
Rational Software Corporation
Toolset Guide

RATIONAL ROSE® REALTIME

VERSION: 2003.06.00

PART NUMBER: 800-026113-000
support@rational.com
http://www.rational.com

WINDOWS/UNIX

Legal Notices
©1993-2003, Rational Software Corporation. All rights reserved.

Part Number: 800-026113-000
Version Number: 2003.06.00

This manual (the "Work") is protected under the copyright laws of the United States
and/or other jurisdictions, as well as various international treaties. Any reproduction
or distribution of the Work is expressly prohibited without the prior written consent
of Rational Software Corporation.

Rational, Rational Software Corporation, the Rational logo, Rational Developer
Network, AnalystStudio, ClearCase, ClearCase Attache, ClearCase MultiSite,
ClearDDTS, ClearGuide, ClearQuest, ClearTrack, Connexis, e-Development
Accelerators, DDTS, Object Testing, Object-Oriented Recording, ObjecTime,
ObjecTime Design Logo, Objectory, PerformanceStudio, PureCoverage, PureDDTS,
PureLink, Purify, Quantify, Rational Apex, Rational CRC, Rational Process
Workbench, Rational Rose, Rational Suite, Rational Suite ContentStudio, Rational
Summit, Rational Visual Test, Rational Unified Process, RUP, RequisitePro,
ScriptAssure, SiteCheck, SiteLoad, SoDA, TestFactory, TestFoundation, TestStudio,
TestMate, VADS, and XDE, among others, are trademarks or registered trademarks of
Rational Software Corporation in the United States and/or in other countries. All
other names are used for identification purposes only, and are trademarks or
registered trademarks of their respective companies.

Portions covered by U.S. Patent Nos. 5,193,180 and 5,335,344 and 5,535,329 and
5,574,898 and 5,649,200 and 5,675,802 and 5,754,760 and 5,835,701 and 6,049,666 and
6,126,329 and 6,167,534 and 6,206,584. Additional U.S. Patents and International
Patents pending.

U.S. GOVERNMENT RIGHTS. All Rational software products provided to the U.S.
Government are provided and licensed as commercial software, subject to the
applicable license agreement. All such products provided to the U.S. Government
pursuant to solicitations issued prior to December 1, 1995 are provided with
“Restricted Rights” as provided for in FAR, 48 CFR 52.227-14 (JUNE 1987) or DFARS,
48 CFR 252.227-7013 (OCT 1988), as applicable.

WARRANTY DISCLAIMER. This document and its associated software may be used
as stated in the underlying license agreement. Except as explicitly stated otherwise in
such license agreement, and except to the extent prohibited or limited by law from
jurisdiction to jurisdiction, Rational Software Corporation expressly disclaims all
other warranties, express or implied, with respect to the media and software product
and its documentation, including without limitation, the warranties of
merchantability, non-infringement, title or fitness for a particular purpose or arising

from a course of dealing, usage or trade practice, and any warranty against
interference with Licensee’s quiet enjoyment of the product.

Third Party Notices, Code, Licenses, and Acknowledgements
Portions Copyright ©1992-1999, Summit Software Company. All rights reserved.

Microsoft, the Microsoft logo, Active Accessibility, Active Client, Active Desktop,
Active Directory, ActiveMovie, Active Platform, ActiveStore, ActiveSync, ActiveX,
Ask Maxwell, Authenticode, AutoSum, BackOffice, the BackOffice logo, bCentral,
BizTalk, Bookshelf, ClearType, CodeView, DataTips, Developer Studio, Direct3D,
DirectAnimation, DirectDraw, DirectInput, DirectX, DirectXJ, DoubleSpace,
DriveSpace, FrontPage, Funstone, Genuine Microsoft Products logo, IntelliEye, the
IntelliEye logo, IntelliMirror, IntelliSense, J/Direct, JScript, LineShare, Liquid Motion,
Mapbase, MapManager, MapPoint, MapVision, Microsoft Agent logo, the Microsoft
eMbedded Visual Tools logo, the Microsoft Internet Explorer logo, the Microsoft
Office Compatible logo, Microsoft Press, the Microsoft Press logo, Microsoft
QuickBasic, MS-DOS, MSDN, NetMeeting, NetShow, the Office logo, Outlook,
PhotoDraw, PivotChart, PivotTable, PowerPoint, QuickAssembler, QuickShelf,
RelayOne, Rushmore, SharePoint, SourceSafe, TipWizard, V-Chat, VideoFlash, Visual
Basic, the Visual Basic logo, Visual C++, Visual C#, Visual FoxPro, Visual InterDev,
Visual J++, Visual SourceSafe, Visual Studio, the Visual Studio logo, Vizact, WebBot,
WebPIP, Win32, Win32s, Win64, Windows, the Windows CE logo, the Windows logo,
Windows NT, the Windows Start logo, and XENIX, are either trademarks or registered
trademarks of Microsoft Corporation in the United States and/or in other countries.

Sun, Sun Microsystems, the Sun Logo, Ultra, AnswerBook 2, medialib, OpenBoot,
Solaris, Java, Java 3D, ShowMe TV, SunForum, SunVTS, SunFDDI, StarOffice, and
SunPCi, among others, are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

Licensee shall not incorporate any GLOBEtrotter software (FLEXlm libraries and
utilities) into any product or application the primary purpose of which is software
license management.

BasicScript is a registered trademark of Summit Software, Inc.

Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma,
Richard Helm, Ralph Johnson and John Vlissides. Copyright © 1995 by
Addison-Wesley Publishing Company, Inc. All rights reserved.

Additional legal notices are described in the legal_information.html file that is
included in your Rational software installation.

Contents
Preface .xxvii
Audience. xxviii

Other Resources . xxviii

Rational Rose RealTime Integrations With Other Rational Products xxix

Contacting Rational Customer Support .xxx

1 Using the Online Help .1
Using the Online Help System . 1

Accessing What’s This Help . 1
Accessing Extended Help . 1
Tutorials . 2

Using the Help Viewer . 2
Getting More Out of Help . 2
Finding a Help Topic . 3
Creating a List of Favorite Help Topics . 3

Maintaining a Single Favorites List . 3

Copying a Help Topic . 4
Printing the Current Help Topic. 5
Obtaining Help in a Dialog . 5
Finding Topics Using the Toolbar Buttons . 5
Hiding or Showing the Navigation Pane . 6
Using Accessibility Shortcut Keys in the Help Viewer . 6
Using the Context Menu Commands . 9

About the Search Tab . 9
Searching for Help Topics . 10
Searching for Words or Phrases. 11
Defining Search Terms . 12
Using Nested Expressions when Searching. 12
Searching within Search Results . 14
Contents v

Changing the Help Viewer .14
Customizing the Help Viewer . 14
Changing Format or Styles for Accessibility . 15
Viewing Topics Grouped by Information Type. 15
Changing the Font Size of a Topic . 15
Changing Colors in the Topic Pane of the Help Viewer 16

Related Documentation .16

2 Overview of Rational Rose RealTime . 17
Developing Using Rational Rose RealTime .17

Using Languages and Code Generation .18
Compiling Models . 18

Using the Services Library .19

Capsules, Protocols, Ports, Capsule State and Structure Diagrams19
Capsules. 20
Protocols. 20
Ports . 21
State Diagrams . 21
Capsule Structure Diagrams . 21
Executable Models . 21

Constructing Models in Rational Rose RealTime .22
Modeling Elements . 22

Required Elements .22

Diagrams . 24

Development Process .25

Essential Workflows .26

3 User Interface Overview. 29
Startup Screen .29

Create New Model Dialog .30
Using the Startup Frameworks . 31

Application Window .37
Browsers .37
Toolbar .38
Diagrams. .38
Toolboxes .38
Menu Bar. .38

About Rational Rose RealTime Dialog . 39
vi Contents

The Toolbar .39

Menus .43
Menu Bar . 44
File Menu . 45

File Menu Operations. 45

Edit Menu . 49
Parts Menu. 54
View Menu . 56
Browse Menu . 57

Select Diagram Dialog . 57
Browse Menu Operations . 58

Build Menu . 61
Report Menu . 64
Query Menu . 66
Tools Menu. 68

Layout . 68

Add-Ins Menu. 75
Window Menu . 76
Help Menu . 77

Browsers .78
Tabs . 80

Model View Tab . 80
Containment View Tab . 80
Inheritance Tab . 80
RTS Tab . 80
Navigating . 80
Displaying the Browser . 81
Refreshing the Browser . 81
Multiple Browsers. 81
Filtering . 81

Diagram Editors .82
Diagram Specification - General Tab . 83
Diagram Specification - Diagrams Tab . 83
Adding Icons to a Diagram. 83
Opening Specifications . 84
Shortcut Menu . 84
Background Shortcut Menu . 84
Scroll Bars . 85
Contents vii

Overview Navigator and Toolset Buttons, and Class, Capsule, and Protocol
Specification Context Menus . 86
Overview Navigator Button .86
Toolset Buttons .86
Context Options for Specification Dialogs .86
Context Options for Other Controls .87

Sequence Diagram Context Menu . 89
Toolboxes . 91

Specification Dialogs .92
Spreadsheet-type Functionality for List Controls within a Specification Dialog.93
Tabs. .95

Actions Tab . 95
Attributes Tab . 96
Components Tab . 97
Detail Tab . 97
Files Tab . 98
General Tab . 98
Operations Tab . 99
Relations Tab . 101
Swimlanes Tab . 101
Transitions Tab . 101
Unit Information Tab . 101

Descriptions .101

Scratch Pad Packages . 103

Searching and Sorting .104
Using Sort. 104
Find In Model Dialog. 105
Replace Dialog . 106

Searching Code .106

4 Other Application Windows. 109
Description Window .109

Displaying the Description Window . 109
Documentation Tab. 110
Code Tab . 110
Word Wrap . 110
Pull-down Menu . 111
Popup Menu . 111
viii Contents

Adding Documentation to Model Elements .111

Adding Code to Model Elements .112

Output Window. .112
Log Tab . 112
Build Log Tab . 113

Saving Build Output to a Log File . 113

Build Errors Tab . 114
Filtering Build Results . 114
Sorting Build Results . 114
Unknown Compiler Message Stream . 114

Find Tab . 115
Watch Tab . 115

Refreshing the Watch Values. 115

Specification History Window. .115
Locking Specification Dialogs . 116
ToolTips . 116
Keyboard Shortcuts . 116
Specification History Shortcut Menu . 117

5 Printing. 119
Print Specifications .119

General Tab . 119

Properties Dialog . 120
Diagrams Tab. 120
Specifications Tab . 121
Layout Tab . 122

Print Setup .123
Printer Area . 123
Paper Area. 123
Orientation Area. 123

6 Opening and Saving Models . 125
Unique Ids .125

Opening Models .129
Model Specification . 129

General Tab . 129
Source Control Tab . 130
Files Tab. 130
Unit Information Tab. 130

A Workspace . 131
User-specific Working Environment Settings (.rtusr, .rtto and .rtwks) 132
Contents ix

Opening Models from ObjecTime Developer 5.2.1 132
Limitations and Restrictions . 133

Opening Rational Rose Models .134
Limitations and Restrictions . 135

Importing Rational Rose Generated Code. .136
Limitations and Restrictions .136

7 Use Case Diagrams . 137
Creating a Use Case Diagram .137

Using the Use Case Diagram Editor .138
Usage Tips .139

Use Case Diagram Toolbox . 139

8 Defining Use Cases and Actors . 141
Creating a Use Case .141

Use Case Specification . 141
General Tab. .142
Diagram Tab .143
Relations Tab .143
Files Tab .143

Creating an Actor .143
Actor Specification . 144

9 Creating Class Diagrams. 145
Creating a Class Diagram .145

Using the Class Diagram Editor . 146
Class Diagram Toolbox. 149

Creating Relationships .153

Creating Association Relationships .154
Association Properties .155

Association Specification . 155
General Tab. .155
Detail Tab .156
End A and B General Tabs .157
End A and B Detail Tabs .158

Creating Aggregation Relationships .160

Creating an Association Class .162

Aggregation Specification .162
x Contents

Creating Inheritance Relationships .162
Creating an Inheritance Tree . 163
Exclusions . 163

Generalize Specification . 163
General Tab . 164

Inheritance in Rational Rose RealTime . 164
Promoting and Demoting Elements . 165
Potential Conflicts Caused by Promote/Demote . 165
Excluding Elements . 165
Reinheriting Excluded Elements . 166
Rearranging Inheritance Hierarchies . 166

Inheritance Tab in Browser. 166

Creating Dependency Relationships .167
Graphical Notation . 168
Naming . 168
Valid Applications. 168
Add Class Dependencies Wizard . 168

Dependency Specification . 168
General Tab . 169

Creating Reflexive Relationships .170

Changing the Directionality of an Association .170

Creating Package Relationships .170

Creating Realize Relationships .171
Naming . 171
Valid Applications. 171

Realize Relationship Specification . 171
General Tab . 171

Inserting Dependencies, Generalizations, and Realizations on the Relations
Tab .172
Inserting Dependencies . 172

Inserting Generalizations . 173

Inserting Realizations. 175
Changing the End Class . 176

Adding and Hiding Classes, and Filtering Class Relationships178

Using State Machine Code Generation for Classes.178
Configuring a Simple Model . 178
Generating Component Libraries for Classes without RTS Dependencies . . . 180
Creating State Machine Trigger Operations . 182
Configuring the trigger Stereotype for an Operation . 183
Contents xi

Generating State Machine Code . 185
Support for Code Sync . 187

Considerations .189
Hello World Implementation and Header Files .190

Using Constructors . 195
C Language .196
C++ Language .197

Using Return, Break, and Continue Statements. 198
Specifying History. 199
No Refinement . 200

Overriding Virtual Operations .200

Generation of Parameterized and Instantiated Classes.200
Parameterized Classes. 201

Relationships .203

Instantiated Classes . 203
Relationships .204

Limitations . 205

10 Creating Collaboration Diagrams . 207
Creating Capsule Structure .207

Using the Structure Editor .208
UML Options .209
Structure Diagram Browser Context Menu Options .209

Structure Diagram Toolbox. .211

Creating a Port .212
Creating a Non-Wired Port Using a System Protocol .213

Port Specification .213
General Tab. .213
Files Tab .217

Port Role Specification Dialog .218

Adding a Capsule Role .219

Capsule Role Specification .219
General Tab. .219

Connecting Ports on Capsule Roles Together .221

Connector Specification .221
General Tab. .221

Creating a Collaboration Diagram .222
xii Contents

Using the Collaboration Diagram Editor .222
Relationship Between Collaborations and Sequences . 223
Opening a Sequence Diagram. 223
Sequence Overlays . 223
Code Generation . 223

Collaboration Diagram Toolbox . 224
Classifier Role Specification. 225

General Tab . 226
Files Tab. 226

Association Role Specification . 226
General Tab . 226
Files Tab. 227

11 Creating State Diagrams . 229
Creating Capsule State Machines .229

Using the State Diagram Editor .230
State Diagram Toolbox . 232
State Specification . 234

General Tab . 234
Entry Actions / Exit Actions Tabs . 234

Aggregating and Decomposing State Machines .235

Transition Specification .235
General Tab . 235
Triggers Tab . 235
Actions Tab . 236
Files Tab. 236

Choice Point Specification .237
General Tab . 237
Condition Tab. 237
Files Tab. 237

Initial State Specification .237
General Tab . 237
Files Tab. 238

Junction Point Specification .238
General Tab . 238
Files Tab. 239

Event Editor Dialog .239
EventGuard Specification Dialog Box . 240

Adding a State .242

Adding a Choice Point .242
Contents xiii

Drawing Transitions Between States .242
Specifying the Transition .245

Drawing the Initial Transition .245

Defining State Transition Trigger Events .246
State Diagrams .246

Joining Transitions .247

Creating Nested States .248

Positioning from a Superclass for Transitions .248

State Diagram - Showing Triggers and Code for Transitions250

Identifying Self Transitions on the Transitions Tab in the State Specification
Dialog Box .254

Descriptions .255

12 Creating Activity Diagrams . 257
Modeling Using Activity Diagrams .258

Activity Diagrams . 258

Creating an Activity Diagram .260

Activity Diagram Specification Dialog. .261
Activity Diagram Specification Dialog - General Tab . 262

StateMachine Specification for State/Activity. .262
StateMachine Specification for State/Activity - General Tab. 262
StateMachine Specification for State/Activity - Files Tab 263

Activity Diagram Tools .263

Activities .264
Activity History . 264
Specifying Actions for Activities . 264
Nested Activities . 265

Manipulating Nested Activities .265
Creating Nested Activities .265

Activity Specification Dialog .266
Activity Specification Dialog - General Tab . 266
Activity Specification Dialog - Actions Tab . 268
Activity Specification Dialog - Transitions Tab. 268
Activity Specification Dialog - Swimlanes Tab . 268
Activity Specification Dialog - Files Tab . 269
xiv Contents

Actions .269

Action Specification Dialog. .270
Action Specification Dialog - Detail Tab . 270
Action Specification Dialog - Files Tab . 271

Decisions .271

Decision Specification Dialog. .272
Decision Specification Dialog - General Tab . 272
Decision Specification Dialog - Transitions Tab . 273
Decision Specification Dialog - Swimlanes Tab . 273
Decision Specification Dialog - Files Tab . 273

End State .274

Start State .274

States .275
Specifying Actions for States . 275
Nested States. 276

Manipulating Nested States . 276
Creating Nested States . 276

State History . 277

State Specification Dialog .277
State Specification Dialog - General Tab . 277
State Specification Dialog - Actions Tab . 279
State Specification Dialog - Transitions Tab . 279
State Specification Dialog - Swimlanes Tab. 279
State Specification Dialog - Files Tab. 280

Trigger Specification Dialog .280
Trigger Specification Dialog - Detail Tab . 280
Trigger Specification Dialog - Files Tab . 281

Synchronizations .281

Synchronization Specification Dialog .282
Synchronization Specification Dialog - General Tab . 282
Synchronization Specification Dialog - Transitions Tab 283
Synchronization Specification Dialog - Files Tab . 283

Transitions .283
Contents xv

Transition Specification Dialog .284
Transition Specification Dialog - General Tab . 284
Transition Specification Dialog - Detail Tab. 285
Transition Specification Dialog - Files Tab . 286

Swimlanes .286
Creating Swimlanes . 287
Deleting a Swimlane . 287
Moving a Swimlane. 288
Displaying Multiple Views of a Swimlane . 288
Changing the Assignment of Responsibility of a Swimlane 289

Swimlane Specification Dialog .289
Swimlane Specification Dialog - General Tab. 289
Swimlane Specification Dialog - Files Tab . 290

Objects and Object Flows .290
Objects . 290
Object State . 291
Object Flow. 291
Object Flows and Transitions . 292
Modeling Object State changes . 292
Creating an Object . 293
Creating an Object Flow . 293
Adding the Object, Object Flow, and Lock Selection Tools to the Toolsbar . . . 293

Object Specification Dialog .294
Object Specification Dialog - General Tab . 294
Object Specification Dialog - Incoming Object Flows Tab 296
Object Specification Dialog - Outgoing Object Flows Tab 296
Object Specification Dialog - Files Tab . 296

Object Flow Specification Dialog .296
Object Flow Specification Dialog - General Tab . 297
Object Flow Specification Dialog - Files Tab. 297

Cutting Objects on Activity Diagrams. .298

Copying Objects on Activity Diagrams .298

Pasting Objects on Activity Diagrams .298
xvi Contents

13 Creating Sequence Diagrams . 299
Creating a Sequence Diagram. .299

Creating a New Diagram . 299
From the Browser . 300
From the Structure Diagram Browser . 300
From the Collaboration or Structure Diagram . 300
Editing a Diagram . 300
Adding Instances . 301
Defining Messages . 302
Specifying Message Details. 302

Cloning a Sequence Diagram .302

Using Copy and Paste within Sequence Diagrams302
Interaction Instances . 303
Messages. 303
Standard Diagram Elements . 305
Known Limitations . 305

Using the Sequence Diagram Editor .305
Opening Collaboration Diagrams. 306
Reorienting Messages . 306
Moving Messages . 307

Sequence Diagram Toolbox .307
Interaction Instance Specification . 310

General Tab . 310
Files Tab. 311

Interaction Specification . 311
General Tab . 311
Files Tab. 311

Local Action Specification . 312
General Tab . 312
Detail Tab. 312

Local State Specification . 312
General Tab . 312
Detail Tab. 313

Message Specification . 313
General Tab . 313
Detail Tab. 313
Port Detail Tab . 314

Send Message Specification - Adding Ports to Capsule Classes 315

Sequence Validation Dialog .318
Contents xvii

Focus of Control. .319
Coloring a Focus of Control .320

Navigating Sequence Diagrams. .321

Saving Sequence Diagrams as Controlled Units .324
Uncontrolling Sequence Diagrams . 326

Importing and Exporting Sequence Diagrams .326
RRTEI .326

Control Interaction Scripts . 326
ControlInteractions_CheckOut.ebs .327
ControlInteractions_AddSequenceDiagrams.ebs .327
ControlInteractions_CheckIn.ebs .328

Running Scripts to Make Sequence Diagrams Controllable. 328

14 Defining Capsules and Classes . 333
Creating a Class .333

Creating New Attributes .334

Creating New Operations. .334

Class Specification. .335
Class Specification Content . 335
Class Specification - General Tab. 336
Class Specification - Detail Tab . 337
Class Specification - Operations Tab . 339
Class Specification - Attributes Tab . 341
Class Specification - Nested Tab . 342
Class Specification - Components Tab . 344
Class Specification - Relations Tab . 344
Class Specification - Files Tab . 345
Class Specification - Diagrams Tab . 345

Attribute Specification Dialog .345
General Tab. .346
Detail Tab .347

Operation Specification Dialog. .347
General Tab. .348
Detail Tab .349
Validation Tab .350
Semantics Tab. .352
xviii Contents

Parameter Specification Dialog .352
Files Tab. 353

Creating a Capsule Class .353

Capsule Diagrams .354
State Diagram . 354
Structure Diagram . 354
Undocking the Capsule Diagrams . 354

Capsule Specification. .354
Capsule Specification - General Tab . 355
Capsule Specification - Diagrams Tab . 356
Capsule Specification - Operations Tab . 356
Capsule Specification - Attributes Tab . 357
Capsule Specification - Capsule Roles Tab . 358
Capsule Specification - Ports Tab . 359
Capsule Specification - Connectors Tab . 359
Capsule Specification - Relations Tab . 360
Capsule Specification - Components Tab . 360
Capsule Specification - Files Tab . 360

15 Defining Protocols . 361
Protocol Specification. .361

Protocol Specification - General Tab . 362
Protocol Specification - Signals Tab. 362
Protocol Specification - Relations Tab . 363
Protocol Specification - Components Tab . 363
Protocol Specification - Diagrams Tab . 364
Protocol Specification - Files Tab . 364

Signal Specification .364
Signal Specification - General Tab. 365
Signal Specification - Files Tab . 365

16 Defining Packages . 367
Introduction to Packages .367

Creating a Package .367
Packages and Class Diagrams . 368

Package Specification .368
Package Specification - General Tab . 369
Package Specification - Detail Tab. 370
Package Specification - Relations Tab . 370
Contents xix

Package Specification - Components Tab . 371
Package Specification - Files Tab . 371
Package Specification - Model Elements Tab. 371

Moving Model Elements. .372
Impact of Moving Classes or Diagrams on Configuration Management375

17 Creating the Component and Deployment Views 377
Using the Component Diagram Editor .377

Component Diagram Toolbox. .379

Using the Deployment Diagram Editor. .380
Deployment Diagram Elements .381

Deployment Diagram Toolbox .382

18 Importing and Exporting . 385
Importing a Petal or Package File .385

Importing Code from Rational Rose to Rational Rose RealTime.385
Using the Code Import Process . 386

Preparing the Rational Rose Model for Import .386
Launching the C++ Analyzer. .387
Specifying Export Options and Selecting a Source File Location388
Analyzing the Code. .391
Using CodeCycle to Add Tags to Code. .393
Importing the Code .394

Referencing an External Library .396

Using the Convert Rose Component Wizard .397

Exporting a File .399

19 Using Source Control. 401
Fundamentals of Source Control in Rational Rose RealTime401

Using Source Control in Rational Rose RealTime .402
Maintaining Integrity When a Model is Under Source Control 403

Source Control Settings .404
Optimizing Performance .408
Accessing Source Control Operations .408

Source Control Operations . 410

Adding Elements to Source Control. .414
Performing an Unreserved Checkout . 415
xx Contents

Options for Obtaining Change Management Information When Loading a
Model .417
Updating the Log . 419
Changing the CM Retrieval Option. 419
CM Retrieval Options . 420
Limitations . 421

Checking Out Files When a Newer Version Exists.422

Get Dialog .422

Controlling a Unit with an Uncontrolled Parent. .425
Changing Unit Ownership . 425
Limitations . 426

Viewing the ClearCase Version Tree for a VOB .426

20 Naming Guidelines . 429
Introduction to Naming Guidelines .429

Assigning Names .429

Special Case Notes .430

Using Logical Names for Model Elements .430
Logical Name Example . 432

21 Building and Executing Models. 437
Building and Running Models .437

Is Rational Rose RealTime a Compiler? . 438
Real-Time Services (Services Library) . 438

Before You Start .438
Building . 439
Executing . 439

Building Basics. .439
Top-level Capsule. 440

Assigning an Active Component .440

Creating a Component .441

Starting a Build. .441

Generate Dialog .442

Unable to Compile a Component? .443

Reviewing Build Results. .444
Contents xxi

Opening Code Generated for Model Elements .445
Selecting Elements. 445

Selecting a Single Element .445

Selecting Multiple Elements . 447
Using an Editor . 447

Build Menu .447

Build Settings Dialog .450
Active Component . 450
Active Component Instances List . 450

Build Log Tab .450

Build Errors Tab .451
Unknown Compiler Message Stream . 451

Component Specification .451
Specification Content . 451
Component Specification - General Tab . 452
Component Specification - References Tab . 452
Component Specification - Relations Tab. 453
Component Specification - Files Tab . 453

Generating Documentation Fields .453
Using Generated Documentation Fields .457

Component Dependencies .461

22 Common Build Errors . 463
Understanding Build Errors .463

Missing Class Dependencies . 464
Capsule Role Name Same as Capsule Name . 464
Linking Wrong Services Library Set . 464
Compiler Not Installed Correctly . 464

Compile a Simple Hello World Program .465
Check Environment Variables .465
Review Your Compiler Flag Settings .465

System Does Not Understand the Make Command. 465
Check Environment Variables .465
Ensure that Component has Correct Make Types Configured465

Name Conflicts . 466
Missing Header Files, Object Files, and Libraries . 466
Compile Fails on Valid C++ Models with VC++ 5.0 or VC++ 6.0 467
Error Linking Capsule - Error From nmake . 467
xxii Contents

Windows NT Compilation Command Line Limits . 467
Source File Compilation . 467
Linking . 468

Model Management - Importing Model Compilation Results468
Build Log Tab - Saving and Importing Compilation Results 468
Saving the Build Output to a File Directly from the Build Log Tab 468
Importing from the Build Log Tab . 470
Build Errors Tab - Importing Compilation Results . 471

23 Running and Debugging . 475
Execution Basics .476

Creating a Component Instance .476

Running a Component Instance with Purify .477
Interpreting the Purify Log Reports . 479

Running a Component Instance without Purify .479

Observing a Running Component Instance .481

Rational Rose RealTime Execution Interface. .482
Target Control Programs . 482
Overriding Target Control . 482
Observability Interface . 483

Overview of Observability Options .483

Component Instance Menu .484

RTS Browser .485
Execution Control and Information Pane . 486
Capsule Instance Folder . 487
Probes Folder . 487

Monitors .488
Animation . 488
Opening a Monitor . 489
Probes . 489

Navigating to Model Elements from Debug Monitors490

Trace Windows. .490
Deleting Messages . 491
Trace Configuration . 491
Using Different Types of Traces . 492
Opening a Sequence Diagram. 492
Creating a Sequence Diagram From a Trace. 492
Contents xxiii

Probes .493

Inject Window. .494

Capsule Instance Trace .494
Trace Event Message Dialog .494
Creating a Sequence Diagram From a Message Trace .495
Dragging Capsule Instances into a Trace .495

Message Trace Configuration Dialog .496
Threshold Field. 496
Column Check Boxes . 496

Execution Watch Tab .496
Refreshing the Watch Values . 497

Run-time Exception While Running a Component Instance 497

Instance Browser .498

Source Code Debugging .498

Source Debugger Integration without Target Observability 500

Setting Breakpoints .500
Setting Breakpoints on State Machines . 501
Setting Breakpoints for Operations. 507

Customizing Rational Rose RealTime for Target Control and Observability 507

Running from Outside the Toolset .508
Purify . 508
Observability Command Line Parameter . 508

Component Instance Menu .509

Using the Command Line .509
Command Line Arguments. 509
Application-Specific Command Line Arguments . 510

Loading and Running Component Instances on Embedded Targets.510
Utility Scripts . 511

Component Instance Specification .511
Component Instance Specification - General Tab. .511
Component Instance Specification - Detail Tab .512

Overview of Observability Options .514
Observability Options . 515
xxiv Contents

Processor Specification Dialog .516
Processor specification - General Tab . 516
Processor Specification - Detail Tab . 516

Using Windows CE . 517
Using Debugger Modes . 521

Unloading a Debugger . 525

Device Specification. .525
General Tab . 525
Detail Tab. 526
Files Tab. 526

Connection Specification .526
General Tab . 526
Detail Tab. 527
Files Tab. 527

Probe Specification .527
Probe Specification - General Tab . 527
Probe Specification - Files Tab . 528
Probe Specification - Detail Tab. 528
Creating Inject Messages . 528
Examples . 529
Injecting a Message. 530

24 Using Code Sync to Change Generated Code 531
Code Sync Overview .531

Intended Code Sync Usage .532
Limitations . 532

Enabling and Disabling Code Sync .533

Identifying Code Sync Areas .533
Code Sync Identification Tags . 533
Designated Code Sync Areas . 534

Compiling Code Externally. .535

Invoking Code Sync from the Toolset. .535

Reconciling Changes in the Code Sync Summary 535
Accepting Changes . 536

Common Code Sync Errors .536
Error: Cannot code-sync; file I/O error on: <filename> . 537
Error: Cannot code-sync <filename> beyond line <lineNum> 537
Error: Could not find trailing CodeSync tag for

[<LocationSpecifier>]. 537
Warning: Use tabs for indenting code-sync regions . 537
Contents xxv

25 Generating Documentation . 539
Linking External Files to Model Elements .539

Generate Documentation Dialog .540

Inserting a Diagram into an MS Word Document. .541
Option A .541
Option B .541

Using OLE .542
Creating a Link . 542
Inserting a Link . 542
Navigating. 542
Editing Diagrams . 542

26 Customizing the Toolset . 543
Stereotypes .543

Creating a Custom Framework for Rose RealTime Models 543
Creating a New Stereotype for the Current Model . 544
Creating a New Stereotype Configuration File . 545
Creating a New Stereotype for all Rose RealTime Models 545
Creating Stereotypes for Classes . 548
Adding Stereotypes to the Diagram Toolbox . 548
Creating Stereotype Icons . 548
Creating a Diagram Icon. 549
Controlling the Display of Stereotypes . 549

Controlling Stereotype Display in the Browser .549
Controlling How Existing Stereotypes Display in a Diagram549
Controlling the Display of Stereotypes Added to Diagrams 550

Toolset Options .550
Options Dialog . 550

General Tab. .551
File Tab .552
Font/Color Tab. .554
Diagram Tab .555
Filtering Tab .558
Compartments Tab .558
Browser Tab .559
Editor Tab .559
THIDC_AA1oolbars Tab .560
Language/Environment Tab .560

Customizing the Diagram Toolbox . 561
xxvi Contents

Customize Toolbar Dialog . 561
Toolbar Button List . 561

Add-In Manager Dialog .561

Managing Model Properties .562
Displaying or Modifying the Values of Model Properties 562
Removing an Overriding Item Level Model Property . 563
Making a Model Property Item Specific . 563
Reinstalling the State and Value of the Last Committed Change 563
Attaching a Model Property Set to a Single Element or a Collection of Elements .

563
Displaying or Editing a Specific Model Property Set . 564
Creating a New Model Property Set. 564
Deleting a Model Property Set . 564

Keyboard Shortcuts . 565
General Shortcuts .565

Editing Shortcuts .568

Debugging Shortcuts .569
Build and RTS Shortcuts . 570
Specification Code Editor Shortcuts . 570
Browser Shortcuts . 571

Rational Rose RealTime Keyboard Shortcut Summary571

Index. 573
Contents xxvii

xxviii Contents

Preface
This guide describes the Graphical User Interface for the Rational Rose RealTime
toolset. This guide is organized as follows:

■ Using the Online Help on page 1
■ Overview of Rational Rose RealTime on page 17
■ User Interface Overview on page 29
■ Other Application Windows on page 109
■ Printing on page 119
■ Opening and Saving Models on page 125
■ Use Case Diagrams on page 137
■ Defining Use Cases and Actors on page 141
■ Creating Class Diagrams on page 145
■ Creating Collaboration Diagrams on page 207
■ Creating State Diagrams on page 229
■ Creating Activity Diagrams on page 257
■ Creating Sequence Diagrams on page 299
■ Defining Capsules and Classes on page 333
■ Defining Protocols on page 361
■ Defining Packages on page 367
■ Creating the Component and Deployment Views on page 377
■ Importing and Exporting on page 385
■ Using Source Control on page 401
■ Naming Guidelines on page 429
■ Building and Executing Models on page 437
■ Common Build Errors on page 463
■ Running and Debugging on page 475
■ Using Code Sync to Change Generated Code on page 531
■ Generating Documentation on page 539
■ Customizing the Toolset on page 543
■ Keyboard Shortcuts on page 565
xxvii

Audience

This guide is intended for all readers including managers, project leaders, analysts,
developers, and testers.

This guide is specifically designed for software development professionals familiar
with the target environment they intend to port to.

Other Resources

■ Online Help is available for Rational Rose RealTime.

Select an option from the Help menu.

All manuals are available online, either in HTML or PDF format. To access the
online manuals, click Rational Rose RealTime Documentation from the Start menu.

■ To send feedback about documentation for Rational products, please send e-mail
to techpubs@rational.com.

■ For more information about Rational Software technical publications, see:
http://www.rational.com/documentation.

■ For more information on training opportunities, see the Rational University Web
site: http://www.rational.com/university.

■ For articles, discussion forums, and Web-based training courses on developing
software with Rational Suite products, join the Rational Developer Network by
selecting Start > Programs > Rational Suite > Logon to the Rational Developer Network.
xxviii Preface

http://www.rational.com/documentation/
http://www.rational.com/university

Rational Rose RealTime Integrations With Other Rational
Products

Integration Description Where it is Documented

Rose RealTime–
ClearCase

You can archive Rose RT
components in ClearCase.

■ Toolset Guide: Rational Rose
RealTime

■ Guide to Team Development:
Rational Rose RealTime

Rose RealTime–
UCM

Rose RealTime developers can
create baselines of Rose RT projects
in UCM and create Rose RealTime
projects from baselines.

■ Toolset Guide: Rational Rose
RealTime

■ Guide to Team Development:
Rational Rose RealTime

Rose RealTime–
Purify

When linking or running a Rose
RealTime model with Purify
installed on the system, developers
can invoke the Purify executable
using the Build > Run with Purify
command. While the model
executes and when it completes, the
integration displays a report in a
Purify Tab in RoseRealTime.

■ Rational Rose RealTime Help

■ Toolset Guide: Rational Rose
RealTime

■ Installation Guide: Rational Rose
RealTime

Rose RealTime–
RequisitePro

You can associate RequisitePro
requirements and documents with
Rose RealTime elements.

■ Addins, Tools, and Wizards
Reference: Rational Rose RealTime

■ Using RequisitePro

■ Installation Guide: Rational
Rose RealTime

Rose RealTime–
SoDa

You can create reports that extract
information from a Rose RealTime
model.

■ Installation Guide: Rational Rose
RealTime

■ Rational SoDA User’s Guide

■ SoDA Help
Rational Rose RealTime Integrations With Other Rational Products xxix

Contacting Rational Customer Support

If you have questions about installing, using, or maintaining this product, contact
Rational Customer Support.

Note: When you contact Rational Customer Support, please be prepared to supply the
following information:

■ Your name, company name, telephone number, and e-mail address

■ Your operating system, version number, and any service packs or patches you
have applied

■ Product name and release number

■ Your Service Request number (SR#) if you are following up on a previously
reported problem

When sending email concerning a previously-reported problem, please include in the
subject field: "[SR#XXXXX]", where XXXXX is the Service Request number of the
issue. For example, "[SR#0176528] - New data on rational rose realtime install issue ".

Your Location Telephone Facsimile E-mail

North, Central,
and South
America

+1 (800) 433-5444
(toll free)

+1 (408) 863-4000
Cupertino, CA

+1 (781) 676-2460
Lexington, MA

support@rational.com

Europe, Middle
East, Africa

+31 20 4546-200
Netherlands

+31 20 4546-201
Netherlands

support@europe.rational.com

Asia Pacific +61-2-9419-0111
Australia

+61-2-9419-0123
Australia

support@apac.rational.com
xxx Preface

1Using the Online Help
Contents

This chapter is organized as follows:

■ Using the Online Help System on page 1
■ Using the Help Viewer on page 2
■ About the Search Tab on page 9
■ Changing the Help Viewer on page 14
■ Related Documentation on page 16

Using the Online Help System

Comprehensive online help is available in HTML Help format. It includes four
navigation tabs: Contents, Index, Search, and Favorites. There are various hyperlinks
between related topics, and examples and multimedia demos for specific features of
the toolset.

Accessing What’s This Help

Context-sensitive help is available for many topics from the toolset. You can access the
help three ways:

■ Clicking Help > Contents
■ Selecting context-sensitive Help button on a dialog and clicking on items on the

dialog box.
■ Pressing SHIFT + F1 from anywhere in the toolset.

Accessing Extended Help

Extended Help includes information on how to perform tasks using the currently
selected tool, the Rational Unified Process (RUP), and other sources of information.
The information accessed from Extended Help depends on the context from which it
is invoked. The context varies from task to task.
1

Extended Help is based on a set of databases that identify the context for the
information (called the target). After you instal, you have access to the RUP database.
You can create and register any number of databases, each containing different
information and pointers to different HTML pages. For example, you may have a
database that contains pointers to pages that are appropriate for all projects in your
organization. You may have another that is specific to a project or project type. You
can also create a personal database with pointers to information that is important to
you.

Tutorials

The online help includes tutorials to help you learn to use the main features of
Rational Rose RealTime.

Using the Help Viewer

The following topics describe most of the general features available in the Help
Viewer:

■ Getting More Out of Help on page 2
■ Creating a List of Favorite Help Topics on page 3
■ Copying a Help Topic on page 4
■ Printing the Current Help Topic on page 5
■ Obtaining Help in a Dialog on page 5
■ Finding Topics Using the Toolbar Buttons on page 5
■ Hiding or Showing the Navigation Pane on page 6
■ Using Accessibility Shortcut Keys in the Help Viewer on page 6
■ Using the Context Menu Commands on page 9

Getting More Out of Help

To find more information when using the HTML Help Viewer, you can:

■ Link to another topic, a Web page, a list of other topics, or a program, by clicking
the colored, underlined words.

■ View topics that contain related information by clicking topic titles under the
headings Related Topics, Related Tasks, and See Also, which may appear at the
end of a topic.

■ Verify if a word or phrase contained in a topic is in the Index by selecting the
word, and then pressing F1.
2 Chapter 1 - Using the Online Help

■ Click Stop or Refresh on the Help toolbar to interrupt a download to refresh a
Web page.

■ Add a frequently used topic to your Favorites list. For important information on
how to use the Favorites list, see the file rosert_readme.html.

■ Right-click the Contents tab or Topic pane for context menu commands.

Finding a Help Topic

In the Navigation pane, click one of the following tabs:

■ To browse through a table of contents, click the Contents tab. The table of contents
is an expandable list of important topics.

■ To see a list of index entries, click the Index tab, and then type a word or scroll
through the list. Topics are often indexed under more than one entry.

■ To locate every occurrence of a word or phrase that may be contained in a help file,
click the Search tab, and then type the word.

Notes

Click on a contents entry, index entry, or search results entry to display the
corresponding topic.

Creating a List of Favorite Help Topics

To quickly create a list of Favorite help topics:

1 Locate the help topic you want to make a favorite topic.

2 Click the Favorites tab, and then click Add.

Note: Since the online Help system is modular, adding a help topic to a favorites lists
only adds that topic to favorites list for the currently open help component. To create a
single favorites list, see Maintaining a Single Favorites List on page 3.

Maintaining a Single Favorites List

The Rational Rose RealTime online Help system is modularized. Consequently, if you
select Add on the Favorites tab to add current help topic to your favorites list, this
entry will only appear in the favorites list for that component of the online help.
Using the Help Viewer 3

To maintain a single list of "favorite" help topics:

1 Use the Search or Index tabs to find the desired online help topic.

2 Click the Locate button in the Toolbar of the Online Help window to see where this
help topic appears in the Contents tab.

3 Close the online help.

4 Open the online help, using Help > Contents.

5 From the Contents tab only, find the help topic.

6 Click the Favorites tab.

7 Click Add.

Notes

■ To return to a favorite topic, click the Favorites tab, select the topic, and then click
Display.

■ If you want to rename a topic, select the topic, and then type a new name in the
Current topic box.

■ To remove a favorite topic, select the topic and then click Remove.

Copying a Help Topic

To copy a Help topic:

1 In the Topic pane, right-click the topic you want to copy, and then click Select All.

2 Right-click again, and then click Copy to copy the topic to the Clipboard.

3 Open the document you want to copy the topic to.

4 Position your cursor where you want the information to appear.

5 On the Edit menu, click Paste.

Notes

If you want to copy only part of a topic, select the text you want to copy, right-click,
and then click Copy.
4 Chapter 1 - Using the Online Help

Printing the Current Help Topic

Right-click a topic in a Help window, and then click Print.

Notes

If you print from the Contents tab (by right-clicking an entry, and then clicking Print)
you will see options to print only the current topic, or the current topic and all of its
subtopics.

Obtaining Help in a Dialog

Click the question mark in the upper-right corner of the dialog, and then click an item
in the dialog.

Notes

■ To close the pop-up window, click anywhere on the screen.

■ If the dialog does not have the question mark, click Help or press F1.

■ You can also obtain help on an item by right-clicking it.

■ Not all dialog boxes include dialog-level help.

Finding Topics Using the Toolbar Buttons

The following navigational buttons appear on the Toolbar in the Help Viewer:

■ Back displays the last topic you viewed.

■ Forward displays the next topic in a previously displayed sequence of topics.

■ Home displays the Home page topic for the help file you are viewing.

■ Refresh updates Web content that is currently displayed in the Topic pane.

■ Stop terminates the downloading of file information.

Notes

The toolbar in your Help Viewer may not contain all of these navigational buttons.
Using the Help Viewer 5

Hiding or Showing the Navigation Pane

On the Toolbar in the Help window, click Hide or Show to close or display the
Navigation pane, which contains the Contents, Index, Search, and Favorites tabs.

Notes

If you close the Help Viewer with the Navigation pane hidden, it appears minimized
the next time you open the Help Viewer.

Using Accessibility Shortcut Keys in the Help Viewer

You can use the following keyboard shortcuts to navigate in the HTML Help Viewer:

To Press

Close the Help Viewer. ALT+F4

Switch between the Help Viewer and other open windows. ALT+TAB

Display the Options menu. ALT+O

Change Microsoft Internet Explorer settings. The Internet
Options dialog box contains accessibility settings. To
change these settings click the General tab, and then click
Accessibility.

ALT+O, and then press I

Hide or show the Navigation pane. ALT+O, and then press T

Print a topic. ALT+O, and then press P, or
right-click in the

Move back to the previous topic. ALT+LEFT ARROW, or
ALT+O, and then press B

Move forward to the next topic (provided you have viewed
it just previously).

ALT+RIGHT ARROW, or
ALT+O, and then press F

Turn on or off search highlighting. ALT+O, and then press O

Refresh the topic that appears in the Topic pane (this is
useful if you have linked to a Web page).

F5, or ALT+O, and then press
R

Return to the home page (help authors can specify a home
page for a help system).

ALT+O, and then press H

Stop the viewer from opening a page (this is also useful if
you are linking to the Web and want to stop a page from
downloading).

ALT+O, and then press S
6 Chapter 1 - Using the Online Help

For the Contents tab:

For the Index tab:

For the Search tab:

Jump to a predetermined topic or Web page. The help
author who builds a compiled help (.chm) file can add two
links, on the Options menu, to important topics or Web
pages. When you select a Jump command you go to one of
those topics or Web pages.

ALT+O, and then press 1 or 2

Switch between the Navigation pane and the Topic pane. F6

Scroll through a topic. UP ARROW and DOWN
ARROW, or PAGE UP and
PAGE DOWN

Scroll through all the links in a topic or through all the
options on a Navigation pane tab.

TAB

To Press

Display the Contents tab. ALT+C

Open and close a book or folder. PLUS SIGN and MINUS SIGN, or LEFT ARROW and
RIGHT ARROW

Select a topic. DOWN ARROW and UP ARROW

Display the selected topic. ENTER

To Press

Display the Index tab. ALT+N

Type a keyword to search for. ALT+W, and then type the word

Select a keyword in the list. UP ARROW and DOWN ARROW

Display the associated topic. ALT+D

To Press

Display the Search tab. ALT+S

Type a keyword to search for. ALT+W, and then type the word

Start a search. ALT+L
Using the Help Viewer 7

For the Favorites tab:

Notes

■ You can also access context menu commands using the keyboard.

■ Shortcut keys also work in secondary and pop-up windows.

■ If you use a shortcut key in the Navigation pane, you lose focus in the Topic pane.
To return to the Topic pane, press F6.

■ The Match similar words box on the Search tab is selected if you used it for your
last search.

Select a topic in the results list. ALT+T, and then UP ARROW and
DOWN ARROW

Display the selected topic. ALT+D

The following options are only available if full-text
search is enabled.

Search for a keyword in the result list of a prior
search.

ALT+U

Search for words similar to the keyword. For
example, to find words like “running” and “runs” for
the keyword “run.”

ALT+M

Only search through topic titles. ALT+R

To Press

Display the Favorites tab. ALT+I

Add the currently displayed topic to the Favorites
list.

ALT+A

Select a topic in the Favorites list. ALT+P, and then UP ARROW and
DOWN ARROW

Display the selected topic. ALT+D

Remove the selected topic from the list. ALT+R
8 Chapter 1 - Using the Online Help

Using the Context Menu Commands

There are several commands on the context menu that you can use to display and
customize information.

Notes

■ You can click SHIFT+F10 to display the context menu, and then click the
appropriate shortcut keys, or you can enable Mousekeys. Use a Mousekey
combination to display the context menu, and then click the appropriate shortcut
keys.

About the Search Tab

The Search tab allows you to search through every word in a help file to find a match.
For example, if you perform a full-text search on the word "generate", every topic that
contains the word "generate" displays.

To use full-text search:

1 Click the Search tab, and then type the word or phrase you want to find.

2 Click List Topics, select the topic you want, and then click Display.

Command Description

Right-click in the table of
contents, and then click
Open All.

Opens all books or folders in the table of contents. This
command only works if the Contents tab is displayed.

Right-click in the table of
contents, and then click
Close All.

Closes all books or folders. This command only works if the
Contents tab is displayed.

Right-click, and then click
Print.

Prints the topic.

Right-click in the table of
contents, and then click
Customize

Opens the Customize Information wizard, which allows
you to customize the documentation. If the help file was built
with information types, you can use this wizard to select a
subset of topics to view. For example, you could choose to see
only overview topics.
About the Search Tab 9

To highlight words in searched topics:

When searching for words in help topics, each occurrence of the word or phrase
appears highlighted in the topics that were found.

To highlight all instances of a search word or phrase, click Options on the Toolbar,
and then click Search Highlight On.

Notes

■ To disable this option, click Options on the toolbar, and then click
Search Highlight Off.

■ When viewing a long topic, only the first five hundred instances of a search word
or phrase are highlighted.

Searching for Help Topics

A basic search consists of the word or phrase you want to find. To further refine your
search, you can use wildcard expressions, nested expressions, boolean operators,
similar word matches, a previous results list, or topic titles.

The basic rules for formulating queries are:

■ Searches are not case-sensitive.

■ You can search for any combination of letters (a-z) and numbers (0-9).

■ The search ignores any punctuation marks, such as a period, colon, semicolon,
comma, and hyphen.

■ To set apart each search element, group the elements of your search using double
quotation marks or parentheses.

Note: You cannot search for quotation marks.

Notes

When searching for a file name with an extension, group the entire string in double
quotation marks, for example, use "filename.ext". Otherwise, the period is interpreted
as a separation character and the search will attempt to find two separate terms. The
default operation between terms is AND, so the search uses the logical equivalent to
"filename AND ext."
10 Chapter 1 - Using the Online Help

To find information with advanced full-text search:

1 Click the Search tab, and then type the word or phrase you want to find.

2 Click to add boolean operators to your search.

3 Click List Topics, select the topic you want, and then click Display.

4 To sort the topic list, click the Title, Location, or Rank column heading.

Notes

■ You can precisely define a search by using wildcard expressions, nested
expressions, and boolean operators.

■ You can request similar word matches, search only the topic titles, or search the
results of a previous search.

■ You can set the Help Viewer to highlight all instances of search terms that are
found in topic files. Click Options, and then click Search Highlight On. This
feature only works with Internet Explorer 4.0 or later.

Searching for Words or Phrases

You can search for words or phrases and use wildcard expressions. Wildcard
expressions allow you to search for one or more characters using a question mark or
asterisk. The table below describes the results of these different kinds of searches.

Search for Example Results

A single word select Topics that contain the word "select". (You will also find its
grammatical variations, such as "selector" and "selection".)

A phrase "new operator"
or
new operator

Topics that contain the literal phrase "new operator" and all
its grammatical variations.

Without the quotation marks, the query is equivalent to
specifying "new AND operator", which will find topics
containing both of the individual words, instead of the
phrase.

Wildcard
expressions

esc*
or
80?86

Topics that contain the terms "ESC", "escape", and
"escalation". The asterisk cannot be the only character in the
term.

Topics that contain the terms "80186", "80286", "80386", and so
on. The question mark cannot be the only character in the
term.
About the Search Tab 11

Notes

■ Select Match similar words to include minor grammatical variations for the
phrase you search.

Defining Search Terms

The AND, OR, NOT, and NEAR operators enable you to precisely define your search
by creating a relationship between search terms. The following table shows how you
can use each of these operators. If no operator is specified, AND is used. For example,
the query "spacing border printing" is equivalent to "spacing AND border AND
printing."

Notes

■ The "|", "&", and "!" characters do not work as boolean operators (you must use
OR, AND, and NOT).

Using Nested Expressions when Searching

Nested expressions allow you to create complex searches for information. For
example, "control AND ((active OR dde) NEAR window)" finds topics containing the
word "control" along with the words "active" and "window" close together, or
containing “control” along with the words "dde" and "window" close together.

Search for Example Results

Both terms in the same
topic.

dib AND palette Topics containing both the words "dib" and
"palette."

Either term in a topic. raster OR vector Topics containing either the word "raster" or
the word "vector" or both.

The first term without
the second term.

ole NOT dde Topics containing the word "OLE" but not
the word "DDE."

Both terms in the same
topic, close together.

user NEAR kernel Topics containing the word "user" within
eight words of the word "kernel."
12 Chapter 1 - Using the Online Help

The basic rules for searching help topics using nested expressions are as follows:

■ You can use parentheses to nest expressions within a query. The expressions in
parentheses are evaluated before the rest of the query.

■ If a query does not contain a nested expression, it is evaluated from left to right.
For example: "Control NOT active OR dde" finds topics containing the word
"control" without the word "active," or topics containing the word "dde." On the
other hand, "control NOT (active OR dde)" finds topics containing the word
"control" without either of the words "active" or "dde."

■ You cannot nest expressions more than five levels deep.

To search for words in the titles of HTML files:

1 Click the Search tab.

2 Type the word or phrase you want to find.

3 Select the Search titles only option.

4 Click List Topics, select a topic from the list, and then click Display.

Notes

■ All HTML topic files are searched, including any that are not listed in the Contents
tab.

To find words similar to your search term:

This feature enables you to include minor grammatical variations for the phrase you
search. For example, a search on the word "add" finds all references to "add," "adds,"
and "added."

1 Click the Search tab, type the word or phrase you want to find, and then select the
Match similar words check box.

2 Click List Topics, select the topic you want, and then click Display.

Notes

■ This feature only locates variations of the word with common suffixes. For
example, a search on the word "add" finds "added," but it will not find "additive."
About the Search Tab 13

Searching within Search Results

This feature enables you to narrow a search that results in too many topics found. You
can search through your results list from previous search by using this option.

To search the results from a previous search:

1 On the Search tab, select the Search previous results option.

2 Click List Topics, select the topic you want, and then click Display.

Notes

■ To search through all of the files in a Help system, ensure that you clear this
option.

■ The Search tab opens with the Search previous results options selected if you
previously used this feature.

Changing the Help Viewer

You can make various modifications to the Help Viewer. You can modify the
following:

■ Customizing the Help Viewer on page 14
■ Changing Format or Styles for Accessibility on page 15
■ Viewing Topics Grouped by Information Type on page 15
■ Changing the Font Size of a Topic on page 15
■ Changing Colors in the Topic Pane of the Help Viewer on page 16

Customizing the Help Viewer

You can change the size and position of the Help Viewer and the panes in the Help
Viewer by doing the following:

■ To resize the Navigation or Topic pane, move your mouse to point to the divider
between the two panes. When the pointer changes to a double-headed arrow, drag
the divider right or left.

■ To proportionately shrink or enlarge the entire Help Viewer, move your mouse to
point to any corner of the Help Viewer. When the pointer changes to a
double-headed arrow, drag the corner.
14 Chapter 1 - Using the Online Help

■ To change the height or width of the Help Viewer, move your mouse to point to the
top, bottom, left, or right edge of the Help Viewer. When the pointer changes to a
double-headed arrow, drag the edge.

■ To reposition the Help Viewer on your screen, click the Title Bar and drag the Help
Viewer to a new location.

Notes

■ The Help Viewer will appear with the last size and position settings you specified
when it is opened again.

Changing Format or Styles for Accessibility

1 On the Options menu, click Internet Options, and then click Accessibility.

2 In the Accessibility dialog box, and select any desired options.

3 Click OK.

Notes

■ These changes do not apply to the Navigation pane or toolbar of the Help Viewer.

■ This will also change your accessibility settings for Internet Explorer 4.0.

Viewing Topics Grouped by Information Type

You can customize your help system so that it includes only those help topics that are
relevant to you.

For example, if you have a help system for an educational software program that
includes topics for administrators, teachers, and students, you can customize your
Help so that it includes only the topics that are important to teachers and students.

To group your information by type, on the Toolbar, click Options, and then click
Customize.

Changing the Font Size of a Topic

On the Options menu, click Internet Options, and then click Fonts.

Notes

■ These changes do not apply to the Navigation pane or toolbar of the Help Viewer.

■ This setting also changes your font settings for Internet Explorer.
Changing the Help Viewer 15

Changing Colors in the Topic Pane of the Help Viewer

1 In Microsoft Internet Explorer, on the View menu, click Internet Options.

2 On the General tab, click Colors.

3 In the Colors dialog box, select the options you want, and then click OK.

4 To apply the new color settings, in the Internet Options dialog box, click OK.

Notes

■ These changes do not apply to the Navigation pane or toolbar of the Help Viewer.

■ This setting also changes your color settings for Internet Explorer 4.0.

Related Documentation

The following documents are related to the Rational Rose RealTime Toolset Guide:

■ Installation Guide, Rational Rose RealTime

■ Modeling Language Guide, Rational Rose RealTime

■ Guide to Team Development Guide, Rational Rose RealTime
16 Chapter 1 - Using the Online Help

2Overview of Rational
Rose RealTime
Contents

This chapter is organized as follows:

■ Developing Using Rational Rose RealTime on page 17
■ Using Languages and Code Generation on page 18
■ Using the Services Library on page 19
■ Capsules, Protocols, Ports, Capsule State and Structure Diagrams on page 19
■ Constructing Models in Rational Rose RealTime on page 22
■ Development Process on page 25
■ Essential Workflows on page 26

Developing Using Rational Rose RealTime

Rational Rose RealTime is a software development environment tailored to the
demands of real-time software. Developers use Rational Rose RealTime to create
models of the software system based on the Unified Modeling Language constructs,
to generate the implementation code, compile, then run and debug the application.

You can use Rational Rose RealTime through all phases of the software development
lifecycle; from initial requirements analysis through design, implementation, test and
final deployment. It provides a single interface for model-based development that
integrates with other tools required during the different phases of development. For
example, developers work directly through Rational Rose RealTime to generate and
compile the code that implements the model. The actual compilation is performed
behind the scenes by a compiler/linker outside of the toolset.

Using Rational Rose RealTime, developers work at a higher level of abstraction
specifying behavior in state diagrams and communication relationships in
collaboration diagrams. This is a natural and logical evolution in computer languages.
Just as third generation language tools provided greater productivity than assembly
language coding, visual development tools provide significant productivity gains
over current third generation languages.
17

Rational Rose RealTime includes features for:

■ Creating UML models using the elements and diagrams defined in the UML

■ Generating complete code implementations (applications) for those models

■ Executing, testing and debugging models at the modeling language level using
visual observation tools

■ Using Change Management systems for team development

Using Languages and Code Generation

Code generation of models is provided by specialized language add-ins. The content
of the generated code, regardless of the language, is based on the specification of each
model element, and the values of the model properties attached to model elements.

Language add-ins provide custom properties that store language-specific information
for each model element. In addition to Rational Rose, Rational Rose RealTime add-ins
also provide a Services Library that provides support for specialized real-time
services, such as concurrency, message passing, and timing services. The Services
Library is included as a library file and is linked into every executable created with
Rational Rose RealTime.

By providing both code generation and the specialized Services Libraries, Rational
Rose RealTime lets you generate, compile, and run models.

Compiling Models

You compile models generated from Rational Rose RealTime using commercial
compilers and linkers. Rational Rose RealTime generates the code, and then calls the
specified compiler and linker to compile and link the generated source code with the
pre-compiled Services Library.

Note: Rational Rose RealTime does not include a compiler or linker. You must first
install a compiler and linker before you can build and run a model.
18 Chapter 2 - Overview of Rational Rose RealTime

Using the Services Library

To construct a functioning Rational Rose RealTime model, at a minimum, you will
require a defined structure and behavior for the model, and the Rational Rose
RealTime Services Library.

The Services Library is essentially a framework for real-time systems. It includes
functionality for controlling concurrent execution of finite state machines, for
delivering messages, and for providing timing and logging services. A framework is
similar to a library of classes and operations used by an application, but with an
inversion of control. This means that the main control lies in the framework, and the
framework invokes functions in the application to pass control to application objects,
as required. Application classes are sub-classed from framework classes so that they
inherit certain operations.

There is no main() function in a Rational Rose RealTime model. The main() function is
contained in the Services Library and handles the creation of capsules in your model,
as well as starting the execution of their state machines. After you describe the
capsules and define state machines for them, they are automatically created and
executed by the Services Library. The capsule state machines can, in turn, invoke
operations on other classes (data classes), and send messages to other capsules. The
Services Library is responsible for managing the creation and destruction of capsules,
and the delivery of messages between capsules (including messages across threads).

The addition of these real-time notations to the UML concepts allows the toolset to
generate complete code for the model which is tied in to the Services Library. When
you generate code and compile a model in Rational Rose RealTime, the toolset will
link it with a Services Library that was compiled for the specific language and
platform you use.

Capsules, Protocols, Ports, Capsule State and Structure
Diagrams

In addition to supporting the core UML constructs, Rational Rose RealTime uses the
extensibility features of the UML to define some new constructs that are specialized
for real-time system development. These new constructs allow code generation of
elements that can use the services provided in the Services Library, such as concurrent
state machines, concurrency, message passing, and timing services.
Using the Services Library 19

In fact, many real-time projects must implement most of the above services. Using the
added modeling elements in Rational Rose RealTime allows you to concentrate on
implementing the functionality of the system right away without having to hand-code
the common real-time services and concurrency support.

Capsules
■ A capsule is a stereotype of a class.

Has much of the same properties as regular classes with added semantics for
modeling of communication relationships between capsules and modeling of its
event based behavior using a state diagram.

■ Provides built-in support for light weight concurrent objects.

Because of the message based nature and high encapsulation of capsules, they can
be easily distributed to different physical threads of control without any change to
the capsule.

■ Highly encapsulated objects using message based communication to other
capsules via its port objects.

The advantage of the message-based interfaces is that a capsule has no knowledge
of its environment outside of these interfaces, making it a much more
distributable, reusable, and robust than regular objects.

■ Capsule can aggregate other capsules.

Like classes, a capsules structure is defined by its attributes (encapsulation of
objects of other types of classes). But it can also be defined by attributes that are
other capsules, which we call capsule roles.

Protocols
■ Defines the set of messages exchanged between a set of capsules.

■ Messages are defined from the perspective of both the receiver and the sender.

There are therefore different perspectives of a protocol, which we call protocol
roles. Protocol roles represent the communication from the perspective of one
participant in the communication scenario.

■ Messages that are sent between capsules contain a required signal name (which
identifies the message), an optional priority (relative importance of this message
compared to other unprocessed messages on the same thread), and optional
application data.
20 Chapter 2 - Overview of Rational Rose RealTime

Ports
■ Ports are objects whose purpose is to send and receive messages to and from

capsule instances.

■ They are owned by the capsule instance in the sense that they are created along
with their capsule and destroyed when the capsule is destroyed.

■ To specify which messages can be sent to and from a port, a port realizes a protocol
role. The protocol role is the specification of a set of the messages that can be
received (in) and sent (out) from the port. The protocol role essentially defines the
port type.

State Diagrams
■ Uses the same notation as defined in the UML.

■ Are generated to source code and make up the behavior of capsules.

■ All trigger events are defined by a port and signal pair. A capsule’s behavior is
therefore based on the receipt of messages.

■ Final states are not allowed on capsule state diagrams.

■ Junction points do not support the continuation kind attribute; that is, if a
transition is not continued, it defaults to history (except for internal transitions).

Capsule Structure Diagrams
■ A new diagram has been introduced the specify the capsule's interface (ports) and

its internal composition (capsule roles). The diagram is called a capsule structure
diagram, and it is based on the UML 1.3 specification collaboration diagram.

■ This is a specification type of diagram, and not an interaction diagram (object) as
collaboration diagrams in other versions of Rose are.

■ Allow you to specify the communication relationships between capsules.

Executable Models

The addition of the capsule and the formal semantics surrounding the capsule
structure allows Rational Rose RealTime to generate, compile and run a complete
implementation based on a model containing capsules.

The ability to execute models has a revolutionary impact on the software
development process. The results are higher quality software, and shorter and more
predictable delivery cycles. Executing models is the surest way to find problems and
issues that whiteboarding and document reviews do not find. Even high-level
architectural models can be executed.
Capsules, Protocols, Ports, Capsule State and Structure Diagrams 21

Use model execution to better understand the problem, to detect errors and problems
in requirements and architecture specifications, to explore alternative designs quickly,
and to test design models continuously during the development process.

Process note: To make the best use of Rational Rose RealTime, you should aim to get
your model running as often as possible. Making small, incremental changes and
running your model each day will bring much better results than making widespread
changes and working for weeks to get the model running again.

Constructing Models in Rational Rose RealTime

This section describes:

■ Modeling Elements
■ Diagrams
■ Development Process
■ Essential Workflows

Modeling Elements

There are many different modeling elements supported in Rational Rose RealTime,
and it is not easy for new users to know which elements to use to accomplish their
goals. In practice, there are only a few elements that are required to construct a
running model. The other elements provide greater flexibility and control over the
expression of your design model.

As you have already seen from the overview description of the Rational Rose
RealTime services library, the services library is essentially a framework for executing
capsules. Capsules are the main initiators and controllers of activity in a Rational Rose
RealTime model. You must define at least one capsule, but typically many more, in
order to generate and compile code for the model. The capsules in the model should
contain other classes, usually referred to as data classes, because they must be
invoked from a capsule behavior before they can perform any action. Also, they are
primarily used by capsules to contain detail data, which is operated on within the
capsule.

Required Elements

First of all, there are two elements that most developers will make use of at the start of
a project to understand the problem domain and begin the process of turning the
vague problem descriptions into detailed designs and implementations. These two
elements are use cases and actors. They are used together (along with use case
diagrams) for use case modeling, which helps architects, designers, testers, and others
22 Chapter 2 - Overview of Rational Rose RealTime

involved in the project understand the original system requirements and relate those
requirements to elements in the design model. Use cases and actors are not strictly
required to create an executable model, but use case modeling is highly recommended
as an effective method in the overall analysis and design process.

Your model then must consist of capsule classes, and protocols, which specify the
messages that capsules use to communicate. Almost all models also contain some
data classes for capsules to use to store and operate on detailed data. Larger models
contain many hundreds or thousands of capsule, protocol and data classes. These
models should contain packages to organize the classes into related units.

A capsule must have a state machine defined for it in order to perform any useful
behavior. The state machine defines the set of valid inputs that can be processed by
the capsule. A complete code implementation is generated for capsule state machines,
and any user-defined code to be performed as actions on state transitions is
embedded in the generated code.

In any non-trivial model, some capsules will have structure defined for them that
describes the interfaces which capsules use to communicate with each other. These
interfaces are called ports. The structure also describes how capsules are contained by
other capsules to construct composite systems. When one capsule is contained by
another capsule, it is referred to as a capsule role.

Before you can compile a model you must create a component that describes which
classes should be compiled as a unit, and the various settings that should be used to
control the code generation, compilation and link processes.

Finally, in order to run your model, you must specify the deployment by adding a
processor to the deployment diagram. The processor specifies the processing node
(workstation or embedded target) on which your model will be executed. The
compiled component must be mapped as a component instance on the processor so
that the tool can load the compiled component onto the specified processor for
execution and observation.

Further Reading

These are all the model elements that are required in order to create an executable
model in Rational Rose RealTime. Each of the possible elements in the model is
described further in the Modeling Language Guide.
Constructing Models in Rational Rose RealTime 23

Diagrams

Diagrams are an essential part of the model. Diagrams describe how the different
elements are combined together to make up the system. They also specify other forms
of relationships among the model elements.

There are eight diagrams supported in the Rational Rose RealTime tool, not all of
which are required to create an executable model. Although not all diagrams are
required, they exist for a purpose: the combination of these diagrams provides an
excellent description of the total composition and behavior of the model.

The supported diagrams are:

■ use case diagrams
■ class diagrams
■ state diagrams
■ collaboration diagrams
■ capsule structure diagrams
■ sequence diagrams
■ component diagrams
■ deployment diagrams

Of these eight diagrams, only class diagrams, state diagrams, and capsule structure
diagrams are essential in the development of an executable model.

The capsule structure diagrams describe the composition and connectivity of the
capsules in the model. This is essential in the creation of anything more than the most
trivial model. The generated code for the capsules reflects the information in the
capsule structure diagram.

State diagrams must be created for each capsule that has any significant functionality.
The tool will generate the implementation code for capsule state diagrams (no code is
generated for state diagrams for other classes), and the capsule state diagrams
provide the starting point for all behavior in the model. Class diagrams are used to
define inheritance relationships between classes (capsule, protocol and data classes
can all be subclassed). Class diagrams can also be used to show other associations
among classes. The class diagrams may result in code being generated to implement
the relationships defined in the diagrams, depending on the detailed settings for those
relationships.

Component diagrams are used to specify the parameters for compilation of the
model. In more complex systems, a hierarchy of components is compiled to make an
executable.

Deployment diagrams must also be used to get a model running. The deployment
diagram specifies how the model will be deployed on the destination hardware.
24 Chapter 2 - Overview of Rational Rose RealTime

Further Reading

Each of these diagrams is explained in more detail in the Modeling Language Guide. The
instructions for creating the diagrams are contained in the individual chapters for the
diagrams in this guide.

Development Process

The Rational Rose RealTime toolset is oriented to the use of an iterative,
object-oriented development process. However, detailed description of the
development process is beyond the scope of this document. We strongly recommend
that you look at the Rational Unified Process (RUP) to gain a better understanding of
the iterative object-oriented development process. See http://www.rational.com. At a
more detailed level, the process of creating an executable model in Rational Rose
RealTime can be summarized as follows:

Use the use case modeling elements and use case diagram to develop a detailed,
semi-formal understanding of the problem. The use case elements can be associated
with design elements as the design model evolves to maintain traceability.

Create capsules, protocols, classes, use class diagrams, capsule structure diagrams,
and capsule state diagrams to develop the structure and behavior of the model. Add
detailed implementation code to the capsule state diagrams and to class operations.

In addition, use collaboration diagrams and sequence diagrams to capture the
intended behavior of the system for various use cases. Use Rational Rose RealTime's
execution and debugging tools to validate the model behavior at run-time. Use
collaboration and sequence diagrams to help you in the design process by making the
communication patterns in the design evident. They will also help others understand
your design.

Once the design has stabilized, use state diagrams for classes and protocols to capture
the abstract design so that others can understand. This is particularly important for
protocols, where the state machine specifies how a capsule using that protocol must
behave.

Use the component diagram to specify the configuration of the model for compilation
purposes.

Use the deployment diagram to indicate how the components should be executed.
Also, the deployment diagram can be used to document the physical structure of the
target system.
Development Process 25

http://www.rational.com
http://www.rational.com

Further Reading

An overview of the Rational Unified Process is available in the Online Help book:
Development process reference. The complete Rational Unified Process description is
available at http://www.rational.com.

Essential Workflows

The following chart describes the workflows and project phases defined in the
Rational Unified Process.

Figure 1 Workflows in the Rational Unified Process

Rational Rose RealTime is not applicable to all of these workflows. The following
workflows are important in the context of Rational Rose RealTime:

Requirements - are typically captured in text documents or databases outside of the
Rational Rose RealTime toolset. Some analysis of the requirements is performed to
develop a more abstract model of the problem. The abstract model is called a use case
model. The Rational Rose RealTime use case modeling tools are used in this worklow.
In addition, design model elements can be traced back to requirements in two ways:
through associations between use case model elements and design model elements
captured in class diagrams, and through linking external files (requirements
specifications, for example) to model elements.

Analysis & Design - is the primary workflow supported in the Rational Rose
RealTime toolset. All of the Rational Rose RealTime class and capsule modeling tools
are used in the analysis and design. There is no clear distinction between analysis and
design in the Rational Rose RealTime toolset. They are part of the same process, which
is the process of turning vague problem descriptions into specifications of
software-based solutions. The end goal of this process is a design model, which in
26 Chapter 2 - Overview of Rational Rose RealTime

http://www.rational.com/products/rosert

Rational Rose RealTime is complete enough to be executable. Execution of the design
model is used as the basis for verifying whether the design meets the requirements.
Intermediate artifacts such as design documents can be produced from the model.

Implementation - in a traditional development process without Rational Rose
RealTime, there is typically a gulf between analysis & design and implementation. In
implementation, developers take the design specifications and produce code to
implement those specifications. The mapping is not always straightforward, and the
design specifications may be vague, incomplete or erroneous, leading to confusion,
lost productivity and time delays. With Rational Rose RealTime, the implementation
is automatically produced directly from the model. Implementation details are still
necessary, but they are added directly within the model framework. Going
back-and-forth is not required to keep the model in sync with the implementation. It
is always in sync.

Test - testing in Rational Rose RealTime involves compiling a model and running it. A
number of tools are provided in the run-time interface to assist with testing.

Configuration and Change Management - this workflow is ongoing, and is essential
for orderly development in a large team environment. Configuration and change
management involves putting the model and model elements under source control.
See the Guide to Team Development.

Further Reading

Each of these workflows and the impact of the tools in Rational Rose RealTime on
those workflows is described in the Online Help.
Essential Workflows 27

28 Chapter 2 - Overview of Rational Rose RealTime

3User Interface Overview
Contents

This chapter is organized as follows:

■ Startup Screen on page 29
■ Create New Model Dialog on page 30
■ Application Window on page 37
■ The Toolbar on page 39
■ Menus on page 43
■ Browsers on page 78
■ Diagram Editors on page 82
■ Specification Dialogs on page 92
■ Searching and Sorting on page 104

Startup Screen

The Startup screen has direct links to:

■ What’s New? - To review the new features of this release of Rational Rose
RealTime

■ Tutorials - To review various tutorials tailored to your skill level and backgrounds
■ Online Help - To access the Rational Rose RealTime help system

You have the option of always showing this screen on startup or bypassing it.
29

Create New Model Dialog

When you start Rational Rose RealTime, the Create New Model dialog appears.

In the Create New Model dialog, you have the following frameworks available:

■ Empty - Lets you to open a model without any shared package, which is useful for
pure modeling and use case development. The Empty framework allows the you
to open a model without any shared packages that provide language-specific
Runtime Services.

Note: The Empty framework is useful for creating use case designs but should not
be used for developing real-time applications.

■ RTC - Lets you to create a model in the C language. The RTC framework contains
all the Runtime Services classes needed for development of a Rational Rose
RealTime model using the C language.

■ RTC++ - Lets you to create a model in the C++ language. The RTC++ framework
contains all the Runtime Services classes needed for development of a Rational
Rose RealTime model using the C++ language.
30 Chapter 3 - User Interface Overview

■ RTJava - Lets you to create a model in the Java language. The RTJava framework
contains all the Runtime Services classes needed for development of a Rational
Rose RealTime model using the Java language. The Java Runtime Services classes
utilize the Java language classes, therefore, these classes may also appear in the
framework.

■ StartupC - Provides a framework containing two example C language Hello World
executables; one using the common main function, and the other using a capsule
with a trivial state machine. For additional information on the Startup
frameworks, see Using the Startup Frameworks on page 31.

■ StartupCPP - Provides a framework containing two example C++ language Hello
World executables; one using the common main function, and the other using a
capsule with a trivial state machine. For additional information on the Startup
frameworks, see Using the Startup Frameworks on page 31.

■ StartupJ - Provides a framework containing two example Java language Hello
World executables; one using the common main function, and the other using a
capsule with a trivial state machine. For additional information on the Startup
frameworks, see Using the Startup Frameworks on page 31.

Note: Any framework model that you create as a template appears in the Create New
Model dialog. For information on creating a framework, see Creating a Custom
Framework for Rose RealTime Models on page 543.

To open Rational Rose RealTime without automatically displaying the Create New
Model dialog box, click File > New > Create New Model, and then clear the Always
show this dialog on startup option.

Using the Startup Frameworks

There is one executable Hello World Startup Framework provided for the C, C++, and
Java languages. Each Startup framework demonstrates an executable Hello World
application using the main function, and using a capsule with state machine.

Note: This topic describes the Startup framework for the C++ language. The C and
Java frameworks are similar.

Each framework has a main Class diagram (Figure 2).
Create New Model Dialog 31

Figure 2 Class Diagram - Main

The simplest Hello World example is implemented by the class HelloWorldClass. The
class and the capsule depend on stdio.

Note: The external file has been modeled to make it visible in the design.

Figure 3 shows the Operation Specification dialog for the main function for the
HelloWorldClass class.
32 Chapter 3 - User Interface Overview

Figure 3 Operation Specification Dialog For the Main Operation

The generated code for the main operation will look like the following:

int main(int argc, const char * argv)

{

printf ("Hello World from C++ main\n");

getchar();

return 0;

}

Figure 4 shows the Component View for this Hello World startup model. The
Component diagram describes the build structure.
Create New Model Dialog 33

Figure 4 Component Diagram

To generate the corresponding code, right click on the component in the diagram or in
the model browser and click Build > Build, and then select Generate and Compile.

Note: Before you build, you will need to open the Specification dialog for the
component and configure it for your compiler.

You can run the generated executable from the command-line, or you can start it from
within the modeling environment. To run the executable, from the Deployment View
on the Model View tab in the browser, right-click on the component instance called
HelloWorldExeInstance, and click Run.

Figure 5 shows the results that appear in the console when you run the class-based
executable.
34 Chapter 3 - User Interface Overview

Figure 5 Console Output

In the capsule-based model, the code is in the initial transition of the state machine.
You can inspect the code on the State diagram using the Code tab, or by opening the
Transition Specification dialog.

Figure 6 State Diagram for HelloWorldCapsule
Create New Model Dialog 35

If you run the capsule-based executable, the Runtime View debugger will appear.

Figure 7 Runtime View Tab

Click Run () to start the executable.

Figure 8 shows the results that appear in the console when you run the capsule-based
executable.

Figure 8 Console Results
36 Chapter 3 - User Interface Overview

Application Window

The main elements of the Rational Rose RealTime user interface are:

■ The Toolbar
■ Menus
■ Browsers
■ Diagram Editors
■ Specification Dialogs

Figure 9 shows an RTC++ example of the application window as it appears when the
application is first started (with no model loaded).

Figure 9 Application Window

Browsers

Model elements are created and viewed through browsers. The primary tab in the
browser is the Model View tab, that provides access to all elements of the current
model. Browsers list the model elements - usually in a hierarchical way - allowing
elements to be expanded to show additional information. Also, most browser lists can
be filtered in various ways.
Application Window 37

The Containment View shows the containment hierarchy of the capsule classes in the
model.

The Inheritance View shows the inheritance hierarchy of the capsule classes, data
classes, and protocols in the model.

Toolbar

There is a standard toolbar (see The Toolbar on page 39) in the main application
window that contains icons for a standard set of tools, which can be invoked at any
time. This toolbar can be undocked and moved as a separate window.

Diagrams

Much of the model information is captured graphically in Diagram Editors.
Additional non-graphical information, such as detailed program code, can be entered
through Specification Dialogs. In many cases, information can be entered through a
diagram or specification dialog, or Code window.

Each diagram or specification that you open is displayed in a window within the
application window. These diagram and specification windows can be iconified. If the
active window displays a diagram, that diagram is referred to as the current diagram.
If the active window displays a specification, that specification is referred to as the
current specification.

Toolboxes

Every diagram has an associated toolbox (see Toolboxes on page 91), that contains
icons of tools that can be applied to that diagram. If the current diagram is
write-protected, the diagram toolbox is not displayed. The diagram toolbox is
dimmed when a diagram is displayed.

Menu Bar

The menu bar lists commands available for operations in any diagram or specification
window. Depending on the kind of diagram or specification displayed in the active
window, some menu commands may not apply. These commands are dimmed. If the
current diagram is write-protected, additional commands are rendered inaccessible.
38 Chapter 3 - User Interface Overview

About Rational Rose RealTime Dialog

The About Rational Rose RealTime dialog shows product version information,
support contacts, and lists the add-ins.

To open the About dialog, click Help > About.

The Toolbar

The standard toolbar is displayed directly below the menu bar along the top of the
application window. The visibility of the toolbar is set through the View menu. By
default, the standard toolbar is displayed. If you want to disable the standard toolbar
from the application window, select View > Toolbars > Standard. This switches the
visibility property of the toolbar.

Figure 10 Rational Rose RealTime Standard Toolbar

Create New Model

Opens the Create New Model dialog. There are four frameworks listed: Empty, RTC,
RTC++, and RTJava. Additionally, any framework model that you create to be used
as a template, appears in the dialog.

To create a new Rational Rose RealTime model containing all the classes required for
development for C, C++, or the Java language, click the framework for the specified
language. The Model browser appears with the packages and classes populated in the
Logical View and Component View.

If you have a model open when you select the create model, you are asked if you want
to save the current model. Selecting No discards all changes since your last save.
Selecting Yes saves your changes and opens a new model, or displays the Load Model
dialog automatically.

For information on creating a framework, see Creating a Custom Framework for Rose
RealTime Models on page 543.

Note: The Empty framework is useful for creating use case designs but should not be
used for developing RealTime applications.
The Toolbar 39

Open Existing Model

Opens the Load Model dialog. If you have a model open when you select the open
model, you are asked if you want to save the current model. Selecting No discards all
changes since your last save. Selecting Yes saves your changes and opens a new
model. See Opening Models on page 129 for more information.

Save Model

Opens the Save Model to dialog. Enter a new filename. After the model is named and
saved, selecting this button automatically saves your changes to the current model
without displaying the dialog.

Print Diagram

Opens the Print Specification dialog, that allows you to specify how and where
diagrams are printed. To change printer setup select File > Print Setup.

Cut

Removes icons or relationships from your model. An item (or items) must be selected
to activate the icon. Cutting an element also cuts associated relationships. You can cut
multiple-selected items.

Copy

Copies a component to a new location of the same model - or a new model - without
affecting the original component.

Paste

Pastes a component, that has previously been cut or copied to the clipboard, to
another location.

Undo

Undoes the last operation performed. Not all operations can be undone. If the Undo
tool is dimmed, the last operation cannot be undone.

Redo

Redoes the last operation that was undone.
40 Chapter 3 - User Interface Overview

Build Component

Initiates a model verification, generates the source code for the component, and
invokes the external compiler and linker to create an executable version of the
component. Only the model elements that have changed will be generated and
recompiled.

Stop Build

Stops a build in progress.

Load Process

Loads the components instances specified in the Build Settings dialog. The
component must be successfully built before it can run.

If the Attach Target observability flag was set on the Component Instance
Specification dialog and a Target observability Port number filled in, the execution
interface is displayed allowing you to control the execution of the model.

Run Component Instance

Loads the component instances specified in the Build Settings Dialog. The component
must be successfully built before it can run.

View Browser(s)

Displays or hides all existing browsers. Existing browsers are those that have been
created, but not closed.

View Description

Displays the Description Window, that contains the Documentation Tab and the Code
Tab.

View Output

Displays the Output window.

Browse Class Diagram

Opens a class diagram in the Class diagram editor (see Using the Class Diagram Editor
on page 146). Selecting this command opens a dialog allowing you to select from
available class diagrams to open.
The Toolbar 41

Browse Use Case Diagram

Opens a Use Case diagram in the Use Case diagram editor (see Using the Use Case
Diagram Editor on page 138). Selecting this command opens a dialog allowing you to
select from available use case diagrams to open.

Browse Collaboration Diagram

Opens a collaboration diagram using either the Collaboration diagram editor (see
Using the Collaboration Diagram Editor on page 222) or the capsule structure Editor (see
Using the Structure Editor on page 208). Selecting this command opens a dialog
allowing you to select from available collaboration diagrams to open.

Browse Sequence Diagram

Opens a sequence diagram in the sequence diagram editor (see Using the Sequence
Diagram Editor on page 305). Selecting this command opens a dialog allowing you to
select from available sequence diagrams to open.

Browse Component Diagram

Opens the component diagram in the Component diagram editor (see Using the
Component Diagram Editor on page 377).

Browse Deployment Diagram

Opens the deployment diagram in the Deployment diagram editor (see Using the
Deployment Diagram Editor on page 380).

Browse Parent

Displays the "parent" of the selected diagram or specification. If you have a
specification selected, the specification for the parent of the “named” item is
displayed.

Browse Previous Diagram

Displays the last displayed diagram. To go back more than one diagram, repeatedly
press the Browse Previous Diagram button.

Fit in Window

Centers and displays any diagram within the limits of the window. This command
changes the zoom factor so that the entire diagram displays.
42 Chapter 3 - User Interface Overview

This command does not change the state of the diagram. Changes made after clicking
Fit In Window may require that you re-click Fit In Window to center and resize the
diagram again.

Undo Fit in Window

Reverts the diagram and window sizing back to its appearance prior to the Fit in
Window operation.

Scale to Fit

Scales the diagram to fit within the current diagram window geometry.

Help Contents

Activates the online help system.

Context Sensitive Help

Activates the online help system and opens the help about that particular topic.

Menus

This section provides information on the following topics:

■ Menu Bar on page 44
■ File Menu on page 45
■ Edit Menu on page 49
■ Parts Menu on page 54
■ View Menu on page 56
■ Browse Menu on page 57
■ Build Menu on page 61
■ Report Menu on page 64
■ Query Menu on page 66
■ Tools Menu on page 68
■ Add-Ins Menu on page 75
■ Window Menu on page 76
■ Help Menu on page 77
Menus 43

Menu Bar

The menu bar provides drop-down menus for all operations on models and model
elements.

Some menu items are context-sensitive, and only operate when certain types of model
elements are selected. Context-sensitive menu items are grayed-out when they are not
applicable.

Figure 11 Main Menu Bar

The menu bar contains the following menus:

■ File Menu
■ Edit Menu
■ Parts Menu
■ View Menu
■ Browse Menu
■ Build Menu
■ Report Menu
■ Query Menu
■ Tools Menu
■ Add-Ins Menu
■ Window Menu
■ Help Menu

Not all menus are displayed at all times. Some of these menus appear only in context
of particular diagrams. The Parts menu, for example, appears only when a capsule
structure diagram or state diagram is open.
44 Chapter 3 - User Interface Overview

File Menu

The operations available on the File menu may vary according to the current active
window or the type of element selected.

File Menu Operations

New

Opens the Create New Model dialog. There are four frameworks listed: Empty, RTC,
RTC++, and RTJava. Additionally, any framework model that you create to be used
as a template, appears in the dialog.

To create a new Rational Rose RealTime model containing all the classes required for
development for the C, C++, or Java language, click the framework for the specified
language. The Model browser appears with the packages and classes populated in the
Logical View and Component View.

For information on creating a framework, see Creating a Custom Framework for Rose
RealTime Models on page 543.

Note: The Empty framework is useful for creating use case designs but should not be
used for developing RealTime applications.

A new model is unnamed until it is saved by a Save or Save As command.

Any open models are closed before a new model is created. You are prompted to save
changes if necessary.

By default, a new model contains one empty class diagram - the main class diagram
for the top level of the new model. You should place packages and classes
representing your highest-level abstractions in this diagram. The new model is
automatically created as a controlled unit.

Open

Loads a model or model kernel from a model file. A file browser is opened to let you
to select a .rtmdl file. If there is an accompanying workspace (.rtwks) file, the tool asks
if you want to open it instead.

Any open models are closed before opening another model. You are prompted to save
changes if necessary.

If the selected model file's access control in the platform file system is read-only, the
application write-protects the associated model.
Menus 45

When opening the model, the tools checks whether the model’s saved character set is
the same as the current system default charSet. If not, a dialog displays the following
warning:

"Non system default character set in file."

See Opening Models on page 129.

Open Workspace...

Opens an existing workspace. A file browser is opened allowing you to select a .rtwks
file.

Save Workspace

Saves the workspace. This action creates four files: a .rtwks file containing
configuration management settings; a .rtmdl file containing the representation of the
model itself; a .rtto file containing Target observability items, including probes and
inject messages; and a .rtusr file containing various application settings.

Save Workspace As...

Saves the workspace. This action creates four files: a .rtwks file containing
configuration management settings; a .rtmdl file containing the representation of the
model itself; a .rtto file containing Target observability items, including probes and
inject messages; and a .rtusr file containing various application settings. A file
browser is presented to specify the file name and location.

Save Model

Saves the model. Writes the model out as a .rtmdl file. If the model has not been saved
before, a file browser is presented to specify the file name and location.

If a destination model file's access control in the platform file system is read-only, an
ERROR! dialog is displayed indicating the software cannot write that file.

To control temporary and backup files created during a Save procedure, refer to the
Customizing the Diagram Toolbox in the Tools > Options dialog.

Save Model As...

Saves the model. Writes the model out as a .rtmdl file. A file browser is displayed to
specify the file name and location. This command displays the Save Model To dialog,
in which you can specify the new file name and the location where you want to save
the current model.
46 Chapter 3 - User Interface Overview

Import...

Imports a model file created by another tool. See Importing a Petal or Package File on
page 385 for more information.

This command displays the Read Petal dialog so you can specify the petal file you
want to import. Use this command to import the contents of a petal file into the
current model. This command requires the active window to contain a class or
component diagram.

When you import a petal file that contains elements, the diagram in your active
window is used to select a destination. If the active window is the top level diagram,
these elements are imported into the top level of the current model. Otherwise, these
elements are imported into the package that encloses the diagram in the active
window.

Each imported element is compared to the corresponding element in the current
model. If any of the elements in the petal file already exist in the current model, error
messages are sent to the log. If an imported package contains elements that already
exist in the current model, a dialog is displayed telling you that these elements have
not been imported. All diagrams in the model are appropriately updated, including
those imported from the petal file.

When you import a petal file that contains a complete model, that model is opened. If
a model is already open with unsaved changes, the Save Confirmation dialog is
displayed, prompting you to save your changes before closing the current model and
opening the model contained in the petal file.

Export Model...

Exports model files in alternative formats. Primarily used to exchange models with
other versions of Rational Rose and other Rational Rose tools.

This command displays the Write Petal dialog so that you can specify the name and
location of the petal file. Use this command to export selected items from the current
model to a petal file. The Export command displays the name of the element type
selected. If nothing is selected, Export Model is displayed. You can export:

■ The entire model
■ Classes
■ Logical Packages
■ Component Packages
Menus 47

Begin by displaying diagrams containing the items you want to export. Select the
specific classes, logical and component packages to be exported, and pull down the
File menu. The Export command indicates the number of items selected. If no items
are selected, the entire model is exported. If any item not on the above list (such as a
relationship or adornment) is selected, the Export command is not executable.

When a logical or component package is exported, all diagrams it contains are also
exported. When individual classes are exported, however, only their state transition
diagrams are exported with them. Exporting the entire model does export all
diagrams contained within it.

Exporting to a petal file is useful when you want to transfer:

■ elements from one model to another

■ a model or its elements between different computing platforms

■ a model or its elements to a new software release

Print...

Prints the model. Printing on page 119

Print Setup...

Changes the print setup before printing.

Edit Path Map

Edits or creates pathmap variables. Opens the Virtual Path Map dialog. Using the
dialog, you can create an entry to represent a mapping between a virtual path symbol
and an actual pathname. This feature allows you to work with models moved or
copied among workspaces and archives by redefining the actual directory associated
with the user-defined symbol.

Recent Files

Opens recently edited models.

Recent Workspaces

Opens recently used workspaces.

Exit

Exits the application.
48 Chapter 3 - User Interface Overview

Edit Menu

Undo

Undoes the last operation. Some operations may not be undone. If Undo is not
possible, the Undo menu item is grayed-out.

Redo

Redoes the last undone operation.

Cut

Removes the selected item and places it in the buffer. When you cut an item, all
relationships for that item are also cut. For example, if A is a generalization of B and
you cut A, the generalization is also cut.

This command works only on the graphic representation of a diagram. It does not
change the current model. Not all elements can be cut and pasted. If after selecting an
element or group of elements the Cut menu item is grayed-out, the cutting and
pasting of one or more of those elements is not supported; for example, you cannot
cut and paste multiple elements in a capsule state diagram.

Copy

Copies the selected item into the buffer. Use this command to copy the currently
selected item or items to the clipboard. From the clipboard, you can

■ paste items into other diagrams

■ paste items into documents you create with any standard word-processing
software

The Copy command provides a simple means of importing a class from one package
to another.

If a relationship is copied and your selection does not include the items at both ends of
that relationship, you cannot paste that relationship. In this circumstance a Warning
dialog appears, allowing you to cancel or continue. You can also disable subsequent
warnings for the remainder of your session.

This command works only on the graphic representation of a diagram. It does not
change the current model.

Paste

Pastes whatever is currently in the buffer into the selected destination (the active
window).
Menus 49

Delete

Deletes the currently selected item(s) from a diagram or specification.

When used in a Class diagram, the Delete command removes each selected icon from
the current diagram. The model is not changed unless the deleted icon is unnamed.

In the structure and behavior diagrams of a capsule, delete always deletes the model
object.

When you delete an item, all relationships associated with that item are also deleted.

In collaboration and interaction diagrams, you are prevented from deleting an icon
representing a component or relationship if there are no other icons representing that
component or relationship in the active diagram. In a collaboration diagram, you are
prevented from deleting an icon representing an object if that object has one or more
links, and you are prevented from deleting a link if that link has one or more
messages. In all of these cases, you can use the Delete from Model command.

Duplicate

Duplicates a selected model item into the package that owns the diagram and
validates its name in the context.

Select All

Selects all elements on the current diagram or all text in the current editor.

This command is useful when you want to:

■ Generate reports on all the classes in a single diagram using commands on the
Report menu

■ Populate a class diagram with all of the information about those classes using
commands on the Query menu

■ Change the font size or characteristics for all of the text in a diagram using
commands on the Options menu

To deselect all items, click at a point on the diagram that is not already highlighted.

Note: The following two items are only available from Sequence diagrams.

Attach Text Label

Attaches Text Label to a graphic element.

Detach Text Label

Detaches Text Label from a graphic element.
50 Chapter 3 - User Interface Overview

Delete from Model

Deletes the selected item(s) from the model.

This command can be used from diagrams to delete items from the current model.
When you delete an item from the model, all icons representing that item are removed
from any diagrams in which they appear. The specification for the item is also deleted.

This command cannot be used in specifications. To delete an item from the model via
a specification, use the Delete command.

Relocate

As the analysis and design of an application proceeds, it is common to refine the
application's logical and/or physical architecture from one iteration to the next. Such
refinements can include:

■ Relocating a class or logical package from one logical package to another

■ Relocating a component or component package from one component package to
another

The Relocate command supports these refinements. It allows you to relocate a model
element (class, component, package, or association) to a new logical or component
package.

The component will now be contained by the component package containing the
current diagram. However, relocating a component or component package has no
effect on any diagram in the model.

Diagram Object Properties

Lets you customize various software features. The characteristics you set via this
menu item affect only the selected icon(s).

Line Attributes...

Lets you select between rectilinear or oblique line styles, and routing styles. You can
undo and redo any changes you make. Select Line Attributes > Edit... to edit the
properties of line attributes.

Find...

Finds all references to a specified item in the model.
Menus 51

Figure 12 Find in Model Dialog

The Find in Model dialog provides a drop-down list of your previous search strings,
if any. Select an existing search string or specify the search string to find. The search
results appear in the Find tab of the Output window (click View > Output)

Note: You can select Output to Find 2 pane on the Find in Model dialog to display
the search results in the Find 2 tab.

To search for groups of items or to search code, you can use the wildcard
character (*):

■ A* matches any name beginning with the letter A

■ *A matches any name ending with the letter A

■ *A* matches any name containing the letter A

This command lists only the first 250 items that match a name containing a wildcard
character. To search for “*”, use “*”.

The * wildcard is especially useful for finding any classes or packages that were
automatically renamed in a model that was upgraded from a previous release. For
example, you can search for every model item that was renamed by typing: *#* (star
pound star). Every model item that has a # in its name is found.

This command searches for the named item and displays a list of diagrams in which
that item appears. You can double-click on an entry to display that diagram.
52 Chapter 3 - User Interface Overview

Replace...

Use this command to find and replace any item in the model. This command displays
the Replace Dialog so that you can type the search string and the replace with string.

The dialog provides drop-down lists of previous search and replace strings. Select an
existing search or replace string or type the names of the item to find and replace. The
search result is displayed in the Find tab of the Output window (View > Output) in a
three-column list, including the name, type, and location. Optionally, you can choose
to have the results displayed in the Find 2 tab.

When you click Replace, a secondary dialog appears with options t o Find Next,
Replace, Replace All, and Cancel. After the replace operation has taken place, you can
query the Find tab in the Output window to view the results of the search and replace.

Reassign...

Each icon in a diagram represents an element in the current model. Use this command
to make a selected icon represent a model element other than the one it now
represents. For example, you can assign an existing class to a different diagram
element.

This feature is useful if you want to assign an element to use the same named item
from a different name space.

To make an icon represent another element, select the icon and then click Reassign
from the Edit menu. The dialog lists the packages in the model on the left and a list of
the valid elements to choose from on the right. Choose the model element that the
selected icon will represent. This affects only the selected icon. Other icons
representing the original model element (on all diagrams) maintain their original
representation.

Here is an example: Assume you have three classes named car, buggy and wagon.
With buggy selected, click Edit > Reassign. In the dialog select wagon. You are
changing the underlying model of the diagram element buggy to use wagon instead
of buggy. (Buggy may still exist in the model but you are given the option of deleting
it.) Additionally, if buggy had an inheritance relation drawn to car, then wagon adopts
that inheritance relation.

The Reassign command does not work within Capsule Collaboration (Structure)
diagrams.

Compartment...

Opens the Edits Compartments dialog. This dialog allows you to arrange how
attributes and operations are displayed within a class or package icon on a diagram.
Menus 53

Change Into

Changes the selected model element into another (related) kind of modeling element.

In the process of refining your model, you may find it necessary to change a model
element from one kind to another. For example, you may want to change a class into a
capsule once you have decided that the class has a state machine and a logical thread
of control.

You can use the commands on the Change Into submenu to change a model element
from one type to another. You can transform

■ A class into another type of class

■ A relationship into a different type of relationship

You can also transform an element as follows:

1 Choose the icon on the diagram toolbox.

2 Press the ALT or META key.

3 Click on the element you want to change.

This command changes the model element and updates all diagrams containing this
element.

When a relationship type is changed, this command removes the original relationship
from all diagrams, but does not automatically add the new relationship to these
diagrams. Use the Filter Relationships command to display the new relationship in
specific diagrams.

Parts Menu
Note: The Parts menu is only available on capsule structure and state diagrams.

Edit Inside

Shows the internal composition of a contained state or capsule role's class. Allows you
to perform edits (with some limitations) on elements contained inside the selected
state or capsule role without having to open a new editor. This is most useful for
seeing the internal connections of transitions to substates and of relay ports to other
contained capsule roles.
54 Chapter 3 - User Interface Overview

Remove/Exclude

Removes a local or exclude an inherited element from the current class. For example,
if you are creating a subclass of an existing capsule class, and the superclass defines a
state that is not applicable in the subclass, you may remove it in the subclass diagram
using the Remove/Exclude command. Any excluded elements still appear in the
navigator area of the structure or behavior editor, but have the symbol x beside them
to indicate that they have been removed.

Inherit

Causes a previously excluded element to be reinherited. Reinherited elements are
added back to the diagram.

Aggregate

Applies only to states or capsule roles. For states, the aggregate command creates a
new composite state containing the selected states to be aggregated. For capsule roles,
the aggregate command creates a new capsule class to hold the capsule roles that are
being aggregated. This command also replaces the aggregated capsule roles in the
structure diagram where the command was executed with a single capsule role of the
newly-created capsule class.

Decompose

Applies only to composite states or capsule roles that are aggregates. Breaks the
selected state into its immediate substates, or breaks the selected capsule role into the
capsule roles contained within the aggregate capsule class.

Promote

Moves the selected element up in the class hierarchy. The element is moved into the
immediate superclass and is inherited by the subclasses (including the current class).
If there is any name conflict between this element and another element in the
superclass or in any of its subclasses, the promote command fails.

Demote

Moves the selected element down in the class hierarchy. The element is removed from
the current class, and is pushed down into all immediate subclasses, as if it had been
defined locally on the subclasses.
Menus 55

Lock Position(s)

Locks the element in position on the diagram. Once the element is locked it cannot be
moved around the diagram unless it is unlocked.

Unlock Position(s)

Allows the element to be moved around within the diagram.

View Menu

Toolbars

Toggles the display of the The Toolbar and Toolboxes.

Status Bar

Toggles the display of the status bar at the bottom of the window, which provides
textual information about selected items and current operations.

Browsers

Toggles the display of all application browsers, as well as create a new one.

Description

Toggles the display of the Description Window, which contains the Documentation
Tab and the Code Tab.

Output

Toggles the display of the output window.

Specification History

Records Specification dialogs opened from within toolset, allows you to easily
navigate between the dialogs, and provides a mechanism to quickly close these
dialogs.

Filter

Filters label information on diagrams.

Zoom

Zooms in on the current diagram. Select the zoom level.
56 Chapter 3 - User Interface Overview

Scale to Window

Scales the current diagram down to fit entirely within the current diagram window
border. Scales according to the outer boundaries of the diagram - for example, the
outer state border of the state diagram - and not simply the area around visible
diagram elements.

Page Breaks

Toggles the visual indication of where page breaks appear on diagrams when printed.
The printer specified in the Printer Setup determines the exact location of page breaks.
You can also change this setting through the rose.ini file.

Refresh

Redraws the current diagram.

Browse Menu

Use commands on the Browse menu to navigate through the diagrams and
specifications that represent your model.

Select Diagram Dialog

When you select a diagram type from the Browse menu, a dialog appears for that
type of diagram. For instance, when you select Browse > Class Diagram... the Select
Class Diagram dialog appears (see Figure 13).

Figure 13 Select Class Diagram Dialog

Using commands from the dialog, you can display, rename, create, and delete
diagrams.
Menus 57

Browse Menu Operations

Class Diagram...

Opens a Select Class Diagram dialog, allowing you to select a diagram to open, or to
create a new diagram. The dialog also allows you to rename or delete diagrams.

Use Case Diagram...

Opens a Select Use Case Diagram dialog, allowing you to select a diagram to open, or
to create a new diagram. The dialog also allows you to rename or delete diagrams.

Collaboration Diagram...

Opens a Select Collaboration Diagram dialog, allowing you to select a diagram to
open, or to create a new diagram. The dialog also allows you to rename or delete
diagrams.

Sequence Diagram...

Opens a Select Sequence Diagram dialog, allowing you to select a diagram to open, or
to create a new diagram. The dialog also allows you to rename or delete diagrams.

Component Diagram...

Opens a Select Component Diagram dialog, allowing you to select a diagram to open,
or to create a new diagram. The dialog also allows you to rename or delete diagrams.

Deployment Diagram...

Opens a Select Deployment Diagram dialog, allowing you to select a diagram to open,
or to create a new diagram. The dialog also allows you to rename or delete diagrams.

State Diagram

This menu item is only activated when you have selected a capsule, class, or protocol
on a diagram. Use this command to display the state diagrams associated with the
selected class or protocol in a class diagram.

Structure Diagram

This menu item is only activated when you have selected a capsule on a diagram. This
operation opens a structure diagram for the selected capsule.
58 Chapter 3 - User Interface Overview

Open Superclass

Opens the corresponding diagram for the immediate superclass. Only applies when
the current diagram is a capsule collaboration diagram or a state diagram (capsule,
protocol, or data class).

Open Subclasses

Displays a list of subclasses in a Choose Capsule Role Dialog. Only applies to
capsules. Selecting a capsule from the displayed subclass list and clicking OK opens
the corresponding diagram for the selected capsule. Only applies when the current
diagram is a capsule structure diagram or a state diagram (capsule, protocol, or data
class).

Go Inside

Replaces the current diagram window contents with the corresponding diagram for
the selected capsule role (for capsule structure diagrams) or substate (for capsule state
diagrams). For example, selecting a substate on a capsule state diagram and choosing
Browse > Go Inside causes the substate's state diagram to replace the current state
diagram in the same window. Only applies when the current diagram is a capsule
structure diagram or a state diagram (capsule, protocol, or data class).

Go Outside

Replaces the current diagram window contents with the corresponding diagram for
the selected capsule role (for capsule collaboration diagrams) or substate (for capsule
state diagrams). For example, selecting a substate on a capsule state diagram and
choosing Browse > Go Outside causes the substate's state diagram to replace the
current state diagram in the same window. Only applies when the current diagram is
a capsule structure diagram or a state diagram (capsule, protocol, or data class).

Expand

Opens the subdiagram associated with an item. Packages/subsystems have a default
main diagram that you can expand to if you select a package or a subsystem in
another diagram.

Parent

Selecting Browse > Parent or clicking the Browse Parent icon on the toolbar displays
the “parent” of the selected diagram or specification. If you have a specification
selected, the specification for the parent of the “named” item is displayed. For
example, if you select a substate selected in a state diagram, choosing Browse >Parent
opens a state diagram on the parent state from a substate.
Menus 59

Specification...

Opens the specification dialog for selected item(s) on the current diagram.

Top Level

Use this command to display:

■ the top level main class diagram

■ the top level main component diagram

■ the deployment diagram for your model

Current Diagram New Current Diagram

Class diagram the main top level class diagram

State diagram the main top level class diagram

Collaboration diagram the main top level class diagram

Sequence diagram the main top level class diagram

Component diagram the main top level component diagram

Package specification the main top level class diagram

Class specification the main top level class diagram

Object specification the main top level class diagram

Component package
specification

the main top level component diagram

Component specification the main top level component diagram

Process specification the main top level deployment diagram

Device specification the main top level deployment diagram

Connection specification the main top level deployment diagram
60 Chapter 3 - User Interface Overview

Referenced Item

Displays a diagram or specification referenced by the selected item. In particular, you
can

■ Display a diagram showing the class of which the selected object is an instance

■ Display the diagram where the class, use case, or package is actually defined

■ Display the operation specification for a message, provided that the message is
tied to an operation; note that you must select the message label before executing
this command

If the selected icon represents an object, this command finds the object's parent class
and displays a diagram in which that class appears. If the class appears in multiple
diagrams, the diagram in which the class was created is displayed.

If the selected icon represents a class that was created in a different logical package,
this command displays a diagram from the logical package in which the class
appears. If the class appears in multiple diagrams from that logical package, the
diagram in which the class was created is displayed.

Previous Diagram

Brings to front or opens the last diagram that was current.

Build Menu

Build

Opens the Build dialog from which you can choose the Build Level.

Quick Build

Builds the component using the options you specified the last time you built this
component.

Rebuild

Forces a complete build of a component. All classes references by the component will
be verified, regenerated, compiled, and linked.

Clean

Removes all files from the output directory.
Menus 61

Stop Build

Stops the build in progress.

Run (F5)

Loads the component instances specified in the Build Settings Dialog. The component
must be successfully built before it can run.

If the Attach Target observability flag was set on the Component Instance
Specification dialog and a Target observability Port number filled in, the Target
observability interface is displayed allowing you to control the execution of the
model.

Note: The following four items only apply when a Target Observability session is
running.

Start (F5)

Starts the execution of the component instances. If the component instances are in the
reset state, execution begins with all fixed capsules being initialized (initial transitions
fired). If the component instances are in the stop state, execution resumes.

Stop (Shift+F5)

Stops the execution of the component instances at the current point of execution and
remembers the state of all capsules. Execution is stopped as soon as each currently
running transition is finished. The stop button does not halt execution in the middle
of a transition action.

Step (F10)

Steps through the next deliverable message. Pressing the step button while in the
stopped state causes the next message of the highest available priority to be delivered.
Any associated transitions are executed. Execution stops again as soon as the last
transition segment for that message has finished executing.

Restart (Ctrl+Shift+F5)

Resets the component instances, resetting all fixed and destroying all dynamic
capsule instances. The running component instance is terminated and a new one is
run.
62 Chapter 3 - User Interface Overview

Load

Loads the components instances specified in the Build Settings dialog. The
component must be successfully built before it can run. The Load command spawns
an external process in which the model executable runs. You will likely see an external
command window appear.

The Attach Target observability flag must be set on the Component Instance
Specification dialog, and a Target Observability Port number filled in for the model to
be loaded within the tool.

The execution interface will be displayed allowing you to control the execution of the
model. See Execution basics for more information on the execution tools.

Reload

Kills the existing model process and runs the model again. The execution interface
stays open.

Shutdown

Kills the existing model process and closes the execution interface.

Settings...

Displays the Build Settings Dialog. You must use this dialog to specify the active
component before you can build the component.

Add Class Dependencies...

Runs a script that checks for any missing dependencies between model elements and
adds them. The script checks dependencies found in attributes or operations. It does
not check for code-level dependencies.

Component Wizard...

Activates the Component Wizard to help you through the steps of creating and
deploying a component.
Menus 63

Report Menu

Generates lists of diagrams in which the selected class is a supplier in a relationship,
or in which instances of the selected class appear. These lists can be used to navigate
to the diagrams they contain.

Show Usage...

Obtains a list of all the locations where the selected item is used (a supplier in a
relationship).

This command displays a list of diagrams in the Show Usage dialog. Double-click on
a diagram from the list to display the diagram.

Show Access Violations...

Obtains a list of access violations in the model. An access violation occurs when an
element in one package references an element in another package that is not visible to
it.

The rules for determining if an element B in package P2 is visible to an element A in
package P1 are as follows:

■ P1 and P2 are the same package OR

■ B has its visibility set to Public AND

■ there is a dependency from P1 to P2 OR

■ there is a dependency from P1 to a package that contains P2 OR

■ there is a dependency from a package that contains P1 to P2 OR

■ there is a dependency from a package that contains P1 to a package that contains
P2 OR

■ P2 is marked as global (in the Detail tab of the Specification dialog)
64 Chapter 3 - User Interface Overview

The Show Access Violations menu item is available for class diagrams and
component diagrams.

To check for access violations in the Logical View:

1 Open a class diagram.

2 With nothing selected in the diagram, choose the Show Access Violations menu
item.

3 If there are any access violations, they are listed in a dialog. You can open an editor
that shows the cause of a violation by selecting it in the dialog and clicking Browse
(or by double-clicking on the violation). The list of violations can be sorted by
clicking on either the Violator or the Supplier column headings.

To check for access violations in a specific set of classes, select those classes on the
class diagram before choosing the Show Access Violations menu item. Selecting a
package on a class diagram is equivalent to selecting each class in that package.

To check for access violations in the Component View:

1 Open a component diagram.

2 With nothing selected in the diagram, choose the Show Access Violations menu
item.

3 If there are any access violations, they are listed in a dialog.

To check for access violations in a specific set of components, select those components
on the component diagram before choosing the Show Access Violations menu item.
Selecting a package on a component diagram is equivalent to selecting each
component in that package.

The access violations calculation examines the existing class or component
relationships in the model. For this reason you should ensure that the relationships
are complete by building the model.

Show Code Occurrences...

Identifies where code is specified within the selected classifier.

Show References...

From a Use Case, Class or Structure diagram, will find any roles on colloboration
diagrams that reference the selected classifier.
Menus 65

Documentation Report

Generates a data dictionary from the model.

Show Part Of Ancestors

This option is only available when your current diagram is a structure diagram.
Opens a dialog listing all the capsules that contain this capsule as a capsule role.

Show Part Of Descendants

This option is only available when your current diagram is a structure diagram.
Opens a dialog listing all the contained capsule roles of this capsule.

Query Menu

The Query menu provides commands that control which model elements appear in
the current diagram. Use case diagrams, class diagrams and component diagrams
support the Query menu functionality.

Add <element> Commands

Some menu items are only available when certain diagrams are active.

Use these commands to populate the current diagram with icons representing one or
more of the selected elements from the model. You can use this command to populate
a new (empty diagram) or to add elements to an existing diagram. In either case, you
must create or display the diagram first.

If relationships exist among the elements you are adding, or if relationships exist
between added elements and any elements already appearing in the diagram, icons
representing these relationships and their adornments will also appear in the
diagram. Use the Filter Relationships command to directly control which kinds of
relationships appear in the diagram.

Add Classes...

Adds classes from the browser to the current diagram. Brings up a dialog with a list of
available classes to choose from. This menu item is only visible when a Use Case or
Class Diagram is open.

Add Capsules...

Adds capsule classes from the browser to the current diagram. Brings up a dialog
with a list of available capsule classes to choose from. This menu item is only visible
when a Use Case or Class Diagram is open.
66 Chapter 3 - User Interface Overview

Add Protocols...

Adds protocol classes from the browser to the current diagram. Brings up a dialog
with a list of available protocol classes to choose from. This menu item is only visible
when a Use Case or Class Diagram is open.

Add Use Cases...

Adds use cases from the browser to the current diagram. Brings up a dialog with a list
of available use cases to choose from. This menu item is only visible when a Use Case
or Class Diagram is open.

Add Components...

Adds components from the browser to the current diagram. Brings up a dialog with a
list of available components to choose from. This menu item is only visible when a
Component Diagram is open.

Add Interfaces...

Adds classes from the browser to the current diagram. Brings up a dialog with a list of
available classes to choose from. This menu item is only visible when a Component
Diagram is open.

Expand Selected Elements...

Allows you to specify relationship level and client/supplier criteria for choosing
additional elements. All settings in the dialog are remembered from the previous use.

Use this command to show additional model elements in the current diagram. This
command enables you to add icons to the current diagram elements having a
specified relationship with a selected element or set of elements. For example:

■ All classes that inherit from a selected class
■ The classes from which a selected class inherits
■ The classes that a selected class associates to
■ The classes that directly use a set of selected classes
■ All components that a component uses
■ All packages that a component uses
■ All interfaces that a component uses
■ All components that a package uses
■ All packages that a package uses
■ All interfaces that a package uses
■ All interfaces that a component realizes
Menus 67

From the Expand Selected Elements dialog, you can display the Class Specification -
Relations Tab on page 344 for class diagrams or for component diagrams to specify
relationship-kind and access-kind criteria for choosing additional elements.

Note: The level cannot be changed if you select Expand indefinitely.

Hide Selected Elements...

Specifies the elements whose icons are to be removed from the current diagram.

Use this command to remove icons representing components from the current
diagram. The components represented by these icons are not deleted from the model.

By default, this command removes only the components whose icons are selected.
You can optionally remove icons representing components that are clients or suppliers
of the selected components.

Filter Relationships

Displays the Relations tab from the class and use case diagrams, and the Visibility
Relations dialog from the component diagram. Both enable you to specify which
kinds of relationships can appear. The filter relationship dialog remembers the last set
of filter settings used. Use this command to control which kinds of relationships
appear in the current diagram.

Tools Menu

Layout

Opens a submenu of options for rearranging the diagram:

Layout Diagram

Analyzes the location of all icons in the current diagram, determines the optimal
location for the icons, and redraws the diagram.

Align/Distribute...

Opens the Align and Distribute dialog. The selected objects are arranged according to
the choices made in the dialog. Alignment and distribution operations can be
performed in both horizontal and vertical arrangements.
68 Chapter 3 - User Interface Overview

Change View Spread

Creates space in a diagram for adding new views or creates a cleaner appearance.
There are a number of different ways the views can be spread out by specifying the
Spread Technique.

■ Uniform - Indicates that the views are spread out across the diagram uniformly by
the percentage. If a view is at location (100,100) and they specified a horizontal
percentage of 10% and a vertical percentage of -10%, the new location of the view
would be (110, 90). This affects all views in the diagram the same way.

■ Constant Radial - Indicates that the views spread outward/inward from a central
point. The preview displays a crosshair that specifies where the spread starts. It
can be moved around interactively in the preview window with the mouse. The
views spread out a constant distance based on the diagram size.

■ Decreasing Radial - Is similar to Constant Radial except that the views spread
progressively less far the farther away from the central point they are.

■ Increasing Radial - Is similar to the Constant Radial except that the views spread
progressively more the farther away from the central point they are.

The preview allows the user to play with the settings until the desired spread is
achieved.

Autosize All

Resizes all the objects in the diagram to fit their labels. The size of the objects increase
or decrease to the minimum size required for the label to appear.

Make Same Size

Makes two or more node views the same size in either height or width, or both. You
can choose from smallest, average, or largest of all the selected views to make the new
width and height. The dialog provides a preview screen.

Size Border from View

Adjusts the black border to fit within the size of the window.
Menus 69

Reposition all from Superclass

Modifies the Structure and State diagrams for a capsule by repositioning the selected
item views according to their position in the superclass. Only the following items can
be repositioned:

■ State
■ Port
■ Capsule Role
■ Choice Point
■ Entry and Exit Point
■ Port Role
■ State Perimeter
■ Collaboration Perimeter

If any other items are selected, the will be ignored.

Note: This option attempts to position (from the superclass) all item views on a
diagram, including those that do not fully support this operation, such as non-linear
transitions.

Create

Opens a submenu of options for creating elements to place on the current diagram.
Use the commands on the Create menu to place the icons in the active diagram.

When you choose an item from the Create menu, the corresponding diagram toolbox
tool becomes active and the pointer changes to a cross (for a node) or an arrow (for a
relationship). You can then use the mouse to position the pointer and place the new
item.

The contents of the Create menu change to match the current diagram's toolbox.

Check Model

Provides a way of re-executing the model validation that happens at open time.

Check Model is designed to be used when you are saving your model to multiple
controlled units to ensure that all the units are consistent with one another. This is
especially useful when parallel development is going on in multiple controlled units,
since it is possible for different units to get out of sync with one another.

In a model, where one item holds a reference to another item, it is possible that a
reference exists, but there isn’t an item in the model of the right kind or with the right
name. In that instance, the reference is unresolved.
70 Chapter 3 - User Interface Overview

Check Model checks the reference:

■ To the supplier of any kind of relationship, uses, instantiation, metaclass, logical
package import, module visibility, connection, and so forth

■ From a view on a diagram to an item in the model

Import Code...

Opens a file browser allowing an external code file to be selected and imported. See
Importing Rational Rose Generated Code on page 136.

Model Properties

Use the commands on the Model Properties submenu to display or modify the model
properties associated with the model and its elements, or to display or modify model
property sets.

Edit

Opens the Options Dialog with the C++ Tab if nothing is selected. This tab is used to
display or modify model property values or model property sets.

Replace

Loads model property sets from the specified model property (.pty or .rtpty) file into
the current model. This command deletes all model property sets in the current
model, replacing them with the imported model property sets. A model component
attached to a model property set that is replaced becomes attached to the replacement
model property set. A model element attached to a model property set which is not
replaced becomes attached to its default model property set. To make the replaced
model properties a permanent part of the current model, you must save the model.

Export

Saves the current model's model property sets to a specified model property file (.pty
file). When you export model properties, all of the model property sets stored with the
model are written to a file that can be imported into another model.

This command displays a dialog in which you can specify the location and name of
the model property file to be exported.

Add

Adds new model properties from a model property set contained in a model property
file.
Menus 71

Update

Modifies the existing model properties in the current model by adding and/or
changing them to include the model properties in the update model property set. A
model element attached to a model property set that is updated becomes attached to
the updated model property set. A model element attached to a model property set
that is not updated becomes attached to its default model property set.

This command opens a File Browser so you can specify the location and name of the
model property file to be used to update the existing model properties.

To make the updated model properties a permanent part of the current model, you
must choose the Save command from the File menu.

Options...

Opens the Options Dialog, which provides control over many general model
properties. (See Toolset Options on page 550.)

Source Control

Opens a submenu of operations for interacting with a source control/configuration
management (CM) system. For information on Source Control options, see Source
Control Fundamentals in the Guide to Team Development for Rational Rose RealTime.

Configure...

Opens the Model Specification dialog on the Source Control tab, which allows you to
specify options relating to source control, to specify the source control system to use,
and to generate unique identifiers for all elements of the model.

Note: Generating unique identifiers affects the entire model. Review Unique Ids on
page 125 before setting this option.

Get Entire Model

Requests a given version of all files from the CM tool, and then loads the new files.

Synchronize Entire Model

Synchronizes the status of the model elements with the current source control tool
and reloads any files that have been changed outside of the toolset.

Refresh Status of Model

Synchronizes the status of model elements displayed in the model browser with the
status as reported by the CM tool.
72 Chapter 3 - User Interface Overview

Select Checked out Units in Browser

Selects all the units in the browser that are currently checked out.

Show Unit Versions

Shows a dialog containing a list box, which displays the version of each unit.

Submit All Changes to Source Control

Determines what changes have not yet been submitted to source control, then
prompts you to add/checkin these changes as appropriate.

Synchronize Model with File System...

Throws away any unsaved edits and reloads all files from the file system.

Open Script

Opens a file browser to select a Rose REI or RRTEI script to open for editing. See The
Script Editor Window in the Rational Rose
RealTime Extensibility Interface Reference.

New script

Opens the script editor to create a new Rose REI or RRTEI script. For more
information, see The Script Editor Window in the Rational Rose
RealTime Extensibility Interface Reference.

From the script editor, you can invoke several dialogs.

Add Watch

Use the Add Watch dialog to add a variable to the Script Editor's watch variable list.
For more information, see Adding Watch Variables in the Rational Rose
RealTime Extensibility Interface Reference.

Modify Variable

Use the Modify Variable dialog to change the value of a selected watch variable. For
more, information, see Adding Watch Variables in the Rational Rose
RealTime Extensibility Interface Reference.
Menus 73

Find

Use the Find dialog to locate instances of specified text quickly anywhere within your
script. For more information, see Finding Specified Text in the Rational Rose
RealTime Extensibility Interface Reference.

Replace

Use the Replace dialog to automatically replace either all instances or selected
instances of specified text. For more information, see Replacing Specified Text in the
Rational Rose
RealTime Extensibility Interface Reference.

Calls

Use the Calls dialog to determine the procedure calls by which you arrived at a point
in your script when you are stepping through a subroutine. For more, information,
see Displaying the Calls dialog in the Rational Rose RealTime Extensibility Interface
Reference.

Go To Line...

Use the Go To Line dialog to jump directly to a specified line in your script. For more
information, see Moving the Insertion Point to a Specified Line in Your Script in the
Rational Rose RealTime Extensibility Interface Reference.

Dialog Editor

Use the Dialog Editor to insert or edit a dialog in your script. For more information,
see Working with the Dialog Editor in the Rational Rose
RealTime Extensibility Interface Reference.

Add External Java

Allows you to add external .class files and the .class files within .jar files into your
existing model.

TargetRTS Wizard

Simplifies the activities of building, configuring, managing and customizing the
TargetRTS libraries and build environment.

Connexis

Provides connectivity for Unified Modeling Language (UML) models.
74 Chapter 3 - User Interface Overview

Move Model Elements

Provides an simple method for moving classes between packages Logical View.

Rational Quality Architect - RealTime Edition

Activates RQA-RT to automatically verify designs against Sequence diagram
specifications both analytically and during execution. Application generation and
automatic testing of fully or partially complete designs, plus animated visual and
symbolic debuggers, encourages early and continuous design refinement and
validation.

Aggregation Tool ...

Activates the Aggregation Tool to help you create and modify attributes. For more
information, see "Aggreagation Tool" in the Addin, Tool And Wizard Guide, Rational Rose
RealTime.

Model Integrator

Opens the Model Integrator tool.

Web Publisher

Opens the Web Publisher tool.

C++ Analyzer

Opens the C++ Analyzer tool.

Add-Ins Menu

Add-In Manager

Opens the Add-In Manager dialog to activate or deactivate add-ins.

Several add-ins are shipped with the Rational Rose RealTime product, including:

■ C++ language code generators

■ Component Wizard

■ Add Dependencies

■ Generate Documentation

■ C language code generators
Menus 75

Other add-ins will be released through Rational RoseLink partners. See the Rational
Rose RealTime web site for links to RoseLink partner add-ins.

Window Menu

The Window menu has commands for manipulating the windows within the Rational
Rose RealTime environment, and a list of all the currently open windows. Use
commands from the Window menu to control the automatic placement of multiple
diagram and specification windows within the application window. You can also use
commands on the Window menu to redisplay windows that have been covered by
other windows or iconified.

To quickly bring a particular window to the forefront, select the name of the window
from the menu.

Cascade

Arranges all windows in an even-stepped arrangement. The windows are all sized to
a standard size, and the title bar of each window is visible while the body of each
window is covered by the next window in front. The most recently-viewed window is
completely visible.

Tile Horizontally

Arranges all windows horizontally within the Rational Rose RealTime window. The
application window is divided into equal-size areas, with one diagram or
specification window in each area. The most recently visited window is placed in the
upper left corner. Less recently-visited windows are placed to the right of more
recently-visited windows.

Tile Vertically

Arranges all windows horizontally within the Rational Rose RealTime window. The
application window is divided into equal-size areas, with one diagram or
specification window in each area. The most recently visited window is placed in the
upper left corner. Less recently-visited windows are placed below more
recently-visited windows.

Arrange Icons

Arranges collapsed windows evenly along the bottom of the Rational Rose RealTime
window.
76 Chapter 3 - User Interface Overview

http://www.rational.com/products/rosert/index.jtmpl
http://www.rational.com/products/rosert/index.jtmpl

Close

Closes the currently active window.

Close All

Closes all currently open windows.

Window Selectors

The open windows within your application are listed on the Window menu with a set
of numerical selectors. The windows are listed by title. Selecting one of these items
from the menu opens the specified window and brings it to the forefront.

Help Menu

What’s This?

Opens the context-sensitive Help.

Contents

Opens the Help Table of Contents.

Search...

Opens the Help Search.

Index...

Opens the Help index.

Using Help

Opens a Help topic explaining how the Help system works.

Tutorials

Opens the Tutorials book from which you can choose tutorials based on your skill
level and background.

Example Models

Opens the Example Models book.
Menus 77

Keyboard Shortcuts

Opens a Help topic on keyboard shortcuts.

Welcome to Rational Rose RealTime

Opens the Startup Screen.

About Rational Rose RealTime

Opens the About Rational Rose RealTime dialog, which shows information on the
product version, add-ins, support contacts, and so forth.

Browsers

Model elements are created and viewed through Browsers. The primary tab in the
browser is the Model View tab, which provides access to all elements of the current
model. Browsers list the model elements - usually in a hierarchical way - allowing
elements to be expanded to show additional information. Also, most browser lists can
be filtered in various ways.

The browser is an easy-to-use alternative to menus and toolbars for visualizing,
navigating, and manipulating items within your model.

The browser is a hierarchical navigational tool that lets you view the names and icons
representing use case, collaboration, deployment and class diagrams, as well as model
elements such as logical packages, classes, interfaces, associations and component
packages associated with the model.

Figure 14 shows the main application window with the Model View tab in the
browser.
78 Chapter 3 - User Interface Overview

Figure 14 Rational Rose RealTime Application Window with Browser

Each of the views within the model displays as a separate folder in the Model View
tab in the browser. All model elements created within a view are displayed as
sub-elements of that view folder.
Browsers 79

Tabs

The tabs in the Browser are:

■ Model View Tab
■ Containment View Tab
■ Inheritance Tab
■ RTS Tab

Model View Tab

The Model View tab shows all the packages, classes and diagrams in the model. The
Model View tab in the browser displays all of the elements of the model, organized
into the four main views: Use Case View, Logical View, Component View, and
Deployment View.

Containment View Tab

The Containment View tab shows the containment hierarchy of the capsule classes in
the model.

Inheritance Tab

The Inheritance View tab shows the inheritance hierarchy of the capsule classes, data
classes, and protocols in the model.

RTS Tab

The RTS tab appears only when a component instance is run with Target
observability enabled. This tab provides a run-time view of the model, showing the
list of capsule incarnations, and providing buttons to control the model execution (see
Rational Rose RealTime Execution Interface on page 482).

Navigating

The plus sign (+) sign next to an icon indicates the item is collapsed, and additional
information is located under the entry. Click on the + sign and the tree is expanded.
Conversely, a minus (-) sign indicates the entry is fully expanded.

Double-clicking on the diagram name or icon displays the diagram. Double-clicking
on any other item displays the associated specification.
80 Chapter 3 - User Interface Overview

Displaying the Browser

When the Browser is first displayed, it is docked along the left edge of the frame. To
move the window, click and drag on the border. The window outline indicates the
window state: a thin, crisp line indicates the window is docked, while a thicker,
hashmark-type border indicates it is floating.

To disable a browser, select it from View > Browsers. The check mark is removed
along with the display of the browser.

Characteristics unique to the browser state (docked or floating) are discussed below.

Docked:

■ The window can be moved within the dockable region of the frame, but it remains
positioned along the border.

■ The size remains fixed. The free side is resizable.

■ A ToolTip displays the icon title when partially covered by the browser border.

■ The window can be docked on any border.

Floating:

■ The window can be moved to any location, and is always displayed on top of the
diagram.

■ Size can be changed via click and drag along the border in a vertical or horizontal
direction.

Refreshing the Browser

With the mouse positioned inside the browser, click Refresh from the shortcut menu.

Multiple Browsers

You can have multiple versions of the same browser, and apply filtering that is
different between them. For instance, you could open up a second browser and set its
filter to show only protocols and their signals.

Filtering

You can filter various packages, diagrams, and model elements using the Filter
dialog.
Browsers 81

Diagram Editors

There are several different kinds of diagrams that can be created and edited through
Rational Rose RealTime. Each diagram allows you to specify or document a different
aspect of the model. Some diagrams are accessible in only one view, while other
diagrams are found in more than one view. Each icon on a diagram represents an
element in the model. Since diagrams are used to illustrate multiple views of a model,
each model element can appear in none, one, or several of a model's diagrams. This
means you can control which components and properties appear on each diagram.

The following is the complete list of diagrams available in Rational Rose RealTime:

■ Activity Diagrams

■ Class diagram

■ Use case diagram

■ Collaboration diagram

■ Sequence diagram

■ Structure diagram

■ State diagram

■ Component diagram

■ Deployment diagram

■ Structure Monitor diagram

■ State Monitor diagram

See the individual diagram topics for information on creating or modifying that
particular diagram.

Each editor is displayed in a separate window. The diagram editors all have
associated toolboxes.
82 Chapter 3 - User Interface Overview

Diagram Specification - General Tab

Figure 15 Diagram Specification - General Tab

Diagram Specification - Diagrams Tab

The Diagrams area lists the diagrams for the selected collaboration. For
collaborations, you can add three types of diagrams: Collaboration, Sequence, and
State diagrams.

The first column contains the icon that corresponds to the diagram’s type. The Title
column contains the title for the diagram. You can modify the name of the title.

To add a new diagram, use the shortcut menu and select the desired Insert option.

Adding Icons to a Diagram

To create or add icons to a diagram, you can:

■ use tools on the toolbox

■ use the drag and drop capabilities of the Browsers, which you can undo and redo
from the Edit Menu

■ invoke commands from the Query Menu, which add icons representing specific
model elements
Diagram Editors 83

You can cut, copy, and paste icons between different diagram windows using
commands on the Edit Menu. The Edit menu also provides commands that enable
you to select, find, and rename icons. The Browse Menu provides commands to
navigate among diagrams, as well as create, rename, and delete them. Commands on
the Report Menu provide additional diagram navigation capabilities. You can print
diagrams using the Print command (see Print Specifications on page 119).

Opening Specifications

Clicking the Specification command from the Browse Menu displays the specification
for the model component represented by the selected icon.

Shortcut Menu

Clicking the right mouse button on an icon activates the popup menu, which enables
you to modify properties (for icons that represent relationships) or select properties to
be displayed within the icon. Select the Open Specification command from the context
menu to open the specification dialog.

Background Shortcut Menu

The Background shortcut menu changes according to the diagram in which you click.
Following are some basic menu items:

Zoom

Zooms in on the current diagram. Select the zoom level.

Scale to Window

Enables the automatic resizing of icons to accommodate text.

Layout

Opens a submenu of options for rearranging the diagram:

Layout Diagram

Analyzes the location of all icons in the current diagram, determines the optimal
location for the icons, and redraws the diagram.

Align/Distribute

The selected objects are arranged according to the choices made in the dialog.
Alignment and distribution operations can be performed in both horizontal and
vertical arrangements.
84 Chapter 3 - User Interface Overview

Change View Spread

Creates space in a diagram for adding new views or creates a cleaner appearance.
There are a number of different ways the views can be spread out by specifying the
Spread Technique.

■ Uniform - The views are spread out across the diagram uniformly by the
percentage. If a view is at location (100,100) and they specified a horizontal
percentage of 10% and a vertical percentage of -10%, the new location of the view
would be (110, 90). This affects all views in the diagram the same way.

■ Constant Radial - The views spread outward/inward from a central point. The
preview displays a crosshair that specifies where the spread starts. It can be moved
around interactively in the preview window with the mouse. The views spread out
a constant distance based on the diagram size.

■ Decreasing Radial - Similar to Constant Radial except that the views spread
progressively less far the farther away from the central point they are.

■ Increasing Radial - Similar to the Constant Radial except that the views spread
progressively more the farther away from the central point they are.

The preview allows the user to play with the settings until the desired spread is
achieved.

Autosize All

Resizes all node views in the diagram to fit their labels.

Make Same Size

Makes two or more node views the same size in either height or width, or both. You
can choose from smallest, average, or largest of all the selected views to make the new
width and height. The dialog provides a preview screen.

Select in Browser

Selects an element from the diagram in the browser.

Filter

Use these options to filter information on diagrams.

Scroll Bars

Diagram windows provide vertical and horizontal scroll bars to pan across diagrams
larger than the window.
Diagram Editors 85

Overview Navigator and Toolset Buttons, and Class, Capsule, and
Protocol Specification Context Menus

Overview Navigator Button

Use the Overview Navigator (the hand symbol located in the bottom right-hand
corner of the diagram dialog) to navigate around a diagram.

Toolset Buttons

For descriptions of the buttons in the Toolbar, see The Toolbar on page 39.

Context Options for Specification Dialogs

1 Language Details - Shows a submenu for the Attribute, Operation, and Aggregation
tools.

Browse Code - Lets you view the code associated with the selected object.

Build - Lets you specify a build type:

Build - Opens the Build dialog from which you can choose the Build Level.

Quick Build - Builds the component using the options you specified the last time
you built this component.

Rebuild - Forces a complete build of a component. All classes references by the
component will be verified, regenerated, compiled, and linked.

Clean - Removes all files from the output directory.

Code Sync - Captures user changes, made to generated code, back into the model.

Configure Capsule for Connexis - Shows the Configure Connexis Capsule dialog
where you can select options specific for Connexis.

Connexis - Provides connectivity for Unified Modeling Language (UML) models.

Duplicate - Creates a new object with a new name that is identical to the currently
selected object.

New Attribute - Creates a new attribute for the selected object.

New - Creates a new object for the selected control.

New In Signal - Creates a new in-signal for the selected object.

New Operation - Creates a new operation for the selected object.

New Out Signal - Creates a new out-signal for the selected object.
86 Chapter 3 - User Interface Overview

New Port - Creates a new port for the selected object.

Open Specification - Opens the Specification dialog for the selected object.

Open State Diagram - Opens the State diagram for the selected object.

Open Structure Diagram - Open the Structure diagram for the selected object.

Open Subclass - Opens the Specification dialog for the subclass of the selected object.

Open Superclass - Opens the Specification dialog for the superclass of the selected
object.

Options - Shows a submenu of options for the selected object.

Rational RequisitePro Trace Tool - Lets you maintain and establish traceability
between your design requirements and your Rational Rose RealTime elements.

Relocate - Lets you relocate a model element to a new package.

Select in Browser - Makes current the active object on the Model View tab in the
browser.

Set As Active - Sets the current component to be the active component. Select this
option if you build and run the same component and component instances often.

Source Control - Opens a submenu of operations for interacting with a source control
or configuration management (CM) system.

Context Options for Other Controls

Allow Docking - Toggles whether to allow docking of the current window.

Attach Console - Attaches a console window to the executing target model to interact
with the command line model debugger, and so forth.

Attach Target - Enabled only if a component instance has been run without
observability at startup. You can attach observability to a running process at any time,
if that the process was started with observability enabled. This menu item can only be
used with Detach Target.

AutoSave - Automatically captures all of the build output to a log file so that you can
process the output later.

Clear - Deletes all information on the selected tab or window.

Copy - Copies the currently selected item or items to the clipboard. From the
clipboard, you can paste items into other diagrams, or paste items into documents
you create with any standard word-processing software.

Cut - Removes the selected item and places it in the buffer.
Diagram Editors 87

Delete - Removes the selected element from the diagram.

Detach Target - Detaches observability, meaning that the toolset no longer
communicates with the running component instance. This menu item can only be
used with Attach Target.

Hide - Toggles the display of the Output window.

Load - Loads or downloads a component instance to a target platform. The load does
not start the execution of the loaded component instance. Use Run once it is loaded.
This is only used with target platforms that require loading of modules before they
are run. For platforms that do not require loading of modules, this menu item is
disabled.

Open Breakpoint Diagram - Displays the Breakpoint Diagram dialog from which
you can set breakpoints on a state machine.

Reload - Reloads a components instance. Used only with target platforms that require
loading of modules before they are run. For platforms that do not require loading of
modules, this menu item is disabled. This option unloads, then loads the component
without resetting the target board.

Rename - Changes the name of the currently selected element.

Restart - Kills the running component instance and runs another instance. If the
instance is running on an target board, the component is reloaded before a new
instance is run.

Run - Starts the execution of the component instance. If observability is configured to
attach at start-up the RTS browser appears. When observability is attached at start-up
the component instance is paused, or does not start processing messages, until you
click the Start button on the RTS Browser.

Save As - Saves the current output to a log file so that you can process the information
later.

Select All - Selects all the data in the current tab or window.

Shutdown - Kills the running component instance, closing the RTS Browser if
necessary.

Time Stamp - Prefixes messages posted to the log with a time stamp.
88 Chapter 3 - User Interface Overview

Unload - Unloads a components. Use only with target platforms that require loading
of modules before they are run. For platforms that do not require loading of modules,
this menu item is disabled.

View Breakpoints - Shows a list of all of the current breakpoints you specified.

Sequence Diagram Context Menu

Scale to Window

Scales the current diagram down to fit entirely within the current diagram window
border. Scales according to the outer boundaries of the diagram - for example, the
outer state border of the state diagram - and not simply the area around visible
diagram elements.

Zoom

Zooms in on the current diagram.

Layout

Opens a submenu of options for rearranging the diagram:

■ Layout Diagram

Analyzes the location of all icons in the current diagram, determines the optimal
location for the icons, and redraws the diagram.

■ Align/Distribute

Opens the Align and Distribute dialog. The selected objects are arranged according
to the choices made in the dialog. Alignment and distribution operations can be
performed in both horizontal and vertical arrangements.

■ Change View Spread

Creates space in a diagram for adding new views or creates a cleaner appearance.
There are a number of different ways the views can be spread out by specifying the
Spread Technique.

Uniform - Indicates that the views are spread out across the diagram uniformly
by the percentage. If a view is at location (100,100) and they specified a
horizontal percentage of 10% and a vertical percentage of -10%, the new
location of the view would be (110, 90). This affects all views in the diagram the
same way.
Diagram Editors 89

Constant Radial - Indicates that the views spread outward/inward from a
central point. The preview displays a crosshair that specifies where the spread
starts. It can be moved around interactively in the preview window with the
mouse. The views spread out a constant distance based on the diagram size.

Decreasing Radial - Is similar to Constant Radial except that the views spread
progressively less far the farther away from the central point they are.

Increasing Radial - Is similar to the Constant Radial except that the views
spread progressively more the farther away from the central point they are.

The preview allows the user to play with the settings until the desired spread is
achieved.

■ Autosize All

Resizes all the objects in the diagram to fit their labels. The size of the objects
increase or decrease to the minimum size required for the label to appear.

■ Make Same Size

Makes two or more node views the same size in either height or width, or both.
You can choose from smallest, average, or largest of all the selected views to make
the new width and height. The dialog provides a preview screen.

■ Size Border from View

Adjusts the black border to fit within the size of the window.

Open Interaction Specification

Opens the Interaction Specification dialog for the selected interaction.

Open Collaboration Diagram

Opens the Structure diagram for the collaboration.

Validate

Allows you to check the Sequence diagram specification for missing elements. It
provides control over what aspects of the Sequence diagram should be checked for
completeness.

Auto-Create FOC’s

Determines whether any new send or call messages automatically get an FOC (Focus
of Control) - and a return message, if appropriate - when they are created.
90 Chapter 3 - User Interface Overview

Select In Browser

Identifies the location of the selected item on the Model View tab in the browser.

Compares previous runs and actual production traces with your Specification
diagrams. You can specify more precise filtering for the differencing to obtain a more
accurate representation of the differences.

Select For Difference

Sets the current Sequence Diagram for differencing (for RQA-RT). You can select only
one diagram, either from the Model View tab in the browser or the diagram itself.

Difference

Initiates the differencing process for one or two selected sequence diagrams.

Select Race Conditions

Displays a list of all of the pairs of messages in the selected Sequence Diagram which
are in a race condition. A race condition occurs between pairs of events; when events
appear in one order in the sequence diagram, but occur in either the same or an
opposite order when the system runs.

Toolboxes

Every diagram has an associated toolbox, which contains icons of tools that can be
applied to that diagram. If the current diagram is write-protected, the diagram
toolbox is not displayed. The diagram toolbox is also only available when a diagram
is displayed.

There are several tools that are common to every toolbox:

Selector Tool

Selects objects for moving, resizing, and so forth.

Zoom Tool

Zooms in on a portion of the diagram. Click on the tool and then click on the part of
the diagram you want to zoom in on.

Text Tool

Adds text anywhere in the structure diagram.
Diagram Editors 91

Note Tool

Annotates the diagram with textual notes. This is useful for marking up the diagram,
for example, with explanations and review comments. You can also drag and drop a
diagram or external document from the browser onto a note. When the name of the
diagram or external document is underlined, the name is a hyperlink to a diagram or
URL. If you double-click on the note, the diagram or external document opens.

Constraint Tool

Adds UML constraints to any diagram. A constraint can be anchored to a view
element by using the anchor tool. Currently, constraints do not have any semantic
meaning to the tool. There are RRTEI APIs to add or remove, and enumerate
constraints in a diagram.

Note anchor Tool

Anchors a note to a particular element on the diagram. Allows notes to be moved
with the element they are anchored to.

Lock Selection Tool

Use to make the tool selections stay locked. That is, if the lock is on, then the next tool
you select will stay selected after you've completed the operation. This allows you to
perform a number of operations with a particular tool without having to reselect the
tool after each operation.

You may also hold down the shift key to keep a tool selected. The last selected tool
stays active until you release the shift key.

Specification Dialogs

Specification dialogs are used to edit the properties of any element in the model. All
specification dialogs contain at least a Name and Documentation field. Some
specification dialogs contain many fields split across different tabs. The example
below shows a specification dialog with multiple tabs. All properties of a modeling
element are accessible through the specification dialog for that element. Many of the
properties on the specification dialog are also visible/editable through one or more
diagram editors.
92 Chapter 3 - User Interface Overview

Figure 16 Sample Specification Dialog for a Capsule

Specification dialogs are resizable. The tab you are in is remembered so that the next
time you open the specification dialog you go to the same tab. The position and size of
specification dialogs are saved with the workspace.

Spreadsheet-type Functionality for List Controls within a
Specification Dialog

When the list control has focus, the following applies:

■ F2 or ENTER key puts the field in inline edit or drop down combination mode.
Press ENTER again to accept the data and move to the next row in the column.

■ The TAB key also accepts data (when editing a cell) and goes to the next column of
the same row. If you are in the last column, it moves to the first column of the next
row. If you are in the last column of the last row, it inserts a new row and begins
inline editing.

■ When not editing a cell, the SHIFT + TAB combination works as the reverse of TAB;
that is, it moves to the previous column in the same row, or if you are in the first
column it moves to the last column of the previous row. If you are in the
top-leftmost cell, it does nothing.
Specification Dialogs 93

Browse

Clicking Browse displays the following context menu options:

■ Select in Browser - Highlights the selected element in the browser.

■ Open Diagram - Opens the diagram associated with the object.

■ Browse Parent - Opens the Specification dialog for the parent of the selected
element.

■ Browse Selection - Opens the Specification dialog for the currently selected
element.

■ Browse Superclass - Opens the Specification dialog for the superclass of the
selected object.

■ Browse Subclasses - Opens the Specification dialog for the subclasses of the
selected object.

■ Show Usage - Displays a list of all diagrams in which the currently selected
element is the supplier, or in the case of a collaboration diagram, a list which
shows the usage of a message.

■ Find References - Finds a specified item in the model by searching all fields -
excluding Documentation - and searching all objects - excluding Diagrams,
Component Instances, devices, Instances, Interactions, Messages, Packages,
Probes, and Processors. This command displays the Find In Model Dialog so that
you can type the search string.

OK

Accepts changes and closes the dialog.

Cancel

Ignores changes that were made and closes the dialog.

Apply

Commits any changes that were made.

Help (?)

Opens the Online Help for the current Specification dialog.

Exit (X)

Closes the specification dialog.

Tabs

Many dialogs include a number of tabs across the top for grouping different
specification information. The Files Tab, Relations tab, Components tab, Attributes
tab, Operations tab, and Unit Information Tab may be displayed for many different
model elements. Unit Information tab only appears if the model is being controlled as
units.

Actions Tab

Type

Displays the action specified in the Action Specification dialog:

■ Action - A simple action may be the invocation of a method, or the starting or
stopping of an activity.

■ Send Event - Send events are actions that trigger another event.

The type of action determines what options are available in the dialog box.

Double-click on an action to open the Action Specification dialog for the selected
action. If there are no actions listed, right-click on the Actions tab and click Insert.

Action Expression

Displays the timing option that specifies when to carry out an action and the types of
actions that are carried out. Actions on activities can occur:

■ on entry - The task is performed when the object enters the activity

■ on exit - The task is performed when the object exits the activity

■ do - Dhe task is performed while in the activity and must continue until exiting the
activity

■ on event - The task triggers an event only when a specific event is received

You can modify the action settings through the Detail tab of the Action Specification
dialog.
Specification Dialogs 95

Attributes Tab

The UML asserts that attributes are data values (string or integer) held by objects in a
class. Thus, the Attributes tab lists attributes defined for the class. The attribute
definition can be modified through the Attribute Specification dialog.

Note: Attributes and relationships created using this technique are added to the
model, but do not automatically appear in any diagrams. That is, adding an attribute
affects the code generation for the class and a compilation dependency between the
class of the container and the class of the attribute, but these relationships are not
graphically visible in the model.

The descriptions for each field follow:

■ Visibility Adornment (Unlabeled):

❑ Public - The attribute is publicly visible, and is accessible to all clients.

❑ Protected - The attribute may be accessed only by subclasses, friends, or by
operations of this class.

❑ Private - The attribute is accessible only by the class itself or by its friends.

❑ Implementation - The attribute is accessible only by other operations in this
class.

■ Stereotype - Displays the name of the stereotype.

■ Name - Displays the name of the attribute.

■ Class - Identifies where the attribute is defined.

■ Type - This can be a class or a traditional type, such as int.

■ Initial - Displays the initial value of an object.

The Attribute tab is active for all class types.

Show Inherited

Click this option to see attributes inherited from other classes. If there is no check
mark in this field, you can view only attributes associated with the selected class.

Note: Rational Rose RealTime allows you to directly modify any attribute shown in
the attributes list by displaying the attribute specification dialog. You should be
careful when modifying base class attributes for it may have implications on other
elements in your model which reference or are subclassed from the base class.
96 Chapter 3 - User Interface Overview

Creating New attributes

You can add an attribute relationship by selecting Insert on the popup menu or by
pressing the insert key. A new attribute with a default name is added.

Moving and copying attributes

To move an attribute from one Specification sheet to another, drag and drop it. From
the Edit menu of the main window, you can select Undo and Redo.

To copy an attribute from one Specification sheet to another, drag and drop it while
holding down the CTRL key. From the Edit menu of the main window, you can select
Undo and Redo.

Components Tab

The components list displays a list of components to which this class has been
assigned. Components can be inserted, deleted, and moved up and down in the list.
Each component has a corresponding Component Specification for editing the
component attributes.

A check-box provides filtering control over which components are displayed:

Show all components displays the list of all components in the model.

Right-clicking on a component brings up the Components popup menu.

Detail Tab

When

Specifies a timing option to carry out for the selected action.

On Event

The On Event parameters are only enabled when you set the On Event timing
parameter in the When box.

■ Event - In an Activity Diagram, an event is an occurrence that can trigger a state
transition. Type the name of the event that will trigger the action.

■ Arguments - Specifies any optional arguments associated with the event.

■ Condition - Specifies a conditional Boolean expression.

You can use an On Event action rather than a self-transition because self-transitions
trigger all the actions associated with a state, whereas state and activity actions handle
internal state and activity transitions. This means that you can process an internal
event without triggering the entry and exit actions.
Specification Dialogs 97

Type

Specifies the type for the action.

■ Action - A simple action may be the invocation of a method, or the starting or
stopping of an activity.

■ Send Event - Send events are actions that trigger another event.

The type of action determines what options are available in the dialog box.

Name

Specifies a name of the Action or Send Event. This name appears on the state or
activity on the Activity Diagram.

Send arguments

Specifies any arguments for a send event. One or more arguments can accompany a
send event.

Send target

Specifies any targets for the send event. A target is any object that will receive the
transition event.

Files Tab

A list of referenced files is provided here. The files list popup menu allows you to
insert and delete references to files or URLs.

You can link external files to model elements for documentation purposes.

General Tab

Name

Specifies the name for the currently selected state.

Stereotype

Specifies a keyword that further defines the classification of the model element. A
stereotype represents the subclassification of a model element. Some stereotypes are
already predefined, but you can also define your own to specify new modeling types.
98 Chapter 3 - User Interface Overview

To view stereotypes on the Activity Diagrams, click Tools > Options, select the
Diagram tab, and click Label, Decoration and label, Decoration only, or Icon in the
Stereotype box. Label displays the stereotype name in angle brackets (for example,
<<stereotype>>). Decoration displays a graphic marker such as highlighting an
icon or tool. Icon displays the graphical representation, if any.

Owner

Specifies the model elements that own the selected state.

Context

Specifies a view for a related set of modeling types.

Documentation

Describes model elements or relationships. The description can include such
information as the constraints, purpose, and essential behavior of the element. The
information you type in this field is not displayed in the Activity Diagram.

State/activity history

Specifies whether to return the most recently visited state or activity when
transitioning directly to a state or activity with sub-states or sub-activities. Set this
option to apply history at the state or activity level.

History provides a mechanism to return to the most recently visited state when
transitioning directly to a state with sub-states. History applies to the level in which it
appears. It may also be applied to the lowest depth of nested states.

Sub state/activity history

Specifies history for all depths for nested states or activities within the state or activity
level. Set this option to apply history to all the depths of nested states or activities
within the state or activity level.

History provides a mechanism to return to the most recently visited state when
transitioning directly to a state with sub-states. History applies to the level in which it
appears. It may also be applied to the lowest depth of nested states.

Operations Tab

Operations denote services provided by the class. Operations are methods for
accessing and modifying Class fields or methods that implement characteristic
behaviors of a class.
Specification Dialogs 99

The Operations tab lists the operations that are members of this class. The actual
definition of the operation is accessible from the Operation Specification.

The operations are listed with the following fields:

■ Visibility Adornment (Unlabeled) - The visibility of the operation is indicated
with an icon. Following are the visibility options:

❑ Public - The operation is accessible to all clients.

❑ Protected - The operation is accessible only to subclasses, friends, or to the class
itself.

❑ Private - The operation is accessible only to the class itself or to its friends.

❑ Implementation - The operation is accessible only by operations of this class.

■ Stereotype - Displays the name of the stereotype.

■ Signature - Displays the name of the operation.

■ Class - Identifies which class defines the operation.

■ Return Type - Identifies the type of value returned from the operation.

The Operation tab is active for all class types. In the class diagram, you can display
operation names in the class compartment.

Show Inherited

Click this option to see operations inherited from other classes. If there is no check
mark in this field, you can view only operations associated with the selected class.

Note: Rational Rose RealTime allows you to directly modify any operation shown in
the operations list by displaying the operations specification dialog. You should be
careful when modifying base class operations for it may have implications on other
elements in your model which reference or are subclassed from the base class.

Creating New Operations

To enter an operation in the Class Specification dialog, select Insert from the popup
menu. A new operation with a default name is added to the operations list.

Moving and Copying Operations

To move an operation from one Specification dialog to another, drag and drop it. From
the Edit menu of the main window, you can select Undo and Redo.
100 Chapter 3 - User Interface Overview

To copy an operation from one Specification dialog to another, drag and drop it while
holding down the CTRL key. From the Edit menu of the main window, you can select
Undo and Redo.

Relations Tab

The relations list displays relations between classes as specified in diagrams. Relations
can be inserted, deleted, and moved up and down in the list. Each relation has a
corresponding Association specification for editing the relation attributes.

A check-box provides filtering control over which relations are displayed:

Show Inherited shows any relations inherited from a superclass.

Swimlanes Tab

Name

Specifies the swimlane name where the enclosed state or activity resides.

Transitions Tab

Event

Specifies the names of all the events for transitions associated with the selected
element.

An event causes a state transition. You do not have to uniquely label events because
one event can cause a transition to many different states or activities.

End

Specifies the target state or activity for transitions.

Unit Information Tab

The Specification dialog for a controlled element includes a Unit Information tab.

Descriptions

Owned by model

Indicates whether the unit is owned by this model or whether it is owned by another
model and shared into this model. This setting is not directly editable.
Specification Dialogs 101

Under source control

Indicates whether this element has been added to source control. This setting is not
directly editable.

Control new child units

Controls whether newly created controllable elements in this package will be
individually controlled by default. This check box is only displayed in the Unit
Information tab for a package.

Disallow model-relative pathnames

Informs Rational Rose RealTime to not use the implicit $@ virtual pathmap symbol
when saving units located anywhere within this package. This check box is only
displayed in the Unit Information tab for a package.

Scratchpad

Indicates that the package is a scratch pad. This check box is only enabled in the Unit
Information tab for a package that is not under source control.

Filename

Displays the name of the file that is used to save this controllable unit. This field is not
directly editable.

Save As

For controlled units, this option saves the selected unit, and if specified, its child units
(if any exist), to a new location.

If the model is under source control, Rational Rose RealTime prompts you to check
out the parent unit before proceeding with the Save As operation.

If you cancel the Save As operation, the unit file names change back to the names
previous to clicking the Save As option; however, any files already saved are not
deleted from your hard drive.

You cannot undo the Save As operation.

Note: The containing unit of the unit you click Saved As for is identified as being
modified. It is essential to save the model to update the containing unit. If the parent
unit is not saved, it will point to the original file location.
102 Chapter 3 - User Interface Overview

Version

Displays the version identifier for this controlled unit. If this information is not
known, then ‘<unknown>’ is displayed. The ability to extract this version information
depends on the source control tool being used. If a unit is not under source control,
then this field is not displayed.

Scratch Pad Packages

When working on a model in a team environment, it is common for a developer to
create temporary model elements that are not intended to be shared with the rest of
the team. For example, a developer may create a temporary component when unit
testing a change to a capsule class. If the model is under source control, then the
developer will also not want these temporary elements to be checked in with the other
changes they are making.

In order to support temporary work within a controlled model, Rational Rose
RealTime supports scratch pad packages. A scratch pad package is a package that will
never be added to source control. Also, in a model that is under source control,
changes can be made to a scratch pad package without the toolset requiring that
package be checked out. This allows multiple team members to make temporary
changes within the scratch pad without encountering any contention issues.

Elements can be moved into or out of a scratch pad package by dragging them to
another package in the browser. Elements can also be copied into (or out of) a scratch
pad package using control-drag.

The controllable elements within a scratch pad package cannot be individually
controlled. If a controlled unit is moved into a scratch pad package, then it will no
longer be controlled.

To create a scratch pad package:

1 Create a package and give it a descriptive name, for example, ScratchPad.

2 Select the package in the browser and choose File > Control Unit.

3 Open the Specification dialog for this package and change to the Unit Information
tab.

4 Select the Scratchpad and click OK.

5 Save the package containing the scratch pad. Optionally you can also save the
scratch pad. If the containing package is under source control, it should be checked
out and checked in.
Specification Dialogs 103

Searching and Sorting

This topic is organized as follows:

■ Using Sort on page 104
■ Find In Model Dialog on page 105
■ Replace Dialog on page 106

Using Sort

Sorting in the Browser

Sorting in the browser enables you to arrange classes, attributes, operations, and
packages in alphabetical order.

Follow these steps to place items alphabetically in the browser:

1 Highlight a class or package icon.

2 Right-click on the icon.

3 Click Sort in the shortcut menu.

Note: The arranged items in the browser are not saved when you close the
application.

Right-clicking in an application browser displays the popup menu, in which Sort is an
item. Choose between Alphabetical Order and Internal Order. Sort settings are saved
for each browser in your workspace.

Sorting in the Class Specification

Sorting in class specification enables you to arrange attributes and operations three
ways.

To arrange items in class specification:

1 Highlight an attribute or operation.

2 Right-click on any Field Identifier bar located in class specification.

3 Click either Ascending, Descending, or No Sort from the shortcut menu options.

❑ Ascending - lists attributes and operations in case-sensitive alphabetical order.

❑ Descending - lists attributes and operations in reverse, case-sensitive
alphabetical order.

❑ No Sort - lists attributes and operations in the order they are specified in the
model.

Find In Model Dialog

Use the Find and Find In Model dialogs to search for model elements by name, or to
search detail code segments.

You can narrow your search by selecting specific fields and items types from the list.
This enables you to specify which objects are included in the search.

By default, the results of a search display in the Find tab of the Output window. To
view the Output window, click View > Output.

Figure 17 Find Tab in the Output Window

If you select Output to Find 2 pane in the Find In Model dialog, the results display in
the the Find 2 tab of the Output window.

The results of searching displays a list of diagrams in which that item appears. You
can double-click on an entry in the Find tab or click Browse to go directly to the
Specification dialog or diagram.
Searching and Sorting 105

Using a Wildcard

To search for groups of items or to search code, you can use the wildcard character (*):

■ A* matches any name beginning with the letter A

■ *A matches any name ending with the letter A

■ *A* matches any name containing the letter A

Note: To search for the wildcard character "*", use "*".

The wildcard is particularly useful for finding any classes or packages that were
automatically renamed in a model that was upgraded from a previous release. For
example, you can search for every model item that was renamed by typing the
following:

#

Every model item that has a pound symbol (#) in its name will be found.

Searching Code

The Find in Model dialog searches for specified text in all detail level code in a model:
transitions, entry and exit code, choice points, guards, and operations. It also searches
the dimension and type property of all attributes, the data type of signals,
documentation, and language tab properties.

Searching for Model Elements by Name

You can search the model for elements whose name matches the string specified in the
Find What box. Selective searching based on the type of element is also supported, for
example, search only capsules or state diagrams.

Replace Dialog

You can use the Replace dialog to search and replace detail code segments or to search
and replace for model elements by name. Results are displayed in the Find 2 tab of the
Output window (View > Output).

Searching Code

Use the Replace dialog to find and replace all uses of a class in detail code or which is
a property of another class. For example, you could find and replace attributes of a
specific type or signal data types of a specific name.
106 Chapter 3 - User Interface Overview

The Replace dialog searches and replaces for the specified text in all detail level code
in a model: transitions, entry/exit code, choice points, guards, and operations. It also
searches the dimension and type property of all attributes, the data type of signals,
documentation, and language tab properties.

Searching for Model Elements by Name

You can also search and replace the model for elements whose name matches the
string specified as the Item to find. Selective searching and replacing based on the
type of element is also supported, for example, search and replace only capsules or
state diagrams.

When you click Replace, a secondary dialog (Figure 18) appears with options to Find
Next, Replace, Replace All, and Cancel. After the replace operation has taken place,
you can query the Find tab in the Output window to view the results of the search
and replace.

Figure 18 Replace Fields dialog

Selective searching

You can toggle several items at once by pressing the SHIFT key, then selecting a set of
elements types from the list, then using the SPACEBAR to change the selection of the
options.
Searching and Sorting 107

108 Chapter 3 - User Interface Overview

4Other Application
Windows
Contents

This chapter is organized as follows:

■ Description Window on page 109
■ Adding Documentation to Model Elements on page 111
■ Adding Code to Model Elements on page 112
■ Output Window on page 112
■ Specification History Window on page 115

This chapter describes other application windows, including the Description
Window, which contains the following:

■ Documentation Tab
■ Code Tab
■ Output Window

Description Window

The Description window contains the Documentation Tab and the Code Tab. You can
toggle between the two by clicking their tabs.

Displaying the Description Window

By default, the Description window is closed. To view the window, select
View > Description.

Only one Description window can be open at a time, but as you select different items,
the window updates accordingly. If you select an item that has no documentation or
code associated with it, you select multiple items, or you do not have an item selected,
you are notified.

When the window is first displayed, it is docked to the bottom left corner. To move the
window, click and drag on the border. The window outline indicates the window
state: a thin, crisp line indicates the window is docked, while a thicker, hashmark-type
border indicates that it is floating.
109

Characteristics unique to the window state (docked or floating) are:

■ Docked on page 110
■ Floating on page 110

Docked

■ The window can be moved within the dockable region of the application.

■ The size can be changed using the splitter bars.

■ The title can be displayed through a tool tip (simply place your cursor anywhere in
the window). There is no title available when the window is docked.

■ The window can be docked at any time.

Floating

■ The window can be moved to any location, and is always displayed on top of the
diagram.

■ Size can be changed using click and drag along the border in a vertical or
horizontal direction.

The window title displays the description. The static text displays the name of the
element who’s code or documentation you are viewing.

Documentation Tab

You can use the Documentation tab to edit or view the documentation associated
with the currently selected model element. Scroll bars are added when necessary and
word wrap is employed.

Code Tab

You can use the Code tab to edit or view the code associated with the currently
selected model element. Scroll bars appear when necessary and word wrap is
employed.

Word Wrap

To enable or disable word wrap in a text box, such as a Documentation box or Code
box, right-click in Code box and select Word Wrap. The keyboard shortcut to toggle
Word Wrap is CTRL + O.

Note: Word wrapping only affects the display of text. When saving or exporting,
Word Wrap is set, it does not affect the output format for the text. The Word Wrap
menu option is only enabled when the edit window contains text.
110 Chapter 4 - Other Application Windows

Pull-down Menu

Using the pull-down menu, you can move between different sections of code, for
example, between entry and exit code for a state. You can also add a trigger to a
transition.

Popup Menu

Using the popup menu, you can

■ import and export files containing code
■ print the code
■ select individual words, lines, or all of the code you are viewing
■ specify the font
■ use the Search feature to Find and Replace
■ launch an external editor

Note: If you use an external editor that requires a console terminal, you must specify
an application, such as xterm, that provides the terminal, followed by the editor
command itself.

Note: Example on Solaris: /usr/openwin/bin/xterm -e /bin/vi

Adding Documentation to Model Elements

All model elements can have documentation associated with them.

To add documentation to a model element, you can use the Documentation
window or follow these steps:

1 Right-click on the model element in the model browser or in a diagram.

2 Select Open Specification from the selected item's menu.

3 Click the General tab if it is currently displayed.

4 Enter the documentation for the element in the documentation area.

5 Close the Specification dialog by clicking OK.

For long, complex, or formatted documentation, you may want to link an external file
(such as an Microsoft Word document) to a model element. See Inserting a Diagram
into an MS Word Document on page 541.

Note: If you add documentation from the Documentation tab, you must click Apply
for to save the information.
Adding Documentation to Model Elements 111

Adding Code to Model Elements

All model elements can have code associated with them.

To add code to a model element, you can use the code window or

1 Right-click on the model element in the model browser or in a diagram.

2 Select Open Specification from the selected item's menu.

3 Click on the language-specific tab if it is not the tab currently displayed.

4 Enter the code.

5 Close the Specification dialog by clicking OK.

Output Window

The Output window (see Figure 19) is a dockable window that contains the following
tabs:

■ Log Tab
■ Build Log Tab
■ Build Errors Tab
■ Find Tab
■ Watch Tab (RTS only)

Figure 19 Output window

Log Tab

The Log tab is used by several commands to report progress, results, and errors.
Messages posted to the log are usually prefixed with a time stamp.

To display the Log tab, select View > Output. The application posts the messages to
the log window regardless of whether it is displayed.
112 Chapter 4 - Other Application Windows

You can save the contents of the log window to a file or you can choose to
automatically save messages to a file as they are posted. Both options are available
from the popup menu.

Double-clicking usually brings you to the error source.

Build Log Tab

The Build Log tab stores the contents of the compilation and code generation log.
Select View > Output and click the Build Log tab to open it. Compilation or code
generation messages are posted to the Build Log tab regardless of whether it is
visible.

You can save the contents of the Build Log tab to a file. You can also choose to
automatically save messages to a file as they are posted.

Figure 20 Build Log Tab

The Build Log tab contains the raw output stream from the build. You can examine
the contents of this window to get a context on any error message displayed in the
build messages list.

Saving Build Output to a Log File

You can capture all of the build output to a log file so that you can process the output
later.

To automatically save build results to a file:

1 On the Build Log tab in the Output window, right-click and select AutoSave.

2 In the AutoSave Log dialog, specify a name for the log file and select a location.

3 Click OK.
Output Window 113

4 Build your model.

Note: If you attempt to open the build log file, you may encounter a Sharing Violation
message. To view the contents of the Build Log output file, select AutoSave again so
that it is not set, then open the log file.

Build Errors Tab

The Build Errors tab contains a parsed version of the output stream. It is important to
review the Build Log tab because some errors cannot parsed by the error parser.

The Build Errors tab contains a Location column that gives the class/code segment
name pair. The Context column provides the context of the problem. The Message
column gives a description of the problem. These messages are taken directly from the
compiler error stream and therefore reflect the accuracy of the compiler that you are
using. Further, errors within your code segments may lead to errors being reported in
system-generated files.

Double-clicking on an error or warning in the Build Error tab takes you to the location
in the model that caused the error or warning. See Common build errors for a short
summary of common generic build errors.

Filtering Build Results

To focus on the error results only, you can filter out all warning results on the Build
Errors tab. Right-click in the Build Errors tab area and select Hide Warnings.

Sorting Build Results

You can sort the information in the Build Errors tab by clicking on a column name.
You can sort based on the Location, Context, or Message data.

Unknown Compiler Message Stream

It is possible that the compiler being used reports errors in ways that are not
understood by Rational Rose RealTime. There are no standards for error reporting by
compilers and linkers. Hence, the error parser is often targeted for a particular
compiler and linker. If you are using an unsupported compiler, Rose RealTime will
probably not be able to understand the error output from the parser and may
inaccurately report errors. You have to rely on the raw output stream to see the direct
output of the compiler, rather than going by the errors reported by the Build Errors
tab.

114 Chapter 4 - Other Application Windows

Find Tab

The Find tab works in conjunction with the Find dialog. See Find In Model Dialog on
page 105.

Watch Tab

Capsule instance attributes can be inspected at run-time and modified from the
Watch tab of the Output window. The Watch tab has two columns: the name of the
attribute and its value.

To add an attribute instance, or variable, to the watch window, open a state monitor
and drag-and-drop the attribute from the Attributes folder into the watch window.

You can also edit the value of a variable by selecting the Value field then entering
another value for the variable.

Refreshing the Watch Values

The watch values are refreshed when a message is received by the state of the capsule
instance. If the state monitor the watch was created is closed, the watch value stops
being updated. If the state monitor is closed, you can manually force an update of a
watch value by right-clicking on the watch item and selecting Refresh from the
popup menu.

Specification History Window

Use the Specification History window to record Specification dialogs opened (up to
the last 1000) from within the toolset. You can easily navigate between the opened
Specification dialogs, and open and close them.

To open the Specification History window, click View > Specification History.

Specifications opened by the user will be recorded and will form the specification
history. The Specification History list can contain up to 1000 entries; however, you
can change the value of the History level option on the General tab to modify the
length of the list. The default value is 25; the minimum value is 0 and the maximum is
1000.

The Specification History window can be docked or undocked. By default, this bar is
hidden and docked to the right side of the Rational Rose RealTime frame window. The
current position in the Specification History list is always highlighted. If multiple
items are selected in the list, first item in the list is the current item.
Specification History Window 115

Locking Specification Dialogs

The Specification History window displays an icon opposite each entry in the list to
indicate the type of element for which Specification dialog was opened. The display
shows the element’s short name and it’s status (locked or unlocked).

A locked entry in the Specification History list means that the Specification dialog
will not be "pushed" out of the list if the list exceeds the maximum length (1000
entries), and that it will be saved and loaded with the workspace.

ToolTips

The ToolTips for the elements whose Specification dialogs appear in the list display
the fully qualified name for the element and, if it has any context, the short name of
the context displays on the second line of the ToolTip.

Keyboard Shortcuts

For a printable list of shortcut keys, see Keyboard Shortcuts on page 565.

By default, the current Specification dialog will close before the previous or next
Specification dialog will display. If you open a Specification dialog using the toolset
(and not using the previous and next shortcut key commands, that specification
appears on the top of the Specification History list. If that Specification dialog already
exists in the Specification History list, the earlier entry is removed from the list.

Note: The shortcut keys for the Specification History window,
[Shift+]Alt+{PgDn|PgUp}, are not available in the Add-ins.

The previous and next shortcut key commands "wrap" around the list. If specification
corresponding to the current item is not open, it will be opened first.

Most of the operations on the elements of Specification dialogs in the list will be
performed using the shortcut menu. Operations are performed on the selected
elements only, and multi-selection is permitted.
116 Chapter 4 - Other Application Windows

Specification History Shortcut Menu

The shortcut menu for the Specification History window contains the following
options:

■ Open - Opens the selected Specification dialog. Alternatively, you can
double-click on the Specification dialog name in the list.

■ Close - Closes the selected Specification dialog.

Note: To close multiple dialogs, press CTRL and click on the names in the list to
select the dialogs, then click Close. To delete all Specification dialogs in the
Specification History list, right-click in the list, select Select All, right-click in
the list again, then click Close.

■ Lock - Toggles the "Locked" status for the selected Specification dialog. If you
have multiple Specification dialogs selected that are not currently locked, selecting
this option locks them. If all selected Specification dialogs are currently locked,
selecting this option unlocks them.

■ Refresh - Removes elements from the list that can no longer be found in the model.

■ Delete from history - Deletes the selected Specification dialog from the
Specification History list.

■ Select All - Selects all items in the Specification History list

■ Select in Browser - select the corresponding element from the Model View tab in
the browser. This option is enabled only when one element is selected.
Specification History Window 117

118 Chapter 4 - Other Application Windows

5Printing
Contents

This chapter is organized as follows:

■ Print Specifications on page 119
■ Print Setup on page 123

This chapter describes how to print from the application using the Print
Specifications and Print Setup dialogs.

Print Specifications

The Print Specifications dialog lets you print diagrams. As well, you can adjust the
parameters of diagrams you want to print, including size, orientation, and layout.

The dialog has four tabs:
■ General Tab
■ Diagrams Tab
■ Specifications Tab
■ Layout Tab

All tabs contain the Print Preview button, which you can click to see how your
diagram will appear before you route it to a printer.

General Tab
The General tab contains three fields:
■ Printer Area
■ Print Range Area
■ Copies Area

Printer Area

In the Printer area, you can select the name of the printer you want to use from a
drop-down menu. Select the Print to File option to print a diagram to a file, instead of
routing it directly to a printer. You are prompted to specify a filename and location.

As well, there is a Properties button.
119

Properties Dialog

Clicking Properties opens the Properties dialog, which contains two tabs: Layout and
Paper/Quality.

Click the Advanced tab to fine-tune your printing parameters.

Print Range Area

Use the Print Range area to select the Current Diagram, Selected Diagrams, and
Selected Specifications. Current Diagram is the default. Clicking Selected Diagrams
and then Diagram Options opens the Diagrams Tab. Clicking Selected Specifications
and then Specification Options opens the Specifications Tab.

Copies Area

The Copies area lets you specify the number of copies you want to print, and whether
you want multiple copies collated.

Diagrams Tab

The Diagrams tab contains the options that you can choose from to generate a
printout of one or more diagrams.

Note: If all the options on the Diagrams tab are grayed out, click the General tab, then
in the Print range box, select Selected diagrams and click Diagram Options.

The Diagrams tab has the following areas: Use case diagrams, Class diagrams,
Component diagrams, Deployment diagrams, and Interaction diagrams.

The first four fields contain the following buttons:

■ Top Level - Prints only the diagrams at the top level of the model.
■ Entire Structure - Prints all the diagrams.
■ None - Prints none of the diagrams.

The Include State Diagrams check box is not applicable unless you have chosen Top
Level or Entire Structure in the Use Case or Class Diagrams fields.

The Interaction Diagrams List Control lets you select each object message or message
trace diagram containing objects whose specifications you want to print. The All
button selects all object and interaction diagrams in the list. The None button
deselects all object and interaction diagrams in the list.
120 Chapter 5 - Printing

Specifications Tab

The Specifications tab contains the options to generate a printed version of one or
more specifications.

Note: If all the options on the Specification tab are grayed out, click the General tab,
then in the Print range box, select Selected specifications and click Specification
Options.

The Specifications tab has the following areas: Use case specifications, Class
specifications, Component specifications, Deployment specifications, Options, and
Interaction specifications.

The first three fields contain the following buttons:

■ Current - Prints only the specifications for the current diagram.
■ Entire Structure - Prints all the diagrams.
■ None - Prints none of the diagrams.

The Options field contains the following options:

■ Selected classifiers only - This option is available only when you select Current or
Entire structure from the Class specifications box. If you select Selected
classifiers only, only the specifications for the currently selected classes, capsules,
and protocols in the model will print.

Note: To print associated code with the specification, select Selected classifiers
only and Operation specifications.

■ Operation specifications - This option is available only when you select Current
or Entire structure from the Class specifications box. If you select Operation
specifications, only the operation specifications associated with the classes in the
indicated diagrams are printed.

Note: To print associated code with the specification, select Selected classifiers
only and Operation specifications.

■ State specifications - is only applicable when you have chosen Current or Entire
structure in the Class diagrams field. When you check this box, all the
state-transition specifications for all the state diagrams that are associated with the
classes in the indicated diagrams are printed.

Note: This option controls only the printing of use case specifications. You can
print the associated operation and state-transition specifications by checking the
Operations Specifications and State Transitions boxes.
Print Specifications 121

■ Selected associations only - is only applicable when you have chosen Current or
Entire structure in the Class diagrams field. When you check this box, only the
operation specifications for those associations with the classes in the indicated
diagrams are printed.

■ Selected components only - is applicable only when you have chosen Current or
Entire structure in this field. When you check this box, only the specifications for
those components that are currently surrounded by selection handles in the
indicated component diagrams are printed.

■ Selected devices only - is only applicable when you have chosen Current or
Entire structure in the Deployment specifications field. When you check this box,
only the specifications for the selected devices are printed.

■ Selected processors only - is only applicable when you have chosen Current or
Entire structure in the Deployment specifications field. When you check this box,
only the specifications for the selected processors are printed.

The Interaction Diagrams List Control lets you select each object message or message
trace diagram containing objects whose specifications you want to print. The All
button selects all object and interaction diagrams in the list. The None button
deselects all object and interaction diagrams in the list.

Layout Tab

The Layout tab contains the options that you can choose from to change the position
and size of the diagrams you want to print. If your print job is larger than the
available paper, you can tile your work so that it is spread across several pieces of
paper. Assemble the separate pages to create the whole image.

The Layout tab contains two areas: Positioning and Options.

Positioning area

The Positioning field contains the options that you can choose from to change the size
of the diagrams you want to print.

■ As In Diagram -Pprints diagram as you see it on screen.
■ Fit To Page - Resizes each diagram to a single page.
■ Tile -Eenables the Options field.
122 Chapter 5 - Printing

Options Area

The Options field contains the following options:

■ Overlap - Lets you set the percentage of the images on each tile overlap on
adjacent tiles.

■ Print Crop Marks - Lets you align tiled printouts.

■ Preserve Aspect Ratio - Lets you maintain the diagram's proportions.

Scale label printing font to 90% of display font

You can specify a value by which you can scale the size of the font used for printing
and for the Print Preview. For example, labels that look good on your screen may
exceed compartment size when printed. The valid range of values to specify is
between 75 and 115. The default value, 90%, is sufficient for most printing activities.

Print Setup

The Print Setup dialog lets you set up print options, generally. The dialog contains
three areas: Printer, Paper, and Orientation. As well, there is a Network button.
Clicking this button opens the Connect to Printer dialog, which lists shared printers
on the network. Click on a particular printer to route your print jobs to it.

Printer Area

The Printer area lets you select the name of the printer you want to use from a
drop-down menu. You can also click Properties to open the Properties dialog.

Paper Area

The Paper area lets you specify the size and source of the paper you want to use to
print.

Orientation Area

The Orientation area lets you choose between Portrait and Landscape orientations.
Print Setup 123

124 Chapter 5 - Printing

6Opening and Saving
Models
Contents

This chapter is organized as follows:

■ Unique Ids on page 125
■ Opening Models on page 129
■ Opening Models from ObjecTime Developer 5.2.1 on page 132
■ Opening Rational Rose Models on page 134
■ Importing Rational Rose Generated Code on page 136

Unique Ids

Unique ids are unique internal names associated with model elements. They are used
internally by Rational Rose RealTime, and not all model elements require unique ids.
Rational Rose RealTime includes a feature that helps Model Integrator by generating
unique ids for those model elements that would otherwise not require them, for
internal use. For Model Integrator, an element with a unique id is easier to merge.

RRTEI users will find traceability easier when they set this option. Unique ids
improve the traceability of model elements of other tool integrations that use RRTEI.

It is necessary to plan and choose when to incorporate the new unique ids into the
project model since virtually all controlled units will be modified implicitly.
Additionally, the generated new ids are dependent on time and location. For example,
generating unique ids for a given model at different times, or on different machines,
produces different ids.

The following model elements do not have unique ids, unless you set this option:

■ Protocol In Signals ()
■ Protocol Out Signals ()
■ States (CompositeState)
■ Capsule Roles (CapsuleRole)
■ Ports (Port)
■ Port Roles (PortRole)
■ Capsule Structure diagram (CapsuleStructure)
■ Classifier Role (ClassifierRole)
125

■ Transitions (Transition)
■ Junction Point (JunctionPoint)
■ Choice Point (ChoicePoint)
■ Connectors (Connector)
■ (Guards)
■ (Events)
■ (EventGuards)
■ Parameters ()
■ Element hyperlinks (ExternalDocument)

Caution: We strongly recommend any team involved in parallel development use this
option.

Note: Setting this option creates unique ids for model elements that currently do not
have them. This typically affects most of the model, so you will be prompted to check
out those parts when setting this option.

When saving the model, the size of the affected file increases by approximately 20%,
and the time to load the model also increases.

Caution: Do not set this option for multiple streams as shown in Figure 21; otherwise,
objects with similar characteristics will be treated differently since their unique id’s
will differ.
126 Chapter 6 - Opening and Saving Models

Figure 21 Incorrect Merge Scenario

An example of when to set this option is shown in Figure 22.
Unique Ids 127

Figure 22 A Correct Merge Scenario

Note: This option must be set prior to branching.

For information on how to enable the Unique ids, see Model Specification on page 129.

To clear the unique id option, follow the same procedure in Figure 22.

Note: If you clear this option, your merge results will not be as reliable.
128 Chapter 6 - Opening and Saving Models

Opening Models

To open an existing Rational Rose RealTime, Rational Rose, or ObjecTime Developer
model, click the Open Existing Model icon on the toolbar or select File > Open.

A dialog appears prompting for the model file name. You can select from among
different types of models to open through this dialog, including: Rational Rose
RealTime models (.rtmdl), Rational Rose models (.mdl) and ObjecTime Developer
models stored as linear form (.lf).

Note: Opening a model discards any existing model that you currently have open.
The tool prompts you to save changes first.

Note: In the Windows version of the toolset, typing %ROSERT_HOME% in the file
name takes you to the directory that the environment variable contains. Use the same
% notation on UNIX to specify environment variables.

Model Specification

A Model Specification enables you to display and modify the properties of the top
level element.

To display a Model Specification, right-click on the top level element and choose
Open Specification.

Specification Content

The Model Specification contains the following tabs:

■ General Tab
■ Source Control Tab
■ Files Tab
■ Unit Information Tab

General Tab

Name

Identifies the name of the model.

Generate unique identifiers for all elements

Specifies that unique identifiers are generated for all elements in the model. By
default, this option is selected.

Note: Before clearing this option, ensure that you review the information on Unique
Ids on page 125.
Opening Models 129

Documentation

Contains information about this model.

Source Control Tab

Provides options for interacting with a source control / Configuration Management
(CM) system.

Files Tab

Provides a list of referenced files. The files list pop-up menu allows you to insert and
delete references to files or URLs.

Note: You can link external files to models for documentation purposes.

Unit Information Tab

Owned by model

For units, it indicates that the selected unit is owned by the model.

For models, it indicates that this mode is owned by another model.

For collaborations, it indicates whether the unit is owned by this collaboration, or
whether it is owned by another model and shared into this model. When selected, it
indicates that this collaboration is owned by another model.

Under source control

Indicates whether this model has been added to source control.

Control new child units

Controls whether newly created units will be individually controlled, by default.
When selected, any new child units for this element will be controlled.

Disallow model-relative pathnames

Informs Rational Rose RealTime not to use the implicit and virtual pathmap symbol
when saving units.

Scratchpad

Indicates that the package is a scratch pad. This option is only enabled in the Unit
Information tab for a package that is not under source control.
130 Chapter 6 - Opening and Saving Models

Save As

For controlled units, this option saves the selected unit, and if specified, its child units
(if any exist), to a new location.

If the model is under source control, Rational Rose RealTime prompts you to check
out the parent unit before proceeding with the Save As operation.

If you cancel the Save As operation, the unit file names change back to the names
previous to clicking the Save As option; however, any files already saved are not
deleted from your hard drive.

You cannot undo the Save As operation.

Note: The containing unit of the unit you click Saved As for is identified as being
modified. It is essential to save the model to update the containing unit. If the parent
unit is not saved, it will point to the original file location.

Version

Displays the version identifier for this controlled unit. If this information is not
known, then "<unknown>" displays. The ability to extract this version information
depends on the source control tool being used. If a unit is not under source control,
then this field is not displayed.

File Name

Displays the file name of the model, or the name of the file used to save this
controllable unit. This field is not directly editable..

A Workspace

A workspace contains basic configuration information for working with a model. This
information includes the name of open model, whether source control is enabled, and
any settings related to how source control and file management behave when editing
the model.

The workspace information is stored in a separate file (.rtwks). When a model opens
and a workspace file of the same name exists in the directory, the toolset prompts you
to open the workspace instead. If you regularly work on a particular model, open the
workspace corresponding to that model rather than just opening the model itself.
Opening Models 131

The following settings are stored in a workspace:

■ the model being worked on
■ the source control settings for this model as specified in the Specification dialog

for the model
■ file management settings

If a model is renamed, a workspace file that refers to the old model name will not
open correctly. You can edit the workspace file directly and change the path name
information, or open the model file without the workspace and then save the model to
create a new workspace.

User-specific Working Environment Settings (.rtusr, .rtto and .rtwks)

Rational Rose RealTime preserves user-specific working environment settings
between toolset sessions. The user-specific working environment consists of:

■ options specified in the Tools > Options dialog (for example, font size, default
label filtering)

■ open windows, including their size and position
■ active component
■ active component instances
■ target observability settings such as probes, monitors, inject messages and watch

variables

All of these settings are user-specific and should not be shared between users. Settings
not related to target observability are saved in a .rtusr file with the same root name as
the current workspace. Target observability settings are saved in a .rtto file with the
same root name as the current workspace.

These files are saved whenever the current workspace is either saved or closed.

Opening Models from ObjecTime Developer 5.2.1

Rational Rose RealTime can only import Linear Form files from ObjecTime Developer
5.2.1. Other kinds of files, such as binary .update or .context files cannot be imported
directly into Rational Rose RealTime.

Note: ObjecTime 5.2.1 users must apply a patch to their toolset to export models from
ObjecTime so that they can be read by Rational Rose RealTime. See Upgrades and
Patches from the Download Center on the Rational Web site.
132 Chapter 6 - Opening and Saving Models

To open an ObjecTime Developer 5.2.1 model:

1 The ObjecTime Developer project file must be saved as a Linear Form file (.lf)

2 To open an ObjecTime Developer model from Rose RealTime, select
File > Open and choose Linear Form (.lf) from the Files of Type drop-down
menu.

3 Select the file to open and click Open.

Files from versions of ObjecTime older than ObjecTime Developer 5.2 will have to be
opened in ObjecTime Developer 5.2 and saved as project files first.

Note: Opening a new model discards any existing model that you have. The toolset
will prompt you to save changes.

Importing requirements

Requirements captured in ObjecTime Developer Models can be converted through a
requirements-specific patch for 5.2 and 5.2.1. An HTML file is generated that contains
the actual requirements from the OTD models. Links to these requirements are
converted when the actual model is imported into Rose RT. The HTML requirements
file is stored outside of the Rose RealTime toolset. Place the file in your configuration
management library for storage purposes.

See the ObjecTime Developer Conversion Guide for information on converting from
ObjecTime Developer.

Limitations and Restrictions

When an ObjecTime Developer model is opened in Rational Rose RealTime, the
following elements may not be converted:

■ Dependencies - The dependencies list for classes in ObjecTime Developer is not
converted. Dependencies must be recreated using the Build > Add Class
Dependencies command. This runs a script that checks the model elements for
dependencies and adds them. It does not, however, find references that exist only
in detailed code.
Opening Models from ObjecTime Developer 5.2.1 133

Opening Rational Rose Models

Before Starting

Rational Rose RealTime can open files (.mdl files) saved with Rational Rose 4 and on.

Fixing a Model

When importing a model from Rose into Rose RealTime, you are encouraged to
resolve any model errors in Rose (Tools > Check Model) before trying to import the
model. In particular it is important to fix unresolved references. In general, Rose is not
concerned as much about unresolved references; however, they are very important in
Rational Rose RealTime as they can result in incomplete code generation and
compilation errors.

To open a Rational Rose model:

1 To open a Rational Rose model from Rational Rose RealTime, select File > Open
and choose Rose Model (*.mdl) from the Files of type drop-down menu.

2 Select the file to open and click Open.

Files from Rational Rose versions older than Rose 98 must first be opened in Rose 98
and saved.

Note: Opening a new model discards any existing model that you have. The Rational
Rose RealTime will prompt you to save changes.

Import Log Messages

The following messages may appear in the Log after a Rose model has been imported.

Message: Warning: Renamed elementClass "oldElementName" to
"newElementName".

Description: A loaded model element has been renamed to conform with Rational
Rose RealTime naming requirements. Double-clicking on the warning in the log
may (or may not) display the renamed element.

Message: Error: Unresolved reference from... to... by....

Description: The toolset was unable to resolve a reference between two model
elements. This is usually the result of loading an incomplete model, for instance
when the user has updated only part of a model from CM. The rest of the model
needs to be loaded in order for the reference to be resolved. However, in some
134 Chapter 6 - Opening and Saving Models

instances (where toolset stability is an issue) the unresolved model element is
removed from the model. If this is the case, the deletion is also recorded in the log
window.

Message: Error: Error reading file fileName at line lineNumber or Error message
detail.

Description: The error message detail may contain validation errors originating
from the internal meta-model, which are not covered here. Possible error message
details that originate from the petal reader are listed below.

Message: Invalid syntax.

Description: The file contents cannot be read by the toolset. The user should send
the file to customer support with a description of what they were doing when the
file was created.

Example

Imported a Rational Rose model, made some changes to the Component View, now
the file will not reload in Rational Rose RealTime.

Limitations and Restrictions

When a Rational Rose model is opened in Rational Rose RealTime, the following
elements are not converted:

■ Importing Rational Rose models containing controllable units is not supported

Load the model with controllable units in Rational Rose. Export the model into a
single .ptl petal file. Import the .ptl file into Rose. Save the model as a .mdl file in
Rational Rose. Open the .mdl file in Rational Rose RealTime.

■ Three-tier class diagrams are not supported in Rational Rose RealTime.

Rational Rose RealTime skips over three-tier class diagram making it unnecessary
to remove them before importing.

■ Rational Rose elements that are not supported are written to the Documentation
field in Rational Rose RealTime.
Opening Rational Rose Models 135

Importing Rational Rose Generated Code

Source code generated from a Rational Rose model and has been edited within the
preserved regions may be imported.

To import Rational Rose generated code:

1 Verify that the Rational Rose .mdl file is not newer than the generated code. If so,
regenerate the code.

2 Open the Rational Rose model (see Opening Rational Rose Models on page 134).

3 Select Tools > Import Code.

If code was generated from this model using Rational Rose and the model was
saved after the code generation was performed, a "Rational Rose Code Import"
window displays. Otherwise, the "There are no cpp or h files available for import"
message displays.

The Rational Rose Code Import Window lists all the .cpp and .h files generated
from the model, and lets you select all or a subset of the files. It also displays the
classes that will be affected by each file that is selected. After a file has been
imported it will not be listed if code importation is repeated.

4 After you have completed importation and are satisfied with the results, save the
model.

Limitations and Restrictions
■ No action is taken on empty preserved regions. As a result, constructors,

destructors, and operators that are generated by Rational Rose, which have empty
preserved regions, are be added to the model.

■ Use of the Code Name properties for classes and operations may cause
inconsistent naming in the generated code. The inconsistencies may cause compile
time errors that can be resolved manually.
136 Chapter 6 - Opening and Saving Models

7Use Case Diagrams
Contents

This chapter is organized as follows:

■ Creating a Use Case Diagram on page 137
■ Using the Use Case Diagram Editor on page 138

Creating a Use Case Diagram

You create use case diagrams in the Use Case View of the model browser. A Main use
case diagram is always present in the Use Case view. Use the Main use case diagram
to describe the relationships between the primary actors and use cases in the system.
You can create other use case diagrams, as required.

To edit the Main use case diagram:

1 Double-click the Main diagram in the Use Case View package in the Model View
Tab.

The Use Case diagram editor appears (see Using the Use Case Diagram Editor on
page 138).

2 Place actors and use cases in the diagram by dragging them from the model
browser, or by using the tools in the Use Case Diagram Toolbox.

3 Draw relationships among actors and use cases using the toolbox.

To create a new use case diagram:

1 Right-click on the Use Case View package (or any sub-package) in the model
browser.

2 Select New > Use Case Diagram from the popup menu.

Enter the name of the use case diagram.
137

Using the Use Case Diagram Editor

Use case diagrams present a high-level view of how a system is used as seen from an
outsider’s (or actor’s) perspective. These diagrams depict system behavior (also
known as use cases). A use case diagram may depict all or some of the use cases of a
system.

A use case diagram can contain:

■ actors ("things" outside the system)
■ use cases (system boundaries identifying what the system should do)
■ interactions or relationships between actors and use cases in the system including

associations and generalizations

Use case diagrams can be used during analysis to capture the system requirements
and understand how the system should work.

The use case diagram editor is used to create a diagram showing use cases and the
relationships among use cases, actors and classes. The use case diagram consists of
two parts: the diagram area and the Use Case Diagram Toolbox.

The Title bar shows the full name of the Class diagram.

Figure 23 Use Case Diagram Editor
138 Chapter 7 - Use Case Diagrams

Usage Tips

Typically, you add a set of related use cases and actors to the diagram. Then, draw the
relationships among use cases and actors by selecting one of the relationship tools in
the toolbox, selecting one of the related elements and dragging on to the other related
element.

Although you have the full set of class diagram tools at your disposal in the Class
Diagram Toolbox, there are a limited number of relationships that should be applied
to use cases. Valid relationships between use cases are: includes, extends and
generalizes. However, there are no specific tools for includes and extends
relationships. These should be modeled as unidirectional associations with
stereotypes or stereotyped generalizations (UML 1.1).

Relationships between actors and use cases should be modeled as associations or
directional associations.

Note: When naming actors, be aware that actors are stereotyped classes, and there is
only one name space for all classes in Rational Rose RealTime. For example, if you
name an actor Server, you will not be able to create another class named Server in the
Logical View because there will be a name conflict. We suggest using a naming
convention, such as adding an ending like "_actor" to actor names.

Use Case Diagram Toolbox

The use case diagram toolbox is the same as the Class Diagram Toolbox on page 149.
Using the Use Case Diagram Editor 139

140 Chapter 7 - Use Case Diagrams

8Defining Use Cases and
Actors
Contents

This chapter is organized as follows:

■ Creating a Use Case on page 141
■ Creating an Actor on page 143

Creating a Use Case

To create a new use case:

1 Right-click on the Use Case View in the Model View tab in the browser.

2 Select the New > Use Case menu option.

A new use case is created with a default name of NewUseCase1.

3 Begin typing to change the name.

You can also create new use cases using the Use Case tools for the Use Case diagram.
The use case can then be filled out using the Use Case Specification dialog. To access
the specification dialog, double-click on the use case in the model browser.

Use Case Specification

A Use Case Specification enables you to display and modify the properties and
relationships of a use case in the current model.

To display a Use Case Specification, double-click on any icon representing the use
case or right-click on the use case in the model browser and chose Open Specification
from the model browser.
141

Specification Content

The Use Case Specification contains the following tabs:

■ General Tab
■ Diagram Tab
■ Relations Tab
■ Files Tab

General Tab

In addition to the elements found in standard Specification Dialogs, the General tab
contains:

Name

A use case name is often written as an informal text description of the external actors
and the sequences of events between elements that make up the transaction. Use-case
names often start with a verb. The name can be entered or changed on the
specification or directly on the diagram.

Package

This static field identifies the package to which the components belong.

Stereotype

A stereotype label. A stereotype represents the subclassification of an element. For
example, an actor is a stereotype of a class. Some stereotypes are already predefined,
but you can also define your own.

Rank

The Rank field prioritizes use cases. For example, you can use the rank field to plan
what iteration in the development cycle a use case should be implemented.

Abstract

An abstract notation indicates a use case that exists to capture common functionality
between use cases (uses) and to describe extensions to a use case (extends).

Documentation

Provides a description for this Use Case.
142 Chapter 8 - Defining Use Cases and Actors

Diagram Tab

Diagrams

The Diagrams box lists all the diagrams owned by the use case. The diagram list
consists of two columns. The first (unlabeled) column displays the diagram icon type
for the diagram. The second column displays the diagram name. To insert a new
diagram in the list, right-click and select one of the Insert options from the shortcut
menu that corresponds to the diagram type.

Relations Tab

Relations

The Relations box lists all the relationships associated with the selected use case. The
client and supplier names and type icons display to the right of the relation name.
Double-clicking on any column in a row displays the element's specification.

Files Tab

Contains a list of referenced files. The files list shortcut menu allows you to insert and
delete references to files or URLs.

Note: You can link external files to model elements for documentation purposes.

Creating an Actor

You can create Actors in the Use Case View of the Model View tab in the browser.

To create a new actor:

1 Right-click on the Use Case View package in the Model View Tab.

2 Select the New >Actor menu option.

A new actor is created with a default name of NewClass1.

3 Click on the new actor to change its name.
Creating an Actor 143

Actors can also be created using the actor tool in the Use Case Diagram Editor or
Class Diagram Editor.

Note: An actor is a stereotype of a class. You can define many of the same properties
on an actor as you can on any other class. To add to the actor's definition, double-click
on the actor to open the Actor Specification dialog.

Actor Specification

An Actor Specification looks identical to a Class Specification, except that the
stereotype field is set to actor. However, some of the fields in the class specification are
not applicable to actors and are therefore disabled.
144 Chapter 8 - Defining Use Cases and Actors

9Creating Class Diagrams
Contents

This chapter is organized as follows:

■ Creating a Class Diagram on page 145
■ Creating Relationships on page 153
■ Creating Association Relationships on page 154
■ Creating Aggregation Relationships on page 160
■ Creating an Association Class on page 162
■ Aggregation Specification on page 162
■ Creating Inheritance Relationships on page 162
■ Creating Dependency Relationships on page 167
■ Creating Reflexive Relationships on page 170
■ Changing the Directionality of an Association on page 170
■ Creating Package Relationships on page 170
■ Creating Realize Relationships on page 171
■ Inserting Dependencies, Generalizations, and Realizations on the Relations Tab on

page 172
■ Adding and Hiding Classes, and Filtering Class Relationships on page 178
■ Using State Machine Code Generation for Classes on page 178
■ Generation of Parameterized and Instantiated Classes on page 200

Creating a Class Diagram

Class diagrams are created in the Logical View of the Model browser. A Main class
diagram is always present in the Logical view. The Main class diagram should be used
to describe the relationships between the primary packages and a layered system.
Other class diagrams can be created to communicate key relationships within
portions of the model.
145

To edit the Main class diagram:

1 Double-click on the Main diagram in the Logical View package in the Model View
tab in the browser. The Class Diagram editor appears.

2 Place classes, packages, capsules, and protocols in the diagram by dragging them
from the model browser, or by using the tools in the toolbox.

3 Draw relationships and associations among the classes, packages, capsules, and
protocols using the toolbox.

To create a new class diagram:

1 Right-click on the Logical View package in the Model View tab in the browser.

2 Select New > Class Diagram from the menu.

3 Enter the name of the class diagram.

There are several additional topics on creating relationships between model elements
in the class diagram:

■ Creating Association Relationships
■ Creating Aggregation Relationships
■ Creating Inheritance Relationships
■ Creating Dependency Relationships
■ Creating Reflexive Relationships
■ Creating Package Relationships
■ Defining multiplicity in relationships

Using the Class Diagram Editor

The class diagram editor is used to create a diagram showing classes and associations
among the classes. The class diagram consists of two parts:

■ the diagram area

■ the Class Diagram Toolbox

Elements of the class diagram, such as classes, capsules, use cases and associations,
are added using the toolbox.

The window title bar shows the full name of the class diagram.
146 Chapter 9 - Creating Class Diagrams

Figure 24 Class Diagram Editor

Class diagrams contain icons representing classes, capsules, protocols, packages,
interfaces, and their relationships. You can create one or more class diagrams to depict
the classes at the top level of the current model; such class diagrams are themselves
contained by the top level of the current model. You can also create one or more class
diagrams to depict classes contained by each package in your model; such class
diagrams are themselves contained by the package enclosing the classes they depict,
the icons representing logical packages and classes in class diagrams.

Every class is assigned to a logical package. When you create a class using a creation
tool from the class diagram toolbox, the class is assigned to the logical package
containing the class diagram.

Note: If you select a label, the tether to that label displays for a short time only. To
view the tether for longer periods, press and hold the left mouse button. The tether to
the label will display for as long as you hold the left mouse button. If you start to drag
the label, the tether is replaced with a tether and tracking box.
Creating a Class Diagram 147

Diagram Entities

There are four types of entity that you can place on a class diagram:

■ Classes

■ Capsules

■ Protocols

■ Packages

Relationships

There are four basic kinds of relationship you can create through the class diagram.
Refer to the following topics:

■ Creating Association Relationships on page 154
■ Creating Aggregation Relationships on page 160
■ Creating Dependency Relationships on page 167
■ Creating Inheritance Relationships on page 162

Creating Capsule and Protocol Aggregations on the Class Diagram

There are some things that you can do on both the class diagram and the capsule
structure diagram, including adding capsule ends and ports. Defining aggregation
between a container capsule and a contained capsule results in the creation of a
capsule end inside the container capsule. Defining aggregation between a capsule and
a protocol results in the creation of a port as part of the capsule. Capsule structure
changes made on the class diagram are automatically reflected in the structure editor.
Changes made on the structure editor are only reflected on a class diagram if the
model elements involved are placed on a class diagram.

Using the Class Diagram to Visualize Existing Relationships

You can visualize the existing relationships among these entities. Dragging capsule
and protocol classes from a model browser onto a class diagram causes the tool to
draw any existing relationships between these elements. For example, if a capsule
aggregates another capsule, dragging the two capsule classes on to a class diagram
will draw the relationships bases on the filter options chosen in the Filter
Relationship menu command in the Query menu.
148 Chapter 9 - Creating Class Diagrams

Class Diagram Toolbox

The class diagram toolbox contains the following tools (they are not all displayed by
default):

Figure 25 Class diagram toolbox
Creating a Class Diagram 149

Selector

Use to select objects for moving, resizing, and so forth.

Zoom Tool

Use to zoom in on a portion of the class diagram. Click on the tool and then click on
the part of the diagram you want to zoom in on.

Text Tool

Use to add text to the class diagram.

Note Tool

Use to annotate the diagram with textual notes. This is useful for marking up the
diagram with explanations, review comments, and so forth. You can drag and drop a
diagram or external document from the browser onto a note. Notice that the name of
the diagram or external document is underlined. If you double-click on the note, the
diagram or external document is opened. You can undo and redo this command.

Constraint Tool

Use to add UML constraints to the class. A constraint can be anchored to a view
element by using the anchor tool. Currently, constraints do not have any semantic
meaning to the tool. There are RRTEI APIs to add or remove, and enumerate
constraints in a diagram.

Note Anchor Tool

Use to anchor a note to a particular element on the class diagram. (See Using the Class
Diagram Editor on page 146.)

Class Tool

Use to place a class on the class diagram. (See Using the Class Diagram Editor on
page 146.) Pops up a pick list allowing you to choose from an existing class or create a
new class.

Capsule Tool

Use to place a capsule class on the class diagram. (See Using the Class Diagram Editor
on page 146.) Pops up a pick list allowing you to choose from an existing capsule class
or create a new capsule class.
150 Chapter 9 - Creating Class Diagrams

Protocol Tool

Use to place a protocol class on the class diagram. (See Using the Class Diagram Editor
on page 146.) Pops up a pick list allowing you to choose from an existing protocol
class or create a new protocol class.

Parameterized Class Tool

Use to place a parameterized class on the class diagram. (See Using the Class Diagram
Editor on page 146.) Displays a pick list allowing you to choose from an existing class
or create a new class.

Class Utility Tool

Use to place a utility class on the class diagram. (See Using the Class Diagram Editor on
page 146.) Displays a pick list allowing you to choose from an existing class or create a
new class.

Parameterized Class Utility Tool

Use place a Parameterized class utility on the class diagram. (See Using the Class
Diagram Editor on page 146.) Displays a pick list allowing you to choose from an
existing class or create a new class.

Association Tool

Use to draw an association between two classes on the class diagram. (See Using the
Class Diagram Editor on page 146.) Associations can be created between classes
(including class utility, parameterized class, and so on), between capsule classes, and
from capsule classes to protocol classes.

Aggregation Tool

Use to draw an aggregation between two classes on the class diagram. (See Using the
Class Diagram Editor on page 146.) Associations can be created between classes
(including class utility, parameterized class, and so on), between capsule classes, and
from capsule classes to protocol classes. See Creating Aggregation Relationships on
page 160 for more information.

Unidirectional Association

Use to draw a unidirectional association between two classes on the class diagram. A
unidirectional association is simply an association with navigability limited to one
direction. Associations can be created between classes (including class utility,
parameterized class, and so on), between capsule classes, and from capsule classes to
protocol classes. See Creating Relationships on page 153 for more information.
Creating a Class Diagram 151

Unidirectional Aggregate Association

Use to create an association that is unidirectional in the direction it was drawn, with
an aggregation at the end. Any association between classes can be converted into this
through the specification dialog, as well.

Association Class

Use to link a class with an association between two other classes on a class diagram.
Use the Association Specification (by double-clicking on the association after it has
been drawn) to specify details of the association semantics. Using the link attribute
tool automatically sets the Link Element field on the association to be the class joined
to the association with the link attribute tool.

Generalization

Use to indicate that one element is a generalization of another. This is primarily used
to indicate a superclass/subclass relationship between classes. Draw the relationship
from the specializing element to the generalizing element (that is, from subclass to
superclass). Use the Generalize Specification (by double-clicking on the generalization
after it has been drawn) to specify details of the generalization semantics.

Adding a generalizes relationship between two classes (including capsule and
protocol classes) results in one class being generated as a subclass of the other at code
generation time.

Dependency or Instantiates

Use to indicate that one element is dependent on another. This is primarily used to
indicate a compilation dependency between classes. Draw the relationship from the
dependent element to the dependent-upon element. Use the Dependency
Specification (by double-clicking on the dependency after it has been drawn) to
specify details of the dependency semantics.

Adding a dependency relationship between two classes (including capsule and
protocol classes) results in the dependent class including the .h file of the
dependent-upon class.

Package

Use to add a package to the diagram. The package is given a default name such as
'NewPackage1'.
152 Chapter 9 - Creating Class Diagrams

Actor

Use to place an actor on a diagram. Displays a pick-list allowing you to select from
available classes or create a new class.

Use Case

Use to place a use case on a diagram. This creates a new use case with a default name
such as 'UseCase1'.

Interface

Use to place an interface on a diagram. Displays a pick list allowing you to select a
class or create a new class.

Realize

Use to indicate that a class realizes an interface or a use case. Draw the relationship
from the realizing element to the element being realized.

Instantiated Class

Use to place an Instantiated class on the class diagram. Displays a pick list allowing
you to choose from an existing class or create a new class. There is no code
generation support for instantiated classes.

Instantiated Class Utility

Use to place an Instantiated class utility on the class diagram. Displays a pick list
allowing you to choose from an existing class or create a new class. There is no code
generation support for instantiated class utilities.

Creating Relationships

Relationships among modeling elements take many forms. Most relationships imply
an interaction or a dependency between two model elements. The term 'class' in the
following descriptions includes capsule and protocol classes as well as "data" classes.
Creating Relationships 153

See the following topics for the type of relationship you are interested in creating:

■ An association is a relationship between two classes (including capsule and
protocol classes). An association relationship may have a number of different
implications for the generated code, or it may not result in any generated code at
all, depending on the specific properties defined on the association. See Creating
Association Relationships on page 154.

■ An aggregation is a more specific form of association that indicates that one class is
part of a larger, composite class. That is, one or more instances of one class are
considered to be owned by (and are created and destroyed under the control of) an
aggregate class. See Creating Aggregation Relationships on page 160.

■ A dependency relationship indicates that the implementation of one class or
package depends on the existence of the definition of another class or package (or
some aspect of that class). See Creating Dependency Relationships on page 167.

■ A generalization relationship indicates that one class inherits properties from (is a
subclass of) another class. See Creating Inheritance Relationships on page 162.

■ A reflexive relationship is one in which an instance of a class may also have
associations with other instances of the same class. See Creating Reflexive
Relationships on page 170.

Creating Association Relationships

Association relationships indicate some form of interaction between two classes.
Typically, the association relationship indicates that instances of those classes
communicate with each other at run-time.

To create an association relationship in the class diagram editor:

1 Click on one of the two association icons in the class diagram toolbox: the
bi-directional association or the uni-directional association. (For more on
directionality, see Changing the Directionality of an Association on page 170).

2 Click on one of the two classes involved in the association.

3 Drag the association line on top of other class.

An association line appears between the two classes.
154 Chapter 9 - Creating Class Diagrams

Association Properties

After an association is created between two classes, each of those classes is said to
play an end in the association.

There are several properties surrounding the association, including properties of the
two ends involved in the association. These properties can be edited by
double-clicking on the association to bring up the Association Specification, or by
selecting the association and right-clicking. The right-click menu includes properties
specific to the end closest to where the mouse was clicked.

The class you terminated the association line on is referred to as End A. The class you
clicked on to start drawing the association end is referred to as End B. You can name
these ends explicitly through the Association Specification dialog or the shortcut
menu.

Association Specification

An association represents a semantic relationship between two classes. To display the
association specification, double-click any association in a class diagram.

Specification Content

The Association Specification dialog consists of the following tabs: General Tab,
Detail Tab, End A Detail, End B Detail, End A General, End B General, and
language-specific tabs.

General Tab

Name

A name for the association. The name label appears on the class diagram.

Effect on generated code: None.

Parent

The parent the component belongs to (its package) is displayed in this non-editable
field.
Creating Association Relationships 155

Stereotype

A stereotype represents the subclassification of an element. It represents a class within
the UML metamodel itself (that is, a type of modeling element). Some stereotypes are
already predefined, but you can also define your own to add new kinds of modeling
types.

Effect on generated code: None.

End A / B

Labels the ends with names that denote the purpose or capacity wherein one class
associates with another. This field is the same as the End field on the End A General
and Detail and End B General and Detail tabs. See the End Detail tab for more
information.

Element A/B

Specifies the classes of the two elements that this association associates. This field
cannot be edited.

Note: Click the Element A or Element B hot link to open the Specification dialog for
that object.

Detail Tab

Derived

Indicates whether the association is computed or implemented directly. The element
name for a derived element is adorned by a “/” in front of the name.

Effect on generated code: No code is generated for derived associations.

Association Class

Lists the attributed associations linked to the association. These attributed
associations apply to the association as a whole. It identifies a class representing the
association between the two elements.

Effect on generated code: Each of the end classes has a member generated to point to
or contain an instance of the link class, depending on the settings of the containment
property. The link class has members generated to point to or contain each of the ends
of the association.

Note: If the Association class box contains a class, the corresponding label becomes a
hot link to the Specification dialog for that class.
156 Chapter 9 - Creating Class Diagrams

Name Direction

Defines the direction of an end. There are three options listed in the drop-down menu
associated with the field: <non-directional>, End A and End B.

Effect on generated code: None.

Note: If the Name direction box contains a class, the corresponding label becomes a
hot link to the Specification dialog for that class.

Constraints

The constraint is an expression of some semantic condition that must be preserved
while the system is in a steady state. The constraint on the Detail tab applies to the
association as a whole, while the constraint on the Detail A or Detail B tab applies to a
particular end.

To apply a constraint, click in the Constraint field and enter the text. Constraints are
displayed notationally, surrounded by braces under the end for which it applies.

Effect on generated code: None.

End A and B General Tabs

End A / B

Labels the end with a name that denotes the purpose or capacity wherein one class
associates with another. This field is the same as the End A and End B fields on the
General tab.

Effect on generated code: The end name is generated as a member of the class at the
other end of the association. That is, if the class at End A is class A and the class at End
B is class B, and the name of End A is foo, then class B will have a member named foo
of type Class A.

Element

Describes the two elements that this association associates. This field cannot be edited.

Note: Click the Element hot link to open the Specification dialog for that element.
Creating Association Relationships 157

Visibility

Specifies the visibility of the data member representing this end in the other class.
Visibility options are

■ Public - Visible to any class.

■ Protected - Visible to this class, any subclasses of this class, and any designated
friend classes.

■ Private - Visible only to this class and any designated friend classes.

■ Implementation - Not visible to any other classes.

Effect on code generation: If a data member is generated for this end in the other class,
the member will have the visibility specified here. The member is only generated if
the other field settings in the End A/B Detail tab are set appropriately.

End A and B Detail Tabs

End

A label for the end. This label appears beside the end on the association in the
diagram. This field is the same as the End field on the General and End A and End B
General tabs. See the field description on the End A/B General tab for more
information.

Element

A non-editable field that specifies the classifier for this end.

Note: Click the Element hot link to open the Specification dialog for that element.

Constraints

The constraint is an expression of some semantic condition that must be preserved
while the system is in a steady state. The constraint on the Detail tab applies to the
association as a whole, while the constraint on the Detail A or Detail B tab applies to a
particular end.

Effect on generated code: None.

Multiplicity

The multiplicity field defines the maximum number of instances that can exist in this
end of the association at any given time. See Multiplicity options for more
information.
158 Chapter 9 - Creating Class Diagrams

Effect on code generation: The data member for this end is declared as an array with
its size being the largest possible value declared in the multiplicity. If the range is
unspecified (for example, 1..*), the containment value is forced to 'By reference' and a
warning is issued if the containment value was originally set to 'By value'.

Aggregation

The Aggregation field has three checkboxes: None, Aggregate, and Composite.

■ None - The end is not an aggregate.

■ Aggregate - The end is an aggregate; therefore, the other end is a part and must
have the aggregation value of none. The part may be contained in other
aggregates.

■ Composite - The end is a composite; therefore, the other end is a part and must
have an aggregation value on none. The part is strongly owned by the composite
and cannot be part of any other composite.

Use the Aggregation field to set a direction to either all or part of the relationship
among instances of these classes. Only one end of the relationship can be aggregate or
composite.

To set the aggregate adornment, click on the Aggregate box in the Association
Specification or click Aggregate through the shortcut menu. The adornment is a
diamond on the relationship.

Effect on code generation: This affects how the other end is stored as a member of this
class. Checking the aggregate box allows you to select a containment setting to control
how the aggregation will actually be generated in code.

Target Scope

The Target Scope field has two checkboxes: Instance and Classifier.

■ Instance - Specifies that instances of the client own the supplier class.

■ Classifier - Specifies that the client class - not the client’s instances - owns the
supplier class.

You can set this field in the specification or through the shortcut menu.

Effect on code generation: The data member is scoped to the classifier in the other end
class.
Creating Association Relationships 159

Friend

The friend field designates that the supplier class has granted rights to a client class to
access its non-public parts.

Effect on code generation: This field currently has no effect on code generation. See
Designating friend classes for information on how to specify friends.

Navigable

The Navigable field indicates in which direction the association is traversed. By
default, ends are bidirectional and no navigation notation is provided.

To set an end's navigation, click on the Navigable box in the Association Specification
or click Navigable through the shortcut menu. The navigable arrowhead points in the
direction of the end, unless a containment adornment is displayed. Containment
adornments override navigable adornments.

Effect on code generation: If the navigation check box is not checked, it signifies
that the class at the other has no visibility of the class at this end of the association;
therefore, no member will be generated in the other end class.

Keys/Qualifiers

A key or qualifier is an attribute that uniquely identifies a single target object. The
attributes allow 1..n or n..n associations, and reduce the number of instances. The list
box displays all keys or qualifiers currently defined.

To enter a key or qualifier, click Insert from the popup menu or press the insert key.
An untitled entry is placed in the name and type field. To change the entry, select to
highlight and type in a new name.

Effect on generated code: The Keys/Qualifiers entries currently have no effect on
generated code.

for sending/receiving data.

Creating Aggregation Relationships

Aggregation relationships are a form of association relationship that indicate a class
(the contained class) is a part-of another class (the container, or aggregate class).

Note: You can click Tools > Aggregation Tool to quickly and easily create aggregation
relationships.
160 Chapter 9 - Creating Class Diagrams

To create an aggregation relationship in the class diagram editor:

1 Click on the aggregation icon in the class diagram toolbox.

2 Click on the container class that will contain the class in the diagram.

3 Drag the association line on top of the contained class.

An association line appears between the two classes, and a diamond (aggregate)
symbol appears beside the contained class.

Typically, aggregation indicates specific run-time constraints that exist on the
relationship.

Considerations

■ An instance of the contained class cannot exist outside of an instance of the
aggregate class.

■ The creation of an instance of the aggregate class usually results in the automatic
creation of an instance of the contained class.

■ The destruction of an aggregate instance results in the automatic destruction of
any contained instances.

Implementation details of the aggregation, such as whether the contained object is
referenced by a pointer or embedded, can be specified through the End A and B
General Tabs and End A and B Detail Tabs.

Figure 26 shows the aggregation representation in the aggregation compartment on
the class diagram.

Figure 26 Class Diagram with Aggregation

This compartment only exists for classes and capsules. An aggregation displays in the
aggregation compartment only if the aggregation causes the generation of a member
variable for the class. This means that if the appropriate end is navigable, the
aggregation appears in the compartments for that class or capsule.
Creating Aggregation Relationships 161

Creating an Association Class

A relationship in itself may have state and identity distinct from the instances
involved in the relationship. In order to implement a relationship, it may be necessary
to define a class representing the relationship.

To create an association class:

1 In the class diagram editor, click on the class icon in the class diagram toolbox.

2 Click on the diagram to place a new class.

3 Enter the name of the class.

4 Click on the link attribute icon in the class diagram toolbox.

5 Click on the association class and drag the link attribute line to the association it
modifies.

Aggregation Specification

An aggregation represents a special bidirectional semantic relationship between two
classes, wherein one or more instances of one class are contained within an instance of
the aggregating class.

The aggregation specification dialog is the same as the Association Specification with
the End A aggregate check-box turned on.

Creating Inheritance Relationships

To define an inheritance relationship:

1 Open the class diagram where you want the inheritance relationship to appear.

2 Click on the Generalization icon in the class diagram toolbox.

3 Click on the intended subclass.

4 Drag the generalization line over the intended relationship.
162 Chapter 9 - Creating Class Diagrams

Creating an Inheritance Tree

To add other subclasses to the inheritance relationship to create an inheritance
tree:

1 Using the generalization tool, drag a generalization line from each intended
subclass to the inheritance triangle by the intended superclass.

Two separate inheritance relationships can be merged into a tree by moving one
inheritance triangle symbol on top of another.

Exclusions

When you create a new generalization between capsules or protocols, the Inheritance
Rearrangement dialog may appear prompting you to exclude new superclass
properties. This allows the subclass to not inherit certain properties (state machine,
capsule structure and protocol signals) defined in the superclass. This is helpful, for
example, if your subclass has a state machine and you want to intelligently merge the
state machines rather than just blindly inherit the superclass state machine. You can
initially exclude the superclass elements, and then gradually re-inherit them as you
edit your state machine.

If you select Copy or Cut from the Edit menu, a dialog appears warning you that
items whose parents are not being cut or copied will not get pasted. You have the
option of checking the box, do not warn anymore this session.

See Inheritance for more information.

Generalize Specification

A generalize relationship between classes shows that one class shares the structure or
behavior defined in one or more other classes.

The Generalize Specification consists of the following tabs: General and Files.
Creating Inheritance Relationships 163

General Tab

Name

A name for the relationship.

Owner

A non-editable field indicating the name of the subclass.

Note: Click the Owner hot link to open the Specification dialog for that element.

Stereotype

Specify a stereotype to apply to the relationship.

Visibility

Specifies the visibility of the generalization. Visibility options are

■ Public - Visible to any class.

■ Protected - Visible to this class, any subclasses of this class, and any designated
friend classes.

■ Private - Visible only to this class and any designated friend classes.

■ Implementation - not visible to any other classes.

Friendship Required

Specifies that the supplier class has granted rights to the client class to access its
non-public members. In the case of a generalization, the subclass is granted friend
access right to superclass members.

Effect on code generation: This field currently has no effect on code generation.

Virtual Inheritance

Specifies that only one copy of the base class will be inherited by descendants of the
subclasses.

Inheritance in Rational Rose RealTime

You can define generalization relationships between classes (including capsule and
protocol classes) in Rational Rose RealTime. When a generalization relationship is
defined, the specializing class inherits the properties including all attributes,
operations, state machine, signals, etc.) of the generalizing class.
164 Chapter 9 - Creating Class Diagrams

For capsule and data classes, all public and protected operations are inherited, as well
as all public and protected attributes.

For capsule classes, the structure elements (the ports and capsule roles) are also
inherited by the specializing class.

For protocol classes, the signals are inherited as well as the state machine, if defined.

Promoting and Demoting Elements

Capsule structure elements (ports, capsule roles and bindings), capsule and protocol
state machine elements, and protocol signals can all be promoted and demoted in the
class hierarchy.

For example, you can select a port from a capsule and demote it, such that it is
removed from the generalizing capsule class' structure and moved into each of its
subclasses. The port is no longer inherited, it becomes part of the subclass' structure
and is removed from the superclass.

As another example of promoting/demoting, you can select a state in a capsule
subclass and 'promote it' such that the state is moved into the superclass state
machine, and is inherited by all the capsule's subclasses.

To promote an element from a subclass to its immediate superclass, right-click on the
element in the browser and then click Promote to Superclass or Demote to Subclass
from the shortcut menu.

Potential Conflicts Caused by Promote/Demote

A promote or demote operation may fail if there is a name conflict in the subclass or
superclass. For example, if you try to promote a state named Ready from a capsule
subclass into its superclass, you will get an error if any other subclass of the superclass
also has a state named Ready.

Excluding Elements

In addition to promoting and demoting, you can also exclude certain inherited
elements (the same set that can be promoted/demoted) from a capsule subclass or
protocol subclass.

An excluded element is removed from the subclass diagram or properties. Note that
for structure elements (ports and capsule roles), the excluded element will still be
inherited in the code of the subclass, since these elements are generated as members of
the superclass and automatically inherited by the subclass. This means, you should
not reuse the name of any excluded element or you may cause a name conflict at
compile-time.
Creating Inheritance Relationships 165

Reinheriting Excluded Elements

To exclude an inherited element, right-click on the element in the diagram or
properties editor and click Remove/Exclude. If this menu entry is not available, the
element cannot be excluded. You can reinherit an excluded element by right-clicking
on it and selecting Inherit. In protocol classes, click the Show Excluded check box on
the Signals tab to see excluded signals. In a Structure Editor or State Editor right-click
on the diagram and select Filter > Excluded (turn off the Exclusions filter) to see any
excluded elements.

Rearranging Inheritance Hierarchies

If you choose to make an generalization relationship between two capsules or
between two protocols, you will be prompted with a dialog allowing you to exclude
the properties of the new superclass. See Creating Inheritance Relationships on page 162
for more information.

If you break a generalization relationship between capsule or protocol classes, you
will be presented with a dialog option to Absorb all current superclass properties.
This allows you to essentially copy the elements that the subclass had previously
inherited from the superclass directly into the subclass definition and then break the
inheritance relationship between the two classes.

Inheritance Tab in Browser

Dragging and dropping items within Inheritance View tab results in inheritance
rearrangements. Dragging an item - that does not inherit - on top of another item
results in a generalization relationship between those two items.

Dragging and item that has a "specialize" relationship results in a rearrangement of
that relationship. If the item being dragged supports multiple inheritance, the
relationship to rearrange is determined by the position of the dragged item in the
inheritance tree.

Note: There is no establishing of inheritance relationships between packages. If an
item having a "specialize" relationship is dropped in a package, that "specialize"
relationship will be deleted. For classes, user confirmation is required for deletion. For
capsules and protocols, a standard inheritance dialog displays to allow you to cancel
deletion.
166 Chapter 9 - Creating Class Diagrams

The Inheritance tab supports some location rearrangements. For example, a capsule
dropped on a package results in the capsule being moved in to that package, provided
that the capsule does not participate in any "specialize" relationships. If it does, this
type of relationship is deleted and the capsule is not moved in to the package.

Note: Use caution when generalizations exist on more than one diagram. If a
generalization has changed its parent, and both the child and the new parent are
present on more that one Class diagram, only one diagram will show new
generalization. On the other diagrams, you must use Query > Filter Relationships
and click OK to force these diagrams to show the updated relationship.

Creating Dependency Relationships

A dependency relationship is a vague form of relationship between two classes that
simply indicates that something in one class depends on the definition of something
in the other class.

To create a dependency relationship:

1 Click the dependency tool.

2 Click on the intended dependent class.

3 Drag and drop on to the class that is being depended upon.

Draw a dependency relationship between two classes, or between a class and an
interface, to show that the client class depends on the supplier class/interface to
provide certain services, such as:

■ The client class accesses a value (constant or variable) defined in the supplier
class/interface.

■ Operations of the client class invoke operations of the supplier class/interface.

■ Operations of the client class have signatures whose return class or arguments are
instances of the supplier class/interface.
Creating Dependency Relationships 167

Graphical Notation

A dependency relationship is a dotted line with an arrowhead at one end:

The arrowhead points to the supplier class. In this example, class A is dependent on
class B.

Naming

Use the relationship name to identify the type or purpose of the relationship.

Valid Applications

You can draw a dependency relationship between logical packages.

Add Class Dependencies Wizard

A wizard is supplied to automate the creation of dependencies between a large
number of classes (for example, after loading a Rose or ObjecTime Developer model).

See Add Class Dependencies.

Dependency Specification

The dependency relationship indicates that the client class depends on the supplier
class to provide certain services. One class may use another class in a variety of ways.
Typically, a dependency relationship indicates that the operations of the client access
members (operations or attributes) of the supplier. Dependencies can also be drawn
between packages.

You can change properties or relationships by modifying the icon on the diagram or
by editing the specification.

You can also view the specification by double-clicking on the name of the dependency
relationship in the Relations tab of the Class Specification.

The associated diagrams or specification are automatically updated.

The Dependency Specification contains the following tabs: General, Files.
168 Chapter 9 - Creating Class Diagrams

General Tab

Name

A name for the dependency relationship.

Class

A non-editable field listing the client class.

Note: Click the Class hot link to open the Specification dialog for that element.

Stereotype

Specifies a stereotype to attach to the dependency.

Friendship Required

A check box indicating whether the client class should be generated as a friend of the
supplier to provide access to non-public members on the supplier.

Effect on code generation: This field currently has no effect on code generation.

Export Control

Specifies the visibility of the dependency. Visibility options are

■ Public - Visible to any class.

■ Protected - Visible to this class, any subclasses of this class, and any designated friend
classes.

■ Private - Visible only to this class and any designated friend classes.

■ Implementation - Not visible to any other classes.

Effect on code generation: None.

Multiplicity from

Describe the multiplicity of the client side of the relationship.

Effect on code generation: None.

Multiplicity to

Describe the multiplicity of the supplier side of the relationship.

Effect on code generation: None.
Creating Dependency Relationships 169

Creating Reflexive Relationships

An object may sometimes need to communicate with other objects of the same class.
In the class diagram, this appears as a class having a relationship with itself. This is
called a reflexive relationship.

To create a reflexive relationship in the class diagram editor:

1 Click on the association icon in the class diagram toolbox.

2 Click on the class with the intended reflexive relationship.

3 Drag the association line outside of the class border and then back over the class.

An association line appears drawn from the class back onto itself.

Changing the Directionality of an Association

There are two forms of association that can be created: bi-directional and
uni-directional. Bi-directional associations are highly unusual in practice in the
development of applications, as a bi-directional association suggests that
communication can be initiated in either direction. Most associations between classes
in an application are fundamentally uni-directional; that is, an instance of one class
always initiates communication to one or more instances of the other class.

To change the directionality of an association after it has been created:

1 Open the association specification dialog by double-clicking on the association in
the diagram.

2 Select the Navigable check box on the End A General or End B General tab to
change the directionality.

Creating Package Relationships

Relationships can be defined between packages. A relationship between two packages
indicates that one package is dependent on another. A dependency between packages
exists when one or more classes in one package initiates communication with a class
or classes in another package. The first package is dependent on the second package.
170 Chapter 9 - Creating Class Diagrams

To create a dependency relationship between two packages in the class
diagram editor:

1 Click on the dependency icon in the class diagram toolbox.

2 Click on the package that will be the dependent package in the diagram.

3 Drag the dependency line on top of the package being depended on.

A dependency association appears between the two packages, with an arrowhead
pointing from the dependent package to the package it depends upon.

Creating Realize Relationships

A realize relationship between classes and interfaces and between components and
interfaces shows that the class realizes the operations offered by the interface.

Naming

Use the relationship name to identify the type or purpose of the relationship.

Valid Applications

You can draw a realize relationship between a ClassInterface and a Component
Interface. The relationship between a component and an interface can not be drawn
explicitly. It is created when an interface is assigned to a component through the
browser or a specification editor.

Realize Relationship Specification

General Tab

Name

A name for the Realize relationship.

Documentation

Use to describe the Realize relationship.
Creating Realize Relationships 171

Inserting Dependencies, Generalizations, and Realizations on
the Relations Tab

In the Relations tab for capsule, class, protocol, and actor, you can now use the
Context menu to insert relationships. For capsules (Class Diagram - Capsule
Specification dialog box), you can insert dependencies and generalizations. For
classes and protocols (Class Diagram - Class Specification dialog box), you can insert
dependencies, generalizations, and realizations. For actors (Use Case Diagram - Class
Specification dialog box), you can insert dependencies, generalizations, and
realizations.

Note: Inserting any relation in the Relations tab on the Class Specification dialog box
for a class does not update the Class diagram. Inserting any relation in the Relations
tab on the Class Specification dialog box for an actor does not update the Use Case
diagram.

Inserting Dependencies

A dependency relationship specifies that a change in the specification of one element
may affect another element that uses it, but not necessarily the reverse. A dependency
relationship models dependencies that have not been implicitly captured by the other
types of relationships in your model.

From the Context menu in the Relations tab, you can insert dependencies for the
following:

■ Capsule
■ Class
■ Protocol
■ Actor

To insert a dependency:

1 In the Relations tab for a Class, Capsule, or Protocol Specification dialog box,
right-click and select Insert Dependency.

2 Double-click to select an item from the drop-down list.

3 Click OK.

In the Relations tab, all dependency relationships begin with depends on.

Inserting Generalizations

Generalizations are significant in that they affect from which object we inherit (such
as, attributes and operations). From the Context menu In the Relations tab, you can
insert generalizations for the following:

■ Capsule
■ Class
■ Protocol
■ Actor
Inserting Dependencies, Generalizations, and Realizations on the Relations Tab 173

You can change the inheritance from the Class Specification dialog box, or change the
End Class for the generalization. This includes not only inheritance changes made in
the relation page, but also changes made elsewhere in the model (such as, on
diagrams and in the Inheritance tab in the browser). For additional information on
changing the end class, see Changing the End Class on page 176.

Capsules are not allowed multiple inheritance. This means that the Insert
Generalization option is only enabled for capsules if there is no existing
generalization.

Protocols are not allowed multiple inheritance. This means that the Insert
Generalization option is only enabled for protocols if there is no existing
generalization.

In the Relations tab, the name of a generalization relationship begins with Specialize.

In the Relations tab, all generalization relationships begin with Specialize.

To insert a generalization:

1 In the Relations tab for a Class, Capsule, or Protocol Specification dialog box,
right-click and select Insert Generalization.

2 Double-click to select an item from the drop-down list.

Note: To exit from this pop-up without making a selection, click ESC.
174 Chapter 9 - Creating Class Diagrams

If you create a new dependency for a capsule, class, or protocol, the Inheritance
Rearrangement dialog box may appear after you specify the name of the new
object.

3 Select Absorb all current superclass properties if you want the subclass to inherit
all existing properties of its superclass. Select Exclude new superclass properties
if you do not want the subclass to inherit certain properties (such as state machine,
capsule structure, and protocol signals) defined in the superclass. This is useful for
those situations when your subclass has a state machine and you want to merge
the state machines rather than blindly inheriting the superclass state machine. You
can initially exclude the superclass elements, and then gradually re-inherit them as
you edit your state machine.

Note: To exit from this pop-up without making a selection, click ESC.

Inserting Realizations

A realization relationship is a form of generalization in which only behavior is
inherited. From the Context menu in the Relations tab, you can insert realizations for
the following:

■ Class
■ Protocol
■ Actor

In the Relations tab, the name of a realization relationship begins with Realize.
Inserting Dependencies, Generalizations, and Realizations on the Relations Tab 175

To insert a realization:

1 In the Relations tab for a Class or Protocol Specification dialog box, right-click
and select Insert Realization.

2 Double-click to select an item from the drop-down list.

Note: To exit from this pop-up without making a selection, click ESC.

In the Relations tab, all realization relationships begin with Realize.

Changing the End Class

In the Relations tab on the Class Specification dialog box, you can change the End
Class of the relation.

You can only modify the End Class for those relations in the Relations tab where the
class name that appears in the Class column is the owner class for the relation. For
example, the name that appears in the Class column (NewClass1) must be the same
as the name that appears in the title for the dialog box (Class Specification for
NewClass1).

You can change the End Class to any class-type object including: classes, capsules,
protocols, class utilities, and actors.
176 Chapter 9 - Creating Class Diagrams

To change the End Class:

1 From the Capsule, Class, or Protocol Specification dialog box, single-click to
select an item in the End Class column and wait a short time.

Note: The size of the drop-down list is the width of the End Class column. If you
cannot see the full name of the items in the list, widen the End Class column in the
dialog box.

When modifying the End Class, the pop-up list contains only those objects of the
same type as the selected object:

❑ in a Class Specification dialog box for a class, the list only contains classes

❑ in a Class Specification dialog box for an actor, the list only contains actors

❑ in a Capsule Specification dialog box, the list contains capsules

❑ in a Protocol Specification dialog box, the list contains protocols

2 Select an item from the list.

Note: The diagram will be updated only if the relation already existed in the diagram.
Inserting Dependencies, Generalizations, and Realizations on the Relations Tab 177

Adding and Hiding Classes, and Filtering Class Relationships

The commands on the Query Menu provide powerful facilities for controlling which
model elements are represented by icons in the current diagram.

The options are as follows

■ Add Classes - Adds classes to the diagram by name.

■ Expand Selected Classes - Adds classes to the diagram based on their
relationships to selected classes.

■ Hide Selected Classes - Removes selected classes from the diagram and optionally
removes their clients or suppliers from the diagram.

■ Filter Relationships - Controls which kinds of relationships appear in the current
diagram.

Using State Machine Code Generation for Classes

State machine code generation on data classes allows you to take advantage of state
machine code generation without using the RTS or capsules. You can model a state
machine on a class to generate state machine functions and state variables. You can
add the generated code into the source files or directly into the model as operations
and attributes. If you modify the state machine, you can regenerate the state logic
without losing detailed code annotations, such as transitions, entry and exit actions,
and guards.

State machine code is entirely contained in the class and does not depend on external
classes or the runtime system(s). From an external perspective, classes with state
machines on them are no different than classes with operations. They support all of
the runtime semantics of classes in a capsule-based model, and if configured as
non-RTS classes or placed in a non-RTS component, they become usable in any C or
C++ application.

Configuring a Simple Model

To understand the associated benefits of using state machine code generation for
classes, we will look at a simple "Hello World" model. For simplicity, Figure 27 shows
a Class diagram that has both C and C++ content. Figure 28 shows the Model View
tab in the browser for the Hello World model.
178 Chapter 9 - Creating Class Diagrams

Figure 27 Class Diagram for the Hello World Example Model (C and C++)

Figure 28 Model View Tab for the Hello World Model

There are two components in the Component View: one for C and one for C++. Each
produces an executable that yields the same output when run.
Using State Machine Code Generation for Classes 179

When using state machine code generation for classes, the Hello World model is
different from other models in the following areas:

■ Generating Component Libraries for Classes without RTS Dependencies on page 180
■ Configuring the trigger Stereotype for an Operation on page 183
■ Generating State Machine Code on page 185
■ Support for Code Sync on page 187
■ Using Constructors on page 195
■ Using Return, Break, and Continue Statements on page 198
■ Specifying History on page 199
■ No Refinement on page 200

Generating Component Libraries for Classes without RTS Dependencies

The Hello World model contains classes in the Logical View (C and C++) and maps
them to Component libraries. For illustrative purposes, we will use the cpp
component as shown in Figure 29.

Figure 29 Model View Tab - C++ Hello World Component

Figure 30 shows the Component Specification dialog box for the C++ component.
The Environment box indicates that this component does not use the C++ and code
generator.
180 Chapter 9 - Creating Class Diagrams

Figure 30 Component Specification for C++ Dialog Box

The Type box indicates that a library will be built. The Hello World model has no
Capsules or Protocols in the Component library and the generated library will contain
no dependencies on the runtime system. This is beneficial because:

■ it can be used by non-Rational Rose RealTime applications

■ it is usable within Rational Rose RealTime applications with some limitations, as if
you link with external code.

Figure 31 shows the Operations tab for the CppMain class in the Hello World model.
For execution of the application to begin, code must be provided to call:

int main (int argc, const char * const * argv)

or

int main ()
Using State Machine Code Generation for Classes 181

Figure 31 CPPMain Class Specification Dialog Box

Note: In C++, a class can have nested classes with state machines, and in turn, they
may also have state machines.

Creating State Machine Trigger Operations

The event editor for triggers on transitions in class state machines now contains a
drop-down list.

Figure 32 Event Drop-Down List

The drop-down list displays all available operations that are stereotyped <<trigger>>
for the selected class. The item << Create a new trigger >> will create a new operation
with a stereotype of trigger.

If there is only one operation stereotyped as trigger and no other operation has the
same name, the operation appears in the Model View tab without a signature (see
NewOperation3 in Figure 33).
182 Chapter 9 - Creating Class Diagrams

If there is more than one operation stereotyped as trigger with the same name, those
operations appear in the Model View tab with signatures (see NewOperation1 in
Figure 33).

If there is more than one operation with the same name, but only one of the operations
is a stereotyped as trigger, the trigger operation appears in the Model View tab
without a signature (see NewOperation2 in Figure 33)

Figure 33 Trigger Operations in the Model View Tab in the Browser

Note: You cannot create events that do not have names. You can specify a name from
the drop-down list or you can type another name. However, code generation will fail
if the name does not match the name of a trigger stereotyped operation.

Configuring the trigger Stereotype for an Operation

Figure 34 shows the Class Specification dialog box for CppHello that contains an
operation called E1 whose Stereotype is set to trigger. This means that the E1
operation for this class can trigger an event to occur. Figure 35 shows the State
Machine diagram for the CppHello Class.

Note: Triggers only return void.
Using State Machine Code Generation for Classes 183

Figure 34 Class Specification Dialog Box for the CppHello Class

In the Hello World model, the State Machine diagram for the CppHello (C++) and
CHello (C) classes are identical (see Figure 35).

Figure 35 State Machine for the CppHello Class
184 Chapter 9 - Creating Class Diagrams

The composite state S1 exists in the Top state of this state diagram. The Initial
Transition from the initial state is called T0. There is an external self transition on the
state S1 that is triggered by the event E1. The action of this transition is called T1. The
state S1 has an entry action called N1 and an exit action called X1 (see Figure 34).

If you do not specify a trigger for an event on a state, if the event occurs, the default
behavior is to do nothing.

Triggers

A trigger is a stereotyped operation used to trigger a transition in a class state
machine. Triggers must have the following properties:

■ be public
■ have a stereotype of <<trigger>>
■ return void
■ have no arguments
■ have no detail code (code generation ignores arguments and detail code for a

trigger operation on a data class)

As a result of the properties of a trigger, there is no concept of rtdata/RTDATA in the
triggered transition. Also, there is no target observability for data class state digrams
(for example, no passive class state monitors). Data class state machines are designed
to work in a noRTS target environment and do not depend on the toolset or
TargetRTS, which precludes the ability to do target observability.

Some functions can be executed in multiple triggers; the code is copied to multiple
trigger functions. If there is a lot of code in a transition, and you want to copy this
code, create an operation and then call this operation in the transition.

In C, you can have implementation visibility so that you can build a class where the
implementation is separate from the state machine.

Generating State Machine Code

You can generate state machine code to help debug your model, and to modify code
outside the Rational Rose RealTime toolset. Generating state machine code updates
the header (.h declaration files) and source code files with the latest code based on the
information in your model.

To re-capture changes into the model, Code Sync must be enabled, and the changes
must be made to designated Code Sync areas. For information on Code Sync for state
machine code generation for classes, see Support for Code Sync on page 187.
Using State Machine Code Generation for Classes 185

To generate State Machine code, ensure that you select the GenerateStateMachine
option on the C or C++ tab on the Class Specification dialog box (see Note in Step 4).
When selected, you can review the code generated from the state machines in your
model.

To specify state machine code generation in your model:

1 From the Class diagram, select a class.

2 Right-click and select Open Specification.

3 Click the language tab for your model: C or C++.

Note: When the label for a field is bold, this means that the field is overridden.

4 In the Item properties box, click GenerateStateMachine.

Note: By default, if you create a new model in Rational Rose RealTime 2002.05.21,
the GenerateStateMachine option in the Item properties box is automatically
selected and it appears at the top of the C and C++ tabs (see Figure 36) on the Class
Specification dialog box. If you open a model created in an earlier version of
Rational Rose RealTime, the GenerateStateMachine option in the Item properties
box is not selected.
186 Chapter 9 - Creating Class Diagrams

Figure 36 Class Specification - C++ Tab

Support for Code Sync

The purpose of Code Sync is to provide a facility to capture user modifications to
generated code back into the model. This allows you to externally modify and debug
the generated code outside of the toolset.

Modifying generated code helps to reduce the debug cycle on some Real Time
Operating Systems (RTOS's), and allows you to make changes using a third-party
Integrated Development Environment (IDE) or text editor. Using Code Sync, changes
to the generated code can be reconciled and re-integrated back into the master copy of
the model source files.
Using State Machine Code Generation for Classes 187

If you model classes and develop code in C or C++ without using capsules or the
TargetRTS, you can perform debugging using traditional source debuggers. You will
want to correct coding errors in the generated code during the debug cycle. Later, you
can Code Sync these changes back into the model.

To generate the correct Makefile pattern for Code Sync, Code Sync must be enabled
before the code is initially generated from the toolset.

By default, Code Sync is enabled on new components; however, you can disable Code
Sync, if desired.

To disable/enable Code Sync:

Note: For additional information on using the Hello World models (C++, C, and Java),
see Using the Startup Frameworks on page 31.

1 In the Hello World model, open the Component Specification dialog box for the
cpp component.

2 Click the C++ Generation tab.
188 Chapter 9 - Creating Class Diagrams

3 Select CodeSyncEnabled.

Note: Components that are dependent on a component with Code Sync enabled
do not necessarily need to have Code Sync enabled. To propagate the changes into
the model, you must invoke Code Sync, and then determine the changes that you
want to accept.

To start Code Sync:

1 From the Model View tab in the browser, select the cpp component from the
Component View.

2 Right-click and select Code Sync. Alternatively, if the component is currently set
as the active component, click Build > Code Sync.

For additional information on using Code Sync, see Code Sync in the Rational Rose
RealTime online Help.

Considerations

When using Code Sync, consider the following:

■ Code Sync cannot be used to create, delete, or rename model elements, or to
otherwise make structural changes to the model. You must make these kinds of
modifications using the Rational Rose RealTime toolset.

■ If you modify any generated code externally (that is, outside of the Rational Rose
RealTime toolset), do not use the toolset to run the externally built executable until
all Code Sync changes have been reconciled.

■ If you modify the generated code manually, Clearmake cannot provide complete
traceability back to model files, and it cannot provide wink-in. This means that
generated code that has been manually modified is no longer considered a derived
object, but rather a view-private file.
Using State Machine Code Generation for Classes 189

■ Code Sync only recognizes code delimited by the Code Sync identification tags.
You should only modify code that is delimited by the Code Sync identification
tags.

❑ Designated areas for Code Sync are identified in the generated C++ code with
the following tags:

// {{{USR capsuleClass 'NewCapsule1' tool 'OT::Cpp' property 'HeaderPreface'
<insert or modify code here>
// }}}USR capsuleClass 'NewCapsule1' tool 'OT::Cpp' property 'HeaderPreface'

❑ Designated areas for Code Sync are identified in the generated C code with the
following tags:

/* {{{USR capsuleClass 'NewCapsule1' tool 'OT::C' property 'HeaderPreface' */
<insert or modify code here>
/* }}}USR capsuleClass 'NewCapsule1' tool 'OT::C' property 'HeaderPreface' */

Hello World Implementation and Header Files

After compilation of the Hello World model, the src directory contains the source files
for the model. You can modify the generated code in the source files from outside the
toolset within an IDE or text editor of your choice, and update your model with your
changes (see Support for Code Sync on page 187 and Considerations on page 189).

The following files show some of the generated code for the C++ implementation of
the Hello World model:

■ CPPHello Class Header File (C++ with Code Sync Disabled) on page 190
■ CPPHello.cpp (C++) on page 192

CPPHello Class Header File (C++ with Code Sync Disabled)

// {{{RME classifier 'Logical View::CppHello'

#ifndef CppHello_H
#define CppHello_H

#ifdef PRAGMA

#pragma interface "CppHello.h"
#endif

#include <RTSystem/cpp.h>

class CppHello
{

190 Chapter 9 - Creating Class Diagrams

public:
// {{{RME tool 'OT::Cpp' property 'PublicDeclarations'
// }}}RME

protected:

// {{{RME tool 'OT::Cpp' property 'ProtectedDeclarations'

// }}}RME

private:

// {{{RME tool 'OT::Cpp' property 'PrivateDeclarations'

// }}}RME

struct RTState_CppHello

{

inline RTState_CppHello(void);

inline ~RTState_CppHello(void);

unsigned char state;

};

RTState_CppHello rtg_state_CppHello;

public:

// {{{RME classAttribute 'count'

int count;

// }}}RME

// {{{RME tool 'OT::Cpp' property 'GenerateDefaultConstructor'

CppHello(void);

// }}}RME

private:

// {{{RME operation 'T0()'

void T0(void);

// }}}RME

// {{{RME operation 'T1()'

void T1(void);

// }}}RME

// {{{RME operation 'N1()'

void N1(void);

// }}}RME
Using State Machine Code Generation for Classes 191

// {{{RME operation 'X1()'

void X1(void);

// }}}RME

// {{{RME enter ':TOP:S1'

void rtg_enter2(void);

// }}}RME

// {{{RME exit ':TOP:S1'

void rtg_exit2(void);

// }}}RME

void rtg_init1(void);

public:

void E1(void);

};

inline CppHello::RTState_CppHello::RTState_CppHello(void)

: state(1U)

{

}

inline CppHello::RTState_CppHello::~RTState_CppHello(void)

{

}

#endif /* CppHello_H */

// }}}RME

CPPHello.cpp (C++)

#if defined(PRAGMA) && ! defined(PRAGMA_IMPLEMENTED)

#pragma implementation "CppHello.h"

#endif

#include <RTSystem/cpp.h>

#include <CppHello.h>
192 Chapter 9 - Creating Class Diagrams

// {{{RME tool 'OT::Cpp' property 'ImplementationPreface'

#include <iostream>

// }}}RME

// {{{RME tool 'OT::Cpp' property 'GenerateDefaultConstructor'

CppHello::CppHello(void)

: count(0)

{

rtg_init1();

}

// }}}RME

// {{{RME operation 'T0()'

void CppHello::T0(void)

{

std::cout << "T0: Hello, world!\n";

}

// }}}RME

// {{{RME operation 'T1()'

void CppHello::T1(void)

{

std::cout << "T1: count=" << ++count << "\n";

}

// }}}RME

// {{{RME operation 'N1()'

void CppHello::N1(void)

{

std::cout << "N1: Entering S1\n";

}

// }}}RME
Using State Machine Code Generation for Classes 193

// {{{RME operation 'X1()'

void CppHello::X1(void)

{

std::cout << "X1: Exiting S1\n";

}

// }}}RME

// {{{RME enter ':TOP:S1'

void CppHello::rtg_enter2(void)

{

rtg_state_CppHello.state = 2U;

{

N1();

}

}

// }}}RME

// {{{RME exit ':TOP:S1'

void CppHello::rtg_exit2(void)

{

X1();

}

// }}}RME

void CppHello::rtg_init1(void)

{

{

// {{{RME transition ':TOP:Initial:Initial'

T0();

// }}}RME

}

rtg_enter2();

}

194 Chapter 9 - Creating Class Diagrams

void CppHello::E1(void)

{

unsigned char rtg_state = rtg_state_CppHello.state;

for(;;)

{

switch(rtg_state)

{

case 2U:

// {{{RME state ':TOP:S1'

rtg_exit2();

rtg_state_CppHello.state = 1U;

{

// {{{RME transition ':TOP:S1:Junction2:T1'

T1();

// }}}RME

}

rtg_enter2();

return;

// }}}RME

default:

return;

}

}

}

// }}}RME

Using Constructors

A state machine must be initialized before it is used, which may cause one or more
initial transitions to fire. Since these transitions may cause operations on the class for
it’s state machine, initialization must occur after the class is constructed.

Note: You can specify when that state-machine is initialized. A state machine may
also be re-initialized.
Using State Machine Code Generation for Classes 195

C Language

For C, you must set the ConstructFunctionName box in the C tab on the Class
Specification dialog box (see Figure 37) to configure the name of the constructor
function for the generated class. The default name for the construct function is:

${name}_construct

where ${name} is the name of the class. For example, if your class is called CHello,
then the generated function would be CHello_construct.

Note: If the ConstructFunctionName box is blank, a constructor function is not
generated.

Figure 37 Class Specification Dialog Box- C Tab - ConstructFunctionName
Box

You can create a trigger of your own to initialize the state machine.

Note: The rtg_init1 reference in the generated code for the Hello World model causes
the automatic initialization of state machine in the constructor.
196 Chapter 9 - Creating Class Diagrams

C++ Language

In C++, the code in the default constructor initializes the state machine. The init
occurs in GenerateDefaultConstructor while GenerateCopyConstructor copies the
state machine. The rtg_init1 reference in the code for the Hello World model (see Hello
World Implementation and Header Files on page 190) causes the automatic initialization
of state machine in the constructor.

Figure 38 Class Specification for CppHello Dialog Box
Using State Machine Code Generation for Classes 197

Using Virtual Functions

The state machine is initialized by constructors. Consequently, you must use caution
when using virtual functions. For example, if you have a Base Class with the virtual
function foo(), and the Subclass of the Base Class also has a virtual function named
foo() (which is different from foo() in Base Class), the virtual function in the Base
Class will always be used.

Using Return, Break, and Continue Statements

Use caution when attempting to make use of things that can affect control flow for
your code. Code for transitions, choice points, and guards do not get encapsulated in
functions; they are used directly in the body of the trigger function.

■ Return statement - Return cannot be used; otherwise you interrupt the chain of
state machine code part way through. The code after the Return statement never
gets executed. Because you cannot use Return, you cannot return a value.

■ Break statement - If you use a Break statement in your code, the result is as if you
did not take that transition. It is acceptable to use a Break statement in the code for
a transition (such as inside a for loop). However, do not use Break outside a loop
construct because it will break the generated state machine logic and result in
unspecified behavior.

■ Continue statement - If you use a Continue statement in your code, the result is as
if you did not take that transition. It is acceptable to use a Continue statement in
the code for a transition (such as a for loop). However, do not use Continue
outside a loop construct because it will break the generated state machine logic
and result in unspecified behavior. If you must use Continue, add an operation to
the class, then call this operation in the choice point or guard.
198 Chapter 9 - Creating Class Diagrams

Specifying History

History is useful when dealing with situations where an event takes control away
from the current state and initiates a separate behavior sequence for handling the new
event. The new sequence can involve new states and transitions. However, once
completed, we often want to resume from the point before the interruption occurred.

Example

Figure 39 shows a an example of a state diagram containing transition ee; a
self-transition that has a trigger for an event that none of the substates can handle.
When that event occurs, the self transition will fire, and then go to H* (deep history)
meaning that it will revert to the last active substate. The result is to perform event
handling without changing the state of the system.

Figure 39 A State Machine Diagram Showing History

Entry and Exit Functions

Note: Ensure that you are aware of how Entry and Exit actions are called when the ee
transition is taken. For example, if the current active state is S2, when ee is triggered,
the Exit action for S2 will be taken. Then, the actions for ee execute, and finally the
Entry action for S2 executes.
Using State Machine Code Generation for Classes 199

No Refinement

Unlike capsules, the state machines of your base class cannot be refined in your
subclass. Inherited state machines have no refinement. However, you can achieve this
refinement by using virtual functions, and then in the subclass, you can override the
virtual function to do something different.

Overriding Virtual Operations

To override an operation defined in a parent class from within a subclass:

1 Ensure that the operation on the parent has the Polymorphic option checked.

2 Create a new operation on the subclass with the same signature as the operation in
the parent.

Generation of Parameterized and Instantiated Classes

A parameterized class is a template for creating any number of instantiated classes
that follow its format. A parameterized class declares formal parameters. You can use
other classes, types, and constant expressions, as parameters. You cannot use the
parameterized class itself as a parameter. You must instantiate a parameterized class
before you can create its objects.

In its simplest form, you use parameterized classes to build container classes. You can
also use parameterized classes to capture design decisions about the protocol of a
class. Use the arguments of the parameterized class to import classes or values that
export a specific operation. In this form, a parameterized class denotes a family of
classes whose structure and behavior are defined independently of its formal class
parameters.

Note: Support for parameterized classes and instantiated classes is only available for
the C++ language.

To Create a Parameterized Class or Instantiated Class:

1 Select the Class tool from the toolbox and click on the Class Diagram to create a
class.

2 Right-click on the Class object and click Open Specification.
200 Chapter 9 - Creating Class Diagrams

3 Click the General tab.

4 In the Type box, specify the type of class you want to create.

5 Specify additional options and information you require on the other tabs for this
class.

6 Click OK.

Parameterized Classes

A parameterized class describes a group of classes.

Figure 40 Parameterized Class

In Rational Rose RealTime, a parameterized class maps to a template whose
parameters are those listed as formal arguments on the Detail tab of the Class
Specification dialog. For example, Figure 41 shows the template parameters
associated with a parameterized class
Generation of Parameterized and Instantiated Classes 201

Figure 41 Template Parameters

This corresponds to the preface of the basic_string template from the standard
template library.

template < class Ch, class Tr = char_traits< Ch >, class A = allocator< Ch > >

Depending on the information on the C++ tab, the generator will support templates
based on classes where the ClassKind property is class, struct or union.

Note: Enumerations and typedefs are not supported.

Parametrized classes may define attributes, operations and nested classes. They may
participate in dependency and generalization relationships. They may not be the
target of navigable associations, nor can they be the association class of any
association. They can only be the target of instantiation relationships.
202 Chapter 9 - Creating Class Diagrams

The generated header file will contain the declaration and any inline features. The
generated implementation file will contain only the ImplementationPreface and
ImplemtationEnding. Any other required code is generated in the implementation
file of instantiated classes.

Relationships

You can draw the following relationships:

Instantiated Classes

An instantiated class is a class formed from a parameterized class by supplying actual
values for parameters. You use an instantiated class to select a member of the set of
classes described by a parameterized class.

Figure 42 Instantiated Class

In Rational Rose RealTime, an instantiated class maps to a typedef whose definition is
the parameterized class referenced by the instantiation relationship using the names
of the actual arguments given by the instantiated class.

Draw: From a Parameterized Class To:

Generalize Relationship Class, another parameterized class, instantiated class,
interface

Association Relationship Class, another parameterized class, instantiated class,
class utility, parameterized class utility, instantiated
class utility, interface

Dependency Relationship Class, another parameterized class, instantiated class,
class utility, parameterized class utility, instantiated
class utility, interface
Generation of Parameterized and Instantiated Classes 203

You create an instantiated class by supplying actual values for the formal parameters
of the parameterized class. This instantiation process forms a concrete class in the
family of the parameterized class.

Note: You must place the instantiated class at the client end of an instantiate
relationship that points to the corresponding parameterized class.

An instantiated class whose actual parameters differ from other concrete classes in the
parameterized class' family forms a new class in the family.

Relationships

You can draw the following relationships for instantiated classes:

Figure 43 shows a string that is an instantiated class participating in an instantiation
relationship with the parameterized class basic_string.

Figure 43 Instantiated Class Participating in an Instantiation Relationship

When generated, the header file contains the following declaration:

typedef basic_string < char > string;

Instantiated classes cannot define attributes, operations or nested classes. State
machines may not be generated for instantiated classes. They may participate in
dependency relationships. They may only be the target of navigable associations and
generalization relationships.

Note: There must be exactly one instantiation relationship whose target is a
parameterized class.

Draw From an Instantiated Class To

Association Relationship Class, parameterized class, another instantiated class,
class utility, parameterized class utility, instantiated
class utility, interface

Dependency Relationship Class, parameterized class, another instantiated class,
class utility, parameterized class utility, instantiated
class utility, interface
204 Chapter 9 - Creating Class Diagrams

Limitations

The limitations regarding the support of parameterized and instantiated classes are:

No Automatic Type Descriptors

The code generator cannot automatically create type descriptors for instantiated
classes. However, descriptors will be generated if you specify the five function bodies
required to produce a descriptor.

Note: Classes nested within parameterized classes are subject to this limitation even if
they themselves are not parameterized.

Toolset Dependencies

You will need to address the following issues:

■ Import Generalization Relationships

Rational Rose has a C++ property named InstanceArgument that you must import
into a property of the same name and associated with the OT::Cpp tool in Rational
Rose RealTime.

■ Relax Rules For Actual Arguments

Rational Rose uses the contents of Name column of the actual arguments of an
instantiated class. Because these arguments can be any legal C++ type or value
expression, Rational Rose RealTime cannot modify the names when importing a
Rational Rose model, nor can it place any restrictions on the names entered.

Note: Parameter names are validated whenever the class Type changes, or when
parameters are copied from an instantiated class to a more restrictive context. The
illegal characters are replaced by underscores.

■ Allow Deletion of Actual Arguments

If you copy an actual argument from one instantiated class to another, you cannot
delete it from the source class.
Generation of Parameterized and Instantiated Classes 205

206 Chapter 9 - Creating Class Diagrams

10Creating Collaboration
Diagrams
Contents

This chapter is organized as follows:

■ Creating Capsule Structure on page 207
■ Using the Structure Editor on page 208
■ Structure Diagram Toolbox on page 211
■ Creating a Port on page 212
■ Port Specification on page 213
■ Adding a Capsule Role on page 219
■ Capsule Role Specification on page 219
■ Connecting Ports on Capsule Roles Together on page 221
■ Connector Specification on page 221
■ Creating a Collaboration Diagram on page 222
■ Using the Collaboration Diagram Editor on page 222

Creating Capsule Structure

Capsules are one of the primary modeling elements in Rose RealTime. Complete
executable code implementations are generated by the toolset for capsules.

Capsule structure is defined through the Structure Diagram Editor.

There are three kinds of structural element that may be added to a capsule structure
diagram:

■ Capsule roles
■ Ports
■ Connectors

None of these elements are required. A capsule does require any structural elements.
To do anything useful, a capsule usually requires at least a port so that it can
communicate with other capsules.
207

Creating a complete capsule structure definition may consist of any of the following
basic steps:

■ Adding a Capsule Role
■ Creating a Port
■ Connecting Ports on Capsule Roles Together

Using the Structure Editor

The structure editor is used to define the structure of a capsule class. That is, how
instances of that capsule class are composed of other capsule class instances and
protocol class instances (ports). The structure editor consists of three parts: the
structure diagram area, the structure browser, and the Structure Diagram Toolbox.

Structure elements, such as ports and capsule roles, can be created by dragging a
protocol or capsule on to the structure diagram from any browser (usually from the
model browser). Structure elements can also be added using the toolbox. The
structure browser can be used to navigate to, and open editors and specification
dialogs on contained structure elements.

Several standard diagram manipulations can be performed, including resizing,
scaling, and filtering.

You can use the popup menu to navigate between structure and state diagrams.

Figure 44 shows a sample structure editor. The window title bar shows the full name
of the class. The left side of the window contains the structure browser. The right side
contains the structure diagram area. The structure toolbox is not shown. It is usually
anchored outside of the diagram window.
208 Chapter 10 - Creating Collaboration Diagrams

Figure 44 The Structure Editor

UML Options

You can use the popup menu to toggle the following UML options:

Base UML notation

Converts the structure diagram so that it uses base UML notation.

Show Classifier Name on Roles

Lets you turn off the classifier name portion of a role label.

Show Protocol Name on Ports

Lets you turn off the classifier name portion on ports.

Structure Diagram Browser Context Menu Options

Open Specification - Displays the Specification dialog for the selected model
component.

Open Capsule Specification - Displays the Specification dialog for the selected
capsule.

Open Structure Diagram - Displays the structure diagram for the selected element.

Open State Diagram - Dpens the State diagram for the selected object.
Using the Structure Editor 209

Create Sequence Diagram - Creates a Sequence diagram under the Structure diagram
and populates the sequence diagram with interaction instances containing selected
capsule roles. Roles excluded from sequence diagram are not added to the sequence
diagram. If only excluded roles are selected, a sequence diagram is not created.

New - Allows you to insert references to files or URLs.

Add New State - Adds a new state to the browser.

Delete - Removes the currently selected object from the browser.

Rename - Allows you to change the name of the selected object.

Promote - Moves the selected element up in the hierarchy. If there is any name conflict
between this element and another element in the previous state, or in any of its
substates, the promote command fails.

Demote - Moves the selected element down in the class hierarchy. The element is
removed from the current State diagram, and is moved down to the next level.

Filter Folders - Allows you to specify which folder appear in the State Diagram
browser.

Sort - Allows you to arrange objects in the browser either in alphabetical order or the
internal order of the objects.

Find In - Allows you to search for all occurrences of a specified search string.

Replace In - Allows you to perform a search to find all occurrences of a search string
and replace it with other text.

Open Another Browser - Enables you to open another browser in the same window.
You can also specify which folders appear in this browser.

Close Browser - Closes the browser window for the State Diagram dialog.

Refresh - Redraws the current diagram.

Rational RequisitePro Trace Tool - Allows you to maintain and establish traceability
between your design requirements and your Rational Rose RealTime elements.
210 Chapter 10 - Creating Collaboration Diagrams

Structure Diagram Toolbox

The structure toolbox contains tools for adding elements to the structure diagram.

Figure 45 Structure toolbox

Selector Tool

Selects objects for moving, resizing, and so forth.

Zoom Tool

Zooms in on or out on diagrams.

Text Tool

Adds text anywhere in the structure diagram.

Note Tool

Annotates the diagram with textual notes. This is useful for marking up the diagram
with explanations, review comments, and so forth. You can drag and drop a diagram
or external document from the browser onto a note. Notice that the name of the
diagram or external document is underlined. If you double-click on the note, the
diagram or external document is opened. You can undo and redo this command.

Constraint Tool

Adds UML constraints to the diagram. A constraint can be anchored to a view
element by using the anchor tool. Currently, constraints do not have any semantic
meaning to the tool. There are RRTEI APIs to add or remove, and enumerate
constraints in a diagram.
Structure Diagram Toolbox 211

Note Anchor Tool

Anchors a note to a particular element on the diagram.

Capsule role Tool

Adds a capsule role to a capsule collaboration diagram. A pick-list is displayed
allowing you to select the class of the capsule role from the list of capsule classes. The
first entry in the pick-list menu is Create a New Capsule which creates a new capsule
class with a default name such as 'NewCapsule1'.

Port Tool

Adds new ports to the capsule class structure. Ports can be placed either in the
internal structure (inside the black interface boundary, which makes them protected,
or on the structure interface, which makes them public.

A popup menu appears on the capsule role allowing you to select the protocol class of
the port from the list of available protocol classes (that is, all protocol classes in the
model). The first entry in the popup menu is Create a New Protocol which creates a
new protocol class called ‘NewProtocol1’.

Protected ports are automatically created as end ports. Public ports are created as end
ports by default.

Connector Tool

The connector tool is used to wire ports together. Usually connectors bind ports on
different contained capsule roles together within the container capsule class.
Connectors can also bind internal end ports of the container class to other ports.
Interface end ports can only be bound within the context of a container class.

Only compatible ports can be connected together. Compatible ports are usually two
ports of the same protocol class, one of which is conjugated.

Creating a Port

There are four different ways to add a port to a capsule:

■ Drag and drop a protocol class name from the model browser onto the capsule
structure diagram.

■ Draw an aggregation between a capsule class and a protocol class on a class
diagram.
212 Chapter 10 - Creating Collaboration Diagrams

■ Use the Port tool on the capsule structure diagram toolbox. Select the tool and click
on the capsule boundary to add a public port. Click inside the boundary to add a
protected port.

■ From the Navigator area of a capsule diagram editor (either the collaboration
diagram editor or the state editor), right-click on the Ports folder and select Add
New Port from the popup menu.

If you use the port tool, a pick-list appears on the resulting port allowing you to select
the protocol class to be used from a list of available protocol classes. The first entry in
the pick-list is Create a New Protocol which creates a new protocol class called
‘NewProtocol1’. If you choose to create a new protocol class it will be added to the
same package as the container capsule class.

Creating a Non-Wired Port Using a System Protocol

To create a non-wired port to access one of the system services (a Frame,
Timing, Log or Exception port):

1 Right-click on the Ports folder on the Navigator area of the capsule's state diagram
editor.

2 Select Add New Port from the popup menu.

3 Select one of the system services from the list that appears.

Port Specification

The Port Specification provides control over information about ports on capsules.

The Port Specification contains two tabs: the General Tab and the Files Tab.

General Tab

Name

The port is referenced by a name. The default name provided when the port is first
created is based on the protocol name. In addition to appearing on the structure
diagrams, the port name is used by the behavior of the capsule containing the port. To
send and receive messages, the capsule's behavior references the port name in
detailed code, and in transition trigger events.
Port Specification 213

Stereotype

A stereotype represents the subclassification of an element. It represents a class within
the UML metamodel itself, that is, a type of modeling element. Some stereotypes are
already predefined, but you can also define your own to add new kinds of modeling
types.

Stereotypes can be shown in the browser and on diagrams. The name of the
stereotype may appear in angle brackets <<>>, depending on the settings found in
either the Diagram or Browser tabs of the Options dialog located under the Tools
menu. Refer to the Stereotype chapter for more information on stereotypes.

To show stereotypes on the diagrams, click Options from the shortcut menu and click
Stereotype Name or Stereotype Icon. Stereotype Name displays the name in angle
brackets (that is, <<stereotype>>). Stereotype Icon displays the graphical
representation.

Protocol

Specifies the protocol class to be used for the port. The protocol class (together with
the Conjugation check-box) determines the set of messages that can be sent through
this port (the out set), and the set of messages that can be received (the in set). The
field has a pull-down menu to select from the available protocol classes in the model.
The pull-down list always includes the service protocols for communicating with the
target services library.

The Open button opens the Protocol Specification for the selected protocol class.

Note: If the Protocol box contains a value, the corresponding label becomes a hot link
to the Specification dialog for that protocol.

Cardinality

Specifies the number of instances of the port that will appear at run-time. The port is
implemented as a member variable of the containing capsule. The variable may be an
array of ports, connected to multiple ports on the other end of the connector. In this
case, the port name points to an array of port instances. The Cardinality specifies the
size of the array. Not all port instances in the array are necessarily connected.
Individual port instances are referenced by indexing into the array. See the message
send syntax in the Programmer’s Guide for details. The Cardinality can be specified
with an integer value or as the name of a constant defined within the model.
214 Chapter 10 - Creating Collaboration Diagrams

Conjugated

A conjugated port is one in which the standard protocol class definition of in and out
signals is reversed. That is, on a conjugated port the protocol class out signals become
the port's in signals, and the protocol class in signals become the port's out signals.
This enables two ports of the same protocol class to be connected together without
having to define a separate reverse protocol. A connection can be made between two
ports of the same protocol by conjugating one of the ports. This is the most common
way of establishing communicating between two ports.

End Port

Indicates that the port is an End Port, capable of sending and receiving messages. End
Ports provide a connection between the behavior of the capsule containing the end
port and the outside world. If this check-box is not checked, then the port is a relay
port. Relay ports cannot be protected, they must be public.

To send messages, a capsule must have end ports. The end port's protocol defines the
set of messages that can be sent.

To receive messages and process them within the capsule's behavior, the capsule must
have end ports. The end port's protocol defines the set of messages that can be
received.

Messages received on relay ports are not visible to the behavior of the capsule
containing the port. Relay ports are intended to be connected to capsule roles
contained within the capsule. Relay ports take messages from outside of the capsule
and relay them through the capsule's encapsulation boundary to other capsules
contained inside.

Wired

Indicates that the port is a wired port. Wired ports are connected to other wired ports
using connectors (via the Connector tool in the capsule structure diagram).
Non-wired ports are connected to other non-wired ports by name.

The connection of wired ports is done automatically based on the system structure.
Wired ports on fixed capsules are connected at initialization time. Wired ports on
optional and plug-in capsules are connected dynamically when the capsule is
instantiated or plugged-in.
Port Specification 215

The connection of non-wired ports may be done in two ways:

1 Automatically by name at the time the capsule is initialized (Automatic
Registration).

In this case, when the capsule is initialized, a non-wired protected port is
connected to any non-wired public port of the same name. See Rules for
Non-Wired Port Connection.

2 Dynamically by a name specified by the capsule's behavior (Application
Registration).

3 Automatically by name at the time the capsule is initialized (Automatic locked
Registration). Application calls to the following will fail and set the register to
RTController::badOperation:

deregister, deregisterSAP, deregisterSPP, registerAs,
registerSAP, registerSPP

In this case, when the capsule is initialized, a non-wired protected port is
connected to any non-wired public port of the same name. See Rules for
Non-Wired Port Connection.

In this case, the port is not connected at initialization time, it is connected when the
capsule's behavior invokes a service function to register the port by a specified
name. The same port may in fact be registered under different names at different
points in the model execution.

This is determined by the registration method selected.

Protected

Determines whether the port is visible outside of the capsule boundary. If the port is
not protected, it is public. Public ports are part of the capsule interface and are visible
to other capsules. By default, ports are protected.

Notification

When selected, the port will receive rtBound and rtUnbound messages from the
services library when ports get connected and unconnected.

Note: rtBound is sent at system priority and rtUnbound is sent at background
priority.
216 Chapter 10 - Creating Collaboration Diagrams

Publish

Determines whether the port is visible (SPP) or invisible (SAP). A Service
Provisioning Point (SPP) describes an unwired port that is participating in a
connection as the publisher. A Service Access Point (SAP) describes an unwired port
that is participating in a connection as the subscriber.

Registration

Specifies the type of registration for the port. This option is only enabled for
non-wired ports. Non-wired ports are registered by name with a name service that
performs the connection. Connections are made between protected non-wired ports
(service clients) and a single public non-wired port (the service provider). There are
three registration modes:

■ Automatic - Automatic registration by name at the time the capsule is initialized.
In this case, when the capsule is initialized, a non-wired protected port is
connected to any non-wired public port of the same name.

■ Application - Dynamic registration by a name specified by the capsule's behavior.

■ Automatic (locked) - Automatic registration by name at the time the capsule is
initialized. Application calls to the following will fail and set the register to
RTController::badOperation:

❑ deregister

❑ deregisterSAP

❑ deregisterSPP

❑ registerAs

❑ registerSAP

❑ registerSPP

In this case, when the capsule is initialized, a non-wired protected port is
connected to any non-wired public port of the same name. The port is not
connected at initialization time. It is connected when the capsule's behavior
invokes a service function to register the port by a specified name. The same port
may be registered under different names at different points in the model execution.
This is determined by the registration method selected.

Files Tab

A list of referenced files. You can insert and delete references to files or URLs.

You can also link external files to the Specification for documentation purposes.
Port Specification 217

Port Role Specification Dialog

Name

Specifies the name for the port role.

Note: If the Name box contains a name, the corresponding label becomes a hot link to
the Specification dialog for that port.

Protocol Class

Specifies the protocol class for the port role.

Note: If the Protocol Class box contains a protocol name, the corresponding label
becomes a hot link to the Specification dialog for that protocol.

Conjugated

A conjugated port is one in which the standard protocol class definition of in and out
signals is reversed. That is, on a conjugated port, the protocol class out signals become
the port's in signals, and the protocol class in signals become the port's out signals.
This enables two ports of the same protocol class to be connected together without
having to define a separate reverse protocol. A connection can be made between two
ports of the same protocol by conjugating one of the ports. This is the most common
way of establishing communicating between two ports.

Cardinality

The Cardinality field defines the maximum number of port instances that can exist in
this role at any given time. If the role is Fixed, then the number of instances of the role
instantiated at run-time will be exactly the number defined in the Cardinality field. If
the role is Optional, then up to <Cardinality> instances may be created at run-time.

Documentation

Specifies descriptive text about the port role.
218 Chapter 10 - Creating Collaboration Diagrams

Adding a Capsule Role

Capsule roles may be added to a structure editor by dragging a class name from a
browser onto the structure diagram.

You can also use the Capsule role tool from the structure toolbox. A pick-list is
displayed on the capsule role allowing you to select the class of the capsule role from
the list of capsule classes. The first entry in the pick-list is Create a New Capsule
which creates a new capsule class called ‘NewCapsule1’. If you choose to create a new
capsule class it is added to the same package as the container capsule class.

The class specifies the “type” for the role. In the case of optional or plug-in roles,
instances of other classes may actually be incarnated or imported into the role at
execution time if they are of compatible types (that is, they have the same interfaces
and are subclasses of the specified capsule role class).

Capsule Role Specification

The Capsule Role Specification provides control over the properties of a capsule role
in a capsule structure diagram. Capsule roles are references to capsule classes.

The Capsule Role Specification Dialog is a standard Specification Dialog, with
additional fields controlling the properties of the capsule role.

General Tab

Name

The name of the capsule role within the container capsule structure. The capsule role
name may be used in the detailed code of the container capsule.

Class

The Class field defines the Capsule Class to be used in instantiating this role. If the
capsule role is an Optional role or a Plug-In role, then subclasses of the specified Class
may also be instantiated into this role, but only if the substitutable flag is checked.
Adding a Capsule Role 219

Cardinality

The Cardinality field defines the maximum number of capsule instances that can exist
in this role at any given time. If the role is Fixed, then the number of instances of the
role instantiated at run-time will be exactly the number defined in the Cardinality
field. If the role is Optional, then up to <Cardinality> instances may be created at
run-time. See Cardinality options.

Substitutable

This check box indicates whether subclasses of the specified capsule role's class can be
instantiated into this role. This may happen in one of two ways:

1 If the capsule role is Optional, the container capsule may instantiate a subclass of
the specified capsule class into the capsule role.

2 A subclass of the container capsule may override the class of the inherited capsule
role.

Fixed

If the fixed check-box is checked, then a capsule of the specified class is automatically
instantiated into the role in every instance of the container capsule at run-time. A
number of instances equal to the specified cardinality will be created at initialization
time.

Optional

If the optional check-box is checked, then the capsule role is instantiated under the
program control of the container class. The container class must explicitly instantiate
the capsule role within the detailed code of the container capsule state machine. This
is done using the incarnate function of the Frame service.

Plug-In

If the Plug-In check-box is checked, then the capsule role is never directly instantiated,
but rather an already existing instantiation from another capsule decomposition is
imported into the role. That is, an existing capsule is dynamically “plugged in” to the
specified role under the program control of the container class. The container class
state machine must explicitly request the plug-in of a capsule at run-time within the
detailed code. This is done using the import function of the Frame service.
220 Chapter 10 - Creating Collaboration Diagrams

Connecting Ports on Capsule Roles Together

To enable communication between capsules, you must connect together the ports on
their interfaces.

You can only connect compatible ports together. For a port to be compatible, the out
signals on each side must be a subset of the in signals on the other side. Usually, this is
satisfied by connecting the base role and conjugate role of the same protocol together.

Connector Specification

The Connector Specification provides control over the properties of a connector in a
capsule structure diagram. Connectors connect ports together to enable
communication among capsules.

There are two tabs: General and Files.

General Tab

Name

The name of the connector. Connector names are not usually displayed on the
structure diagram and are not significant in the generated code.

Delay

Specifies a communication delay across a connector. This field is for documentation
purposes only. There is no validation or calculation of actual communication delays at
run-time.

Cardinality

Specifies the number of connectors indicated by a connector line. When a connector is
used to connect ports with cardinality > 1 or ports on capsule roles with cardinality >
1, the connector cardinality should match the cardinality of the port/capsule
combination on either side of the connection.
Connecting Ports on Capsule Roles Together 221

Creating a Collaboration Diagram

To create a new collaboration diagram:

1 Select a package, class, capsule, or use case in the Logical View or Use Case View
where you want to define the collaboration

2 Right-click on the element in the model browser.

3 Select New > Collaboration Diagram.

4 Enter the name for the collaboration diagram

Using the Collaboration Diagram Editor

The collaboration diagram editor is used to create a diagram showing associations
among object roles. An association between classifier roles is called an association
role. A collaboration diagram represents a particular object configuration at run-time.
The collaboration diagram consists of two parts: the diagram area and the
Collaboration Diagram Toolbox. Multiple Collaboration diagrams can exist in the
same model.

Elements of the collaboration diagram - such as classifier roles, capsule roles, and
association roles - are added using the toolbox.

The window title bar shows the full name of the collaboration diagram.

Figure 46 Collaboration diagram editor
222 Chapter 10 - Creating Collaboration Diagrams

Relationship Between Collaborations and Sequences

The collaboration diagram editor shows the general communication pattern among a
set of objects for a particular scenario at run-time. You can associate sequence
diagrams with a collaboration diagram. The relationship is that a sequence diagram
shows a particular execution of a given scenario. There may be many sequences
showing different alternative paths for the same scenario. They should all have the
same basic collaboration pattern, though.

In the example above, the scenario is a telephone call. There are three roles being
played by objects at run-time. A caller represents the object initiating the call. The
receiver represents the object receiving the call. The system represents the object that
makes the connection between them. Several sequence diagrams could be derived
from this collaboration. For example, one sequence diagram might show a completed
call where the receiver answers. Another sequence might show a call that is not
answered.

Opening a Sequence Diagram

To open a dialog listing all the Sequence diagrams associated with a particular
Collaboration diagram, select Open Sequence Diagrams from the popup menu.

Sequence Overlays

You can also overlay Message Flow Arrows from a Sequence diagram on top of the
Collaboration dialogs by selecting Sequence Overlays... from the popup menu. Only
"Request" actions - Call and Send - are shown. Create and Destroy messages are not.
Messages are only displayed when there is an existing Association Role or Connector
to bind them to. Messages To or From the Environment are not displayed.

Code Generation

There is no code generated from the collaboration diagram. It is for communication
purposes only. The capsule structure diagram is a specialized form of collaboration
diagram with specific constraints that enable code to be generated to implement the
communication patterns shown in the capsule structure.
Using the Collaboration Diagram Editor 223

Collaboration Diagram Toolbox

The collaboration diagram toolbox contains tools for adding elements to the
collaboration diagram.

Figure 47 Collaboration diagram toolbox:

Selector Tool

Selects objects for moving, resizing, and so forth.

Zoom Tool

Zooms in on a portion of the diagram. Select the tool and then click on the part of the
diagram you want to zoom in on.

Text Tool

Adds text anywhere in the structure diagram.

Note Tool

Annotates the diagram with textual notes. This is useful for marking up the diagram
with explanations, review comments, and so forth. You can drag and drop a diagram
or external document from the browser onto a note. Notice that the name of the
diagram or external document is underlined. If you double-click on the note, the
diagram or external document is opened. You can undo and redo this command.

Constraint Tool

Adds UML constraints to the diagram. A constraint can be anchored to a view
element by using the anchor tool. Currently, constraints do not have any semantic
meaning to the tool. There are RRTEI APIs to add or remove, and enumerate
constraints in a diagram.
224 Chapter 10 - Creating Collaboration Diagrams

Note Anchor Tool

Anchors a note to a particular element on the diagram.

Capsule Role Tool

Places a capsule role on the collaboration diagram. When you place a capsule role, a
pick-list is displayed allowing you to select from available capsule classes, create a
new capsule class, or leave the class unspecified. The class specifies a type that must
be satisfied by any instances in that role. In practice, this usually means that
subclasses of the specified capsule class can fill the role.

This tool also appears on the capsule Structure Diagram Toolbox. The tool performs
the same function in both diagrams.

Classifier Role Tool

Places a classifier role on the collaboration diagram. When you place a classifier role, a
pick-list is displayed allowing you to select from available classifier classes, create a
new class, or leave the class unspecified. The classifier specifies a type that must be
satisfied by any instances in that role. In practice, this usually means that subclasses of
the specified class can fill the role.

Association Role tool

Draws a connection between two roles (capsule roles or classifier roles). An
association between roles is a form of association with more explicit meaning than an
association at the class level. It specifies that instances satisfying the types specified
for these roles have some form of direct communication relating to the interaction
specified for this collaboration.

Classifier Role Specification

The Classifier Role Specification provides control over the properties of a classifier
role in a collaboration diagram. The Classifier Role Specification is a standard
Specification dialog, with additional fields controlling the properties of the classifier
role.

There are two tabs: the General Tab and the Files Tab.
Using the Collaboration Diagram Editor 225

General Tab

Name

The name of the classifier role within the collaboration.

Stereotype

A stereotype label for the association.

Classifier

Specifies a class to fill this role.

Note: If the Classifier box contains a class, the corresponding label becomes a hot link
to the Specification dialog for that class.

Multiplicity

The multiplicity field defines the maximum number of instances that can exist in this
role at any given time.

Documentation

Use to describe this classifier role.

Files Tab

A list of referenced files is provided here. The files list popup menu allows you to
insert and delete references to files or URLs.

You can link external files to model elements for documentation purposes.

Association Role Specification

The Association Role Specification provides control over the properties of an
association role in a collaboration diagram.

The Association Role Specification is a standard Specification dialog, with additional
fields controlling the properties of the classifier role.

There are two tabs: the General Tab and the Files Tab.

General Tab

Name

The name of the association role within the collaboration.
226 Chapter 10 - Creating Collaboration Diagrams

Stereotype

A stereotype label for the association.

Association

Specifies a class to fill this role.

Multiplicity

The multiplicity field defines the maximum number of instances that can exist in this
role at any given time.

Documentation

Use to describe this association role.

Files Tab

A list of referenced files is provided here. The files list popup menu allows you to
insert and delete references to files or URLs.

You can link external files to model elements for documentation purposes.
Using the Collaboration Diagram Editor 227

228 Chapter 10 - Creating Collaboration Diagrams

11Creating State Diagrams
Contents

This chapter is organized as follows:

■ Creating Capsule State Machines on page 229
■ Using the State Diagram Editor on page 230
■ Aggregating and Decomposing State Machines on page 235
■ Transition Specification on page 235
■ Choice Point Specification on page 237
■ Initial State Specification on page 237
■ Junction Point Specification on page 238
■ Event Editor Dialog on page 239
■ Adding a State on page 242
■ Adding a Choice Point on page 242
■ Drawing Transitions Between States on page 242
■ Drawing the Initial Transition on page 245
■ Defining State Transition Trigger Events on page 246
■ Joining Transitions on page 247
■ Creating Nested States on page 248
■ Positioning from a Superclass for Transitions on page 248
■ State Diagram - Showing Triggers and Code for Transitions on page 250
■ Identifying Self Transitions on the Transitions Tab in the State Specification Dialog Box on

page 254

Creating Capsule State Machines

Capsules are one of the primary modeling elements in Rational Rose RealTime.
Complete executable code implementations are generated by the toolset for capsules.

Capsule behavior is defined through the State Diagram Editor.
229

You can include the following types of behavioral elements to a capsule behavior
diagram:

■ States
■ Transitions
■ Choice points

None of these elements are required. A capsule does not have to have any states or
transitions. If the capsule has any interfaces (end ports) in its structure definition, then
it must have a state machine to deal with events arriving on its interfaces.

Creating a complete capsule state diagram definition can consist of any of the
following basic steps:

■ Adding a State
■ Adding a Choice Point
■ Drawing Transitions Between States
■ Defining State Transition Trigger Events
■ Joining Transitions
■ Creating Nested States

Using the State Diagram Editor

The state diagram editor is used to define the finite State machine for a class. The
utility of the state diagram depends on the type of element it is specifying:

■ For capsule classes, the state diagram will result in a complete code
implementation generated for the class. The state diagram defines the majority of a
capsule class implementation. The capsule class may also have operations defined
on it, but the state diagram gives the capsule its asynchronous message processing
capability.

■ For protocols, the state diagram specifies the expected operation of any capsules
that contain one of the protocol's roles. The protocol state diagram defines the
allowable sequence of message inputs and outputs with respect to the protocol
roles. There is no code generated for the protocol class behavior.

■ For data classes, the state diagram captures the abstract behavior (often the
abstract modes of operation) for the class. This does not result in any code being
generated for the data class. The data class implementation is limited to the
definitions of any attributes and operations specified through the Class
Specification.
230 Chapter 11 - Creating State Diagrams

The state diagram consists of three parts: the diagram area, the navigator area, and the
toolbox. Multiple State diagrams can exist in the same model.

Behavior elements, such as states and transitions, are added using the toolbox.

The window title bar shows the full name of the class.

Figure 48 State Diagram Editor

State Diagram Elements

The state editor window has tabs on the bottom to allow quick navigation to any
nested states, and to the capsule structure editor. You can use the popup menu to
navigate between diagrams, as well.

The state diagram allows you to create or edit the following elements:

■ States
■ State Transitions
■ Choice Points
■ Initial point and initial transition
■ Junction points
■ Final States

The state machine can be nested, allowing you to create hierarchical state machines.
Hierarchical state machines maintain a state history. When a transition terminates on
a hierarchical state, the history mechanism may be triggered to determine which
substate becomes the active state.
Using the State Diagram Editor 231

Using the Navigator

The Navigator area lists the states in hierarchical order, as well as operations,
attributes, and ports (in state diagrams only).

Right-clicking on the items in the list provides a shortcut to many common
operations, such as adding operations, attributes, and ports.

State Diagram Toolbox

The state diagram toolbox contains tools for adding elements to the state diagram.
The toolbox is associated with the State Diagram Editor (see Using the State Diagram
Editor on page 230).

Figure 49 State diagram toolbox

Selector Tool

Select objects for moving, resizing, and so forth.

Zoom Tool

Use to zoom in on a portion of the diagram. Click on the tool and then click on the
part of the diagram you want to zoom in on.

Text Tool

Adds text anywhere in the structure diagram.
232 Chapter 11 - Creating State Diagrams

Note Tool

Annotates the diagram with textual notes. This is useful for marking up the diagram
with explanations, review comments, and so forth. You can drag and drop a diagram
or external document from the browser onto a note. Notice that the name of the
diagram or external document is underlined. If you double-click on the note, the
diagram or external document is opened. You can undo and redo this command.

Constraint Tool

Adds UML constraints to the diagram. A constraint can be anchored to a view
element by using the anchor tool. Currently, constraints do not have any semantic
meaning to the tool. There are RRTEI APIs to add or remove, and enumerate
constraints in a diagram.

Note Anchor Tool

Use to anchor a note to a particular element on the diagram.

State Tool

Adds a state to the diagram. Click on the diagram to place a new state at the selected
location.

States have default names, such as 's1', when initially drawn. To change the name,
click on the state and hit the BACKSPACE key to delete the default name, then type the
new name.

Final State Tool

Adds a terminal state to the diagram. Click on the diagram to place a new final state at
the selected location.

Transitions cannot be drawn initiating from a final state.

Capsule state diagrams cannot have a final state, so this tool is not displayed for
capsules.

State Transition Tool

Draws Transitions from one state to another, from a state to a branch, from a branch to
a state, from a transition junction point on the superstate to a substate or to a
transition exit point on the superstate, or from the initial point to an initial state.
Using the State Diagram Editor 233

Transition to Self Tool

Draws a transition from a state back to itself. This can include self transitions on the
outer state border, as well as on any substate.

Choice Point Tool

Adds a branch point allowing a transition to branch to two alternate destination
states.

State Specification

The state specification allows you to enter details about the state.

The state specification dialog contains the following tabs: General, Entry Actions, Exit
Actions, Files.

Note: If this state is a top state, an initial point, or a final state on a data or protocol
class, then it will not contain any Entry Actions or Exit Actions tabs.

General Tab

Name

The name of the state. The state name appears on the state diagram, and will be part
of the generated code for any capsule class. It will also be used in the verification of
any sequence diagrams involving the capsule if the sequence diagram used as the
specification contains state information.

Class

The class whose state machine this state is a part of.

Entry Actions / Exit Actions Tabs

Code

A Code Editor used to enter the detail code that will be executed upon entry to or exit
from the state.

This field may also be modified from the generated code and captured into the model
using the Code Sync feature. For more information, see Using Code Sync to Change
Generated Code on page 531.
234 Chapter 11 - Creating State Diagrams

Aggregating and Decomposing State Machines

You can create new superstates by aggregating several states, transitions and choice
points. To aggregate several states into a new superstate, multiply select the states and
choose Parts > Aggregate. A new state is created containing the selected states.

A superstate can be decomposed into its immediate substates by selecting
Parts > Decompose.

Transition Specification

The transition specification is used to edit the properties of a state transition. There are
up to four tabs: General, Triggers, Actions, and Files.

If the transition is an initial transition, or is not the originating segment of a joined
transition, then the Triggers tab is not displayed.

General Tab

Name

The name of the transition. If the transition is part of a capsule state diagram, the
transition name will appear in the generated code for a capsule.

Internal

This check box indicates that a self-transition should not cause an exit from the state
when triggered. The result is that when an internal transition is triggered, no exit or
entry code is run.

Triggers Tab

Triggers List

The triggers list is used for Defining State Transition Trigger Events. The triggers list
contains the list of individual trigger events. Each event consists of a port name, a
signal or set of signals, and an optional guard condition. The Transition Events tab
contains the list of events that can trigger the transition. The list is an ‘OR' list,
meaning that the receipt of any one of the signals in the event list will cause the
transition to fire. There is no ‘AND' definition of event triggers (since only one
message is processed at a time).
Aggregating and Decomposing State Machines 235

To add new trigger events, right-click in the list area and select Insert from the popup
menu. This brings up the Event Editor Dialog allowing you to select the port(s) and
signal(s) that will act as trigger events.

Filter check boxes provides options to display Inherited values, Local values and
Excluded values.

Moving and Copying Triggers

To move a trigger from one Specification sheet to another, drag and drop it. From the
Edit menu of the main window, you can select Undo and Redo.

To copy a trigger from one Specification sheet to another, drag and drop it while
holding down the Ctrl key. From the Edit menu of the main window, you can select
Undo and Redo.

Actions Tab

Code

Contains a Code Editor for defining detailed action code.

This field may also be modified from the generated code and captured into the model
using the Code Sync feature. For more information, see Using Code Sync to Change
Generated Code on page 531.

For capsules, the transition action code will be output as part of the generated code,
and the code will be executed when the transition is triggered at run-time.

Transition actions defined in state diagrams for protocols or regular (non-capsule)
classes is not generated or executed. It is for information purposes only.

Files Tab

The Files tab allows for linking external files to the transition.

236 Chapter 11 - Creating State Diagrams

Choice Point Specification

The Choice Point Specification contains three tabs: General, Condition, and Files.

General Tab

Contains standard specification dialog items.

Condition Tab

Contains a Code Editor for entering the code that determines which branch of the
transition will be taken. The code must return a true or false value (false is zero and
true is non-zero).

This field may also be modified from the generated code and captured into the model
using the Code Sync feature. For more information, see Using Code Sync to Change
Generated Code on page 531.

Files Tab

A list of referenced files is provided here. The files list popup menu allows you to
insert and delete references to files or URLs.

You can link external files to model elements for documentation purposes.

Initial State Specification

The Initial State Specification contains two tabs: General and Files.

General Tab

Name

The default name for the initial state is Initial and should not be changed.

Class

A non-editable field indicating the class whose state machine the initial state is part of.

Documentation

A description of the initial state.
Choice Point Specification 237

Files Tab

A list of referenced files is provided here. The files list popup menu allows you to
insert and delete references to files or URLs.

You can link external files to model elements for documentation purposes.

Junction Point Specification

The dialog shows information about the junction point. See the Modeling Language
Guide on junction points and history for more information on these selections.

There are only two tabs: General and Files.

General Tab

Name

A name for the junction point. Most junction points are given automatically generated
names.

Continuation

This selection specifies the semantics for how the state history will be used when there
is no continuing transition. There are three options:

■ Default - specifies that the default (initial) transition should be run.

■ History - specifies that the state should return to shallow history.

■ Deep History - specifies that the state should return to deep history, meaning that
all substates also return to history. This is the behavior for all capsule state
machines, so it is automatically selected.

Note: The default for capsule state machines is to always go to deep history, so deep
history is automatically selected for capsule states, and the selections are grayed out.

Externally Visible

This check box indicates whether the junction point is visible on the outside of the
state boundary.
238 Chapter 11 - Creating State Diagrams

Files Tab

A list of referenced files is provided here. The files list popup menu allows you to
insert and delete references to files or URLs.

You can link external files to model elements for documentation purposes.

Event Editor Dialog

The event editor dialog is used to define triggering events for transitions in capsule
state diagrams. The event editor is accessed from the Events tab of the transition
specification dialog.

The event editor contains:

■ Aports list

■ A signals list

■ A guard code area

The ports list contains a list of end ports in the capsule's collaboration diagram. Only
end ports that have In signals are listed as they are the only ones capable of receiving
messages.

The guard code may also be modified from the generated code and captured into the
model using the Code Sync feature. For more information, see Using Code Sync to
Change Generated Code on page 531.

To specify the trigger event:

1 Select a port check box to display the list of signals that can be received on that
port.

Multiple ports from the ports list can be selected, but when selecting multiple
ports, the signals are only displayed if all ports share the same protocol.

The signals list displays signals that can be received by the currently selected end
port, as well as a default wild card selection indicated by a '*'.

2 Select one or more signals from the signal list.

Multiple signals from the signals list can be selected. Any one of the selected
signals will act as a trigger for the transition.

Event Editor Dialog 239

EventGuard Specification Dialog Box

An EventGuard is a grouping of an Event and a Guard that will trigger a transition.
Use the EventGuard Specification dialog box to define triggering events for
transitions in State Diagrams for capsules. The EventGuard Specification dialog box
contains the following areas:

■ Ports List
■ Signals List
■ Guard Code

Note: This dialog box is only available for events on capsule state machines. Data
class state machines use a dialog box where you can select a trigger stereotyped
operation (see Creating State Machine Trigger Operations on page 182).

EventGuards do not have names. As a result, the EventGuard Specification dialog
box and the Specification History windows show "Untitled" in the title.

Ports List

The Ports list contains end ports that currently exist in the Collaboration Diagram for
a capsule. Only those end ports that have In signals appear in this list because they
are the only ones capable of receiving messages.

Note: You cannot specify triggering events until you define the end port on which the
event will arrive.

A port that is not an end port, which is then made into an end port, will not appear in
the Ports list until the EventGuard Specification dialog box closes.

Signals List

When you select a port from the Port list, the Signals list will contain all of the
in signals from that port, as well as the universal signal (*), rtBound, and rtUnbound.
Use the universal signal to specify that any signal received on the selected port will
trigger the transition.

If there is more than one port selected in the Port list, and all the selected ports use the
same protocol, or use protocols that derive from a common protocol, then signals
from that common protocol appear in the Signal list. Otherwise, only the universal
signal (*) appears in the Signal list. You can select the universal signal if it is the only
signal selected. If other signals were selected previously, they will no longer be
selected.
240 Chapter 11 - Creating State Diagrams

Guard Code

The Guard Code area allows you to specify the code for a guard condition for this
transition. This code is executed before the transition occurs and determines whether
to take this transition. If the guard is True, the transition is taken to the next state. If
the guard is False, the transition is not taken and event processing will continue (the
runtime service library will attempt to find another transition that triggers from the
same port or single pair).

Note: You can also modify Guard Code from the generated code and then capture the
changes into the model using the Code Sync feature. For more information on code
sync, see Using Code Sync in the online Help.

To create a trigger event:

1 Ensure that you have defined the end port on which the event will arrive.

2 On the State Diagram, select the transition.

3 Click the Triggers tab.

4 In the Port, Signal, or Guard box, right-click and select Insert.

Note: If the EventGuard currently exists, select the port name from the Port
column in the Triggers tab, and then right-click and click Open Specification.

5 Select a port.

Note: If a port does not appear in the Port list, right-click and select Insert Port.

The signals for the selected port (the signals that can be received on that port)
display in the Signals list.

Note: Multiple ports from the ports list can be selected, but when selecting
multiple ports, the signals are only displayed if all ports share the same protocol.

The signals list displays signals that can be received by the currently selected end
port, as well as a default universal signal selection (*).

6 Select one or more signals in the Signal list.

Multiple signals from the signals list can be selected. Any one of the selected
signals will act as a trigger for the transition.

7 Specify code for a guard condition in the Guard Code area, if required.

8 Click OK.
Event Editor Dialog 241

Adding a State

States can be added by clicking on the state tool in the state diagram toolbox, and then
clicking on the state diagram where you want to add a state.

Alternatively, you can add states through the navigator area of the state diagram
editor.

If you have state entry or exit actions to define, use the state specification dialog or
Code window.

Adding a Choice Point

To draw a choice point, click on the choice point tool from the state diagram toolbox
and then click on the diagram where you want the choice point added.

The choice point can be rotated by grabbing one of its handles and turning. The true
and false branches can be flipped using the popup menu.

After you add a choice point, you should define the condition for the choice point.

Drawing Transitions Between States

The transition tool is used to draw transitions.

Transitions are drawn originating from states, transition join points or choice points
and terminating on those same elements.

To draw a transition, click on the transition tool, click on the originating element for
the transition and drag the transition on to the terminating element.

When a new transition is drawn, the transition does not usually have a triggering
event. Transitions with no trigger event are shown with a broken line:

Transitions containing code are shown with the arrowhead filled in black.
242 Chapter 11 - Creating State Diagrams

Drawing Transitions

There are two options that affect how the transition the user draws is placed on the
diagram, and one option that affects how the transition line can be drawn and
re-drawn. All global options are on the Diagrams tab when you click
Tools > Options.

Auto-adjust transitions is in the Miscellaneous area. There is also a shortcut menu
option for junction points, called Auto Adjust, that will be enabled for fixed junction
points of regular transitions.

The Line Style and Routing options are accessed in the Line Attributes dialog
available by clicking Default Line Attributes in the Display area. There is also a
shortcut menu option called Line Attributes for transition lines.

Line Style affects the appearance of the transition line:

■ Oblique - Lines may have line segments at any angle. If smoothing is applied the
lines will be curved instead of straight.

■ Rectilinear - Lines may only have vertical and horizontal segments. Smoothing is
disabled for rectilinear lines.

■ Auto-adjust transitions - Affects the placement of the end points of the transition.
When selected, the points may adjust to avoid existing points, and the routing
algorithm is free to move the endpoints from where they were initially placed by
the user. Each endpoint continues to "float" until the user moves it, thereby fixing
its' relative position on the state (the position is relative since the state may be
resized).

Note: The points on a self-transition do not auto-adjust. However, if the transition
is converted to a regular transition by moving one of its' endpoints to another
state, then the auto-adjust status of the remaining endpoint determines whether it
will be moved by the Routing algorithm. The shortcut menu entry performs the
auto adjustment and sets the status of the point back to floating.
Drawing Transitions Between States 243

Regular Transitions (Not Self Transitions).

Routing is used in conjunction with Auto-adjust transitions to determine how the
transition line is redrawn from the original placement by the user. The following
combinations apply:

■ Auto-adjust transitions off - The endpoints remain where the user placed them

❑ Normal routing - The line will remain as drawn by the user

❑ Closest distance - The line will be redrawn as a single straight line in the
"Oblique" line style and the shortest set of horizontal and vertical segments for
the "Rectilinear" line style.

❑ Avoid obstructions - Both line styles will be redrawn to avoid obstructions (if
possible) - the line will be redrawn as a the shortest set of line segments in the
"Oblique" line style and the shortest set of horizontal and vertical segments for
the "Rectilinear" line style.

■ Auto-adjust transitions on, - The endpoints may be moved from where the user
placed them

❑ Normal routing - The line drawn may be adjusted to connect the end points
(which may have moved because they were auto-adjusted).

❑ Closest distance - The lines drawn are similar to those for Closest distance
above except that the endpoints will be moved to give the closest distance,
instead of the closest distance between fixed endpoints.

❑ Avoid obstructions - The lines drawn are similar to those for Avoid
obstructions above except that the endpoints will be moved to give the closest
distance, instead of the closest distance between fixed endpoints.

Self transitions endpoints do not auto adjust. However, the self transition line has a
standard form which usually consists of three line segments: two short ones coming
from the state border, and another that is as long as necessary to connect the other two
segments. If smoothing is applied, the three segments may appear to be one curved
line. The three line segments may be collapsed to one segment if:

■ The endpoints are on parallel borders of the state.

■ Closest distance or Avoid obstructions routing is in effect.

Self transition lines are redrawn to this standard form when the self-transition is
originally drawn, when one of the endpoints is moved or when the state is resized.
Bend points may be inserted in the self transition line, but any adjustments will cause
the line to be redrawn to standard form.
244 Chapter 11 - Creating State Diagrams

For additional information on drawing transitions, see Drawing the Initial Transition on
page 245.

Specifying the Transition

Once you have drawn a transition, you can specify the transition details. The details
of a transition include the trigger event(s), and the action code. These are specified
through the Transition specification dialog.

The trigger event and action code for capsule state machines result in generated code
as part of the capsule implementation. No code is generated for the trigger event and
action for other class state machines.

Drawing the Initial Transition

To draw an initial transition in a state diagram editor:

1 Click on the transition tool in the state diagram toolbox.

2 Click on the initial point in the diagram and drag the transition on top of the target
state. The initial point is the black circle that appears in the top-left corner of the
diagram.

Figure 50 Initial transition

The initial transition has a default name of 'Initial'. You can change the name by
selecting the label and typing in it.

Note: If you select a label, the tether to that label displays for a short time only. To
view the tether for longer periods, press and hold the left mouse button. The tether to
the label will display for as long as you hold the left mouse button. If you start to drag
the label, the tether is replaced with a tether and tracking box.
Drawing the Initial Transition 245

Defining State Transition Trigger Events

State Diagrams

To define a new state transition trigger event:

1 Open the State Transition Specification from the capsule State Diagram editor
(double-click on the state transition).

2 Select the Events tab.

3 Right-click in the event list area.

4 Select Insert from the popup menu.

The Event Editor Dialog appears.

To define a new event in a capsule:

1 Click on the check box for the port and signal items to be included in the event.

2 The chosen items have a check mark next to them. Deselecting the check box
removes items from the event definition.

Note: A state transition trigger event can have more than one signal selected on a
port, and can have more than one port selected, though the signals list only shows the
signals that are common in the protocols of the two ports in that case. To trigger a
transition on signals on different ports, use multiple trigger events. A wild card
trigger is available (*) in the signals list which triggers a transition if any of the valid
input signals of the currently selected ports is encountered.

To define a new event in a protocol:

1 Click on the check box for the signal items to be included in the event.

2 The chosen items have a check mark next to them. Deselecting the check box
removes items from the event definition.

Defining a new event in a data class

To define a new event in a data class, specify the name of the event.

246 Chapter 11 - Creating State Diagrams

Joining Transitions

Transitions terminating on a superstate can be joined to transitions inside the state to
terminate directly on a substate. Similarly, transitions inside a hierarchical state can be
joined to transitions leaving the superstate. The points where a transition begins or
ends are represented inside the state with join points. Join points may be dark circles
or light circles.

To connect a new transition to an existing transition, select the transition tool and
draw the transition starting from or terminating on a join point.

To join two existing transitions, select one of the transitions and move it so that the
end point lands on the beginning point of the other transition, or so that the beginning
point lands on the end point of the other transition.

Figure 51 Joined Transitions

Note: If you select a label, the tether to that label displays for a short time only. To
view the tether for longer periods, press and hold the left mouse button. The tether to
the label will display for as long as you hold the left mouse button. If you start to drag
the label, the tether is replaced with a tether and tracking box.
Joining Transitions 247

Creating Nested States

Nested states are created as follows:

■ During state creation, select the state icon from the diagram toolbox and place over
a targeted superstate.

■ Use Parts menu, Aggregate and copy/paste to move state machine pieces into
another state.

The border of the target superstate becomes bold as the nested state moves over it.
Once the nested state is dropped on the superstate, the boundaries of the superstate
may grow to accommodate the nested state. If the cursor is positioned over more than
one state at the same time, the state at the deepest level of nesting is considered the
target superstate. Multiple states can be selected and nested as a group.

Nesting is determined completely by cursor position. Once the cursor is moved
outside the target state, no nesting occurs. The bold display of the target state's border
serves as an indicator for nesting. States can overlap without nesting

Positioning from a Superclass for Transitions

You can define generalization relationships between classes (including capsule and
protocol classes) in Rational Rose RealTime. When a generalization relationship is
defined, the specializing class inherits the properties (such as all attributes,
operations, state machines, and signals) of the generalizing class. You can modify the
State Diagram for a capsule by positioning the selected transition according to its
position in the superclass. This means that when Position from Superclass is selected
from the context menu for a transition, the transition changes to the same location as
on the parent class.

Note: This option attempts to position (from the superclass) transitions, states, and
choice points on a State Diagram.
248 Chapter 11 - Creating State Diagrams

For example, a model contains two capsules, MyParent and MyChild (see Figure 52).
The capsule MyChild is dependent on the parent capsule MyParent.

Figure 52 Class Diagram - Example Model

Figure 53 shows the State Diagram for the parent capsule MyParent.

Figure 53 State Diagram for MyParent
Positioning from a Superclass for Transitions 249

Figure 54 shows the State Diagram (inherited from MyParent) for MyChild.

Figure 54 State Diagram for MyChild

To modify the position of an element (such as a state, transition, choice point, or
junction point) on the State Diagram for the child, click Tools > Layout > Reposition
selected from superclass to clear the option so that it is not selected.

State Diagram - Showing Triggers and Code for Transitions

State Diagrams can show transition triggers and transition code to provide you with
immediate visual access to the UML event string for the transition. The Filter
submenu in the State Diagram context menu includes two new options: Show
Transition Triggers and Show Transition Code.

Note: If Show Transition Labels is not selected, the State Diagram will not display
any triggers or transition code (even when Show Transition Triggers or Show
Transition Code are selected).
250 Chapter 11 - Creating State Diagrams

Figure 55 State Diagram - Context Menu

State Diagram - Showing Triggers and Code for Transitions 251

The Filter menu on state diagrams now contains two additional options. Select Show
Transition Triggers to display the UML event string for the transition (similar to what
you see in the ToolTip for the transition).

Figure 56 State Diagram without Transition Triggers or Code
252 Chapter 11 - Creating State Diagrams

Figure 57 State Diagram Showing Transition Triggers

From the Filter submenu, select Show Transition Code to display the Action code for
all transitions in the current state diagram.
State Diagram - Showing Triggers and Code for Transitions 253

Figure 58 State Diagram Showing Transition Triggers and Code

These filter options are specific to the current State Diagram; setting these options in
one State Diagram does not set these options in other State Diagrams.

Note: You can change the default value for displaying transition triggers and code for
new State Diagrams by clicking Tools > Options and setting Trigger labels and Code
labels in the State Diagram area in Filtering tab.

Identifying Self Transitions on the Transitions Tab in the State
Specification Dialog Box

You can now view transitions and self transitions (transitions originating and
terminating on the same state) directly from the Transitions tab in the State
Specification dialog box.

Note: Transitions from the Initial Point do not appear in the Transitions list.
254 Chapter 11 - Creating State Diagrams

Figure 59 State Specification Dialog Box

Descriptions

Transition Type

Specifies the type of transition entering the selected state (the first column in the
Transition tab). The transition types are:

■ Internal Transition - A transition that does not cause a change in state. This
type of transition is not visible outside the state boundary.

■ External Transition - A transition that causes a change in state. This type of
transition is visible outside the state boundary.

■ Internal Self Transition - This type of self transition does not cause an exit
from the state when triggered and no exit or entry code is run. This means that the
transition executes without exiting or re-entering the state in which it is defined.
Also, the exit and entry actions of all states which where exited and re-entered are
not executed. These kinds of transitions are similar to having global operations
defined on a state machine; when they are taken do not change the state of the
system. This type of transition is not visible outside the state boundary.
Identifying Self Transitions on the Transitions Tab in the State Specification Dialog Box 255

■ External Self Transition - For this type of self transition, the exit and entry
code is executed for the state on which it originates and terminates. This type of
transition is visible outside the state boundary.

Name

Assigned to each transition entering the selected state. This name appears in the
generated code for a capsule.

Event

Contains a list of individual trigger events. An event is an occurrence of a stimulus
that causes a state transition. Each event consists of a port name, a signal or set of
signals, and an optional guard condition. The data for an event is a UML string
indicating the ports and signals that trigger this transition. The text that appears in
this column is similar to that seen in the pop-up ToolTip for the transition, excluding
the Guard code and the Action code.

To add new events, right-click in the list area and Open Specification, then right-click
in the Triggers tab in the Transition Specification dialog box and click Insert. You can
now select the ports) and signals that will act as trigger events.

End State

Indicates the name of the final execution state that the transition ends on, based on the
completion of the current state. For internal and external self transitions, the end state
will be the current state.
256 Chapter 11 - Creating State Diagrams

12Creating Activity
Diagrams
Contents

This chapter is organized as follows:

■ Modeling Using Activity Diagrams on page 258
■ Creating an Activity Diagram on page 260
■ Activities on page 264
■ Activity Specification Dialog on page 266
■ Actions on page 269
■ Action Specification Dialog on page 270
■ Decisions on page 271
■ Decision Specification Dialog on page 272
■ End State on page 274
■ Start State on page 274
■ States on page 275
■ State Specification Dialog on page 277
■ Synchronizations on page 281
■ Synchronization Specification Dialog on page 282
■ Transitions on page 283
■ Transition Specification Dialog on page 284
■ Swimlanes on page 286
■ Swimlane Specification Dialog on page 289
■ Objects and Object Flows on page 290
■ Object Specification Dialog on page 294
■ Object Flow Specification Dialog on page 296
■ Cutting Objects on Activity Diagrams on page 298
■ Copying Objects on Activity Diagrams on page 298
■ Pasting Objects on Activity Diagrams on page 298
257

Modeling Using Activity Diagrams

Activity Diagrams allow you to model dynamic behavior in a model. Typically, you
use an Activity Diagram to model the discrete stages of an object’s lifetime, and the
sequence of activities in a process.

Activity Diagrams provide a way to model the dynamic aspects (workflow) of a
business process or system, and to model the dynamic behavior of individual classes,
or any other type of object. For example, you can use Activity Diagrams to model
code-specific information, such as a class operation. Activity Diagrams are available
for Use Cases, Logical Packages, actors, classes, capsules, packages, interfaces, and
operations for classes and Use Cases.

Activity Diagrams are very similar to a flowchart because you can model a workflow
from activity to activity. An Activity Diagram is a special type of state machine in
which some of the states are activities, and some of the transitions are implicitly
triggered by completion of the actions in the source activities.

Additionally, Activity Diagrams can show the sequences of states that an object goes
through, the events that cause a transition from one state to another, and the actions
that result from a state change. Each state represents a named condition during the life
of an object during which it satisfies some condition, or waits for some event.

Activity Diagrams

Activity Diagrams can model many different types of workflows. For example, a
company could use Activity Diagrams to model the flow for an approval of orders or
to model the paper trail of invoices. An accounting firm could use Activity Diagrams
to model any number of financial transactions. A software company could use
Activity Diagrams to model a software development process.
258 Chapter 12 - Creating Activity Diagrams

Figure 60 Example of a Simple Activity Diagram

Typically, an Activity Diagram contains one Start State and multiple End States.
Transitions connect the various states on the diagram. The workflow on an Activity
Diagram stops when a transition reaches an end state.

Each state and activity represents the performance of a group of events or actions in a
workflow. After the state or activity completes, the flow of control moves to the next
state or activity through a transition. If an outgoing transition is not clearly triggered
by an event, then it is triggered by the completion of the contained actions inside the
activity.

A unique Activity Diagram feature is a swimlane that defines who or what is
responsible for carrying out a given state or activity. It is also possible to place objects
on Activity Diagrams.

Note: You can attach Activity Diagrams to most model elements in the Use Case or
Logical Views.
Modeling Using Activity Diagrams 259

Creating an Activity Diagram

You can create an Activity Diagram for various model elements. However, if you
create more than one Activity Diagram for a model element, those diagrams only
represent different views for that element. For example, multiple Activity Diagrams
for a single element will contains only a single start state.

Note: If an object has multiple Activity Diagrams (meaning that all Activity
Diagrams at the same level can reference the same objects, but each diagram
represents a different view), you must specify a unique name.

To create an Activity Diagram:

1 On the Model View tab in the browser, click on a model element, excluding
attributes and associations.

2 Right-click and click New > Activity Diagram.

3 In the Model View tab, expand the new entry for the State/Activity Model
diagram.

4 Double-click on the NewDiagram name.
260 Chapter 12 - Creating Activity Diagrams

An empty Activity Diagram displays.

Activity Diagram Specification Dialog

Use the Activity Diagrams Specification dialog to maintain the properties associated
with an Activity Diagram.

To open the Activity Diagram Specification dialog, right-click on the Activity
Diagram name on the Model View tab in the browser, and click Open Specification.

The Activity Diagram Specification dialog has the following tab:

■ General, see Activity Diagram Specification Dialog - General Tab on page 262
Activity Diagram Specification Dialog 261

Activity Diagram Specification Dialog - General Tab

Name

Specifies the name of the currently selected Activity Diagram.

Documentation

Describes the purpose or intent of the Activity Diagram. The description can include
information such as the essential behavior of the diagram. The information you type
in this field is not displayed in the Activity Diagram.

StateMachine Specification for State/Activity

Use the StateMachine Specification dialog to maintain the properties associated with
a State/Activity Diagram.

To open the StateMachine Specification dialog, right-click on State/Activity
Diagram on the Model View tab in the browser, and click Open Specification.

The StateMachine Specification dialog has the following tabs:

■ General, see StateMachine Specification for State/Activity - General Tab on page 262

■ Files, see StateMachine Specification for State/Activity - Files Tab on page 263

StateMachine Specification for State/Activity - General Tab

Name

Specifies the name of the currently selected State/Activity diagram.

Stereotype

Specifies a keyword that further defines the classification of the diagram. A stereotype
represents the subclassification of a model element. Some stereotypes are already
predefined, but you can also define your own to specify new modeling types.

Owner

Specifies the model elements that own the selected State/Activity Diagram.

Context

Specifies a view for a related set of modeling types.
262 Chapter 12 - Creating Activity Diagrams

Documentation

Describes the diagram. The description can include such information as the
constraints, purpose, and essential behavior of the element.

StateMachine Specification for State/Activity - Files Tab

Filename

Displays a list of referenced files. You can insert and delete references to files or URLs
by linking external files to model elements for documentation purposes.

Path

Specifies the location of the file or URL.

Activity Diagram Tools

You can use the following tools on the Activity Diagram toolbox when modeling your
Activity Diagrams:

■ Activities
■ Anchor Note or Constraint to Item
■ Constraint
■ Decisions
■ End State
■ Note
■ Objects
■ Object Flow
■ Lock Selection
■ Start State
■ States
■ Swimlanes
■ Synchronizations
■ Text Box
■ Transitions
■ Zoom Tool
Activity Diagram Tools 263

Activities

An activity represents the performance of a task or duty in a workflow. It may also
represent the execution of a statement in a procedure. An activity is similar to a state
but expresses the intent that there is no significant waiting (for events) in an activity.
Transitions connect activities with other model elements.

Figure 61 shows an activity for an Activity Diagram. The name of an activity must be
unique and describe the activity’s purpose.

Figure 61 Graphical Representation of an Activity

Activity History

The history icon, , provides a mechanism to return to the most recently visited
state or activity when transitioning directly to a state or activity with substates.
History applies to the given level in which it appears. History may also be applied to
the lowest depth of nested states. You may place an asterisk in the name field of the
history state to designate the lowest depth.

To delete history icons, use Cut from the toolbar or click Edit > Delete.

Specifying Actions for Activities

Actions on activities can occur:

■ on entry - The task is performed when the object enters the activity.

■ on exit - The task is performed when the object exits the activity.

■ do - The task is performed while in the activity and must continue until exiting the
activity.

■ on event - The task triggers an event only when a specific event is received.

Figure 62 shows an activity with actions. You can only add actions for an activity
using the Action Specification Dialog.

Figure 62 Graphical Representation of an Activity with Actions
264 Chapter 12 - Creating Activity Diagrams

Nested Activities

You can nest activities to any depth level. Everything that lies within the bounds of
the nested activity (sub-activity) is referred to as its contents.

Figure 63 Graphical Representations of a Nested Activity

Manipulating Nested Activities

Nested activities can be moved, resized, and transitioned to and from as if they were
top-level activities. However, if you move a nested activity outside a boundary of the
super-activity, the size of the container adjusts to accommodate the new position of
the nested activity.

You can "un-nest" an activity by selecting the nested activity, then
dragging-and-dropping the activity to an empty location on the Activity Diagram.

Nesting is determined by your mouse pointer location and activities can overlap
without nesting.

Creating Nested Activities

You can create nested activities by:

■ Selecting the Activity icon from the Toolbox and clicking over top of an existing
state or activity.

■ Use drag-and-drop to place an activity over another state or activity.

■ Right-click on an existing activity on the Model View tab in the browser,
right-click and click New > Activity.
Activities 265

The border of the target activity becomes bold as the nested activity moves over it.

Note: After you drop an activity, the boundaries of the super-state or super-activity
enlarge to accommodate the nested element. If the mouse pointer is positioned over
more than one state or activity at the same time, the element at the deepest level of
nesting is considered the target. You can select multiple activities and nest them as a
group.

Activity Specification Dialog

On the Activity Specification dialog, you can view and modify the properties and
relationships of an activity on an Activity Diagram.

To view the Activity Specification dialog, double-click on an Activity icon on the
Activity Diagram, or double-click on an activity on the Model View tab in the
browser.

The Activity Specification dialog has the following tabs:

■ General, see Activity Specification Dialog - General Tab
■ Actions, see Activity Specification Dialog - Actions Tab
■ Transitions, see Activity Specification Dialog - Transitions Tab
■ Swimlanes, see Activity Specification Dialog - Swimlanes Tab
■ Files, see Activity Specification Dialog - Files Tab

Activity Specification Dialog - General Tab

Name

Specifies the name for the currently selected activity.

Stereotype

Specifies a keyword that further defines the classification of the model element. A
stereotype represents the subclassification of a model element. Some stereotypes are
already predefined but you can also define your own to specify new modeling types.

To view stereotypes on the Activity Diagrams, click Tools > Options, select the
Diagram tab, and click Label, Decoration and label, Decoration only, or Icon in the
Stereotype box. Label displays the stereotype name in angle brackets (for example,
<<stereotype>>). Decoration displays a graphic marker such as highlighting an
icon or tool. Icon displays the graphical representation, if any.
266 Chapter 12 - Creating Activity Diagrams

Owner

Specifies the model elements that own the selected activity.

Context

Specifies a view for a related set of modeling types.

Documentation

Describes model elements or relationships. The description can include information
such as the constraints, purpose, and essential behavior of the element. The
information you type in this field is not displayed in the Activity Diagram.

State/activity history

Specifies whether to return the most recently visited state or activity when
transitioning directly to a state or activity with sub-states or sub-activities. Set this
option to apply history at the state or activity level.

History provides a mechanism to return to the most recently visited state (or activity)
when transitioning directly to a state (or activity) with sub-states (sub-activities).
History applies to the level in which it appears. It may also be applied to the lowest
depth of nested states (or activity).

Sub state/activity history

Specifies history for all depths for nested states or activities within the state or activity
level. Set this option to apply history to all the depths of nested states or activities
within the state or activity level.

History provides a mechanism to return to the most recently visited state (or activity)
when transitioning directly to a state (or activity) with sub-states (sub-activities).
History applies to the level in which it appears. It may also be applied to the lowest
depth of nested states (or activity).
Activity Specification Dialog 267

Activity Specification Dialog - Actions Tab

Type

Displays the action specified in the Action Specification dialog. The following actions
on activities can occur:

■ Entry - The task is performed when the object enters the activity.

■ Exit - The task is performed when the object exits the activity.

■ Do - The task is performed while in the activity and must continue until exiting the
activity.

■ Event - The task triggers an event only when a specific event is received.

The type of action determines the options that are available in the dialog box.

Double-click on an action to open the Action Specification dialog for the selected
action. If there are no actions listed, right-click on the Actions tab and click Insert.

Action Expression

Displays the timing option that specifies when to carry out an action and the types of
actions that are carried out.

Activity Specification Dialog - Transitions Tab

Event

Specifies the names of all the events for transitions associated with the activity.

An event causes a state transition. You do not have to uniquely label events because
one event can cause a transition to many different states, activities, decisions, or
synchronizations.

End

Specifies the target state or activity for transitions.

Activity Specification Dialog - Swimlanes Tab

Name

Specifies the swimlane name where the enclosed activity resides.
268 Chapter 12 - Creating Activity Diagrams

Activity Specification Dialog - Files Tab

Filename

Displays a list of referenced files. You can insert and delete references to files or URLs
by linking external files to model elements for documentation purposes.

Path

Specifies the location of the file or URL.

Actions

Each state and activity on an Activity Diagram can contain any number of internal
actions. An action is a task that takes place while inside a state or activity.

Within a state or activity, there are four possible types for an action:

■ on Entry
■ on Exit
■ do
■ on Event

For example, Figure 64 shows that when entering the AwakenByLight state, the entry
action (On Entry) turns on the light. Next, the do action changes the behavior of the
state so that it blinks five times. Upon exiting the exits the AwakenByLight state, the
exit action (On Exit) turns off the light.

Figure 64 Example of Actions on a State
Actions 269

Action Specification Dialog

An Action Specification dialog enables you to display and modify the action
properties in an Activity Diagram.

To open the Action Specification dialog, double-click on an action on the Actions tab.

The Action Specification dialog has the following tabs:
■ Detail, see Action Specification Dialog - Detail Tab
■ Files, see Action Specification Dialog - Files Tab

To display the Action Specification dialog:

1 Open the Specification dialog for a state or activity.

2 Click the Actions tab.

3 If there are no actions, right-click and select Insert.

4 Double-click on an action to open its Specification dialog.

Action Specification Dialog - Detail Tab

When

Specifies a timing option to carry out for the selected action.

On Event

The On Event parameters are available only when you set the On Event timing
parameter in the When box.

■ Event - In an Activity Diagram, an event is an occurrence that can trigger a state
transition. Type the name of the event that will trigger the action.

■ Arguments - Specifies any optional arguments associated with the event.

■ Condition - Specifies a conditional Boolean expression.

You can use an On Event action rather than a self-transition because self-transitions
trigger all the actions associated with a state, whereas state and activity actions handle
internal state and activity transitions. This means that you can process an internal
event without triggering the entry and exit actions.
270 Chapter 12 - Creating Activity Diagrams

Type

Specifies the type for the action.

■ Action - A simple action may be the invocation of a method, or the starting or
stopping of an activity.

■ Send Event - Send events are actions that trigger another event.

The type of action determines the options that are available in the dialog box.

Name

Specifies a name of the Action or Send Event. This name appears on the state or
activity on the Activity Diagram.

Send arguments

Specifies any arguments for a send event. One or more arguments can accompany a
send event.

Send target

Specifies any targets for the send event. A target is any object that will receive the
transition event.

Action Specification Dialog - Files Tab

Filename

Displays a list of referenced files. You can insert and delete references to files or URLs
by linking external files to model elements for documentation purposes.

Path

Specifies the location of the file or URL.

Decisions

A decision represents a specific location on an Activity Diagram where the workflow
may branch based upon guard conditions. There may be more than two outgoing
transitions with different guard conditions, but for the most part, a decision has only
two outgoing transitions determined by a Boolean expression.
Decisions 271

Figure 65 shows an example of using a decision on an Activity Diagram.

Figure 65 Graphical Representation of a Decision

Note: Decisions only appear on Activity Diagrams; they do not appear on the Model
View tab in the browser.

Decision Specification Dialog

On the Decision Specification dialog, you can view and modify the properties and
relationships of a decision on an Activity Diagram.

To view the Decision Specification dialog, double-click on a Decision icon on a
State/Activity Diagram, or double-click on a Decision on the Model View tab in the
browser.

Note: Decisions to not appear on the Model View tab in the browser.

The Decision Specification dialog has the following tabs:

■ General, see Decision Specification Dialog - General Tab
■ Transitions, see Decision Specification Dialog - Transitions Tab
■ Swimlanes, see Decision Specification Dialog - Swimlanes Tab
■ Files, see Decision Specification Dialog - Files Tab

Decision Specification Dialog - General Tab

Name

Specifies the name for the selected decision.

Owner

Specifies the owner of the decision; the object that owns this element in the model.
272 Chapter 12 - Creating Activity Diagrams

Stereotype

Specifies a keyword that further defines the classification of the model element. A
stereotype represents the subclassification of a model element. Some stereotypes are
already predefined, but you can also define your own to specify new modeling types.

To view stereotypes on the Activity Diagrams, click Tools > Options, select the
Diagram tab, and click Label, Decoration and label, Decoration only, or Icon in the
Stereotype box. Label displays the stereotype name in angle brackets (for example,
<<stereotype>>). Decoration displays a graphic marker such as highlighting an
icon or tool. Icon displays the graphical representation, if any.

Documentation

Describes model elements or relationships. The description can include information
such as the constraints, purpose, and essential behavior of the element.

Decision Specification Dialog - Transitions Tab

Event

Specifies the names of all the events for transitions associated with the decision.

An event causes a state transition. You do not have to uniquely label events because
one event can cause a transition to many different states, activities, decisions, and
synchronizations.

End

Specifies the target state or activity for transitions.

Decision Specification Dialog - Swimlanes Tab

Name

Specifies the swimlane name where the enclosed decision resides.

Decision Specification Dialog - Files Tab

Filename

Displays a list of referenced files. You can insert and delete references to files or URLs
by linking external files to model elements for documentation purposes.

Path

Specifies the location of the file or URL.
Decision Specification Dialog 273

End State

An end state represents a final or terminal state on an Activity Diagram. Add an end
state when you want to explicitly show the end of a workflow on an Activity
Diagram.

Figure 66 End State

Figure 67 Example of an End State

Transitions can only occur into an end state; however, there can be any number of end
states or activities that transition to a single end state. You can also have multiple end
states on an Activity Diagram.

For information on the State Specification dialog, see State Specification Dialog on
page 277.

Start State

A start state (also called an initial state) explicitly shows the beginning of a workflow
or execution of states on an Activity Diagram. You can have only one start state for
each Activity Diagram because each workflow/execution starts at the same location.
If you use multiple Activity Diagrams to model a single element for different views,
you can use the same start state as long as it is the same start state from the Model
View tab in the browser. When you model nested states or nested activities, you can
create one new start state for each context.

Figure 68 Start State
274 Chapter 12 - Creating Activity Diagrams

Typically, you can add only one outgoing transition from the start state. However, you
can add multiple transitions on a start state if at least one of them is labeled with a
condition. No incoming transitions are allowed for start states.

For information on the State Specification dialog, see State Specification Dialog on
page 277.

States

A state represents a condition or situation during the life of an object during which it
satisfies some condition or waits for some event. Each state represents the cumulative
history of its behavior.

Figure 69 shows a state for an Activity Diagram. The name of a state should be
unique to its enclosing class, or if nested, within the state.

Figure 69 Graphical Representation of a state

Specifying Actions for States

Actions on states can occur:

■ on entry - The task is performed when the object enters the state.

■ on exit - The task is performed when the object exits the state.

■ do - The task is performed while in the activity and must continue until exiting the
state.

■ on event - The task triggers an event only when a specific event is received.

Figure 70 shows a state with actions. You can only add actions for a state using the
Action Specification Dialog.

Figure 70 Graphical Representation of a State with Actions
States 275

Nested States

You can nest states to any depth level. Everything that lies within the bounds of the
nested state (sub-state) is referred to as its contents.

Figure 71 Graphical Representations of Nested States

Manipulating Nested States

Nested states can be moved, resized, and transitioned to and from as if they were
top-level activities. However, if you move a nested state outside a boundary of the
super-state, the size of the container adjusts to accommodate the new position of the
nested state.

You can "un-nest" a state by selecting the nested state, then dragging-and-dropping
the state to an empty location on the Activity Diagram.

Nesting is determined by your mouse pointer location and states can overlap without
nesting.

Creating Nested States

You can create nested states by:

■ Selecting the State icon from the Toolbox and clicking over the top of an existing
state or activity.

■ Use drag-and-drop to place a state over another state or activity.

■ Right-click on an existing activity on the Model View tab in the browser,
right-click, and click New > State.
276 Chapter 12 - Creating Activity Diagrams

The border of the target state becomes bold as the nested state moves over it.

Note: After you drop a state, the boundaries of the super-state enlarge to
accommodate the nested element. If the mouse pointer is positioned over more than
one state or activity at the same time, the element at the deepest level of nesting is
considered the target. You can select multiple states and nest them as a group.

State History

The history icon, , provides a mechanism to return to the most recently visited
state or activity when transitioning directly to a state or activity with substates.
History applies to the given level in which it appears. History may also be applied to
the lowest depth of nested states. You may place an asterisk in the name field of the
history state to designate the lowest depth.

To delete history icons, use Cut from the Toolbar or click Edit > Delete.

State Specification Dialog

On the State Specification dialog, you can view and modify the properties and
relationships of a state, start state, or end state on an Activity Diagram.

To view the State Specification dialog, double-click on a State icon on an Activity
Diagram, or double-click on a state on the Model View tab in the browser.

The State Specification dialog has the following tabs:

■ General, see State Specification Dialog - General Tab
■ Actions, see State Specification Dialog - Actions Tab
■ Transitions, see State Specification Dialog - Transitions Tab
■ Swimlanes, see State Specification Dialog - Swimlanes Tab
■ Files, see State Specification Dialog - Files Tab

State Specification Dialog - General Tab

Name

Specifies the name for the currently selected state.

Stereotype

Specifies a keyword that further defines the classification of the state. A stereotype
represents the subclassification of a model element. Some stereotypes are already
predefined, but you can also define your own to specify new modeling types.
State Specification Dialog 277

To view stereotypes on the Activity Diagrams, click Tools > Options, select the
Diagram tab, and click Label, Decoration and label, Decoration only, or Icon in the
Stereotype box. Label displays the stereotype name in angle brackets (for example,
<<stereotype>>). Decoration displays a graphic marker such as highlighting an
icon or tool. Icon displays the graphical representation, if any.

Note: Start States and End States do not have stereotypes.

Owner

Specifies the model elements that own the selected state.

Context

Specifies a view for a related set of modeling types.

Documentation

Describes model elements or relationships. The description can include such
information as the constraints, purpose, and essential behavior of the element. The
information you type in this field is not displayed in the Activity Diagram.

State/activity history

Specifies whether to return the most recently visited state or activity when
transitioning directly to a state or activity with sub-states or sub-activities. Set this
option to apply history at the state or activity level.

Note: Start States and End States do not have state or activity history.

History provides a mechanism to return to the most recently visited state (or activity)
when transitioning directly to a state (or activity) with sub-states (sub-activities).
History applies to the level in which it appears. It may also be applied to the lowest
depth of nested states (or activity).

Sub state/activity history

Specifies history for all depths for nested states or activities within the state or activity
level. Set this option to apply history to all the depths of nested states or activities
within the state or activity level.

Note: Start States and End States do not have sub-state history or sub-activity history.

History provides a mechanism to return to the most recently visited state (or activity)
when transitioning directly to a state (or activity) with sub-states (sub-activities).
History applies to the level in which it appears. It may also be applied to the lowest
depth of nested states (or activity).
278 Chapter 12 - Creating Activity Diagrams

State Specification Dialog - Actions Tab

Type

Displays the action specified in the Action Specification dialog. Actions on states can
occur:

■ Entry - The task is performed when the object enters the state.

■ Exit - The task is performed when the object exits the state.

■ Do - The task is performed while in the activity and must continue until exiting the
state.

■ Event - The task triggers an event only when a specific event is received.

The type of action determines the options that are available in the dialog box.

Double-click on an action to open the Action Specification dialog for the selected
action. If there are no actions listed, right-click on the Actions tab and click Insert.

Action Expression

Displays the name of the corresponding timing option that specifies when to carry out
an action for the selected state.

State Specification Dialog - Transitions Tab

Event

Specifies the names of all the events for transitions associated with the state.

An event causes a state transition. You do not have to uniquely label events because
one event can cause a transition to many different states or activities.

It is possible for a state transition to have no associated event.

End

Specifies the target state or activity for transitions.

State Specification Dialog - Swimlanes Tab

Name

Specifies the swimlane name where the enclosed state resides.
State Specification Dialog 279

State Specification Dialog - Files Tab

Filename

Displays a list of referenced files. You can insert and delete references to files or URLs
by linking external files to model elements for documentation purposes.

Path

Specifies the location of the file or URL.

Trigger Specification Dialog

Use the Trigger Specification dialog to view or modify the properties of a state
transition.

To open the Trigger Specification dialog, double-click on a transition on the
Transitions tab.

The Trigger Specification dialog has the following tabs:

■ Detail, see Trigger Specification Dialog - Detail Tab on page 280
■ Files, see Trigger Specification Dialog - Files Tab on page 281

Trigger Specification Dialog - Detail Tab

When

Specifies a timing option to carry out for the selected action.

On Event

The On Event parameters are only enabled when you set the On Event timing
parameter in the When box.

■ Event - In an Activity Diagram, an event is an occurrence that can trigger a state
transition. Type the name of the event that will trigger the action.

■ Arguments - Specifies any optional arguments associated with the event.

■ Condition - Specifies a conditional Boolean expression.

You can use an On Event action rather than a self-transition because self-transitions
trigger all the actions associated with a state, whereas state and activity actions handle
internal state and activity transitions. This means that you can process an internal
event without triggering the entry and exit actions.
280 Chapter 12 - Creating Activity Diagrams

Type

Specifies the type for the action.

■ Action - A simple action may be the invocation of a method, or the starting or
stopping of an activity.

■ Send Event - Send events are actions that trigger another event.

The type of action determines what options are available in the dialog box.

Name

Specifies a name of the Action or Send Event. This name appears on the state or
activity on the Activity Diagram.

Send arguments

Specifies any arguments for a send event. One or more arguments can accompany a
send event.

Send target

Specifies any targets for the send event. A target is any object that will receive the
transition event.

Trigger Specification Dialog - Files Tab

Filename

Displays a list of referenced files. You can insert and delete references to files or URLs
by linking external files to model elements for documentation purposes.

Path

Specifies the location of the file or URL.

Synchronizations

Synchronizations let you to see a simultaneous workflow in an Activity Diagram.
Synchronizations visually define forks and joins representing a parallel workflow. For
example, a synchronization can have a single incoming transition with multiple
outgoing transitions, or have multiple incoming transitions with a single outgoing
transition.

Note: Synchronizations appear as a horizontal or vertical bar on an Activity Diagram
and may cross swimlanes. Synchronizations do not appear in the browser.
Synchronizations 281

Synchronization Specification Dialog

The Synchronization Specification dialog enables you to display and modify the
properties and relationships of a synchronization on an Activity Diagram.

To view the Synchronization Specification dialog, select a Synchronization on an
Activity Diagram and double-click.

The Synchronization Specification dialog has the following tabs:

■ General, see Synchronization Specification Dialog - General Tab
■ Transitions, see Synchronization Specification Dialog - Transitions Tab
■ Files, see Synchronization Specification Dialog - Files Tab

Synchronization Specification Dialog - General Tab

Name

Specifies the name for the selected synchronization (vertical or horizontal).

Owner

Specifies the owner of the synchronization; the object that owns this synchronization
in the model.

Stereotype

Specifies a keyword that further defines the classification of the model element. A
stereotype represents the subclassification of a model element. Some stereotypes are
already predefined, but you can also define your own to specify new modeling types.

To view stereotypes on the Activity Diagrams, click Tools > Options, select the
Diagram tab, and click Label, Decoration and label, Decoration only, or Icon in the
Stereotype box. Label displays the stereotype name in angle brackets (for example,
<<stereotype>>). Decoration displays a graphic marker such as highlighting an
icon or tool. Icon displays the graphical representation, if any.

Documentation

Describes model elements or relationships. The description can include information
such as the constraints, purpose, and essential behavior of the element.
282 Chapter 12 - Creating Activity Diagrams

Synchronization Specification Dialog - Transitions Tab

Event

Specifies the names of all the events for transitions associated with the selected
synchronization.

An event causes a state transition. You do not have to uniquely label events because
one event can cause a transition to many different states, activities, synchronizations,
or decisions.

End

Specifies the target state or activity for transitions.

Synchronization Specification Dialog - Files Tab

Filename

Displays a list of referenced files. You can insert and delete references to files or URLs
by linking external files to model elements for documentation purposes.

Path

Specifies the location of the file or URL.

Transitions

A state transition indicates that an object in the source state will perform certain
specified actions and enter the destination state when a specified event occurs, or
when certain conditions are satisfied. A state transition is a relationship between two
states, two activities, between an activity and a state, a self-transition, a
synchronization, or a decision.

You can show one or more state transitions from a state as long as each transition is
unique. Transitions originating from a state cannot have the same event, unless there
are conditions on the event.

A state transition is a line with an arrowhead pointing toward the destination state or
activity.

You should label each state transition with the name of at least one event that causes
the state transition. You do not have to use unique labels for state transitions because
the same event can cause a transition to many different states or activities.

Only one event is allowed per transition, and one action per event.
Transitions 283

You can add events, conditions, and actions by using the Transition Specification
dialog.

Note: Transitions do not appear on the Model View tab in the browser.

Transition Specification Dialog

A Transition Specification dialog lets you to display and modify the properties and
relationships of a transition on an Activity Diagram. The state transition specification
lists the events and actions that comprise the transition.

To open the Transition Specification dialog, double-click on a transition line on an
Activity Diagram.

The Transition Specification dialog has the following tabs:

■ General, see Transition Specification Dialog - General Tab
■ Detail, see Transition Specification Dialog - Detail Tab
■ Files, see Transition Specification Dialog - Files Tab

Transition Specification Dialog - General Tab

Event

Specifies the event that causes the state transition. You do not have to uniquely label
events because one event can cause a transition to many different states or activities.

An event label is one of the following:

■ Symbolic name
■ Class name
■ Name of an operation

It is possible for a state transition to have no associated event.

Arguments

Specifies any optional arguments associated with the transition. One or more
arguments may accompany an event.

Stereotype

Specifies a keyword that further defines the classification of the model element. A
stereotype represents the subclassification of a model element. Some stereotypes are
already predefined, but you can also define your own to specify new modeling types.
284 Chapter 12 - Creating Activity Diagrams

To view stereotypes on the Activity Diagrams, click Tools > Options, select the
Diagram tab, and click Label, Decoration and label, Decoration only, or Icon in the
Stereotype box. Label displays the stereotype name in angle brackets (for example,
<<stereotype>>). Decoration displays a graphic marker such as highlighting an
icon or tool. Icon displays the graphical representation, if any.

Documentation

Describes model elements or relationships. The description can include information
such as the constraints, purpose, and essential behavior of the element.

Transition Specification Dialog - Detail Tab

Guard Condition

Conditional state transitions are triggered only when the conditional expression
evaluates to true.

Action

Shows the action that invokes a method, or starts and stops an activity on an Activity
Diagram. An action shows what occurs upon entering or exiting the state. Actions can
be messages to other objects, particularly when an Activity Diagram refers to an
active class (one that drives other objects).

Send event

Shows the send event for the selected transition. Event triggers can occur whenever
an action has occurred. An event can contain a symbolic name, class name, or name of
an operation. Event triggers are parsed into three components: Send Event, Send
Arguments, and Send Target.

Send arguments

Specifies any arguments for a send event. One or more arguments can accompany a
send event.
Transition Specification Dialog 285

Send target

Specifies any targets for the send event. A target is any object that will receive the
transition event.

Transition between substates

Specifies transitions that occur between substates. Set this option when adding a
transition to, or from, a sub-state or sub-activity that you want hidden from view. The
drop-down list contains the name of all the states or activities that reside within the
bounds of the top level superstate, including the superstate. The From box displays
the state name that the transition is initiated from. The To field displays the state
name that the transition is pointing to.

Transition Specification Dialog - Files Tab

Filename

Displays a list of referenced files. You can insert and delete references to files or URLs
by linking external files to model elements for documentation purposes.

Path

Specifies the location of the file or URL.

Swimlanes

Swimlanes are partitions on an Activity Diagram. Swimlanes are helpful when
modeling because they can represent organizational units or roles within a model.
Swimlanes are very similar to an object because they provide a way to tell who is
performing a certain role.
286 Chapter 12 - Creating Activity Diagrams

Figure 72 Activity Diagram with Swimlanes

You can add states and activities within swimlanes to determine which unit is
responsible for carrying out the specific activity.

As you drag a swimlane onto an Activity Diagram, it becomes a swimlane view.
Swimlanes appear as small icons in the browser, while swimlane views appear
between vertical lines with a title that you can relocate and rename.

Creating Swimlanes

You will want to create a swimlane to add partitions to your Activity Diagrams.

To create a swimlane:

1 Create an Activity Diagram.

2 Click the Swimlane icon from the Activity Diagram Toolbox.

3 Click the pointer anywhere on the Activity Diagram to place the swimlane.

Deleting a Swimlane

You can delete a swimlane from an Activity Diagram, or from the model. Deleting a
swimlane from an Activity Diagram only deletes it from the diagram; the swimlane
remains on the Model View tab in the browser. Performing a hard delete removes the
swimlane from the entire model.

Note: The model elements residing within a swimlane are not deleted from the model
or removed from the diagram when you delete a swimlane.
Swimlanes 287

To delete a swimlane entirely from a model:

1 On an Activity Diagram, select the header of the swimlane.

2 Press CTRL + D.

To delete a swimlane only from the Activity Diagram (not the entire model):

1 Select a swimlane from an Activity Diagram by clicking on the swimlane header.

2 Press Delete or click Edit > Delete.

Moving a Swimlane

You can easily change the order of the swimlanes on an Activity Diagram. When
moving a swimlane, all the model elements within that swimlane, such as an Activity,
State, or Decision, move to the new location.

Note: When moving a swimlane, all diagram elements, excluding synchronizations,
are moved with the swimlane.

To relocate a swimlane on an Activity Diagram:

1 Select the title of a swimlane.

2 Drag the header horizontally to the desired location.

Displaying Multiple Views of a Swimlane

Since a swimlane can own other activities and states in different locations within the
Activity Diagram, you may want to display multiple views of a swimlane. You can
display multiple views of a swimlane by dragging the same swimlane from the
Model View tab in the browser onto an Activity Diagram.

To display another view of a swimlane:

1 On the Model View tab in the browser, select a swimlane.

2 Drag the swimlane from the browser and place it on an Activity Diagram.

A swimlane appears in the browser and the swimlane view appears on an Activity
Diagram.
288 Chapter 12 - Creating Activity Diagrams

Changing the Assignment of Responsibility of a Swimlane

When the assignment of responsibility for a swimlane changes, you can replace an
existing swimlane on an Activity Diagram, with another swimlane.

To change the assignment of responsibility for a swimlane, use the following
steps:

1 In the Model View tab in the browser, select a swimlane.

2 Drag the swimlane over an existing swimlane on an Activity Diagram.

3 Click on the diagram to place the swimlane.

The title of the swimlane changes to the newly assigned swimlane.

Swimlane Specification Dialog

A Swimlane Specification dialog enables you to display and modify the properties
and relationships of a swimlane.

To view the Swimlane Specification dialog:

■ Select the swimlane title on an Activity Diagram and double-click
■ Right-click on a swimlane on the Model View tab in the browser

The Swimlane Specification dialog has the following tabs:

■ General, see Swimlane Specification Dialog - General Tab
■ Files, see Swimlane Specification Dialog - Files Tab

Swimlane Specification Dialog - General Tab

Name

Specifies the name of the currently selected swimlane.

Class

Specifies the name of the class the current swimlane is assigned. By default, the class
is unspecified.

Owner

Specifies the model elements that owns the selected Swimlane.
Swimlane Specification Dialog 289

Context

Specifies a view for a related set of modeling types.

Documentation

Describes model elements or relationships. The description can include information
such as roles, keys, constraints, purpose, and essential behavior of the element.

Swimlane Specification Dialog - Files Tab

Filename

Displays a list of referenced files. You can insert and delete references to files or URLs
by linking external files to model elements for documentation purposes.

Path

Specifies the location of the file or URL.

Objects and Object Flows

Typically, on Activity Diagrams, objects are model elements that represent something
you can feel and touch. It might be helpful to think of objects as the nouns of the
Activity Diagram and activities as the verbs of the activity diagram. Further, objects
on Activity Diagrams allow you to represent the input and output relationships
between activities. An object flow on an Activity Diagram represents the relationship
between an activity and the object that creates it (as an output) or uses it (as an input).

Objects

An object has state, behavior, and identity. The structure and behavior of similar
objects are defined in their common class. Each object in an Activity Diagram
indicates some instance of a class. An object that is not named is referred to as a class
instance.

If you use the same name for several object icons appearing in the same Activity
Diagram, they are assumed to represent the same object; otherwise, each object icon
represents a distinct object. Object icons appearing in different diagrams denote
different objects, even when their names are identical.

The Object icon is similar to a Class icon, except that the name is underlined:
290 Chapter 12 - Creating Activity Diagrams

Figure 73 Object

If you have multiple objects that are instances of the same class, you can modify the
object icon by setting the Multiple Instances option on the General tab in the Object
Specification dialog.

Figure 74 Multiple Instances of an Object

Concurrency

An object's concurrency is defined by the concurrency of its class. You can display
concurrency by right-clicking on an object and clicking Show Concurrency. The
adornment appears at the bottom of the Object icon.

Persistence

You can explicitly set the persistence of an object in the Object Specification dialog.
You can display this value as an adornment by right-clicking on an Object and
clicking Show Persistence. If you display both concurrency and persistence, the
object's persistence appears after the concurrency.

Object State

Most objects can appear in an infinite number of states. When you associate a new
state with an object, a new state appears in the browser along with the object. You may
specify more details of the object’s state in the State Specification dialog.

Object Flow

An object flow on an Activity Diagram represents the relationship between an activity
and the object that creates it (as an output) or uses it (as an input).

In Rational Rose RealTime, object flows appear as dashed arrows rather than solid
arrows to distinguish them from a typical transition. Object flows look identical to
dependencies that appear on other diagram types.
Objects and Object Flows 291

Object Flows and Transitions

You do not need a transition if your diagram has two activities connected through an
object and two corresponding object flows.

Modeling Object State changes

The object flow sample demonstrates how activities affect object state on activity
diagrams. The object flow sample illustrates three important aspects of activity
diagram objects:

■ Objects may appear more than once and in several states
■ Activities may change object state
■ Objects connect with activities through object flows

Figure 75 Object Flow Example

In the object flow sample, notice that the CD Player object appears on the diagram
more than once. However, each object appears in a different state: Playing, Paused,
and Stopped. Each activity changes the state of the CD Player when you push the
various buttons or perform the appropriate activity. For example, when the activity
Push Pause Button occurs, the state of the CD Player changes from [Playing] to
[Paused]. In most cases, the same object may be (and usually is) the output of one
activity, and the input of one or more subsequent activities.
292 Chapter 12 - Creating Activity Diagrams

Creating an Object

You want to create objects on Activity Diagrams to allow you to represent the input
and output relationships between activities.

To create an object:

1 Open an Activity Diagram.

2 Click Tools > Create > Object.

3 Click on the Activity Diagram to place an object.

Creating an Object Flow

Object flows appear as dashed arrows and are different from a typical transition (a
solid line). You do not require a transition if your diagram currently has two activities
connected through an object with two corresponding object flows.

To create an object flow:

1 Open an Activity Diagram.

2 Click Tools > Create > Object Flow.

3 On the Activity Diagram, click on an object or activity to draw an object flow.

Adding the Object, Object Flow, and Lock Selection Tools to the Toolsbar

By default, the Toolbar for Activity diagrams does not include the Object, Object
Flow, and Lock Selections Tools. You can easily add these tools by customizing the
Toolbar.

To add tools to the Toolbar for Activity Diagrams:

1 Right-click on the Toolbar for an Activity Diagram.

2 Click Customize.

3 In the Customize Toolbar dialog, select all desired tools from the list and click
Add.

4 Click OK.
Objects and Object Flows 293

Object Specification Dialog

An Object Specification dialog box lets you to display and modify the properties and
relationships of an object on an Activity Diagram.

To view the Object Specification dialog, select an Object on an Activity Diagram and
double-click.

The Object Specification dialog box has the following tabs:

■ General, see Object Specification Dialog - General Tab on page 294
■ Incoming Object Flows, see Object Specification Dialog - Incoming Object Flows Tab

on page 296
■ Outgoing Object Flows, see Object Specification Dialog - Outgoing Object Flows Tab

on page 296
■ Files, see Object Specification Dialog - Files Tab on page 296

Object Specification Dialog - General Tab

Name

Specifies the name of the parent class for the class instance. The name must identify a
class defined in the model.

Class

Specifies the name of the class that this object belongs. The default class for a newly
created object is (Unspecified).

If you delete a class from the model after you associated it with one or more objects,
the class name is enclosed in parentheses. If you re-create the class or create a new
class with the same name, the object becomes an instance of the new class.

State

Specifies the name for the object’s state. The default state for a newly created object is
(Unspecified).

Stereotype

Specifies the name for an object stereotype.

A stereotype represents the subclassification of a model element. Some stereotypes are
already predefined, but you can also define your own to specify new modeling types.
294 Chapter 12 - Creating Activity Diagrams

To view stereotypes on the Activity Diagrams, click Tools > Options, select the
Diagram tab, and click Label, Decoration and label, Decoration only, or Icon in the
Stereotype box. Label displays the stereotype name in angle brackets (for example,
<<stereotype>>). Decoration displays a graphic marker such as highlighting an
icon or tool. Icon displays the graphical representation, if any.

Documentation

Specifies any information regarding the selected object, such as its purpose and any
possible constraints.

Persistence

Specifies the lifetime for the object’s instances.

Persistence defines the lifetime of the instances of a class. A persistent element is
expected to have a life span beyond that of the program, or one that is shared with
other threads of control or other processes. Use this field to identify the persistence for
elements of this class:

■ Persistent - The state of the element exceeds the lifetime of the enclosing element.

■ Static - The state of the element is fixed.

■ Transient - The state and lifetime of the element are identical.

The persistence of an element must be compatible with the persistence you specified
for its corresponding class. If a class persistence is set to Persistent, the object
persistence is either persistent, static, or transient. If a class persistence is set to
Transient, the object persistence is either static or transient.

Multiple instances

Specifies that this object represents multiple instances of the same class. After you
select this option, the icon for an object on the Activity Diagram changes from one
object to three staggered objects.

Figure 76 Multiple Instance of an Object
Object Specification Dialog 295

This object group is considered one entity, but this icon indicates that several objects
are involved.

Note: If an object is displayed as a stereotype, multiple instances are not graphically
displayed.

Object Specification Dialog - Incoming Object Flows Tab

Name

Displays a list of Object Flows coming in to the selected Object.

Object Specification Dialog - Outgoing Object Flows Tab

Name

Displays a list of Object Flows going out of the selected Object.

Object Specification Dialog - Files Tab

Filename

Displays a list of referenced files. You can insert and delete references to files or URLs
by linking external files to model elements for documentation purposes.

Path

Specifies the location of the file or URL.

Object Flow Specification Dialog

An Object Flow Specification dialog box lets you to display and modify the
properties and relationships of an Object Flow on an Activity Diagram.

To view the Object Flow Specification, select an Object Flow on an Activity Diagram
and double-click.

The Object Flow Specification has the following tabs:

■ General, see Object Specification Dialog - General Tab on page 294

■ Files, see Object Flow Specification Dialog - Files Tab on page 297
296 Chapter 12 - Creating Activity Diagrams

Object Flow Specification Dialog - General Tab

Name

Specifies the name of the currently selected Object Flow.

Class

Specifies the name of the class that this Object Flow belongs.

Stereotype

Specifies a keyword that further defines the classification of the Object Flow.

A stereotype represents the subclassification of a model element. Some stereotypes are
already predefined but you can also define your own to specify new modeling types.

To view stereotypes on the Activity Diagrams, click Tools > Options, select the
Diagram tab, and click Label, Decoration and label, Decoration only, or Icon in the
Stereotype box. Label displays the stereotype name in angle brackets (for example,
<<stereotype>>). Decoration displays a graphic marker such as highlighting an
icon or tool. Icon displays the graphical representation, if any.

Documentation

Describes information, such as purpose and essential behavior, for the Object Flow.

Object Flow Specification Dialog - Files Tab

Filename

Displays a list of referenced files. You can insert and delete references to files or URLs
by linking external files to model elements for documentation purposes.

Path

Specifies the location of the file or URL.
Object Flow Specification Dialog 297

Cutting Objects on Activity Diagrams

Use the Cut command from the Edit menu to remove the selected items from the
current diagram and places them on the clipboard. From the clipboard, you can paste
the item(s) on any related diagram. You can copy and then paste items from an
Activity Diagram to another Activity Diagram in the same state machine, or in a
different state machine.

When you cut an item, all relationships, such as transitions, for that item are also cut.

This command works only on the graphic representation of a diagram. It does not
change the current model.

Copying Objects on Activity Diagrams

Use the Copy command from the Edit menu to copy the selected items to the
clipboard. You can copy and then paste items from an Activity Diagram to another
Activity Diagram in the same state machine, or in a different state machine.

The Copy command works only on the graphic representation of a diagram. They do
not change the current model.

Pasting Objects on Activity Diagrams

Use the Paste command from the Edit menu to paste the items from the clipboard into
the current diagram. From the Clipboard, you can paste items to another Activity
Diagram in the same state machine, or in a different state machine.

The Paste command places previously cut or copied items into the current diagram.
The pasted items appear in the center of the current view of the diagram.
298 Chapter 12 - Creating Activity Diagrams

13Creating Sequence
Diagrams
Contents

This chapter is organized as follows:

■ Creating a Sequence Diagram on page 299
■ Cloning a Sequence Diagram on page 302
■ Using Copy and Paste within Sequence Diagrams on page 302
■ Using the Sequence Diagram Editor on page 305
■ Sequence Diagram Toolbox on page 307
■ Send Message Specification - Adding Ports to Capsule Classes on page 315
■ Sequence Validation Dialog on page 318
■ Focus of Control on page 319

Creating a Sequence Diagram

Sequence diagrams can be created in both the Use Case View and the Logical View. A
Sequence diagram shows a particular interaction scenario among roles or instances in
the model. A Sequence diagram is created from a collaboration diagram, which shows
a general interaction pattern among roles or instances. (This includes capsule
structure diagrams.) That is, the collaboration diagram shows the general pattern of
associations among roles or instances, which is often created first and usually evolved
in parallel with the associated Sequence diagrams. The Sequence diagram shows a
specific sequence of interactions among roles or instances for a particular scenario.

Sequences can also be associated with protocols. Protocols, which are currently
always binary, do not show their collaboration because it is fixed.

Creating a New Diagram

There are four ways to create a new Sequence diagram: from the

■ Model View Tab in the browser
■ structure diagram browser
■ structure or collaboration diagram
■ trace window
299

From the Browser

To create a new Sequence diagram from the browser:

1 Select or create a collaboration diagram, capsule structure, protocol, package, use
case, or class.

2 Right-click on the element in the model browser.

3 Select New > Sequence Diagram from the popup menu.

4 Enter the name of the Sequence diagram.

From the Structure Diagram Browser

To create a Sequence diagram from the structure diagram browser:

1 Right-click on the Sequence Diagrams folder in the Structure diagram browser.

2 Select Add New Sequence Diagram.

From the Collaboration or Structure Diagram

To create a new Sequence diagram from the collaboration or structure diagram:

1 Select or create a collaboration diagram, capsule structure or protocol.

2 Multi-select the model elements from the diagram to pre-populate the Sequence
diagram.

3 Click in the diagram background and select New > Sequence Diagram from the
popup menu.

4 Enter the name of the Sequence diagram.

Editing a Diagram

To edit a Sequence diagram:

1 Double-click on the diagram in the model browser.

The Sequence Diagram editor appears.

You can also select the Open menu item in the context menu for the Sequence
diagram in the model browser.

2 Place capsules or class roles or instances in the diagram by dragging the class or
capsule from the model browser, or by using the tools in the Sequence diagram
toolbox.
300 Chapter 13 - Creating Sequence Diagrams

3 Sequence diagrams are by default empty when created, except when created from
protocols. Instances can be added to the Sequence diagram by dragging roles from
the roles navigator within the structure browser. An instance representing the
containing capsule class can also be added by dragging that class from the browser
into the Sequence diagram.

A Sequence diagram can also be pre-populated with instances by selecting the
desired set of roles in the structure or collaboration diagram and then selecting the
Create Sequence Diagram menu item from the background menu of the diagram.

For structure diagrams, you can also optionally select the border if you want to
show interactions between the capsule and its roles.

Note: There are no borders to select in collaboration diagrams.

4 Draw messages among instances using the toolbox.

Adding Instances

The instances or roles in the Sequence diagram should generally be drawn from the
instances or roles in the collaboration diagram. Collaboration and Sequence diagrams
can show interactions among object instances or among roles. In most cases, they are
more useful demonstrating interactions among roles, because a role demonstrates a
part played in the scenario, which could be played by more than one instance.

Sequence diagrams are not automatically populated with instances. The instances
must be added, either by dragging classes from the model browser or by using the
instance tool from the toolbox.

Instances added using the instance tool are unspecified by default, which means that
the tool does not know what actual design element the instance corresponds to. You
can specify a role or create a new one using the drop-down model box that appears
when you create a new instance. The Sequence diagram is not a complete specification
until all instances are mapped to actual design elements. Use the Path field on the
interaction instance specification dialog to specify which design instance the sequence
instance maps to.

A Sequence diagram created under a protocol is pre-populated with two instances:
base and conjugate. These instances cannot be removed and other instances cannot be
added.
Creating a Sequence Diagram 301

Defining Messages

Messages are created between instances or between instances and the environment on
the diagram to show interaction. Messages can represent: asynchronous sends,
synchronous sends, function calls, instantiations, destructions, FOC (Focus of
Control) blocks, local states, local actions, and coregions. There is a separate message
tool for each of these.

Specifying Message Details

Sequence diagrams act as design specifications. A complete Sequence diagram within
a capsule structure can be verified by model execution. To verify a Sequence diagram,
the sequence instances must be mapped to design instances, and the send messages
among capsule instances must be specified. The specification of the message includes
identifying the source and destination ports, signal names, and possibly data types.

Cloning a Sequence Diagram

To clone a Sequence diagram:

1 In the browser, select the Sequence Diagram you want to clone.

2 Again in the browser, Control-drag it onto a Collaboration.

Note that you can select the same Collaboration that contains the original
Sequence Diagram.

A new Sequence Diagram is created for you under this Collaboration.

Using Copy and Paste within Sequence Diagrams

You can use Copy and Paste commands for elements within a single Sequence
diagram, and to copy and paste from one Sequence Diagram to another. You can copy
and paste the following Sequence diagram elements:

■ Interaction instances

■ Certain types of Messages (synchronous and asynchronous send messages, call
messages, states, and actions)

■ Standard diagram objects (constraints, notes, and text boxes)
302 Chapter 13 - Creating Sequence Diagrams

Interaction Instances

You can use the Copy and Paste commands on interaction instances and the
properties associated with an interaction instance are preserved. You can select one or
more interaction instances at the same time. When pasting interaction instances, they
appear vertically at the top level and in the center of the visible area of the diagram.

If the diagram you are copying an interaction instance to (the destination diagram)
resides under a collaboration that does not have classifier roles listed in the interaction
instance, the roles on the pasted interaction instance will be reset.

Note: You cannot copy the Environment, or create and destroy messages.

Messages

Messages are created between instances or between instances and the Environment on
the diagram to show interaction. Messages can represent: asynchronous sends,
synchronous sends, function calls, instantiations, destructions, FOC (Focus of
Control) blocks, local states, local actions, and coregions.

You can use Copy and Paste commands on the following messages:

■ Synchronous Send Message
■ Asynchronous Send Message
■ Call Messages
■ Local Actions
■ Local States

You cannot use Copy and Paste commands on the following elements:

■ Focus of Control Blocks (FOCs)
■ Return Messages
■ Reply Messages
■ Coregions
■ Create message
■ Destroy/Terminate Messages

You can copy and paste multiple messages at the same time, and those copied
messages will preserve attributes of the original message when pasted.
Using Copy and Paste within Sequence Diagrams 303

If you have the Auto-Create FOC’s option selected on the destination diagram:

■ New FOCs are created on the pasted messages
■ Return messages are created for pasted Call messages
■ Reply messages are created for pasted synchronous send messages.

Note: You cannot paste existing FOC blocks and Return/Reply messages. To create
new FOCs and Return/Reply messages, prior to using the Copy and Paste
commands, right-click on the Sequence diagram and select Auto-Create FOC’s.
Auto-created FOCs and Return/Reply messages are not copies of the original FOCs
and Return/Reply messages. Copying creates new FOCs and Return/Reply
messages.

Message Positioning in the Destination Diagram

Pasted message appear after all existing messages and FOCs on the interaction
instances, but before any terminate and destroy messages if any exist for the
interaction instance.

Note: When pasting messages, the display on the diagram in the order they were
selected for when copied. When pasting several messages at the same time,
positioning applies to messages one-by-one, possibly creating a vertical separation
between messages that did not have any on the originating diagram.

Pasting Messages into Originating Diagram

If the destination diagram is the same as the source diagram, a pasted message
appears between the same interaction instances as the original message.

Pasting Messages into Another Diagram

If the destination diagram is different from the source diagram, a pasted message
appears between interaction instances that have the same internal numbers as the
interaction instances. Internal numbers do not necessarily correspond to the visual
order of interaction instances on a Sequence diagram.

If no interaction instance exists in the destination diagram (excluding the
Environment itself), a new "Unspecified" interaction instance is created before the
messages are pasted on to the diagram.
304 Chapter 13 - Creating Sequence Diagrams

Standard Diagram Elements

The following standard diagram elements will support copy/paste on sequence
diagrams:

■ Constraints
■ Notes
■ Text boxes

Note: You cannot copy Anchors on Sequence diagrams.

Enabling Standard Functionality

Cut and Duplicate commands are available for the elements that support the Copy
and Paste commands.

Automatic Scrolling

If pasted elements appear outside of the visible area, the Sequence diagram scrolls so
that visible area for the pasted element is centered.

Known Limitations

Pasting messages on an Interaction Instance that has limited space between the
next-to-last message and the instance’s terminate/destroy message may created
pasted message overlapping either the next-to-last message or the terminate/destroy
message. You must manually adjust the placement of pasted messages.

You cannot copy model elements from a Sequence diagram if that diagram was
created from a trace with Don’t save with the model selected.

Using the Sequence Diagram Editor

A Sequence diagram is a graphical view of a scenario that shows an object interaction
in a time-based sequence. Sequence diagrams establish the roles of objects and help
provide essential information to determine class responsibilities and interfaces.

A Sequence diagram has two dimensions: vertical placement represents time and
horizontal placement represents different objects.

Elements of the Sequence diagram, such as instances and messages are added using
the toolbox.

The window title bar shows the full name of the Sequence diagram.
Using the Sequence Diagram Editor 305

You can access the following Specification dialogs from elements on the Sequence
diagram:

■ Instance Specification dialog
■ Interaction Specification dialog
■ Send Message Specification dialog
■ Call Message Specification dialog
■ Create Message Specification dialog
■ Return Message Specification dialog
■ Destroy Message Specification dialog
■ Local State Specification dialog
■ Coregion Specification dialog
■ Local Action Specification dialog
■ Reply Message Specification dialog

The popup menu for the Sequence diagram editor includes a validate command that
opens the validation dialog. It also contains an Auto-generate FOC entry, which
controls whether new send or call messages automatically get an FOC (Focus of
Control) - and a return message, if appropriate - when they are created.

Note: If you are not interested in message activation, turn the Auto-generate FOC
entry off. This simplifies the diagram display considerably.

Opening Collaboration Diagrams

To open the Collaboration diagram associated with a particular Sequence diagram,
select Open Collaboration Diagram from the popup menu for the background of the
Sequence diagram.

Reorienting Messages

You can reorient messages to make semantic changes in the diagram, for example, to
change the sender or receiver for a message.

Using the sender or receiver handles, you can change the sender or receiver. Using the
Re-order handle (Middle handle), you can change the order of this message on the
sender and receiver.
306 Chapter 13 - Creating Sequence Diagrams

Figure 77 Message Handles

Moving Messages

You can move messages in a Sequence diagram to create more or less space between
them. Message movement is restricted to avoid accidentally altering the semantics of
the diagram. When moving a message, do not drag it using one of the handles.

Sequence Diagram Toolbox

The Sequence diagram toolbox contains tools for adding elements to the Sequence
diagram.
Sequence Diagram Toolbox 307

Figure 78 Sequence Diagram Toolbox

Selector Tool

Select objects for moving, resizing, and so forth.

Zoom Tool

Zooms in on a portion of the diagram. Click on the Zoom tool and then click on the
area of the diagram to zoom in on.

Text Tool

Adds text anywhere in the diagram.

Note Tool

Annotates the diagram with textual notes. This is useful for marking up the diagram
with explanations, review comments, and so forth. You can drag and drop a diagram
or external document from the browser onto a note. Notice that the name of the
diagram or external document is underlined. If you double-click on the note, the
diagram or external document is opened. You can undo and redo this command.
308 Chapter 13 - Creating Sequence Diagrams

Constraint Tool

Adds UML constraints to the diagram. A constraint can be anchored to a view
element by using the anchor tool. Currently, constraints do not have any semantic
meaning to the tool.

Note Anchor Tool

Anchors a note or constraint to a particular element on the diagram.

Interaction Instance Tool

Adds an object instance to the diagram. Instances are added along the horizontal axis
at the top of the diagram.

Synchronous Send Message Tool

Adds a message between two instances. Synchronous send messages block the sender
waiting for a return (like a function call). This corresponds to the ‘invoke’ operation.

Asynchronous Send Message Tool

Adds a message between two instances. Asynchronous messages do not block the
sender.

Call Message

Adds a message between two instances. Call messages are like function calls, so the
sender is blocked waiting for a return.

Add FOC

Adds an FOC (Focus of Control) block to the selected message. Select the tool and
click on the send or call message you want to add an FOC to.

Note: If the selected message can have a reply or return (that is, a synchronous send
or call), it is automatically generated.

Create Message Tool

Indicates that one instance creates another instance dynamically. The create message
indicates the moment of creation of the destination instance. The new instance opens
at the end of the create message.
Sequence Diagram Toolbox 309

Destroy Message Tool

Indicates that one instance destroys (deletes) another instance dynamically. The
destroy message indicates the moment of destruction of the destination instance.

Local State Tool

Indicates a state change in one of the instances. Click on one of the instances in the
diagram to place a new state at the selected location.

Local Action Tool

Indicates an action carried out by one of the instances. The action represents a
significant activity or operation being performed by the instance at that time.

Coregion Tool

Indicates a set of events/messages whose ordering is undefined. That is, although the
messages appear in a particular order (as indicated by their vertical placement on the
instance line), the actual run-time ordering may vary.

Interaction Instance Specification

The interaction instance specification has information about an instance on a
Sequence diagram.

It contains two tabs: General and Files.

General Tab

Name

Specifies the name of this instance. Instances are unnamed by default. The name is
displayed as part of the instance label on the diagram.

Path

Identifies the role path for an instance in a collaboration. The drop-down menu allows
you to choose from the available roles in the immediate collaboration associated with
the Sequence diagram.
310 Chapter 13 - Creating Sequence Diagrams

For Sequence diagrams under structure diagrams, it is also possible to show
interactions between the capsule and its roles. To do this, pick the capsule from the
path pull-down menu.

Note: If the Path box contains a role, the corresponding label becomes a hot link to the
Specification dialog for that classifier role.

Stereotype

Specifies the (optional) stereotype of this instance.

Documentation

Use the Documentation field to describe this instance.

Files Tab

The Files tab allows for linking external files.

Interaction Specification

The Interaction Specification is used to describe interactions on a Sequence diagram.

It has two tabs: General and Files

General Tab

Name

Specifies the name of the interaction.

Stereotype

Specifies the (optional) stereotype of this instance.

Documentation

Describes this interaction.

Files Tab

The Files tab allows for linking external files.
Sequence Diagram Toolbox 311

Local Action Specification

The Local Action Specification is used to describe actions in Sequence
diagrams.

It contains General, Detail, and Files tabs.

General Tab

Name

A name for the local action, which is displayed on the Sequence diagram.

Stereotype

Specifies a stereotype for the local action.

Detail Tab

Sender

Non-editable field with the name of the instance where the local action is defined.

Receiver

Not applicable to a local action.

Time

Capture the time of the action.

Effect

A textual description of the effect of the local action.

Local State Specification

The Local State Specification contains General, Detail, and File tabs.

General Tab

Name

A name for the local state. The name is displayed on the Sequence diagram.
312 Chapter 13 - Creating Sequence Diagrams

Stereotype

Specify a stereotype for the local state.

Detail Tab

Sender

Non-editable field with the name of the instance where the local state is defined.

Receiver

Not applicable for the local state

Time

Capture the time of the state change.

Message Specification

There are several different kinds of messages, but all have similar controls in the
Message Specification dialog.

The Message Specification dialog contains the following tabs: General, Detail, Port
Detail (only for Send messages), and Files.

General Tab

Name

A name for the message. The name is displayed on the Sequence diagram.

Stereotype

Specify a stereotype for the message.

Documentation

Specify documentation for this element.

Detail Tab

Sender

Non-editable field with the name of the instance where the message originated.
Sequence Diagram Toolbox 313

Receiver

Non-editable field with the name of the instance where the message ends.

Time

Capture the time that the message was sent.

Data

A textual description of the message data.

Port Detail Tab

This tab is only significant for messages between capsule roles. The data on this tab
can be filled in by selecting from the pull-down menus, which include data from the
collaboration diagram.

If the fields on this tab are filled in for a Sequence diagram that acts as a behavior
specification, then the data can be compared to the actual data captured from a
run-time execution trace to verify the behavior at execution time against the
specification.

From Port

The name of the port on the sender capsule.

Note: If the From Port box contains a port, the corresponding label becomes a hot link
to the Specification dialog for that port.

To Port

The name of the port on the receiver capsule.

Note: If the To Port box contains a port, the corresponding label becomes a hot link to
the Specification dialog for that port.
314 Chapter 13 - Creating Sequence Diagrams

Signal

The name of the signal from the ports' protocol.

Note: If the Signal box contains a signal, the corresponding label becomes a hot link
to the Specification dialog for that signal.

Delivered

Capture the time the message was delivered to the receiver.

Priority

The priority at which the message is sent. (Applies only to an Asynchronous Send
Message.)

Send Message Specification - Adding Ports to Capsule Classes

The drop-down list for the From port (see Figure 80) and To port (see Figure 81) boxes
in the Port Detail tab in the Send Message Specification dialog box have a new item
called <<Create a new Port>>.

The <<Create a new Port>> option allows you to:

■ create a new protocol if the model does not currently contain any
■ select a existing protocol
Send Message Specification - Adding Ports to Capsule Classes 315

Figure 79 Send Message Specification Dialog Box

Note: After you select <<Create a new Port>>, the <<Create a new Protocol>> list
appears. To cancel, click ESC.
316 Chapter 13 - Creating Sequence Diagrams

Figure 80 Send Message Specification Dialog - From Port

In the From port box, the <<Create a new Port>> item appears in the list only when
the sender is a capsule.
Send Message Specification - Adding Ports to Capsule Classes 317

Figure 81 Send Message Specification Dialog Box- To Port

In the To port box, the <<Create a new Port>> item appears in the list only when the
receiver is a capsule.

Sequence Validation Dialog

A Sequence diagram can be used as a specification of the interaction among object
roles and/or instances. Sequence diagrams are very useful as specifications of design
intent to be checked against actual model execution results.

The Sequence Diagram Validation Dialog allows you to check the Sequence diagram
specification for missing elements. It provides control over what aspects of the
Sequence diagram should be checked for completeness.
318 Chapter 13 - Creating Sequence Diagrams

The options to control what to check during verification are:

■ Instance - Checks that the path of each instance in the interaction is defined.

■ Sender port - Verifies that the sender port names in the sequence are defined and,
possibly, resolved to an existing port.

■ Receiver port - Verifies that the receiver port names in the sequence are defined
and, possibly, resolved to an existing port.

■ Signal/Operation - Verifies that the signal names for send or operation names for a
call are defined and, possibly, resolved to an existing signal.

■ Data - Verifies that the data types of all messages in the sequence are defined.

■ Validate - Performs the validation. Results appear in the Error log.

Validation Error Log

Contains the results of the validation. Each item in the list indicates an undefined or
unresolved sequence element.

Focus of Control

Focus of Control (FOC) is an advanced notational technique that enhances Sequence
diagrams. This technique shows the period of time during which an object is
performing an action, either directly or through an underlying procedure.

FOC is portrayed through narrow rectangles that adorn lifelines (the vertical lines
descending from each object). The length of a FOC indicates the amount of time it
takes for a message to be performed. When you move a message vertically, each
dependent message moves vertically as well. Also, you can reorient a message
vertically off the source FOC to make it detached and independent.

Activators

Messages that originate from an FOC are said to have been activated by the message
that started that FOC.
Focus of Control 319

A Sequence diagram with FOC notation and scripts follows:

Figure 82 Focus of Control Diagram Example

Coloring a Focus of Control

To help distinguish a particular FOC from other items in a Sequence diagram, you can
fill a FOC with a color.

To color a FOC:

1 Select the FOC you want to color.

2 Click Diagram Object Properties from the Edit menu and then click Fill Color.

3 Click on the color you want to make the selected FOC.

4 Click OK.
320 Chapter 13 - Creating Sequence Diagrams

Navigating Sequence Diagrams

You can easily navigate a sequence diagram by using the arrow keys to move the
selection from one view to another. This type of navigation provides you with an
integrated view of the environment.

The only views supported for navigation are:

■ local actions
■ local states
■ all message types

Note: Focus of control blocks, interaction instance views (the rectangle at the top of
the lifeline), lifeline views, and coregions do not support this type of navigation.

Selecting a Current Lifeline

The current lifeline is set implicitly the first time that you start to navigate, or by
selecting an element using the mouse (an element not connected to the current
lifeline), and then starting to navigate from that selection. For example, you can select
the message 1.1:c in Figure 85 and press CTRL and the down arrow. This action makes
the lifeline extending from repeater the current lifeline.
Navigating Sequence Diagrams 321

Figure 83 Current Lifeline Selection

Note: The up and down arrow keys move the selection to the next selectable element
on the current lifeline (the vertical lines descending from each object).

You can identify the current lifeline by the selection marks on the lifeline (Figure 84).
If none of the lifelines in the sequence diagram have selection marks, the initial
navigation was not successful.

Once you select a current lifeline, you can make another lifeline current using the left
and right arrow keys to move horizontally to the nearest lifeline. When following a
message, such as moving to the right from the left end of a message between adjacent
lifelines, the current lifeline will change, and the selected message remains selected. If
the nearest lifeline in the appropriate direction is selected, the message on that lifeline
nearest the intersection point will be selected.
322 Chapter 13 - Creating Sequence Diagrams

Figure 84 Lifeline Selection

After you select a current lifeline, you can make another lifeline current using the left
and right arrow keys to move horizontally to the nearest lifeline. When following a
message, such as moving to the right from the left end of a message between adjacent
lifelines, the current lifeline will change, and the selected message remains selected. If
the nearest lifeline in the appropriate direction is selected, the message on that lifeline
nearest the intersection point will be selected.

By default, when you first select a message and attempt to navigate from it, the
current lifeline is set to the left end of the message (regardless of the message
orientation). Press CTRL and an arrow key to select the right end. When you establish
the current lifeline, pressing CTRL while using the arrow key toggles the current
lifeline from one end of the message to the other.

The environment in a sequence diagram has two visual lifelines at the left and right
borders of the diagram (see Figure 85). However, these border lifelines are modeled
by one interaction instance and each represent a single timeline.
Navigating Sequence Diagrams 323

Figure 85 Selected Lifeline for Left Border

Note: If you set the left or right border as the current lifeline, selecting the up or down
arrow selects the next element in the integrated view. This may result in the view
moving from the left border to the right border, or vice versa. This type of navigation
sequence illustrates the actual timeline of events for the environment.

Saving Sequence Diagrams as Controlled Units

You can save Sequence Diagrams as controlled units. A sequence diagram is owned
by a Collaboration diagram (an interaction). The controllable unit will be the
interaction and has the file extension .rtintractn. Sequence Diagrams are owned by
Collaborations. This includes the special case of the Capsule Collaboration which
owns the Capsule Structure Diagram. Collaborations are only controllable if they are
324 Chapter 13 - Creating Sequence Diagrams

directly owned by a package. They are not controllable if they are owned by a capsule
or class. Sequence Diagrams are controllable only if they are owned by a controllable
Collaboration.

Note: After saving a controlled Collaboration with the Rational Rose RealTime
toolset, you will not be able to load the petal file with any previous version of the
toolset, even if you have no controlled Sequence Diagrams.

For controllable Collaboration diagrams, you can use the two new context menu
entries, Control Child Units and Uncontrol Child Units.

Control Child Units is enabled when there is at least one uncontrolled child Sequence
Diagram. Uncontrol Child Units is enabled when there is at least one controlled child
Sequence Diagram.

There are two new options on the Unit Information tab for controlled interactions:
Control new child units and Disallow model-relative pathnames.

Owned by model

Indicates whether the unit is owned by this collaboration, or whether it is owned by
another model and shared into this model. When selected, it indicates that this
collaboration is owned by another model.

Under source control

Indicates whether this element has been added to source control.

Control new child units

Controls whether newly created sequence diagrams in this collaboration will be
individually controlled, by default. When selected, any new child units (sequence
diagrams) for this element will be controlled.

Disallow model-relative pathnames

Informs Rational Rose RealTime not to use the implicit and virtual pathmap symbol
when saving units.

Filename

Specifies the fully-qualified file name for the collaboration.

Version

Indicates the version information as defined by your configuration management
application.
Saving Sequence Diagrams as Controlled Units 325

Uncontrolling Sequence Diagrams

You can uncontrol sequence diagrams by:

■ Using the context menus directly

■ Controlling and then uncontrolling an ancestor unit such as the parent
collaboration, and the owning package of the collaboration

Importing and Exporting Sequence Diagrams

You cannot export sequence diagrams (or collaborations) directly; however, you can
export the containing package.

RRTEI

The RRTEI allows the new attributes for Interactions and Collaborations to be
manipulated through the methods exposed by ControllableElement. To automate the
process of making sequence diagrams controllable units for existing models, you can
use, and modify, the Control Interaction scripts in the following location:

$ROSERT_HOME/Scripts/ControlInteractions

We recommend that you make a copy of these scripts before modifying them.

Control Interaction Scripts

There are three SummitBasic scripts included with this patch. The purpose of these
Control Interaction scripts is to automate the process of making sequence diagrams
controllable units for existing models. This process is divided into three scripts to
provide you with the opportunity to take some intermediate actions at various stages
within the conversion process.

After you install this patch, you will find the Control Interaction scripts in the
following location:

$ROSERT_HOME/Scripts/ControlInteractions

The Control Interaction scripts are:

■ ControlInteractions_CheckOut.ebs
■ ControlInteractions_AddSequenceDiagrams.ebs
■ ControlInteractions_CheckIn.ebs
326 Chapter 13 - Creating Sequence Diagrams

ControlInteractions_CheckOut.ebs

This script is the first of three scripts used to make Sequence Diagrams controllable.
This script searches the currently open model file for Collaborations that are a child of
a Package. The following activities occur for each Collaboration:

■ If it is not currently controlled, the Collaboration will be controlled.
■ If not currently under source control, the Collaboration is added to source control.
■ The Collaboration file (.rtcollab) is checked out.
■ The Control New Child Units property is set to TRUE.
■ A child directory associated with the Collaboration is created and added to source

control.
■ If required, the containing parent package for a Collaboration is also checked out.

Before Starting This Script:

■ The model must be under source control.

■ All packages containing a Collaboration that will be modified must already be
under source control.

■ Rational Rose RealTime must be at patch level 6.4.353 or higher.

ControlInteractions_AddSequenceDiagrams.ebs

This is the second of three scripts used to make Sequence Diagrams controllable. This
script searches the model for Collaborations that are checked out and are a child of a
package. For each Collaboration, its contained Sequence Diagrams that are not
controlled are made controllable, and may be added to source control, if required.

Before Starting This Script:

■ The model must be under source control.

■ The first script, ControlInteractions_CheckOut.ebs, ran and it completed
successfully.

■ Rational Rose RealTime must be at patch level 6.4.353 or higher.
Saving Sequence Diagrams as Controlled Units 327

ControlInteractions_CheckIn.ebs

This is the third of three scripts used to make some Sequence Diagrams controllable.
This script searches the model for Collaborations that are checked out and are
children of a Package. Each Collaboration will be checked in, and if necessary, its
parent package will be checked in.

Before Starting This Script:

■ The model must be under source control.

■ The first two scripts, ControlInteractions_CheckOut.ebs and
ControlInteractions_AddSequenceDiagrams.ebs, were run and they completed
successfully.

■ Rational Rose RealTime must be at patch level 6.4.353 or higher.

Running Scripts to Make Sequence Diagrams Controllable

To make Sequence Diagrams controllable:

1 Ensure that Rational Rose RealTime is at patch level 6.4.353 or higher.

2 Start Rational Rose RealTime.

3 Open your model.

4 Ensure that the model is under source control.

5 Click Tools > Open Script.

6 Browse to the following directory:

$ROSERT_HOME/Scripts/ControlInteractions
328 Chapter 13 - Creating Sequence Diagrams

7 Select ControlInteractions_CheckOut.ebs.

8 Click Start () to execute the first script.
Saving Sequence Diagrams as Controlled Units 329

If this script determines that no changes are required, a dialog lists the
Collaborations that were not added to source control, and the
ControlInteractions_CheckOut.ebs script will terminate.

9 Click OK.

If one or more Collaborations need to be controlled, you are prompted for
permission to check out the parent package for the Collaboration.

You must check out the parent package for the Collaboration because the
definition of an uncontrolled collaboration is part of the parent package. This
definition must be removed from the parent package and put into its own
controllable unit.

10 Click Yes to permit the checkout of the required packages.

11 In the Checkout dialog, select the packages to check out. If you did not allow
permission to check out the packages, the affected collaborations are ignored.
After the checkout completes, the uncontrolled collaborations are made
controllable.
330 Chapter 13 - Creating Sequence Diagrams

If the script detects that some collaborations need to be added to source control, you
are prompted for permission. If you click Yes, the Add To Source Control dialog
appears.

12 Select the desired collaboration to add to source control.

13 Click OK.

Next, the script attempts to check out those collaborations that require changes.

The CheckOut dialog opens.

14 Select the collaborations to check out.

15 If the script detects that there are collaborations under source control that do not
have a child directory which is also under source control, it will prompt you to add
child directories to source control. Click Yes to open the Add To Source Control
dialog to select the directories to add to source control.
Saving Sequence Diagrams as Controlled Units 331

16 Optional. You can make manual changes to the script, if required. For example, if a
collaboration was checked out and you do not want it modified, you can click
Undo checkout for the collaboration, or if a collaboration you want modified is not
checked out, you can manually check it out.

17 Click Tools > Open Script.

18 Browse to the following directory:

$ROSERT_HOME/Scripts/ControlInteractions

19 Select ControlInteractions_AddSequenceDiagrams.ebs.

20 Click Start () to execute the second script.

The script will control all sequence diagrams in any checked-out collaborations.

21 If the script detects that some elements need to be added to source control, you are
prompted for permission. If you click Yes, the Add To Source Control dialog
appears.

22 The script will prompt you for permission to add newly controlled sequence
diagrams to source control. If you click Yes, they are added to source control.

23 Optional. Modify the script, if required. For example, if the script reported that a
sequence diagram was not added to source control, you can investigate why it
wasn't added, fix the problem and then manually add it to source control.

24 Click Tools > Open Script.

25 Browse to the following directory:

$ROSERT_HOME/Scripts/ControlInteractions

26 Select the ControlInteractions_CheckIn.ebs script.

27 Click Start () to execute the third script.

The script will search for checked out collaborations and will check them in to your
source control tool.
332 Chapter 13 - Creating Sequence Diagrams

14Defining Capsules and
Classes
Contents

This chapter is organized as follows:

■ Creating a Class on page 333
■ Creating New Attributes on page 334
■ Creating New Operations on page 334
■ Class Specification on page 335
■ Attribute Specification Dialog on page 345
■ Operation Specification Dialog on page 347
■ Creating a Capsule Class on page 353
■ Capsule Diagrams on page 354
■ Capsule Specification on page 354

Creating a Class

Classes can be created in either the Logical View or the Use Case View in the Model
View Tab in the browser.

To create a class:

1 Right-click on the Logical View package in the Model View Tab in the browser (or
on the Use Case View package).

2 Select New >Class from the menu.

A new class is created with a default name of 'NewClass1'.

3 Type over the name to change it.

333

Creating New Attributes

To create a new attribute on a class:

1 Right-click on the class in the Model View Tab in the browser.

2 Select New > Attribute from the menu.

3 Double-click on the attribute to open the Attribute Specification Dialog to set the
name, class or type, code generation properties (for example, virtual), and so forth.

Alternatively:

1 Open the Class Specification.

2 Select the Attributes tab.

3 Right-click and select Insert from the popup menu.

You can reorder attributes in the Specification dialog using drag-and-drop. You can
undo and redo this action.

Creating New Operations

To create a new operation on a class:

1 Right-click on the class in the Model View Tab in the browser.

2 Select New > Operation from the menu.

3 Double-click on the operation to open the Operation Specification Dialog to set the
name, parameters, return values, and so forth.

Alternatively:

1 Open the Class Specification.

2 Select the Operations tab.

3 Right-click and select Insert from the popup menu.

4 Double-click on the new operation and use the Operation Specification Dialog to
specify the operation details.
334 Chapter 14 - Defining Capsules and Classes

You can reorder operations in the Specification dialog using drag-and-drop. You can
undo and redo this action.

Class Specification

Use the Class Specification dialog to edit the properties of a class. The dialog provides
access to all member attributes and operations as well.

Class Specification Content

The class specification contains the following tabs:

■ Class Specification - General Tab
■ Class Specification - Detail Tab
■ Class Specification - Operations Tab
■ Class Specification - Attributes Tab
■ Class Specification - Nested Tab
■ Class Specification - Components Tab
■ Class Specification - Relations Tab
■ Class Specification - Files Tab

Browse Button

Clicking Browse has the following options:

■ Select in Browser - Highlights the selected element in the browser.

■ Open Diagram - Opens the diagram associated with the object.

■ Browse Parent - Opens the specification for the parent of the selected element.

■ Browse Selection - Opens the specification for the currently selected element.

■ Show Usage - Displays a list of all diagrams in which the currently selected
element is the supplier, or in the case of a collaboration diagram, a list which
shows the usage of a message.

■ Find References - Finds all references of the item in the model by searching all
fields - excluding Documentation - and searching all objects - excluding Diagrams,
Component Instances, devices, Instances, Interactions, Messages, Packages,
Probes, and Processors. The results appear in the Find tab in the Output window.
Class Specification 335

Class Specification - General Tab

Name

The name of the class.

Parent

The parent the class belongs to (its package, or class in the case of a nested class) is
displayed in this static field.

Type

The Type choices for the selected model element are:

■ Class

■ Parameterized class

■ Instantiated class

■ Utility class

■ Parameterized class utility

■ Instantiated class utility

■ Metaclass

Stereotype

A stereotype represents the subclassification of an element. It represents a class within
the UML metamodel itself, that is, a type of modeling element. Some stereotypes are
already predefined, but you can also define your own to add new kinds of modeling
types.

Stereotypes can be shown in the browser and on diagrams. The name of the
stereotype may appear in angle brackets <<>>, depending on the settings found in
either the Diagram or Browser tabs of the Options dialog box located under the Tools
menu. Refer to the Stereotype chapter for more information on stereotypes.

To show stereotypes on the diagrams, click Options from the shortcut menu and click
Stereotype Name or Stereotype Icon. Stereotype Name displays the name in angle
brackets (that is, <<stereotype>>). Stereotype Icon displays the graphical
representation.
336 Chapter 14 - Defining Capsules and Classes

Language

Select the implementation language for the class from the available languages. The
analysis selection indicates that no code will be generated for the class.

Visibility

The Visibility field specifies how a class and its elements are viewed outside of the
defined package

The Visibility field can be set only in the specification. No special annotation is related
to access control properties.

To change the visibility type for the class, click on the appropriate option in the
visibility field. You can display the implementation visibility in the component
compartment. You can display visibility in an icon through the shortcut menu.

Documentation

Specifies documentation on this element.

Class Specification - Detail Tab

Multiplicity

The Multiplicity field specifies the number of expected instances of the class. In the
case of relationships, this field indicates the number of links between each instance of
the client class and the instance of the supplier. See Cardinality Options for more
information.

Select: To Indicate:

Public The element is visible outside of the enclosing package and you
can import it to other portions of your model. Operations are
accessible to all clients.

Protected The element is accessible only to subclasses, friends, or the class
itself.

Private The element is accessible only to its friends or to the class itself.

Implementation The element is visible only in the package in which it is defined.
An operation is part of the implementation of the class.
Class Specification 337

Space

Specifies the amount of storage required by objects of the class during execution.

Persistence

Defines the lifetime of the instances of a class. A persistent element is expected to have
a life span beyond that of the program or one that is shared with other threads of
control or other processes.

The persistence of an element must be compatible with the persistence that you
specified for its class. If a class persistence is set to Persistent, then the object
persistence is either persistent, static or transient. If a class persistence is set to
Transient, then the object persistence is either static or transient.

You can set the persistence only through the specification.

To set the persistence, click on the applicable option in the Persistence field. You can
display the persistence in the diagram by selecting Show Persistence from the popup
menu.

Concurrency

Denotes the semantics in the presence of multiple threads of control. The Concurrency
field shows the concurrency for the elements of a class. The concurrency of an
operation should be consistent with its class.

Type Description:

■ Sequential (default) - The semantics of the class are guaranteed only in the
presence of a single thread of control. Only one thread of control can be executing
in the method at any one time.

■ Guarded - The semantics of the class are guaranteed in the presence of multiple
threads of control. A guarded class requires collaboration among client threads to
achieve mutual exclusion.

■ Active - The class has its own thread of control.

■ Synchronous - The semantics of the class are guaranteed in the presence of
multiple threads of control; mutual exclusion is supplied by the class.

To change the concurrency, click on an applicable option button in the Concurrency
box. You can display the concurrency in the class diagram by selecting Show
Concurrency from the popup menu.
338 Chapter 14 - Defining Capsules and Classes

Abstract

The Abstract field identifies a class that serves as a base class. An abstract class defines
operations and states that will be inherited by subclasses. This field corresponds to
the abstract class adornment displayed inside the class icon.

To toggle the abstract adornment, click on its check box.

When you click Abstract, the abstract class adornment is displayed in the lower left
corner of the class icon. You can change the abstract class adornment only through the
specification.

Formal Arguments

In the Parameterized Class Specification or Parameterized Class Utility
Specification, the formal, generic parameters declared by the class or class utility are
listed.

In the Instantiated Class Specification or Instantiated Class Utility Specification,
the actual arguments that match the generic parameters of the class being instantiated
are listed.

You can add, update, or delete parameters only through the Class Specification. This
field applies only to parameterized classes, parameterized class utilities, instantiated
classes, and instantiated class utilities.

To define the parameters for a class, position the pointer within the Parameters box
and click Insert from the shortcut menu or press the insert key.

Parameters are displayed on class diagrams.

Class Specification - Operations Tab

Operations denote services provided by the class. Operations are methods for
accessing and modifying Class fields, or methods that implement characteristic
behaviors of a class.

The Operations tab lists the operations that are members of this class. The actual
definition of the operation is accessible from the Operation Specification Dialog.
Class Specification 339

The Operations list has the following columns:

■ Visibility Adornment (Unlabeled); the visibility of the operation is indicated with
an icon. The visibility options are:

❑ Public - The operation is accessible to all clients.

❑ Protected - The operation is accessible only to subclasses, friends, or to the class
itself.

❑ Private - The operation is accessible only to the class itself or to its friends.

❑ Implementation - The operation is accessible only by operations of this class.

■ Stereotype - Displays the name of the stereotype.

■ Return Type - Identifies the type of value returned from the operation.

■ Name - Displays the name of the operations.

■ Parameters - Shows the argument list for the operation. The information in this
column can not be edited from this dialog. Double-click the argument list to open
the Operation Specification dialog, then click the Detail tab to modify the
arguments.

■ Class - Identifies which class defines the operation.

The Operations tab is active for all class types. In the class diagram, you can display
operation names in the class compartment.

Show Inherited

Click this option to see operations inherited from other classes. If an operation is
inherited, a blue arrow prefixes the Operation type symbol, .

If this option is not selected, you can view only operations associated with the
selected class.

Note: Rational Rose RealTime allows you to directly modify any operation shown in
the Operations list by displaying the Operations Specification dialog. Use caution
when modifying base class operations because any changes may have implications on
other elements in your model which reference, or are subclassed from, the base class.

Creating New Operations

To enter an operation in the Class Specification, select Insert from the popup menu. A
new operation with a default name is added to the operations list.
340 Chapter 14 - Defining Capsules and Classes

Moving and Copying Operations

To move an operation from one Specification sheet to another, drag and drop it. From
the Edit menu of the main window, you can select Undo and Redo.

To copy an operation from one Specification sheet to another, drag and drop it while
holding down the Ctrl key. From the Edit menu of the main window, you can select
Undo and Redo.

Class Specification - Attributes Tab

The UML asserts that attributes are data values (string or integer) held by objects in a
class. Thus, the Attributes tab lists attributes defined for the class. The attribute
definition can be modified through the Attribute Specification Dialog.

Note: Attributes and relationships created using this technique are added to the
model, but do not automatically appear in any diagrams. That is, adding an attribute
affects the code generation for the class and a compilation dependency between the
class of the container and the class of the attribute, but these relationships are not
graphically visible in the model.

The descriptions for each field follow:

■ Visibility Adornment (Unlabeled):

❑ Public - The attribute is publicly visible, and is accessible to all clients.

❑ Protected - The attribute may be accessed only by subclasses, friends, or by
operations of this class.

❑ Private - The attribute is accessible only by the class itself or by its friends.

❑ Implementation - The attribute is accessible only by other operations in this
class.

■ Stereotype - Displays the name of the stereotype.

■ Name - Displays the name of the attribute.

■ Class - Identifies where the attribute is defined.

■ Type - This can be a class or a traditional type, such as int.

■ Initial - Displays the initial value of an object.

The Attribute tab is active for all class types.
Class Specification 341

Show Inherited

Click this option to see attributes inherited from other classes. If there is no check
mark in this field, you can view only attributes associated with the selected class.

Note: Rose RealTime allows you to directly modify any attribute shown in the
attributes list by displaying the Attribute Specification dialog. You should be careful
when modifying base class attributes for it may have implications on other elements
in your model which reference or are subclassed from the base class.

Creating New Attributes

You can add an attribute relationship by selecting Insert on the popup menu or by
pressing the insert key. A new attribute with a default name is added.

Moving and Copying Attributes

To move an attribute from one Specification sheet to another, drag and drop it. From
the Edit menu of the main window, you can select Undo and Redo.

To copy an attribute from one Specification sheet to another, drag and drop it while
holding down the Ctrl key. From the Edit menu of the main window, you can select
Undo and Redo.

Class Specification - Nested Tab

A nested class is a class that is enclosed within another class. Classes may contain
instances of, inherit from, or use a nested class.

Enclosing classes are referred to as parent classes, and a class that lies underneath the
parent class is called a nested class.

A nested class is typically used to implement functionality for the parent class. In
many designs, a nested class is closely coupled to the parent class and is often not
visible outside of the parent class. For example:

Think of your computer as a parent class and its power supply as a nested class. While
the power supply is not visible outside the computer, the task it completes is crucial
for the overall functionality of the computer.

Moving and Copying Nested Classes

To move a Nested class from one Specification sheet to another, drag and drop it.
From the Edit menu of the main window, you can select Undo and Redo.
342 Chapter 14 - Defining Capsules and Classes

To copy a Nested class from one Specification sheet to another, drag and drop it while
holding down the Ctrl key. From the Edit menu of the main window, you can select
Undo and Redo.

To add a Nested Class from a Class Specification:

1 Create and name a class.

2 Display the Class Specification.

3 Click on the Nested tab.

4 Right-click to display the shortcut menu, then click Insert.

A nested class entry with a default class name is inserted.

To display a nested class:

1 On the Query menu, select Add Classes.

2 Select the nested class and place it in the Selected Classes list box.

You can undo and redo the addition of nested classes.

To delete a Nested Class from a Class Specification:

1 Select the nested class from the Nested tab in the Class Specification.

2 Right-click on the class to display the popup menu.

3 From the popup menu, select Delete.

Or, use the following steps to delete a nested class:

1 Select the name of the nested class from the Nested Classes list on the Nested
Classes tab.

2 Press the Delete key.

If you delete a nested class that is also a parent to other nested classes, all the nested
classes are deleted.

You can undo and redo the deletion of nested classes.

Note: When you attempt to delete a nested class from a Class Specification, a warning
dialog appears to verify the deletion.
Class Specification 343

Relocating Nested Classes from the Browser to a Specification

Classes and Nested Classes can be moved from the browser to the Class Specification
Nested tab. If you move a class (NewClassA) from the browser and place it directly on
top of a class (NewClassB) on the Nested tab, NewClassA becomes nested underneath
NewClassB. However, only one level of class nesting appears on the Nested tab. You
can view all levels of nesting in the browser.

Moving Nested Classes Between Class Specifications

Nested classes can be dragged and dropped between Class Specification Nested tabs.

Class Specification - Components Tab

Components List

The components list displays a list of components to which this class has been
assigned. Components can be inserted, deleted, and moved up and down in the list.
Each component has a corresponding Component Specification for editing the
component attributes.

A check-box provides filtering control over which components are displayed:

Show all components displays the list of all components in the model.

Right-clicking on a component open the Component shortcut menu.

Class Specification - Relations Tab

Relations List

The relations list displays relations between the class and other model classes as
specified in class diagrams. The relations list simply displays the relationships
involving this class that appear on class diagrams in the model.

Each relation has a corresponding Association Specification for editing the relation
attributes.

A check-box provides filtering control over which relations are displayed:

Show Inherited shows any relations inherited from a superclass protocol.
344 Chapter 14 - Defining Capsules and Classes

Class Specification - Files Tab

A list of referenced files is provided here. You can link external files to model elements
for documentation purposes.

Class Specification - Diagrams Tab

The Diagrams area lists the diagrams for the selected class. For classes, you can add
Collaboration and State diagrams.

Note: You can delete State and Collaboration diagrams.

The first column contains the icon that corresponds to the diagram’s type. The Title
column contains the title for the diagram. You can modify the name of the title.

To add a new diagram, use the shortcut menu and select the desired Insert option.

Attribute Specification Dialog

The Attribute Specification dialog lets you display and modify the properties of a
class or capsule attribute in the current model.

To display an Attribute Specification, select the entry on the Attribute tab of the Class
or Capsule Specification and click Specification from the shortcut menu.
Alternatively, double-clicking on the entry displays the Attribute Specification.

Specification Content

The Attribute Specification dialog has of the following tabs: General, Detail, Files,
and other language-specific tabs.

Browse Button

Clicking Browse has the following options:

■ Select in Browser - Highlights the selected element in the browser.

■ Open Diagram - Opens the diagram associated with the object.

■ Browse Parent - Opens the specification for the parent of the selected element.

■ Browse Selection - Opens the specification for the currently selected element.

■ Show Usage - Displays a list of all diagrams in which the currently selected
element is the supplier, or in the case of a collaboration diagram, a list which
shows the usage of a message.
Attribute Specification Dialog 345

■ Find References - Finds all references of the item in the model by searching all
fields - excluding Documentation - and searching all objects - excluding Diagrams,
Component Instances, devices, Instances, Interactions, Messages, Packages,
Probes, and Processors. The results appear in the Find tab in the Output window.

General Tab

Name

A name for the attribute. This name will be the name for the generated attribute.

Stereotype

A stereotype value.

Class

The class the attribute belongs to is displayed in this non-editable field.

Visibility

■ Public - The attribute is visible to any other classes.

■ Protected - The attribute is visible only to subclasses and friend classes.

■ Private - The attribute is not visible to any other classes, except designated friend
classes.

■ Implementation - The attribute is never visible to other classes.

Scope

■ Class - Ahere is a single instance of the attribute for all instances of the class (for
example a static member in C++ terminology).

■ Instance - Each instance of the class will have a separate attribute instance.
346 Chapter 14 - Defining Capsules and Classes

Detail Tab

Type

Attribute types can either be classes or language-specific types. When the attribute is a
data value, the type is defined as a language-specific type. You can enter the type in
the Type field of the Class Attribute Specification. Rational Rose RealTime displays
the type beside the attribute name in the class icon and updates the information in the
model.

Note: If the Type box contains a class, the corresponding label becomes a hot link to
the Specification dialog for that class.

Initial Value

You can assign an initial value to your class attribute through this box. You can
specify multi-line expressions for initial data.

Changeability

■ Changeable - The attribute can be modified.

■ Frozen - The attribute cannot be modified.

■ Add-only - The attribute can only be updated in an additive way. This is not
enforceable in most programming languages.

Derived

The Derived check box indicates whether the element was computed or implemented
directly.

To define a element as derived, select the Derived check box. The element name is
adorned by a "/" in front of the name.

If the derived box is checked, no code is generated for the attribute.

Operation Specification Dialog

Complete one Operation Specification for each operation that is a member of a class.

If you change a class operations property by editing its specification, Rational Rose
RealTime updates all class diagrams containing icons representing that class.

To access the Operation Specification, select an entry on the Operations tab of the
Class Specification and double-click the entry or click Insert from the popup menu.
You can also open the Specification dialog using the shortcut menu.
Operation Specification Dialog 347

Specification Content

The Operation Specification dialog has the following tabs: General, Detail,
Validations, Semantics, Files, <language-specific tab>.

Browse Button

Clicking Browse has the following options:

■ Select in Browser - Highlights the selected element in the browser.

■ Open Diagram - Opens the diagram associated with the object.

■ Browse Parent - Opens the specification for the parent of the selected element.

■ Browse Selection - Opens the specification for the currently selected element.

■ Show Usage - Displays a list of all diagrams in which the currently selected
element is the supplier, or in the case of a collaboration diagram, a list which
shows the usage of a message.

■ Find References - Finds all references of the item in the model by searching all
fields - excluding Documentation - and searching all objects - excluding Diagrams,
Component Instances, devices, Instances, Interactions, Messages, Packages,
Probes, and Processors. The results appear in the Find tab in the Output window.

General Tab

Name

The name of the operation. The named operation will be generated as a member of the
containing class.

Stereotype

Specifies a stereotype for the operation.

Class

A non-editable field that displays the class to which the operation belongs.
348 Chapter 14 - Defining Capsules and Classes

Visibility

■ Public - Indicates that the operation is visible to other classes.

■ Protected - Indicates that the operation is not part of the public interface of the
class, but is visible to subclasses.

■ Private - Indicates that the operation is not visible to other classes, including
subclasses. May be visible to specific classes designated as friend classes.

■ Implementation - Indicates the operation is not visible to any other classes,
including subclasses and friends.

Options

■ Polymorphic - Indicates that the operation should be inherited by all subclasses.

■ Query - Indicates that the operation is read-only and does not modify the object's
state.

■ Abstract - Indicates that the operation is an abstract definition that should be
overridden by specific implementations in subclasses.

Scope

■ Instance - Indicates that the operation operates on individual class instances,
usually because its calculations are based on the object state, or because it modifies
the object state.

■ Class - Indicates that the operation operates the same way regardless of the state of
any individual object in the class.

Detail Tab

Return Type

For operations that are functions, set this field to identify the class or type of the
function's result. If show classes is set, the list box displays all the classes in the
package. If Show classes is not set, only the predefined set of return class types is
displayed.

If you enter a class name and it does not exist in your model, the application does not
create one.

Note: If the Return Type box contains a class, the corresponding label becomes a hot
link to the Specification dialog for that class.
Operation Specification Dialog 349

Parameters

Contains a list of the arguments of the operation. You may express these arguments in
your selected implementation language.

The argument list can be rearranged with the click and drag technique. Select an
argument from the list, drag it to the location, and release. The list reflects the new
order.

Note: Double-click on a name in the Type column to open the appropriate
Specification dialog for that type.

Parameter Specification Dialog

To open the Parameter Specification dialog, double-click a parameter. The dialog has
two tabs: General and Files.

The General tab contains fields for Name, Type, Default, and Documentation. It also
provides the name of the owner of the parameter, that is, the operation that the
parameter belongs to.

The Files tab provides a list of referenced files. You can link external files to model
elements for documentation purposes.

You can Undo and Redo any changes from the Edit menu.

Moving and Copying Parameters:

To move a parameter from one specification sheet to another, drag and drop it. From
the Edit menu of the main window, you can select Undo and Redo.

To copy a parameter from one specification sheet to another, drag and drop it while
holding down the Ctrl key. From the Edit menu of the main window, you can select
Undo and Redo.

Code

A code editor allowing you to enter the detailed implementation code for the
operation.

Validation Tab

Protocol

This field lists a set of operations that a client can perform on an object and the legal
orderings in which they might be invoked. The protocol of an operation has no
semantic impact.
350 Chapter 14 - Defining Capsules and Classes

Qualifications

This field identifies language-specific features that qualify the method.

Exceptions

This field contains a list of the exceptions that can be raised by the operation. Enter the
name of one or more classes identifying the exception.

Size

This field identifies the relative or absolute amount of storage consumed by the
invocation of the operation.

Time

This field contains a statement about the relative or absolute time required to
complete an operation. Use this field to budget time for the operation.

Concurrency

This field denotes the semantics in the presence of multiple threads of control. The
Concurrency field shows the concurrency for the elements of a class. The concurrency
of an operation should be consistent with its class.

Table 1 Concurrency Field Options

You can set the concurrency of a class only through the Class Specification. To change
the concurrency, click on an applicable option in the Concurrency box. You can
display the concurrency in the class diagram by clicking Show Concurrency from the
context menu.

Type Description

Sequential
(default)

The semantics of the operation are guaranteed only in the presence
of a single thread of control. Only one thread of control can be
executing in the method at any one time.

Guarded The semantics of the operation are guaranteed in the presence of
multiple threads of control. A guarded class requires collaboration
among client threads to achieve mutual exclusion.

Synchronous The semantics of the operation are guaranteed in the presence of
multiple threads of control; mutual exclusion is supplied by the class.
Operation Specification Dialog 351

Semantics Tab

Preconditions

Invariants that are assumed by the operation (the entry behavior of an operation) are
listed.

Semantics

The action of the operation is shown in this area.

Postcondition

Invariants that are satisfied by the operation (the exit behavior of an operation) are
listed in this area.

Interaction Diagram

Select an interaction diagram from the list box that illustrates the appropriate
semantics. Selecting <New> brings up the New Interaction Diagram dialog, in which
you can specify the diagram type and title.

Parameter Specification Dialog

To open the Parameter Specification dialog, double-click a parameter. The dialog has
two tabs: General and Files.

Name

Displays the name of the parameter.

Owner

Displays the owner of the parameter, that is, the operation to which the parameter
belongs.

Type

Specified the type for this parameter.

Note: If the Type box contains a class, the corresponding label becomes a hot link to
the Specification dialog for that class.
352 Chapter 14 - Defining Capsules and Classes

Default

Specified the default value for this parameter.

Documentation

Describes any details about the use of this parameter.

Files Tab

The Files tab provides a list of referenced files. You can link external files to model
elements for documentation purposes.

You can Undo and Redo any changes using the Edit menu.

Creating a Capsule Class

Capsule classes are created in the Logical View of the Model View Tab in the browser.

To create a new capsule class:

1 Right-click on the Logical View package (or another package of your choice) in the
model browser.

2 Select the New > Capsule menu option. A new capsule class is created with a
default name of 'NewCapsule1'.

3 Type over the name to change it.

You can also create new capsule classes using the capsule tool in the class diagram.

Each capsule has an associated structure diagram and state diagram.

The capsule class attributes, operations and other properties can be modified through
the Capsule Specification. Open the specification dialog by double-clicking on the
capsule in the model browser.

Creating a Capsule Class 353

Capsule Diagrams

There are two diagrams associated with capsules:

State Diagram

The state diagram captures the high-level behavior of the capsule.

Structure Diagram

The structure diagram captures the interface and internal structure of the capsule in
terms of its contained capsules and ports.

Undocking the Capsule Diagrams

These two diagrams can be docked together or viewed separately. To separate the
diagrams into separate windows, grab one of the diagram tabs at the bottom of the
window and drag it away to create a new window.

Capsule Specification

The capsule specification is used to edit the properties of a capsule.

The capsule specification dialog contains the following tabs:

■ Capsule Specification - General Tab
■ Capsule Specification - Operations Tab
■ Capsule Specification - Attributes Tab
■ Capsule Specification - Capsule Roles Tab
■ Capsule Specification - Ports Tab
■ Capsule Specification - Connectors Tab
■ Capsule Specification - Relations Tab
■ Capsule Specification - Components Tab
■ Capsule Specification - Files Tab
354 Chapter 14 - Defining Capsules and Classes

Browse

Clicking Browse has the following options:

■ Select in Browser - Highlights the selected element in the browser.

■ Open Diagram - Opens the diagram associated with the object.

■ Browse Parent - Opens the specification for the parent of the selected element.

■ Browse Selection - Opens the specification for the currently selected element.

■ Show Usage - Displays a list of all diagrams in which the currently selected
element is the supplier, or in the case of a collaboration diagram, a list which
shows the usage of a message.

■ Find References - Finds all references of the item in the model by searching all
fields - excluding Documentation - and searching all objects - excluding Diagrams,
Component Instances, devices, Instances, Interactions, Messages, Packages,
Probes, and Processors. The results appear in the Find tab in the Output window.

Capsule Specification - General Tab

Name

The name of the capsule class. The capsule class name may be referenced in the
detailed code of other capsule classes. One reason for this is for a container capsule to
instantiate an optional capsule role (see the Frame service incarnate function).

Stereotype

A stereotype represents the subclassification of an element. It represents a class within
the UML metamodel itself, that is, a type of modeling element. Some stereotypes are
already predefined, but you can also define your own to add new kinds of modeling
types.

Stereotypes can be shown in the browser and on diagrams. The name of the
stereotype may appear in angle brackets <<>>, depending on the settings found in
either the Diagram or Browser tabs of the Options dialog located under the Tools
menu. Refer to the Stereotype chapter for more information on stereotypes.

To show stereotypes on the diagrams, click Options from the shortcut menu and click
Stereotype Name or Stereotype Icon. Stereotype Name displays the name in angle
brackets (that is, <<stereotype>>). The Stereotype Icon displays the graphical
representation.
Capsule Specification 355

Language

Specifies the language to use for detailed coding and code generation.

Documentation

Specifies documentation for this element.

Capsule Specification - Diagrams Tab

The Diagrams area lists the diagrams for the selected capsule. For capsules, you can
add Collaboration, Sequence, and State diagrams.

Note: There can be only one State diagram, and you can only delete Collaboration
diagrams.

The first column contains the icon that corresponds to the diagram’s type. The Title
column contains the title for the diagram. You can modify the name of the title.

To add a new diagram, use the shortcut menu and select the desired Insert option.

Capsule Specification - Operations Tab

Operations denote services provided by the class. Operations are methods for
accessing and modifying Class fields or methods that implement characteristic
behaviors of a class.

The Operations tab lists the operations that are members of this class. The actual
definition of the operation is accessible from the Operation Specification Dialog.

The operations are listed with the following fields:

■ Visibility Adornment (Unlabeled); the visibility of the operation is indicated with
an icon. These are the visibility options:

❑ Public - The operation is accessible to all clients.

❑ Protected - The operation is accessible only to subclasses, friends, or to the class
itself.

❑ Private - The operation is accessible only to the class itself or to its friends.

❑ Implementation - The operation is accessible only by the implementation of
the package containing the class.

■ Stereotype - Displays the name of the stereotype.
356 Chapter 14 - Defining Capsules and Classes

■ Signature - Displays the name of the operation.

■ Class - Identifies which class defines the operation.

■ Return Type - Identifies the type of value returned from the operation.

The Operations tab is active for all class types. In the class diagram, you can display
operation names in the class compartment.

Show Inherited

Set this option to display operations inherited from other classes. If an operation is
inherited, a blue arrow prefixes the Operation type symbol, .

If this option is not selected, you can view only operations associated with the
selected class.

Note: Rational Rose RealTime allows you to directly modify any operation shown in
the operations list by displaying the Operations Specification dialog. Use caution
when modifying base class operations because any changes may have implications on
other elements in your model which reference, or are subclassed from, the base class.

Creating New Operations

To enter an operation in the Class Specification, select Insert from the popup menu.
A new operation with a default name is added to the operations list.

Capsule Specification - Attributes Tab

The UML asserts that attributes are data values (string or integer) held by objects in a
class. Thus, the Attributes tab lists attributes defined for the class. The attribute
definition can be modified through the Attribute Specification Dialog.

Note: Attributes and relationships created using this technique are added to the
model, but do not automatically appear in any diagrams. That is, adding an attribute
affects the code generation for the class and a compilation dependency between the
class of the container and the class of the attribute, but these relationships are not
graphically visible in the model.
Capsule Specification 357

The descriptions for each field follow:

■ Visibility Adornment (Unlabeled):

❑ Public - The attribute is publicly visible, and is accessible to all clients.

❑ Protected - The attribute may be accessed only by subclasses, friends, or by
operations of this class.

❑ Private - The attribute is accessible only by the class itself or by its friends.

❑ Implementation - The attribute is accessible only by operations in this class.

■ Stereotype - Displays the name of the stereotype.

■ Name - Displays the name of the attribute.

■ Class - Identifies where the attribute is defined.

■ Type - This can be a class or a traditional type, such as int.

■ Initial - Displays the initial value of an object.

The Attribute tab is active for all class types.

Show Inherited

Set this option to diaplay attributes inherited from other capsules. If there is no check
mark in this field, you can view only attributes associated with the selected capsule.

Note: Rose RealTime allows you to directly modify any attribute shown in the
attributes list by displaying the Attribute Specification dialog. You should be careful
when modifying base class attributes for it may have implications on other elements
in your model which reference or are subclassed from the base class.

Creating New Attributes

You can add an attribute relationship by selecting Insert on the popup menu or by
pressing the insert key. A new attribute with a default name is added.

Capsule Specification - Capsule Roles Tab

The capsule roles list displays all contained capsule roles within the immediate
capsule decomposition. Capsule roles can be inserted, deleted, and moved up and
down in the list. Each capsule role has a corresponding Capsule Role Specification for
editing the capsule role attributes.
358 Chapter 14 - Defining Capsules and Classes

Inserting Capsule Roles through the Capsule Roles list is the same as adding capsule
roles through the Structure diagram editor. When inserting a new capsule role, a
pick-list appears allowing you to select the class for the capsule role. The new capsule
role is given a default name, which can changed by double-clicking on it.

Three check-boxes provide filtering control over which capsule roles are displayed:

■ Inherited Values - Shows any elements inherited from a superclass protocol.

■ Local Values - Shows any elements defined within this capsule (not inherited).

■ Excluded Values - Shows elements defined in the superclass and deleted from the
subclass.

Right-clicking on a capsule role brings up the Capsule Role popup menu.

Capsule Specification - Ports Tab

The ports list displays all contained ports within the immediate capsule
decomposition. Ports can be inserted, deleted, and moved up and down in the list.
Each port has a corresponding Port Specification for editing the port attributes.

Inserting ports through the list is the same as adding ports through the Structure
diagram editor. When inserting a new port, a pick-list appears allowing you to select
the protocol for the port. The new port is given a default name, which you can change
by double-clicking on it.

Three check-boxes provide filtering control over which ports are displayed:

■ Inherited Values - Shows any elements inherited from a superclass protocol.

■ Local Values - Shows any elements defined within this capsule (not inherited).

■ Excluded Values - Shows elements defined in the superclass and deleted from the
subclass.

Right-clicking on a signal displays the Port context menu.

Capsule Specification - Connectors Tab

The connectors list displays all connectors contained within the immediate capsule
decomposition. Connectors can be deleted, and moved up and down in the list.
Connectors cannot be inserted through this list: they can only be defined through the
Capsule Collaboration Diagram Editor. Each connector has a corresponding
Connector Specification for editing the connector attributes.
Capsule Specification 359

Three check-boxes provide filtering control over which connectors are displayed:

■ Inherited Values - shows any elements inherited from a superclass protocol.

■ Local Values - shows any elements defined within this capsule (not inherited).

■ Excluded Values - shows elements defined in the superclass and deleted from the
subclass.

Right-clicking on a signal opens the Connector context menu.

Capsule Specification - Relations Tab

Relations List

The relations list displays relations between the class and other model classes as
specified in class diagrams. The relations list displays the relationships involving this
class that appear on class diagrams in the model.

Each relation has a corresponding Association Specification for editing the relation
attributes.

A check-box provides filtering control over which relations are displayed:

Show Inherited shows any relations inherited from a superclass protocol.

Capsule Specification - Components Tab

Components List

The components list displays a list of components to which this class has been
assigned (a red check mark on the icon). Components can be inserted, deleted, and
moved up and down in the list. Each component has a corresponding Component
Specification for editing the component attributes.

A check-box provides filtering control over which components are displayed:

Show all components displays all the components in the model.

Right-clicking on a component opens the Components context menu.

Capsule Specification - Files Tab

A list of referenced files is provided here. The files list popup menu allows you to
insert and delete references to files or URLs.

You can link external files to model elements for documentation purposes.
360 Chapter 14 - Defining Capsules and Classes

15Defining Protocols
Contents

This chapter is organized as follows:

■ Protocol Specification on page 361
■ Signal Specification on page 364

Protocol Specification

The protocol specification provides control over the definition of a protocol class. The
dialog includes the following tabs:

■ Protocol Specification - General Tab
■ Protocol Specification - Signals Tab
■ Protocol Specification - Relations Tab
■ Protocol Specification - Components Tab
■ Protocol Specification - Files Tab

Browse Button

Clicking Browse displays the following options:

■ Select in Browser - Highlights the selected element in the browser.

■ Open Diagram - Opens the diagram associated with the object.

■ Browse Parent - Opens the specification for the parent of the selected element.

■ Browse Selection - Opens the specification for the currently selected element.

■ Show Usage - Displays a list of all diagrams in which the currently selected
element is the supplier, or in the case of a collaboration diagram, a list which
shows the usage of a message.

■ Find References - Finds all references of the item in the model by searching all
fields - excluding Documentation - and searching all objects - excluding Diagrams,
Component Instances, devices, Instances, Interactions, Messages, Packages,
Probes, and Processors. The results appear in the Find tab in the Output window.
361

Protocol Specification - General Tab

Name

The name of the Protocol Class.

Language

Select the implementation language for the class from the available languages. The
analysis selection indicates that no code will be generated for the class.

Stereotype

A stereotype represents the subclassification of an element. It represents a class within
the UML metamodel itself, that is, a type of modeling element. Some stereotypes are
already predefined, but you can also define your own to add new kinds of modeling
types.

Stereotypes can be shown in the browser and on diagrams. The name of the
stereotype may appear in angle brackets <<>>, depending on the settings found in
either the Diagram or Browser tabs of the Options dialog located under the Tools
menu. Refer to the Stereotype chapter for more information on stereotypes.

To show stereotypes on the diagrams, click Options from the shortcut menu and click
Stereotype Name or Stereotype Icon. Stereotype Name displays the name in angle
brackets (that is, <<stereotype>>). Stereotype Icon displays the graphical
representation.

Documentation

Specifies documentation for this element.

Protocol Specification - Signals Tab

This tab provides a list of signals that can be received (the In list) and sent (the Out
list) by ports using this protocol.

Note: A tilde character, "~", opposite an item indicates that the item is conjugated.

In/Out Signal List

The signal list allows signals to be inserted, deleted, and moved up and down in the
list. Each signal has a corresponding Signal Specification for editing the signal
attributes.
362 Chapter 15 - Defining Protocols

Three check-boxes provide filtering control over which signals are displayed:

■ Show inherited - Shows any signals inherited from a superclass protocol.

■ Show local - Shows signals defined within this protocol (not inherited).

■ Show excluded - Shows signals defined in the superclass protocol and deleted
from the subclass protocol.

Right-clicking on a signal brings up the Signal popup menu, allowing you to insert
new signals, delete signals, and promote/demote signals in the protocol class
hierarchy. As well, you can select Open Data Class Specification, which brings up
the Class Specification.

Copying Signals

To copy a signal from one Specification sheet to another, drag and drop it. From the
Edit menu of the main window, you can select Undo and Redo.

Protocol Specification - Relations Tab

Relations List

The relations list displays relations between the protocol class and other model classes
as specified in class diagrams. Relations can be inserted, deleted, and moved up and
down in the list. Each relation has a corresponding Association Specification for
editing the relation attributes.

A check-box provides filtering control over which relations are displayed:

Show Inherited shows any relations inherited from a superclass protocol.

Right-clicking on a relation opens the Relation context menu.

Protocol Specification - Components Tab

Components List

The components list displays a list of components to which this class has been
assigned (a red check mark on the icon). Components can be inserted, deleted, and
moved up and down in the list. Each component has a corresponding Component
Specification for editing the component attributes.
Protocol Specification 363

A check-box provides filtering control over which components are displayed:

Show all components displays the list of components in the model.

Right-clicking on a component opens the Components context menu.

Protocol Specification - Diagrams Tab

The Diagrams area lists the diagrams for the selected protocol. For protocols, you can
add Sequence and State diagrams.

The first column contains the icon that corresponds to the diagram’s type. The Title
column contains the title for the diagram. You can modify the name of the title.

To add a new diagram, use the shortcut menu and select the desired Insert option.

Protocol Specification - Files Tab

A list of referenced files is provided here. You can link external files to model elements
for documentation purposes.

Signal Specification

The dialog shows information about a signal in a protocol class. The signal
specification is opened from the Protocol Specification - Signals Tab.

Browse Button

Clicking Browse displays the following options:

■ Select in Browser - Highlights the selected element in the browser.

■ Open Diagram - Opens the diagram associated with the object.

■ Browse Parent - Opens the specification for the parent of the selected element.

■ Browse Selection - Opens the specification for the currently selected element.
364 Chapter 15 - Defining Protocols

■ Show Usage - Displays a list of all diagrams in which the currently selected
element is the supplier, or in the case of a collaboration diagram, a list which
shows the usage of a message.

■ Find References - Finds all references of the item in the model by searching all
fields - excluding Documentation - and searching all objects - excluding Diagrams,
Component Instances, devices, Instances, Interactions, Messages, Packages,
Probes, and Processors. The results appear in the Find tab in the Output window.

Signal Specification - General Tab

Name

Specifies a name for the signal. The name is referenced in detail code when a capsule
sends a message through a port, and in the trigger event for transitions in the capsule
state diagram (through the Event Editor Dialog).

Data Class

Specifies the class of the data object that is expected as a payload of the message. The
data class field has a pull-down menu, which allows you to pick from the list of
available data classes and types in the model.

Note: If the Data Class box contains a class, the corresponding label becomes a hot
link to the Specification dialog for that class.

Signal Specification - Files Tab

A list of referenced files is provided here. The files list popup menu allows you to
insert and delete references to files or URLs.

You can link external files to model elements for documentation purposes.
Signal Specification 365

366 Chapter 15 - Defining Protocols

16Defining Packages
Contents

This chapter is organized as follows:

■ Introduction to Packages on page 367
■ Creating a Package on page 367
■ Package Specification on page 368
■ Moving Model Elements on page 372

Introduction to Packages

Packages are organize model elements in larger models. Packages break up large
models containing hundreds or thousands of elements into smaller, more manageable
conceptual units. When properly designed, packages usually represent units of work
for an individual or team, and units of reusability. That is, a package represents a set
of highly related (highly cohesive) model elements. In most cases when looking to
reuse portions of a model across software projects, entire packages would be reused
rather than individual classes.

Packages also define the directory structure of a stored model. When a model is stored
as controlled units, a subdirectory is created for each package, such that the
representation of the model on disk mirrors the packaging hierarchy of the model in
the tool.

Creating a Package

Packages can be created in the Use Case View, the Logical View or the Component
View of the browser. Packages can contain other packages. In fact, the four main
views in the model browser are themselves packages.
367

To create a package:

1 Right-click on the package in the model browser where you want the new package
to be created.

2 Select New >Package from the menu.

A new package will be created with a default name of ‘NewPackage1'.

3 Type over the name to change it.

New model elements can be created within the package by clicking on the package
and selecting the right-mouse button to access the popup menu.

Existing model elements can be moved across packages. See Moving Model Elements
on page 372.

Packages and Class Diagrams

Packages can be displayed in class diagrams to show dependencies among packages.
It is useful in large systems to construct top-level class diagrams that just show the
packages, and allow users to drill down into the individual packages for more
detailed class diagrams.

Package Specification

A Logical Package Specification enables you to display and modify the properties and
relationships of a logical package in the current model.

If you change a package's properties or relationships by editing its specification, the
application updates all class diagrams containing icons representing that logical
package. If you change a logical package's properties or relationships by editing a
diagram containing its icon, the application updates the logical package's
specification and any other diagrams containing its icon.

The package specification dialog provides control over the definition of a package.
The dialog includes the following tabs:
368 Chapter 16 - Defining Packages

Figure 86 Package Specification - Model Elements Tab

Package Specification - General Tab

Name

The name of the package.

Parent

Displays the name of the parent package. If this is one of the top-level view packages,
the parent is the Model.

Stereotype

Displays the stereotype of the package. There are no pre-defined package stereotypes.
Package Specification 369

Documentation

Specifies documentation for this element.

Package Specification - Detail Tab

Global

The Global check-box indicates that all public classes in the logical package can be
used by any other logical package.

To switch the global adornment, click on the Global check-box. When you set the
global indicator, Rational Rose displays the word “global” in the lower left corner of
the logical package icon.

You can change the global adornment only through the specification.

Diagrams

This field lists the diagrams contained in the package. When you add a diagram to the
package, Rational Rose automatically updates this list.

The first column contains the diagram’s icon. The Title field is the title of the diagram
you entered (and can be modified).

To add a new diagram, use the shortcut menu and select the appropriate insert
diagram option.

Package Specification - Relations Tab

Relations List

The relations list displays relations between the package and other model classes and
packages as specified in class diagrams. Relations can be inserted, deleted, and moved
up and down in the list. Each relation has a corresponding Association Specification
for editing the relation attributes.

A check-box provides filtering control over which relations are displayed.

Show Inherited

Shows any elements inherited from a superpackage.

Right-clicking on a relation brings up the Relation popup menu.
370 Chapter 16 - Defining Packages

Package Specification - Components Tab

Components List

The components list displays a list of components that reference this package (red
checkmark). Components can be inserted, deleted, and moved up and down in the
list. Each component has a corresponding Component Specification for editing the
component attributes.

A check-box provides filtering control over which components are displayed:

Show all components displays the list of all components in the model.

Right-clicking on a component displays the Components context menu.

Package Specification - Files Tab

A list of referenced files is provided here. The files list popup menu allows you to
Insert and Delete references to files or URLs.

You can link external files to model elements for documentation purposes.

Package Specification - Model Elements Tab

There is a new tab on the Package Specification dialog box called Model Elements
(see Figure 86). The purpose of this tab is to facilitate model navigation. This tab is
only available for Use Case View and Logical View packages, as well as any other
similar packages contained therein. This tab does not exist for Component Views.

The Model Elements tab lists all of the model elements seen from the Model View tab
in the browser including: actors, capsules, classes, class utilities, interfaces, packages,
protocols, and use cases.

Note: The list on the Model Elements tab does not include diagrams.

In the Model Elements tab, you can open the Specification dialog box for the selected
element, or delete selected items from the list.
Package Specification 371

Figure 87 Package Specification - Model Elements Tab

Moving Model Elements

You can move model elements and diagrams from one package into another package
on the Model View Tab in the browser.

To move a model item:

1 Click on the class in the model browser.

2 Drag it over the destination package.

To move multiple model elements using the Move Model Elements feature:

Note: The Move Model Elements feature can move capsules, protocols, classes, and
packages from the Logical View in the browser.
372 Chapter 16 - Defining Packages

1 Select the model elements from the Logical View in the Model View tab in the
browser, or select the model elements from a Class diagram.

2 Click Tools > Move Model Elements.

The Move Model Elements dialog shows the hierarchical list of all the packages in
the Logical View.

3 Find and select the package to move the selected model elements.
Moving Model Elements 373

4 Click Ok.

The Move Model Elements summary dialog shows the destination packages and
the model elements to move, as well as any model elements that cannot be moved.

5 To save the information on the Mode Model Elements summary dialog, click Save
Summary, and then specify a file name and location.

6 Click Yes.

The selected model elements move to the new location.
374 Chapter 16 - Defining Packages

Impact of Moving Classes or Diagrams on Configuration
Management

Because classes are stored in the configuration Management (CM) system under the
package directory, moving a class to another package causes a mismatch between the
stored directory structure and the model packaging. The classes in the stored model
directory are not automatically moved to new directories. The mismatch does not
cause any problems for the toolset (Rational Rose RealTime keeps track of the stored
file name for the element. For details, see the Unit Information tab. However, it may
cause confusion for users working directly with a CM tool.

To synchronize the system files with moved model elements:

1 On the Model View tab in the browser, select an element that you previously
moved.

2 Right-click and select Open Specification.

3 Click the Unit Information tab.

4 Specify the location to save this file.

5 Click Save As.

6 Repeat Step 1 through Step 5 for each controlled unit that you moved in the model
browser.

7 Right-click on the package containing the controlled units, and then click
File > Save Unit.

8 Launch your CM tool.

9 Use the commands from your CM tool to move the model elements to the new
location.
Moving Model Elements 375

376 Chapter 16 - Defining Packages

17Creating the Component
and Deployment Views
Contents

This chapter is organized as follows:

■ Using the Component Diagram Editor on page 377
■ Component Diagram Toolbox on page 379
■ Using the Deployment Diagram Editor on page 380
■ Deployment Diagram Toolbox on page 382

Using the Component Diagram Editor

Use the Component Diagram editor to create a diagram showing the software as
releasable units, together with their interfaces and inter-dependencies. Multiple
Component diagrams can exist in the same model.

A Component Diagram shows the physical dependency relationships (mapping to a
file system) between components - main programs, subprograms, packages, and tasks
- and the arrangement of components into component packages.

Component diagrams are contained (owned) either at the top level of the model or by
a package, which means that the diagram depicts the components and packages
where the diagram is contained.

The component diagram consists of two parts:

■ The diagram area
■ The Component Diagram Toolbox

Elements of the component diagram, such as packages and components, are added
using the toolbox or by dragging them from the browser. You can undo and redo
moves from the Edit menu.

The window title bar shows the full name of the component diagram.
377

Figure 88 Component Diagram

Component

Components can be added to the diagram using either the component tool from the
toolbox, or by selecting a component from the Model View Tab in the browser and
dragging and dropping it on to the diagram. Components may have dependency or
aggregation relationships with other components.

The component details are specified through the Component Specification.

Dependency

A dependency indicates a client and supplier relationship. The client depends on the
supplier to provide certain services. Use this relationship to indicate that the
operations of the client invoke operations of the supplier.
378 Chapter 17 - Creating the Component and Deployment Views

Component Diagram Toolbox

The component toolbox contains tools for adding elements to the component
diagram.

Figure 89 Component diagram toolbox

Selector Tool

Selects objects for moving, resizing, and so forth.

Zoom Tool

Use to zoom in on a portion of the diagram. Click on the tool and then click on the
part of the diagram you want to zoom in on.

Text Tool

Adds text anywhere in the structure diagram.

Note Tool

Annotates the diagram with textual notes. This is useful for marking up the diagram
with explanations, review comments, and so forth. You can drag and drop a diagram
or external document from the browser onto a note. Notice that the name of the
diagram or external document is underlined. If you double-click on the note, the
diagram or external document is opened. You can undo and redo this command.
Component Diagram Toolbox 379

Constraint Tool

Adds UML constraints to the diagram. A constraint can be anchored to a view
element by using the anchor tool. Currently, constraints do not have any semantic
meaning to the tool. There are RRTEI APIs to add or remove, and enumerate
constraints in a diagram.

Note Anchor Tool

Anchors a note to a particular element on the diagram.

Package Tool

Adds a package to the diagram. The package is given a default name such as
'NewPackage1'.

Dependency tool

Indicates that a dependency is between packages or between components. A
dependency indicates that some element in one package depends on (uses) some
element in another package.

Component tool

Adds a component to the diagram. The component is given a default name such as
'NewComponent1'. See Building Basics on page 439 for more information on creating
and building components.

Using the Deployment Diagram Editor

The deployment diagram editor is used to create a diagram showing system
deployment across processing nodes. The deployment diagram shows the allocation
of processes to processors in the physical design of a system. A deployment diagram
may represent all or part of the process architecture of a system. Multiple deployment
diagrams can exist in the same model. The deployment diagram consists of two parts:

The diagram area, and the toolbox.

The window title bar shows the full name of the deployment diagram.
380 Chapter 17 - Creating the Component and Deployment Views

Figure 90 Deployment Diagram Editor

Deployment Diagram Elements

A deployment diagram shows the hardware configuration of the system under
construction, and the distribution of software across that configuration.

There are four types of elements that can be placed on the diagram:

■ Two types of hardware node: processors and devices

■ Connections between the hardware nodes

■ Software component instances deployed on the hardware nodes

Processors

A processor is a hardware component capable of executing programs. You can further
define a processor by identifying its processes and specifying the type of process
scheduling it uses.

The Processor Specification Dialog dialog provides details on processor attributes.

Devices

A device is a hardware component with no computing power. Each device must have
a name. Device names can be generic, such as "modem" or "terminal."

The device specification dialog provides details on device attributes.

Connections

A connection represents some type of hardware coupling between two nodes. The
hardware coupling can be direct, such as an RS232 cable, or indirect, such as
satellite-to-ground communication. Connections are usually bi-directional.

The Connector Specification provides details on connection attributes.
Using the Deployment Diagram Editor 381

Components

Components can be placed on processors for control over the distribution of the
software for execution. The result is a component instance that can be specified
through the Processor Specification Dialog dialog.

Packages

Use to add a package to the diagram. The package is given a default name such as
'NewPackage1'.

Deployment Diagram Toolbox

The deployment diagram toolbox contains tools for adding elements to the
deployment diagram.

Figure 91 Deployment diagram toolbox

Selector Tool

Selects objects for moving, resizing, and so forth.

Zoom Tool

Use to zoom in on a portion of the diagram. Click on the tool and then click on the
part of the diagram you want to zoom in on.

Text Tool

Adds text anywhere in the structure diagram.
382 Chapter 17 - Creating the Component and Deployment Views

Note Tool

Annotates the diagram with textual notes. This is useful for marking up the diagram
with explanations, review comments, and so forth. You can drag and drop a diagram
or external document from the browser onto a note. Notice that the name of the
diagram or external document is underlined. If you double-click on the note, the
diagram or external document is opened. You can undo and redo this command.

Constraint Tool

Adds UML constraints to the diagram. A constraint can be anchored to a view
element by using the anchor tool. Currently, constraints do not have any semantic
meaning to the tool. There are RRTEI APIs to add or remove, and enumerate
constraints in a diagram.

Note Anchor Tool

Anchors a note to a particular element on the diagram.

Processor tool

Adds a processor node to the diagram. Click on the diagram to place a new processor
at the selected location.

Processors are given default names, such as 'processor1', when initially drawn. To
change the name, click on the device and hit the backspace key to delete the default
name, then type the new name.

Device Tool

Adds a device node to the diagram. Click on the diagram to place a new device at the
selected location. Devices are given default names, such as 'device1', when initially
drawn.

Connection Tool

Adds a connection between two nodes on the diagram. Click on the first node on the
diagram and drag the connection to the second node.
Deployment Diagram Toolbox 383

384 Chapter 17 - Creating the Component and Deployment Views

18Importing and Exporting
Contents

This chapter is organized as follows:

■ Importing a Petal or Package File on page 385
■ Importing Code from Rational Rose to Rational Rose RealTime on page 385
■ Referencing an External Library on page 396
■ Using the Convert Rose Component Wizard on page 397
■ Exporting a File on page 399

To add external .class files, see Add External Java Tool in the Add-in, Tool, and Wizard
Guide, Rational Rose RealTime.

Importing a Petal or Package File

Rational Rose RealTime can import several different types of files. The file types are:

■ .rtptl (RRT petal file)
■ .ptl (Rose petal file)
■ .cat (Rose package file)
■ .sub (Rose component package file)

To import an element into a Rational Rose RealTime model:

1 Select File > Import

2 Select the type of file you want to import.

3 Select the file and click Open.

Importing Code from Rational Rose to Rational Rose RealTime

To use a Rational Rose model in Rational Rose RealTime, you need to export a
Rational Rose model, and then import it into Rational Rose RealTime. In addition to
converting a model and importing a Rational Rose model into Rational Rose
RealTime, you will need to import any code stored outside your Rational Rose model.
385

Code generation is different in Rational Rose and in Rational Rose RealTime. In
Rational Rose, the toolset generates skeleton code stored outside of the model. You
can edit the skeleton code with an editor to add additional code, or modify existing
code (such as operation bodies). In Rational Rose RealTime, you are not required to
edit the code after it has been generated. In some cases, code is stored in the model
itself (such as method bodies).

Using the Code Import Process

To import the external code associated with a Rational Rose Model into Rational Rose
RealTime, you must perform a series of tasks. If the tags generated by Rational Rose
are good and you do not want to import code other than that which Rational Rose
marks as "to be imported," you only needs to complete the following steps:

■ Preparing the Rational Rose Model for Import on page 386
■ Importing the Code on page 394

If the generated code does not contain the tags generated by Rational Rose, or the tags
were modified (perhaps when a Rational Rose user modified the source files to edit

the body of an operation), or you want to specify different export options from those

specified as the default by Rational Rose, such as friend relationships, you will need

to complete the following steps:

■ Preparing the Rational Rose Model for Import on page 386
■ Launching the C++ Analyzer on page 387
■ Specifying Export Options and Selecting a Source File Location on page 388
■ Analyzing the Code on page 391
■ Using CodeCycle to Add Tags to Code on page 393
■ Importing the Code on page 394

Note: Because the model and the code are modified during the import process, we
strongly recommend that you make a copy of the model and source code files prior to
starting this process.

Preparing the Rational Rose Model for Import

To import a Rational Rose model into Rational Rose RealTime, you must prepare your
Rational Rose model and its associated code. For example, if the model contains a
class that is not present in the source code, then the model and source code will
become out of sync.
386 Chapter 18 - Importing and Exporting

To prepare your Rational Rose model and associated code for import, we recommend
that you perform the following tasks in Rational Rose:

■ Click File > Update to synchronize your model with the code.

■ Usie the C++ Analyzer to check the source code to ensure that there are no errors.
Errors in the model can cause problems which may make it difficult to import to
Rational Rose RealTime.

■ Click Tools > Check Model to assist with identifying problems in the model.

Note: The Check Model tool will not find all problems; however, you should
address anything it finds prior to attempting to migrate to Rational Rose RealTime.

The following steps are mandatory and must be performed prior to migrating from
Rational Rose to Rational Rose RealTime.

1 In Rational Rose, click File > Save As and in the Type box, select one of the
available formats, such as Rose 6.1/6.5 Model.

Note: You can save your Rational Rose model in the Rose 6.1/6.5 Model formats or
higher prior to loading it in Rational Rose RealTime.

2 Save your Rational Rose model to a single file.

Note: If a package is controlled in a Rational Rose model, Rational Rose RealTime
will not be able to load the Rational Rose model.

Launching the C++ Analyzer

The C++ Analyzer is an executable that is an add-in to both Rational Rose and
Rational Rose RealTime. The C++ Analyzer tool is responsible for checking source
code for errors, and for updating the source code with tags that the Rational Rose
RealTime Code Import tool recognizes.

To start the C++ Analyzer:

1 In Rational Rose, click Tools > C++ > Reverse Engineering to start the C++
Analyzer.

Note: If the C++ option is not available from the Tools menu, click
Add-Ins > Add-in Manager and select Rose C++ from the list.

2 Click File > New.

3 If the $DATA PathMap symbol is not set, you are prompted to enter a value for
$DATA.
Importing Code from Rational Rose to Rational Rose RealTime 387

4 Click OK.

5 Create a PathMap entry.

Note: This directory stores the temporary data generated by the C++ Analyzer. We
recommend that you create a new temporary directory and set the PathMap
variable to that location.

Next, you want to set export options for your Rational Rose model.

Specifying Export Options and Selecting a Source File Location

The C++ Analyzer performs an export process on the Rational Rose model based on
options that you specify, called Export Options. Setting these export options
determines what source code to export from your Rational Rose model. These export
options also affect the tags that the C++ Analyzer adds to the source code. Rational
Rose RealTime uses these tags during the import process.

To specify export options:

1 Open the project associated with your Rational Rose model. If a project does not
exist, click File > New.

2 In the C++ Analyzer, click Edit > Export Options to specify what parts of the
source code to examine.
388 Chapter 18 - Importing and Exporting

Note: By default, many options are not selected, such as friend declarations.

3 Review and set the appropriate options on all of the tabs in the Default Export
Option Set dialog to ensure the C++ Analyzer examines the appropriate code.

4 Click Update to update the current Export Option Set to reflect the modified
export options that you specified.

Note: The Update button is only available if you modify any export options since
the current option set was selected or updated.

5 Click Close.
Importing Code from Rational Rose to Rational Rose RealTime 389

6 Click Edit > Files List.

7 In the Directory Structure area, browse to the directory that contains the source
code files for your model.

8 Add the source files to the Files In List area, or click Add All to add all of the files
at once.

9 Click OK.
390 Chapter 18 - Importing and Exporting

The files are added to the open project in the C++ Analyzer.

Next, you want the C++ Analyzer to analyze the code you specified.

Analyzing the Code

Use the C++ Analyzer to check the source code for errors.

To select the files and analyze them:

1 In the C++ Analyzer, select individual files in the project to analyze, or click
Edit > Select All to select all of the files in the Project dialog.

2 Click Action > Analyze.
Importing Code from Rational Rose to Rational Rose RealTime 391

When the analyze process completes, you are presented with a list of errors
identified by the C++ Analyzer.

3 Click OK.

Files that contain errors have a plus sign (+) displayed next to them in the list of
selected files on the Project dialog.

4 In the Project dialog, double-click on a problem file to view the errors.

Note: The plus sign changes to a negative sign (-) to indicate the class information
has expanded.

5 Double-click on an error to open an editor on the code.
392 Chapter 18 - Importing and Exporting

When possible, the C++ Analyzer highlights the problem area in the code so you
can immediately see the problem.

Note: You are not required to fix these errors at this time. The Rational Rose RealTime
Code Import tool will continue to import the code containing these errors.

Using CodeCycle to Add Tags to Code

The Rational Rose RealTime Code Import tool looks for specific tags in the source
code to identify the begin and end of a section of code. For example, each operation
body has a start and end tag to identify what code is included in the operation body.
The CodeCycle operation of the C++ Analyzer adds these tags to the source code.

To add tags to the code:

1 In the C++ Analyzer for the currently open project, click Action > CodeCycle to
start executing the CodeCycle process.

Note: The C++ Analyzer prompts you to proceed as a precautionary step since it
will be modifying your source code.

2 Click Yes to proceed.

Note: The C++ Analyzer will notify you if it encountered any errors.

Example

The following example shows the tags added to a member function of the class
Engine.

int Engine::start()
{
//## begin Engine::start%F0556897FEED.body preserve=yes

return 1;
//## end Engine::start%F0556897FEED.body
}

All tags will start with either begin or end. The rest of the tag depends on the type of
code being imported. In the above example, we are importing the body of a member
function so the next part of the tag is the name of the class followed by the name of the
function. Following that is the Rational Rose GUID for the corresponding operation,
followed by a unique tag (body in this case) that describes the type of information (the
body of a member function). The Rational Rose RealTime Code Import tool uses these
tags to determine where to place the code in the model.
Importing Code from Rational Rose to Rational Rose RealTime 393

The final part of the begin tag is preserve=yes. When this option is set to no, the
Rational Rose RealTime Code Import tool will not import that code segment (from the
begin to the end tag). For example, the preserve option is set to no when a section of
code matches one of the export options that you specified not to have imported (see
Specifying Export Options and Selecting a Source File Location on page 388).

Importing the Code

After the CodeCycle process adds tags to the code, you want to open the model in
Rational Rose RealTime and import the code.

To import C++ code:

1 Start Rational Rose RealTime.

2 Open a Rational Rose model.

If errors are encountered as the model loads, a dialog appears stating that errors
occurred. You can get more information about the errors from the Log tab in the
Output window.

You are prompted with a dialog indicating that the model was saved in an old
format. The purpose of this dialog is to inform you that the next time you save the
model in Rational Rose RealTime, it is saved using the Rational Rose RealTime
format.

3 Click Tools > Convert From Rose Classic C++.

The toolset runs the AddCodeImportProperties script.
AddCodeImportProperties is a SummitBasic script that adds properties to classes
in the model. It can create these properties for models that use ANSI or Classic
C++. The location of this script is in the $ROSERT_HOME\bin\$ROSERT_HOST
directory. The source code for this script is in the
$ROSERT_HOME\Scripts\RoseImport directory. This script is automatically
executed by the toolset after selecting the Import Rose C++ Code. When the script
completes, all the classes in the model will contain the required properties for the
Code Import tool to find the source files.

The Code Import tool displays a list of source files that it gathered from properties
of the classes in the model.

Note: The Code Import tool examines the properties of classes and components to
determine the location of source code files. A component is examined only if its
stereotype is set to Package Body or Package Specification. If the files associated
with a component do not appear in the list of files to import, check the stereotype
for the component to ensure it is set to Package Body or Package Specification.

4 Click All >> to select all the files, or select only a subset of the files.

5 Click OK to import the code into the model.
Importing Code from Rational Rose to Rational Rose RealTime 395

The toolset executes the ConfigureFromRoseProperties script. The
ConfigureFromRoseProperties is a SummitBasic script that sets various Rational
Rose RealTime model properties based on the corresponding Rational Rose
properties. The location of this script is in the
$ROSERT_HOME\bin\$ROSERT_HOST directory. The source code for this script
is located in the $ROSERT_HOME\Scripts\RoseImport directory.

Note: The ConfigureFromRoseProperties script checks the language of each class. If
the language is not C++, it does not configure any properties. For example, if a class
has Classic C++ properties, and its language is currently set to ANSI C++, the
Rational Rose RealTime properties are not configured based on the Rational Rose
properties.

Since the ConfigureFromRoseProperties script does not examine all of the Rational
Rose properties, you can modify this script if there are additional properties you want
to process.

Note: A Readme file, ConfigureFromRoseProperties-README.txt, is included in the
$ROSERT_HOME\Scripts\RoseImport directory. This file contains additional
information about the properties that the ConfigureFromRoseProperties script
currently processes.

Referencing an External Library

In Rational Rose RealTime, you can make use of an external library when developing
a model, including libraries created from Rational Rose models. This means that
Rational Rose users can continue to develop a model using Rational Rose while
referencing those libraries (built from a Rational Rose model), in a Rational Rose
RealTime model.

To reference an external library from within Rational Rose RealTime, you can
configure manually using the Component Specification dialog, or you can use the
Convert Rose Component wizard. The Convert Rose Component wizard quickly
configures a C++ External Library component, by retrieving information that Rational
Rose adds to a component, to reduce the number of manual steps.

Note: The Convert Rose Component wizard is only available for the C++ language.

For additonal information on the Convert Rose Component Wizard, see Using the
Convert Rose Component Wizard on page 397.
396 Chapter 18 - Importing and Exporting

Using the Convert Rose Component Wizard

You can use the Convert Rose Component wizard to configure the Inclusion Paths
and Libraries properties, and to automatically retrieve existing inclusion paths from a
component. You can view the Inclusion Paths and Libraries information in Rational
Rose by opening the Specification dialog for a component, and selecting either the
C++ or ANSI C++ tab (depending on the type of component you have selected). For
C++ components, the inclusion paths are stored in the AdditionalIncludes property.
For ANSI C++ components, the Inclusion Paths are stored in either the
RevEngRootDirectory or NewHeaderFileDirectory properties.

Note: The directory that contains the header file for the component that was
generated by Rational Rose is also included in the Inclusion Paths list.

To convert a component:

1 Start Rational Rose RealTime.

2 Open a Rational Rose model.

3 Select a component, right-click, and then select Convert Rose Component.

Note: The Convert Rose Component menu command is available only when the
selected component contains Rational Rose data.
Using the Convert Rose Component Wizard 397

4 Click Ok.

5 Edit the data for the selected component.

The Inclusion Paths tab shows a list of inclusion paths including those currently
part of the selected component, as well as those retrieved from the Rational Rose
properties. You can change the inclusion paths by adding and deleting items, and
by changing their order.
398 Chapter 18 - Importing and Exporting

The Libraries tab shows a list of libraries currently included in the selected
component. You can change the libraries by adding and deleting items, and by
changing their order.

The Classes tab shows a list of assigned model elements to display. You cannot
modify this list from within the wizard.

6 After modifying the data, click Ok to save the changes, or click Apply to select
another component.

Exporting a File

You can export packages, classes, components, and use cases into .rtptl files.
Exporting these types of objects allows you to import these files into other models.

To export an element in a model:

1 On the Model View tab in the browser, select the element export in the model
browser.

2 Right-click and select File > Export.

Note: You cannot export diagrams by themselves because they belong to the package
they are defined in. Also, do not export Services Library shared packages. For more
information, see Exporting Controlled Element From Model To File in the Guide to
Team Development - Rational Rose RealTime
Exporting a File 399

400 Chapter 18 - Importing and Exporting

19Using Source Control
Contents

This chapter is organized as follows:

■ Fundamentals of Source Control in Rational Rose RealTime on page 401
■ Using Source Control in Rational Rose RealTime on page 402
■ Source Control Settings on page 404
■ Adding Elements to Source Control on page 414
■ Options for Obtaining Change Management Information When Loading a Model on

page 417
■ Checking Out Files When a Newer Version Exists on page 422
■ Controlling a Unit with an Uncontrolled Parent on page 425
■ Viewing the ClearCase Version Tree for a VOB on page 426

Fundamentals of Source Control in Rational Rose RealTime

Rational Rose RealTime provides source control facilities by integrating with existing
source control systems, such as Rational ClearCase, to provide versioning and
controlled access to model files. Source control systems are the repositories that store
successive versions of files, usually with a comment attached to each version. Before a
repository can begin keeping track of a file’s versions, the file must be added to the
repository.

Note: Prior to placing Rational Rose RealTime models under source control, there are
some setup steps that must be followed to configure the source control system to
allow proper integration with Rational Rose RealTime. Most of these tasks are
performed outside of Rational Rose RealTime and require knowledge of the source
control tools that you will be using. If you are unsure about the procedures, see your
source control tools documentation.

Users of a source control system typically have their own local working area that
stores a copy of the files from the repository that they access. Although a repository
may contain thousands of files, each user’s working area only needs to be populated
with the files from the repository that they will be accessing.
401

If a file is checked out to a user’s working area, it will be write-enabled. If the file is
not checked out, it will be read-only. To prevent multiple users from attempting to
make changes to the same file simultaneously, exclusive access is usually enforced.
This is accomplished by allowing only one user at a time to check out a file version. In
addition, some source control systems only allow the most recent version to be
checked out.

Using Source Control in Rational Rose RealTime

When source control is enabled, Rational Rose RealTime queries the active source
control system for the status of each controlled unit. For each unit, the status indicates
whether the corresponding file is present in the source control system, and if present,
indicates whether the file is checked out to a specific user.

If a unit’s file is checked out from source control, the element on the Model View tab
in the browser shows a check mark next to the unit (Figure 92). The Unit Information
tab in the Model Specification dialog for a unit shows whether the unit is under
source control. This status is also visible in the browser. Units that are under source
control are shown in the browser with a darkened controlled unit indicator, and units
that are not under source control are shown with a faded controlled unit indicator.

Figure 92 shows the different source control status options displayed in the Rational
Rose RealTime browsers:

■ The light gray unit box opposite RTClasses and Scratch indicates that they are
both controlled units, but are not currently under source control.

■ The check mark in the unit box opposite System indicates that it is a controlled
unit under source control and is checked out to the current user.

■ The empty gray unit box opposite TestHarnesses indicates that it is a controlled
unit under source control and is not checked out to the current user.

Figure 92 Controlled Unit Icons with Source Control
402 Chapter 19 - Using Source Control

For information on performing an unreserved checkout, see Performing an Unreserved
Checkout on page 415.

For information on moving model elements that are currently under source control,
see Moving Model Elements on page 372.

Maintaining Integrity When a Model is Under Source Control

Changes to a model sometimes require that several model elements be modified to
effect the change. Some edits, such as element name changes and hierarchy
manipulations, may require modifications to every reference of the element.

Updating all of the cross-references is not necessary to maintain the model’s integrity
- only direct references must be updated (such as the reference from a derived class to
its superclass). Although model integrity is maintained in this way, code generation
may not work properly unless all references are also updated.

Due to the many cross-references in a model, it is often unfeasible to check out all of
the units that are affected by an edit so that all references can be updated immediately.
Rational Rose RealTime enforces the rule that only those elements required for an edit
must be accessible to allow the edit to proceed. The changes affecting these required
units is called a primary edit. If these units are not accessible and cannot be checked
out, then Rational Rose RealTime will not allow the edit to proceed.

All other changes, such as references that will be modified as a result of the edit, are
called secondary edits. Rational Rose RealTime prompts you to check out secondary
edit units after the operation ends.

Note: It is important that secondary edits be updated as soon as possible. Otherwise
model validation problems may arise.

Example

Figure 93 shows the Structure diagram for a simple model.
Using Source Control in Rational Rose RealTime 403

Figure 93 Model Validation Example

In this example:

■ Capsule1 is a primary edit and it must be checked out to proceed with the edit.

■ Capsule2 is a secondary edit and it should be checked out but, if not, the edit can
proceed.

If Capsule2 is not checked out and the edited Capsule1 is checked in to source
control, users who open a model with those versions of Capsule1 and Capsule2 will
encounter a model validation error that corresponds to the deletion of the connector
in Capsule2.

If you delete port P1 from capsule class Capsule1, the port role P1 on capsule role
role1 in Capsule2 will also be deleted. This, in turn, would cause the connector to be
deleted in Capsule2.

Source Control Settings

All source control settings are stored in the workspace file. Source control settings are
located in the Source Control tab in the Model Specification dialog. Alternatively,
you can access the Source Control tab by clicking Tools > Source Control >
Configure.
404 Chapter 19 - Using Source Control

Figure 94 Model Specification Dialog

Enable source control

Allows for the checking in and checking out of model elements from a source control
system.

Check out files when edited

Automatically checks out a model element from your source control system if you
attempt to edit it.

Note: Select this option if the model is under source control. If this option is not
selected, you may have difficulty saving the changes you made, which can also lead
to problems when building your model.
Source Control Settings 405

Check out files with secondary edits

Automatically checks out a model element from your source control system if an edit
to another model element causes a change in the element.

Note: Select this option if the model is under source control. If this option is not
selected, you may have difficulty saving the changes to the affected model elements,
which can also lead to problems when building your model.

Only allow edits to checked out files

Prevents edits to model elements unless the element is checked out.

It is recommended that this option be selected if the model is under source control. If
this option is not selected, then you may have difficulty saving your changes, which
can also lead to problems when building.

Add files to source control when first saved

Causes all model elements to be placed in the source control when the model is saved.

This option is not usually selected. Instead, use the Tools > Source Control > Submit
All Changes to Source Control command when submitting additions/changes.

Refresh shared unit status on model load

Indicates whether the Toolset refreshes the source control status of shared controlled
units when a model is first loaded.

Clearing this option can significantly improve the time it takes to open a model with
source control selected. The status of a unit can always be refreshed later, if required.

Retrieve CM information on model load

Specifies how you want to obtain CM information when loading a model.

For additional information on CM options, see Automatic Mode on page 420,
Background Mode on page 421, and Manual Mode on page 421.
406 Chapter 19 - Using Source Control

Scripts Directory

When working with source control, Rational Rose RealTime must know the location
of the scripts that interface with your source control tool.

Click Browse to select the directory that contains the appropriate scripts.

Figure 95 Browse for Folder Dialog

The Browse for Folder dialog shows a subdirectory for each of the supported source
control tools. Depending on your configuration (UNIX or Windows), the directory
names corresponding to the source control systems directly supported by Rational
Rose RealTime will appear.

Note: Source control interface scripts are located in $ROSERT_HOME/bin/<host
platform>/cmscripts.

The available directory names are:

■ cc - Rational ClearCase (UNIX and Windows)

■ msvss - Microsoft Visual SourceSafe (Windows only)

■ pvcs - Professional Version Control System (Windows only)

■ rcs - Revision Control System (UNIX only)

■ sccs - Source Code Control System (UNIX only)
Source Control Settings 407

Note: You can use pathmap variables in the Scripts directory box. When saving the
workspace, the pathmap variable CM_ScriptPath will contain this directory.

[General]

ModelFile=t2.rtmdl

Version=Rational Rose RealTime 6.5

DefaultLanguage=Analysis

DefaultRTS=C++ TargetRTS

[CMConfiguration]

CM_EditOnlyCheckedOut=Yes

CM_CheckOutOnEdit=Yes

CM_CheckOutAfterTouch=Yes

CM_AddOnFirstSave=No

CM_RefreshSharedUnitStatusOnLoad=No

CM_ProviderType=CM_ProviderType_Script

CM_ScriptPath=$ROSERT_HOME\bin\win32\cmscripts\fsrw

Optimizing Performance

The BatchSize and SupportsFileArgs options within the cm_getcaps script enable
you to optimize performance.

BatchSize

You can now the increase the BatchSize option that was previously set at 20 files. The
default is 30000, and the minimum is 1.

Note: If your CM scripts generate errors resulting in an inability to execute a
command in Rational Rose RealTime, decrease the BatchSize value.

SupportFileArgs

You can change the SupportsFileArgs option to False from the default setting of True.
When working with a large number of files, setting this option to False allows you to
bypass the command line by passing a temporary file which contains the
command-line arguments.

Accessing Source Control Operations

In Rational Rose RealTime, you can access source control operations by clicking Tools
> Source Control (Figure 96). These operations generally apply to all controlled units
in the entire model, and include several add-in helpers and convenience operations.
408 Chapter 19 - Using Source Control

Figure 96 Tools > Source Control Menu

Alternatively, you can access source control operations using context menus in
browsers. When you select a controlled unit from the browser, the context menu
contains source control operations. To apply an operation to multiple units at the
same time, select all the desired units, and access the source control operation through
the context menu (Figure 97).
Source Control Settings 409

Figure 97 Source Control in the Browser Context Menu

Source Control Operations

The following source control operations are available from within the Rational Rose
RealTime toolset with all supported source control systems:

■ Refresh Status
■ Synchronize
■ Get
■ Check Out
■ Uncheckout
■ Add
■ Check In
■ Submit All Changes
■ Apply Label
■ Show Differences
■ Show History

Note: Some operations are handled slightly differently for some source control
systems. Unless otherwise indicated, these operations are all enabled for any selection
of units.
410 Chapter 19 - Using Source Control

Refresh Status

Queries the active source control system for each unit selected and determines
whether the unit’s file is under source control. If the file is under source control, this
operation determines whether the file is checked out. Refreshing the status does not
retrieve new versions of files, nor does it reload files if they have been changed
outside the toolset.

Synchronize

Performs the same status updating that the Refresh Status operation performs. The
Synchronize operation also determines if the file on disk has changed since the file
was loaded into the toolset. If the underlying file has changed, it is reloaded into the
toolset.

Note: For Rational ClearCase, if a dynamic view is used and the version of a file
available in the view changes, Synchronize detects the changes and reloads the file.
Synchronize is a safer operation than a Get because Synchronize will not lose any
checked out changes, while Get may replace your checked out changes with the most
recent version in the VOB.

Get

Interfaces with the active source control system and requests the latest version of the
files corresponding to the selected units. If a new version is retrieved, Rational Rose
RealTime reloads the file.

Note: For Rational ClearCase, Get does not retrieve a specific version of a file to a
view because the version being observed in a view can only be changed using the
config spec for that view. However, if a file is checked out, you can use Get to replace
the checked out file with a copy of a particular version of the file. If a file is not
checked out, performing a Get on that file is the same as performing a Synchronize
on the file.

Check Out

Prompts your source control system to lock the specified files so that you can modify
them, and then submit a new version using Check In. If the specified file is currently
checked out to another user, the check out operation fails. Check out retrieves the
latest version of the files being used.

Note: For Rational ClearCase, when working with a snapshot view, ClearCase marks
elements in the VOB as being checked out. When checking out an element, you are not
warned if a more recent version exists in VOB.
Source Control Settings 411

Uncheckout

Removes the lock that the user holds on the file in the source control system, and
replaces their local file with the most recent file from the repository. Uncheckout is
available for any file that is currently checked out to the current user.

Add

Attempts to place the selected units under source control. After a unit is added to
source control, it can be versioned using Check Out and Check In. Unless a file must
be added to source control without submitting other changes at the same time, use
Submit All Changes rather than explicitly clicking Add.

Note: For Rational ClearCase, when adding files to source control, the ClearCase
integration assumes that the containing directory is under source control and is not
currently checked out. If the containing directory is already checked out, the Add
operation will fail.

Check In

Submits a checked out file to the repository so that a new version is stored. Unless a
file needs to be checked in without submitting other changes at the same time, use
Submit All Changes to submit changes to the repository.

Note: For Rational ClearCase, when checking in files, ClearCase copies the new
version to the VOB, as long as there is no successor version already in VOB. If there is
a successor, an error is returned from the scripts and will appear in the Log tab in the
Output window. To check in your changes, you must first merge the most recent
version from the VOB into your local copy.

To update your snapshot, click Tools > Source Control > Update Snapshot View. The
Update Snapshot View command helps you merge any changes. This is the preferred
method since your snapshot view will also get any new elements that appear in the
VOB.

Note: If you know that only one element has changed in the VOB, select that element
from the browser and use the context-menu Source Control > Get command to
retrieve the most recent version. Then perform the merge.
412 Chapter 19 - Using Source Control

Submit All Changes

Performs the following actions:

■ Determines which units are not under source control, and prompts the user to add
them.

■ Determines which units are checked out from source control, and prompts the user
to check in the units.

After Submit All Changes is successfully completed, the repository is updated with
all changes made by the user.

Note: This command is only available from Tools > Source Control.

Apply Label

Instructs the source control system to apply a specified label to the selected units.
Directories may also be labelled with the option of working recursively on the
directory contents.

For Rational ClearCase, labelling a directory only applies the label to the directory
element itself. To apply the label to the files contained within a directory, use the
Recursive option.

Show Differences

Compares the local version of a unit with the latest version stored in the source
control repository.

For details on using the Merge Differencing tool, see the Rational Rose RealTime Model
Integrator documentation.

Note: Show Differences is only enabled when a single unit is selected.

Show History

Displays the version history of a unit based on the revisions of the file that are in the
source control repository.
Source Control Settings 413

Figure 98 History Dialog

Most source control systems support the retrieval of a specific version of a file. In
these systems, the Get button is enabled when a version is selected in the list.

To compare the local version of the unit with a specific version, right-click on the
version to compare, and click Show Differences.

For source control systems that support applying a label to arbitrary versions of
elements, the context menu will also include the Apply Label command.

Show History is only enabled when a single unit is selected.

Adding Elements to Source Control

You want to ensure that you add all appropriate units to your source control system.
Forgetting to add new units can result in model validation errors when other users
obtain the new version of the units.

Figure 99 shows the Add to Source Control dialog where Rational Rose RealTime
prompts you to add any new units to source control that it has detected.
414 Chapter 19 - Using Source Control

Figure 99 Add to Source Control Dialog

By default, all new and checked out units are submitted. You can use the check boxes
on the left side of each unit to filter items from the list.

Keep checked out

Automatically checks out the units from the list after they have been added to source
control.

Parameters

Displays the Parameters dialog where you can specify parameters for the items.

Performing an Unreserved Checkout

You can perform unreserved checkouts in Rational Rose RealTime when using
Rational ClearCase as your source control system. Unreserved checkouts are useful
when the changes you need to make are only temporary. For example, if a designer
wants to modify an element but does not intend to submit the changes, an unreserved
checkout allows you to complete the required work without stopping other designers
from checking out that element. Another scenario for using an unreserved checkout
occurs when two or more designers want to work on the same element at the same
Adding Elements to Source Control 415

time. The first designer would have a reserved check out, and all other designers
would specify that they want an unreserved checkout. Those designers with an
unreserved checkout will not be able to check in their changes until the designer with
the reserved checkout has submitted changes, or performed an Uncheckout.

Note: After the designer with the reserved check out submits their changes, those
designers that have an unreserved checkout will be required to perform a merge.
Rational Rose RealTime will notify you and walk you through the procedure for
performing a merge.

To perform an unreserved check out:

1 Right-click on an element, and click Checkout.

2 Click Parameters.

3 Change the value of the parameter to True.

4 Click OK.
416 Chapter 19 - Using Source Control

Options for Obtaining Change Management Information When
Loading a Model

A model is stored in unit(s) that may be under Change Management (CM) control
(also known as Source Control Integration). When loading a model, the Rational Rose
RealTime toolset attempts to obtain the CM status of its units. CM information
indicates whether a unit is under CM control, if it is currently checked out, and,
depending on your CM capabilities, identifies the version of the unit. Because it takes
time to obtain this CM information when loading a model, you may want to specify
when this CM refresh occurs.

If CM integration is enabled for a model, you can specify additional options when the
retrieval of CM information occurs: Automatic Mode (default), Background Mode,
and Manual Mode.

Figure 100 shows the Model View tab when the units have no CM information
specified.

Figure 100 Model View with no CM Information
Options for Obtaining Change Management Information When Loading a Model 417

Figure 101 shows the Model View tab when the units have CM information.

Figure 101 Model View with CM Information

A new Status Bar indicator, UPD, identifies when a Background refresh occurs; for
Automatic and Manual modes, the Status bar indicator is blank.

Figure 102 UPD Status Bar Indicator
418 Chapter 19 - Using Source Control

Updating the Log

When a Background refresh starts, a message is added to the Rational Rose RealTime
log indicating that the retrieval of CM information has started:

10:31:39| Starting background refresh of CM information.

When a Background refresh is completed, a message is added to the Rational Rose
RealTime log indicating that the retrieval of CM information has been completed:

11:42:39| Finished background refresh of CM information.

Note: If you select Automatic or Manual mode, the Rational Rose RealTime log is not
updated.

Changing the CM Retrieval Option

If a model has CM integration enabled, you can specify when the retrieval of CM
information occurs: Automatic Mode (default), Background Mode, and Manual
Mode. Because it takes time to obtain CM information when loading a model, you
may want to specify when this CM refresh occurs.
Options for Obtaining Change Management Information When Loading a Model 419

To specify how to retrieve CM information when loading a model:

1 In the Model View tab in the browser, right-click on Model.

2 Click Open Specification.

Note: To enable the CM options, the Enable source control option must be selected.
By default, Automatic is selected. The CM option specified in this dialog is stored in
the workspace file and is used during the next model load.

CM Retrieval Options

In the Retrieve CM information on model load area, you have three options for
obtaining CM information when loading a model.

Automatic Mode

When selected, a non-interruptible CM refresh occurs immediately after the model
loads in the toolset.

Note: The toolset remains locked until the CM refresh activities complete.
420 Chapter 19 - Using Source Control

Background Mode

When selected, all CM activities are performed when there is no user activity (during
the application's idle mode) and you will be unaware of the retrieval of CM
information.

Note: To modify an element in the model before the Background mode obtains its
corresponding CM status for that specific element, right-click on Model in the
browser, then click Source Control > Refresh Status before you modify the element.

The Source Control submenu also contains a Refresh Status (with Child Units)
option.When selected, this option performs a recursive refresh of the child units for
the selected units in the model. This option provides you with the granularity to
refresh the entire package, rather than refreshing each individual item.

Note: Both the Refresh Status of Model and Refresh Status (with Child Units)
options support multi-select.

Manual Mode

When selected, no CM information is obtained when loading a model. This means
that after the model loads, there is no additional delay because there is no CM
information being retrieved at this time. When using Manual mode, before
performing modifications to elements in the model, you must right-click on Model in
the Model View tab, then click Source Control > Refresh Status, or Source Control >
Refresh Status (with Child Units).

Limitations

Workspace files are not backward compatible because the new options are stored in
the workspace file.

If the Change Management operations are slow, using Background mode may reduce
the responsiveness of the Rational Rose RealTime application (during the
Background refresh). For this situation, we recommend that you use Automatic or
Manual mode.

A Background refresh may not obtain CM information for a unit if its parent was
edited before the CM information was obtained for the child unit. In this case, you
must manually refresh the CM information by right-clicking on Model in the Model
View tab, and then clicking Source Control > Refresh Status.
Options for Obtaining Change Management Information When Loading a Model 421

Checking Out Files When a Newer Version Exists

If you make a change that requires the Rational Rose RealTime toolset to
automatically check out one or more files, the toolset performs a "get" of the latest
version in your CM tool before checking out the file and then the toolset compares it
with the current version. If the version from your CM tool is newer, the toolset
prompts you with the following warning:

The units in source control are more recent than the current
version. If your checkout retrieves the latest version it
will need to be imported, and your current operation will be
lost.

Do you wish to continue with the checkout?

If you click No, the checkout is canceled and your changes are not applied.

If you click Yes, you may lose your changes. To ensure that you do not lose any
changes, set the Don’t get a local Copy option to True on the Parameters dialog by
clicking Parameters on the Checkout dialog.

Note: If you explicitly requested a checkou, this type of version checking is not
performed.

Get Dialog

A "get" interfaces with your active source control system and requests the latest
version of the files corresponding to the selected units. If a new version is retrieved,
Rational Rose RealTime reloads the file.

Use the Get dialog to request files from your CM tool (Figure 103). To access the Get
Entire Model dialog, click Tools > Source Control > Get Entire Model.

Note: The Get Entire Model option is not available for the current selection if it does
not contain units that are under source control.
422 Chapter 19 - Using Source Control

Figure 103 Get Dialog and Get Entire Model Dialog

Unit Name

Shows all the elements in the current model that you can update. Items that are not
under source control do not appear in this list.

File Name

Specifies the location of an element.

Filter

Specifies the level of refinement for getting elements from your source control tool.

Recursive

When selected, it indicates that the "get" command applies to current or specified
elements, and to any child controlled units.
Get Dialog 423

Parameters

Displays the Parameters dialog where you can specify parameters for the items.

If you perform a get on a checked out item for which a more recent version exists in
source control, the following dialog appears:

Apply to all items

Applies the current selection (Replace, Merge, or Leave) to all subsequent files that
would have prompted this dialog.

Note: Selecting Apply to all items has no affect if you click Cancel because the "get"
operation will abort.

Replace

Replaces your existing file with the version in source control.

Merge

Merges the version from source control with your current version.

Leave

Leaves this file alone and does nothing.

Cancel

Cancels the get operation. Any gets or merges done prior to clicking Cancel will
remain intact.
424 Chapter 19 - Using Source Control

Controlling a Unit with an Uncontrolled Parent

In Rational Rose RealTime, you can change a shared unit to the unit owned by the
model (and vice versa), and allow a unit to be controlled when its parent is not a
controlled unit. Controlling a unit in an uncontrolled parent allows you to perform
some temporary action without having to clean up additional directories created
when directories are controlled units.

Changing Unit Ownership

You can easily identify the ownership of a unit by observing the following:

■ If a tiny lock icon appears to the left of the unit name on the Model View tab in the
browser, the unit is owned by the model.

■ If the Owned by model option in the Unit Information tab of the selected unit’s
Specification is selected, the unit is owned by the model.

Note: The Unit Information tab displays only on the Specification dialogs for
controlled units.

Note: Changing ownership has non-trivial consequences to the underlying file
structure; and you should do this only when absolutely necessary (such as when
changing the ownership to move a shared package to a different location). Do not
attempt to change an owned unit to non-owned when this unit has unsaved
modifications. Rational Rose RealTime will not save a non-owned unit and your
modifications will be lost, possibly resulting in model inconsistencies.

To change the ownership:

■ When units are not owned by a model, you can right-click in the Model View tab
in the browser, and click File > Share External Package.

■ Select the Owned by model option in the Unit Information tab of the selected
unit’s Specification.

Changing the ownership alters the containing unit of the unit being changed, while
the unit that you changed the ownership for remains unchanged. As a result, the
containing unit is marked as modified (a blue delta, , in the Model View tab in the
browser).
Controlling a Unit with an Uncontrolled Parent 425

Limitations
■ Changing a non-owned unit to an owned unit:

When saving an owned unit, you must save it to a new location based on the file
location of the containing unit.

■ Changing a non-modified owned unit to a non-owned unit:

You cannot save units that are not owned by the model. Also, source control
operations are not supported for units that are not owned by a model.

■ Changing a modified owned unit to a non-owned unit:

If the model does not own the unit, you cannot save modifications to the unit
(including modifications already made and not yet saved).

■ A non-owned unit cannot contain an owned unit. Consequently, if you have a tree
hierarchy structure of units and you change the top unit in the hierarchy to
non-owned, all the units under the top unit also change their status to non-owned.
This means that any change in ownership (non-owned to owned, and owned to
non-owned) is applied recursively to all containing units in a hierarchy.

Viewing the ClearCase Version Tree for a VOB

ClearCase includes a browser to view the version tree of a VOB element. In Rational
Rose RealTime, you can view the ClearCase version tree browser to view the CM
history of a specific model element. You can either view a textual or graphical
representation of the ClearCase version tree.

To view a graphical representation of the ClearCase version tree:

■ In Rational Rose RealTime, right-click on a model element, and then click
Source Control > Version Tree.

Note: Because this version tree browser is specific to ClearCase, the Version Tree
option is not available for other CM systems.

Figure 104 shows a graphical view of the ClearCase version tree on Windows.
426 Chapter 19 - Using Source Control

Figure 104 ClearCase Version Tree Browser

Note: For UNIX, the ClearCase Version Tree Browser diagram looks slightly
different.

■ From the command-line, type the following:

cleartool lsvtree -graphical <element_name>

■ Open ClearCase Explorer, and click Tools > Version Tree.

To obtain a textual view of the version tree:

Fron the command-line, type the following:

cleartool lsvtree <element_name>

Figure 105 shows the text representation of a ClearCase version tree from the
command-line.
Viewing the ClearCase Version Tree for a VOB 427

Figure 105 Text Representation of a ClearCase Version Tree
428 Chapter 19 - Using Source Control

20Naming Guidelines
Contents

This chapter is organized as follows:

■ Introduction to Naming Guidelines on page 429
■ Assigning Names on page 429
■ Special Case Notes on page 430
■ Using Logical Names for Model Elements on page 430

Introduction to Naming Guidelines

Rose RealTime does not support name spaces, so there are a number of names that
will be part of the global name space. Be careful not to use the same names for any
elements that may conflict. Also, make sure you avoid using reserved names, such as
any names from the Rose RealTime Services Library, Language-reserved words (for
example, C++), names of common operating system functions or data structures.
Spaces in names should also be avoided because some targets do not handle them.

Assigning Names

Each unique model element must have a unique name, and each relationship can be
labeled with a word or phrase that denotes the semantics or purpose of the
relationship. You can type the name in the diagram or in the Name field in the
specification.

■ If you type the name in the diagram, your entry is displayed in the Name field.

■ If you type the name in the specification, the software displays the new name in
the element icon and updates the information in the model.
429

You can rename an element using one of the following methods:

■ Change its name in the diagram.

■ Change its name in the specification.

■ Change its name in the browser.

For more information about renaming, see the topic Renaming a Model Element.

Special Case Notes

Special considerations for naming include the following:

■ class attribute - Each attribute must be unique within a class.

■ operation - Omit the function parenthesis when typing the operation name. The
software automatically displays the parenthesis when you display the operation in
the class compartment.

■ connection - The name field is optional.

■ state - State icons that have the same name are assumed to represent the same state
if they appear in the same context; otherwise, each state icon is assumed to
represent a distinct state. State icons that appear in different state diagrams
represent distinct states, even if they have identical names.

■ use case actors, classes, capsules, protocols - These elements must all have names
that are unique. Class names are part of the generated code name space, and must
not conflict with each other or with other items in the global name space, for
example, global functions, signal names.

Using Logical Names for Model Elements

Users of international character sets have a convenient mechanism for working with
multi-byte characters. You can specify an alias shortcut for model elements that
display on diagrams. This alternate name is called a Logical Name, and it displays on
diagrams.

You cannot create the logical name using inline editing directly on the Class diagram.
Inline editing only effects the logical name of the class if a logical name (alias) was
previously created. If an element does not have a logical name defined, inline editing
on the Class diagram only updates the class name, and not the logical name. If you
430 Chapter 20 - Naming Guidelines

right-click on a Class diagram, then click Filter > Show Logical Name if Defined, the
logical name is not updated. To create a logical name, select the Alias tab on the Class
Specifications dialog, and then create a logical name for the element.

Note: Model elements will continue to require an ASCII physical name for code
generation purposes.

You can assign a Logical Name to the following model elements:

For Class Diagrams and Use Case Diagrams

■ Class
■ Capsule
■ Attribute
■ Operation
■ Protocol
■ Signal
■ Package

For Collaboration Diagrams and Structure Diagrams

■ Port
■ Port Role
■ Capsule Role
■ Connector
■ Classifier role (available on Collaboration Diagrams)

For State Diagrams

■ Transition
■ Initial point
■ Choice point
■ State
■ Final state (available on State Diagrams for classes)

Note: Diagrams will show logical names only for the first level of inclusion. For
example, consider a capsule image on a Class Diagram: the protocol name on the
capsule’s port will always display the physical name.

Automation interfaces were extended for Logical Name to allow for modification and
retrieval of an object’s Logical Name.
Using Logical Names for Model Elements 431

Logical Name Example

Figure 106 shows the Class Diagram for an example model.

Figure 106 Class Diagram - Example Model

Figure 107 shows the Alias tab for the Class Specification dialog box for the
CppHello class.

Figure 107 Class Specification Dialog Box for CppMain - Alias Tab
432 Chapter 20 - Naming Guidelines

The Logical Name box is a text field that allows you to enter non-ASCII characters,
spaces, and punctuation marks. There are no restrictions associated with the element’s
name. Logical names are not used for code generation.

If a logical name is not specified for a model element, the physical name is displayed
on the diagrams.

Figure 108 shows the logical name assigned to the CppMain class.

Figure 108 Class Specification - Alias Tab - Logical Name Change

Figure 109 shows the context menu for a Class Diagram. To change the display to use
logical or physical names in your model, use the Show Logical Name if Defined
option from the Filter submenu.

Note: Since the filter option Show Logical Name if Defined is selected, you can edit
logical names on diagrams in the same way physical names are edited (that is, using
inline edit).
Using Logical Names for Model Elements 433

Figure 109 Class Diagram - Show Logical Name if Defined

If the Show Logical Names id Defined option is selected, the title for the
corresponding diagram will have the string [Logical Names] appended to the end
of the name to provide a visual reminder that logical names (not physical names) are
being used.
434 Chapter 20 - Naming Guidelines

Figure 110 shows the use of the Logical Name specified for this class (Figure 108).

Figure 110 Class Diagram - Using Logical Names

The Filtering tab in the Options dialog box (see Figure 111) shows three Logical
Name options:

■ Class Diagram - Show logical names (1)
■ State Diagram - Show logical name
■ Structure and Collaboration diagrams - Show logical names (2)
Using Logical Names for Model Elements 435

Figure 111 Options Dialog Box- Filtering Tab
436 Chapter 20 - Naming Guidelines

21Building and Executing
Models
Contents

This chapter is organized as follows:

■ Building and Running Models on page 437
■ Before You Start on page 438
■ Building Basics on page 439
■ Assigning an Active Component on page 440
■ Creating a Component on page 441
■ Starting a Build on page 441
■ Generate Dialog on page 442
■ Reviewing Build Results on page 444
■ Opening Code Generated for Model Elements on page 445
■ Build Menu on page 447
■ Build Settings Dialog on page 450
■ Build Log Tab on page 450
■ Build Errors Tab on page 451
■ Component Specification on page 451
■ Generating Documentation Fields on page 453
■ Component Dependencies on page 461

Building and Running Models

The mapping from design - that is, classes and capsules - to source code and
executables is not an easy task. It is during this phase of the software development
process that the majority of errors are introduced into a system, especially when it is
done manually. There is always a risk that the implementation will diverge from the
original design, and in most cases that is exactly what happens. However, since the
UML has well-defined semantics, Rose RealTime can automatically generate a model
or design into a lower-level language and then compile it into an executable. With
automatic total source code generation of your design, the model becomes the system.
437

Is Rational Rose RealTime a Compiler?

The answer is yes and no. Rational Rose RealTime compiles models into a high-level
language representation. It generates source code, or complete implementations, of
models while the generated source code is compiled and linked into machine
language using an external compiler and linker. The result is an executable that can be
run and observed via the Rose RealTime toolset.

Real-Time Services (Services Library)

Behavior in a model is specified using a State machine, and communication patterns
are specified with capsule structure. When a model is built, these abstractions must be
converted to implementation. Normally, you would have to implement your own
state machine, inter-process communication, concurrency control, thread
management, timing, and debugging capabilities. However, Rose RealTime provides
a set of pre-compiled Services Libraries for different platforms, which provides this
functionality for you. In summary the facilities provided by the RealTime Services
Library are:

■ The mechanisms that support the implementation of concurrent communicating
state machines

■ Thread management and concurrency control
■ Timing
■ Inter-thread and inter-process communication
■ Observability and debugging of a running model

Before You Start

To allow models to be built and executed on a variety of platforms with different tools
(for example, on Windows NT with Visual C++ 6.0 or on Solaris with gcc 2.8.1), Rose
RealTime allows build settings to be fully configurable. However, even though
complicated build and execution configurations can be setup, there are also default
settings that can be used to build and execute less complicated models.
438 Chapter 21 - Building and Executing Models

To learn more about building and executing models select a basic or more advanced
topic from the list below:

Building
■ Building Basics - helps you build your first model

■ Creating a Component - using component aggregation

Executing
■ Execution Basics - Helps you run and observe your first model.

■ Loading and Running Component Instances on Embedded Targets - Target
loading, restarting, and resetting.

■ Overview of Observability Options - Watches, traces, sequence diagrams,
behavior breakpoints, logging output, source code break points.

■ Running from Outside the Toolset - Running a model without immediate
observation, attaching to a running model.

Building Basics

Before trying to build a model, it is important to understand the role of components
for modeling the physical aspects of a system. The physical elements of a model refer
specifically to source code and executables.

A component is always created with a default configuration for your host machine.
This includes a default compiler, compiler flags, linker, and so forth. In many cases
these settings are sufficient for building simple sets of classes and capsules that do not
require integration with external source files, or libraries.

This section leads you through the steps of building a simple model that does not
require integration with external files (everything is defined with the toolset). This
will help you understand the build workflow without getting into specialized
configuration options. After you understand the basic build workflow refer to the
Component Wizard for more information on configuring components with advanced
build setting.
Building Basics 439

Top-level Capsule

Basically any capsule can be built and run. The capsule that you choose to build is
called the top-level capsule. It represents the highest scope of the executable that you
want to create. All classes and capsules referenced (contained or in a dependency
relationship) with the selected top-level capsule, directly or indirectly, will also be
compiled.

Note: Since any set of capsule and classes can be compiled, you are not required to
compile the entire model all the time. The capsule you decide to build may form only
a subset of the whole system. This allows for easier unit testing.

■ Create a component.

■ Build the component.

■ Review the build results.

Assigning an Active Component

If you find yourself building and running the same component and component
instances often you should configure an active component. When a component is
configured as being active the toolbar build icons and menu items become available
for easy access to common build and run commands. In addition you can configure
which component instances (executables) should be automatically run when the run
button is pressed.

In the browser, select Set As Active from the context menu

or

1 From the Build menu select the Settings item to open the Build Settings dialog.

2 From the Active Component combo box, choose a component that will be become
the active component.

3 For information on the other configurable build options shown, see Build Settings
Dialog.

4 Click OK.

Note: The build toolbar icons are now enabled and so are items under the Build
Menu.
440 Chapter 21 - Building and Executing Models

Creating a Component

To build an executable of a mode,l you must first create a component that will be used
to manage the build configuration parameters. There are a couple of different ways of
creating a component and assigning a top-level capsule.

You can create the component first, then assign the top-level capsule to it later.

To create a component:

1 Select the Component View folder, right-click and from the popup menu choose
New > Component.

A new component with the default settings for your platform is created.

2 Double-click on the default Component diagram, usually called Main, to open it.

3 Drag and drop the new component you just created onto the Component diagram.

4 Then drag and drop the top-level capsule onto the new component that was added
to the component diagram.

Note: You can also assign a capsule or class to a component by dragging and
dropping the capsule, class, or protocol from the model browser onto the
component in the model browser.

5 Open the components specification, switch to the References tab and set the
top-level capsule.

Alternatively, you can use the Component Wizard to help configure a component. To
run the Component Wizard, select Build > Component Wizard.

Starting a Build

When a component is built, there are actually quite a number of things that happen.
First the capsules referenced by the component are verified, then the model files are
written to disk, an external program is called to generate the source code from the
model files, the external compiler is invoked to compile, and lastly the linker is
invoked to create the final executable version of the component.

Each phase of the build process produces output that is used by the next phase, with
the final result being an executable.
Creating a Component 441

To build a component from the browser:

1 Select the component from the model browser.

2 Right-click and select Build from the popup menu.

Note: If you are working on a UNIX-based platform, and are planning to run the
component with Purify, select a component, then click Build > Build and select the
Link with purify option. For information on running a component with Purify, see
Running a Component Instance with Purify on page 477.

3 After the elements have been saved to disk the build dialog appears and shows the
build progress.

The build results will be shown. You should review to see if there are any errors or
warnings.

Building a Component from the Build Menu or Toolbar

Instead of directly building a component from the browser, you can build the active
component directly from the Build menu or by selecting one of the active component
toolbar buttons to verify, generate, or build the active component.

Generate Dialog

Use the Generate dialog to specify the build options for the selected component.

Build level

In this area, you can specify the build level for the selected component. The Build
level options are:

■ Generate - The capsules and classes referenced by the component are verified,
then the model files are written to disk.

■ Generate and compile - The capsules and classes referenced by the component are
verified, then the model files are written to disk, an external program is called to
generate the source code from the model files, the external compiler is invoked to
compile, and then the linker is invoked to create the final executable version of the
component.
442 Chapter 21 - Building and Executing Models

Show warnings

In this area, you want to specify which messages appear in the Log tab on the Output
window as Rational Rose RealTime builds the selected component. The Show
warning options are:

■ Warning - All warning messages appear in the Log tab in the Output window.

■ Notification - All notification messages appear in the Log tab in the Output
window.

■ Information - All information messages appear in the Log tab in the Output
window.

Note: If you are working on a UNIX-based platform, and are planning to run the
component with Purify, select a component, then click Build > Build and select the
Link with purify option. For information on running a component with Purify, see
Running a Component Instance with Purify on page 477.

Unable to Compile a Component?

When compiling a component in Rational Rose RealTime on a Windows NT or
Windows 2000 configuration, the code generation stage may complete without a
problem; however, during the compilation stage, you may receive various error
messages, such as "Cannot find C:\Program: file does not exist." This error means that
your specific compiler does not understand the space between Program and Files for
the location C:\Program Files.

Cause

Some compilers do not understand spaces in paths to files on Windows
configurations.

Resolution

If your compile does not understand spaces in the paths to files, you can:

■ Install Rational Rose RealTime to a location where the path does not contain
spaces.

■ Use the DOS name.

On Windows NT, to obtain the DOS name of a file, select the file in the Windows
NT explorer, right-click and select Properties. Now you have to use this DOS name
in your ROSERT_HOME environment variable.
Unable to Compile a Component? 443

On Windows 2000, open a Command Prompt window (cmd.exe) and type the
command DIR /X. This command displays the short names generated for non-8.3
file names on both Windows NT and 2000. It will look similar to the following:

ROSERT_HOME = "c:\Program~1\Rational\Rose~1"

After modifying the environment variable, modify your PathMap in the Rational
Rose RealTime toolset by clicking File > Edit PathMap, and then specify the same
name as indicated above.

Now, your model will build after you perform a full rebuild of your components.

■ Use the NT subst command

You can use the subst command to substitute a drive letter to the directory
containing spaces. You can then set you ROSERT_HOME environment variable to
this drive letter. For example:

subst K: "%ROSERT_HOME%"

set ROSERT_HOME=K:\

We recommend that you place the commands in a batch file and ensure this batch
file runs every time the workstation is started. Additionally, you must modify your
PathMap in the Rational Rose RealTime toolset by clicking File > Edit PathMap,
and rebuild the components.

■ Use Windows drive sharing

You can enable drive sharing on the directory that Rational Rose RealTime is
installed on, and map that directory to a drive letter. Additionally, you must
modify your PathMap in the Rational Rose RealTime toolset by clicking File > Edit
PathMap, and rebuild the components.

Reviewing Build Results

You can view the results of your build by selecting View > Output and clicking the
Build Log tab.

Figure 112 Build Log tab
444 Chapter 21 - Building and Executing Models

Review any errors shown in the Build Errors tab, and correct before trying to rebuild.
You can jump to the error location in your model by double-clicking on any error
shown in the bottom part of the results window. As well, you should be familiar with
some of the most common build errors (Understanding Build Errors). They are
described briefly and should be used in conjunction with your compiler and linker
documentation.

The Build Log Tab contains stdout and stderr of all phases of generation,
compilation, and link. The Build Errors Tab contains a parsed version of the output
stream.

For information on saving the Build Log output to a file, see Saving Build Output to a
Log File on page 113.

Opening Code Generated for Model Elements

You can open the code generated after building a component for class, capsule, and
component elements within the toolset. Opening the code lets you view or modify the
header files (.h for C and C++), body files (.c for C and .cpp for C++), or source files
(.java for Java) generated by the toolset.

Selecting Elements

You can select one or more classes and capsules, or components from the Model View
tab in the browser, or directly from a Class diagram. However, all selected elements
must be of the same type and language. This means that your selection must contain
only classifiers (classes and capsules) or only components that are all the same
language (either all C, all C++, or all Java). Otherwise, the Browse Header (C and
C++) and Browse Body (C and C++), or the Browse Source (Java) options on the
context menu are not available.

Note: Before selecting a class, capsule, or component to view it’s generated code, you
must first build the component for that element. In addition, because you can assign a
capsule or class to one, or more components, different code can be generated for every
component for the selected model element.

Selecting a Single Element

In your model, you can select an class or capsule where:

■ The Element is not Assigned to a Component on page 446
■ The Element is Assigned to a Single Component on page 446
■ The Element is Assigned to Multiple Components on page 446
Opening Code Generated for Model Elements 445

The Element is not Assigned to a Component

If a class or capsule is not assigned to any component, the Browse Header and
Browse Body, or the Browse Source options are not available on the context menu for
the selected class, capsule, or component.

The Element is Assigned to a Single Component

If a class or capsule is assigned to a single component, Rational Rose RealTime uses
that component to find the generated code. The Browse Header and Browse Body, or
the Browse Source options are available on the context menu for the selected element.

The Element is Assigned to Multiple Components

If the selected class or capsule is assigned to more than one component, the Select
Component dialog (Figure 113) shows all of the components for that element.

Figure 113 Select Component Dialog

If a model has an active component set that appears in the list of selected components,
it is automatically selected when Select Component dialog opens. For additional
information on setting a component as the active component for a model, see
Assigning an Active Component on page 440.

Note: For large models, you may encounter a delay before the Select Component
dialog appears.
446 Chapter 21 - Building and Executing Models

Selecting Multiple Elements

If you select multiple elements, the Select Component dialog (Figure 113) shows only
the components that are in common for all of the selected elements.

If the selected elements do not have any common components, you will receive an
error message.

Using an Editor

When viewing the code generated for selected model elements, you have two editor
options: using the Internal Editor or specifying an External Editor.

Internal Editor

Included with Rational Rose RealTime is an editor that you can use to open code
generated for classes, capsules, and components.

Note: If you do not specify an external editor, Rational Rose RealTime automatically
uses it’s internal editor. The Internal editor can open only one file at a time. If you
have multiple elements selected, only the header, body, or source file for the elements
selected first appears in the internal editor. We recommend that you specify an
external editor if you want to view the code generated for multiple files.

For information on using the shortcut keys in the internal editor, see Rational Rose
RealTime Keyboard Shortcut Summary on page 571.

External Editor

You can specify an external editor to view files containing generated code. Specifying
an external editor may provide you with additional capabilities, as well as allowing
the toolset to open multiple files at the same time.You can specify an external editor
by clicking Tools > Options, and selecting the Editor tab.

For information on specifying an external editor, see Editor Tab on page 559.

Build Menu

Build

Opens the Build dialog from which you can choose the Build Level.

Quick Build

Builds the component incrementally.
Build Menu 447

Rebuild

Forces a complete build of a component. All classes references by the component will
be verified, regenerated, compiled, and linked.

Clean

Removes all files from the output directory.

Code Sync

Invokes the mechanism to capture external changes made to the generated code back
into the model. For more information, see “Using Code Sync to Change Generated
Code” on page 531.

Stop Build

Stops the build (or the Code Sync) in progress.

Run

Loads the component instances specified in the Build Settings Dialog. The component
must be successfully built before it can run.

If the Attach Target observability flag was set on the Component Instance
Specification dialog, and a Target observability Port number filled in, then the
execution interface is displayed allowing you to control the execution of the model.

Start (F5)

Starts the execution of the component instances. If the component instances are in the
reset state, then execution begins with all fixed capsules being initialized (initial
transitions fired). If the component instances are in the stop state, then execution
resumes.

Stop (Shift+F5)

Stops the execution of the component instances at the current point of execution and
remembers the state of all capsules. Execution is stopped as soon as each currently
running transition is finished. The stop button does not halt execution in the middle
of a transition action.
448 Chapter 21 - Building and Executing Models

Step (F10)

Steps through the next deliverable message. Pressing the step button while in the
stopped state causes the next message of the highest available priority to be delivered,
and any associated transitions are executed. Execution stops again as soon as the last
transition segment for that message has finished executing.

Restart (Ctrl+Shift+F5)

Resets the component instances, resetting all fixed and destroying all dynamic
capsule instances. The running component instance is terminated and a new one is
run.

Load

Loads the components instances specified in the Build Settings dialog. The
component must be successfully built before it can run. The Load command spawns
an external process in which the model executable runs. You will likely see an external
command window appear.

The Attach Target observability flag must be set on the Component Instance
Specification dialog, and a Target Observability Port number filled in for the model to
be loaded within the tool.

The execution interface is displayed allowing you to control the execution of the
model. See Execution basics for more information on the execution tools.

Reload

Kills the existing model process and runs the model again. The execution interface
stays open.

Shutdown

Kills the existing model process and closes the execution interface.

Settings...

Displays the Build Settings Dialog. You must use this dialog to specify the active
component before you can build the component.

Add Class Dependencies...

Runs a script that checks for any missing dependencies between model elements and
add them. The script checks dependencies found in attributes or operations. It does
not check for code-level dependencies.
Build Menu 449

Component Wizard...

Activates the Component Wizard to help you through the steps of creating and
deploying a component.

Build Settings Dialog

The Build Settings dialog is used to select an active component for building and
component instances for running. The build settings are not saved as part of a model.
They are saved with the workspace.

Active Component

Used to select an active component. The combo box contains all components in your
model.

Active Component Instances List

This list is populated with all the component instances in the model. Component
instances that are selected in this list are automatically run when the active
component is run. You can select and de-select component instances by clicking in the
checkbox on the left-hand side of each component instance name. The order in which
the component instances are run is determined by the load order setting in the
Component instance specification.

Build Log Tab

The Build Log tab stores the contents of the compilation and code generation log.
Select View > Output and click the Build Log tab to open it. Compilation or code
generation messages are posted to the Build Log tab regardless of whether it is visible.

You can save the contents of the Build log tab to a file. You can also choose to
automatically save messages to a file as they are posted.

Figure 114 Build Log Tab
450 Chapter 21 - Building and Executing Models

The Build Log tab contains the output stream from the build. Examine the contents of
this window to get see any error message displayed in the build messages list.

Build Errors Tab

The Build Errors tab contains a parsed version of the output stream. It is important to
review the Build Log tab because some errors cannot be parsed by the error parser.

The Build Errors tab contains a Location column that provides the class/code
segment name pair. The Context column provides the context of the problem. The
Message column describes the problem. These messages come directly from the
compiler error stream and reflect the accuracy of the compiler that you use. Further,
errors within your code segments may lead to errors being reported in
system-generated files.

Double-clicking on an error or warning on the Build Errors tab brings you to the
location in the model where the problem occurred. See Common Build Errors
(Understanding Build Errors on page 463) for a short summary of common build errors.

Unknown Compiler Message Stream

It is possible that the compiler being used reports errors in ways that are not
understood by Rational Rose RealTime. There are no standards for error reporting by
compilers and linkers. Hence, the error parser is often targeted for a particular
compiler and linker. If you use an unsupported compiler, Rational Rose RealTime will
probably not be able to understand the error output from the parser, and may
inaccurately report errors. You have to rely on the raw output stream to see the direct
output of the compiler, rather than going by the errors reported by the Build Errors
tab. See the book Adapting for Target Environments, Rational Rose RealTime.

Component Specification

A Component Specification displays and modifies the properties and relationships
of each component in the current model, and is used for all component kinds.

Specification Content

The Component Specification consists of the following tabs:

■ Component Specification - General Tab
■ Component Specification - References Tab
■ Component Specification - Relations Tab
■ Component Specification - Files Tab
Build Errors Tab 451

Component Specification - General Tab

Name

The component name is referenced during the build process.

Parent

Specifies the parent component package.

Environment

Specifies the run-time system and code generator used in the build.

Type

Specifies what is being built, for example, an executable or a library.

C++ Executable - Allows you to build a C++ executable based on a main program.
This type of component cannot contain capsules and has no dependencies on the
TargetRTS.

C Executable - Allows you to build a C executable based on a main program. This
type of component cannot contain capsules and has no dependencies on the
TargetRTS.

Stereotype

A component stereotype represents the subclassification of an element. The most
common type of components are already predefined as stereotypes, including Main
Program, Package Body, Package Specification, Subprogram Body, Subprogram
Specification, Task Body and Task Specification. You can also define and add your
own kinds of stereotypes.

Documentation

Provides a description about the selected component.

Component Specification - References Tab

References List

The references list displays the list of packages (includes all elements in the package),
classes, capsules and protocols to be compiled with this component.
452 Chapter 21 - Building and Executing Models

If during the dependency check elements that are not in this list are found to be
needed for the build, a dialog appears asking you to add them.

Component Specification - Relations Tab

Relations List

The relations list displays aggregation relations between the component and other
components in component diagrams.

Component Specification - Files Tab

Provides a list of referenced files that you can link external files to model elements for
documentation purposes. You can insert and delete references to files or URLs.

Generating Documentation Fields

While debugging on target environments, you can modify source code directly.
Consequently, you may need to understand the code that you are working on and
may need to provide some kind of modification history independent of the
configuration management system.

Rational Rose RealTime includes a feature that enables:

■ the generation of documentation fields for different model elements as comments
into the generated source files

■ the use of code sync to integrate the modified comments back into the model

This feature is particularly useful for multi-byte character and international users.

Note: The feature is available for C and C++ models.

For a component, the C++ Generation tab for C++ (C Generation tab for C) contains
all of the fields for which you can generate documentation (see Figure 115).
Generating Documentation Fields 453

Figure 115 Component Specification Dialog Box - C++ Generation Tab
454 Chapter 21 - Building and Executing Models

You can control the generation of documentation for the following model elements:

■ Association end
■ Attribute
■ Capsule
■ Capsule role
■ Choice point
■ Class
■ Operation
■ Port
■ Protocol
■ State
■ Transition

The drop-down lists for each box contains the following options:

Documentation is generated as a comment with its own RME tag (for general
documentation), and if code sync is enabled, the documentation is enclosed in USR
tags (see Figure 116). When Code sync is enabled, empty documentation fields
continue to be generated in the source file allowing you to add new comments
between the USR tags in the generated code. To ensure the unambiguous use of code
sync, each generated documentation field in the source files (header or
implementation) are generated only once in the source code.

Option Description

do not generate The default option is do not generate. Documentation is not generated
when this option is selected.

prefer in header When selected, the documentation appears with the generated source
for the model element in the header file. If the model element does not
appear in the header file but appears in the implementation file, then
the documentation is generated in the implementation file.

prefer in
implementation

When selected, the documentation appears with the generated source
for the model element in the implementation file. If the model element
does not appear in the implementation file but appears in the header
file, then the documentation is generated in the header file.

Comments are generated in the implementation file whenever
possible, and in the header file only if necessary.

only in header The code generator outputs documentation only if the source for the
affected model element appears in the header file.

only in
implementation

The code generator outputs documentation only if the source for the
affected model element appears in the implementation file.
Generating Documentation Fields 455

Figure 116 Generated Documentation with Code Sync Not Enabled

Figure 117 shows the generated documentation with code sync enabled.

Figure 117 Generated Documentation with Code Sync Enabled

Note: When code sync is disabled, comments are generated in the source files without
USR tags (see Figure 122). Also, empty documentation fields are not generated.
456 Chapter 21 - Building and Executing Models

If code is generated with code sync enabled and some documentation comments are
modified or added in the generated source, those changes can be imported back into
the model with the Code sync feature.

Using Generated Documentation Fields

Typically, you will generate the source code with code sync enabled and with
documentation for some (or all available) model elements enabled. During a review of
the generated code, a user may modify the source code and the documentation. Code
sync will import these changes back into the model.

For example, given the following class diagram:

Figure 118 Class Diagram - Example Model

Figure 119 shows the results after building the model (the code that is generated in the
header file for CppMain.h).

Figure 119 No Documentation Generated and Code Sync is Disabled
Generating Documentation Fields 457

Next, open the Class Specification dialog box for the CppMain class and add text to
the Documentation box in the General tab (see Figure 120).

Figure 120 Class Specification Dialog Box for the Class CppMain

To see the documentation fields, select the desired component from the Model View
tab in the browser, right click and select Open Specification, then click the C++
Generation tab. At the bottom of this tab, select prefer in header for the Class
documentation box (see Figure 121). For this example, we will also select the
CodeSyncEnabled option.
458 Chapter 21 - Building and Executing Models

Figure 121 Component Specification Dialog Box for the Cpp Component

Note: When the label for a box is bold, it means that this property is overridden.

After you build the model, if you open the header file (CppMain.h), the file is updated
to include the text in the Documentation box for all classes in the model.
Generating Documentation Fields 459

Figure 122 Generated Documentation with Code Sync Enabled

Note: Some types of model elements have source code generated only in the header
file or only in the implementation file. For example, capsule role and port RME tags
appear only in the header file so the documentation cannot be generated in the
implementation file. Similarly, RME tags for states are generated only in the
implementation file.
460 Chapter 21 - Building and Executing Models

Note: RME tags for transitions that do not have any code are not generated in the
source files. Consequently, their documentation will not appear in the source files.

Component Dependencies

You can break up the system you are building into multiple components. Model the
build dependencies using the component dependencies.

See the Guide to Team Development - Rational Rose RealTime and language-specific
guides for more information.
Component Dependencies 461

462 Chapter 21 - Building and Executing Models

22Common Build Errors
Contents

This chapter is organized as follows:

■ Understanding Build Errors on page 463
■ Model Management - Importing Model Compilation Results on page 468

Understanding Build Errors

Often, the compilation details returned in the Build Results window gives you a
clearer picture of what the error is, but you must understand what the compilation
details are reporting. The compilation details are the direct results returned by the
compiler. They contain the names and line numbers from the actual generated code,
so you have to analyze the error message to determine where the error occurred. It is
often very useful to refer to the compilers documentation to understand the meaning
of certain reported errors or warnings.

Below is a small list of generic and common build symptoms with possible causes:

Unknown command, command not found, the name specified is not recognized

■ Is your compiler installed correctly?

■ Is your make program configured and installed correctly?

■ Are you linking with the correct Services Libraries?

■ Are the Rose RealTime environment variables set?

Redefinition of basic types or multiple declarations for X

■ Do you have any name conflicts?

Unresolved symbol or undeclared identifier

■ Have you configured the necessary inclusions, libraries, or object files?

■ Are you missing dependencies between classes in your model?

■ Does the Capsule role have the same name as the Capsule?
463

Missing Class Dependencies

Missing dependencies are a common source of compilation errors. You need to
identify which capsules and classes depend on other classes in your model. That way
when you compile a capsule or class, it will find the definition of the class you depend
upon. Also if that class's interface changes, the build process will automatically
rebuild all the capsules and classes that depend upon it.

To resolve these types of errors add the correct dependencies between classes using
the Build > Add Class Dependencies Wizard or by manually creating a dependency
relationship between classes.

Capsule Role Name Same as Capsule Name

An error of this type is generated when a capsule role instance has the same name as a
capsule.

To resolve the problem, give the capsule role a different name than the capsule class.
A good rule in situations like these is to always start capsule class name with an
uppercase letter, and capsule roles with lowercase letters.

Linking Wrong Services Library Set

If you find that the output stream has many undefined messages, you may be
accessing an inappropriate Services Library set.

Code generated with this release of Rose RealTime does not work with the Service
Libraries of previous releases (and vice versa).

The compiler must match the library set being used since most compilers do
name-mangling on variables. For example, if your compiler target is NT and your
compiler is MSVC++ 6.0, use the target NT40 and the x86-VisualC++-6.0 library entry.

Compiler Not Installed Correctly

If the CC environment variable is either undefined or the default compiler and linker
defined in libset.mk cannot be found, or CC is defined to something that either
cannot be found or is not a compiler, you will sometimes see the following in the raw
output field of the Build Results window if your make command is not found:

The name specified is not recognized as an internal or external
command, operable program or batch file.
464 Chapter 22 - Common Build Errors

Compile a Simple Hello World Program

To ensure that your compiler and linker are installed correctly, write and build a small
test program from outside of Rose RealTime. Ensure that it compiles and runs
successfully.

Check Environment Variables

You should be able to invoke your compiler and linker from outside of Rose RealTime
on the command line. If you cannot you should verify your PATH environment
variable and ensure that the directory that contains the tools for your platform is in
the path.

Review Your Compiler Flag Settings

You should review your compiler settings. Have you overridden the default compiler,
or have you added flags to the component specification compiler tab?

System Does Not Understand the Make Command

Your OS does not understand make or the make is being used is in some interesting
way different from what Rose RealTime expects. You will sometimes see the following
in the raw output field of the Build Results window if your make command is not
found:

The name specified is not recognized as an internal or external
command, operable program or batch file.

Check Environment Variables

You should be able to invoke make, gmake, or nmake from outside of Rose RealTime,
for example, on the command line. If you cannot you should verify your PATH
environment variable and ensure that the directory that contains the make utility for
your platform is in the path.

Ensure that Component has Correct Make Types Configured

Also, you should ensure that the make name and types defined in the component
specification compilation make and generation make tabs represent the correct type of
make installed on your system.
Understanding Build Errors 465

Name Conflicts

Odd compile errors can easily be caused by name conflicts, such as naming a capsule
role the same as a signal name. You must be aware of the name scoping of various
entities in your programming language to ensure that no conflicts occur.

In Rose RealTime, most named entities have capsule-level name scope. For example,
within a capsule class, the following are named entities, and any duplication among
the names of these entities may cause problems:

■ capsule roles
■ attributes
■ ports
■ operations

As well, symbols declared as extern, as in included .h files, are generally part of the
global name space, and must not conflict with any names of entities in your model.
There are several names that are reserved for the OS/Compiler, such as ‘return’ and
‘exit’.

Some name conflicts are more insidious in that the conflicting names are actually
‘compile-time’ compatible, and slip by the compiler, resulting in a run-time error that
may be difficult to track down. Typically, this means that the elements actually have a
common superclass, or, if the error occurs in a function which takes a void *
parameter, it is because the entity that was passed as a parameter was not the
expected one.

Missing Header Files, Object Files, and Libraries

Most models make calls to external code libraries, even if it is just the basic system
calls (such as printf, scanf, cin, cout, and so forth). The include files that define these
calls must be specified prior to compilation, so that the compiler can resolve these
references. Likewise, the libraries or object modules that contain the actual compiled
definitions of these external classes and functions must be specified so that the linker
can resolve the symbol references.

You will likely see the following type of error message if you have not included the
correct header files:

'print_this' : undeclared identifier

You will likely see the following type of error message if you have not specified a
library or object files that should be linked into your model:

unresolved external symbol "int __cdecl print_this(void)"

fatal error XXXXXX: 1 unresolved externals
466 Chapter 22 - Common Build Errors

To resolve these types of errors add the correct files or search directories to the
component specification dialog under the inclusions or libraries tabs.

Compile Fails on Valid C++ Models with VC++ 5.0 or VC++ 6.0

The $INCLUDE and $LIB environment variables may not be properly set. Ensure that
your compiler binaries are on the path and that the $INCLUDE and $LIB environment
variables are set (for example, they could be set for the user who installed VC++, but
not set for another user). Set the environment variables. Refer to the VC++
documentation for further details.

Error loading Capsule ("could not spawn process")

If the executable (capsule1.exe) is stored on an NFS server then the NFS client must be
configured to have execute permission set.

Error Linking Capsule - Error From nmake

If the executable (capsule1.exe) is stored on an NFS server then the NFS client must be
configured to have execute permission set.

Windows NT Compilation Command Line Limits

If you encounter a compilation error message that complains about the command line
being too long, the cause may be that the length of your compile or linker has
exceeded a limit.

Windows NT compilation has command line limits in two areas: source compilation
and linking. Both limits have been explored for the Visual C++ 5.0, VRTX PPC
Microtec 1.4 and Tornado 1.0.1 PPC Cygnus 2.7.2 compilers.

Source File Compilation

The variables in source compilation are the update name, the $ROSERT_HOME path,
compilation options, the local working directory and include directories. The only
compiler that has a measurable limit is VRTX. The command line limit is 768
characters.

A workaround for the problem is to reduce the number of include directories by
combining include files. Other solutions are to shorten paths and names for the
variables listed in the previous paragraph.
Understanding Build Errors 467

Linking

The variables in linking are the update name, the $ROSERT_HOME path, the link
options, the number and name length of libraries, the library search paths and the
local working directory. The link limits are shown below:

■ Visual C++ 5.0: more than 20875 characters

■ VRTX PPC Microtec 1.4: 4147 characters

■ Tornado 1.0.1 PPC Cygnus 2.7.2: 4150 characters

A workaround for the problem is to shorten paths and names for the variables listed
in the previous paragraph.

Model Management - Importing Model Compilation Results

You can now import your model compilation results in to the Build Log and
Build Errors tabs in the Output window. Importing compilation results allows you to
address build issues and errors within your models at a later time, instead of
addressing them immediately after the model builds.

Build Log Tab - Saving and Importing Compilation Results

The Build Log tab contains the raw output stream from the build. You can examine
the contents of this window on any error message displayed in the build messages list
(Build Errors tab). To capture the results in the Build Log tab, you will first have to
capture the results to a file. You can capture the output by:

■ building the model from the command-line and capturing the output to a file
■ Saving the Build Output to a File Directly from the Build Log Tab on page 468

Saving the Build Output to a File Directly from the Build Log Tab

You can automatically or manually capture all of the build output to a log file to
process the output later.
468 Chapter 22 - Common Build Errors

To automatically save build results to a file:

1 In the Build Log tab in the Output window, right-click and click AutoSave.

2 In the AutoSave Log dialog, specify a name for the log file and select a location.

3 Click OK.

4 Build your model.

Note: If you attempt to open the Build Log file, you may encounter a Sharing
Violation message. To view the contents of the Build Log output file, right-click in the
Build Log tab, click AutoSave, and then open the log file.
Model Management - Importing Model Compilation Results 469

To save the Build Log results after compilation:

1 In the Build Log tab in the Output window, right-click Save As.

2 In the Save Log dialog, specify a name for the log file and select a location.

3 Click OK.

Importing from the Build Log Tab

If you saved the Build Log results (for example, by capturing the results from running
a build from the command-line, or by selecting Save As or AutoSave from the context
menu in the Build Log tab), you can import results at a later time for further
examination.
470 Chapter 22 - Common Build Errors

To import Build Log results previously captured to an output file:

1 In the Build Log tab in the Output window, right-click Import.

2 In the Import Build Output dialog, specify the name for the .log or .txt file
containing the build compilation results.

3 Click Open.

The Build Log tab now contains the results from a previous build.

Note: When importing the build log file (after saving the log file in Rational Rose
RealTime by clicking Save As from the context menu on the Build Log tab), only the
Build Log results are imported. No build errors are imported because clicking Save
As only saves the Build Log results. However, if you create a log file from the
command line, importing the results will populate the Build Log and the Build Errors
tab.

Build Errors Tab - Importing Compilation Results

The Build Errors tab contains a parsed version of the output stream. You can examine
the contents of this window for any error message displayed in the build messages
list. To capture the results from the Build Errors tab, you will first have to capture the
results to a file. You can capture the compilation results by building the model from
the command-line and capturing the output to a file.
Model Management - Importing Model Compilation Results 471

To capture the Build Errors compilation results to a file:

1 Open an existing model and select a component.

2 Right-click on the component, and click Build > Build.

3 In the Build dialog for the selected component, click Generate.

4 From the command-line, change the directory to the location of the output for your
model (build).

5 Use the following instructions to redirect the results to an output file.

Note: Typically, the syntax should be similar to the following:

make_command [/nologo] RTcompile redirection_command OutputFile.log

where:

make_command - Specifies the make command (the command being used to
control the code generation for your specific platform) in the build directory.
This commands appears in the build directory after you click Generate in Step
3 (such as make on UNIX, and nmake on Windows).

/nologo - Suppresses the logo screen on startup. Use this option only when
using the nmake command.

RTcompile - Causes the compilation of the code after successful generation.

redirection_command - Consult your documentation for the appropriate
redirection commands (specify redirection for both standard out and standard
error).

OutputFile.log - Specifies the name of the file that will contain the compilation
output results.

❑ For example, for Windows, type the following command:

nmake /nologo RTcompile > BuildFileLog.log 2>&1

❑ For example, for UNIX (csh), type the following command:

make /nologo RTcompile >& BuildFileLog.log

Note: This command might work better from the output directory because
rtsetup.pl may be used.
472 Chapter 22 - Common Build Errors

6 In the Build Errors tab in the Output window, right-click and select Import.

7 In the Import Build Output dialog, specify the name for the .log or .txt file
containing the build compilation results.

8 Click Open.

The Build Errors tab now contains the results captured from the command-line.

Note: When importing the build file (the output file created from the command-line),
if you specified redirection for both standard out and standard error, the compilation
results for both the Build Log and the Build Errors tabs are imported.
Model Management - Importing Model Compilation Results 473

474 Chapter 22 - Common Build Errors

23Running and Debugging
Contents

This chapter is organized as follows:

■ Execution Basics on page 476
■ Creating a Component Instance on page 476
■ Running a Component Instance with Purify on page 477
■ Running a Component Instance without Purify on page 479
■ Observing a Running Component Instance on page 481
■ Rational Rose RealTime Execution Interface on page 482
■ Overview of Observability Options on page 483
■ Component Instance Menu on page 484
■ RTS Browser on page 485
■ Monitors on page 488
■ Navigating to Model Elements from Debug Monitors on page 490
■ Trace Windows on page 490
■ Probes on page 493
■ Inject Window on page 494
■ Capsule Instance Trace on page 494
■ Message Trace Configuration Dialog on page 496
■ Execution Watch Tab on page 496
■ Run-time Exception While Running a Component Instance on page 497
■ Instance Browser on page 498
■ Source Code Debugging on page 498
■ Source Debugger Integration without Target Observability on page 500
■ Setting Breakpoints on page 500
■ Customizing Rational Rose RealTime for Target Control and Observability on page 507
■ Running from Outside the Toolset on page 508
■ Using the Command Line on page 509
■ Loading and Running Component Instances on Embedded Targets on page 510
■ Component Instance Specification on page 511
■ Processor Specification Dialog on page 516
■ Device Specification on page 525
■ Connection Specification on page 526
■ Probe Specification on page 527
475

Execution Basics

After a component has been built successfully, you can run the resulting executable. If
you have Purify installed, you can run the executable with Purify, to customize error
detection for each component in your program. After the component has been built,
see Running a Component Instance with Purify on page 477. If you do not have Purify
installed, see Running a Component Instance without Purify on page 479.

Rational Rose RealTime provides an execution environment that can be used to
execute and observe component instances on a processor (a type of node).

While a component instance runs, you can control and observe its execution. This
functionality is very powerful: it allows a component instance to be observed at the
modeling language level, rather than at the source code level.

Tasks

1 Creating a component instance

2 Running a component instance with Purify

3 Running a component instance without Purify

4 Observing a running component instance

Creating a Component Instance

Before running a component that has been built, you must first assign an instance of
the component to a processor.

Tasks

1 Select the Deployment View folder, right-click and from the popup menu click
New > Processor.

2 A new processor with the default settings for your platform is created.

3 Double-click on the Deployment diagram to open it.

4 Drag and drop the processor onto the Deployment diagram.

5 Then drag and drop a component from the Component View model browser on to
the processor that was just added to the Deployment diagram.

Note: You can also create a component instance by dragging and dropping a
component from the model browser onto a processor in the model browser or to
the Processor Specification - Detail tab.
476 Chapter 23 - Running and Debugging

6 Open the processor’s specification dialog, and change to the Details tab. Under the
Component Instances list you should see the new component instance that was
created.

7 From the Model View browser you can also see the list of component instances
associated with their respective processor.

Running a Component Instance with Purify

If you do not have Purify installed on your system, see Running a Component Instance
without Purify on page 479.

After the component is built and a component instance has been created, the instance
can then be run and observed. Purify detects errors in your own code as well as the
components your software uses.

The Run with Purify item is only visible if you have Purify installed.

The processor must have the same operating system as the toolset, otherwise the Run
with Purify item will be grayed out. For example, a component instance with a Unix
processor must be running on a Unix operating system.

If you are using a UNIX operating system, ensure that you linked with Purify during
the build.

Tasks

If you have configured an active component, then once the build is complete, you can
use the execute icon from the toolbar (press F5), or select Build > Run with Purify
from the main menu to automatically run all the component instances selected in the
Build Settings dialog.

You can also run any component instance by selecting the component instance from
the model browser, right-clicking and selecting Run with Purify from the popup
menu.

After you select Run with Purify, you will be prompted to select Yes if you haven’t
got a build. After you answer the prompt, it may take a minute or so before the toolset
finishes running the executable, especially for a large model.
Running a Component Instance with Purify 477

While a component instance runs with Purify, follow these steps to set up execution
control from the toolset:

1 A console window appears and you must ensure that the following is displayed
(for Windows NT users).

Note: A console window only appears on host-based targets. Other tools are
required to see console windows on targets.

If the observability line below is not shown in the console, ensure that the
observability check box and observability port have been configured in the
Component Instance specification.

Purify for Windows NT,

Copyright (C) 1993-2002 Rational Software

All rights reserved.

Version 2002.05.00 Early Access; Build: 3142;

WinNT 4.0 1381 Service Pack 6A Uniprocessor free

Instrumenting:

Compile.EXE 241726 bytes

Purify: while processing file
z:\versions\models\myfiles\build\Compile.EXE:

Note: Instrumentation repeating with 6 additional entry points.

Rational Rose RealTime C/C++ Target Run Time System
Release 6.20.B.03 (+c)
Copyright (c) 1993-2002 Rational Software
rosert: observability listening at tcp port 8978

2 Bring control back to the toolset by clicking on any part of the toolset. You will
notice a new tab called RTS has been added on you model browser. The browser
contained in this new window is called the RTS Browser. It is used to control the
execution of a running component instance. You can run and control multiple
component instances from within Rational Rose RealTime, for each running
instance there is a separate RTS Browser tab.

3 Click on the new tab to show the RTS Browser.

4 The execution control buttons are at the top of the RTS browser. Press the Start
button to start the execution of the loaded component instance. Everything printed
from your model to stdout and stderr will be shown in the console window that
appeared when the component instance was loaded.
478 Chapter 23 - Running and Debugging

5 After you exit the RTS browser, the Purify window appears with the Purify results.
For information on how to interpret the results, see “Interpreting the Purify Log
Reports” on page 297. For information on how to save the Purify results to a file,
see “Running from outside the toolset” on page 318.

6 When you are finished running the component instance with Purify, press the
shutdown button. The component instance is killed and control is returned to
Rational Rose RealTime.

Note: You can also control the execution of a component instance by using the entries
in the Build section of the main menu, or in the popup menu of a component instance.

Interpreting the Purify Log Reports

The Purify output is displayed in a tree control listing all exceptions in order of
occurrence. When running on a UNIX platform, each exception report consists of a
message. When running on a Windows platform, each exception report consists of a
message preceded by an icon, to indicate the severity.

■ Messages preceded by a blue circle containing the letter i are for information only.

■ Messages preceded by a red circle containing the letter i indicate that there is a
user error.

■ Messages preceded by a yellow triangle containing an exclamation mark (!) are
warning messages. They usually indicate memory leaks.

If the message text is bold, it indicates that there is something in the model you can
see; usually a user error, such as a memory leak.

If several levels of message text are bold, you can scope down to the actual message
which points to the line of code changed by the user. You can double click on the bold
messages to see the section in the code that caused the message.

Running a Component Instance without Purify

After the component is built and a component instance has been created, the instance
can then be run and observed. There are two basic ways of running component
instances. They are both described below.

Tasks

If you have configured an active component, then once the build is complete you can
use the execute icon from the toolbar (press F5), or select Build > Run from the main
menu to automatically run all the component instances selected in the Build Settings
dialog.
Running a Component Instance without Purify 479

You can also run any component instance by selecting the component instance from
the model browser, right-clicking and selecting Run from the popup menu. If the Run
item is grayed out, it is probably because the target control scripts configuration is
pointing to the wrong directory in the Processor specification.

While a component instance runs, follow these steps to setup execution control from
the toolset:

1 A console window appears and you must ensure that the following is displayed.

Note: A console window only appears on host-based targets. Other tools are required
to see console windows on targets.

If the observability line highlighted below is not shown in the console, ensure that
the observability check box and observability port have been configured in the
Component Instance specification.

Rational Rose RealTime C/C++ Target Run Time System

Release 6.20.C.00 (+c)

Copyright (c) 1993-2001 Rational Software

rosert: observability listening not enabled

2 Bring control back to the toolset by clicking on any part of the toolset. You will
notice a new tab called RTS has been added on you model browser. The browser
contained in this new window is called the RTS Browser. It is used to control the
execution of a running component instance. You can run and control multiple
component instances from within Rational Rose RealTime, for each running
instance there is a separate RTS Browser tab.

3 Click on the new tab to show the RTS Browser.

4 The execution control buttons are at the top of the RTS Browser. Press the Start
button to start the execution of the loaded component instance. Everything printed
from your model to stdout and stderr will be shown in the console window that
appeared when the component instance was loaded.

5 When you are finished running the component instance, press the shutdown
button. The component instance is killed and control is returned to Rational Rose
RealTime.

Note: You can also control the execution of a component instance by using the entries
in the Build section of the main menu, or in the popup menu of a component instance.
480 Chapter 23 - Running and Debugging

Observing a Running Component Instance

A very powerful feature of Rational Rose RealTime is the ability to observe a running
component instance at the model level. This kind of high-level debugging is not what
most developers are used to. More conventionally, developers converted design
models to source code. When it was compiled and run, the only way to trace the
execution was at the source code level. The design model representation was of no
use.

In Rational Rose RealTime you can see the triggered transitions, active states in the
state monitors, and watch the dynamic structure animated in the structure monitor. In
addition, you can use probes to trace the messages being passed in the system.

Tasks

Observe a running capsule instance by opening monitors and message traces:

1 Once you have followed the steps to run your component instance, change to the
RTS browser tab and press the Start button.

2 Expand the top-level capsule folder and select a leaf capsule instance. Non-leaf
capsules instances represent the class of the instances.

3 Right-click on a capsule instance, and from the popup menu select Open State
Monitor.

A monitor window appears, and you should be able to see the state machine of
this capsule instance. The current state is highlighted in black. In addition the last
transition fired is drawn in black.

4 Select the Probes tool from the monitor toolbox. Place a probe onto a state by
moving the probe cursor over the state then clicking the left mouse button to apply
the probe to the state.
Select the probe that you have just applied to a state, and from the popup menu
choose Open Trace Window.

5 The opened trace window shows all messages that occur in this state. Follow
similar steps for adding probes to ports, and junction points.

6 Notice that any new probe that is added to a monitor is also added to the Probes
folder in the RTS Browser. You can perform common operations on probes by
using the popup menu from the Probes folder.
Observing a Running Component Instance 481

Rational Rose RealTime Execution Interface

The execution control of component instances is separated into two main functions:
the target control of the component instance and the observability of a component
instance. The target control interface provides an interface for automating the tasks
related to running, loading, and terminating component instances. The observability
interface provides the ability for the Rational Rose RealTime toolset to connect to a
running component instance and provides a visual view of the running instance.

Target Control Programs

In order to allow control of component instances on different platforms, easy
customization, and support for other targets, the target control utilities are
implemented as a set of external executables and scripts that are invoked from the
toolset to perform the various target control tasks.

These scripts and executables for target control are located in the following directory:

$Target_scripts = $ROSERT_HOME/bin/tc/”host”

Below the tc directory (tc for target control) is a list of the hosts on which Rational
Rose RealTime can run. And within each of these directories is a list of platforms for
which there are control utilities. For example, in the $ROSERT_HOME/tc/win32
directory there are other directories, for example, win32, tornado, and tornada2. This
shows that for a toolset running on a Windows platform the toolset can control
component instances for Windows and Tornado platforms, meaning that they can be
run, loaded, terminated automatically by Rational Rose RealTime.

The Processor specification dialog must be told in which directory to look for the
control utilities for the platform that the processor represents. The control options on
the component instance menu (run, load ...) are enabled or disabled depending on the
control utilities that are found in the directory specified for that processor. For each
utility program that the toolset finds in the target control directories, the appropriate
menu item is enabled, indicating that the toolset supports the control function for that
platform.

Note: You can always manually run, load, etc., a component instance from outside the
toolset.

Overriding Target Control

The Operation mode field on a Component Instance specification dialog specifies
whether the controls utilities should be used or the component instance will be loaded
manually. In the latter case, most of the component instance control menu items are
disabled.
482 Chapter 23 - Running and Debugging

Observability Interface

Once a component instance is running (it must be listening to a specified tcp/ip port
using the -obslisten command line parameter) the observability interface can connect
to the running component instance, and control and animate its execution.

You can observe (connect to) any component instance that was started with
observability enabled (listening to the tcp/ip port specified in the component instance
spec dialog) even though it was not started with the target control utilities. Use the
Attach Target option in the component instance to observe a running component
instance.

Overview of Observability Options

After you become familiar with building and running within the toolset, you can start
debugging your models. There are several options that are available from within
execution environment. You should read the details about each option to become
more familiar with the following options.

Observability option Explanation

Watches Use watches to inspect and modify the values of capsule
attributes.

Traces Use traces to see the messages that are being sent within
the system.

Injecting Messages Inject test messages into a model to unit test capsules.

Probe Break Points Use probe breakpoints to stop a running model when a
specified event is received.

Sequence Diagrams Create and save sequence diagrams of message traces
between capsule instances.

Command Line
Debugger

Debug a model without the use of the toolset.

Source Code Debugging Debug detail code problems using a source code
debugger.
Overview of Observability Options 483

Component Instance Menu

The component instance menu provides commands that are used to control the
execution of a component instance.

Load

Loads or downloads a component instance to a target platform. The load does not
start the execution of the loaded component instance. Use Run once it is loaded. This
is only used with target platforms that require loading of modules before they are run.
For platforms that do not require loading of modules, this menu item is disabled.

Unload

Use only with target platforms that require loading of modules before they are run.
For platforms that do not require loading of modules, this menu item is disabled.

Run

Starts the execution of the component instance. If observability is configured to attach
at start-up the RTS browser appears. When observability is attached at start-up the
component instance is paused, or does not start processing messages, until the start
button is pressed on the RTS Browser.

Run with Purify

Starts the execution of the component instance and tests for different aspects,
including memory leaks. This menu item appears only if Purify is installed.

Shutdown

Kills the running component instance, closing the RTS Browser if necessary.

Restart

Kills the running component instance and runs another instance. If the instance is
running on an target board, the component is reloaded before a new instance is run.

Reload

Used only with target platforms that require loading of modules before they are run.
For platforms that do not require loading of modules, this menu item is disabled. This
unloads then loads the component without resetting the target board.
484 Chapter 23 - Running and Debugging

Attach Target

Enabled only if a component instance has been run without observability at startup.
You can attach observability to a running process at any time, if that the process was
started with observability enabled. This menu item can only be used with Detach
Target.

Detach Target

Detaches observability, meaning that the toolset no longer communicates with the
running component instance. This menu item can only be used with Attach Target.

Attach Console

Attaches a console window to the executing target model to interact with the
command line model debugger, and so forth.

Open Breakpoint Diagram

Opens the Breakpoint Diagram dialog from which you can set various breakpoints.

View BreakPoints

Displays a list of all current breakpoints for the selected component.

RTS Browser

The RTS Browser appears as an additional tab on the model browser. It provides an
execution interface for controlling the running instance. There is always one RTS
Browser for each component instance that is running with observability. The browser
is composed of three main parts: an execution control and information pane, a capsule
instance browser, and a probes browser.
RTS Browser 485

Figure 123 RTS Browser

Execution Control and Information Pane

This area shows the name of the component instance, the execution status, and the
execution buttons.

■ Start - Runs the component instance, allowing all messages to be delivered. The
button can be pressed after the component instance has been initialized or is
stopped.

■ Stop - Pauses the execution of the component instance. Execution is only paused
after the currently executing transition is finished. The button does not halt
execution in the middle of a transition. The stop button can be pressed when the
model is running.

■ Step - Allows one message to be delivered in the component instance. Pressing
step while the component instance is running allows the current executing
transition to finish, then delivers the next message, then pauses or stops. The step
button can also be pressed when a component instance is stopped or paused.

■ Restart - Causes the current component instance to terminate and starts a new
component instance. This button can be pressed at any time; however, it is
disabled when you are in manual mode. (Reloads when target is loadable.)
486 Chapter 23 - Running and Debugging

■ Refresh - Updates the status of the capsule instances and probes shown in the
browser tree.

■ Shutdown - Terminates the current component instance and effectively stops the
execution environment. All execution monitor windows, watches, traces, and any
other execution environment windows are closed.

Capsule Instance Folder

This list shows all the capsule instances. All the capsule instances are located in the
folder named after the top-level capsule. Instances that have not been created yet, for
example, optional or plug-in instances, are shown in the browser but with a red 'X' in
front of the capsule instance name.

By default only the capsule instances are shown in the folder. The name shown
contains the replication index of the instance within the capsule role, the capsule role
name into which the instance was created, and the capsule class name of the instance.
For example:

0/echo1:Echo1

You can also view the capsule roles - the roles into which the capsule instances are
created - by right-clicking in the RTS Browser main window and clicking
Filter > Show Roles. The syntax is as follows:

<replicationFactor>/<portName>/<capsuleInstanceName>:<replicationIndex>_Probe

For example:

0/log/echo2:3_Probe

*/prot2/echo2:3_Probe

Probes Folder

The Probes folder lists the current probes. Right-click on a probe in the list to gain
quick access to the common operations performed with probes.

Note: The defailt name for probes includes the capsule instance name and its
corresponding replication index.
RTS Browser 487

Monitors

Monitors are read-only views of capsule instances state machine and structure
(capsule collaboration) during the execution of the instance. None of the structure or
state elements can be modified or moved from the monitor view. The monitor view
shows the state and structure components displayed in a lighter shade to emphasize
the read-only nature of their parts. Multiple monitor diagrams can exist in the same
model.

You can right-click on an element and select Open Specification... to open the
element’s specification. As well, on Composites states, transitions, and choice points,
you can select Show Source Code Location, which opens a dialog that indicates the
location of the code for the action associated with the element.

Animation

To allow observation of state and structure, monitors provide visual clues during
execution. The structure monitor shows changes in the dynamic structure by showing
optional capsule roles that have not been created with the traditional shading. Once
they are created, they are shown as fixed capsule roles. Also, current cardinalities of
capsule instances are shown. In order to find specific instances of a replicated capsule
role as shown in the structure monitor, you can use the cardinality browser tool.

In the State, or state diagram monitor, the current state is highlighted. In addition, if
the state diagram shows hierarchical states, the last active state remains highlighted.
When a transition is taken, the state monitor highlights the transition.
488 Chapter 23 - Running and Debugging

Figure 124 Capsule State and Structure Monitors and Browsers

Opening a Monitor

Select a capsule instance from the RTS browser, and from its popup menu, select
either Open Structure Monitor or Open State Monitor.

Probes

From within a monitor, you can place probes on ports, junction points, and states by
using the Probes tool.
Monitors 489

Navigating to Model Elements from Debug Monitors

A very powerful feature of Rational Rose RealTime is the ability to observe a running
component instance at the model level. In Rational Rose RealTime, you can see the
triggered transitions, the active states in the state diagram monitors, and you can
watch the dynamic structure animate in the Structure Monitor.

The context menus for the State Monitor (see Figure 125) and Structure Monitor
include two new options: Open State Diagram and Open Structure Diagram. These
options facilitate navigation to the design elements during a debug session.

Figure 125 State Monitor - Context Menu

Trace Windows

Trace windows are used to log messages sent or triggering events in a running
system. Trace windows show lists of messages, including local state, incarnate and
destroy, and import and deport messages. Each row in the list corresponds to one
message. Rows can be divided into multiple columns, where each column is used to
display different details regarding the message in that row.
490 Chapter 23 - Running and Debugging

You can trace without having the Trace window open. Tracing is turned on by
opening a Trace window. However, after tracing is started, closing the window does
not stop the tracing. Messages are buffered internally in the probe. Tracing is only
stopped by deleting the probe.

There are three different types of trace windows. Each type of trace window shows
sets of messages captured at different scopes in the system.

Deleting Messages

Any message can be deleted from the trace by right-clicking on a message in the list
then selecting Delete from the popup menu.

Trace Configuration

You can configure the information displayed in the trace window by right-clicking in
the trace window and selecting Configure... from the popup menu. The Trace
Configuration dialog appears.

Type of
trace

Scope of message
capture

Default columns shown Opened by...

Capsule
instance
trace

Shows messages
exchanged between
capsule instances

Time, capsule
instances, message
signal, optional data

Selecting capsule instances
in the RTS browser and
choosing Open Trace
Window from the popup
menu.

Port trace Shows messages
coming in or out of
a specific port

Time, direction (I/O),
priority, signal, data

Creating a probe on a port,
then selecting Open Trace
from the Probes popup
menu.

State
trace

Shows messages
that trigger and
event in the state
machine

Time, port, priority,
signal, data

Creating a probe on a
junction point or state, then
selecting Open Trace from
the Probes popup menu.
Trace Windows 491

Figure 126 Trace Configuration Dialog

You can enable Relay Port Tracing by selecting the Relay Port Tracing check box. If
this check box is selected, all messages between capsule instances, including instances
being received through relay ports, appear in a trace. For messages relayed to
sub-capsules within a capsule, the trace shows through which ports these messages
were passed.

To observe the message passing, convert the trace to a sequence diagram.

Using Different Types of Traces

Typically when a message fails to flow through a set of capsules as expected, it is
important to see where the message flow was first in error. To debug these kinds of
errors, first use Capsule instance traces to look at the messages originating and
terminating from the capsules in the message flow. If the messages are incorrect and
the fault origination cannot be identified, place Probes on specific ports in a composite
capsule. Based on whether the messages are still faulty, you can narrow down the
cause of the error by further subdivision. Once the faulty capsule has been identified,
it is valuable to place traces and message breakpoints on the state machine.

Opening a Sequence Diagram

Selecting this popup menu item opens a dialog that lets you choose the capsule where
the generated sequence diagram is saved.

Creating a Sequence Diagram From a Trace

In the Trace window, after you start a trace, you can right-click on on item to create a
Sequence Diagram from the trace.
492 Chapter 23 - Running and Debugging

When selected, the Generate local state information option generates all the local
states into the Sequence Diagram. When this option is not selected, the local states
will not appear in the Sequence Diagram.

Probes

Probes are used to monitor messages passing through ports and events that trigger
transitions in a running capsule instance. They are attached to states, junction points,
or ports by using the probe tool, which is available when viewing a state diagram or
structure monitor of a capsule instance.

Probes can be placed on instances that have not yet been created, for example, even
before the component instance is running. Probes are associated with component
instances and are stored with them, such that they do not have to be redefined each
time the component instance is run. A component instance’s probes are listed in the
RTS browser, inside the probes folder.

Use the Probe Specification dialog to configure a probe. You can also use a probe’s
context menu to quickly open the probe Trace window, the Inject window, and
activate or deactivate a probe.

Probe type Can be created on... Description

port probe ports, replicated ports Port probes allow tracing messages passing
through the port, or in the case of replicated
ports, messages passing through all
instances of the port. They also allow you to
inject messages to a port.

state probe junction points, states State probes placed on junction points allow
tracing of events that trigger the associated
transition. Probes on states trace all
messages that occur in that state. State
probes do not allow message injection. They
can, however, be used as state break points
to stop the execution of the system when a
particular probe has been reached.
Probes 493

Placing Probes on Replicated Ports

If a port is replicated you can place a probe on all instances of the ports by closing the
'*' from the port instance browser. This results in a probe that monitors and injects on
all instances of the port. You can also place a probe on a particular instance of a port
by selecting a particular instance number from the port Instance browser, then placing
the probe on the port.

Inject Window

On a port probe specification sheet the Probe Specification—Detail tab allows you to
define messages and send them in or out of the port on which the probe is attached.

Inject messages also appear under the owning port probe in both state and structure
monitor diagram browsers. The inject message context menu lets you inject, modify,
or delete an inject message. Double-clicking the inject message injects the message.

Capsule Instance Trace

A capsule trace window is a type of message trace that shows capsule instances with
messages listed in separate columns for recording message flow between instances.
The left column displays the time at which the event occurred, the subsequent
columns display the source and destination ports, the signal name, optional data, and
the capsule instances.

Trace Event Message Dialog

You can right-click on a capsule trace window and select Open Specification to open
the Trace Event Message dialog (see Figure 78), which contains information about an
event message.
494 Chapter 23 - Running and Debugging

Figure 127 Trace Event Message Dialog

Creating a Sequence Diagram From a Message Trace

You can take a snapshot of a message trace at any time and create a Sequence
Diagram. Each interaction in the resulting Sequence Diagram is labeled with the
signal name. Message lines can cross one another indicating message overtaking.
Since the Sequence Diagram is a snapshot of the trace, it is not updated dynamically.

To create a run-time sequence diagram:

1 Open a capsule instance trace.

2 Right mouse click in the message trace window and select Open Sequence
Diagram.

A sequence diagram is created from the message trace.

Note: Only the messages shown in the trace window will appear in the sequence
diagram; therefore, if you want to create a sequence diagram with less messages
you can pause the running component instance, delete messages from the trace,
then create the sequence diagram.

3 You can select a saved sequence diagram and select Open Trace to reopen another
capsule instance trace.

Dragging Capsule Instances into a Trace

Additional capsule instances can be added to a trace window by dragging and
dropping them from the RTS Browser to the trace window. This is useful for
configuring the order of instances already in the window, as well as for adding
optional instances that were not created at the time the trace was started.
Capsule Instance Trace 495

Message Trace Configuration Dialog

This dialog configures a Trace window.

Threshold Field

An integer value used to specify the maximum number of events displayed in the
trace window before discarding on a first-in first-out basis. The default threshold
is 25.

Note: Messages are also buffered in the running component instance. The larger the
threshold, the more memory is allocated in the running component instance. This can
be set in the Probe specification threshold.

Column Check Boxes

These correspond to the list columns in the trace window. You can specify which
columns are displayed. Each type of trace has its own default columns that are shown.
See the trace window help for details on the default columns for the different types of
traces.

Execution Watch Tab

Capsule instance attributes can be inspected at run-time and modified from the Watch
tab of the Output window. The watch tab has two columns: the name of the attribute
and its value.

To add an attribute instance or variable to the watch window, open a state monitor
and drag-and-drop the attribute from the Attributes folder into the watch window.

You can also edit the value of a variable by selecting the Value field then entering
another value for the variable.
496 Chapter 23 - Running and Debugging

Refreshing the Watch Values

The watch values are refreshed when a message is received by the state of the capsule
instance. If the state monitor from where the watch was created is closed, the watch
value stops being updated. If the state monitor is closed, you can manually force an
update of a watch value by right-clicking on the watch item and selecting Refresh
from the popup menu.

Run-time Exception While Running a Component Instance

A running component instance can crash suddenly with a run-time exception that
could be due to either design errors (sending an inappropriate signal through a port,
for example) or coding errors (illegal memory references, for example). Rational Rose
RealTime will detect that the process is no longer running and display an information
dialog warning that the RTS system will be shutdown.

If Purify is installed on your system, and if a component instance running with Purify
crashes, the results appear on the Purify output window.

Rational Rose RealTime can help you resolve design errors. For example, problems
with state machine logic can be found with a state monitor and message sequencing
problems can be found with traces. However, when your model contains detail level
coding errors that cause exceptions, the best tool for resolving these problems is your
source level debugger. You can add source breakpoints from within a state monitor to
automatically launch a source code debugger to help you resolve detail level coding
errors.
Run-time Exception While Running a Component Instance 497

Instance Browser

The instance browser tool is useful for selecting and examining a particular instance
of a replicated port or replicated capsule role in a structure monitor.

To use the instance browser:

1 Open a structure monitor that shows either replicated ports or replicated capsule
roles.

2 Move the cursor over the cardinality field. The cardinality field is shown at the end
of a capsule role name or port name in square brackets. Notice that two black
arrows appear, one above the cardinality field and another below.

3 Select the top or bottom arrow to select a particular instance. For ports you can
select the '*' entry in the instances list to select all port instances.

Note: As you change the cardinality you may notice the capsules border and shading
change to reflect the state of the instance you are viewing.

Source Code Debugging

In addition to the observability debugging tools, you can also use the native
debugging facilities. Occasionally, you have to step through your code to find out
what is happening. Rational Rose RealTime can be configured to automatically start
up an external source code debugger when a breakpoint is reached.

Using the breakpoint tool from the state monitor toolbox, you can place source code
break points on any element in your state monitor that contains detail level code,
including

■ Transitions
■ State entry/exit actions
■ Branches

Note: Actions map directly to an operation in the source code so that when the
external source debugger hits a breakpoint the breakpoint will always be at the
beginning of the operation.
498 Chapter 23 - Running and Debugging

To set source code breakpoints when running a component instance, follow
these steps:

1 Rational Rose RealTime must know that a component instance is to be loaded with
the source debugger. The component instances specification (Details tab) controls
the selection of the source debugger to use, which is one of the options that is
available for target control.

The appropriate debugger must be chosen from the Operation mode field in the
Component Instance Specification dialog.

2 Load the source debugger and component instance by choosing Load from the
component instance right-click menu or the load button from the toolbar.

At this point the source debugger should be loaded and initialized. The
component instance has not run yet, hence the RTS Browser is not visible.

Note: Do not forget to configure the component to generate debugging
information when compiled. Refer to your compiler and linker documentation for
the specific flags that should be used to include debug info into an executable. If
the component instance is loaded into the source debugger without debug
symbols the source debugger will usually inform you of this.

3 Run the component instance (see Running a Component Instance with Purify on
page 477 or Running a Component Instance without Purify on page 479).
Source Code Debugging 499

4 Start the component instance, and use the breakpoint tool to add breakpoints on
transitions, states (you are prompted for entry or exit breakpoint), and choice
points.

5 When the breakpoint is hit the debugger pops to the front and displays the source
code corresponding to the breakpoint. You can now use the debugger and Rational
Rose RealTime to debug your running component instance. Remember, however,
that once a breakpoint is hit, you must use the debugger to continue execution of
the component instance.

After the source debugger has been loaded, it remains loaded until the Unload
command on the component instance is chosen. This means that the source debugger
can remain open while the component instance is run and restarted multiple times.

Source Debugger Integration without Target Observability

Rational Rose RealTime includes support for source debugger integration with and
without Target Observability (TO). Without TO, you can set breakpoints, on state
machines and operations.

For information on setting breakpoints on state machines, see Setting Breakpoints on
State Machines on page 501.

For information on setting breakpoints on operations, see Setting Breakpoints for
Operations on page 507.

Setting Breakpoints

You can set breakpoints on a state machine or for operations for your C and C++
models. This means that, for example, for non-dynamic models such as C models,
there is support for source debugger integration at the state machine and operation
level, when there is no Target Observability (TO).
500 Chapter 23 - Running and Debugging

Setting Breakpoints on State Machines

If you have targets for which sockets are not available, you cannot use Target
Observability to debug your models. However, you can use an external debugger and
set breakpoints on the Breakpoint Diagram for a state machine.

Note: On the Breakpoint Diagram dialog, you can set breakpoints on a state machine
with or without TO; however, the Open Breakpoint Diagram context menu
command is active only when a model is in the loaded state, or if it is currently
running without TO.

To set breakpoints on a State Machine without TO:

1 In Rational Rose RealTime, open a model.

2 Right-click on a processor and select Open Specification.

3 In the Operation mode box on the Detail tab, specify a debugger.

For more information on debuggers, see Using Debugger Modes on page 521.

4 To debug your model without TO, clear Attach to target on startup.
Setting Breakpoints 501

Note: If you want the toolset to automatically observe a component instance when
it is run by the target control scripts, ensure that Attach to target on startup is
selected.

5 Click OK.

Note: You must create a debug build of your model, otherwise it will not contain
any debug information, and your breakpoints cannot be set and will be disabled.
For additional information, see Starting a Build on page 441.

6 Build the components for the selected processor.

For more information on building a component, see Starting a Build on page 441.

7 In the Deployment View, right-click on the same component instance and click
Load.

The debugger you selected opens your debugging application.
502 Chapter 23 - Running and Debugging

8 In the Deployment View, right-click on the component instance and click Open
Breakpoint Diagram.

Opening the Breakpoint Diagram dialog opens the state machine diagram for the
top state of the top capsule associated with that component instance.

Note: Although, the Breakpoint Diagram dialog is very similar to a State Monitor
dialog, you cannot modify the state diagram that appears on the Breakpoint
Diagram dialog; you can only set breakpoints.

The browser for the Breakpoint Diagram dialog shows states similar to that of a
typical state monitor browser. However, instead of displaying the elements (such
as attributes, end ports, and probes), it shows all the capsules associated with the
component for the Component Instance opened in the initial state monitor.

Note: To open a Breakpoint Diagram dialog for a capsule that is not the top
capsule, right-click on that capsule on the BreakPoint Diagram dialog, then click
Open Breakpoint Diagram.

9 On the Breakpoint Diagram Toolbar, click the Breakpoint icon, .
Setting Breakpoints 503

10 Set any desired breakpoints on the diagram.

11 To view all of the breakpoints you specified (those associated with the selected
component instance), in the Deployment View, right-click on the component
instance and click View Breakpoints.
504 Chapter 23 - Running and Debugging

Note: The View Breakpoints menu command is available only when the
component instance specifies a debugger in the Operation mode box, and the
debugger is currently loaded.

Note: Unlike the Breakpoint Diagram dialog, the Breakpoints dialog is available
during TO.

The Location and Context for each breakpoint displays in the list.

Click Remove to delete the currently selected breakpoints.

In the Breakpoints dialog, you can right-click and select Show in diagram to
navigate to the breakpoint in either the Breakpoint Diagram dialog or the state
monitor, depending on whether TO is used.
Setting Breakpoints 505

12 In the Breakpoints dialog, right-click and select Open Specification.

The Breakpoint Specification dialog shows the file, line number, and function on
which the selected breakpoint is set.

13 Click OK in the Breakpoint Specification dialog and in the Breakpoints dialog.

Now, in your debugger, you can look at the breakpoints that you specified.

14 In the Deployment View in the Model View tab in the browser, right-click on the
component instance, and then click Run.

15 Maximize your debugging application to view information regarding the
breakpoints you set earlier.

16 When finished viewing the breakpoints in your debugger application, return to
Rational Rose RealTime, right-click on the component instance, and click Unload.
506 Chapter 23 - Running and Debugging

Setting Breakpoints for Operations

You can set breakpoints on operations, with or without TO.

To set a breakpoint for an operation:

1 Before you can set a breakpoint on an operation, ensure that you:

❑ Specify a debugger in the Operation mode box on the General tab of a
Component Instance Specification dialog.

❑ Create a debug build of your model, otherwise, it will not contain any debug
information, and you cannot set breakpoints. For additional information, see
Starting a Build on page 441.

❑ Load the appropriate component instances for the selected processor.

2 On the Model View tab in the browser, right-click on an operation.

Note: The Add Breakpoint command exists on the context menu for an operation
only when there is at least one component instance that has a debugger specified
in the Operation mode box. The Add Breakpoint menu item is enabled if at least
one component instance is loaded. If more than one component instance is loaded,
you must choose the component instance to set the breakpoint.

3 Right-click and click Add Breakpoint.

The Remove Breakpoint command is enabled only when there is at least one
breakpoint currently set for the selected operation. If there is more than one
breakpoint set on the operation, you can choose the component instance from which
to remove the breakpoint.

The Add Breakpoint and Remove Breakpoint commands are also available for
operations on Breakpoint Diagram dialogs.

Customizing Rational Rose RealTime for Target Control and
Observability

Note: Rational Rose RealTime can integrate with other source code debuggers. To add
support for target control and observability, and to learn how to integrate Rational
Rose RealTime with source code debuggers, see the chapter Customizing for Target
Control and Observability in the book Adapting for Target Environments, Rational Rose
RealTime. The pdf version of this document (rosert_adapting_targets.pdf) can be
found in $ROSERT_HOME/Help.
Customizing Rational Rose RealTime for Target Control and Observability 507

Running from Outside the Toolset

Binary files or executables built from Rational Rose RealTime do not necessarily have
to be run from within the toolset. In some cases it is necessary to run, or even
download to another machine (usually a RTOS), the executable manually. For
example, this is useful if you are using a target for which the target control scripts and
programs are not available.

Purify

You can run Purify from outside the toolset and import the Purify results into the
Rational Rose RealTime.

1 When using Purify outside the toolset, run the results.

2 Save the results as plain text.

3 Import the results into Rational Rose RealTime by going to the Purify pane and
selecting Import from the context menu.

If the purify output matches a line of code in the model, then the corresponding line of
code in Purify appears bold.

Observability Command Line Parameter

Although the executable is run from outside the toolset, it can still be observed using
the observability interface provided by the toolset. If you ensure that the observability
command line parameter is passed to the executable before it is run, the toolset can
connect to the running model at any time, as well as disconnect. For example, this is
how you would start your component instance from outside the toolset:

%myProgram -obslisten=30123

You can add the following if you want to start running the model immediately:

-URTS_DEBUG=go
508 Chapter 23 - Running and Debugging

From within the toolset, ensure that in the Component Instance Specification the
Target observability port is set to 30123. Now, whenever is required, you can use the
Attach Target option in the component instance popup menu to attach to the running
instance.

Component Instance Menu

To connect to a running process, select a component instance for the correct type of
instance that has been run manually. Set the Observability Port in the Component
Instance specification dialog to the same value that was specified as a command line
argument. Then use the Attach Target menu option from the component instance
popup menu to connect to the running instance.

Using the Command Line

The result of a successful build of a component is an executable module. You can
execute this module directly from the command line if the target environment is the
workstation itself; otherwise, you have to download it to the target platform.

You can also start the model, or component instance, automatically using the target
control capability.

Command Line Arguments
There are only two Services Library predefined command line parameters that can be
used, -obslisten and -URTS_DEBUG.

-obslisten=<tcpip_port>

%myProgram -URTS_DEBUG=<debugger_command>

-obslisten

This parameter instruct syour component instance to listen at the specified TCP/IP
port for observability connections from the toolset. For example:
%myProgram -obslisten=67887 -URTS_DEBUG=go
Using the Command Line 509

-URTS_DEBUG=

Use this option to pass commands to the Services Library command line debugger,
which runs automatically when the component instance is started. For example:

%myProgram -URTS_DEBUG=quit

Note: Command line parameters with spaces require quotation marks.

quit

Quits the debugger automatically and allow the process to run freely.

continue

Allows you to start running the target and make TO connections at a later time. From
the command line, continue is similar to clicking Run in the Toolset; it starts the
execution while retaining control (unlike quit which gives up control). For example:

MyTopCapsule -obslisten=1234 -URTS_DEBUG=continue

Application-Specific Command Line Arguments

You can supply additional command line arguments for use by your component
instance model, as you would for any other application. If the component instance is
run from the toolset, you can specify command line arguments in the Component
Instance specification dialog. The arguments are passed on the command line after
the name of the executable, for example:

%myTopActor foo 99

See accessing command line arguments from within a model for more information.

Loading and Running Component Instances on Embedded
Targets

The requirements for running a process on a host platform and on an embedded
platform are somewhat different. For clarification, the term host platform refers to the
platform on which Rational Rose RealTime is running. Embedded platform refers to a
platform that is not running the toolset. For example, before anything can be run on
an embedded target, it must first be loaded or downloaded to the target. This step is
not required when simply running on a host platform. It is also common to restart the
target board, meaning that a soft reboot is performed.
510 Chapter 23 - Running and Debugging

Utility Scripts

For the reasons mentioned above, the execution options are different when running
on a host platform or on a target platform In order to support loading, resetting,
restarting, and running of component instances on several different target platforms,
a set of scripts and executables are invoked from the toolset. Rational Rose RealTime
comes with a set of supported target control utilities.

Component Instance Specification

The Component Instance specification dialog contains settings that control the way in
which the component instance are run or loaded.

Specification Contents

The Component Instance specification dialog contains the following tabs: General,
Detail, Purify (if installed) and Files.

Component Instance Specification - General Tab

Name

The name of the component instance.

Note: This is not the name of the actual executable that was created from the build.
Component Instance Specification 511

Component Instance Specification - Detail Tab

Figure 128 Component Instance Specification - Detail Tab

Parameters

Text in this field represents command line arguments that are passed on the command
line when the component instance is loaded. The content of this field is passed as is.

Operation Mode

The operation mode specifies the target control configuration for the component
instance. The Basic option configures the component instance to use the target control
utilities to load and run the component instance. The Manual option instructs the
toolset not to attempt to load the component instance.

In addition, if you are setting source level breakpoint Probes, you will have to select
the debugger that will be loaded by the target control scripts for your platform. Basic
mode is implied when one of the debugger options is not selected.
512 Chapter 23 - Running and Debugging

The options are:

■ Basic - Use the target control utilities to automatically load and run the component
instance.

■ Debugger MSDEV - Use the Microsoft Visual Studio debugger to load and run the
component instance, as well as for setting, clearing, and displaying breakpoints.
For more information, see To configure MSDEV Debugger mode: on page 522.

■ Debugger Tornado - Use the target control utilities to load and run the component
instance with. Use the Tornado debugger for setting, clearing, and displaying
breakpoints. For more information, see To configure Tornado for Debugger mode: on
page 522.

■ Debugger Tornado 2- Use the target control utilities to load and run the
component instance with. Use the Tornado 2 debugger for setting, clearing, and
displaying breakpoints. For more information, see To configure Tornado for Debugger
mode: on page 522.

■ Debugger xxgdb1 - Use the GNU xxgdb debugger to load and run the component
instance, as well as for setting, clearing, and displaying breakpoints. (UNIX only).
For more information, see To configure xxgdb Debugger mode: on page 524.

1. The xxgdb integration works differently from the MSDEV and Tornado. Follow these steps:

1.Build the desired component with the appropriate debug options, for
example, -g.

2.In the component instance specification, select Debugger-xxgdb for Operation
Mode.

3.Start TO.

4.Open the desired State Monitors. You may need to “step” to get access to them.

5.Set breakpoints on the appropriate elements within the desired State Monitor.

6.Restart Target Observability.

Breakpoints are now enabled.

7.Run the model.

8.Remember to continue in the debugger when you hit a breakpoint. The toolset
gets no indication that a breakpoint was hit.

9.If you remove breakpoints, they will not take effect until you restart the model
again.
Component Instance Specification 513

■ Manual - The toolset does not attempt to load the executable. The user must
manually load the executable.

■ EMVT- Use EMVT (Embedded Microsoft Visual Tools) to load and run the
WIndows CE component instance. For additional information on using the
Windows CE option, see To configure a component instance for Windows CE, follow
these tasks: on page 518.

Overview of Observability Options

This topic is organized as follows:

■ Attach Target Observability on Start-up
■ Target Observability Port
■ Load/Run

Attach Target Observability on Start-up

Check this item if you would like the toolset to automatically observe a component
instance when it is run by the target control scripts. You can always connect the toolset
to the process at some later time.

Target Observability Port

Specify a TCP/IP port number to use for connecting the toolset's execution
environment to the target executable. The port number must not already be in use by
another process.

Load/Run

■ Order - An integer value representing the relative order in which this component
instance is loaded, or run, in relation to other component instances listed and
selections in the Build Settings dialog. Lower numbers are run first.

■ Delay - An integer value representing the number of seconds to delay before the
component instance is loaded or run. This is useful when simultaneously running
multiple component instances specified in the Build Settings dialog. If you want to
Ensure that one component instance has time to start correctly before running the
other - for example, if they need to communicate - you can specify a run delay for
the second component.
514 Chapter 23 - Running and Debugging

Observability Options

Component Instance Specification - Purify Tab

Error Call Stack Length

■ The maximum number of call stack levels which you want Purify to record for
error locations in the program.

■ This setting affects whether two errors are considered identical (those with the
same message type and error location call stack) and displayed as one message
with a count of repeated occurrences, or considered different and displayed as
separate messages.

■ Purify uses the error location call stack to determine whether a message is a
unique or repeat occurrence. Specifying a larger number gives Purify more call
stack levels to compare and increases the chances that Purify will display a
message as a unique occurrence.

Connection Delay

■ An integer value representing the maximum number of seconds Rational Rose
RealTime takes while attempting to collect process information. This allows Purify
time to instrument the executable as necessary. For a large module, you will need
to adjust the connection delay to be more than the default of 60 seconds. Then, the
toolset waits for the interval specified on the Connect delay option on the Detail
tab before attempting to connect to the target.

Default Instrumentation Type

■ The level of error checking and coverage monitoring on a per module basis. Select
one of the following:

❑ precise (default) - Provides full run-time error detection and precisely
pinpoints problems in any component in the program.

❑ minimal - Provides quick instrumentation for modules whose errors are of less
interest.

❑ exclude - Excludes DLL’s which may cause your program to malfunction when
SetWindowsHook() is called.
Overview of Observability Options 515

Display

■ First occurrence only - Displays only the first occurrence of a message with a
count of repeated, identical occurrences, for all Purify sessions

■ Handles in use at exit - Displays the handles that are in use when you exit a
program, for all Purify sessions

■ Memory in use at exit - Displays allocated blocks of memory, to which there are
still pointers, at exit. This allows you to fix large amounts of memory in use in long
running programs, to avoid out-of-memory problems

■ Memory leaks at exit - Displays memory leaks (allocated blocks of memory to
which there are no pointers) found when you exit a program, for all Purify
sessions

See the Purify documentation for more information and details on Purify, and for
descriptions of possible error messages.

Processor Specification Dialog

This dialog allows configuration of the type of processor that this element represents,
in addition to the processes (component instances) that will run on the processor.

Specification Contents

The processor specification dialog contains the following tabs: General, Detail, Files.

Processor specification - General Tab

Name

A name for the processor. The name appears on the deployment diagram, but the
name is not used for execution purposes. The actual target id is specified using the
address field on the Detail tab.

Processor Specification - Detail Tab

CPU

Name of the type of central processing unit for this processor element.

OS

Name of the operating system running on this processor.
516 Chapter 23 - Running and Debugging

Address

Network address for the processor. This field can contain a hostname or an IP address.
For example jhostl or 145.34.5.6.

Note: For systems not connected to a network, you must use 127.0.0.1 in this field.

Server

In some environments there is a server that handles loading and executing of a
component instance for the target RTOS. This is the name or the address of this server.

Load script

Path to the target control utility directory that contains the scripts and programs that
are responsible for loading and unloading processes on that processor. If this field
does not point to a valid script directory you will not be able to execute component
instances from within the toolset.

Component Instances

This is the list of component instances that will run on this processor. You can add a
component instance to this list by dragging and dropping a component instance from
the model browser to this list. Dropping a component instance on a processor results
in the creation of a process. You can also right click and select Insert. The Create
Component Instance dialog appears in which you can select a component to create an
instance from and give it a name. See the Processor specification dialog for process
details.

Browse

When you click the Browse button, the Select Directory dialog appears from which
you can locate the Target Scripts directories.

Using Windows CE

To allow control of component instances for the Windows CE platform, the target
control utilities are implemented as a set of external executables and scripts that are
invoked from the toolset to perform the various target control tasks.

These scripts and executables for target control are located in the following directory:

$Target_scripts = $ROSERT_HOME\bin\tc\win32\wince
Processor Specification Dialog 517

For a toolset running on a Windows platform, the toolset can control component
instances for a Windows CE target platform; a component instance can be run, loaded,
and terminated automatically by Rational Rose RealTime.

To configure a component instance for Windows CE, follow these tasks:

■ To specify the Windows CE target control configuration for the component instance: on
page 518

■ To configure the Windows CE component instance: on page 520

■ To run and load the Windows CE component instance: on page 521

■ To unload the Windows CE component instance: on page 521

To specify the Windows CE target control configuration for the component
instance:

1 Establish an ActiveSync connection between your Desktop and the Windows CE
device.

For information on establishing an ActiveSync connection, see your Windows CE
documentation.

2 Configure for your Windows CE environment.

Microsoft Embedded Tools includes batch files to configure your environment for
different processors. For example in /EVC/WCE300/bin, there is a batch file
called WCESH3.bat that sets up an environment for an sh3 target. Batch files for
other targets are available in the same directory.

Note: Ensure that the environment variables are configured for your target
processor for your specific CPU.

The operation mode specifies the target control configuration for the component
instance. For Windows CE, you can specify either Basic or Debugger modes. The
Basic option configures the component instance to use the target control utilities to
load and run the component instance. If you want to set source level breakpoint,
you can specify a debugger that is loaded by the target control scripts for your
Windows CE platform.

For instructions on setting Debugger mode, see To configure Windows CE for
Debugger mode: on page 523.
518 Chapter 23 - Running and Debugging

3 Optional: To use Basic mode, prior to starting Rational Rose RealTime, type the
following at the Command Prompt:

Set RRT_WINCE_TARGET_DIR=\<directory_name>\

where <directory_name> is the name of the location of download the model
executable and the TCKill agent for your target. If the directory name is not set, the
model executable and the TCKill agent are downloaded to the root directory on
the target.

4 Start Rational Rose RealTime.

5 Open an existing model, or create a new model.

6 In the Model View tab in the browser, right-click on Deployment View and click
New > Processor.

The Processor Specification dialog must be told in which directory to look for the
control utilities for the Windows CE platform. The control options on the
component instance menu (such as Run and Load) are enabled or disabled
depending on the control utilities found in the directory specified for that
processor.

7 In the CPU box, select the appropriate CPU for your target processor.

8 In the OS box, select Windows-CE.

9 In the Address box, specify the network address for the processor.

This field can contain a hostname or an IP address. For example jhostl or 145.34.5.6.

10 Leave the Server box blank.

11 In the Load Script box, type the following:

C:\Program Files\Rational\Rose RealTime\bin\tc\win32\wince

Note: The path to the target control utility directory that contains the scripts and
programs responsible for loading and unloading processes on that processor. You
must specify the fully-qualified path. If this field does not contain a valid script
directory, you cannot execute component instances from within the toolset.
Processor Specification Dialog 519

Your Processor Specification dialog will look similar to following:

12 Click OK.

To configure the Windows CE component instance:

1 In the Model View tab in the browser, drag a component from the Component
View folder to your Windows CE processor to create a new component instance.

2 Select the new component instance.

3 Right-click and click Open specification.

4 Click the Detail tab.

5 In the Connection delay box, specify an integer, (the time in seconds) that specifies
how long the toolset waits before listening for a connection from the target.

6 In the Target timeout box, specify an integer, (the time in seconds) that specifies
how long the toolset listens for the connection from the model running on the
target.

7 In the Operation mode box, select Basic.

8 Click OK.
520 Chapter 23 - Running and Debugging

To run and load the Windows CE component instance:

1 In the Model View tab in the browser, select the new component instance from the
Deployment View folder.

2 Right-click and click Load.

The component instance is loaded onto the Windows CE target.

The component must be successfully built before it can run. If the Attach Target
observability option was set on the Component Instance Specification dialog
and a Target observability Port number specified, the execution interface displays
to allow you to control the execution of the model.

3 Right-click the component instance and click Run.

On your Windows CE device, the model runs, but it is controlled from the toolset on
the Desktop. You can now step through your model and observe its progress in the
State Machine.

To unload the Windows CE component instance:

Because the component instance was loaded onto the Windows CE target, it must be
unloaded later.

1 In the Model View tab in the browser, select the new component instance from the
Deployment View folder.

2 Right-click and click Unload.

Note: For Basic mode, the executable on the Windows CE target device is deleted; the
TCKill agent remains on the target. If you wish to remove the TCKill agent, on the
Windows CE target, you must manually delete the TCKill agent for your target.

Using Debugger Modes

You can specify any of the following debugger modes:

■ MSDEV - (Microsoft Visual Studio - Windows only)
■ Tornado
■ Tornado 2
■ EMVT - (Microsoft Embedded Visual Tools - Windows only)
■ xxgdb - (GNU - UNIX only)
Processor Specification Dialog 521

To configure MSDEV Debugger mode:

To set source level breakpoint probes, you must select a debugger that will be loaded
by the target control scripts for your platform.

Note: Basic mode (the default) is implied when one of the debugger options is not
selected.

1 In the Model View tab in the browser, select the processor from the Deployment
View folder.

2 Right-click and click Open Specification.

3 Click the Detail tab.

4 In the Operation mode box, select Debugger-MSDEV.

5 Click OK.

6 In the Model View tab in the browser, select the component instance.

7 Right-click and click Load.

8 Right-click and click Run. If prompted to build the component instance, click Yes.

Now, you can set breakpoints and debug your model.

To configure Tornado for Debugger mode:

To set source level breakpoint probes, you must select a debugger that will be loaded
by the target control scripts for your platform.

Note: Basic mode (the default) is implied when one of the debugger options is not
selected.

If you set the operation mode to Debugger-Tornado or Debugger-Tornado2, you can
set break points and debug your model.

Note: Before starting Rose RealTime, you must configure the Tornado environment.

1 In the Model View tab in the browser, select the processor from the Deployment
View folder.

2 Right-click and click Open Specification.

3 Click the Detail tab.

4 In the Operation mode box, select Debugger-Tornado or Debugger-Tornado2.

5 In the Server box, you must specify the name of server that will be the target
server.

6 Click OK.
522 Chapter 23 - Running and Debugging

7 In the Model View tab in the browser, select the component instance.

8 Right-click and click Load.

9 Right-click and click Run. If prompted to build the component instance, click Yes.

Now, you can set breakpoints and debug your model.

To configure Windows CE for Debugger mode:

To set source level break point probes, you must select a debugger that will be loaded
by the target control scripts for your platform.

Note: Basic mode (the default) is implied when one of the debugger options is not
selected.

If you set the operation mode to Debugger-EMVT for the Windows CE target, you
can set break points and debug your model.

1 In the Model View tab in the browser, select a component from the Component
View folder.

2 Right-click and click Open Specification.

3 Click the C++ Executable tab.

4 In the Default Arguments box, you must specify an argument that instructs the
executable on how it will communicate with the toolset. Type the following:

-obslisten=<port_on_target_instance>

where port_on_target_instance is the target observability port.

5 Click OK.

6 In the Model View tab in the browser, select the Windows CE component instance
from the Deployment View folder.

7 Right-click and click Open Specification.

8 Click the Detail tab.

9 In the Connection delay box, specify an integer, (the time in seconds) that specifies
how long the toolset waits before listening for a connection from the target.

Note: The default value for Connection delay is 1 and is not sufficient for this
purpose. If you specify 60 in the Connection delay box, this time should be quite
sufficient.
Processor Specification Dialog 523

10 In the Target timeout box, specify an integer, (the time in seconds) that specifies
how long the toolset listens for the connection from the model running on the
target.

Note: If you specify 120 in the Target timeout box, this time should be quite
sufficient. Depending on the size of your model, you may need to increase this
value further.

11 In the Operation mode box, select Debugger-EMVT.

12 Click OK.

13 In the Model View tab in the browser, select the component instance.

14 Right-click and click Load.

15 Right-click and click Run. If prompted to build the component instance, click Yes.

After the source debugger is loaded, it remains loaded until the Unload command for
the component instance is selected. This means that the source debugger can remain
open while the component instance runs and restarts multiple times.

On the target Windows CE device, it loads the TCKill agent for your specific target.

Now, you can set breakpoints and debug your model.

Note: For Windows CE, the EMVT debugger mode does not use the TCKill agent.

To configure xxgdb Debugger mode:

Use the GNU xxgdb debugger to load and run the component instance, as well as for
setting, clearing, and displaying breakpoints.

Note: Basic mode (the default) is implied when one of the debugger options is not
selected.

1 In the Model View tab in the browser, select the processor from the Deployment
View folder.

2 Right-click and click Open Specification.

3 Click the Detail tab.

4 In the Operation mode box, select Debugger-xxgdb.

5 Click OK.

6 In the Model View tab in the browser, select the component instance.

7 Right-click and click Load.

8 Right-click and click Run. If prompted to build the component instance, click Yes.

Now, you can set breakpoints and debug your model.

Unloading a Debugger

To unload the debugger:

You have to unload target platforms that require loading of modules before they are
run.

1 In the Model View tab in the browser, select the component instance from the
Deployment View folder.

2 Right-click and click Unload.

Device Specification

The Device specification dialog contains three tabs: the General tab, the Detail tab,
and the Files tab:

General Tab

Name

The name of the device.

Stereotype

A stereotype label for the device.

Documentation

Use this field to describe the device.
Device Specification 525

Detail Tab

Characteristics

Use the Characteristics text field to specify a physical description of the hardware
component. For example, you can describe the kind and bandwidth of a connection,
the manufacturer, model, memory, and disks of a machine, or the kind and size of a
device. You can set this field only through the specification. This information is not
displayed in the deployment diagram.

Files Tab

A list of referenced files is provided here. The files list popup menu allows you to
insert and delete references to files or URLs.

You can link external files to model elements for documentation purposes.

Connection Specification

The Connection specification contains three tabs: the General tab, the Detail tab, and
the Files tab.

General Tab

Name

The name of the connection.

Stereotype

A stereotype label for the connection.

Documentation

Use this field to describe the connection.
526 Chapter 23 - Running and Debugging

Detail Tab

Characteristics

Use the Characteristics text field to specify a physical description of the hardware
component. For example, you can describe the kind and bandwidth of a connection,
the manufacturer, model, memory, and disks of a machine, or the kind and size of a
device. You can set this field only through the specification. This information is not
displayed in the deployment diagram.

Files Tab

A list of referenced files is provided here. The files list popup menu allows you to
insert and delete references to files or URLs.

You can link external files to model elements for documentation purposes.

Probe Specification

The Probe Specification dialog contains two tabs: General and Files.

Probe Specification - General Tab

Name

The name of the probe, which you can edit if you choose.

Activated

Enables the probe.

Halt

Halts the execution when this probe detects a message. Upon halting execution, the
appropriate Structure Monitor diagram opens and this probe will be selected.

Trace

Opens the Trace window.

Threshold

Sets the size of the message buffer on the target.
Probe Specification 527

Documentation

Use to describe this probe.

Probe Specification - Files Tab

Allows for linking of external files.

Probe Specification - Detail Tab

This tab is only available on port probes. It is used to specify and inject messages into
the port on which the probe is attached.

Message list

This tab contains the list of messages that can be injected into the port. The list shows
the direction (in/out), priority, signal name, and data of each message.

Creating Inject Messages

To create an inject message:

1 Right-click in the list and select Insert or press the Insert key.

2 A message editor appears in which you can configure the message that you want
to send into or out of the port.

Note: You can only choose from the defined signals in the protocol associated with
port instance on which the probe is attached.

3 Once the message has been defined, press OK.

The message appears in the inject list.

Injected Data Format

The Data area of the inject message is a string representation of the data to be injected
with the message. The format of the string depends on the encoding and decoding
scheme used by the data type that is being injected.

Therefore, the format of the inject data is linked directly to the encoding and decoding
functions. If the encode and decode functions have not been overridden on a data
type, the Services Library provides a default ASCII encoder/decoder.

In most cases you will be injecting data using the default ASCII decoder. If this is the
case you can use the following syntax to specify the Data area of a message:

Note: You do not have to enclose the expression in double quotes.
528 Chapter 23 - Running and Debugging

Default ASCII encoding syntax

<type> ::= <type name>{ <attributes> }

<attributes> ::= <attribute name>{ <attributes> } |

<basic attribute><basic type>,<attributes> |

<basic attribute><basic type>

<basic type> ::= <value> | <basic type>,<value>

where

<attribute name> is an attribute of a composite type (e.g., a
type composed of other attributes - for example another class)

<basic attribute> is the name of an attribute of a basic type
(int, long, short, char, enum, double, float, string)

<value> is the value of an attribute of a basic type

Examples

Basic types

If a signal has a basic type that is a data class

int -> int 5

char -> char'a'

Classes

Here are two examples of what should be entered into the Data area of an inject
message to inject data of the following types. Do not enclose the data in double
quotes. The string below each class diagram would be entered as is into the Data area
of the inject message.
Probe Specification 529

ControlData{tasks 43,load
3.22,name{'N','o','d','e','M','a','n','a','g','e','r','\0'},int
_array 0,0,0,0,0}"

Note: This example assumes the ControlData class uses the default encode and
decode functions with name's NumElementFunctionBody returning a value of 12. If
the default encode and decode function are not used, the char * variable, name, may
need to be formatted differently.

TestData{result
1,test_identifier'A',node{connects{name'\0','\0','\0','\0','\0'
, hostid 0},{name'\0','\0','\0','\0','\0',hostid
0},{name'\0','\0','\0','\0','\0', hostid
0},{name'\0','\0','\0','\0','\0',hostid 0}}}

Note: To help determine the format of data types remember that the inject data format
will always be the same as you would see the data displayed in a trace window.

Injecting a Message

To inject a message that shows in the inject list, select the message and from the popup
menu choose Inject.

If an error occurs parsing the Data area of the inject message, an error will not be
returned to the toolset. The message will simply not get injected. The best method of
determining whether a message was injected successfully is to open a trace window
on the port into which the message is being injected. If the inject is successful you will
see the message in the trace.

Inject messages can also be injected, modified, or deleted in the State monitor browser.
They are child elements of port probes.
530 Chapter 23 - Running and Debugging

24Using Code Sync to
Change Generated Code
Contents

This chapter is organized as follows:

■ Code Sync Overview on page 531
■ Intended Code Sync Usage on page 532
■ Enabling and Disabling Code Sync on page 533
■ Identifying Code Sync Areas on page 533
■ Compiling Code Externally on page 535
■ Invoking Code Sync from the Toolset on page 535
■ Reconciling Changes in the Code Sync Summary on page 535
■ Common Code Sync Errors on page 536

This chapter describes how you can use Code Sync to make changes to the generated
code from outside a model within an IDE (Integrated Development Environment) or
editor of your choice, and recapture the changes back into the model.

Code Sync Overview

The purpose of the Code Sync feature is to provide a facility to capture users’ changes
made to generated code, back into the model. This allows you to externally modify
and debug the generated code outside of the toolset.

Modifying generated code helps to reduce the debug cycle on some RTOS’s (Real
Time Operating Systems), and allows you to make changes using a third-party IDE.
Using Code Sync, changes to the generated code can be reconciled and re-integrated
back into the “master copy” of the model files.

For the purposes of this feature description, “externally” means “outside the toolset”.
531

Intended Code Sync Usage

The intended use case for Code Sync is to:

1 Build the model from the toolset. See Starting a Build on page 441. There must be
generated code before Code Sync can function.

2 Browse the generated code using a third-party editor or IDE.

3 Modify the generated code in designated areas only. See “Identifying Code Sync
Areas” on page 533.

4 Compile the code externally. See Compiling Code Externally on page 535.

5 Run the executable externally to test your changes. For more information, see
Running from Outside the Toolset on page 508. Return to Step 3 above, until the
external debugging cycle is complete.

6 From the toolset, invoke Code Sync. See Invoking Code Sync from the Toolset on
page 535.

7 From the toolset’s Code Sync Summary dialog box, accept the desired changes. See
Reconciling Changes in the Code Sync Summary on page 535.

Limitations

Code Sync cannot be used to create, delete or rename model elements, or to otherwise
make structural changes to the model. Such changes must be made using the toolset.

After the generated code has been modified externally, the toolset should not be used
to run the externally-built executable until all code Sync changes have been
reconciled. For example, although state transitions could be observed and animated
by the toolset, the toolset will still show the old transition action code which may be
misleading during debugging.

After the generated code has been manually modified, Clearmake cannot provide
complete traceability back to model files, and Clearmake cannot provide wink-in. In
Clearmake terms, generated code that has been manually modified is no longer
considered a derived object, but rather a view-private file.
532 Chapter 24 - Using Code Sync to Change Generated Code

Enabling and Disabling Code Sync

In order for the correct Makefile pattern to be generated for Code Sync, Code Sync
must be enabled before the code is initially generated from the toolset.

By factory default, Code Sync is enabled on new components. Code Sync can be
disabled from the CodeSyncEnabled flag on the Generation tab of each component, if
necessary to accommodate a particular make utility or to accommodate local coding
conventions.

Components that are dependent on a component with Code Sync enabled, do not
necessarily need to have Code Sync enabled.

Identifying Code Sync Areas

The generated code can only be modified in certain designated areas. For
convenience, these designated areas are tagged using language-specific comments.

Code Sync Identification Tags

You should only modify code that is delimited by the Code Sync identification tags.

Designated areas for Code Sync are identified in the generated C++ code with the
following tags:

// {{{USR

<insert or modify code here>

// }}}USR '

Designated areas for Code Sync are identified in the generated C code with the
following tags:

/* {{{USR */

<insert or modify code here>

/* }}}USR */

Other similar tags (RME tags) are generated for tracing compilation error messages
back to the applicable model element. These tags are irrelevant to Code Sync. Code
Sync only recognizes code delimited by the Code Sync identification tags.
Enabling and Disabling Code Sync 533

Designated Code Sync Areas

The following areas are designated as available for Code Sync users:

■ Action code for transitions in capsules

■ Action code for operation implementations in capsules and data classes

■ The HeaderPreface, HeaderEnding, ImplementationPreface and
ImplementationEnding fields for data classes and capsules

■ The CommonPreface field for components

■ Guard code for the event triggers on capsule transitions

■ Choice-point condition code for capsules

■ Entry Action and Exit Action code for capsule states

■ The PublicDeclarations, Protected Declarations, and Private Declarations fields for
C++ data classes

■ The InitFunctionBody, CopyFunctionbody, DecodeFunctionBody,
EncodeFunctionBody and DestroyFunctionBody fields for data classes

■ The NumElementsFunctionBody field for capsule attributes

■ The ConstructorInitializer field for C++ constructor operations

In some cases where a field is omitted or left as its default, the code generator may
generate an optimized code pattern that does not provide the empty Code Sync areas
or its identification tags. If you wish to use Code Sync area for an area which has been
optimized out, you must provide a non-default value for the field (such as a
comment) within the model, then re-generate before you can modify that Code Sync
area.
534 Chapter 24 - Using Code Sync to Change Generated Code

Compiling Code Externally

Building a model externally is discussed in the Guide to Team Development - Rational
Rose RealTime. However, since the code will already be generated and manually
modified, it is normally sufficient to compile without generating, as shown in the
following example:

cd /MyHome/OutputDirectory

cd build

make -f Makefile RTcompile

In a multi-component model, it is safer to build from the Component Makefile and
iterated through each dependent component’s compilation. This is particularly true if
a header file was manually modified.

cd /MyHome/OutputDirectory

make -f Makefile RTcompile

Note that this will check for any required generation for each component, then
compile each component. If the model has changed, your manual modifications may
be lost (overwritten during generation). Consequently, it is recommended that you do
not modify the model while you are modifying the generated code.

Invoking Code Sync from the Toolset

To propagate the changes into the model, you need to invoke Code Sync and then
decide which changes you want to accept.

Select CodeSync from the component’s drop down menu. Alternatively, if the
component is set as active, click Build > CodeSync from the Rose Real Time menu.

Any pending changes to the model-files are written to the file-system. It is not
advisable to make further changes at this time, since they will be overwritten upon
reconciliation.

If you wish to abort a CodeSync, click the Stop-Build icon from the standard toolbar.

Reconciling Changes in the Code Sync Summary

After Code Sync examines the generated code, a Code Sync Summary dialog appears.

This summarizes the differences, for designated code sync areas, between the
generated code and the corresponding elements in the model.
Compiling Code Externally 535

Location

The location within the model element, of the code that was changed by the user.

Context

The location within the model of the model element, where the changes were made by
the user.

Old code block

The appearance of an element of code within the model. If there is no action code, this
block will be empty.

New code block

The appearance of an element of code from the generated code that has been modified
(appears different from the model). If there is no action code, this block will be empty.

Accepting Changes

To accept changes:

1 From the Code Sync Summary dialog, double-click each location you wish to
view. The old code block and new code block appears for the selected location.

You can right-click on a change to bring up its context within the toolset. Be sure to
return to the Code Sync Summary before modifying the model.

2 To reject changes that you do not wish to propagate into the model, deselect the
check box(es). These rejected changes may include debug information placed in
the Code Sync area while debugging within your IDE.

3 Ensure that you have not rejected any code that is required for the model. Click
OK to accept the selected changes.

Model files are checked out of version control as necessary once the changes are
accepted.

Common Code Sync Errors

It is possible to change the model within the toolset before Code Sync is invoked,
however, this is not advised. The changed model will be saved when Code Sync is
invoked and used during the Code Sync comparison. This can result in either a fatal
Code Sync error (if the model changed outside of designated areas), or the model
536 Chapter 24 - Using Code Sync to Change Generated Code

changes may be interpreted as "old code" in the Code Sync Summary dialog (this may
be confusing while reconciling changes, and result in the model changes being
overwritten). It is recommended not to change the model before invoking Code Sync.

It is possible to change the model within the toolset after Code Sync is invoked, while
the Code Sync Summary dialog is visible; this is also not advised. Code Sync
reconciliation is based on the unchanged model, and changes to the model may result
in reconciliation results getting lost. You may need to view the model while
reconciling Code Sync changes, however, you should not modify the model until the
Code Sync Summary dialog has been dismissed (by cancel or accept).

Error: Cannot code-sync; file I/O error on: <filename>

This occurs if the code generator cannot open the expected file during Code Sync, for
example, if you have started a Code Sync without a previous code generation.

Error: Cannot code-sync <filename> beyond line <lineNum>

This usually indicates that:

■ you have modified the code outside the Code Sync identification tags, or

■ you have changed the model (for example, changed the CommonPreface) since it
was last generated.

Error: Could not find trailing CodeSync tag for
[<LocationSpecifier>]

This usually indicates that a starting Code Sync tag does not have a corresponding
trailing CodeSync tag, for example, if the trailing tag has been accidentally modified.
The Location Specifier (location of modified code, such as ImplementationPreface)
and the format of the entire line (including spacing) must match exactly in the two
Code Sync tags.

Warning: Use tabs for indenting code-sync regions

The code-generator indents many code-sync regions by one or more tab stops. This
warning will appear in the Build Log if, after modification, any line in a code-sync
region (including newly-added lines of code) is missing this indentation or is
indented with spaces. The region will appear (and continue to reappear) in the Code
Sync Summary even if there are no changes to the region. The white-space difference
can be resolved by properly indenting the region manually, or by generating the code.
Common Code Sync Errors 537

We recommend that you use an editor which indents with tabs. Furthermore, while
the tab-width rarely affects the appearance of the generated code, the code-generator
assumes a tab-width of eight characters.
538 Chapter 24 - Using Code Sync to Change Generated Code

25Generating
Documentation
Contents

This chapter is organized as follows:

■ Linking External Files to Model Elements on page 539
■ Generate Documentation Dialog on page 540
■ Inserting a Diagram into an MS Word Document on page 541
■ Using OLE on page 542

Linking External Files to Model Elements

All model elements can have external files linked to them for maintaining
documentation or linking requirements.

To link an external file to a model element:

1 Right-click on the model element in the model browser or in a diagram.

2 Select Open Specification from the selected item's menu.

3 Click the Files tab in the Specification Dialog.

4 Right-click under the Filename header.

5 Select Insert File from the menu.

6 Use the File Browser to select the appropriate file to link to.

7 Click Open.

8 Click OK to close the Specification Dialog.

The link is stored in the model as a relative path. If the file is moved, or the model is
relocated, the link may be broken. You can undo and redo the action of adding a link.
539

Generate Documentation Dialog

The Generate Documentation dialog shows options for creating documentation from
the model.

Report File Name

The name for the report file to be created. A File Browser can be used to select the
location by selecting the Browse... button.

Report Title

Give the report a title.

Report Type

Select the type of document to generate from the following options:

■ Logical View Report - generates documentation only for elements in the logical
view.

■ Component View Report - generates documentation only for elements in the
component view

Attributes and Operations Syntax

■ Use Unified Modeling Language Syntax

■ Use C++ Syntax

Report Options

■ Include Operations - includes all class operations in the document.

■ Include Attributes - includes all class attributes in the document.

■ Sort - specifies that the reports appear in alphabetical order

■ Public Operations and Attributes Only - includes only publicly visible class
operations and attributes in the document.

■ Include Documentation - includes user-specified documentation entered in
specification dialogs in the document.

Generate Selected

Generate documentation for only selected model elements.
540 Chapter 25 - Generating Documentation

Generate

Generate documentation for all model elements.

Cancel

Cancel the operation.

Inserting a Diagram into an MS Word Document

There are two ways to print a diagram into a Microsoft Word document.

Option A

1 Click on the diagram you want to put into your document and select Edit >Select
All.

2 Copy the diagram to the clipboard using Edit > Copy.

3 Position the cursor in the word document where you want the diagram to be
placed and select Edit > Paste.

Option B

1 Click on the diagram you want to put into your document and select Edit >Select
All.

2 Click File > Print.

3 Select Print to file.

4 Click OK.

5 Choose the directory in which you want to save the file.

6 Type a file name in the File name box.

7 Click Save.

8 Open Microsoft Word.

9 Select Insert > Picture > From File...

10 Select the file you saved in Step 6.

Note: You will not see the actual diagram in your Microsoft Word document; only a
postscript reference is displayed.
Inserting a Diagram into an MS Word Document 541

Using OLE

OLE is an object-oriented technology, designed for creating, managing and accessing
object-based components across process and machine boundaries.

You can create a link between a diagram in your model (the source) and another
application such as Microsoft Word. By creating this link, any changes you make to
your diagrams are automatically reflected in the document containing the link (the
container).

Creating a Link

After creating and saving your model, copy the contents of a diagram, either by CTRL
+ C or Edit > Copy.

Note: If the model is new, it must first be saved for this operation to work.

Inserting a Link

In an OLE container, for example a Microsoft Word document:

1 Select Edit > Paste Special.

2 Click the Picture option and Paste Link.

3 Click OK.

If you select just Paste you will get a meta file picture inserted into the container. This
meta file is not navigable and becomes native data in the container.

Navigating

To navigate from your OLE container (for example, your Microsoft Word document)
to the application, use the steps for opening OLE linked objects, typically, double-click
or Open from the Edit Object menu. The application opens the diagram independent
of the Load of Units setting.

Note: Moving your linked files may break the link. It does not, however, affect the
object in the container. If the link breaks, you can manually reestablish it from most
OLE containers with the Change Source option from the Links dialog.

Editing Diagrams

Unless the unit is read-only, you can edit your linked (source) diagram. When you
modify your diagram, the link is updated to reflect the new state. Depending on the
application containing the diagram, you may have to do a manual update to see your
changes. Refer to your application manual for details.
542 Chapter 25 - Generating Documentation

26Customizing the Toolset
Contents

This chapter is organized as follows:

■ Stereotypes on page 543
■ Toolset Options on page 550
■ Add-In Manager Dialog on page 561
■ Managing Model Properties on page 562

Stereotypes

This topic describes the following:

■ Creating a Custom Framework for Rose RealTime Models on page 543
■ Creating a New Stereotype for the Current Model on page 544
■ Creating a New Stereotype Configuration File on page 545
■ Creating a New Stereotype for all Rose RealTime Models on page 545
■ Creating Stereotypes for Classes on page 548
■ Adding Stereotypes to the Diagram Toolbox on page 548
■ Creating Stereotype Icons on page 548
■ Creating a Diagram Icon on page 549
■ Controlling the Display of Stereotypes on page 549

Creating a Custom Framework for Rose RealTime Models

You can create a custom framework from a Rose RealTime model. The contents of the
framework define the template to be used when creating new models. For example, if
several models with similar characteristics are required, you can create a framework
with these characteristics to be used as a template.
543

To create a custom framework:

1 If you do not have a model file that defines the contents of the framework, create a
framework model. You create the framework model in the same way as you would
create any other model in Rational Rose Realtime. See Building Basics on page 439.

2 Optionally, you may create the following files for the model:

❑ a documentation file (.TXT) that contains a description of the framework.

❑ an icon file (.ICO) that contains the icon to be used as a symbol for the new
framework in the Create New Model dialog.

3 Select File > New. The Create New Model dialog appears.

4 Select New Framework to enter the Framework wizard.

5 When prompted by the wizard, enter the following information:

❑ Framework Name - this name will appear as a label for your framework in the
Create New Model dialog.

❑ Model file - the name of your framework model file (.rtmdl)

❑ Documentation file (optional)

❑ Icon file, if created (optional)

6 Follow the prompts and click Finish to exit the wizard.

Creating a New Stereotype for the Current Model

You can create a new stereotype by typing a new name in the Stereotype field of a
model element’s specification. The new stereotype is then available in the Stereotype
field for all model elements of that type (which are assigned the same language) in the
current model.

If you want the stereotype to be available in all Rose RealTime models, see Creating a
New Stereotype Configuration File on page 545. If you already have a stereotype
configuration file, skip to Creating a New Stereotype for all Rose RealTime Models on
page 545.
544 Chapter 26 - Customizing the Toolset

Creating a New Stereotype Configuration File

The stereotypes in Rose RealTime must be defined in a stereotype configuration file.
Rose RealTime is delivered with a default stereotype configuration file, called
DefaultStereotypes.ini. If possible, add your stereotypes to that file.

To create a new stereotype configuration file:

1 Quit Rose RealTime.

2 Create a text file (called, for example, MyStereotypes.ini) using Notepad or
another text editor, and save it in the Rose RealTime installation folder.

3 Edit the new stereotype configuration file. For information on how to create a new
stereotype and add it to a stereotype configuration file, see “Creating a New
Stereotype for all Rose RealTime Models” on page 545.

4 Run the Windows Registry Editor (regedit.exe) by selecting Run from the Start
menu. Type “regedit” and click OK.

5 Locate and select the section entitled
[HKEY_LOCAL_MACHINE\SOFTWARE\Rational Software\Rose
RealTime\6.5\StereotypeCfgFiles] in the registry list.

6 On the Edit menu, select New and click String Value. Give the new registry key
the name “file#”, where # is the next consecutive number (1, 2, or 3, etc.).

7 Double-click the new key, and enter the name of your configuration file (for
example, MyStereotypes.ini).

Close the registry. Next time you open a model in Rose RealTime, the stereotypes
defined in your new stereotype configuration file will be available in the model.

Creating a New Stereotype for all Rose RealTime Models

You can quickly create a new stereotype by typing a new name in the Stereotype box
of a model element’s Specification dialog. The new stereotype is then available in the
Stereotype box for all model elements of that type and language, but only in the
current model.

To create a new stereotype and make it available in all models in Rational Rose
RealTime:

1 Exit Rational Rose RealTime.

2 Optionally, create icons for the stereotype to use in diagrams, lists, and diagram
toolboxes. See Controlling the Display of Stereotypes on page 549.
Stereotypes 545

3 Open the default stereotype configuration file, DefaultStereotypes.ini in
%ROSERT_HOME%.

4 In the stereotype configuration file, add a line for the new stereotype in the section
called [Stereotype Items]. For example, to add the class stereotype Controller to
an existing configuration file, add a corresponding line as follows:

[Stereotype Items]

Class:Model

Class:View

Class:Control

5 Create a section for the new stereotype and give it the exact same name you
specified in Step 4. For example:

[Class:Control]

Item=Class

Stereotype=Control

6 If you created a diagram icon for the stereotype, specify the name of that file
(Metafile).

Note: You can use the ampersnad character, “&”, instead of the folder of the
stereotype configuration file. For example:

Metafile=&MyStereotypeIconscontroller.emf

7 To create a diagram toolbox button for this stereotype, specify the name of the file
where you created the corresponding small toolbox icon (SmallPaletteImages) and
the location of the icon in that file (SmallPaletteIndex). You can also specify the
name of the file where the corresponding large toolbox icon is defined
(MediumPaletteImages) and the location of the icon in that file
(MediumPaletteIndex). For example:

SmallPaletteImages=&\MyStereotypeIcons\small_palette_icons.bmp

SmallPaletteIndex=3

MediumPaletteImages=&\MyStereotypeIcons\medium_palette_icons.bmp

MediumPaletteIndex=3

8 To graphically display this stereotype in specification lists or in the browser,
specify the name of the file where you created its list icon (ListImages) and the
location of the icon in that file (ListIndex). For example:

ListImages=&\MyStereotypeIcons\list_icons.bmp

ListIndex=2
546 Chapter 26 - Customizing the Toolset

9 To specify a ToolTip for a stereotype, add descriptive text for customizable option.
The format for a ToolTip is:

ToolTip=<Name>\n<Description>

where:

Name is the title for the option that appears on the Customize dialog.

Description is the text that appears for the ToolTip.

Note: Do not add a space before or after the "\n".

For example, for the

[Class:control]
Item=Class
Stereotype=control
Metafile=&\stereotypes\normal\control.wmf
SmallPaletteImages=&\stereotypes\small\control_s.bmp
SmallPaletteIndex=1
MediumPaletteImages=&\stereotypes\medium\control_m.bmp
MediumPaletteIndex=1
ListImages=&\stereotypes\list\control_l.bmp
ListIndex=1
ToolTip=Creates a control\nControl

10 Add any other settings required to define the new stereotype. For a list of all
available settings, information on the meaning of each setting, the possible values,
and the default values, please refer to the “Stereotype Configuration File” topic in
the online help. Note, however, that you only have to include settings for which
you want to give other values than their default values.

11 Save your changes to the stereotype configuration file.

12 Start Rational Rose RealTime. View the Log tab in the Output window to ensure
that there are no problems loading your icons.

13 If you created a diagram toolbox icon for the new stereotype, and want to add it as
a button on a diagram toolbox, see Adding Stereotypes to the Diagram Toolbox on
page 548.

The new stereotype is now available in Rational Rose RealTime. For information on
how to control the display of the new stereotype in diagrams and in the browser, see
Controlling the Display of Stereotypes on page 549

For detailed samples on user-defined stereotypes, please refer to
http://www.rational.com/products/rosert/
Stereotypes 547

http://www.rational.com/products/rosert/

Creating Stereotypes for Classes

To create a stereotype for a class:

1 Double-click on the class in the model browser to open the Class Specification.

2 Select the General tab.

3 In the Stereotype field, type the name of the stereotype for the class, or select it
from the pull-down menu beside the field.

You can use any label for the stereotype. It does not have to be one of the built-in
stereotype labels.

4 Click OK to close the specification dialog.

Adding Stereotypes to the Diagram Toolbox

To make a stereotype available as a button on a diagram toolbox:

1 The stereotype and a corresponding diagram toolbox icon have to be created and
made available in Rational Rose RealTime. For information on how to do that, see
Creating a New Stereotype for all Rose RealTime Models on page 545.

2 Select Tools > Options, to open the Options Dialog.

3 Select the Toolbars tab. Under Customize Toolbars, click on the diagram type you
want to change the toolbar for.
or in an open diagram, right-click in the diagram toolbar and click Customize.

The Customize Toolbar dialog is displayed. The left-most column provides the list
of available icons.

4 Select the icon you want to appear on the diagram toolbar and click Add.

Creating Stereotype Icons

For each stereotype, four different icons may be supplied:

■ A diagram icon (to customize the appearance of model elements with this
stereotype in diagrams).

■ A small and a large diagram toolbox icon (to be able to add a button for this
stereotype to the diagram toolbox). Two different sizes correspond to the Use
Large Buttons option on the Toolbars tab of the Options dialog.

■ A list view icon (to graphically display the stereotype for model elements in
specification lists and in the browser).
548 Chapter 26 - Customizing the Toolset

http://www.rational.com/products/rosert/

Creating a Diagram Icon

Diagram icons have to be in Windows Metafile format (.wmf) or Enhanced Metafile
format (.emf) . You can download drawing packages that support these formats at
various shareware sites on the Internet. Enhanced Metafiles are recommended if
possible.

1 Using a vector-based (as opposed to bitmap) drawing application, draw your icon
the size you want it to appear in Rose RealTime. It is best not to use a drawing
application that forces the icon to fit a certain area, such as a page, as is the case
with PowerPoint.

2 Consider the following: Make sure that the scaling factor is set to 100% when
deciding on the icon’s size. Use colors if you like. If you want the name of the
model element to appear within the stereotype icon, leave some blank space for it.

Select the icon and export it in either the Windows Metafile format or the Enhanced
Metafile format. If you use CorelDraw, make sure the Include header option is
checked if you save your selection as a Windows Metafile.

Controlling the Display of Stereotypes

As stereotypes are refined model element types, it is important to be able to
distinguish them in the model. The stereotype can be indicated in several different
ways in the browser and in diagrams. See “Stereotype Display” on page 556 for more
information.

Controlling Stereotype Display in the Browser

To control how stereotypes are displayed in the browser:

1 On the Tools menu, click Options, and click the Browser tab.

2 Clicking Show Stereotype Name displays the stereotype name and icon of
stereotypes in the browser. Also clicking Hide stereotype name if there is an icon
for it hides the name and displays only the icon.

Controlling How Existing Stereotypes Display in a Diagram

To control how existing stereotypes are displayed in a diagram:

1 Select the model element in the diagram.

2 Click Diagram Object Properties from the Edit menu, or use the context menu.

3 To control the display of relationship stereotypes, use the Stereotype Label option.
Stereotypes 549

4 To control the display of, for example, a class, a device, or a component, click
Stereotype Display and select the appropriate option from the displayed menu.

5 To control the display of operation and attribute stereotypes in the class
compartment, use the Show compartment stereotypes option.

Controlling the Display of Stereotypes Added to Diagrams

To control how stereotypes that are added to diagrams hereafter are displayed:

1 Select Tools > Options > Diagram tab.

2 To control the display of relationship stereotypes, use the Show labels on relations
and associations option under Stereotype display.

3 To control the display of, for example, class, device, or component stereotypes, use
the None, Label, Decoration and Label, Label Only or Icon options under
Stereotype display.

4 To control the display of operation and attribute stereotypes in class
compartments, use the Show stereotypes option under Compartments.

Note: For user-defined stereotypes, the stereotype display may be controlled by the
settings in the stereotype configuration file where the stereotype is defined. Any such
settings override the settings on the Diagram tab of the Options dialog.

Toolset Options

This section describes the Options Dialog, Customizing the Diagram Toolbox, and the
Customize Toolbar Dialog.

Options Dialog

The Options dialog provides control over many general properties of the model.

The Options dialog contains the following tabs: General Tab, File Tab, Font/Color Tab,
Diagram Tab, Filtering Tab, Compartments Tab, Browser Tab, THIDC_AA1oolbars
Tab, Editor Tab, and Language/Environment Tab.

There are some fields which are common to many tabs on the Options dialog:

Type

Specifies a type, such as Class, Protocol, Role and Attribute. The list of types differs
depending on the tab selected.
550 Chapter 26 - Customizing the Toolset

Set

Shows the setting for the specified type. The default is default. This field is only
available for cloned types.

Clone

Duplicates the selected type.

Remove

Deletes a select cloned type from the Set box.

General Tab

At Startup options

Reload last workspace

Automatically loads the last workspace (and corresponding model) that were in use
when the tool was last shut down.

Show splash screen

Toggles whether the splash screen at appears at startup. The default is set to true.

Show frameworks dialog

Sets the display of the Frameworks dialog on startup.

Emulate REI

When enabled, Rose RealTime emulates Rose 2000 from a COM server perspective at
startup. This lets you use Rose 2000 Add-Ins with Rose RealTime. Rose 2000 and Rose
RealTime are both REI servers. Which one is used to serve a request depends on the
specific launched/shutdown sequence of Rose 2000 and Rose RealTime instances that
occurred on the server system. Regardless of whether it emulates REI, Rose RealTime
always serves as an RRTEI server.

The option can be overridden by the following command line arguments:

■ -emulateREI: Emulates REI, regardless of the default specified in the option
dialog.

■ -noEmulateREI: Does not emulate REI, regardless of the default specified in the
option dialog.
Toolset Options 551

Picklists

Show Classes

The ShowClassesInPickLists setting works with selection lists to provide a defined set
of types to choose from. The picklists are used to define such things as return types
and argument types. You can also change this setting directly in the rose.ini file.

Error Log

Log size

Sets the number of lines in the error log.

Log warnings

Enables warnings to be sent to the log. The default is set to true.

Log commands

Sends a description of executed commands to the log. The default is set to true.

Note: To reduce the amount of entries that appear in the log (meaning only warnings
are visible) ensure that this option is not set when running RQART.

Undo

Undo level

Sets the number of undo levels supported. A higher number consumes more memory.

Technical Support

Email address

Sets the email address to which error files are automatically sent if the tool crashes.
These error files contain only internal callstack information from the tool. They do not
contain any model-specific information.

Test button

Tests the given email address to ensure its validity.

File Tab

Save options

Use Temporary File
552 Chapter 26 - Customizing the Toolset

Enable this option to write to a temporary file whose name is derived from the
destination file. Once the temporary file has been completely written, the temporary
file is copied or renamed to the destination file.

Create Backup File

Enable this option to create a backup file.

If Create Backup Files is true and Use Temporary Files is false, and the destination file
already exists, the destination file is copied or renamed to the backup file before the
Petal file is written to the destination file.

If Create Backup Files and Use Temporary Files are both true, then once the
temporary file has been written successfully, the original destination file, if it exists, is
copied or renamed to the backup file. The temporary file is then copied or renamed to
the destination file.

Keep Two Backup Files

Enables Rational Rose to maintain two backup files: the most recent and the baseline
copy. If Create Backup Files is true when writing a backup file, the most-recent
generated name for the backup file is deleted. The newly created backup file is
assigned the most-recent generated name for backup files. The oldest copy of the file
is saved and remains untouched. The oldest version of the file is retained as a baseline
copy.

If a backup file does not already exist, a backup file is created and assigned the
most-recent generated name.

Update by Copy

Enable this option to manipulate files by copying. The temporary file is copied to the
destination and the destination is copied to the backup. If this option is false,
manipulation of the files is done by renaming.

Save Settings on Exit

Use this command to save the arrangement of diagram and specification windows
and icons when you exit. The next time you open the model, the arrangement that
was last saved is displayed.

Use spaces in generated file names

Toggles whether spaces are removed from generated filenames.

Always use generated file names

Use this option to always use generated file names, rather than being queried every
time.
Toolset Options 553

Load

When set, the toolset does not query you for missing scratch pad files.

Font/Color Tab

Default font

Invokes the Font dialog, through which you can specify font characteristics.

Documentation window font

Invokes the Font Dialog, through which you can specify font characteristics to be
applied to the documentation window.

Code font

Specify a default font for code boxes.

Line Color...

Changes the color of any lines used on diagrams.

Fill Color...

Changes the color of any element fills used on diagrams.

Background color...

Changes the background color for diagrams.

Use Fill Color

You must select the checkbox to see the icons displayed in the colors set in the Line or
Fill Color selection. (If it is not checked, a color is defined, but not applied.)

Use background color

Toggles whether to use background color. If not checked, system defaults are used;
otherwise, the color specified in Background color... is used.
554 Chapter 26 - Customizing the Toolset

Diagram Tab

Display

Unresolved Adornments

Enables adornment of icons representing components not currently loaded in the
model. The unresolved view adornment is a small octagon containing the letter “M”
with a slash through it.

Collaboration Numbering

Enables the display of message sequence numbers on Collaboration diagrams.

Sequence Numbering

Enables the display of message sequence numbers on Sequence diagrams.

Focus Of Control

The DefaultViewFocusOfControl setting is an advanced notational technique that
enhances sequence diagrams. Focus of Control is portrayed through narrow
rectangles that adorn the vertical lines that descend from each object. You can also
change this setting (DefaultViewFocusOfControl) directly in the rose.ini file. The
DefaultViewFocusOfControl default setting is Yes.

Show message data

Shows the data associated with a message on the diagram.

Default line attributes...

Opens the Line Attributes dialog, which let you define line styles, routing, smoothing,
and intersecting links.

■ Line style - Lets you decide whether line styles are oblique or rectilinear. Note that
if you choose Rectilinear, Smoothing is grayed out.

■ Routing - Lets you decide whether routing is normal, closest distance, or avoids
obstructions. Note that if you choose Closest distance, Smoothing is grayed out.

■ Smoothing - Lets you choose how smooth lines are.

■ Intersecting links - Lets you choose whether to jump links and specify the type of
jump. As well, you can choose whether to reverse jump links.
Toolset Options 555

Miscellaneous

Double-click to diagram

The DoubleClick setting specifies what action will occur when you double-click an
icon representing a logical package or component package.

When selected, this option indicates that a main diagram is displayed when you
double-click on the icon. When this option is not selected, it indicates that the
specification of a logical or component package is displayed when you double-click
on the icon.

Note: If this option is selected and you double-click a Capsule Role in a Structure
diagram, another Structure diagram opens. If this option is not selected, the Capsule
Role Specification opens. Similarly, if this option is selected and you double-click on a
State in a State diagram, another State diagram opens. If it is not selected, the State
Specification opens.

Automatic Resizing

Enables the automatic resizing of icons to accommodate text.

Class Name Completion

Activates a popup box listing all current class names. You can select one of these
names by double-clicking or by hitting the Enter or Tab key when you highlight the
correct name.

Auto-adjust transitions

Enables auto-adjusting transitions on creation. The default is set to true.

Show Diagram Browsers

If not enabled, diagram browsers are not created the first time a diagram is opened.

Note: Once a diagram is opened, its state is saved in the workspace, so this option has
no effect.

Stereotype Display

Use the options to control the display of stereotypes in diagrams. The selection is
applied to new model elements (except relationships) that are added to diagrams
hereafter.

■ None - The stereotype is not indicated for new model elements.

■ Label - The stereotype name is displayed for new model elements. The stereotype
name appears inside angle brackets, << >>.
556 Chapter 26 - Customizing the Toolset

■ Decoration and Label - The stereotype icon (if it exists) is displayed as a
decoration in the upper right hand corner of the view. The label is displayed just
under the decoration centered above the name.

■ Decoration Only - The stereotype icon (if it exists) is displayed as a decoration in
the upper right hand corner of the view. No label is displayed.

■ Icon - The stereotype icon (if it exists) is displayed for new model elements.

■ Show labels on relations - enables the display of stereotype labels on new
relationships. The stereotype names appear inside angle brackets, << >>. The
selection is applied to new relationships that are added to diagrams.

To display/hide the stereotype name of a previously created relationship in a specific
diagram, select the relationship in that diagram. Select Edit > Diagram Object
Properties > Stereotype Display. On the displayed menu, select the appropriate
option. You can also use the same option on the shortcut menus.

If you want to change the display of previously created stereotypes in a specific
diagram, select the stereotype in that diagram. Select Edit > Diagram Object
Properties > Stereotype Display. On the displayed menu, select the appropriate
option. You can also use the same options on the popup menus.

Grid

Grid Size

Specifies the grid pitch in pixels. The value that you enter in the Grid Size edit box is
saved to the GridSizeX and Y settings.

Snap to Grid

Indicates that new or moved icons will align with a grid whose pitch is specified by
the grid size.

UML Options

Aggregation whole to part

Controls which way an aggregation can be drawn. Aggregates can be drawn whole
(client) to part (supplier) or vice versa. The default is set to true.

Classifier name on roles

Lets you turn off the classifier name portion of a role label.

Protocol name on ports

Lets you turn off the classifier name portion on ports.
Toolset Options 557

Base UML notation

Converts the structure diagram so that it uses only UML base notation.

Target Observability

Animation timeout

Sets a delay for displaying animation of events (state changes) in the state monitor.
The delay value is in 1/100ths of a second, i.e., a value of 100 will delay event
animation for 1 second. This provides the ability to slow down the animation of a
model to make state changes more observable.

Filtering Tab

Class Diagram

Filters information on the class diagram.

State Diagram

Filters information on the state diagram.

Structure/Collaboration Diagrams

Filters information on Structure/Collaboration diagrams.

Compartments Tab

Class

Display/hide information in the compartments of a class on the class diagram.

Capsule

Display/hide information in the compartments of a class on the class diagram.

Protocol

Display/hide information in the compartments of a class on the class diagram.
558 Chapter 26 - Customizing the Toolset

Browser Tab

Stereotypes

Show stereotype names

Enable or disable viewing of stereotype names of model elements in the browser.

To display only stereotype icons (if any), select the Hide Stereotype name if there is
an icon for it option.

To display both stereotype icons (if any) and stereotype names, clear the Hide
Stereotype name if there is an icon for it option.

Hide stereotype name if there is an icon for it

The StereotypeBitmapsOnly setting enables or disables stereotype icons, but not
stereotype names, of model elements in the browser. This setting can also be changed
in the rose.ini file.

Class and package name display

Show related components

Use this option to toggle whether to decorate referenced components in the browser.

Editor Tab

External editor

Specify an external editor to be launched when editing detailed code.

Note: If you use an external editor that requires a console terminal, you must specify
an application, such as xterm, that provides the terminal, followed by the editor
command itself.

Example on Solaris: /usr/openwin/bin/xterm -e /bin/vi

Example on HPUX: /usr/bin/X11/xterm -e /bin/vi
Toolset Options 559

THIDC_AA1oolbars Tab

The standard toolbar and diagram toolbox properties can be set on the Toolbar tab.
The choices are grouped as follows:

■ Standard toolbar

❑ Show Standard Toolbar - Toggles whether the standard toolbar is visible.

❑ Enable docking - Toggles whether to allow the toolbar to be docked.

❑ Use large buttons - Toggles whether to display small buttons or large buttons
on the toolbar.

■ Diagram toolbar

❑ Show Diagram toolbar - Toggles whether the diagram toolbox is visible.

❑ Enable docking - Toggles whether to allow the toolbox to be docked.

❑ Lock selection - Toggles whether to lock the current toolbox selections.

❑ Use large buttons - Toggles whether to display small buttons or large buttons
on the toolbox.

❑ Auto show - Toggle whether the toolbox is displayed for read-only diagrams.

■ Customize toolbars - Provides a list of toolbars whose layout can be customized.
Click on a toolbar button to bring up the Customize Toolbar Dialog for that
particular toolbar.

Language/Environment Tab

Default Language

Select the language from the available installed language add-ins. When a new class is
created, this selection determines which:

■ language property tab is displayed for classes
■ set of fundamental types is used for picklists
■ set of predefined stereotypes is used

When a new component is created, the language is set using this default.

If you do not have any language add-ins, the default language is set to Analysis,
which is equivalent to having no default language. If this is the case, analysis types
are shown in the picklists and no language property tabs are available.
560 Chapter 26 - Customizing the Toolset

Default Environment

Sets the default environment on new components.

Customizing the Diagram Toolbox

You can access the Customize Toolbar dialog using any of the following:

■ Right click anywhere on the toolbox and then click Customize from the shortcut
menu.

■ Double-click anywhere on the toolbox not occupied by a button.

■ From the View menu, point to Toolbars and click Configure.

With the exception of the Separator button, only one instance of any tool can be
placed on the toolbox. Since multiple instances of the Separator button are allowed on
the toolbox, this button is always available regardless of the number of times it is
added to the Toolbox buttons list.

Customize Toolbar Dialog

The customize toolbar dialog (opened from the Options Dialog), allows you to change
the arrangement of buttons on various toolbars.

Toolbar Button List

The Toolbar buttons list contains the ordered list of all the buttons that will appear on
the diagram toolbox. Once buttons are moved onto this list they can be moved to any
position.

Add-In Manager Dialog

The Add-In Manager dialog is used to view, activate or deactivate Rose RealTime
Add-Ins.

The dialog shows the add-ins currently loaded, with check boxes beside the add-ins
showing which ones are currently activated.
Add-In Manager Dialog 561

Managing Model Properties

Each Rational Rose RealTime model has its own default properties. These default
properties are defined in a property file and are grouped into sets based on:

■ Type of model element - Class, component, relation, attributes, operations, etc -
the objects that make up the model

■ Tool - Corresponds to a tab in the property specification; a tool can be a
programming language tool, such as Java or C++; a database tool, such as Oracle8;
a user-defined add-in to Rational Rose, or some other tool.

■ Properties - The actual properties and property values defined in the set; these
must be appropriate to the model element and tool for which they are being
defined.

Note: You can define multiple sets of default properties for the same tool and model
element. For example, you might want one set of properties for a class with a
stereotype of Actor and a different set of properties for a class with a stereotype of
Interface. Both of these sets are still considered default properties in that they are
predefined for the model. Defining multiple sets saves you work by minimizing the
need to override properties as you go.

Displaying or Modifying the Values of Model Properties

1 Display a diagram that contains an icon representing the model element.

2 Select the model element in the diagram.

3 Open the model element's specification. To do so, double-click on an element in a
diagram, or click on the element and select Browse > Specification.

4 Select the Code Generation tab. The model property set attached to the element is
displayed in the Set field. The model properties related to the model element are
displayed in the Model Properties List.

5 To edit a model property value, select it and click on it a second time. This places
the model property in edit mode.

6 Select your choice from the drop down menu. If no drop down menu is available,
you may type in your changes.

7 To complete the edit, click outside the edit box.

8 Click OK or Apply to commit the changes to the item.
562 Chapter 26 - Customizing the Toolset

Model properties that are specified explicitly by the item, and hence override the
attached model property set value, are drawn in normal text. Model properties that
have been changed since the last apply are indicated by an asterisk in the left column.

Removing an Overriding Item Level Model Property

Editing a model property automatically makes it an overriding item-level model
property.

To remove the overriding value from the item and once again inherit from the
attached model property set:

1 Select one or more model properties and click Default.

2 Click OK or Apply to commit the changes to the item.

Making a Model Property Item Specific

1 Select the model property(s) and click Override.

2 Click OK or Apply to commit the changes to the item.

Reinstalling the State and Value of the Last Committed Change

Select the model property(s) and click Revert.

Attaching a Model Property Set to a Single Element or a Collection of
Elements

1 Display a diagram that contains an icon representing a model element.

2 Select the model element in the diagram.

3 Open the model element's specification. To do so, double-click on an item in a
diagram, select a diagram item and execute the Specification command in the
Browse menu, or select the specification from the shortcut menu.

4 Select the Code Generation tab. The model property set attached to the item is
displayed in the Set field. The model properties related to the model item are
displayed in the Model Properties List.

5 Select a different model property set from the Set combo box.

6 Commits are made as you move from page to page. Also, as you move from set to
set or type to type within the set-level model property page, any changes you have
made to the currently displayed set are committed.
Managing Model Properties 563

Displaying or Editing a Specific Model Property Set

1 Select the element from the diagram. If you are selecting a collection of elements,
ensure that all the elements are of the same type. Selecting different model
elements will result in a warning.

2 From the Tools menu, select Model Properties > Edit. The code generator displays
the Code Generation tab of the Options dialog. The kind of model item chosen is
displayed in the Type field.

3 Select the model property set name in the Set combo box. All the model properties
and values will be displayed.

4 Modify model property set values by following instructions to edit a specific
model property set, as listed above.

5 Click Apply or OK to accept your changes.

Note: Changes made to a model property are accepted whenever you activate ANY
control in the editor. For example, after editing a model property, you may select
another model property to both accept the changes to the original model property and
begin editing the newly selected model property.

Creating a New Model Property Set

1 Select a model property set from the Set combo box to base your new model
property set off of.

2 Click Clone.

3 Type the new model property set name in the dialog and click OK. A new model
property set is created as a copy of the current model property set.

4 Modify model property set values by following instructions to edit a specific
model property set, as listed above.

Deleting a Model Property Set

1 Select a model property set from the Set combo box.

2 Click Remove. The model property set is deleted from the model. An attempt will
be made to find all the elements in the model that reference that set and change
those elements to reference the default model property set.
564 Chapter 26 - Customizing the Toolset

AKeyboard Shortcuts
Contents

This chapter is organized as follows:

■ General Shortcuts on page 565
■ Editing Shortcuts on page 568
■ Debugging Shortcuts on page 569
■ Rational Rose RealTime Keyboard Shortcut Summary on page 571

General Shortcuts

Table 2 General desktop navigation

Key Name(s) Description

ALT + PgDn
SHIFT + ALT + PgUp

Previous specification.

ALT + PgDn
SHIFT + ALT + PgUp

Next specification.

ALT or META + key Display the contents of a menu - in combination with the
underlined letter in the menu's name

ALT + ALT or
Shortcut Menu Key

Display the context menu for selected model element.
Note: On Unix, by default clicking the ALT key activates a context
menu, so pressing it once changes the focus to the application’s
main menu. Unix keyboards have two additional keys, a left and
right diamond, which are similar to the ALT key. The left diamond
works the same as the ALT key by making the main menu active. If
you use the right diamond, you must press it three times to change
the focus to the main menu.

CTRL + TAB Move between windows

CTRL + Q Hide or restore the browser, Output window, Documentation tab,
and Specification dialogs.

CTRL + 3 Show/Hide Documentation/Code window.

CTRL + 4 Show/Hide Output window.

CTRL + 5 Show/Hide Specification History window.
565

Table 3 General Toolset shortcuts

ESC Close an open menu or cancel a dialog

ENTER Perform the action in a dialog

TAB Move forward between areas of a dialog.

SHIFT+F10 Dispaly the context menu.
Note: On UNIX, you will need to click SHIFT + F10 twice to
display the context menu.

SHIFT+TAB Move backwards between areas of a dialog.

SPACE BAR Select an item in a dialog

Key Name(s) Description

ALT + ENTER Activates Hot Link on Specification dialogs.

ALT + LEFT Opens the previous specification in the Specification History list.

ALT + SHIFT + LEFT Opens the previous specification without closing the current
Specification dialog.

ALT + RIGHT Opens the next specification in the Specification History list.

ALT + SHIFT + RIGHT Opens the next specification without closing the current Specification
dialog.

CTRL + + Go Inside

CTRL + - Go Outside

CTRL + A Select All

CTRL + B Browse specification

CTRL + C Copy

CTRL + E Expand

CTRL + F Find - displays the Find dialog

CTRL + SHIFT + F Replace

CTRL + I Zoom in

CTRL + SHIFT + R Relocate

CTRL + L Change line attribute

Key Name(s) Description
566 Keyboard Shortcuts

CTRL + M Zoom to selected

CTRL + N Opens a new window for editing, or opens the Create New Model
dialog

CTRL + P Print

CTRL + SHIFT + P Edit Path Map

CTRL + O Open

CTRL + R Browse referenced items

CTRL + S Save

CTRL + T Browse state diagram (Creates a diagram if one does not currently
exist)

CTRL + SHIFT + T Browse structure diagram (Creates a diagram if one does not
currently exist)

CTRL + U Zoom out

CTRL + V Paste

CTRL + W Fit to window

CTRL + X Cut

CTRL + Y Redo

CTRL + Z Undo

DEL Delete

ESC Cancel

F1 Context-sensitive help

SHIFT + F1 Context sensitive help cursor

F2 Refresh

F3 Browse previous diagram

F4 Browse parent

CTRL + F6 Browse next pane

CTRL + F10 Browse component diagram

CTRL + SHIFT + F6 Browse previous pane

Key Name(s) Description
567 Keyboard Shortcuts

Editing Shortcuts

Table 4 Scripting Shortcuts

SHIFT + F6 Browse class diagram

SHIFT + F7 Browse use case diagram

F8 Edit inline

SHIFT + F8 Browse collaboration diagram

SHIFT + F9 Browse sequence diagram

SHIFT + F11 Browse deployment diagram

F12 Options

Key Name(s) Description

Key Name(s): Description

CTRL + O Enable or disable word wrap.

UP ARROW Moves the insertion point up one line.

DOWN ARROW Moves the insertion point down one line.

LEFT ARROW Moves the insertion point left by one character position.

RIGHT ARROW Moves the insertion point right by one character position.

PAGE UP Moves the insertion point up by one window.

PAGE DOWN Moves the insertion point down by one window.

CTRL + PAGE UP Scrolls the insertion point left by one window.

CTRL + PAGE DOWN Scrolls the insertion point right by one window.

CTRL + LEFT ARROW Moves the insertion point to the start of the next word to the left.

CTRL + RIGHT
ARROW

Moves the insertion point to the start of the next word to the right.

HOME Places the insertion point before the first character in the line.

END Places the insertion point after the last character in the line.

CTRL + HOME Places the insertion point before the first character in the script.

CTRL + END Places the insertion point after the last character in the script.
568 Keyboard Shortcuts

Debugging Shortcuts

Table 5 Debugging Shortcuts

CTRL + SHIFT + D Duplicate

CTRL + SHIFT + R Relocate

Key Name(s): Description

Key Name(s): Description:

CTRL + A Select all

CTRL + C Copy

CTRL + F Find

CTRL + G Go to line

CTRL + H Replace

CTRL + N New script

CTRL + O Open script

CTRL + P Print

CTRL + SHIFT + P Edit path map

CTRL + R Replace

CTRL + V Paste

CTRL + X Cut

CTRL + Y Redo

CTRL + Z Undo

DEL Delete

ENTER or F2 Displays the Modify Variable dialog for the selected watch variable,
which enables you to modify the value of that variable.

F5 Runs the current script.

SHIFT + F5 Stops script execution

CTRL + SHIFT + F5 Restarts the current script beginning with the line at which it was
stopped using the Break command.
569 Keyboard Shortcuts

Build and RTS Shortcuts
Table 6 Build and RTS Shortcuts

Specification Code Editor Shortcuts
Table 7 Specification Code Editor Shortcuts

F7 Compiles the current script without executing it

F6 If the watch pane is open, switches the insertion point between the
watch pane and the edit pane.

F9 Sets or removes a breakpoint on the line containing the insertion
point.

SHIFT + F9 Displays the Add Watch dialog, in which you can specify the name of
a BasicScript variable. The Script Editor then displays the value of
that variable, if any, in the watch pane of its application window.

F10 Steps through the script code line by line without tracing into called
procedures.

F11 Steps through the script code line by line, tracing into called
procedures.

CTRL + BREAK Suspends execution of an executing script and places the instruction
pointer on the next line to be executed.

Key Name(s): Description:

Key Name(s): Description:

F5 Runs the selected component instances

SHIFT + F5 Build/Run

CTRL + SHIFT + F5 Restart

F7 Build

F10 Step

Key Name(s): Description:

CTRL + A Select all

CTRL + C Copy

CTRL + E Clear

CTRL + F Find
570 Keyboard Shortcuts

Browser Shortcuts
Table 8 Browser Shortcuts

Rational Rose RealTime Keyboard Shortcut Summary

Print the following page to have a convenient hardcopy version of the keyboard
shortcuts for Rational Rose RealTime.

F3 Find again

CTRL + H Launch external editor

CTRL + I Import

CTRL + L Select line

CTRL + P Print

CTRL + R Replace

CTRL + T Font

F4 Replace again

CTRL + V Paste

CTRL + W Select word

CTRL + X Cut

CTRL + Z Undo

Key Name(s): Description:

Key Name(s): Description:

CTRL + B Browse specifications

CTRL + D Delete from model

CTRL + SHIFT + G Get latest

CTRL + SHIFT + I Check in

CTRL + SHIFT + O Check out

CTRL + SHIFT + U Undo checkout
571 Keyboard Shortcuts

Rational Rose RealTime Keyboard Shortcuts
General Desktop Navigation SHIFT + F7 Browse use case diagram.

ALT or
META + key

Display the contents of a menu - in combination with the
underlined letter in the menu name.

SHIFT + F8 Browse collaboration diagram

ALT + ALT or
Shortcut Menu Key

Displays the context menu for the selected element.
Note: On Unix, by default clicking ALT activates a
context menu. Pressing it once changes the focus to the
application’s main menu. Unix keyboards have two
additional keys, a left and right diamond, which are
similar to the ALT key. The left diamond works the same
as the ALT key by making the main menu active. If you
use the right diamond, press it three times to change the
focus to the main menu.

SHIFT + F9 Browse sequence diagram
SHIFT + F11 Browse deployment diagram
F8 Edit inline
F12 Options
Debugging
Shortcuts

CTRL+TAB Move between dialogs, or tabs on Specification dialogs. ENTER or F2 Displays the Modify Variable dialog, for the selected watch
variable, to modify the value of that variable.

CTRL + Q Hide or restore the browser, Output window,
Documentation tab, and Specification dialogs.

CTRL + SHIFT + F5 Restarts the current script beginning with the line at which it
was stopped using the Break command.

ENTER Perform the action in a dialog F7 Compiles the current script without executing it
TAB Move forward between areas of a dialog. F9 Sets or removes a breakpoint on the line containing the insertion

point.
SHIFT + F10 Displays the shortcut menu.

Note: On UNIX, you must press SHIFT + F10 twice.
SHIFT + F9 Displays the Add Watch dialog. You can specify the name of a

BasicScript variable. The Script Editor displays the value of that
variable, if any, in the Watch pane of its application window.

SHIFT + TAB Move backward between areas of a dialog. F10 Steps through the script code line by line without tracing into
called procedures.

SPACE BAR Select an item in a dialog F11 Steps through script code, by line, tracing into called
procedures.

General Toolset Shortcuts CTRL + BREAK Suspends execution of an executing script and places the
instruction pointer on the next line to execute.

ALT + ENTER Activates Hot Link on Specification dialog. Editing Shortcuts
ALT + PgUp Opens previous specification in Specification History

list.
CTRL + O Enable/Disable word wrap.

SHIFT + ALT + PgUp Opens previous specification without closing the current
Specification dialog.

UP ARROW Moves insertion point up one line.

ALT + PgDn Opens next specification in the Specification History list. DOWN ARROW Moves insertion point down one line.
SHIFT + ALT + PgDn Opens next specification without closing the current

Specification dialog.
CTRL + SHIFT + D Duplicate

CTRL + + Go Inside CTRL + SHIFT + R Relocate
CTRL + - Go Outside CTRL + HOME Places the insertion point before the first character in the script.
CTRL + A Select All CTRL + END Places the insertion point after the last character in the script.
CTRL + B Browse specification CTRL + LEFT ARROW Moves insertion point to the start of the next word to the left.
CTRL + C Copy LEFT ARROW Moves insertion point left by one character position.
CTRL + E Expand CTRL + RIGHT ARROW Moves insertion point to the start of the next word to the right.
CTRL + F Find - displays the Find dialog RIGHT ARROW Moves insertion point right by one character position.
CTRL + SHIFT +F Replace CTRL + PAGE DOWN Scrolls insertion point right by one window.
CTRL + I Zoom in PAGE DOWN Moves insertion point down by one window.
CTRL + SHIFT + R Relocate CTRL + PAGE UP Scrolls insertion point left by one window.
CTRL + L Change line attribute PAGE UP Moves insertion point up by one window.
CTRL + M Zoom to selected END Places the insertion point after the last character in the line.
CTRL + N Opens a new window for editing, or opens the Create

New Model dialog.
HOME Places the insertion point before the first character in the line.

CTRL + O Open Build and RTS Shortcuts
CTRL + P Print F5 Runs the selected component instances
CTRL + SHIFT + P Edit the Path Map SHIFT + F5 Build/Run
CTRL + R Browse referenced items CTRL + SHIFT + F5 Restart
CTRL + S Save F7 Quick Build
CTRL + T Browse state diagram F10 Step
CTRL + SHIFT + T Browse structure diagram Specification Code Editor Shortcuts
CTRL + U Zoom out CTRL + E Clear
CTRL + V Paste F3 Find again
CTRL + W Fit to window CTRL + H Launch external editor
CTRL + X Cut CTRL + I Import
CTRL + Y Redo CTRL + L Select line
CTRL + Z Undo CTRL + R Replace
CTRL + 3 Show/Hide the Documentation/Code window. CTRL + T Font
CTRL + 4 Show/Hide the Output window. F4 Replace again
CTRL + 5 Show/Hide the Specification History window. CTRL + W Select word
CTRL + F6 Browse next pane Browser Shortcuts
CTRL + SHIFT + F6 Browse previous pane CTRL + D Delete from model
CTRL + F10 Browse component diagram CTRL + SHIFT + G Get latest
DEL Delete CTRL + SHIFT + I Check in
SHIFT + F1 Context sensitive help CTRL + SHIFT + O Check out
F2 Refresh CTRL + SHIFT + U Undo checkout
F3 Browse previous diagram SHIFT + F5 Stops script execution
F4 Browse parent F5 Runs the current script.
ESC Close an open menu or cancels a dialog. Model Shortcuts
F1 Context-sensitive help CTRL + D Delete from model and browser.
SHIFT + F6 Browse class diagram. DEL Delete model element

Index
Symbols
${name}_construct 196

A
A Workspace 131
About Rose RealTime dialog 39
Abstract 142
accessing source control operations 408
actions (Activity Diagrams) 269
Actions tab 236
Active Component 450
active component 450
Active Component Instances list 450
active component, assigning an 440
activities

Activity Diagrams 264
creating nested 265
history 99, 267
nested 265
specifying actions for 264
types 264

Activity Diagrams 257
Action 95
Action Expression 95, 268
action types 98, 271, 281
Actions 269
Actions Specification dialog 270
Activities 264
Activity Diagram Specification 261
activity history 99, 267, 278
Activity Specification dialog 268
changing assignment responsibility of

swimlanes 289
creating 260
creating nested activities 265
creating swimlanes 287
Decision Specification dialog 272

Decisions 271
definition 258
deleting swimlanes 287
displaying multiple views of swimlanes 288
End State 274
event 101, 268
example 258
history 99, 267
manipulating nested activities 265
modeling using 258
moving swimlanes 288
nested activities 265
nested statesstates

nested 276
Object Flow 290
Object Flows and Transitions 292
object state 291
Objects 290
Send Event 95
specifying actions for activities 264
Start State 274
state history 99, 267, 278
State Specification dialog 277
StateMachine Specification 262
states 275
Stereotype 273, 277
sub activity 278
sub state 278
sub state history 99, 267
subs activity history 99, 267
Swimlane Specification dialog 289
Swimlanes 286
Synchronization Specification dialog 282
synchronization stereotype 282
synchronizations 281
tools 263
Transition between substates 286
Transition Guard Condition 285
Transition Specification dialog 284
Index 573

Transition stereotype 284
Transitions 283
Trigger Specification 280

actor
creating 143
specification 144

Actor specification 144
actor, creating an 143
Add Capsule command 66
Add Class Dependencies wizard 168
Add Classes command 66
Add commands 66
Add Components command 67
Add Interfaces command 67
Add Protocols command 67
Add Use Cases command 67
Add Watch command 73
AddCodeImportProperties 394
Add-In Manager 75
Add-In Manager dialog 561
adding

capsule role 219
choice point 242
class dependencies 63, 449
code to model elements 112
color to an FOC 320
documentation to model elements 111
files to source control 406
FOC 309
Focus of Control 309
icons to a diagram 83
instance to sequence diagram 301
states 242
stereotypes to Diagram Toolbox 548
tags to Code 393

Adding a capsule role 219
Adding a choice point 242
Adding a state 242
Adding and hiding classes, and filtering class

relationships 171
adding classes

class
adding 178

Adding code to model elements 112
Adding documentation to model elements 111

Adding Icons to a Diagram 83
Adding instances 301
Adding stereotypes to the diagram toolbox 548
Add-ins 561
Add-ins menu 75
Aggregating and decomposing state

machines 235
aggregating state machines 235
aggregation 159

creating relationships 160
aggregation relationships, creating 160
Aggregation Specification 162
Aggregation tool 151
analysis and design 26
Animation 488
Application window 37

browsers 37
diagrams 38
menu bar 38
Toolbar 38
toolboxes 38

Application-specific command line
arguments 510

Apply Label operation 413
Assigning an active component 440
assigning an active component 440
association

changing direction 170
End A defined 155
End B defined 155
properties 155

association class 152
creating 162

association class, creating an 162
Association Properties 155
association relationships, creating 154
association role

association 227
multiplicity 227
stereotype 227

Association Role Specification 226
Association Role tool 225
Association specification 155
Association tool 151
association, changing the direction of an 170
574 Index

associations
creating relationships 154

asynchronous send message tool 309
attach console 485
attach target 485
Attach Target option 483
Attaching a Model Property Set to a Single Ele-

ment or a Collection of Elements 563
Attribute Specification 345
attributes

changeability 347
copying 97
creating 97, 334
derived 347
initial value 347
moving 97
naming 430
specification 345
types 347
visibility 346

Attributes tab 96
attributes, creating new 334
automatically saving build results 469
AutoSave 469

B
Background Popup menu 84
basic mode

Windows CE 518
basic_string template 202
Break 198
breakpoints

diagram 503
setting 500
setting for operations 507
setting on state machine without TO 501
state machines 501

Browse
Find References 94

Browse Button 335
Browse menu 57
Browse menu operations 58
Browser Shortcuts 571

browser shortcuts 571, 572
Browser tab 559
Browser, displaying the 81
Browsers 37, 78

RTS 485
browsers 37
browsers, multiple 81
Build and RTS Shortcuts 570
Build basics 439
build errors 114, 463

Capsule Role name same as Capsule
name 464

Check Environment Variables 465
Compile Fails on Valid C++ Models with

VC++ 5.0 or VC++ 6.0 467
Compiler not installed correctly 464
Ensure that Component has correct Make

types configured 465
Error Linking Capsule (error from

nmake) 467
Linking 468
Linking wrong Services Library set 464
Missing Class Dependencies 464
Missing Header Files, Object Files, and

Libraries 466
name conflicts 466
Redefinition of basic types or multiple decla-

rations for X 463
Review your compiler flag settings 465
Source File Compilation 467
System does not understand the make

command 465
understanding 463
Unknown command, command not found,

the name specified is not
recognized 463

unknown compiler message stream 451
Unresolved symbol or undeclared

identifier 463
Windows NT Compilation Command Line

Limits 467
Build Errors tab 114, 451

filtering results 114
sorting results 114

Build log 113
Index 575

build log 450
importing from 470

Build Log tab 113, 450
saving output to a file 113

Build menu 61, 447
build output

saving 113
build results

filtering 114
sorting 114

build results, reviewing 444
Build Settings dialog 450
build shortcuts 570, 572
build, starting a 441
Building 439
building

add class dependencies 449
assigning an active component 440
automatically saving build results 469
basics 439
Component wizard 450
errors 451
importing model compilation results 468
Load command 449
log 450
models 437
rebuild 448
Reload command 449
Restart command 449
reviewing results 444
run 448
saving output 468
settings 450
Shutdown command 449
Start command 448
starting 441
Stop command 448
top-level capsule 440

Building and running models 437

C
call message 309
Calls command 74

capsule
attributes

attributes
capsule 357

definition of 20
moving multiple 372
naming 430
operations 356
ports 359
stereotype 355
use 20

capsule class
creating 353

Capsule class, creating a 353
capsule connectors 359
capsule diagram

undocking 354
Capsule diagrams 354
capsule diagrams, undocking 354
capsule instance

dragging into a trace 495
Capsule instance folder 487
capsule instance folder 487
Capsule Instance trace 491
Capsule instance trace 494
capsule instance trace 494
capsule instances, dragging into a trace 495
capsule role

adding 219
cardinality 220
class 219
fixed 220
name 219
plug-in 220
specification 219
substitutable 220

Capsule Role Specification 219
Capsule Role tool 212
capsule role tool 225
capsule role, adding a 219
capsule roles 358
capsule roles, connecting ports together 221
Capsule specification 354
Capsule Specification—Attributes tab 357
Capsule Specification—Capsule Roles tab 358
576 Index

Capsule Specification—Components tab 360
Capsule Specification—Connectors tab 359
Capsule Specification—Details tab 356
Capsule Specification—Files tab 360
Capsule Specification—General tab 355
Capsule Specification—Operations tab 356
Capsule Specification—Ports tab 359
Capsule Specification—Relations tab 360
capsule state diagram

creating 229
capsule state machines, creating 229
capsule structure 207
capsule structure diagrams 21
capsule structure, creating 207
Capsules 20
capsules

components 360
relations 360

Capsules, protocols, ports, capsule state and
structure diagrams 19

cardinality 221
capsule role 220
port 214
port role 218

Cascade command 76
change management 27
Change View Spread

Constant Radial 69
Decreasing Radial 69
Increasing Radial 69
Uniform 69

Change View Spread command 69
changing association direction 170
Changing the direction of an association 170
Check environment variables 465
Check in operation 412
Check Model command 70
check out

unreserved 416
Check out operations 411
checking out files

when edited 405
with secondary edits 406

checkout
unreserved 416

CHello_construct 196
choice point

adding 242
conditions 237
specification 237

Choice Point Specification 237
Choice Point tool 234
choice point, adding a 242
class

attributes 341
capsule role 219
creating 333
creating stereotypes 548
hiding 178
multiplicity 337
naming 430
nested 342
persistence 338

class dependencies, missing 464
Class diagram editor, using the 146
Class diagram toolbox 149
Class diagram, creating a 145
class operations

implementation 340
private 340
protected 340
public 340
show inherited 340
stereotype 340
visibility 340

Class Specification 335
class specification

abstract 339
concurrency 338
formal arguments 339
implementation 337
language 337
private 337
protected 337
public 337
stereotype 336
type 336
visibility 337

Class Specification content 335
Class Specification—Attributes tab 341
Index 577

Class Specification—Components tab 344
Class Specification—Detail tab 337
Class Specification—Details tab 345
Class Specification—Files tab 345
Class Specification—General tab 336
Class Specification—Nested tab 342
Class Specification—Operations tab 339
Class Specification—Relations tab 344
class, creating a 333
classes

generating component libraries 180
generating instantiated 200
generating parameterized 200
instantiated 203
moving multiple 372
relationships 203

classes or diagrams, impact of moving on config-
uration management 375

classes, adding and hiding and filtering
relationships 171

classesparameterized 201
classifier role

classifier 226
specification 225
stereotype 226

Classifier Role Specification 225
Classifier Role tool 225
Cloning a Sequence diagram 302
cloning a sequence diagram 302
code editor shortcuts 570
Code generation 223
code generation 223

state machine 178
code import process 386

analyzing the Code 391
importing code 394
launching the C++ Analyzer 387
preparing the Rose model 386
selecting a source file location 388
specifying Export Options 388
using CodeCycle to Add Tags to Code 393

Code pane 110

Code Sync 187
considerations 189
disable 188
enable 188

code sync
designated areas 534
disabling 533
enabling 533
identification tags 533
limitations 532
overview 531
using 532

Code window 110
code, adding to model elements 112
CodeCycle 393
CodeSyncEnabled 189
collaboration diagram

creating 222
editor 222
toolbox 224

Collaboration diagram editor, using the 222
Collaboration diagram toolbox 224
collaboration diagram, creating a 222
Collaboration diagrams, opening 306
collaboration relationships 223
collaborations and sequences, relationship

between 223
Coloring Focus of Control 320
Column check boxes 496
command line

application-specific arguments 510
arguments 509
using 509

Command line arguments 509
command line arguments,

application-specific 510
Command Line Debugger 483
command line parameter 508
common build errors, overview 463
Compartments tab 558
Compilation 18
Compilation Command Line Limits, Windows

NT 467
578 Index

compilation results 468
importing 468
saving 468

Compile a simple Hello World program 465
Compile fails on valid C++ models with VC++ 5.0

or VC++ 6.0 467
compiling

code externally 535
Component

step 62
component

assigning for building 440
dependencies 461
load 63
rebuild 61
reload 63
run 62
settings 63
shutdown 63
start execution 62
stereotype 452
stop execution 62

Component Dependencies 461
component diagram

dependency 378
editor 377
toolbox 379

Component diagram editor, using the 377
Component diagram toolbox 379
component instance

attach console 485
attach target 485
creating 476
detach target 485
error call stack length 515
load 484
operation mode 512
parameters 512
reload 484
restart 484
run 484
run with Purify 484
running with Purify 477
running without Purify 479

runtime exception 497
shutdown 484
unload 484
utility scripts 511

Component instance menu 484, 509
component instance menu 484, 509
component instance options

basic 513
Debugger MSDEV 513
Debugger Tornado 513
Debugger xxgdb 513
Manual 514
Windows CE 514

Component Instance specification 511
Component Instance Specification—Detail

tab 512, 515
Component Instance Specification—General

tab 511
component instance, creating a 476
component instance, observing a running 481
component instance, running a 479
component instance, run-time exception while

running a 497
component instances, loading and running on

embedded targets 510
Component Specification 451
Component Specification—Files tab 453
Component Specification—General tab 452
Component Specification—References tab 452
Component Specification—Relations tab 453
component, creating a 441
Components tab 97
Concurrency 291, 338
concurrency

active 338
class 338
guarded 338
sequential 338
synchronous 338

Condition tab 237
configuration 27
configuration management

impact on moving classes or diagrams 375
Configure command 72
ConfigureFromRoseProperties 396
Index 579

configuring
Tornado 2 for debugger mode 522, 524
Tornado for debugger mode 522, 524

conflicts when demoting 165
conflicts when promoting 165
conjugated

port 215
port role 218

connecting
ports on capsule roles 221

Connecting ports on capsule roles together 221
connection

characteristics 527
connection delay 515
Connector Specification 221
connector specification 221

cardinality 221
delay 221

Connector tool 212
connectors

capsules 359
Constraint tool 92, 150, 211, 224, 233, 309
ConstructFunctionName 196
Constructing Models in Rational Rose

RealTime 22
constructors 195
contacting Rational customer support xxx
Containment View tab 80
continuation junction point 238
Continue 198
Controlling how existing stereotypes are dis-

played in a diagram 549
Controlling how stereotypes are displayed in the

browser 549
Controlling how stereotypes that are added to

diagrams hereafter are displayed 550
Controlling the display of stereotypes 549
convert a component 397
Convert Rose Component Wizard 397
copying

operations 100
copying attributes 97
copying signals 363

copying triggers 236
co-region tool 310
Create 30
Create New Model 39, 45
Create New Model dialog 30
Creating

ports 212
creating

Activity Diagrams 260
actors 143
association class 162
association relationships 154
attributes 334
capsule and protocol aggregations 148
capsule class 353
capsule state diagram 229
capsule structure 207
classes 333
collaboration diagram 222
component instance 476
component instance tasks 476
custom framework (stereotypes) 544
dependency relationships 167
inheritance relationships 162
inheritance tree 163
inject messages 528
model property set 564
nested activities 265
nested states 248
new attributes 97
new operations 340
non-wired port using a system protocol 213
Object Flow 293
operations 100

operations
creating 334

package relationships 170
packages 367
realize relationships

realize relationships
creating 171

reflexive relationships 170
relationships 153
scratch pad packages 103
sequence diagram 299
580 Index

sequence diagram from a trace 492
sequence diagram from message trace

traces
creating sequence diagram from

message trace 495
stereotype (new) 544
stereotype configuration file 545
stereotype for all Rose RealTime models 545
stereotype icons 548
stereotypes 543
stereotypes for Classes 548
swimlanes (Activity Diagrams) 287
use case 141
use case diagram 137

Creating a Capsule class 353
Creating a class 333
Creating a Class diagram 145
Creating a collaboration diagram 222
Creating a component 441
Creating a component instance 476
Creating a custom framework 543
Creating a diagram icon 549
Creating a link 542
Creating a new diagram 299
Creating a New Model Property Set 564
Creating a new stereotype configuration file 545
Creating a new stereotype for all Rose RealTime

models 545
Creating a new stereotype for the current

model 544
Creating a non-wired port using one of the sys-

tem protocols 213
Creating a package 367
Creating a port 212
Creating a Sequence diagram 299
Creating a sequence diagram from a message

trace 495
Creating a use case 141
Creating a use case diagram 137
Creating aggregation relationships 160
creating aggregation relationships 160
Creating an actor 143
Creating an association class 162
Creating an inheritance tree 163
Creating association relationships 154

Creating capsule state machines 229
Creating capsule structure 207
Creating dependency relationships 167
Creating inheritance relationships 162
Creating nested states 248
Creating new attributes 334
Creating new operations 334
Creating package relationships 170
Creating reflexive relationships 170
Creating relationships 153
creating sequence diagram

from browser 300
from collaboration diagram 300
from structure diagram 300
from structure diagram browser 300

Creating sequence diagrams
from the browser 300
from the collaboration or structure

diagram 300
from the Structure diagram browser 300

Creating stereotype icons 548
Creating stereotypes for classes 548
cross-references 403
Customize Toolbar dialog 561
Customizing the diagram toolbox 561

D
data classes

state machine 178
debugger

unloading 525
debugger mode

Tornado 522, 524
Tornado 2 522, 524
Windows CE 522, 523
xxgdb (Unix only) 524

debugger modes 521
debugging

breakpoints 500
importing model compilation results 468
setting breakpoints 500
source code 498

Debugging Shortcuts 569
Index 581

decisions (Activity Diagrams) 271
decomposing state machines 235
Defining messages 302
defining messages in a sequence diagram 302
Defining state transition trigger events 246
delay for connector specification 221
deleting

messages from trace 491
swimlanes 287

Deleting a Model Property Set 564
Deleting messages 491
demote

conflicts 165
demoting elements 165
dependencies

component 461
dependency relationships

creating 167
dependency relationships, creating 167
Dependency Specification 168
deployment diagram

components 382
connections 381
devices 381
editor 380
elements 381
packages 382
processors 381
toolbox 382

Deployment diagram editor, using the 380
Deployment diagram elements 381
Deployment diagram toolbox 382
Description window 109
Description window, displaying the 109
designated code sync areas 534
destroy message tool 310
detach target 485
Development process 25
development process 25
Device specification 517
device specification

characteristics 526
Diagram editors 82
diagram icon, creating a 549
Diagram tab 143, 555

diagram toolbox, customizing the 561
diagram types

Activity 257
class 58
collaboration 58
component 58
deployment 58
sequence 58
state 58
structure 58
use case 58

diagram, inserting into an MS Word
document 541

Diagrams 24, 38
Activity 257
Capsule 354
State 354

diagrams 38
Diagrams tab 120
Dialog

Activity Specification 268
Dialogs

Build Settings 450
Customize Toolbar 561
Event Editor 239
Find 105
Generate Documentation 540
Options 550
Replace 106
Select Diagram 57
Sequence Validation 318

disable code sync 188
disabling

code sync 533
display a nested class 343
Displaying or Editing a Specific Model Property

Set 564
Displaying or Modifying the Values of Model

Properties 562
Displaying the Browser 81
Displaying the Calls dialog 74
Displaying the Description window 109
docking 81, 110
documentation

linking 539
582 Index

Documentation pane 110
Documentation Report command 66
Documentation window 110
documenting

model elements 111
Dragging capsule instances into a trace 495
Drawing the initial transition 245
Drawing transitions between states 242

E
Edit menu 49
editing

checked out files 406
Editing a diagram 300
Editing diagrams 542
Editor tab 559
elements 165

demoting 165
deployment diagram 381
exporting 399
moving 75

elements, required 22
embedded targets 510
enable code sync 188
enable source control 405
enabling

code sync 533
End A and B Detail tabs 158
End A and B General tabs 157
End A defined 155
End B defined 155
end port 215
end state

Activity Diagrams 274
Ensure that component has correct make types

configured 465
Entry Actions / Exit Actions 234
entry actions (state diagram) 234
Environment 180
environment settings 132
error

call stack length 515
Error linking Capsule (error from nmake) 467

error log
validation 319

errors 463
Cannot code-sync 537
Cannot code-sync filename beyond line

lineNum 537
Capsule Role name same as Capsule

name 464
Check Environment Variables 465
Compile Fails on Valid C++ Models with

VC++ 5.0 or VC++ 6.0 467
Compiler not installed correctly 464
Could not find trailing CodeSync tag for 537
Ensure that Component has correct Make

types configured 465
Error Linking Capsule (error from

nmake) 467
Linking 468
Linking wrong Services Library set 464
Missing Class Dependencies 464
Missing Header Files, Object Files, and

Libraries 466
name conflicts 466
Redefinition of basic types or multiple decla-

rations for X 463
Review your compiler flag settings 465
Source File Compilation 467
System does not understand the make

command 465
Unknown command, command not found,

the name specified is not
recognized 463

Unresolved symbol or undeclared
identifier 463

Warning
Use tabs for indenting code-sync

regions 537
Windows NT Compilation Command Line

Limits 467
Essential workflows 26
Event Editor dialog 239
EventGuard 240
Exclusions 163
Executable models 21
executable models 21
Index 583

Executing 439
Execution basics 476
execution control 486
Execution control and information pane 486
execution overview 476
execution watch 496
Execution Watch tab 496
exit actions (state diagram) 234
Expand Selected Elements command 67
Export command 71
export control 169
export options 388
exporting

elements 399
file 399
files 399

Exporting a file 399
external library 396
externally visible junction point 238

F
file history 414
file I/O error on

537
File menu 45
File menu operations 45
file, importing a 385
files

importing 385
Files tab 98
Filter Relationships command 68
filtering 81

Build Results 114
filtering class relationships

class relationships
filtering 178

Filtering tab 558
final state 178
Final State tool 233
Find

references 94
Find dialog 105
Find References 94, 335, 361

Find tab 115
finding

procedure calls 74
Finding Specified Text 74
fixed capsule role 220
fixing a model 134
floating 81, 110
FOC 309

activators 319
adding color 320
definition 319

Focus of Control 319
adding 309
definition 319

Focus of Control, coloring 320
Font/Color tab 554
friend 160
functions

main() 19
virtual 198

Further reading 23, 25, 26, 27

G
General Shortcuts 565
generalization 152
Generalize Specification 163
Generate 472
Generate Documentation dialog 540
Generate local state information 493
GenerateDefaultConstructor 197
GenerateStateMachine 186
generating

Component Libraries for Classes 180
documentation 539
state machine code 185

generating documentation
inserting diagram into MS Word

document 541
OLE 542
report options 540

Get Entire Model command 72
Get operation 411
global packages 370
584 Index

Go To Line command 74
Graphical notation 168
guard code 241
Guarded 338
guarded operation 351

H
Help menu 77
Hide Selected Elements command 68
hiding classes 178
history 199

activity 99, 267, 278
state 99, 267, 278
sub activity 99, 267
sub state 99, 267

I
icons, adding to a diagram 83
identification tags for code sync 533
IDH_EVENT_EDITOR_DIALOG 239
Impact of moving classes or diagrams on configu-

ration management 375
Implementation 349
implementation of workflow 27
Import Code command 71
import log messages 134
importing

Classic C++ code from Rose 386
code 394
compilation results 471
elements 385
files 385
from Build Log 470
model compilation results 468
process 386
Rational Rose Generated Code 136
Rose generated code (Limitations and

Restrictions) 136
Importing a file 385
importing model compilation 468
Importing Rational Rose generated code 136

importing requirements (ObjecTime
Developer) 133

in signal 362
Inheritance

Rose RealTime 164
inheritance

demoting 165
excluding elements 165
promoting 165
rearranging hierarchies 166
re-inheriting excluded elements 166
virtual 164

Inheritance in Rose RealTime 164
inheritance relationship

creating 162
inheritance relationships, creating 162
Inheritance tab 80
inheritance tree 163
inheritance tree, creating an 163
initial state

specification 237
Initial State Specification 237
initial transition

drawing 245
initial transition, drawing the 245
inject

creating messages 528
inject data format

basic types 529
classes 529

inject messages
creating 528

Inject window 494
inject window 494
injected data format 528
injecting a message 530
Injecting Messages 483
inserting

diagram into MS Word document 541
Inserting a diagram into an MS Word

document 541
Inserting a link 542
Instance browser 498
instance browser 498
instances, adding 301
Index 585

instantiated class 153
instantiated class utility 153, 336
instantiated classes 203
interaction

specification 311
stereotype 311

interaction instance
path 310
specification 310
stereotype 311

Interaction Instance Specification 310
interaction instance tool 309
Interaction Specification 311
interface scripts 407
internal transition 235
Introduction to Naming Guidelines 429
Introduction to packages 367
Is Rose RealTime a compiler? 438

J
Joining transitions 247
joining transitions 247
junction point

continuation 238
externally visible 238
specification 238

Junction Point Specification 238

K
keys 160

L
Language/Environment tab 560
Languages and code generation 18
Layout tab 122
Limitations and restrictions of importing Rational

Rose generated code 136
Limitations and restrictions of opening models

from ObjecTime Developer 5.2.1 133

Limitations and restrictions of opening models
from Rational Rose 135

link element 156
link, creating a 542
link, inserting a 542
Linking 468
linking

external files to model elements 539
Linking external files to model elements 539
Load command 449
load component instance 484
loading

component instance on embedded
targets 510

Loading and running component instances on
embedded targets 510

local action
receiver 312
sender 312
stereotype 312

Local Action Specification 312
local state

receiver 313
sender 313
stereotype 313

Local State Specification 312
Lock Selection tool 92
log reports

interpreting for Purify 479
Log tab 112
Logical View

moving model elements 75

M
main() function 19
make 472
make_command 472
Makefile pattern 188
Making a Model Property Item Specific 563
Managing model properties 562
managing model properties 562
Menu bar 38, 44
menu bar 38
586 Index

Menus 43
add-ins 75
Browse 57
Build 61, 447
Component instance 484, 509
Edit 49
File 45
Help 77
Popup 111
Pull-down 111
Query 66
Report 64
Tools 68
View 56
Window 76

menus
Background Popup 84

message
receiver 314
sender 313

message details, specifying 302
Message Specification 313
Message trace configuration dialog 496
messages reorienting 306
messages, defining 302
messages, deleting 491
messages, moving 307
Missing class dependencies 464
Missing header files, object files, and

libraries 466
mode

debugger 521
xxgdb for debugging 524

Model
specification 129

model
cross-references 403
opening 129
properties 562
setting to improve opening time 406
unique Id 125
unique ids 125
validation scenarios 404

model elements
adding code 112
moving 75, 372

Model Elements tab 371
model elements, adding documentation to 111
model management 468
model properties

managing
model

managing properties 562
Model Properties, displaying or modifying the

values of 562
model properties, managing 562
Model Property Item, making one specific 563
Model Property Set, creating a new 564
Model Property Set, deleting 564
Model Property Set, displaying or editing a spe-

cific one 564
Model View tab 80
modeling

elements 22
required elements 22
using Activity Diagrams 258

Modeling elements 22
models

building 437
creating stereotypes 545
executable 21
running 437

models, building and running 437
models, constructing in Rose RealTime 22
Modify Variable command 73
Monitors 488
monitors

animation 488
monitors, opening 489
Move Model Elements 75
moving attributes 97
moving classes

impact on configuration management 375
moving diagrams

impact on configuration management 375
Moving messages 307
moving model elements 372
moving operations 100
Index 587

Moving the Insertion Point to a Specified Line in
Your Script 74

moving triggers 236
Multiple Browsers 81
multiplicity 158

association role 227
class 337

multiplicity from 169
multiplicity to 169

N
Name 429
Name conflicts 466
name direction 157
names

assigning 429
guidelines 429
special case notes 430

Naming 168
naming

considerations 430
naming guidelines 429
naming guidelines, introduction to 429
navigable 160
Navigating 80, 542
navigating 80
nested

states 276
nested activities 265
nested class 342

deleting 343
displaying 343
relocating 344

nested states
creating 248

nested states, creating 248
new diagram, creating a 299
New script command 73
nmake 472
nologo 472
non-wired port, creating one using one of the sys-

tem protocols 213

Note anchor tool 92, 212, 225, 233
Note tool 211, 224, 308
notification

port 216

O
object flow 290, 291
object state 291
Object State changes 292
ObjecTime Developer 5.2.1, opening models

from 132
Objects 290
objects (Activity Diagrams) 290
observability 508
Observability command line parameter 508
observability command line parameter 508
Observability interface 483
observability interface 483
observability options 483

attach target observability on startup 514
delay 514
load 514
order 514
run 514
target observability port 514

observability options, overview of 483
Observing a running component instance 481
OLE

creating a link 542
inserting a link 542
using 542

OLE, using 542
Online Help 1
Open Script command 73
Opening

ObjecTime Developer model (limitations and
restrictions) 133

Rose models (Limitations and
Restrictions) 135

opening
models 129
models from ObjecTime Developer 132
models from Rational Rose 134
588 Index

resolving model errors 134
Sequence Diagram 492

Opening a Sequence diagram 223
Opening Collaboration diagrams 306
Opening models from ObjecTime Developer

5.2.1 132
Opening models from Rational Rose 134
Opening Sequence Diagram 492
Opening Specifications 84
operation mode (component instance) 512
Operation Specification 347
operations

Apply Label 413
capsule 356
Check in 412
check out 411
class 349
concurrency 351
copying 100, 341
creating 100
exceptions 351
Get 411
instance 349
moving 100, 341
naming 430
options 349
parameters 350
protocol 350
Refresh status 411
return type 349
scope 349
Show Differences 413
Show History 413
specification 347
Submit all Changes 413
Synchronize 411
Uncheckout 412
visibility 349

Operations tab 99
operations, creating new 334
Options dialog 550
Orientation field 123
out signal 362
output

redirecting 472

Output window 112
Overriding target control 482
overriding target control 482
Overview Navigator 86
Overview of common build errors 463
Overview of observability options 483

P
Package 142
package

components 371
creating relationships 170
global 370
moving model elements 372
relations 370
relationships 170
specification 368

package relationships, creating 170
Package Specification 368
Package Specification dialog box 371
Package Specification—Components tab 371
Package Specification—Detail tab 370
Package Specification—Files tab 371
Package Specification—General tab 369
Package Specification—Relations tab 370
package, creating a 367
packages

creating 367
creating scratch pad 103
overview 367

Packages and class diagrams 368
packages, introduction to 367
Paper field 123
Parameterized Class tool 151
parameterized classes 201
parameterized utility class 336
parent diagram 59
Parts menu

Menus
Parts 54

Persistence 291, 338
persistence

class specification 338
Index 589

Polymorphic 200
polymorphic operation 349
Popup menu 111
port

cardinality 214
conjugated 215
creating 212
definition of 21
end port 215
name 213
notification 216
protected 216
protocol 214
publish 217
receiver 319
registration 217
sender 319
specification 213
stereotype 214
unwired 213
use 21
wired 215

Port Detail 314
port probe 493
port role

cardinality 218
conjugated 218
specification 218

Port specification 213
Port tool 212
Port trace 491
port, creating a 212
Ports 21
ports

capsule 359
connecting to capsule roles 221

primary edits 403
print range 120
Print setup 123
Print Specifications 119
Printer field 123
printing

range 120
setup 123
specifications 119

private
class specification 337

probe
placing on replicated ports 494
types 493
usage 493

Probe Break Points 483
Probe Specification 527
Probe Specification—Detail tab 528
Probe Specification—Files tab 528
Probe Specification—General tab 527
probe types

port 493
state 493

Probes 489, 493
Probes folder 487
probes folder 487
procedure calls, finding 74
processor

address 517
component instances 517
CPU 516
load script 517
OS 516
server 517

Processor specification 516
Processor specification—General tab 516
processors

deployment diagram 381
project phases 26
promote

conflicts 165
promoting 165
promoting elements 165
protected

class specification 337
port 216

protocol 362
port 214
specification 361
stereotype 362

Protocol specification dialog 361
Protocol Specification—Components tab 363
Protocol Specification—Files tab 364
Protocol Specification—General tab 362
590 Index

Protocol Specification—Relations tab 363
Protocol Specification—Signals tab 362
Protocols 20
protocols

definition of 20
moving multiple 372
naming 430
use 20

public class specification 337
publish

port 217
Pull-down menu 111
Purify 477

log reports 479
running component instance without 479

Q
qualifiers 160
Query menu 66
query operation 349

R
Rank 142
Rational customer support

contacting xxx
Rational Rose generated code, importing 136
Rational Rose, opening models from 134
Real-Time services (Services Library) 438
RealTime Services Library 438
rebuild 448
rebuild component 61
receiver port 319
redirect command 472
redirecting output results 472
redirection_command 472
referenced item 61
referencing

External Library 396
refinement 200
reflexive relationships 170
reflexive relationships, creating 170
refresh execution 487

Refresh Status of Model command 72
Refresh status operations 411
refreshing shared unit status 406
Refreshing the Browser 81
Refreshing the watch values 115, 497
refreshing watch values 115, 497
registration

port 217
re-inheriting excluded elements 166
Reinstalling the State and Value of the Last Com-

mitted Change 563
Related Documentation 2
Relations 143
Relations tab 101, 143
Relationship between collaborations and

sequences 223
relationships

between collaborations and Sequences 223
relationships, creating 153
reload 484
Removing an Overriding Item Level Model

Property 563
Reorienting messages 306
Replace command 71
Replace dialog 106
replicated ports

placing probes 494
Report menu 64

Show Usage 64
report options

generating documentation 540
Required elements 22
requirements 26
restart 484
restart execution 486
results 468
Return 198
Review your compiler flag settings 465
Reviewing the build results 444
Rose RealTime dialog, About 39
Rose RealTime execution interface 482
rtBound 240
RTcompile 472
rtg_init1 197
RTS browser 485
Index 591

RTS shortcuts 570, 572
RTS tab 80
rtUnbound 240
Run command 448
run component 62
run component instance 484
running

component instance 481
component instance on embedded

targets 510
component instance with Purify 477
component instance without Purify 479
models 437
outside the Toolset 508
Purify from outside the Toolset 508
with Purify 484

Running a component instance 479
running component instance 477
Running from outside the toolset 508
Run-time exception while running a component

instance 497

S
saving

automatically 469
build output 468
build output to a log file

log
saving build output 113

compilation results 468
Scratch Pad Packages 103
scratch pad packages

creating 103
Scratchpad 102
scripting shortcuts 568
scripts directory 407
Scroll Bars 85
Searching and sorting 104
Searching code 106
Searching for model elements by name 106, 107
secondary edits 403
Select Checked out Units in Browser

command 73

Select Diagram dialog 57
Selective searching 107
Selector tool 91, 150
Semantics tab 352
send

asynchronous message tool 309
synchronous message tool 309

Send arguments 98, 271, 281
Send target 98, 271, 281
sender port 319
sequence diagram

add FOC 309
adding instances 301
asynchronous send message tool 309
call message 309
cloning 302
constraint tool 309
co-region 310
create message tool 309
creating 299
creating from browser 300
creating from collaboration diagram 300
creating from message trace 495
creating from structure diagram 300
creating from structure diagram browser 300
defining messages 302
destroy message tool 310
editing 300
Focus of Control 309
interaction instance tool 309
local action tool 310
local state tool 310
moving messages 307
Note tool 308
reorienting messages 306
specifying message details 302
synchronous send message tool 309
toolbox 307
using the editor 305

Sequence diagram editor, using the 305
Sequence diagram toolbox 307
sequence diagram, creating a 299
sequence diagram, creating one from a

message 495
Sequence Diagrams 483
592 Index

Sequence diagrams, opening 223
Sequence Overlays 223
sequence overlays 223
Sequence relationships 223
Sequence Validation dialog 318
Sequential 338
sequential operation 351
Services Library 19, 438
setting

breakpoints 500
shortcuts 565

browser 571, 572
build 570, 572
code editor 570
debugging

debugging shortcuts 569
general 565
RTS 570, 572
scripting 568

shortcuts, debugging 569
Show Access Violations command 64
Show Code Occurrences command 65
Show Differences operation 413
Show History operation 413
Show Inherited command 96
Show Part Of Ancestors command 66
Show Part Of Descendants command 66
Show References command 65
Show Unit Versions command 73
Show Usage command 64
shutdown 484
shutdown execution 487
Signal Specification 364
Signal Specification—Files tab 365
Signal Specification—General tab 365
signals 362

copying 363
data class 365
protocol 362

sorting
build results 114

Sorting in the browser 104
Sorting in the class specification 104
Source Code Debugging 483
Source code debugging 498

source code debugging 498
source control

accessing operations 408
adding files 406
Apply Label 413
Check in 412
Check out 411
checking out files

automatically 405
checking out files automatically 406
enabling 405
Get 411
interface scripts 407
location of interface scripts 407
operations 410
primary edits 403
Refresh status 411
scripts directory 407
secondary edits 403
settings 404
Show Differences 413
Show History 413
status options 402
Submit all Changes 413
supported systems 407
Synchronize 411
Uncheckout 412
unreserved check out 416
versionable elements 407

Source Control command 72
source control status 402
Source File Compilation 467
Special Case Notes 430
Specification Code Editor Shortcuts 570, 572
Specification Content 451
Specification dialogs 92
Specifications tab 121
Specifications, opening 84
specify event 239
specifying history 199
Specifying message details 302
Specifying the transition 245
Spreadsheet-type functionality for list controls

within a specification dialog 93
Start command 448
Index 593

start execution 486
Starting a build 441
startup options 551
Startup screen 29
state

adding 242
drawing transitions between 242
end 274
history 99, 267
naming 430
start 274

State Diagram 354
state diagram

aggregating 235
choice point tool 234
constraint tool 233
decomposing 235
editor 230
elements 231
entry actions 234
exit actions 234
final state tool 233
Note anchor tool 233
Note tool 233
specification 234
state tool 233
state transition tool 233
toolbox 232
transition to self tool 234
using the navigator 232

State diagram editor, using the 230
State diagram toolbox

Toolboxes
State diagram 232

State diagrams 21, 246
state machine

data classes 178
state machines, adding and decomposing 235
state probe 493
State Specification 234
State tool 233
State trace 491
State Transition tool 233
state transition trigger events, defining 246
state, adding a 242

states
creating nested states 248

step through execution 486
Stereotype 336
stereotype 142, 156

Activity Diagrams 273, 277
association role 227
capsule 355
class operations 340
class specification 336
classifier role 226
component 452
configuration file 545
creating a new configuration file 545
creating icons 548
display 556
icons (creating) 548
interaction 311
interaction instance 311
local action 312
local state 313
message 313
port 214
protocol 362

stereotype icons, creating 548
stereotype, creating a new 545
stereotype, creating a new one for all Rose Real-

Time models 545
stereotype, creating a new one for the current

model 544
Stereotypes 543

controlling display 549
stereotypes

adding to Diagram Toolbox 548
creating 544
creating a custom framework for models 543
creating for all Rose RealTime models 545
creating for classes 548
details 543

stereotypes for classes, creating 548
stereotypes, controlling how existing ones are dis-

played in diagrams 549
stereotypes, controlling how those that are added

to diagrams hereafter are
displayed 550
594 Index

stereotypes, controlling the display of 549
stereotypes, controlling their display in the

browser 549
Stop command 448
stop execution 486
Structure Diagram

Diagrams
Structure 354

Structure Diagram toolbox 211
Structure diagram toolbox 211
Structure Editor 208
Structure editor, using the 208
sub state 99, 267
Submit all Changes operation 413
Submit All Changes to Source Control

command 73
substitutable capsule role 220
supported source control systems 407
swimlanes

changing assignment responsibility 289
creating 287
deleting 287
displaying multiple views 288
moving 288

swimlanes (Activity Diagams) 286
synchronizations 281
Synchronize Entire Model command 72
Synchronize Model with File System

command 73
synchronize operations 411
Synchronous 338
synchronous operation 351
synchronous send message tool 309
syntax

redirecting results 472

T
Tabs 80, 95
tags

adding to code 393
target

connection delay 515
default instrumentation type 515

target control 507
overriding 482

Target control programs 482
target control programs 482, 517
target display

first occurrence only 516
handles in use at exit 516
memory in use at exit 516
memory leaks at exit 516

target scope 159
targets

loading and running 510
tasks

creating a component instance 476
debugging source code 499
observing a running component instance 481
running a component instance with

Purify 477
running component instance without

Purify 479
TCKill 519
Text tool 91
The Script Editor Window 73, 74
The toolbar 39
Threshold field 496
threshold field 496
Tile Horizontally command 76
Tile Vertically command 76
To open a monitor 489
Toolbar 38
toolbar 39

create new model 39
open existing model 40

Toolbar button list 561
Toolbars tab 560
Toolboxes 38, 91

Class diagram 149
Collaboration diagram 224
Component diagram 379
Deployment diagram 382
Sequence diagram 307
Structure diagram 211
Use case diagram 139
Index 595

tools
constraint 92
lock selection 92
note 92
note anchor 92
selector 91
text 91
zoom 91

Tools menu 68
Toolset dependencies 205
Toolset options 550
Top-level capsule 440
top-level capsule

capsule
top-level 440

Tornado
debugger mode for 522, 524
unloading debugger 522, 524

Tornado 2
debugger mode for 522, 524
unloading debugger 522, 524

trace
creating sequence diagram from 492

Trace configuration 491
trace configuration 491
Trace window 490

types 491
Trace windows 490
Traces 483
traces

capsule instance 491, 494
dragging capsule instances 495
event message 494
messages 491
port 491
state 491
types 491, 492
using different types 492

traces, when to use the different kinds of 492
transition

internal 235
specification 235

Transition Specification 235
Transition to Self tool 234

transition trigger event
define a new event in a protocol 246
defining a new event in a capsule 246
defining a new event in a data class 246
defining a new state 246

transition, specifying the 245
transitions

Activity Diagrams 283
drawing an initial transition 245
drawing between states 242
joining 247
specifying 245

transitions, drawing between states 242
transitions, joining 247
trigger 178, 185, 239
trigger Stereotype 183
triggers

copying 236
list 235
moving 236

Triggers tab 235
Troubleshooting

Import Log Messages 134
troubleshooting

build errors 463
Cannot code-sync 537
Cannot code-sync filename beyond line

lineNum 537
Capsule Role name same as Capsule

name 464
Check Environment Variables 465
Compile Fails on Valid C++ Models with

VC++ 5.0 or VC++ 6.0 467
Compiler not installed correctly 464
compiling a component 443
Could not find trailing CodeSync tag for 537
Ensure that Component has correct Make

types configured 465
Error Linking Capsule (error from

nmake 467
Linking 468
Linking wrong Services Library set 464
Missing Class Dependencies 464
Missing Header Files, Object Files, and

Libraries 466
596 Index

name conflicts 466
Redefinition of basic types or multiple decla-

rations for X 463
Review your compiler flag settings 465
setting breakpoints 500
Source File Compilation 467
System does not understand the make

command 465
unable to compile a component 443
Unknown command, command not found,

the name specified is not
recognized 463

Unresolved symbol or undeclared
identifier 463

Warning
Use tabs for indenting code-sync

regions 537
Windows NT Compilation Command Line

Limits 467
Tutorials 2

U
UML Options 209
UML options 209

Base UML notation 209
Show Classifier Name on Roles 209
Show Protocol Name on Ports 209

Uncheckout operations 412
Undocking the capsule diagrams 354
unidirectional aggregate association 152
unidirectional association 151
unique Id’s 125
unique ids 125

cautions 126
correct merge scenario 127, 128
incorrect merge scenario 127
model elements not having 125

unit information 407
Unit Information tab 101
Unknown compiler message stream 114, 451
unload

Windows CE component instance 521

unloading
debugger 525

unreserved check out 416
unwired port

create using a system protocol 213
updating cross-references 403
Usage tips 139
use case

creating 141
specification 141

Use case diagram editor, using the 138
Use case diagram toolbox 139
use case diagram, creating a 137
Use case specification 141
use case, creating a 141
User-specific Working Environment Settings

(.rtusr and .rtwks) 132
Using OLE 542
Using sort 104
Using the Class diagram editor 146
Using the collaboration diagram editor 222
Using the Component diagram editor 377
Using the Deployment diagram editor 380
Using the Sequence diagram editor 305
Using the state diagram editor 230
Using the structure editor 208
Using the use case diagram editor 138
Utility scripts 511
utility scripts 511

V
Valid Applications 168
validation error log 319
Validation tab 350
View menu 56
virtual functions 198
virtual inheritance 164
virtual operations

overriding 200
Visibility 337
visibility

implementation 349
Index 597

W
Watch tab 115
watch values

refreshing 497
Watches 483
watches

refreshing values 115
WCESH3.bat for Windows CE 518
What’s This Help 1
When to use the different kinds of traces 492
Where to start 438
Window menu 76
Window Selectors command 77
Windows CE

Basic Mode 518
configuring a component instance 518
connection delay 520, 523
debugger mode 522, 523
location of script 519
RRT_WINCE_TARGET_DIR 519
Target Timeout 520, 524
tasks to configure component instance 518
unload 521
WCESH3.bat 518

Windows CE operation for component
instance 514

Windows NT Compilation Command Line
Limits 467

wired port 215
word wrap 110
workflow 26

analysis and design 26
change management 27
configuration 27
implementation 27
testing 27

workflows 26
working environment settings 132
Working with the Dialog Editor 74
workspace

definition of 131

X
xxdgb

debugger mode 524

Z
Zoom tool 91
598 Index

	Toolset Guide
	Preface
	Audience
	Other Resources
	Rational Rose RealTime Integrations With Other Rational Products
	Contacting Rational Customer Support

	Using the Online Help
	Using the Online Help System
	Accessing What’s This Help
	Accessing Extended Help
	Tutorials

	Using the Help Viewer
	Getting More Out of Help
	Finding a Help Topic
	Creating a List of Favorite Help Topics
	Maintaining a Single Favorites List

	Copying a Help Topic
	Printing the Current Help Topic
	Obtaining Help in a Dialog
	Finding Topics Using the Toolbar Buttons
	Hiding or Showing the Navigation Pane
	Using Accessibility Shortcut Keys in the Help Viewer
	Using the Context Menu Commands

	About the Search Tab
	Searching for Help Topics
	Searching for Words or Phrases
	Defining Search Terms
	Using Nested Expressions when Searching
	Searching within Search Results

	Changing the Help Viewer
	Customizing the Help Viewer
	Changing Format or Styles for Accessibility
	Viewing Topics Grouped by Information Type
	Changing the Font Size of a Topic
	Changing Colors in the Topic Pane of the Help Viewer

	Related Documentation

	Overview of Rational Rose RealTime
	Developing Using Rational Rose RealTime
	Using Languages and Code Generation
	Compiling Models

	Using the Services Library
	Capsules, Protocols, Ports, Capsule State and Structure Diagrams
	Capsules
	Protocols
	Ports
	State Diagrams
	Capsule Structure Diagrams
	Executable Models

	Constructing Models in Rational Rose RealTime
	Modeling Elements
	Required Elements

	Diagrams

	Development Process
	Essential Workflows

	User Interface Overview
	Startup Screen
	Create New Model Dialog
	Using the Startup Frameworks

	Application Window
	Browsers
	Toolbar
	Diagrams
	Toolboxes
	Menu Bar
	About Rational Rose RealTime Dialog

	The Toolbar
	Menus
	Menu Bar
	File Menu
	File Menu Operations

	Edit Menu
	Parts Menu
	View Menu
	Browse Menu
	Select Diagram Dialog
	Browse Menu Operations

	Build Menu
	Report Menu
	Query Menu
	Tools Menu
	Layout

	Add-Ins Menu
	Window Menu
	Help Menu

	Browsers
	Tabs
	Model View Tab
	Containment View Tab
	Inheritance Tab
	RTS Tab
	Navigating
	Displaying the Browser
	Refreshing the Browser
	Multiple Browsers
	Filtering

	Diagram Editors
	Diagram Specification - General Tab
	Diagram Specification - Diagrams Tab
	Adding Icons to a Diagram
	Opening Specifications
	Shortcut Menu
	Background Shortcut Menu
	Scroll Bars
	Overview Navigator and Toolset Buttons, and Class, Capsule, and Protocol Specification Context Menus
	Overview Navigator Button
	Toolset Buttons
	Context Options for Specification Dialogs
	Context Options for Other Controls

	Sequence Diagram Context Menu
	Toolboxes

	Specification Dialogs
	Spreadsheet-type Functionality for List Controls within a Specification Dialog
	Tabs
	Actions Tab
	Attributes Tab
	Components Tab
	Detail Tab
	Files Tab
	General Tab
	Operations Tab
	Relations Tab
	Swimlanes Tab
	Transitions Tab
	Unit Information Tab
	Descriptions

	Scratch Pad Packages

	Searching and Sorting
	Using Sort
	Find In Model Dialog
	Replace Dialog
	Searching Code

	Other Application Windows
	Description Window
	Displaying the Description Window
	Documentation Tab
	Code Tab
	Word Wrap
	Pull-down Menu
	Popup Menu

	Adding Documentation to Model Elements
	Adding Code to Model Elements
	Output Window
	Log Tab
	Build Log Tab
	Saving Build Output to a Log File

	Build Errors Tab
	Filtering Build Results
	Sorting Build Results
	Unknown Compiler Message Stream

	Find Tab
	Watch Tab
	Refreshing the Watch Values

	Specification History Window
	Locking Specification Dialogs
	ToolTips
	Keyboard Shortcuts
	Specification History Shortcut Menu

	Printing
	Print Specifications
	General Tab
	Properties Dialog
	Diagrams Tab
	Specifications Tab
	Layout Tab

	Print Setup
	Printer Area
	Paper Area
	Orientation Area

	Opening and Saving Models
	Unique Ids
	Opening Models
	Model Specification
	General Tab
	Source Control Tab
	Files Tab
	Unit Information Tab

	A Workspace
	User-specific Working Environment Settings (.rtusr, .rtto and .rtwks)

	Opening Models from ObjecTime Developer 5.2.1
	Limitations and Restrictions

	Opening Rational Rose Models
	Limitations and Restrictions

	Importing Rational Rose Generated Code
	Limitations and Restrictions

	Use Case Diagrams
	Creating a Use Case Diagram
	Using the Use Case Diagram Editor
	Usage Tips
	Use Case Diagram Toolbox

	Defining Use Cases and Actors
	Creating a Use Case
	Use Case Specification
	General Tab
	Diagram Tab
	Relations Tab
	Files Tab

	Creating an Actor
	Actor Specification

	Creating Class Diagrams
	Creating a Class Diagram
	Using the Class Diagram Editor
	Class Diagram Toolbox

	Creating Relationships
	Creating Association Relationships
	Association Properties
	Association Specification
	General Tab
	Detail Tab
	End A and B General Tabs
	End A and B Detail Tabs

	Creating Aggregation Relationships
	Creating an Association Class
	Aggregation Specification
	Creating Inheritance Relationships
	Creating an Inheritance Tree
	Exclusions
	Generalize Specification
	General Tab

	Inheritance in Rational Rose RealTime
	Promoting and Demoting Elements
	Potential Conflicts Caused by Promote/Demote
	Excluding Elements
	Reinheriting Excluded Elements
	Rearranging Inheritance Hierarchies

	Inheritance Tab in Browser

	Creating Dependency Relationships
	Graphical Notation
	Naming
	Valid Applications
	Add Class Dependencies Wizard
	Dependency Specification
	General Tab

	Creating Reflexive Relationships
	Changing the Directionality of an Association
	Creating Package Relationships
	Creating Realize Relationships
	Naming
	Valid Applications
	Realize Relationship Specification
	General Tab

	Inserting Dependencies, Generalizations, and Realizations on the Relations Tab
	Inserting Dependencies
	Inserting Generalizations

	Inserting Realizations
	Changing the End Class

	Adding and Hiding Classes, and Filtering Class Relationships
	Using State Machine Code Generation for Classes
	Configuring a Simple Model
	Generating Component Libraries for Classes without RTS Dependencies
	Creating State Machine Trigger Operations
	Configuring the trigger Stereotype for an Operation
	Generating State Machine Code
	Support for Code Sync
	Considerations
	Hello World Implementation and Header Files

	Using Constructors
	C Language
	C++ Language

	Using Return, Break, and Continue Statements
	Specifying History
	No Refinement
	Overriding Virtual Operations

	Generation of Parameterized and Instantiated Classes
	Parameterized Classes
	Relationships

	Instantiated Classes
	Relationships

	Limitations

	Creating Collaboration Diagrams
	Creating Capsule Structure
	Using the Structure Editor
	UML Options
	Structure Diagram Browser Context Menu Options

	Structure Diagram Toolbox
	Creating a Port
	Creating a Non-Wired Port Using a System Protocol

	Port Specification
	General Tab
	Files Tab

	Port Role Specification Dialog
	Adding a Capsule Role
	Capsule Role Specification
	General Tab

	Connecting Ports on Capsule Roles Together
	Connector Specification
	General Tab

	Creating a Collaboration Diagram
	Using the Collaboration Diagram Editor
	Relationship Between Collaborations and Sequences
	Opening a Sequence Diagram
	Sequence Overlays
	Code Generation
	Collaboration Diagram Toolbox
	Classifier Role Specification
	General Tab
	Files Tab

	Association Role Specification
	General Tab
	Files Tab

	Creating State Diagrams
	Creating Capsule State Machines
	Using the State Diagram Editor
	State Diagram Toolbox
	State Specification
	General Tab
	Entry Actions / Exit Actions Tabs

	Aggregating and Decomposing State Machines
	Transition Specification
	General Tab
	Triggers Tab
	Actions Tab
	Files Tab

	Choice Point Specification
	General Tab
	Condition Tab
	Files Tab

	Initial State Specification
	General Tab
	Files Tab

	Junction Point Specification
	General Tab
	Files Tab

	Event Editor Dialog
	EventGuard Specification Dialog Box

	Adding a State
	Adding a Choice Point
	Drawing Transitions Between States
	Specifying the Transition

	Drawing the Initial Transition
	Defining State Transition Trigger Events
	State Diagrams

	Joining Transitions
	Creating Nested States
	Positioning from a Superclass for Transitions
	State Diagram - Showing Triggers and Code for Transitions
	Identifying Self Transitions on the Transitions Tab in the State Specification Dialog Box
	Descriptions

	Creating Activity Diagrams
	Modeling Using Activity Diagrams
	Activity Diagrams

	Creating an Activity Diagram
	Activity Diagram Specification Dialog
	Activity Diagram Specification Dialog - General Tab

	StateMachine Specification for State/Activity
	StateMachine Specification for State/Activity - General Tab
	StateMachine Specification for State/Activity - Files Tab

	Activity Diagram Tools
	Activities
	Activity History
	Specifying Actions for Activities
	Nested Activities
	Manipulating Nested Activities
	Creating Nested Activities

	Activity Specification Dialog
	Activity Specification Dialog - General Tab
	Activity Specification Dialog - Actions Tab
	Activity Specification Dialog - Transitions Tab
	Activity Specification Dialog - Swimlanes Tab
	Activity Specification Dialog - Files Tab

	Actions
	Action Specification Dialog
	Action Specification Dialog - Detail Tab
	Action Specification Dialog - Files Tab

	Decisions
	Decision Specification Dialog
	Decision Specification Dialog - General Tab
	Decision Specification Dialog - Transitions Tab
	Decision Specification Dialog - Swimlanes Tab
	Decision Specification Dialog - Files Tab

	End State
	Start State
	States
	Specifying Actions for States
	Nested States
	Manipulating Nested States
	Creating Nested States

	State History

	State Specification Dialog
	State Specification Dialog - General Tab
	State Specification Dialog - Actions Tab
	State Specification Dialog - Transitions Tab
	State Specification Dialog - Swimlanes Tab
	State Specification Dialog - Files Tab

	Trigger Specification Dialog
	Trigger Specification Dialog - Detail Tab
	Trigger Specification Dialog - Files Tab

	Synchronizations
	Synchronization Specification Dialog
	Synchronization Specification Dialog - General Tab
	Synchronization Specification Dialog - Transitions Tab
	Synchronization Specification Dialog - Files Tab

	Transitions
	Transition Specification Dialog
	Transition Specification Dialog - General Tab
	Transition Specification Dialog - Detail Tab
	Transition Specification Dialog - Files Tab

	Swimlanes
	Creating Swimlanes
	Deleting a Swimlane
	Moving a Swimlane
	Displaying Multiple Views of a Swimlane
	Changing the Assignment of Responsibility of a Swimlane

	Swimlane Specification Dialog
	Swimlane Specification Dialog - General Tab
	Swimlane Specification Dialog - Files Tab

	Objects and Object Flows
	Objects
	Object State
	Object Flow
	Object Flows and Transitions
	Modeling Object State changes
	Creating an Object
	Creating an Object Flow
	Adding the Object, Object Flow, and Lock Selection Tools to the Toolsbar

	Object Specification Dialog
	Object Specification Dialog - General Tab
	Object Specification Dialog - Incoming Object Flows Tab
	Object Specification Dialog - Outgoing Object Flows Tab
	Object Specification Dialog - Files Tab

	Object Flow Specification Dialog
	Object Flow Specification Dialog - General Tab
	Object Flow Specification Dialog - Files Tab

	Cutting Objects on Activity Diagrams
	Copying Objects on Activity Diagrams
	Pasting Objects on Activity Diagrams

	Creating Sequence Diagrams
	Creating a Sequence Diagram
	Creating a New Diagram
	From the Browser
	From the Structure Diagram Browser
	From the Collaboration or Structure Diagram
	Editing a Diagram
	Adding Instances
	Defining Messages
	Specifying Message Details

	Cloning a Sequence Diagram
	Using Copy and Paste within Sequence Diagrams
	Interaction Instances
	Messages
	Standard Diagram Elements
	Known Limitations

	Using the Sequence Diagram Editor
	Opening Collaboration Diagrams
	Reorienting Messages
	Moving Messages

	Sequence Diagram Toolbox
	Interaction Instance Specification
	General Tab
	Files Tab

	Interaction Specification
	General Tab
	Files Tab

	Local Action Specification
	General Tab
	Detail Tab

	Local State Specification
	General Tab
	Detail Tab

	Message Specification
	General Tab
	Detail Tab
	Port Detail Tab

	Send Message Specification - Adding Ports to Capsule Classes
	Sequence Validation Dialog
	Focus of Control
	Coloring a Focus of Control

	Navigating Sequence Diagrams
	Saving Sequence Diagrams as Controlled Units
	Uncontrolling Sequence Diagrams
	Importing and Exporting Sequence Diagrams
	RRTEI

	Control Interaction Scripts
	ControlInteractions_CheckOut.ebs
	ControlInteractions_AddSequenceDiagrams.ebs
	ControlInteractions_CheckIn.ebs

	Running Scripts to Make Sequence Diagrams Controllable

	Defining Capsules and Classes
	Creating a Class
	Creating New Attributes
	Creating New Operations
	Class Specification
	Class Specification Content
	Class Specification - General Tab
	Class Specification - Detail Tab
	Class Specification - Operations Tab
	Class Specification - Attributes Tab
	Class Specification - Nested Tab
	Class Specification - Components Tab
	Class Specification - Relations Tab
	Class Specification - Files Tab
	Class Specification - Diagrams Tab

	Attribute Specification Dialog
	General Tab
	Detail Tab

	Operation Specification Dialog
	General Tab
	Detail Tab
	Validation Tab
	Semantics Tab

	Parameter Specification Dialog
	Files Tab

	Creating a Capsule Class
	Capsule Diagrams
	State Diagram
	Structure Diagram
	Undocking the Capsule Diagrams

	Capsule Specification
	Capsule Specification - General Tab
	Capsule Specification - Diagrams Tab
	Capsule Specification - Operations Tab
	Capsule Specification - Attributes Tab
	Capsule Specification - Capsule Roles Tab
	Capsule Specification - Ports Tab
	Capsule Specification - Connectors Tab
	Capsule Specification - Relations Tab
	Capsule Specification - Components Tab
	Capsule Specification - Files Tab

	Defining Protocols
	Protocol Specification
	Protocol Specification - General Tab
	Protocol Specification - Signals Tab
	Protocol Specification - Relations Tab
	Protocol Specification - Components Tab
	Protocol Specification - Diagrams Tab
	Protocol Specification - Files Tab

	Signal Specification
	Signal Specification - General Tab
	Signal Specification - Files Tab

	Defining Packages
	Introduction to Packages
	Creating a Package
	Packages and Class Diagrams

	Package Specification
	Package Specification - General Tab
	Package Specification - Detail Tab
	Package Specification - Relations Tab
	Package Specification - Components Tab
	Package Specification - Files Tab
	Package Specification - Model Elements Tab

	Moving Model Elements
	Impact of Moving Classes or Diagrams on Configuration Management

	Creating the Component and Deployment Views
	Using the Component Diagram Editor
	Component Diagram Toolbox
	Using the Deployment Diagram Editor
	Deployment Diagram Elements

	Deployment Diagram Toolbox

	Importing and Exporting
	Importing a Petal or Package File
	Importing Code from Rational Rose to Rational Rose RealTime
	Using the Code Import Process
	Preparing the Rational Rose Model for Import
	Launching the C++ Analyzer
	Specifying Export Options and Selecting a Source File Location
	Analyzing the Code
	Using CodeCycle to Add Tags to Code
	Importing the Code

	Referencing an External Library
	Using the Convert Rose Component Wizard
	Exporting a File

	Using Source Control
	Fundamentals of Source Control in Rational Rose RealTime
	Using Source Control in Rational Rose RealTime
	Maintaining Integrity When a Model is Under Source Control

	Source Control Settings
	Optimizing Performance
	Accessing Source Control Operations
	Source Control Operations

	Adding Elements to Source Control
	Performing an Unreserved Checkout

	Options for Obtaining Change Management Information When Loading a Model
	Updating the Log
	Changing the CM Retrieval Option
	CM Retrieval Options
	Limitations

	Checking Out Files When a Newer Version Exists
	Get Dialog
	Controlling a Unit with an Uncontrolled Parent
	Changing Unit Ownership
	Limitations

	Viewing the ClearCase Version Tree for a VOB

	Naming Guidelines
	Introduction to Naming Guidelines
	Assigning Names
	Special Case Notes
	Using Logical Names for Model Elements
	Logical Name Example

	Building and Executing Models
	Building and Running Models
	Is Rational Rose RealTime a Compiler?
	Real-Time Services (Services Library)

	Before You Start
	Building
	Executing

	Building Basics
	Top-level Capsule

	Assigning an Active Component
	Creating a Component
	Starting a Build
	Generate Dialog
	Unable to Compile a Component?
	Reviewing Build Results
	Opening Code Generated for Model Elements
	Selecting Elements
	Selecting a Single Element

	Selecting Multiple Elements
	Using an Editor

	Build Menu
	Build Settings Dialog
	Active Component
	Active Component Instances List

	Build Log Tab
	Build Errors Tab
	Unknown Compiler Message Stream

	Component Specification
	Specification Content
	Component Specification - General Tab
	Component Specification - References Tab
	Component Specification - Relations Tab
	Component Specification - Files Tab

	Generating Documentation Fields
	Using Generated Documentation Fields

	Component Dependencies

	Common Build Errors
	Understanding Build Errors
	Missing Class Dependencies
	Capsule Role Name Same as Capsule Name
	Linking Wrong Services Library Set
	Compiler Not Installed Correctly
	Compile a Simple Hello World Program
	Check Environment Variables
	Review Your Compiler Flag Settings

	System Does Not Understand the Make Command
	Check Environment Variables
	Ensure that Component has Correct Make Types Configured

	Name Conflicts
	Missing Header Files, Object Files, and Libraries
	Compile Fails on Valid C++ Models with VC++ 5.0 or VC++ 6.0
	Error Linking Capsule - Error From nmake
	Windows NT Compilation Command Line Limits
	Source File Compilation
	Linking

	Model Management - Importing Model Compilation Results
	Build Log Tab - Saving and Importing Compilation Results
	Saving the Build Output to a File Directly from the Build Log Tab
	Importing from the Build Log Tab
	Build Errors Tab - Importing Compilation Results

	Running and Debugging
	Execution Basics
	Creating a Component Instance
	Running a Component Instance with Purify
	Interpreting the Purify Log Reports

	Running a Component Instance without Purify
	Observing a Running Component Instance
	Rational Rose RealTime Execution Interface
	Target Control Programs
	Overriding Target Control
	Observability Interface

	Overview of Observability Options
	Component Instance Menu
	RTS Browser
	Execution Control and Information Pane
	Capsule Instance Folder
	Probes Folder

	Monitors
	Animation
	Opening a Monitor
	Probes

	Navigating to Model Elements from Debug Monitors
	Trace Windows
	Deleting Messages
	Trace Configuration
	Using Different Types of Traces
	Opening a Sequence Diagram
	Creating a Sequence Diagram From a Trace

	Probes
	Inject Window
	Capsule Instance Trace
	Trace Event Message Dialog
	Creating a Sequence Diagram From a Message Trace
	Dragging Capsule Instances into a Trace

	Message Trace Configuration Dialog
	Threshold Field
	Column Check Boxes

	Execution Watch Tab
	Refreshing the Watch Values

	Run-time Exception While Running a Component Instance
	Instance Browser
	Source Code Debugging
	Source Debugger Integration without Target Observability
	Setting Breakpoints
	Setting Breakpoints on State Machines
	Setting Breakpoints for Operations

	Customizing Rational Rose RealTime for Target Control and Observability
	Running from Outside the Toolset
	Purify
	Observability Command Line Parameter
	Component Instance Menu

	Using the Command Line
	Command Line Arguments
	Application-Specific Command Line Arguments

	Loading and Running Component Instances on Embedded Targets
	Utility Scripts

	Component Instance Specification
	Component Instance Specification - General Tab
	Component Instance Specification - Detail Tab

	Overview of Observability Options
	Observability Options

	Processor Specification Dialog
	Processor specification - General Tab
	Processor Specification - Detail Tab
	Using Windows CE
	Using Debugger Modes
	Unloading a Debugger

	Device Specification
	General Tab
	Detail Tab
	Files Tab

	Connection Specification
	General Tab
	Detail Tab
	Files Tab

	Probe Specification
	Probe Specification - General Tab
	Probe Specification - Files Tab
	Probe Specification - Detail Tab
	Creating Inject Messages
	Examples
	Injecting a Message

	Using Code Sync to Change Generated Code
	Code Sync Overview
	Intended Code Sync Usage
	Limitations

	Enabling and Disabling Code Sync
	Identifying Code Sync Areas
	Code Sync Identification Tags
	Designated Code Sync Areas

	Compiling Code Externally
	Invoking Code Sync from the Toolset
	Reconciling Changes in the Code Sync Summary
	Accepting Changes

	Common Code Sync Errors
	Error: Cannot code-sync; file I/O error on: <filename>
	Error: Cannot code-sync <filename> beyond line <lineNum>
	Error: Could not find trailing CodeSync tag for [<LocationSpecifier>]
	Warning: Use tabs for indenting code-sync regions

	Generating Documentation
	Linking External Files to Model Elements
	Generate Documentation Dialog
	Inserting a Diagram into an MS Word Document
	Option A
	Option B

	Using OLE
	Creating a Link
	Inserting a Link
	Navigating
	Editing Diagrams

	Customizing the Toolset
	Stereotypes
	Creating a Custom Framework for Rose RealTime Models
	Creating a New Stereotype for the Current Model
	Creating a New Stereotype Configuration File
	Creating a New Stereotype for all Rose RealTime Models
	Creating Stereotypes for Classes
	Adding Stereotypes to the Diagram Toolbox
	Creating Stereotype Icons
	Creating a Diagram Icon
	Controlling the Display of Stereotypes
	Controlling Stereotype Display in the Browser
	Controlling How Existing Stereotypes Display in a Diagram
	Controlling the Display of Stereotypes Added to Diagrams

	Toolset Options
	Options Dialog
	General Tab
	File Tab
	Font/Color Tab
	Diagram Tab
	Filtering Tab
	Compartments Tab
	Browser Tab
	Editor Tab
	THIDC_AA1oolbars Tab
	Language/Environment Tab

	Customizing the Diagram Toolbox
	Customize Toolbar Dialog
	Toolbar Button List

	Add-In Manager Dialog
	Managing Model Properties
	Displaying or Modifying the Values of Model Properties
	Removing an Overriding Item Level Model Property
	Making a Model Property Item Specific
	Reinstalling the State and Value of the Last Committed Change
	Attaching a Model Property Set to a Single Element or a Collection of Elements
	Displaying or Editing a Specific Model Property Set
	Creating a New Model Property Set
	Deleting a Model Property Set

	Keyboard Shortcuts
	General Shortcuts
	Editing Shortcuts
	Debugging Shortcuts
	Build and RTS Shortcuts
	Specification Code Editor Shortcuts
	Browser Shortcuts

	Rational Rose RealTime Keyboard Shortcut Summary

	Index

