made earlier in your merge session without undoing all of the
changes after this change, click Merge > Revert Selection. This restores a single node
to the unmerged state. Clicking Merge > Revert Selection makes the node unresolved
(whether it is a conflict or not). The M column for this node changes to display the
icon. For conflict nodes, this command removes your choice of contributor to resolve
the conflict. For difference nodes, this command removes the AutoMerge choice
made by Model Integrator.

The Merge > AutoMerge Selection command can only be applied to nodes that have
been reverted. Applying the AutoMerge command to reverted nodes restores them to
the state that they were in when the merge session started.

Performing a Partial Merge

You may have confined your editing in Rational Rose RealTime to only a part of the
model, but when you load the model into Model Integrator, differences appear in
other parts of the model that you did not expect. This is not an error on the part of
Rational Rose RealTime or Model Integrator; it simply reflects the fact that the model
is complex, and not necessarily organized in the way you might expect. However, you
can restrict your merge session to a part of the model.

Note: To perform a partial merge, you must use a base model, that provides the
output for the parts of the model that you do not want to modify.

To perform a partial merge:

1 In Model Integrator, start a new session, and specify a base model and contributors
model in the Contributors dialog box.

2 Click Merge from the Contributors dialog box.

3 Click (Subtree mode) on the Toolbar.

4 Select the root node of the model tree. This is the first node in the Browser View.

5 Click Merge > Resolve Selected Nodes Using > Contributor 1.

The base model is selected for all conflicts and differences in the entire model. The
M column for the entire model changes to the icon (nodes that were added by
other contributors change to the icon).
Merging Options 83

6 Select the part of the model that you want to actively merge. You can use Subtree
mode if the area you want to merge consists of one or more subtrees. Otherwise,
you can select portions of the model by pressing SHIFT and CTRL while clicking
nodes that you want to select with the mouse.

Note: If you select with the mouse, ensure that you expand the model tree so that
all nodes can be selected (click View > Expand All).

7 Click Merge > Revert Selection to this part of the model.

This part of the model will display the icon for each node.

8 Click Merge > AutoMerge Selection for the same part of the model as in Step 7.

Now, you have restricted the AutoMerge function to a part of the model. There may
be conflicts in the part of the model you reverted and automerged (if there are any at
all). Complete your merge on this part of the model and save the model.

Note: Check Merge may find errors due to references to the parts of the model that
you excluded from the merge with this procedure. If this occurs, you must resolve the
reference errors; you may have to make changes outside of the area you have chosen
to merge. You cannot save a merged model that has reference errors.

Differencing and Merging Model Elements

The local version of a unit may be compared to its previous versions that may exist in
your source control tool. Click Source Control > Show Differences... to compare the local
file with the most recent version under source control.

Similarly, if a unit is already checked out, a "Get" performed on that unit will prompt
you to merge. To merge from the most recent version under source control, perform a
"Get" on the desired checked out unit. To merge from a previous version, use the "Get"
facilities provided in the Show History dialog box.
84 Chapter 8 - Comparing and Merging Models

9Navigating through
Models
Contents

This chapter is organized as follows:

■ Filtering on page 85
■ Searching for a Model Element on page 86
■ Finding Nodes that Have Moved on page 86
■ Finding Referenced Nodes on page 86
■ Viewing Conflicts and Differences on page 87
■ Viewing Conflicts and Differences with Auto Advance on page 88
■ Viewing the Parent of a Node on page 88

Filtering

When merging models, the filtering feature allows you to ignore small changes in the
position of objects in a Rational Rose RealTime diagram.

To enable filtering:

1 Click Options > Filtering.

The Filter Properties dialog box shows several Rational Rose RealTime model
properties.

2 Select any desired filter and set a corresponding value.

Differences between model files that are less than the Filter Value are not reported
in the Model Integrator conflict and difference summaries and are not displayed
with any conflict or difference icons. The value chosen for the output is the value
found in the base model.

Note: Differences continue to display for the properties of view objects, other than the
filtered properties. You may continue to observe differences in Rational Rose
RealTime diagrams. With filtering enabled, you may lose small changes made to
drawings because they are being filtered out.
85

Searching for a Model Element

To search for a particular node by its name in the Browser View, click Edit > Search.

The search starts at your current location in the Browser View and proceeds through
all the nodes in the model that display in the Browser View. Use the Edit > Expand
All to display every model object in the Browser View.

If the string is found, the browser window scrolls to display the desired node, and its
properties display in the Property View. If the string is not found, you will hear a
beep.

You do not have to specify the full name you want to find; Model Integrator performs
the search by matching the string you specified against any part of the model element
name. The search is not case sensitive.

Finding Nodes that Have Moved

Model Integrator can detect when a node in one contributor has moved to a new
location in another contributor. You can move back and forth between all the locations
where a node has moved.

Viewing Model Elements that Have Moved

When you merge models with elements that have moved, Model Integrator will
display all the locations where the model elements could be placed by the different
contributors. However, you can only keep one of these locations in the merged file.

When you see one of the status icons indicating that an item has been moved (,
, ,), you can navigate between the different locations by clicking View >

Other Locations. Every time you select this command, it cycles to the next location
where a contributor placed the model element that you are viewing. If the model
element has only one location, this command is not enabled.

Click View > Previous Location to quickly return to the node that you were
previously viewing.

Finding Referenced Nodes

Many of the nodes in a Rational Rose RealTime model make references to other nodes
in the model in one or more ways. Model Integrator provides commands to make it
easy for you to find the parent of a node, and to find references from the current node
in the model that are not in the immediate subtree containing the current node.
86 Chapter 9 - Navigating through Models

Viewing Nodes Referenced by a Node

It is not uncommon for a particular node of a Rational Rose RealTime model to
reference other nodes in the model. To ensure consistency in your merged model, you
may want to view these referenced nodes while making a decision about which
contributor to select to resolve a given conflict. Also, if Semantic Checking is enabled
and a choice of contributor is disabled, viewing the referenced nodes can often reveal
why. The View > Referenced Node command makes it easy to view nodes that have
one or more of the three common types of references: client, supplier, and quidu.

Note: For our purposes, these reference types are not important. They are used
internally within the Rational Rose RealTime model and their meaning changes
depending on the node viewed. The only real significance they have in Model
Integrator is that they link two different objects in the model together.

Nodes that have these references appear in the Property View. To the right of the
reference name is the name of the referenced node. You could scroll through the
Browser View to find this node but clicking View > Referenced Node locates it more
quickly and accurately.

When a node in the model contains any of these references, the View > Referenced
Node command is active for the type of reference (client, supplier, or quidu). The
context menu for each type of reference contains an entry for the recipient and each
contributor (since the referenced nodes may be in different places in different models -
one of the contributors may have moved them). If you or Model Integrator have
already accepted a change for the referenced node, the Recipient menu becomes
active. Typically, you choose to view this one because it will be saved in the merged
model. If the Recipient choice is not active, that means the referenced node is an
unresolved item.

Viewing Conflicts and Differences

Model Integrator includes commands to move you from one conflict or difference to
the next, skipping over the intervening nodes that do not change. The View menu
contains a number of options for navigating through conflicts and differences. Use
these commands to help you view all the conflicts and differences in the merged
model. These commands automatically expand the Browser view hierarchy to make
the next conflict visible.
Viewing Conflicts and Differences 87

Viewing Conflicts and Differences with Auto Advance

Use Auto Advance to automatically move to the next conflict or difference after you
accept a change. The function has three modes of operation:

■ Conflict - Advances to the next conflict.

■ Differences - Advances to the next difference.

■ None - Does not auto advance.

You can change the Auto Advance setting by selecting your choice from the
Options > Auto Advance menu.

The Auto Advance setting also affects the functioning of the commands for viewing
conflicts and differences.

For additional information, see Understanding Differences and Conflicts on page 73.

When you load a set of models, the Auto Advance function is set automatically. If the
models have conflicts, then the Conflict mode is set. If the model has no conflicts, but
has differences, the Differences mode is set. If there are no conflicts or differences, the
None mode is set.

Viewing the Parent of a Node

Except for the first node, every node in the model has a parent node. Usually, there is
an important relationship between a node and its parent. For example, the parent of a
State node is a State Machine.

While merging models, you may need to view the parent of a node that you are
viewing, however, if the model is large, the parent node may not be visible on the
screen. Click View > Parent to quickly bring the parent node into view. You can click
View > Previous Location to quickly return to the node that you were previously
viewing.
88 Chapter 9 - Navigating through Models

10Using the Rational
ClearCase Diff Merge Tool
Contents

This chapter is organized as follows:

■ Overview on page 89
■ Merge Source Code Example on page 90
■ Recommendations on page 100

Overview

The Rational ClearCase Diff Merge tool enables you to compare two or more files by
graphically representing the differences between them. Diff Merge enables you to
resolve differences (for example, merging source code differences line-by-line)
between contributors graphically and merges the results into a single file. This means
that you can merge such things as state transition action code, guard code, capsule
and class operations, state entry and exit code, and capsule header prefaces with
greater detail (granularity).

Note: To use the ClearCase Diff Merge tool with Model Integrator (and to access the
Merge Source Code command and button), you must have Rational ClearCase
installed and configured on your computer.

When Model Integrator is used from the command line or as a ClearCase type
manager, it will automatically resolve non-conflicting textual differences. Model
Integrator can use the Rational ClearCase Diff Merge tool to resolve user-written
textual changes, such as code and documentation, within a model file.
89

Merge Source Code Example

Note: Although the example used in this chapter merges models, we strongly
recommend that you divide your models into controlled units and then merge.

The purpose of this example is to illustrate the flow of events for using the Model
Integrator ClearCase Diff Merge tool. In this example, a software engineer uses
Model Integrator to merge two models (or contributors) to a common root model (that
is, the base contributor). Model Integrator will then call the ClearCase Diff Merge tool
(Merge Source Code) to resolve the textual differences.

We want to use Model Integrator to apply a combined set of changes to a single base
file. Figure 11 shows the merge scenario for our example; two different and conflicting
model changes made to the same file. A file X (modelBase) is modified by in stream
A. This modified file is called modelContributor1. A version of the same file is also
modified in stream B. This modified file is called modelContributor2. In our example,
we will demonstrate how to merge changes made to code for a transition.

Figure 11 Merging Changes - Parallel Development
90 Chapter 10 - Using the Rational ClearCase Diff Merge Tool

In our example, we use the following models:

1 A base model - This model contains a single capsule.

The State Diagram has an initial transition to the state called S1, and another
transition named t1.
Merge Source Code Example 91

The code for the t1 transition declares and initializes two integers as follows:

2 modelContributor1 - This model is a different version of the base model with the
following change (the fprint statement and initialization value for variable c)
made to the t1 transition:
92 Chapter 10 - Using the Rational ClearCase Diff Merge Tool

3 modelContributor2 - This model is also a version of the base model with another
change (a different fprint statement and a different initialization value for
variable c) made to the code for the t1 transition:

Specifying Contributors

In our example, we will select modelbase.rtmdl as the base model, and
modelContributor1.rtmdl and modelContributor2.rtmdl as the contributor files.

To specify the contributor files:

1 Start Model Integrator.

2 Click File > Contributors.

3 Select the first contributor file. The first contributor has special significance to
Model Integrator; it is the base model used for comparing the differences between
the other contributor models (modelContributor1.rtmdl and
modelContributor2.rtmdl).
Merge Source Code Example 93

4 Ensure that Compare/Merge Against Base Model is selected.

5 Click the Merge button.

Note: If the Subunits dialog box appears, load or unload the appropriate units.
For information on how to load and save subunits, see Loading Subunits on page 66
and Saving Subunits on page 70.

After the main window appears, you are ready to begin working. Figure 12 shows the
Model Integrator window after merging modelContributor1.rtmdl and
modelContributor2.rtmdl with the base model modelbase.rtmdl.
94 Chapter 10 - Using the Rational ClearCase Diff Merge Tool

Figure 12 Model Integrator Window for Merge Mode

Note: The bottom right corner of the Model Integrator window indicates that it
encountered five conflicts during the merge process.

Model Integrator shows you the results of comparing or merging the contributing
models by displaying an icon to the left of each node in the Browser View. Icons
indicating the results of comparing models appear in the C column. Icons indicating
the results of merging models appear in the M column.

In our example, Model Integrator encountered a number of nodes that have model
conflicts in the merged model (identified by the icon at the location of each
conflict). In particular, let us examine the changes made to the transition identified in
our example. The software engineer performing the merge requires line-by-line
examination of the detail code for the transition to determine the appropriate action to
take. To achieve this type of granularity when merging, Model Integrator uses the
Merge Source Code tool - ClearCase Diff Merge.
Merge Source Code Example 95

Starting the ClearCase Diff Merge Tool - Merge Source Code

After the Model Integrator main window appears, you are ready to begin working.
For our example, we want to merge the code for the t1 transition for the contributor
models.

To merge source code:

1 In Browser View, select the conflict generated by the source code for transition t1.

The upper right window displays the properties conflict for the selected transition.
96 Chapter 10 - Using the Rational ClearCase Diff Merge Tool

Note: If you select AutoMerge, Model Integrator will automatically call the ClearCase
Diff Merge tool, without displaying the GUI, to resolve non-conflicting text merges.

2 Select the property called body. The button on the Toolbar is then enabled.

3 To launch the ClearCase Diff Merge tool, do one of the following:

❑ Click .

❑ Click Merge > Merge Source Code),

❑ Using the shortcut CTRL+SHIFT + M.

Now, you can begin merging the source code line-by-line for this transition.

The ClearCase Diff Merge tool prompts you with a dialog box indicating the number
of conflicts that it was able to merge without requiring user intervention, as well as
the number of merge points that need to be resolved.

Figure 13 Diff Merge Notification
Merge Source Code Example 97

4 Click OK to continue.

For information on using the ClearCase Diff Merge tool, see the Diff Merge online
Help.

5 In our example, we will use the changes from contributor 3. Select the line
containing <<< merge needed>>> and then click from the Toolbar.

You can also resolve the conflicting lines by selecting the desired line from the
To-version for a contributor, or you can add additional lines directly.

6 Click File > Save to save the merge source results, and then close the Diff Merge
Tool.

If you close the window without savings the changes, the conflict will not be
marked as resolved. If you save the results, the control returns to Model Integrator
and the conflict is resolved when you close the Diff Merge tool. The resolved node
is marked with an "m" (indicating merged source code), and the Recipient column
in the Property window displays this merged source code.
98 Chapter 10 - Using the Rational ClearCase Diff Merge Tool

The Recipient model will contain the following merged source code for the t1
transition:

Figure 14 Model Integrator Merge Mode Window
Merge Source Code Example 99

Recommendations

■ To obtain the best possible merge source code results, we recommend that the
person performing this type of merge be an experienced programmer with basic
knowledge of usage of the Rational ClearCase Diff Merge tool.

■ After merging the source code, we recommend that you open the recipient model
created by Model Integrator in Rational Rose RealTime to ensure that the model
loads with no errors.

■ Review the merge results and verify that the results are what you expected.

■ Merge often.

■ We strongly recommend that you always divide your model into controlled units.
100 Chapter 10 - Using the Rational ClearCase Diff Merge Tool

Index
Symbols
> DO NOT SAVE 66
> LOAD 66
> SAVE 70
> SAVE SHARED UNIT 66
> SAVE UNIT 66
@Petal property 43

A
accepting changes 81
Actual Path 67
adding

dependency issues 47
-all 23
/all 23
-ask 23
/ask 23
Auto Advance 88
Automatic Merge 72
AutoMerge

rules 75

B
base model 59

merging without 73
basic objects 42
Browser View 19

C
changing language semantics 48
childDirName 70
ClearCase

Diff Merge tool 89
starting Diff Merge 96
using Model Integrator with 24

ClearCase Diff Merge tool
recommendations 100

code
merging 90

command line
options list 23
starting Model Integrator (UNIX) 22
starting Model Integrator (Windows) 22

command line options
commands list 22
Model Integrator 22

command options 23
commands

starting Model Integrator from the command
line 22

-compare 23
/compare 23
Compare mode 61

Quick Start 21
comparing

models 71
composition of model files 41
conflict 87
considerations

for merging 45
improving Model Integrator performance 17

contacting Rational customer support xiii
contributor

types 57
contributors 57

base model 59
determining which ones to use 82
merging without a base model 73

controlled units 44, 65
(see also subunits) 44
file types 44
types 44
Index 101

D
dependency issues 47
diagram objects 42
difference 87
differencing model elements 84

E
enabling

filters 85

F
filters

enabling 85
finding

nodes that moved 86

G
generating

unique identifiers for all elements 53
GUI Features 20

I
identifiers for all elements 53

L
language semantics

changing (parallel development) 48
loaded 66
loading

errors (subunits) 68
status types for 66
subunits 66

M
memory requirements for merging 16
-merge 23
/merge 23
merge

types 72
merge errors

resolving 78
Merge mode 61

Quick Start 21
merging

before using Model Integrator 50
considerations 45
memory requirements 16
models 72
models with controlled units 80
options 81
performance 16
performing a partial merge 83
resolving errors 78
source code 90
starting a merge 75
types 72
using unique Ids 52
when is it necessary 50
without a base model 73

merging model elements 84
merging options

accepting changes from ontributors 81
changing nodes with differences 82
performing a partial merge 83
reversing changes to nodes 83

model
generate unique identifiers for all

elements 53
mechanism 42
recipient 72
unique Id 52

model elements
differencing 84
find ones that moved 86
merging 84
searching for 86
102 Index

model files
base 59
composition of 41
types 44
versions 43

Model Integrator 21
command line options 22
compare mode 61
comparing models 71
GUI 18
GUI for Compare Mode 18
GUI for Merge Mode 19
improving performance 17
merge mode 61
merging models 72
merging options 81
nodes 59
overview 15
starting 17
Subtree mode 62
using with ClearCase 24
view mode 62
views 19
when is merging necessary 50

model specification
generate unique identifiers for all

elements 53
ModelintRT 22
-modelintRT 22
models

comparing 71
merging 72

modes
Compare 61
Merge 61
Subtree 62
View 62

N
Next Conflict 61
nodes 59

changing 82
finding 86

parent 88
referenced 86

-none 23
/none 23
not a unit 66

O
objects

basic 42
diagram 42
quids 42
references 42
unnamed 43
view 42

options
all 23
ask 23
command line 22
compare 23
merge 23
none 23
out 23
xcompare 23
xmerge 23

-out 23
/out 23

P
parallel development 45
parent 88
partial merge 83
path names 67
Pathmap 67
pathmap

virtual 69
PathmapsModel Integrator

Pathmaps 68
performance 16

Model Integrator 17
Property View 20
Index 103

Q
Quick Start

Comparing models 21
Merging Models 21

quid 42

R
Rational customer support

contacting xiii
recipient model 72
referenced nodes 86
resolving

merge errors 78
merge wrrors 78
subunit loading errors 68

rtclass 44
rtcmp 44
rtcmpdgm 44
rtcmppkg 44
rtcollab 44
rtdeploy 44
rtdeploydgm 44
rtdev 44
rtlogpkg 44
rtmdl 44
rtprcsr 44

S
saving

status types for 66
searching 86
Selective Merge 72
semantic checking 76, 77

limitations (Model Integrator) 78
setting

context (subunits) 67
source code

merging 90
starting

Merge Diff 96
Merge Source Code 96

Model Integrator 17
Model Integrator from command line 22

starting ClearCase Diff Merge 96
status

subunit 66
types for loading 66
types for saving 66

Subtree mode 62
subunit

status 66
subunit file 67
subunit status

> DO NOT SAVE 66
> LOAD 66
> SAVE SHARED UNIT 66
> SAVE UNIT 66
loaded 66
not a unit 66
unloaded 66

subunits 21, 44, 65, 94
(see also controlled units) 44
loaded 21
loading 66
loading (status types) 66
loading errors 68
saving (status types) 66
setting new context 67
unloaded 21

T
team development 45
Text Views 20
tools

Merge Diff 89

U
unique identifiers for all elements 53
Unique Ids

correct merge scenario 55
incorrect merge scenarios 54
size impact 53

unique Ids 52
104 Index

unique ids
generating 53

unloaded 66
unnamed objects 43

V
versions

model file 43
View mode 62
view objects 42
views

Browser 19
Property 20
Text 20

Virtual Path 67
virtual pathmaps 69

X
-xcompare 23
/xcompare 23
-xmerge 23
/xmerge 23
Index 105

106 Index

	Model Integrator Guide
	Preface
	Audience
	Other Resources
	Rational Rose RealTime Integrations With Other Rational Products
	Contacting Rational Customer Support

	Introduction
	Overview of Model Integrator
	Memory Requirements and Performance
	Starting Model Integrator
	Using the Model Integrator Graphical User Interface
	A Quick Start to Comparing or Merging Models
	Using Model Integrator from the Command-Line
	Using Model Integrator and Rational ClearCase

	User Interface Overview
	File Menu
	Edit Menu
	View Menu
	Options Menu
	Merge Menu
	Help Menu
	Contributors Dialog Box
	Subunits Dialog
	Diff Merge Dialog Box
	Merge Errors Dialog Box
	Filter Properties Dialog Box
	Virtual Path Maps (Overview)
	How Do Virtual Paths Work?
	Where Are Virtual Paths Defined?
	The & and * Symbols

	Defining Virtual Paths
	Edit Path Map (File Menu)

	Examining the Composition of Model Files
	Overview
	Composition of Model Files
	Basic Objects
	Diagram Objects
	View Objects
	Mechanism
	Quids
	References
	Unnamed Objects
	Add-in Properties
	Rational Rose RealTime Model File Versions

	Understanding Subunits and Controlled Units

	Considerations for Comparing and Merging
	Merging Changes from Multiple Streams
	Example: Adding Dependency Issues
	Example: Changing Language Semantics

	Understanding When Merging is Necessary
	Merging Detailed Code Before Using Model Integrator
	Merging When Using Unique Ids

	Selecting Contributors
	Contributors
	Specifying Files in the Contributors Dialog Box
	Base Model
	Node

	Choosing a Mode
	Compare Mode
	Merge Mode
	Subtree Mode
	View Mode

	Loading and Saving Subunits
	Subunits and Controlled Units
	Subunit Status
	Loading Subunits
	Understanding Subunit File and Path Names
	Setting a New Context for Subunits
	Resolving Subunit Loading Errors

	Pathmaps
	How Do Virtual Pathmaps Work?
	When Do You Need a Pathmap?

	Saving Subunits

	Comparing and Merging Models
	Comparing Models
	Merging Models
	Automatic Merge
	Merging Models Without a Base Model

	Understanding Differences and Conflicts
	Interpreting Compare and Merge Results
	Starting a Merge
	Semantic Checking
	Using Semantic Checking On-the-Fly
	Limitations of Semantic Checking

	Resolving Merge Errors
	Merging Models with Controlled Subunits

	Merging Options
	Accepting Changes from Contributors
	Deciding Which Contributor to Use
	Changing Nodes with Differences
	Reversing Changes to Nodes
	Performing a Partial Merge

	Differencing and Merging Model Elements

	Navigating through Models
	Filtering
	Searching for a Model Element
	Finding Nodes that Have Moved
	Viewing Model Elements that Have Moved

	Finding Referenced Nodes
	Viewing Nodes Referenced by a Node

	Viewing Conflicts and Differences
	Viewing Conflicts and Differences with Auto Advance
	Viewing the Parent of a Node

	Using the Rational ClearCase Diff Merge Tool
	Overview
	Merge Source Code Example
	Specifying Contributors
	Starting the ClearCase Diff Merge Tool - Merge Source Code

	Recommendations

	Index

