
Rational Software Corporation®
Rational® QualityArchitect
User’s Guide

VERSION: 2003.06.00

PART NUMBER: 800-026171-000

WINDOWS
support@rational.com
http://www.rational.com

Legal Notices
©1998-2003, Rational Software Corporation. All rights reserved.
Part Number: 800-026171-000
Version Number: 2003.06.00

This manual (the "Work") is protected under the copyright laws of the United States and/or
other jurisdictions, as well as various international treaties. Any reproduction or distribution of
the Work is expressly prohibited without the prior written consent of Rational Software
Corporation.

The Work is furnished under a license and may be used or copied only in accordance with the
terms of that license. Unless specifically allowed under the license, this manual or copies of it
may not be provided or otherwise made available to any other person. No title to or ownership
of the manual is transferred. Read the license agreement for complete terms.

Rational Software Corporation, Rational, Rational Suite, Rational Suite ContentStudio, Rational
Apex, Rational Process Workbench, Rational Rose, Rational Summit, Rational Unified Process,
Rational Visual Test, AnalystStudio, ClearCase, ClearCase Attache, ClearCase MultiSite,
ClearDDTS, ClearGuide, ClearQuest, PerformanceStudio, PureCoverage, Purify, Quantify,
Requisite, RequisitePro, RUP, SiteCheck, SiteLoad, SoDa, TestFactory, TestFoundation, TestMate
and TestStudio are registered trademarks of Rational Software Corporation in the United States
and are trademarks or registered trademarks in other countries. The Rational logo, Connexis,
ObjecTime, Rational Developer Network, RDN, ScriptAssure, and XDE, among others, are
trademarks of Rational Software Corporation in the United States and/or in other countries.
All other names are used for identification purposes only and are trademarks or registered
trademarks of their respective companies.

Portions covered by U.S. Patent Nos. 5,193,180 and 5,335,344 and 5,535,329 and 5,574,898 and
5,649,200 and 5,675,802 and 5,754,760 and 5,835,701 and 6,049,666 and 6,126,329 and 6,167,534
and 6,206,584. Additional U.S. Patents and International Patents pending.

U.S. Government Restricted Rights
Licensee agrees that this software and/or documentation is delivered as "commercial computer
software," a "commercial item," or as "restricted computer software," as those terms are defined
in DFARS 252.227, DFARS 252.211, FAR 2.101, OR FAR 52.227, (or any successor provisions
thereto), whichever is applicable. The use, duplication, and disclosure of the software and/or
documentation shall be subject to the terms and conditions set forth in the applicable Rational
Software Corporation license agreement as provided in DFARS 227.7202, subsection (c) of FAR
52.227-19, or FAR 52.227-14, (or any successor provisions thereto), whichever is applicable.

Warranty Disclaimer
This document and its associated software may be used as stated in the underlying license
agreement. Except as explicitly stated otherwise in such license agreement, and except to the
extent prohibited or limited by law from jurisdiction to jurisdiction, Rational Software
Corporation expressly disclaims all other warranties, express or implied, with respect to the
media and software product and its documentation, including without limitation, the
warranties of merchantability , non-infringement, title or fitness for a particular purpose or
arising from a course of dealing, usage or trade practice, and any warranty against interference
with Licensee's quiet enjoyment of the product.

Third Party Notices, Code, Licenses, and Acknowledgements
Portions Copyright ©1992-1999, Summit Software Company. All rights reserved.

Microsoft, the Microsoft logo, Active Accessibility, Active Client, Active Desktop, Active
Directory, ActiveMovie, Active Platform, ActiveStore, ActiveSync, ActiveX, Ask Maxwell,
Authenticode, AutoSum, BackOffice, the BackOffice logo, bCentral, BizTalk, Bookshelf,
ClearType, CodeView, DataTips, Developer Studio, Direct3D, DirectAnimation, DirectDraw,
DirectInput, DirectX, DirectXJ, DoubleSpace, DriveSpace, FrontPage, Funstone, Genuine
Microsoft Products logo, IntelliEye, the IntelliEye logo, IntelliMirror, IntelliSense, J/Direct,
JScript, LineShare, Liquid Motion, Mapbase, MapManager, MapPoint, MapVision, Microsoft
Agent logo, the Microsoft eMbedded Visual Tools logo, the Microsoft Internet Explorer logo, the
Microsoft Office Compatible logo, Microsoft Press, the Microsoft Press logo, Microsoft
QuickBasic, MS-DOS, MSDN, NetMeeting, NetShow, the Office logo, Outlook, PhotoDraw,
PivotChart, PivotTable, PowerPoint, QuickAssembler, QuickShelf, RelayOne, Rushmore,
SharePoint, SourceSafe, TipWizard, V-Chat, VideoFlash, Visual Basic, the Visual Basic logo,
Visual C++, Visual C#, Visual FoxPro, Visual InterDev, Visual J++, Visual SourceSafe, Visual
Studio, the Visual Studio logo, Vizact, WebBot, WebPIP, Win32, Win32s, Win64, Windows, the
Windows CE logo, the Windows logo, Windows NT, the Windows Start logo, and XENIX, are
either trademarks or registered trademarks of Microsoft Corporation in the United States
and/or in other countries.

Sun, Sun Microsystems, the Sun Logo, Ultra, AnswerBook 2, medialib, OpenBoot, Solaris, Java,
Java 3D, ShowMe TV, SunForum, SunVTS, SunFDDI, StarOffice, and SunPCi, among others, are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

Licensee shall not incorporate any GLOBEtrotter software (FLEXlm libraries and utilities) into
any product or application the primary purpose of which is software license management.

BasicScript is a registered trademark of Summit Software, Inc.

Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma, Richard
Helm, Ralph Johnson and John Vlissides. Copyright © 1995 by Addison-Wesley Publishing
Company, Inc. All rights reserved.

Additional legal notices are described in the legal_information.html file that is included in your
Rational software installation.

Contents
Preface . xi
Audience. xi

Other Resources . xi

Integrations Between Rational Testing Tools and Other Rational Products . .xii

Contacting Rational Technical Publications .xv

Contacting Rational Customer Support .xv

1 Introduction .1
What You Need to Get Started . 1

Supported Environments . 2
If You Are Testing Enterprise JavaBeans . 2
If You Are Testing COM, DCOM, and COM+ Components 2

Installing Rational QualityArchitect . 2

Quick Start . 2
Step 1: Working in the Rational Administrator . 2
Step 2: Working in Rose. 3
Step 3: Working in Your IDE . 3

Working In Visual Basic . 4

2 Basic Concepts .5
Test Script Basics . 5

Test Types. 5
Storing Your Tests Scripts. 6

Templates . 7

Scenario Tests . 8
Support for Performance Testing . 10

Modifying the Template . 10
Modifying a Generated Test Script . 11
Executing the Load Test . 12

Support for Verification Points . 12
Templates for Scenario Test Generation. 13
Message Signatures and Data Correlation. 13

Signature Options. 14
Message Syntax. 15
v

Editing Message Signatures .16
How Message Signatures Correlate to Datapool Fields .16
Message Signature Examples .17

Stubs .18
Templates for Stub Generation . 21

EJB .21
COM/VB .22

Test Script Services .23
Datapools . 23

Datapools in Scenario Tests .23
Datapools in Unit Tests .24
Data Types .25

Verification Points . 25
How Data Is Verified .25
Static, Dynamic, and Manual Verification Points .26
Database Verification Point .27
The Query Builder. .28
Extensibility .28

3 Testing Enterprise JavaBeans . 29
Overview .29

EJB TestScripts . 30
Packages Imported Into EJB Test Scripts. 30
Documentation Conventions. 31

Requirements for EJB Testing .31
Supported JDKs . 32
Application Server Classpath Requirements . 32

Classpath Requirements for the Sun J2EE Reference Server32
Classpath Requirements for WebLogic 5.1. .32
Classpath Requirements for WebLogic 6.1. .33
Classpath Requirements for Remote WebSphere 3.5 .33

Rational Test Script Playback Requirements . 33
EJB Session Recorder Requirements . 34

Modifying the Additional Classpath Field .35

Rational TestManager Playback Requirements . 35
Visual Age/WebSphere Requirements . 36
Visual Cafe/WebLogic Requirements . 36

Adding WebLogic to the Global Classpath in Visual Café. .37

The Rational Bank Account Sample Application .38
Setting Up the Sample Application for VAJ/WebSphere. 39

Importing the Sample into VAJ .39
vi

Creating the Database. 40
Configuring VAJ to Use the New Sample Database . 41
Adding EJB Support . 41
Deploying the Sample Application in the VAJ Test Environment 42
Importing the Required JAR Files . 44

Deploying the Sample Application to a WebLogic Application Server 45
Deploying the Sample Application to WebLogic 5.1 . 45
Deploying the Sample Application to WebLogic 6.1 . 47

Deploying the Sample Application to the Sun J2EE Reference Server 48
Configuring Visual Cafe to Run the Sample Application 49
Adding Account Information to the Rational Bank Account Sample 50

Reverse Engineering a Deployed EJB into Rose. .50

Generating EJB Test Assets .51
Generating EJB Test Scripts . 51

Generating EJB Unit Test Scripts and Datapools from a Rose Model 52
Populating the Datapool. 54
Generating Test Scripts with the EJB Session Recorder . 56

Generating Stubs and Lookup Tables for the Unit Test 56
Populating the Lookup Tables . 57

Importing Test Assets into Your IDE. .58
Importing Test Assets into VAJ. 58
Importing Test Assets into Visual Cafe. 59

Deploying Stubs to a WebLogic Application Server .59
Deploying Stubs Permanently to a WebLogic Server . 60
Deploying Stubs to a Running WebLogic Server (Hot Deployment) 61

The wl_deploy Build Folder . 62
Building and Hot Deploying the Sample Application and Stubs. 62
Undeploying the Sample Application . 64
Deploying Your Own Stubs . 64

Deploying Stubs to the Sun J2EE Reference Server65

Executing Test Scripts .67
Editing Host Name and Port Number Variables . 67

For WebLogic and Sun J2EE Application Servers. 67
For WebSphere . 67

Executing Test Scripts from VAJ . 68
Executing Test Scripts from Visual Cafe . 69
Executing Test Scripts from TestManager . 69

Using EJB Scenario Tests to Test Transactions .70

Using the Java Query Builder to Add Database Verification Points72
vii

Connecting to the Database via JDBC . 73
JDBC Driver .74
JDBC URL .74
User Name .75
Password. .75

Designing a Custom Query Statement . 75
Using the Query Design Wizard .75
Viewing and Verifying the SQL Query Results .82

Using the EJB Session Recorder. .82

Setting Up the Java Runtime Environment (JRE) .83

Starting the EJB Session Recorder .84
Starting the EJB Session Recorder from the Console . 84
Starting the EJB Session Recorder from Visual Cafe . 84

Passing in Command Line Parameters (optional). .85

Starting the EJB Session Recorder from Visual Age for Java 85
Creating a New Project .86
Importing JavaHelp .86
Importing Xerces. .86
Importing the Remaining Jar Files from the QualityArchitect Directory 87
Importing rttssjava.jar .87
Importing Deployed EJBs .87
Checking the Classpath and Launching the EJB Session Recorder 87
Passing in Command Line Parameters (optional). .88

Using the EJB Session Recorder with the Sample Application 88
Starting a Recording Session .88
Connecting to an EJB .89
Interacting with the Home Interface .92
Interacting with the Remote Interface .93
Inserting a Verification Point .97
Viewing the XML Log .98
Generating a Test Script from the XML Log .98

4 Testing COM Components. 99
Overview .99

Testing Existing Objects . 99
Testing with Iterative Development . 100
Programming in Visual Basic . 100

Requirements for Testing COM Components .101

Working with the Sample Model. .101
Understanding the Component View . 101
Understanding the Logical View . 102
viii

Generating COM Test Assets. .102
Generating COM Unit Test Scripts and Datapools from a Rose Model 102
Populating the Datapool . 105
Generating Stubs and Lookup Tables for the Unit Test 106
Populating the Lookup Tables . 107
Recompiling with the Stub . 108

Executing Test Scripts .108

Using COM Scenario Tests to Test Transactions .109

Using the OLE DB Query Builder to Add Database Verification Points112
Connecting to the Database via OLE DB. 112
Designing a Custom SQL Statement . 114

Using the Query Design Wizard . 114

Reviewing the Record Set . 117
Accepting the Query . 117

DatabaseVP Advanced Options . 118

A Template Replacement Variables . 119
Replacement Variables for Unit Test Generation Templates 119

Variables Used in All Unit Test Generation Templates 120
Variables Used Only with the COM/Visual Basic Templates 124
Variables Used Only with the EJB Templates . 125

Replacement Variables for Scenario Test Generation Templates 127
Variables Used in Both the COM/VB and EJB Templates 128
Variables Used Only in the COM/VB Scenario Test Templates 130
Variables Used Only in the EJB Scenario Test Templates 131

Replacement Variables for Stub Generation Templates.132
Replacement Variables for the COM/VB Stub Templates 132
Replacement Variables for the EJB Stub Templates . 134

B Troubleshooting . 139
Resource File Not Found .139

Symptom . 139
Explanation . 139

COM Test Scripts Fail to Run from TestManager .140
Symptom . 140
Explanation . 140

Command Line Example . 140

EJB Class or Interface Not Found Messages .140
ix

Java Query Builder Failing to Connect to Cloudscape Database 141

java.naming.communication Error in Test Log Window142

Glossary . 143

Index . 147
x

Preface
This manual provides conceptual information and task-oriented guidelines for using
Rational® QualityArchitect. QualityArchitect is a collection of integrated tools for
testing middleware components built with technologies such as Enterprise JavaBeans
and COM.

Audience

This guide is intended for all members of the development team who design, write,
edit, or execute test scripts for testing Enterprise JavaBeans and COM components. A
solid foundation in the target test script language is assumed.

Other Resources

This guide is available as a printed manual and in electronic form as HTML and PDF
files.

To access the HTML version:

■ Click Start > Programs > <Rational ...> Rational Test > Rational Online Manual.

■ Or start Rose and click Tools > QualityArchitect > Online Manual.

The PDF version of this manual is available on the Rational Solutions for Windows
Online Documentation CD.

Context-sensitive Help is available for QualityArchitect from within Rational Rose®.

To access the online Help:

1 Click Tools > QualityArchitect > Console.

2 When the toolbar is displayed, press F1.

The Help will appear after several seconds.
xi

Integrations Between Rational Testing Tools and
Other Rational Products

Rational TestManager Integrations

Integration Description Where it is Documented

Rational
TestManager–
Rational
Administrator

Use Rational Administrator to create and
manage Rational projects. A Rational
project stores software testing and
development information. When you
work with TestManager, the information
you create is stored in Rational projects.
When you associate a RequisitePro
project with a Rational project using the
Administrator, the RequisitePro
requirements appear automatically in the
Test Inputs window of TestManager.

■ Rational Suite Administrator’s Guide
■ Rational TestManager User’s Guide
■ Rational TestManager Help

TestManager–
Rational
ClearQuest

Use ClearQuest with TestManager to
track and manage defects and change
requests throughout the development
process.

With TestManager, you can submit
defects directly from a test log in
ClearQuest. TestManager automatically
fills in some of the fields in the
ClearQuest defect form with information
from the test log and automatically
records the defect ID from ClearQuest in
the test log.

■ Rational TestManager User’s Guide
■ Rational TestManager Help

TestManager–
Rational Rational
Unified Change
Management
(UCM)

Use UCM with TestManager to:
■ Archive test artifacts such as test cases,

test scripts, test suites, and test plans.
■ Maintain an auditable and repeatable

history of your test assets.
■ Create baselines of your test projects.
■ Manage changes to test assets stored

in the Rational Test datastore.

■ Rational TestManager User’s Guide
■ Rational TestManager Help
■ Rational Suite Administrator’s Guide
■ Rational Administrator Help
■ Using UCM with Rational Suite
xii Preface

TestManager–
Rational
RequisitePro

Use RequisitePro to reference
requirements from TestManager so that
you can ensure traceability between your
project requirements and test assets.

Use requirements in RequisitePro as test
inputs in a test plan in TestManager so
that you can ensure that you are testing
all the agreed-upon requirements.

■ Rational TestManager User’s Guide
■ Rational TestManager Help
■ Rational Suite Administrators Guide

TestManager–
Rational Robot

Use TestManager with Robot to develop
automated test scripts for functional
testing and performance testing. Use
Robot to:
■ Perform full functional testing. Record

test scripts that navigate through your
application and test the state of objects
through verification points.

■ Perform full performance testing.
Record test scripts that help you
determine whether a system is
performing within user-defined
response-time standards under
varying workloads.

■ Test applications developed with IDEs
(Integrated Development
Environments) such as Java, HTML,
Visual Basic, Oracle Forms, Delphi,
and PowerBuilder. You can test
objects even if they are not visible in
the application’s interface.

■ Collect diagnostic information about
an application during test script
playback. Robot is integrated with
Rational Purify, Rational Quantify,
and Rational PureCoverage. You can
play back test scripts under a
diagnostic tool and see the results in
the test log in TestManager.

■ Rational TestManager User’s Guide
■ Rational TestManager Help
■ Rational Robot User’s Guide
■ Rational Robot Help
■ Getting Started: Rational PurifyPlus,

Rational Purify, Rational PureCoverage,
Rational Quantify.

■ Rational PurifyPlus Help

Rational TestManager Integrations

Integration Description Where it is Documented
Integrations Between Rational Testing Tools and Other Rational Products xiii

TestManager–
Rational Rose

Use Rose model elements as test inputs
in TestManager. A test input can be
anything that you want to test. Test
inputs are defined in the planning phase
of testing.

You can use Test Manager to create an
association between a Rose model (called
a test input in TestManager) and a test
case. You can then create a test script to
ensure that the test input is met. In
TestManager, you can view the test input
(the Rose model element) associated with
the test case.

■ Rational TestManager User’s Guide
■ Rational TestManager Help

TestManager–
Rational SoDA

Use SoDA to create reports that extract
information from one or more tools in
Rational Suite. For example, you can use
SoDA to retrieve information from
different information sources, such as
TestManager, to create documents or
reports.

■ Rational SoDA User’s Guide
■ Rational SoDA Help
■ Rational TestManager User’s Guide

TestManager–
Rational
Unified Process
(RUP)

Use Extended Help to display RUP tool
mentors for TestManager. RUP tool
mentors provide practical guidance on
how to perform specific process activities
using TestManager and other Rational
testing tools.

Start Extended Help from the
TestManager Help menu.

■ Rational TestManager User’s Guide
■ Rational TestManager Help
■ Rational Extended Help

Rational TestManager Integrations

Integration Description Where it is Documented
xiv Preface

Contacting Rational Technical Publications

To send feedback about documentation for Rational products, please send e-mail to
our technical publications department at techpubs@rational.com.

Contacting Rational Customer Support

If you have questions about installing, using, or maintaining this product, contact
Rational Customer Support as follows:

When you contact Rational Customer Support, please be prepared to supply the
following information:

■ Your name, telephone number, and company name

■ Your computer ’s make and model

■ Your operating system and version number

■ Product release number and serial number

■ Your case ID number (if you are following up on a previously reported problem)

Your Location Telephone Facsimile E-mail

North America (800) 433-5444
(toll free)

(408) 863-4000
Cupertino, CA

(781) 676-2460
Lexington, MA

support@rational.com

Europe, Middle
East, Africa

+31 (0) 20-4546-200
Netherlands

+31 (0) 20-4545-201
Netherlands

support@europe.rational.com

Asia Pacific +61-2-9419-0111
Australia

+61-2-9419-0123
Australia

support@apac.rational.com
Contacting Rational Technical Publications xv

xvi Preface

1Introduction
Rational® QualityArchitect is a powerful collection of integrated tools for testing
middleware components built with technologies such as Enterprise JavaBeans (EJB)
and COM.

QualityArchitect, in conjunction with Rational Rose®, allows users to generate test
scripts for components and interactions in your Rose model. Once generated, the test
scripts can be edited and executed from your development environment or from
Rational® TestManager.

With QualityArchitect, you can:

■ Generate test scripts that unit test individual methods or functions in a
component-under-test.

■ Generate test scripts that drive the business logic in a set of integrated
components. Scripts can be generated directly from Rose interaction diagrams or,
in the case of EJBs, from live components using the EJB Session Recorder.

■ Generate stubs that allow you to test components in isolation, apart from other
components called by the component-under-test.

■ Track code coverage through Rational® PureCoverage® and model-level coverage
through TestManager.

What You Need to Get Started

To develop tests with QualityArchitect, you need:

■ A workstation running Microsoft NT 4.0, Windows 2000,
Windows 98, or Windows Me.

■ Rational Rose

■ A project for storing your test assets (created with Rational® Administrator)

■ TestManager or an IDE for executing test scripts
1

Supported Environments

QualityArchitect supports the environments listed in the following sections:

If You Are Testing Enterprise JavaBeans
■ Version 1.2.x or later of a Sun-compliant Java Developer Kit (JDK)

■ Version 3.5 or later of IBM Visual Age for Java, or Version 4.x or later of Visual
Cafe, Enterprise Edition

■ One of the following application servers:

❑ Versions 3.5 or 4.x of IBM WebSphere, Advanced Edition

❑ Version 5.1 or later of BEA WebLogic

❑ The Sun J2EE Reference Server

If You Are Testing COM, DCOM, and COM+ Components

QualityArchitect can test components in any language that realizes COM interfaces.
Microsoft Visual Basic 6.0 is required to compile and run test scripts.

Installing Rational QualityArchitect

QualityArchitect can be installed as part of Rational Suite® DevelopmentStudio,
Rational Suite Enterprise, or Rational Rose Enterprise. For information about the
Rational Suite installations, see the Rational Suite Installation Guide. For information
about the Rose installation, see the Installing Rational Rose manual.

The installation process adds a QualityArchitect subdirectory to your Rational Test
directory.

Quick Start

Use the procedures in this section to get started with QualityArchitect.

Step 1: Working in the Rational Administrator

Before you generate test scripts, use the Administrator to create a project and test
datastore. The test datastore contains test assets, such as datapools, lookup tables, and
log files.

For details, see the Rational Suite Administrator’s Guide or the Administrator Help.
2 Chapter 1 - Introduction

Step 2: Working in Rose

1 If you have an existing component, reverse engineer it into your Rose model. (Skip
this step if you are already modeling your system and components in Rose.)

For EJBs, a good way to do this is with the Rose/Java Add-in. Simply make a jar
file and drop the jar file on a class diagram. Be sure to include only the source
(.java) files for the Remote interface, the Home interface, and the Bean itself, and
the deployment descriptors. Do not import any .class files compiled from the
source files because these are not properly reverse-engineered with parameter
names. For more information, see Reverse Engineering a Deployed EJB into Rose on
page 50 and the Rose J online Help.

2 Choose a template for the test generation process. This template contains
replacement variables that become populated when you generate the test script.
(A template is provided for you by default.) For more information, see Templates on
page 7 and Template Replacement Variables on page 119.

In Rose, right-click a model element to test and click QualityArchitect > Select Unit
Test Template.

3 To create a unit test and datapool, right-click the item to test and click
QualityArchitect > Generate Unit Test.

For information about testing your business logic, see Using EJB Scenario Tests to
Test Transactions on page 70 or Using COM Scenario Tests to Test Transactions on
page 109. For information about generating EJB test scripts with the Session
Recorder, see Using the EJB Session Recorder on page 82. For information about
datapools, see Datapools on page 23.

4 If this is your first time generating a test script, you are prompted to select a test
script source directory in which to store your scripts. For more information, see
Storing Your Tests Scripts on page 6.

5 Populate the datapool.

For information about populating datapools for EJB test scripts, see Populating the
Datapool on page 54. For information about populating datapools for COM test
scripts, see Populating the Datapool on page 105.

Step 3: Working in Your IDE

After you generate your test assets, you must add them to a project in your IDE,
where you can run the tests.

If you are using IBM Visual Age for Java (VAJ), you need to import test assets into the
VAJ repository. For details, see Importing Test Assets into Your IDE on page 58.
Quick Start 3

If you are working in a Visual Cafe/WebLogic environment, you need to add your
test scripts to a Visual Cafe project and update the class path in Visual Cafe. For
details, see Visual Cafe/WebLogic Requirements on page 36.

Working In Visual Basic

Every generated test of a COM component results in the creation of a Visual Basic
project and several other files. For a list and description of these generated files, see
Programming in Visual Basic on page 100.

To run your test in Visual Basic:

1 Open the Visual Basic project file.

2 Edit the .cls file as needed.

3 Click Run > Start with Full Compile.
4 Chapter 1 - Introduction

2Basic Concepts
This section discusses several basic concepts that will help you take advantage of the
features provided with QualityArchitect.

Topics include:

■ Test script basics

■ Templates

■ Scenario tests

■ Stubs

■ Test script services

For information about concepts that apply to specific component models, see the
sections that describe each particular model.

Test Script Basics

QualityArchitect allows users to generate test scripts that drive and validate the
component-under-test. Test scripts are generated in various languages, depending on
the type of component you are testing. The following table lists the test script
languages for each component type:

Test Types

There are two types of test scripts that QualityArchitect can generate from Rose:

■ Unit tests

■ Scenario tests

Component Type Language

Enterprise JavaBeans Java

COM components Visual Basic
5

A unit test tests the behavior of an individual method or operation.

A scenario test tests the behavior of components as specified in an interaction diagram.
These tests are intended to replicate the sequence of events in a transaction, and as
such, test the implementation of the transaction. You can use interaction diagrams to
construct simple scenario tests involving a single component or complex tests
involving multiple components.

In addition, you can generate complex scenario tests by directly interacting with
deployed EJBs using the EJB Session Recorder. For details, see Using the EJB Session
Recorder on page 82.

Storing Your Tests Scripts

Projects for storing test assets are created in the Rational Administrator. Each project
can contain several datastores—for example, a datastore for test assets, a datastore for
requirements, and a datastore for change requests.

Certain test assets for QualityArchitect, such as datapools, lookup tables, and log files
are stored in the test datastore. Test scripts, however, can be stored independently of
the test datastore, in a location of your choice, where they can be placed under source
control. When you generate your first test script, you will be prompted to log in to a
project and to select a directory for storing your test scripts. QualityArchitect
maintains an association between this directory and the project’s test datastore,
making it possible to execute test scripts directly from TestManager. You can change
this location afterwards by clicking the Rational Options button on the Rational
Console and then clicking either the VB Options or Java Options tabs.

Unit test scripts are stored in the unittests subfolder within your specified test script
folder. Scenario tests are stored in the scenariotests subfolder. Tests recorded with the
EJB Session Recorder are stored in the recordedtests subfolder. Stubs are stored in the
Stubs folder.

Note: If you want to share your test scripts with a team, be sure to use a UNC path
(\\server-name\directory-path) to create the project and a UNC path to specify your script
source directory. Failure to do both of these will result in a project and script source
that cannot be used in a group environment.

To create a new project with the Administrator:

1 Click Start > Programs <Rational ...> Rational Test > Rational QualityArchitect
Console.

where <Rational ...> is the name of the Rational product you have installed—
for example, Rational Suite DevelopmentStudio.
6 Chapter 2 - Basic Concepts

2 When the Rational console appears, click the Administrator icon on the console.

3 Click File > New Project.

For more details, see the Rational Suite Administrator’s Guide.

Templates

QualityArchitect uses templates to provide structure and common code to generated
scripts and stubs. Templates are simply ASCII text files with replacement variables.
The code generators supplied with QualityArchitect replace the variables in the
templates with real code derived from Rose model elements.

All of the Rational templates can be customized. To create your own template, simply
copy one of the supplied templates and edit it as needed. For example, to provide
more logging information in your scripts, copy one of the supplied templates, add
logging code, and generate tests with the new template.

Templates also provide a means for supporting additional environments, such as
application servers. Generally, to add support for a new environment, you adjust a
standard template, primarily in the initialization code, and then generate your test
scripts using the new templates.

Rational has included several templates for your use. These templates can be logically
grouped into the following general categories:

■ Templates for unit test generation

■ Templates for scenario test generation

■ Templates for stub generation

■ Template for the EJB Session Recorder

Within each general category there are several templates for the various component
models. You can browse through the Rational Test\QualityArchitect\Template directory to
view the list of templates that are installed.

Click to open the Administrator.
Templates 7

The following table lists the templates QualityArchitect uses for unit test generation:

For more information about templates, see Templates for Scenario Test Generation on
page 13, Templates for Stub Generation on page 21, and Template Replacement Variables on
page 119.

Scenario Tests

Scenario tests can be used to test transactions. Scenario tests can be generated from
Rose interaction diagrams—that is, sequence and collaboration diagrams—or by
direct interaction with the EJBs using the EJB Session Recorder.

Template Description

weblogic_home.template Template for testing the methods in the home interface of EJBs
on a WebLogic server. Use this template:
■ To ensure that the remote interface can be created

successfully
■ As a check before writing or running method-level tests

weblogic_remote.template Template for testing the methods in the remote interface of
EJBs on a WebLogic server.

websphere_home.template Template for testing the methods in the home interface of EJBs
in the WebSphere environment.

websphere_remote.template Template for testing the methods in the remote interface of
EJBs in the WebSphere environment.

sunj2ee_home.template Template for testing the methods in the home interface of EJBs
in the Sun J2EE environment.

sunj2ee_remote.template Template for testing the methods in the remote interface of
EJBs in the Sun J2EE environment.

TestNameScript.cls Template for the Visual Basic .cls file that is generated to test a
COM component. The .cls file is the template for the actual test
program.

TestName.vbp Template for the Visual Basic project file that is generated to
test a COM component.

TestNameMain.bas Template for the main program that calls the test program in
the .cls file. Visual Basic requires a main program to begin
execution.

TestName.res Template for the resource file that is created to support
datapools.
8 Chapter 2 - Basic Concepts

This section discusses scenario test script generation from Rose. For information
about generating scenario test scripts from the EJB Session Recorder, see Using the EJB
Session Recorder on page 82.

QualityArchitect interprets the messages in the interaction diagram and generates test
scripts for one or more receiver objects in the diagram. (The receiver object is the object
that receives the message.)

Each message in a diagram corresponds to an operation of a class, either by direct
linkage through the diagram or by name. Each argument in a message maps to a
corresponding parameter object attached to the operation object of the class.

As it generates the test script, QualityArchitect allows you to insert an optional
verification point for each message in the diagram. (A verification point is a functional
testing construct used by a test script to verify specific behavior. For more
information, see Verification Points on page 25.)

Scenario test scripts include support for datapools, logging, and verification points.
(A datapool is a set of records that you can use to drive a test script. For details, see
Datapools on page 23.) The scenario test templates provide automatic support for
datapools and logging, while verification points can be added during script
generation.

Receiver object for openAcct message Receiver object for deposit message
Scenario Tests 9

The basic steps for creating a scenario test from Rose are as follows:

1 Create a sequence or collaboration diagram in Rose.

2 Select the objects involved in the transaction and add them to the diagram.

3 Add messages for the operations that implement the transaction.

4 Add parameter names and data to the messages (optional).

In this step, you can modify message syntax to permit automated data correlation.
For more information, see Message Signatures and Data Correlation on page 13.

5 Select a scenario test template.

6 Generate the scenario test and optionally insert verification points.

For more information, see Using the Java Query Builder to Add Database Verification
Points on page 72 and Using the OLE DB Query Builder to Add Database Verification
Points on page 112.

7 Edit datapool data.

For more information, see Datapools in Scenario Tests on page 23. For information
about creating datapools for EJB unit tests, see Generating EJB Unit Test Scripts and
Datapools from a Rose Model on page 52. For information about creating datapools
for COM unit tests, see Generating COM Unit Test Scripts and Datapools from a Rose
Model on page 102.

Support for Performance Testing

In addition to using scenario test scripts for functional testing, you can use these
scripts to evaluate the performance of your components under a load of multiple
simulated users. To capture performance data, you need to:

1 Modify the default template to create an object for measuring performance.

2 Modify your generated test scripts to capture performance data.

3 Execute your test scripts from Rational TestManager.

The following examples are for EJB test scripts, but the same procedures apply for
COM test scripts as well.

Modifying the Template

To create test scripts that capture performance data during test script execution, you
need to first create a modified version of the default scenario test template for your
application server. You will find this template in <RQA Home>\templates\ejb\Scenario

Test Templates\ejb\appserver*_scenario.template.
10 Chapter 2 - Basic Concepts

To modify the template for performance testing, uncomment the line in the template
that calls the constructor for the TSSMeasure class, as shown in the following EJB
example:

public void testMain(String[] args) {

boolean fRetval = false;

TSSMeasure tss = new TSSMeasure(); // used for measuring performance

TSSDataPool dp = new TSSDataPool();

int iDPCount = 0;

Be sure to use this modified template whenever you want to create a test script for
capturing performance data.

For more information about the TSSMeasure class, see the documentation for the
TSSMeasure class in the Rational Test Script Services for Java manual and the Rational
Test Script Services for Visual Basic manual.

Modifying a Generated Test Script

Each generated test script must be edited to capture performance data. Typically, you
need to insert measurement calls around each remote method call that you want to
measure. To do this:

1 Insert a TSSMeasure.commandStart() call before and a
TSSMeasure.commandEnd() call after the invocation of each
method-under-test.

By placing commandStart() and commandEnd() calls around each remote
method call, you can measure the time required to complete these calls under load.
The following code example shows some typical parameters to the
commandStart() and commandEnd() methods.

tss.commandStart("deposit", "deposit", MST_WAITRESP);

retdeposit_double = Accountremote.deposit(amt);

tss.commandEnd(TSS_LOG_RESULT_PASS);

2 Optionally, you can use the TSSMeasure.think() method to insert a think-time
delay before any method call that would typically follow a user interaction or
other pause.

For further information about these methods, see the Rational Test Script Services for
Java manual. For information about the corresponding Visual Basic operations, see
the Rational Test Script Services for Visual Basic manual.
Scenario Tests 11

Executing the Load Test

After you have modified the template and the generated test script, you can execute
the test script. For information about how to execute a performance testing script, see
the Running Test Scripts topics in the Rational TestManager Help and in the Rational
Test Script Services manuals.

Support for Verification Points

Typically, components tested with QualityArchitect are transactional, and as such
they make updates to a database. Therefore, verification must include a way to verify
these database transactions. Because scenario tests specifically test these transactions,
QualityArchitect provides database verification points to verify any changes to the
underlying database. When you generate a scenario test from Rose, QualityArchitect
prompts you to insert a database verification point for each message in your
interaction diagram.

In addition, the verification point framework is extensible, allowing you to create
your own verification point types. For overview information about verification
points, see Verification Points on page 25. For information about inserting database
verification points using the EJB Session Recorder, see Inserting a Verification Point on
page 97.

For more detailed information about verification points, see the following topics in
the Rational Test Script Services for Java and Rational Test Script Services for Visual Basic
manuals:

■ Reference pages for the VerificationPoint and DatabaseVP classes

■ Implementing a New Verification Point

These manuals are available in print and also online, in both HTML and PDF format.
12 Chapter 2 - Basic Concepts

Templates for Scenario Test Generation

QualityArchitect includes several templates that are used to generate scenario tests
for each supported component model or application server. The templates shown in
the first row in the following table are the ones you can select for test script
generation. The other templates are called by the template that you select.

Message Signatures and Data Correlation

Message signatures include all of the message text that appears in parentheses in a Rose
interaction diagram.

In the following message, for example, the message signature is shown in bold:

openCheckingAcct(accountID : long, customerID : String, transactionID
: long, openBalance : java.math.BigDecimal)

Template Description

websphere_scenario.template
weblogic_scenario.template
sunj2ee_scenario.template
com_scenario_script.template

Top-level templates for testing the sequence of methods
specified in an interaction diagram.
Each top-level template contains substitution variables
for the method calls listed in the interaction diagram.

websphere_scenario_constructor.template
weblogic_scenario_constructor.template
sunj2ee_scenario_constructor.template
com_scenario_constructor.template

Templates for building the constructor. For EJBs, the
constructor builds the remote interface. For COM, the
constructor builds the COM object.

scenario_java_method1.template
scenario_java_method2.template
com_scenario_operation.template

Templates for generating the method calls. These
templates include functions for calling individual
methods within the sequence and for calling functions
such as tssCommandStart and tssCommandEnd,
which are used for performance testing.

com_scenario_project Template for the Visual Basic project file that is generated
to test a COM scenario.

com_scenario_basmain.template Template for the main Visual Basic program that calls the
test program in the .cls file. Visual Basic requires a main
program to begin execution.
Scenario Tests 13

Signature Options

Rose supports the following options for displaying message signatures:

■ Type Only

■ Name Only

■ Name and Type

■ None

You set these options in Rose by clicking Tools > Options > Diagram and clicking one
of the check boxes inside the Message Signatures box.

Set message signatures here.
14 Chapter 2 - Basic Concepts

You can use message signatures for several purposes. For example, you can:

■ Change parameter names to force the correlation results that you want.

■ Add assignments to give initial values to parameters.

■ Add assignments to give names to function results correlated with parameters.

Warning: If you change message signature options from one style to another in
Rose—for example, from Name and Type to Type Only—every modification made to
a manually edited message name is erased. Therefore, decide early on how you want
message signatures displayed and do not change the options after you have modified
the messages.

Message Syntax

When you generate a scenario test from Rose, QualityArchitect parses the diagram to
determine the name, type, and initial data for each parameter (argument) in a
message signature.

■ Parameter name. For each parameter in the message signature, QualityArchitect
uses the name from the message signature in the diagram. If no name is included
in the message, QualityArchitect uses the name property of the associated
parameter.

■ Parameter type. For each parameter in the message signature, QualityArchitect
uses the type from the associated parameter object, regardless of what is in the
diagram.

■ Parameter’s initial data. For each parameter in the message signature,
QualityArchitect uses the value to the right of the equals sign. If no initial data is
included in the signature, QualityArchitect uses the Initial Data property of the
associated parameter. If no Initial Data property is set and no initial data is
specified in the diagram, then NULL or some other suitable value for the data type
is used. Thus, you can select the None option in the Message Signatures box and
still get a valid test script.

Note: When only the name or type of a parameter is present in the message,
QualityArchitect compares this name or type to the actual type in the corresponding
parameter object. If they are the same, QualityArchitect uses the name from the
parameter object as the script variable name for the parameter. If they are different,
QualityArchitect uses the name used in the message and takes the type from the
parameter object.
Scenario Tests 15

Message syntax for the Name and Type option is as follows:

Result = operation([parameter1 : type1 = value1, parametern : typen = valuen, etc])

Editing Message Signatures

You edit message signatures to tell QualityArchitect three things, all of which are
optional:

■ Parameter names that are different from their parameter specification

■ Initial data

■ The name and type of the return value

QualityArchitect generates a variable in the test script to hold the return value (result)
if you do not supply one.

How Message Signatures Correlate to Datapool Fields

When you generate a scenario test from Rose, QualityArchitect also generates a
corresponding datapool (see Datapools in Scenario Tests on page 23). QualityArchitect
first examines the arguments in the message signatures to determine how many
datapool fields to create. If no argument names are included in the signature,
QualityArchitect supplies the names by searching the parameter (object) of the
corresponding operation of the class.

For example, if QualityArchitect finds an argument named accountID in multiple
messages, it creates a single datapool field for accountID. If you want to have
multiple datapool fields for accountID, you need to assign accountID different
names in the diagram, regardless of the Rose Message Signature Option that you have
picked.

Item Description

Result The value (if any) returned by the operation. It is used by QualityArchitect for
correlation with parameters of the same name later in the transaction. Result
is optional.

Operation The name of the operation as defined in a UML class.

Parameter
Type
Value

Parameter, type, and value define a parameter of the operation and its initial
value. Parameter and type are both optional, because QualityArchitect
examines the parameter object. The syntax that separates them with a colon is
the UML syntax for separating parameter name and type. In QualityArchitect,
you can add the assignment syntax (= value) to allow the initial value of a
parameter to be specified in the sequence diagram.
16 Chapter 2 - Basic Concepts

Message Signature Examples

This section provides several samples of message signatures.

Example 1 – the Name-Only Option

In this example, there is a getBalance operation in the ExecuteTransaction
class. This operation takes one argument—accountID. If you want to generate a test
script with two calls to this operation, with each call operating on different
accountIDs, you need to code your message signatures as follows:

getBalance(accountID1)

getBalance(accountID2)

In this example, two datapool fields will be created—one for accountID1 and one
for accountID2.

If you want these operations to go against the same account, driven from a datapool,
you need to code your message signatures as follows:

getBalance(accountID)

getBalance(accountID)

The fact that both operations use the same argument name ensures that they are
assigned to the same datapool field.

If you want to initialize these operations with data and assign them different names,
code the message signatures as follows:

getBalance(accountID1 = 1)

getBalance(accountID2 = 5)

Example 2 – the Type-Only Option

If you use the Type-Only option, code your message signatures as follows to get the
same datapool field for both calls:

getBalance(: Long)

getBalance(: Long)

In this case, the name of the datapool field will be taken from the parameter name of
the parameter object.

If you want different datapool fields for each call, you must add the name to the
signature, as in the following example, even if you have set Rose Options to
Type-Only.

getBalance(accountID1 : long = 1)

getBalance(accountID2 : long = 5)
Scenario Tests 17

Example 3 – Name and Type

This example shows the message signature when you display name and type without
including parameter values or assignment statements.

getBalance(acctountID : long, acctType : java.lang.String, amount :
double)

Example 4 – Name and Type with Parameter Values

This example shows the message signature after you add the initial data assigned to
each parameter.

getBalance(accountID : long = 1, acctType : java.lang.String =
"checking", amount : double = 50)

Example 5 – Name and Type with Assignment Statement

Finally, if the message returns a value and you want to establish a variable in the test
script to hold this value, possibly for use as a parameter of data in a subsequent
message, you need to convert the message name into an assignment statement. In this
example, the variable named result is declared and used in the test script to hold
the value returned by the getBalance() function.

result = getBalance(accountID : long = 1, acctType : java.lang.String =
"checking", amount : double = 50)

Stubs

Stubs are components that can be used for testing purposes in place of actual
components. A stub can be either a pure “dummy” component that just returns some
predefined value, or it can simulate more complex behavior. With QualityArchitect,
the simulated behavior for stubbed operations is specified in a lookup table. Through
the use of stubs, you can control the results returned from components that interact
with the component-under-test and create a simulated, controlled test environment.

Consider the sample EJB application that is described in the chapter on Testing
Enterprise JavaBeans. In this chapter, you create a test script to test the getBalance
method that is included with the ExecuteTransaction interface. Because the
getBalance method calls several methods in the ManageAccount EJB, such as
getSavingsBalance and getSavingsCustomerID, you would need to control
access to the ManageAccount EJB to thoroughly test the getBalance method. As an
alternative, you can create a stub for the ManageAccount EJB and control the results
returned when getBalance calls the methods in the ManageAccount EJB.
18 Chapter 2 - Basic Concepts

In a stub, any method that is called by the component-under-test requires a lookup
table consisting of rows and columns of expected results and exceptions for the
method, as in the following example. (Although the lookup table is generated
automatically when you generate the stub, you must use the datapool manager to
populate the lookup table.)

gets data from

Sample Application

Lookup Table

Test Environment

calls

ManageAccounts EJB Stub

getSavingsBalance

ExecuteTransaction EJB

getBalance method

component-under-test

getCustomerSavingsID

tests

w
hich calls

1

ExecuteTransaction EJB

deleteAllAccounts method
deposit()
getBalance()
.
.
withdraw()

getBalance Test Script

ManageAccounts EJB

getSavingsBalance method
getCustomerSavingsID method

AccountID expectedReturn expectedException

012 34 5678 012 34 5678

123 45 6789 123 45 6789

234 56 7890 java.rmi.RemoteException
Stubs 19

The lookup table contains one or more columns for each parameter of the operation
being stubbed. QualityArchitect uses the values in the columns to determine how the
operation should behave. If the operation is supposed to return a value, the value is
shown in the expectedReturn column. If the operation is supposed to throw an
exception, the type of exception is shown in the expectedException column. Any
Java class that extends java.lang.Throwable is a valid value for the
expectedException column.

The stub looks up the row containing the inputs matching the parameter values
passed in by the component-under-test—that is the caller of the stub—and either
returns the value in the expectedReturn column or throws the exception in the
expectedException column.

To generate stubs:

1 In the Rose browser, right-click the implementation class you are testing and click
QualityArchitect > Generate Stubs.

Note: COM stubs are generated from classes stereotyped as <<coclass>> from the
COM Type Library.

2 Select a directory for storing the stubs.

For more information about stubs for EJBs, see Generating Stubs and Lookup Tables
for the Unit Test on page 56. For more information about stubs for COM
components, see Generating Stubs and Lookup Tables for the Unit Test on page 106.

A lookup table is created automatically, with the name
ClassName_OperationName_L—for example
ExecuteTransaction_getBalance_L.

3 Use the datapool manager to populate the lookup table with data.

For information about populating lookup tables for EJBs, see Populating the Lookup
Tables on page 57. For information about populating lookup tables for COM
components, see Populating the Lookup Tables on page 107.

Note: Stubs must be deployed on the same computer as the test script. Otherwise,
playback will fail.
20 Chapter 2 - Basic Concepts

Templates for Stub Generation

EJB

The following table lists the templates used to generate stubs for the home interface,
remote interface, and implementation class.

The following table lists the templates used to build the method body in the EJB’s
implementation class. The template that is used depends on the particular method.

Template Description

Session_Home.template Template used to generate the stub for an EJB
home interface.

Session_Remote.template Template used to generate the stub for an EJB
remote interface.

Session_Bean.template Template used to generate the stub for an EJB
implementation class.

Template Description

MethodBodyWithoutLookUp.template Template used when lookup code cannot be
generated, either because:
■ The method has no parameters
■ The method has no return value or

exceptions
■ The method contains at least one complex

parameter and lookup code cannot be
generated automatically.

MethodBodyWithoutExceptions.template Template used when the method throws no
exceptions.

MethodBodyWithoutReturnValue.template Template used when the method has no return
value (for example, returns void).

MethodBody.template Template used for all other methods.
Stubs 21

COM/VB

The following table lists the template used to generate the stub code that defines the
Visual Basic class.

The following table lists the templates that are used to create the method bodies for
the COM/VB stub. Different templates are used depending on the type of method
being stubbed.

Template Description

VBCOMClass.template Template used in all cases to generate the code
that defines the Visual Basic class.

Template Description

FunctionBody.template Template used for functions. (Functions are
methods that have return values.)

FunctionBodyWithoutLookUp.template Template used for functions without
parameters. (No look up code is generated when
a method has no parameters.)

PropertyGetBody.template Template used for "Property Get" methods.

PropertyGetBodyWithoutLookUp.template Template used for "Property Get" methods
without parameters. (No lookup code is
generated when a method has no parameters.)

PropertyLetBody.template Template used for "Property Let" methods.

SubBody.template Template used for subroutines. (Subroutines are
methods that have no return value.)

SubBodyWithoutLookUp.template Template used for subroutines without
parameters. (No lookup code is generated when
a method has no parameters.)
22 Chapter 2 - Basic Concepts

Test Script Services

Rational Test Script Services provide datapool, logging, verification, synchronization,
measurement, and monitoring capabilities to various Rational applications, including
QualityArchitect.

Datapools

A datapool is a set of records that you can use to drive a test script. Typically, each
record in the datapool represents a test case and includes the test inputs and the
expected results. With a datapool, a single script can iterate through multiple test
cases. If you want to add a new test case, such as the result of invalid input, you only
need to add another record to the datapool.

For example, suppose you want to test an add() operation that takes two integers as
parameters. If you want to test what happens when you pass it two negative integers,
you can simply add another record to the datapool. Include negative integer values in
each of the two parameter columns, and populate the expected result or expected
exception columns accordingly.

Datapools greatly reduce the number of test scripts that are required and minimize
script maintenance.

Datapools in Scenario Tests

When you generate a scenario test from Rose, QualityArchitect creates a datapool
automatically. It examines each message in an interaction diagram and populates one
datapool row with data based on the parameter values in the messages. If no
parameter values are found in the messages, QualityArchitect attempts to populate
the row with initial values found in the parameter specification.

QualityArchitect creates a datapool column for each unique parameter in each
message in the diagram. For example, as shown in the following figure, if the first
message included in the script has four unique parameters, and the second message
has two unique parameters, the datapool will have at least six columns. In addition,
each verification point contributes several columns of data to the datapool. The initial
data for these verification point columns is extracted from the values entered into the
Query Builder wizard.
Test Script Services 23

By default, QualityArchitect assigns the datapool a name of
ModelName_DiagramName__D.

You can access and edit the datapool from the QualityArchitect console. To display
the console, click Tools > QualityArchitect > Console.

Datapools in Unit Tests

When you generate a unit test, QualityArchitect creates a datapool automatically.
QualityArchitect creates the new datapool and presents you with a dialog box in
which you can add rows of data. QualityArchitect uses the operation’s parameters as
datapool columns and names the datapool ClassName_OperationName__D.

Note: Because the datapool name and its column names are embedded in the script,
you will need to modify your script if you change the datapool name.

For an EJB example, see Generating EJB Test Assets on page 51. For a COM example, see
Generating COM Test Assets on page 102.

For detailed information on the use of datapools with other Rational Test products,
see the Help for TestManager and Rational® Robot.

openCheckingAcct method - columns generated for:
accountID, customerID, transaction ID, and openBalance

deposit method - columns generated for accountID and amount
24 Chapter 2 - Basic Concepts

Data Types

Data types are used to define datapool columns. You assign data types to datapool
columns when you define the columns in the Datapool Specification dialog box.

For Java, QualityArchitect supports all native data types plus String and
BigDecimal.

For Visual Basic, values are retrieved as variants containing strings.

For a complete list of available data types, see the TestManager Help.

Note: Complex data types are not currently supported in datapools. However, you
can construct complex data types at runtime based on the primitive data types that
the datapool supplies.

Verification Points

A verification point (VP) is a functional testing construct used by a test script to verify
specific behavior in the application or component-under-test. In QualityArchitect, a
verification point compares an expected data object with an actual data object. The
result of this comparison is logged, allowing for analysis of overall functional
correctness and test case coverage.

How Data Is Verified

A verification point operates on two different types of data:

■ Data that is known to be correct.

For example, this data might be captured when the component is known to be
functioning correctly, or from a source that is known to contain the correct data.
Data that is known to be correct is called the expected data.

■ Data whose validity is unknown and must be verified.

This data is captured at test runtime and is called the actual data.

A verification point compares expected data and actual data. If the data matches (or
optionally, satisfies some other condition, such as falling within an accepted range),
the verification point passes. Otherwise, the verification point fails. Verification point
results are automatically logged and viewed in the Rational Test Log window.
Test Script Services 25

Static, Dynamic, and Manual Verification Points

In QualityArchitect, verification points can operate in three different modes—static,
dynamic, and manual—depending on how the verification point is invoked.

Static Verification Points

With a static verification point, the expected data object is captured the first time the
verification point is executed and is stored in the datastore as the verification point's
baseline. The expected data object does not change during subsequent executions of
the test script. When the verification point is executed again:

■ The baseline data object is retrieved from the datastore.

■ An actual data object is captured from the system-under-test.

■ The two objects are compared, and the result is logged.

Static verification points are regression-style tests in that the successful behavior of
the system is implicitly defined by the system's behavior the first time the verification
point executes. In other words, static verification points assume that the
system-under-test is functionally correct the first time you run the verification point.

QualityArchitect contains a user-acknowledgement flag that lets you interactively
accept or reject data as a baseline for a static verification point. With the flag enabled,
QualityArchitect will prompt you with the baseline data that you can accept or reject.
For details, see Verification Point classes in the online Rational Test Script Services for Java
and Rational Test Script Services for Visual Basic manuals.

To access the online documentation:

■ Click Start > Programs <Rational ...> Rational Test > API > TSS for Java or

■ Click Start > Programs <Rational ...> Rational Test > API > TSS for Visual Basic.

where <Rational ...> is the name of the Rational product you have installed—
for example, Rational Suite DevelopmentStudio.
26 Chapter 2 - Basic Concepts

Dynamic Verification Points

With a dynamic verification point, the expected data object is passed to the
verification point at execution time. This expected data object is not managed by the
verification point infrastructure and may be hard coded into the script, driven by
values in a datapool, or built using any other method chosen by the test script author.
When a dynamic verification point is executed, an expected data object is passed to
the verification point by the test script. The verification point captures an actual data
object from the system-under-test, compares the expected and actual data objects, and
logs the result. Dynamic verification points differ from static verification points in
that the successful behavior of the system under test is explicitly defined by the test
script author, not implicitly defined by a previous behavior of the system-under-test.

Manual Verification Points

With manual verification points, you as the scripter are responsible for providing
both the expected and the actual data objects. The verification point framework
simply compares the data objects that you provide and logs the results.

Database Verification Point

In this release, Rational has implemented a single verification point: the database
verification point. This verification point is used to validate the changes made to a
data source by the component-under-test.

With a static database verification point, the first time that you run a test, the data is
captured and stored in the datastore, thus establishing a baseline. Subsequent runs
will show a pass in the Rational Test Log window if the returned values are the same
as the values in the baseline. With a dynamic database verification point, the test
script itself constructs the expected value.
Test Script Services 27

The Query Builder

QualityArchitect provides a Query Builder wizard that lets you build and execute
queries for use with a database verification point. Wizards are available for both EJB
and COM. The wizards let you connect to a data source and interactively build a
query.

The Query Builder appears automatically in the following situations:

■ When you insert a database verification point while generating a scenario test
from Rose

■ When you insert a database verification point from the EJB Session Recorder (EJB
only)

■ When you run a test containing an incompletely-specified database verification
point

For more information, see Using the Java Query Builder to Add Database Verification
Points on page 72 and Using the OLE DB Query Builder to Add Database Verification
Points on page 112.

Extensibility

QualityArchitect provides you with the ability to implement your own verification
points by extending the verification point framework classes. For details, see
Implementing a New Verification Point in the Rational Test Script Services for Java and
Rational Test Script Services for Visual Basic manuals.
28 Chapter 2 - Basic Concepts

3Testing Enterprise
JavaBeans
This section contains the information you need to use QualityArchitect to test
Enterprise JavaBeans (EJBs).

Topics include:

■ Overview

■ Requirements for EJB testing

■ The Rational Bank Account Sample Application

■ Reverse engineering a deployed EJB into Rational Rose

■ Generating test assets

■ Importing test assets into your IDE

■ Deploying stubs to a WebLogic application server

■ Deploying stubs to the Sun J2EE Reference Server

■ Executing test scripts

■ Using EJB scenario tests to test transactions

■ Using the Java Query Builder to add database verification points

■ Using the EJB Session Recorder

Overview

This section provides a brief overview of EJB development and test.

For each EJB that you develop, you must define two interfaces and either one or two
classes—the home interface, the remote interface, the implementation class, and the
primary key class.

■ The remote interface defines all of the bean’s business methods.

■ The home interface defines lifestyle methods for the bean—that is, methods for
creating, removing, and finding beans.
29

■ The implementation or bean class implements the business methods defined by the
remote interface.

■ The primary key class provides a pointer into a database. Only entity beans require a
primary key.

Because client applications interact directly with the home and remote interfaces and
not with the implementation class, and because test scripts emulate client
applications, EJB testing needs to test only the methods defined in the remote and
home interfaces.

EJB TestScripts

All test scripts that are generated or constructed manually extend
com.rational.test.tss.TestScript, an abstract class that contains the code
necessary to connect to a project, initialize log information, and look up the name of
the script.

All EJB test scripts that extend the TestScript class must implement a main
method and a testMain method.

■ The main method is the entry point for the class.

■ The testMain method is the entry point for the testing code. testMain includes
all of your test logic. All calls to other test scripts must reside within testMain.

In addition, all EJB test scripts must call tms.startTestServices and
tms.endTestServices.

■ tms.startTestServices initializes logging and other test services and should
be the first method called in testMain (within a try block).

■ tms.endTestServices turns off logging, writes the log file, and performs
various cleanup functions and should be the last method called in testMain (in
your finally block).

Packages Imported Into EJB Test Scripts

EJB test scripts must also import the following packages:

■ com.rational.test.ct.*

■ com.rational.test.tss.*

■ com.rational.test.vp.*

■ com.rational.test.vp.ui.*

■ java.util.*
30 Chapter 3 - Testing Enterprise JavaBeans

■ javax.naming.*

■ javax.rmi.PortableRemoteObject

For more information about the TestScript class, see the online Rational Test Script
Services for Java manual. (Rational Test\Api\TssJava\Rational TSS for Java.htm).

Documentation Conventions

The following table lists some conventions used in this chapter:

Requirements for EJB Testing

This section describes the following configuration requirements for EJB testing:

■ Supported JDKs

■ Application server classpath requirements

■ Rational test script playback requirements

■ EJB Session Recorder requirements

■ TestManager playback requirements

■ VAJ/WebSphere requirements

■ Visual Cafe/WebLogic requirements

Product Convention Default Location

J2EE <J2EE Home> C:\j2sdkee1.2.1

WebLogic 5.1 <WebLogic Home> C:\weblogic

WebLogic 6.1 <BEA Home> C:\bea

WebSphere <WebSphere Home> C:\websphere\appserver

Rational Test <Rational Test Home> C:\Program Files\Rational\Rational Test

Rational Quality
Architect

<RQA Home> C:\Program Files\Rational\Rational
Test\QualityArchitect
Requirements for EJB Testing 31

Supported JDKs

The following table lists the JDKs supported for each IDE/application server
combination:

Application Server Classpath Requirements

QualityArchitect requires that the appropriate application server classes be included
in your classpath. These classes can be included in either your user or system
classpath, or for the EJB Session Recorder, in the Additional Class path field on the
QualityArchitect Options dialog box.

These requirements must be met in order to play back test scripts from TestManager
or to successfully launch the EJB Session Recorder.

Classpath Requirements for the Sun J2EE Reference Server

The Sun J2EE Reference Server requires the following entry on your classpath:

■ <J2EE_Home>\j2sdkee<version>\lib\j2ee.jar

Classpath Requirements for WebLogic 5.1

The following entries must be added to your classpath if you are operating in a
WebLogic 5.1 environment:

■ <WebLogic Home>\license

■ <WebLogic Home>\lib\weblogicaux.jar

■ <WebLogic Home>\classes

■ <J2EE Home>\lib\j2ee.jar (Even if you’re working in a WebLogic 5.1 environment
j2ee.jar is required.)

IDE and Application Server Recommended JDKs

Sun J2EE Reference Application Server
v.1.2.1

Sun JDK 1.3.1_02

Visual Cafe 4.x/WebLogic 6.x Sun JDK 1.3.x or later

Visual Cafe 4.x/WebLogic 5.1 Sun JDK 1.2.x or later

VAJ 3.5/WebSphere Runtime
Environment/WebSphere 3.5x

IBM JDK 1.2.x or later

VAJ 4.x/WebSphere Runtime
Environment/WebSphere 4.0

IBM JDK 1.3.x or later
32 Chapter 3 - Testing Enterprise JavaBeans

Classpath Requirements for WebLogic 6.1

The following entries must be added to your classpath if you are operating in a
WebLogic 6.1 environment:

■ <BEA Home>\lib\weblogic.jar

■ <J2EE_Home>\lib\j2ee.jar (Even if you’re working in a WebLogic 6.1 environment
j2ee.jar is required.)

Classpath Requirements for Remote WebSphere 3.5

The following entries must be added to your classpath if you need to connect to a
remote WebSphere application server or the WebSphere test environment from
another IDE besides VAJ:

■ <WebSphere Home>\websphere3.5\appserver\lib\ejs.jar

■ <WebSphere Home>\appserver\lib\ibmjndi.jar

■ <WebSphere Home>\appserver\lib\ibmwebas.jar

■ <WebSphere Home>\appserver\lib\ns.jar

■ <WebSphere Home>\appserver\lib\ujc.jar

These classpath entries are not required if you are working within the WebSphere test
environment.

Note: For the sample application, the ratlbankacctwsclient.jar file is required if the
sample application client that is installed with QualityArchitect needs to connect to
the remote version of WebSphere from another IDE besides VAJ. This file can be
found in the <RQA Home>\Samples\ejb\bankacct\vaj directory.

Rational Test Script Playback Requirements

The installation procedure includes several JAR files that are required for test script
playback. These JAR files must be added to your IDE’s classpath to enable script
playback from your IDE. These JAR files include:

Package Description File Name Default Installation Path

Rational Test Script Services rational_ct.jar
rttssjava.jar

C:\Program Files\Rational\Rational
Test\QualityArchitect

C:\Program Files\Rational\Rational Test

Rational Test Script Execution
Adapter

rttseajava.jar C:\Program Files\Rational\Rational
Test\tsea
Requirements for EJB Testing 33

EJB Session Recorder Requirements

The EJB Session Recorder requires:

■ The JAR files listed in the section Rational Test Script Playback Requirements on
page 33, plus the following JAR files:

■ JDK version 1.2.2 and later

In addition, before you can start the EJB Session Recorder from the QualityArchitect
console, several required classes must be referenced either in the additional classpath
for the EJB Session Recorder or in the user classpath. These classes and the order in
which they must be listed are as follows:

■ The home and remote interface classes for the deployed EJBs. These classes can be
referenced in a directory or in a JAR file. For the sample application, you will need
one of the following, depending on your application server:

❑ <RQA Home>\Samples\ejb\bankacct\vc\ratlbankacct51.jar

❑ <RQA Home>\Samples\ejb\bankacct\vc\ratlbankacct61.jar

❑ <RQA Home>\Samples\ejb\bankacct\j2ee\ratlbankaccteeclient.jar (For Sun J2EE)

■ The required application server classes (See Application Server Classpath
Requirements on page 32.)

■ The path to the installed J2EE SDK. This path must appear in the J2EE_HOME
system environment variable.

For information about configuring your IDE to work with the EJB Session Recorder,
see Starting the EJB Session Recorder from Visual Cafe on page 84 and Starting the EJB
Session Recorder from Visual Age for Java on page 85.

Package Description File Name Default Installation Path

XML Script Generator scriptgen_ct.jar C:\Program Files\Rational\Rational
Test\QualityArchitect

Xerces XML parser v.1.2 xerces.jar C:\Program Files\Rational\Rational
Test\QualityArchitect

Java Collections v.1.1 collections.jar C:\Program Files\Rational\Rational
Test\QualityArchitect

JavaHelp v.1.1 jh.jar C:\Program Files\Rational\Rational
Test\QualityArchitect

EJB Session Recorder EJBSessionRecorder_ct.jar C:\Program Files\Rational\Rational
Test\QualityArchitect
34 Chapter 3 - Testing Enterprise JavaBeans

Modifying the Additional Classpath Field

To modify the Additional Classpath field:

1 Click Tools > QualityArchitect > Console to display the RQA Console.

2 Click the RQA Options icon.

3 Click the Java Options tab.

4 Type the required classes in the additional classpath field.

Rational TestManager Playback Requirements

To play back EJB test scripts directly from TestManager, your system must meet the
following requirements:

■ You must have either a Sun JDK or Sun JRE installed. (To play back test scripts on
an Agent machine, a JRE is sufficient. To play back test scripts on the Master
machine, a JDK is required.)

When TestManager executes Java (EJB) test scripts, it must first locate the
currently installed Java Virtual Machine (JVM), which it finds by looking at the
following registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\JavaSoft\Java Runtime
Environment\CurrentVersion

This registry key is created by the installation programs of both the Sun JDK and
the Sun JRE.

To override the most recently installed JDK/JRE, you can create an environment
variable called RATL_JVM_LOCATION and assign it to the fully qualified path of
the JVM library (jvm.dll for JDK 1.2 and above, javai.dll for JDK.1.x).

■ You must have the full path to a Java compiler (javac.exe) included in your Path.

■ You must include the following in your classpath:

❑ The home and remote interface classes for the deployed EJBs. (See EJB Session
Recorder Requirements on page 34 for a list of required client JAR files for the
sample application.)
Requirements for EJB Testing 35

❑ Any required application server classes (see Application Server Classpath
Requirements on page 32)

Note: If your scripts contain static verification points, the baseline must be captured
outside TestManager by running the script once from an IDE or from the command
line. TestManager assumes that the baseline already exists. If this is not done, the
script run will fail. For further information about baselines and static verification
points, see Verification Points on page 25.

Visual Age/WebSphere Requirements

If you are working in a VAJ/WebSphere Test Environment, QualityArchitect
requires:

■ Visual Age for Java 3.5 (VAJ) with patch 2 or VAJ 4.x

■ The VAJ WebSphere Test Environment and VAJ EJB Development Environment

For details about how to load these features, see the VAJ online Help.

■ DB2 version 6.1 with fix pack 2 (For applications using a database for container or
bean managed persistence)

You can download FixPak 2 from the following location:
http://www.ibm.com/DB2.

For further information about working with VAJ and WebSphere, see Classpath
Requirements for Remote WebSphere 3.5 on page 33, Setting Up the Sample Application for
VAJ/WebSphere on page 39, Importing Test Assets into Your IDE on page 58, Executing
Test Scripts from VAJ on page 68, and Starting the EJB Session Recorder from Visual Age for
Java on page 85.

Visual Cafe/WebLogic Requirements

If you are working in a Visual Cafe/WebLogic environment, QualityArchitect
requires:

■ Visual Café 4.x or newer

■ WebLogic 5.1.x or newer

In addition, to run the sample application, you need the ratlbankacct51.jar file
(ratlbankacct61.jar if you are in a WebLogic 6.1 environment) and the Cloudscape
BankAcct database, located in the <RQA Home>Samples\ejb\bankacct\vc\data directory.

Note: The minimum required JDK for WebLogic 6.1 is v.1.3.
36 Chapter 3 - Testing Enterprise JavaBeans

For further information about working with Visual Cafe and WebLogic, see Classpath
Requirements for WebLogic 5.1 on page 32, Classpath Requirements for WebLogic 6.1 on
page 33, Adding WebLogic to the Global Classpath in Visual Café on page 37, Deploying the
Sample Application to a WebLogic Application Server on page 45, Deploying the Sample
Application to WebLogic 6.1 on page 47, Configuring Visual Cafe to Run the Sample
Application on page 49, Executing Test Scripts from Visual Cafe on page 69, and Starting
the EJB Session Recorder from Visual Cafe on page 84.

Adding WebLogic to the Global Classpath in Visual Café

If you are working in a Visual Cafe/WebLogic environment, you must add WebLogic
to the classpath in Visual Cafe if it is not already present. This is required for running
the sample application, the EJB Session Recorder, and any generated test scripts in a
Visual Cafe/WebLogic environment.

To add WebLogic to the global classpath in Visual Cafe:

1 Launch Visual Café 4.x.

2 Click Tools > Environment Options.

3 Click the Internal VM tab.

You should see the classpath settings at the bottom.

4 Add the WebLogic classpath.

For WebLogic 5.1:

a If you do not see <WebLogic Home>\classes in the classpath settings, click New.

b Navigate to the <WebLogic Home>\classes folder.

c Click Open to insert the directory into the classpath settings.

d Click New.

e Navigate to the <WebLogic Home>\lib folder.

f Select the weblogicaux.jar file and click Open to insert the file into the classpath
settings.

For WebLogic 6.1:

a If you do not see the <BEA Home>\lib\weblogic.jar file in the classpath settings,
click New.

b Navigate to the <BEA Home>\lib\weblogic.jar file.

c Click Open to insert the file into the classpath settings.
Requirements for EJB Testing 37

5 Click OK to close the Environment Options dialog box.

Note: The settings do not take effect until you exit and restart Visual Cafe.

The Rational Bank Account Sample Application

The Rational Bank Account sample application is an EJB-based application that you
can use to try out the features in QualityArchitect. With the Rational Bank Account
sample application, you can set up bank accounts and make deposits and
withdrawals. The application consists of the following items:

■ A Java-based client application

■ A set of six EJBs—four entity beans and two session beans

Each entity bean corresponds to a different table in a database and uses container
managed persistence. The session beans are stateless and are used to interact with
the client; the entity beans are used to manage transactions with the database.

■ A Rose model—ratlbankacct.mdl—that you can use to generate test scripts and stubs
against the sample EJBs that are provided.

This model is populated with objects derived from reverse engineering the sample
application’s deployed JAR file. It uses the J2EE modeling support built into Rose J
to model the beans in the sample application and implements a standard profile
for stereotypes and associations for modeling EJBs in UML. For more information
about J2EE modeling support, see How Rational Rose Supports the Java Platform
Enterprise Edition (J2EE) in the Rose J Online Help.

Note: The procedures that are used to demonstrate EJB testing with QualityArchitect
are all based on the sample application. For example, one procedure shows you how
to generate a unit test for the getBalance method in the ExecuteTransaction
remote interface, while another procedure shows you how to create a stub for the
methods that are called by getBalance method.
38 Chapter 3 - Testing Enterprise JavaBeans

The following figure shows the structure of the Rational Bank Account sample
application.

Setting Up the Sample Application for VAJ/WebSphere

This section shows you how to set up the sample application to run in a
VAJ/WebSphere test environment.

Importing the Sample into VAJ

Before you can run the sample application, you must import it into VAJ, as follows:

1 Start IBM Visual Enterprise for Java (VAJ).

2 Within the VAJ Workbench window, click the Projects tab.

3 Right-click the empty space in the window and click Import.
The Rational Bank Account Sample Application 39

4 When the SmartGuide dialog box appears, select Repository as the import source
and click Next.

5 Select Local Repository, click the Browse button, and navigate to the <RQA Home>
\Samples\ejb\bankacct\vaj directory.

6 Select RatlBankAcct.dat and click Open.

7 Make sure Projects is selected in the ‘What do you want to import?’ section.

8 Click Details.

9 Select Rational Bank Account Sample in the Projects list and make sure 1.2.2 is
selected in the Versions window.

10 Click OK.

11 Make sure Add most recent project edition to workspace is checked.

12 Click Finish to import the sample into the repository.

If you cannot see the Rational Bank Account Sample project in the Projects window:

1 Right click in the window and select Add > Project.

2 Select Add projects from the repository.

3 Select Rational Bank Account Sample from the Available project names list and
make sure 1.2.2 is selected in the Versions window.

4 Click Finish.

You should now see the Rational Bank Account Sample project in the Projects
window.

Creating the Database

To run the sample, you must first create a database in DB2 and then configure VAJ to
use the database.

To create the database:

1 From the Start menu, click Programs > Db2 for Windows NT > Command Line
Processor to launch the DB2 Command Line Processor.

2 At the db2=> prompt, type create database <database name>, where <database

name> is the actual name of the database that will be used for the sample—for
example, create database bankacct.

You should see a return message in the window that states the database was
created successfully.
40 Chapter 3 - Testing Enterprise JavaBeans

3 Close the Command Line Processor window by typing quit and then exit at the
db2=> prompt.

Configuring VAJ to Use the New Sample Database

To configure VAJ to use the new sample database:

1 Launch VAJ.

2 Specify the location of the DB2 JDBC driver to use.

a From the Workbench, click Window > Options.

b In the Options dialog box, select Resources and enter the following information
in the Workspace class path text box:

<DB2 Path>\java\db2java.zip

where <DB2 Path> is the full DB2 installation path and db2java.zip contains the
DB2 JDBC driver. The default DB2 installation directory is SQLLIB.

If you do not know where DB2 is installed, search for the file name db2java.zip
to determine the full file path. The following is an example of the JDBC driver
path:

D:\SQLLIB\java\db2java.zip

c Click Apply to save the selected DB2 JDBC driver information, and then click
OK.

Adding EJB Support

To add EJB support:

1 Launch VAJ.

2 Click File > QuickStart from the main VAJ menu.

3 Click Features in the left-hand box and Add Features in the right-hand box.

4 Click OK.

A dialog box appears with a list of features.

5 Click IBM EJB Development Environment and IBM WebSphere Test Environment
and click OK.

To make sure that these features were added successfully, make sure that the EJB
tab is visible in the Workbench window.
The Rational Bank Account Sample Application 41

Deploying the Sample Application in the VAJ Test Environment

This section describes how to deploy the sample application in the VAJ Test
Environment.

Creating Database Tables

1 In VAJ, click the EJB tab to view the EJB window.

You should now see the RationalBankAcctSampleEJBs group in the window.

2 Right-click RationalBankAcctSampleEJBs and click Add To > Server Configuration.

3 Right-click EJB Server (server 1) and click Properties.

4 Right-click EJB Server (server 1) again and choose Create Database Table.

This creates the database tables that are required for the sample.

Starting the Persistent Name Server

1 From the Workbench window, click Workspace > Tools > WebSphere Test
Environment.

This opens the WebSphere Test Environment Control Center.

2 Click Persistent Name Server and click Start Name Server.

The Persistent Name Server is the JNDI server that is required for the naming
service.

You know that the server has been started when the following message appears at
the bottom of the WebSphere Test Environment Control Center:

Persistent Name Server is Started

Enter jdbc:db2:<database name>.

Select COM.ibm.db2.jdbc.app.DB2Driver.

Enter the administration ID that was chosen
when DB2 was installed, usually db2admin.

Enter the administration password that was
chosen when DB2 was installed, usually
db2admin.

Click OK.
42 Chapter 3 - Testing Enterprise JavaBeans

Starting the EJB Server

1 Back in the EJB Server Configuration window, right-click EJB Server (server 1) and
click Start Server.

2 Click the Console window to bring it to the front.

Note: It might take a moment for the Console window to be brought to the front.

3 In the All Programs box, click the last EJB Server entry.

You know that the server has been successfully started when the following line
appears in the Output box:

EJServer E Server open for business

Starting the Rational Bank Account Sample Application

1 Click the Projects tab in the VAJ Workbench window.

2 Find the Rational Bank Account Sample in the window and expand it by clicking
on the + box.

If there is a - in the box, it is already expanded.

3 Expand the RationalBankAcct package by clicking the + box.

If there is a - in the box, it is already expanded.

4 Scroll until you see the BankAcctClient class. (On the right side of the class there
should be a picture of a running man.)

5 Right-click on this class and click Run > Check Classpath.
The Rational Bank Account Sample Application 43

6 Click Compute Now.

7 If you plan to use the WebSphere Test Environment, click the Edit button to the
right of the Project path and make sure the IBM WebSphere Test Environment
package is checked. Click OK.

8 Click the Program tab.

In the Command line arguments box, enter the following text:

appserver=websphere

9 Click OK.

10 Right-click on this class and click Run > Run main.

At this point, the Rational Bank Account window appears in the upper left corner
of your screen. Use this client application to add database entries that you can use
for testing purposes. For details, see Adding Account Information to the Rational Bank
Account Sample on page 50.

Importing the Required JAR Files

Before importing generated test scripts into VAJ, you must import the Rational
support classes (rational_ct.jar and rttssjava.jar), the Rational Test Script Execution
Adapter (rttseajava.jar), and the JavaHelp classes, and add these JAR files to the IDE’s
classpath. The Rational classes provide support for verification points, datapools, stub
generation, script playback, logging, and other services. The JavaHelp classes are
required to display the Help for the EJB Query Builder and the EJB Session Recorder.
You can find these files in the following locations:

■ <RQA Home>\rational_ct.jar

■ <Rational Test Home>\tsea\rttseajava.jar
44 Chapter 3 - Testing Enterprise JavaBeans

■ <Rational Test Home>\rttssjava.jar

■ <RQA Home>\jh.jar

To import the required JAR files into VAJ:

1 Right-click the Rational Bank Account Sample project and click Import.

2 Make sure that the JAR file option is selected and click Next.

3 Under What types of files do you want to import, make sure that the .class option
and the resource option are checked.

4 Under Options, make sure that Create new/scratch editions of versioned
projects/packages is checked.

5 Click the Browse button and navigate to the installation directory for
QualityArchitect (Rational\Rational Test\QualityArchitect).

6 Select rational_ct.jar and click Open in the File Open dialog box.

7 Click Finish.

All of the class files from the JAR file are then imported into the VAJ repository.

8 Repeat these steps for <RQA Home>\jh.jar, <Rational Test Home>\tsea\rttseajava.jar,
and <Rational Test Home>\rttssjava.jar.

Deploying the Sample Application to a WebLogic Application Server

WebLogic provides two deployment modes:

■ A temporary, development mode in which you can stage or hot deploy EJBs for
testing purposes without shutting down the WebLogic server

■ A permanent, production mode in which you must load EJBs and configure the
server offline

This section describes how to permanently deploy the sample application to
WebLogic 5.1 and WebLogic 6.1 servers. For information about how to permanently
deploy stubs to a WebLogic application server, see Deploying Stubs to a WebLogic
Application Server on page 59. For information about hot deploying the sample
application, stubs, and other EJBs, see Deploying Stubs to a Running WebLogic Server
(Hot Deployment) on page 61.

Deploying the Sample Application to WebLogic 5.1

To deploy the sample application to WebLogic 5.1:

1 Create a subdirectory within the <WebLogic Home>\myserver directory called
RatlBankAcct.
The Rational Bank Account Sample Application 45

2 Copy the RatlBankAcct51.jar file from the <RQA Home>\Samples\ejb/bankacct\vc
directory to the <WebLogic Home>\myserver\RatlBankAcct directory that was created
in Step 1.

3 Copy the bankacct directory from <RQA Home>\Samples\ejb\bankacct\vc\data to
<WebLogic Home>\eval\cloudscape\data.

These directories contain the Cloudscape databases for the sample. (For details,
see the Cloudscape readme file.)

4 Open the weblogic.properties file, found in <WebLogic Home>, for editing.
Uncomment (by removing the # symbol from the beginning of the line) the
following lines found in the WEBLOGIC DEMO CONNECTION POOL
PROPERTIES section:

weblogic.jdbc.connectionPool.demoPool=\

url=jdbc:cloudscape:demo,\

driver=COM.cloudscape.core.JDBCDriver,\

initialCapacity=1,\

maxCapacity=2,\

capacityIncrement=1,\

props=user=none;password=none;server=none

weblogic.allow.reserve.weblogic.jdbc.connectionPool.demoPool=everyo

ne

5 Change the following lines:

6 Add the following lines right after WEBLOGIC EJB DEMO PROPERTIES section
and then save the weblogic.properties file:

weblogic.ejb.deploy=\

<weblogic directory>/myserver/RatlBankAcct/RatlBankAcct51.jar

For example:

weblogic.ejb.deploy=\

From To

url=jdbc:cloudscape:demo,\ url=jdbc:cloudscape:bankacct,\

weblogic.jdbc.connectionPool.demoPool=\ weblogic.jdbc.connectionPool.rqaPool=\

weblogic.allow.reserve.weblogic.jdbc.conn
ectionPool.demoPool=everyone

weblogic.allow.reserve.weblogic.jdbc.conne
ctionPool.rqaPool=everyone
46 Chapter 3 - Testing Enterprise JavaBeans

c:/weblogic/myserver/RatlBankAcct/RatlBankAcct51.jar

7 Launch the WebLogic server:

Click Start > Programs > WebLogic 5.1 > WebLogic Server.

If the Rational Bank Account sample was successfully deployed, you should see
the following lines in the WebLogic Server window:

<EJB> 1 EJB jar files loaded, containing 6 EJBs

<EJB> 6 deployed, 0 failed to deploy.

Note: If the EJBs do not deploy, check the following log files for any errors:

➑ <WebLogic Home>\myserver\weblogic.log

➑ <WebLogic Home>\eval\cloudscape\data\cloudscape.log

Deploying the Sample Application to WebLogic 6.1

To deploy the sample application to WebLogic 6.1:

1 Verify that you have installed the examples that come with the WebLogic 6.1
Application Server. If the examples are not installed, be sure to install them. To
verify, navigate to the <BEA Home>\wlserver6.1\config\examples directory.

The default <BEA Home> directory is C:\bea.

2 Copy the RatlBankAcct61.jar file from the <RQA Home>\Samples\ejb\bankacct\vc
folder to the <BEA Home>\wlserver6.1\config\examples\applications folder.

3 Copy the whole bankacct folder from the <RQA Home>\Samples\ejb\bankacct\vc\data
folder to the <BEA Home>\wlserver6.1\Samples\eval\cloudscape\data folder.

4 Open the <BEA Home>\wlserver6.1\config\examples\config.xml file in a text editor and
locate the section that contains the JDBCConnectionPool entries. This section
should be located near the top of the file.

5 After the very last JDBCConnectionPool entry, insert the following lines exactly
as shown:

<JDBCConnectionPool CapacityIncrement="1"

DriverName="COM.cloudscape.core.JDBCDriver" InitialCapacity="1"

MaxCapacity="1" Name="rqaPool"

Properties="user=none;password=none;server=none"

Targets="examplesServer" URL="jdbc:cloudscape:bankacct"/>

6 Save the file and exit the text editor.
The Rational Bank Account Sample Application 47

7 Launch the WebLogic 6.1 Application Server that includes the deployed sample:

Click Start > Programs > BEA Weblogic E-Business Platform > WebLogic Server 6.1 >
Examples > Start Examples Server.

Deploying the Sample Application to the Sun J2EE Reference Server

To deploy the sample application to the Sun J2EE Reference Server, you must first
have the latest J2EE SDK v1.2.1 installed along with the required matching JDK (For
details about required JDKs see Supported JDKs on page 32.). Throughout this section,
<J2EE_HOME> is used to represent the currently installed location for the J2EE SDK.

To deploy the sample application to the Sun J2EE Reference Server:

1 Configure the data source that the J2EE SDK will use for the Bank Account sample.

a Open the <J2EE_HOME>\config\default.properties file.

b Find the line for the property jdbc.datasources. At the end of the line, append the
following text:

|jdbc/BankAcctDB|jdbc:cloudscape:rmi:CloudscapeDB;create=true

2 Start the Cloudscape database server.

In a separate command prompt window, change the directory to
<J2EE_HOME>\bin and type the following text:

cloudscape -start

3 Start the J2EE Reference Server.

In a separate command prompt window, change the directory to
<J2EE_HOME>\bin and type the following text:

j2ee -verbose

4 Launch the Sun Deployment tool that is used to deploy the sample application to
the Sun J2EE Reference Server.

a In a separate command prompt window, change the directory to
<J2EE_HOME>\bin and type the following text:

deploytool

b In the Sun Deployment tool application window, click File > Open Application.

c In the Open File dialog box, browse to the
<RQA_Home>\Samples\EJB\BankAccount\J2EE directory and select the
RatlBankAcctEE.EAR file.

d Click Tools > Deploy Application.
48 Chapter 3 - Testing Enterprise JavaBeans

e Continue through the dialog boxes and accept all of the default settings by
clicking Next.

f When you reach the last dialog box, click Finish.

The sample EJB application will now be deployed to the Sun J2EE Reference
Server.

Configuring Visual Cafe to Run the Sample Application

To run the Rational Bank Account sample EJB application in Visual Café:

1 Launch Visual Café 4.x if it is not currently running.

2 Create a new Empty Project:

a Click File > New Project.

b Select Empty Project.

c Click OK.

3 Click Project > Options and then click the Directories tab.

4 Click New, the button furthest to the left.

5 Click file.

6 For WebLogic 5.1, navigate to
<RQA_Home>\Samples\ejb\bankacct\vc\RatlBankAcct51.jar

and click Open.

For WebLogic 6.1, navigate to
<RQA_Home>\Samples\ejb\bankacct\vc\RatlBankAcct61.jar

and click Open

7 Click the Project tab and enter the following text in the Main Class text box:

RationalBankAcct.BankAcctClient

8 In the Program Arguments box, enter the following text:

appserver=weblogic

9 Click OK.

After this point, you can add account information and configure datapools and
stub lookup tables.
The Rational Bank Account Sample Application 49

Adding Account Information to the Rational Bank Account Sample

After the Rational Bank Account window opens, you need to create a few savings
accounts and make deposits to each account. Be sure to keep track of the generated
account numbers and the balance in each account. You will need this information
later when you create the datapool.

To create a new account:

1 Click Open New Account.

2 Enter the required account information and click Execute Transaction.

3 Write down the number of the new account.

To make a deposit:

1 Click Deposit.

2 Enter the account number that was returned when the account was created.

3 Enter the amount you want to deposit.

4 Select Savings.

5 Click Execute Transaction.

Be sure to keep track of the account balance.

Reverse Engineering a Deployed EJB into Rose

The sample model that is included with the Rational Bank Account sample
application is populated with objects derived from reverse engineering the sample
application’s deployed JAR file. You can use this model to generate test assets to test
the sample application. For details, see Generating EJB Test Assets on page 51.

If you already have your own deployed EJBs that you want to test, you can reverse
engineer them into Rose. When you reverse engineer the deployed JAR file, Rose
parses the deployment descriptors in the JAR file and sets up the associations and
stereotypes automatically.

Associations between the various elements in the EJB—the implementation class, the
home interface, the remote interface, and the primary key—are displayed graphically
in the Class diagram.

Special icons are used in the Logical View of the Rose browser to display the various
elements in the EJB.
50 Chapter 3 - Testing Enterprise JavaBeans

There are two ways to reverse engineer EJBs:

■ You can drag and drop an EJB JAR file onto a class diagram.

■ You can use the filter field on the Reverse Engineering dialog box (Java > Reverse
Engineer Java) to reverse engineer a JAR file or to reverse engineer the .class or
.java files and the .xml files that comprise an EJB.

When you use the Reverse Engineering dialog box to select the .class or .java files that
are part of an EJB, you must also select the XML deployment descriptor (the .xml file)
in the same reverse engineering operation. The deployment descriptor defines the
associations that make up an EJB. Without the deployment descriptor, Rose J cannot
recreate an accurate view of your EJB classes.

Also, in order for Rose J to resolve references to J2EE API classes, you will need to
update your classpath setting with a path to the j2ee.jar file (for example,
d:\j2sdkee1.2.1\lib\j2ee.jar). For information about extending the classpath within Rose,
see the Classpath Help topic in the Rose J Help. For additional information and
requirements, see About Reverse Engineering in the Rose J Help.

Generating EJB Test Assets

This section explains how to generate the various test assets you need to test EJBs
with QualityArchitect. Test assets include test scripts, datapools, stubs, and lookup
tables.

Generating EJB Test Scripts

QualityArchitect provides two ways to create EJB test scripts. The method you choose
depends on the processes in place on your development and testing team and on the
state of the component-under-test.

The recommended way to create test scripts is to model the component-under-test in
Rational Rose and generate test scripts from the Rose model. However, if you have
already built or partially built a component, you can do the following:

■ Reverse engineer the component into Rose and generate test scripts from the
model.

■ Use the EJB Session Recorder to interactively generate test scripts from the log file.
Generating EJB Test Assets 51

Generating EJB Unit Test Scripts and Datapools from a Rose
Model

To try out the QualityArchitect unit test generation feature, you can use the sample
model that is included with the Rational Bank Account Sample Application. For
example, try generating a unit test for the getBalance method, which is part of the
remote interface named ExecuteTransaction. This method is used to obtain the
current balance from the specified account.

The getBalance method calls three methods from the ManageAccounts session
bean. The three methods are getSavingsCustomerID, getSavingsBalance, and
getCheckingBalance. All of these methods take noncomplex objects as
parameters.

To generate the unit test:

1 If you haven’t already done so, create a project with the Administrator for
maintaining your test assets.

For details, see Adding a Project in the Administrator Help.

2 Start Rose and open the ratlbankacct.mdl model.

3 In Rose, right-click the getBalance method and click QualityArchitect > Select
Unit Test Template.

4 Do one of the following:

❑ Select the websphere_remote.template and click Open if you are working in a
WebSphere environment.

getBalance method
52 Chapter 3 - Testing Enterprise JavaBeans

❑ Select weblogic_remote.template and click Open if you are working in a
WebLogic environment.

❑ Select sunj2ee_remote.template and click Open if you are working in a Sun J2EE
environment.

QualityArchitect defaults to the last template chosen, so in the future you can skip
this step if you plan to use the same template. For more information about
templates, see Templates on page 7.

5 In Rose, right-click the getBalance method again and click QualityArchitect >
Generate Unit Test.

A message appears, indicating that code generation is in progress, after which you
will be prompted to log in to a Rational project.

6 Log in to the project and click OK.

Each project contains a datastore for storing test assets, such as datapools, lookup
tables, and log files.

If this is the first time you have generated a script for a particular datastore, you
will be prompted to select a directory in which to store your scripts.
QualityArchitect maintains an association between the test script directory that
you have chosen and the test assets that are stored in the project’s test datastore.
As a result of this association, you can execute your test scripts directly from
TestManager.

7 Select a directory location and click OK.

QualityArchitect creates a directory hierarchy under the location you have chosen
and saves the test script. The test script itself is assigned a name of the format
InterfacenameMethodname. Thus, a script generated to test getBalance in the
ExecuteTransaction interface would be named
ExecuteTransactiongetBalance.java.
Generating EJB Test Assets 53

Populating the Datapool

After it generates the test script, QualityArchitect autogenerates a datapool named
ExecuteTransaction_getBalance_D, using the parameters in the getBalance
method (accountID and acctType) for the column names. It also creates a column
for the expected return value of the method and the expected exception. The expected
exception column should only be populated for rows containing input that elicits an
exception from the method-under-test.

(A datapool is a set of records that you can use to drive a test script.)

Although QualityArchitect generates the datapool automatically, it is up to you to
populate the datapool with records.

To populate the datapool:

1 When QualityArchitect asks if you want to edit the datapool that it created, click
Yes to display the Datapool Properties dialog box.

2 In the Datapool Properties dialog box that is displayed, click Edit Datapool Data and
populate the datapool with several rows using the generated account numbers
(IDs). Specify Savings as the account type, and enter the actual account balance
in the expectedReturn column.
54 Chapter 3 - Testing Enterprise JavaBeans

3 Click Save and then Close when you are finished.

4 Click OK to close the Datapool Properties dialog box.

5 Click Close to close the progress bar.

The following code fragment shows the datapool name and the parameter
(column) names embedded in the test script:

For more information about datapools, see Datapools on page 23, the Test Script
Services for Java manual, and the Help for Rational TestManager.

For information about using scenario testing to test your business logic, see Using EJB
Scenario Tests to Test Transactions on page 70.

String sDPName = "ExecuteTransaction_getBalance_D";

dp.open(sDPName);

fRetval = dp.fetch();

while (fRetval)

{

iDPCount = iDPCount + 1;

// Retrieve values from Datapool for datatypes that we understand.

accountID = dp.value("accountID").longValue();

acctType = dp.value("acctType").toString();

ExpectedReturn = dp.value("expectedReturn").getBigDecimal();

sExpectedException = dp.value("expectedException").toString();

Datapool name

Column names are displayed here in boldface.
Generating EJB Test Assets 55

Generating Test Scripts with the EJB Session Recorder

If you have already built or partially built a component, you can use the EJB Session
Recorder to interact with the component and generate test scripts. For details, see
Using the EJB Session Recorder on page 82.

Generating Stubs and Lookup Tables for the Unit Test

With QualityArchitect, you can create stubs for session beans and test any component
that calls that session bean.

When you generate stubs for session beans, QualityArchitect creates Java source files
for the home interface, the remote interface, and the implementation class itself. After
generating stubs, you can deploy them on your application server, where they replace
the real session beans.

Note: Stubs must be deployed on the same computer as the test script.

Templates used for generating EJB session stubs include:

■ Session_Bean.template

■ Session_Home.template

■ Session_Remote.template

■ MethodBodyWithoutLookUp.template

■ MethodBodyWithoutExceptions.template

■ MethodBodyWithoutReturnValue.template

■ MethodBody.template

Because the getBalance method calls methods in the ManageAccounts EJB, you
can either generate a stub or run the tests directly against the actual
ManageAccounts EJB.

To generate the stubs:

1 Right-click the ManageAccountsBean class in the Rose browser and click
QualityArchitect > Generate Stub.

2 Select a directory for storing the stubs.

3 Click OK.

QualityArchitect generates stubs for:

❑ The remote interface, ManageAccounts.java

❑ The home interface, ManageAccountsHome.java
56 Chapter 3 - Testing Enterprise JavaBeans

❑ The implementation class, ManageAccountsBean.java

QualityArchitect also creates a lookup table for each method in the stub called by
the method-under-test. In this case, QualityArchitect creates two lookup tables
because ExecuteTransaction.getBalance, when called against a Savings
account, calls two methods in the ManageAccounts
bean—getSavingsBalance and getSavingsCustomerID.

Note: Lookup tables are based on Rational datapool technology. Whereas a
datapool is used to test inputs and expected behavior, a lookup table is used with
stubs to simulate the behavior of an actual component.

After generating the lookup tables, QualityArchitect asks you if you want to edit
the newly created lookup tables.

Populating the Lookup Tables

To populate the lookup tables:

1 When QualityArchitect asks if you want to edit the lookup tables that it created,
click Yes.

2 Select the lookup table to edit, for example,
ManageAccountBean_getSavingsBalance_L, and click Edit to display the
Datapool Properties dialog box.

3 In the Datapool Properties dialog box, click Edit Datapool Data and populate the
lookup table with several rows of data, for example:

4 Click Save and then Close when you are finished.

5 Click OK to close the Datapool Properties dialog box.

6 Repeat Step 2, through Step 5 for the getSavingsCustomerID method.

7 Click Close to close the Manage Datapools dialog box.

At this point, you should be finished creating your tests assets, and you can start
setting up your development environment in order to run the tests.

AccountID expectedReturn expectedException

Generated ID 1

incorrect AccountNo java.rmi.RemoteException
Generating EJB Test Assets 57

Importing Test Assets into Your IDE

After you generate your test assets, you must add them to a project in your IDE,
where you can run the tests.

If you are using IBM Visual Age for Java (VAJ), this means importing the test into the
VAJ repository.

Importing Test Assets into VAJ

To import generated test assets into the RationalBankAccount project in the VAJ
repository:

1 Start VAJ if it is not already started.

2 Within the VAJ Workbench window, click the Projects tab.

3 Right-click anywhere in the window and click Import.

Note: When you import a test asset into VAJ, the test asset is compiled
automatically.

4 When the SmartGuide dialog box appears, select Directory as the input source and
click Next.

Be sure that these checkboxes are
selected. (For details, see the
following note.)

Click Browse and navigate to the
directory where you saved the test
assets. (See Storing Your Tests
Scripts on page 6.)

Click Browse and select
the Rational Bank Account
Sample Project.

Click Finish.
58 Chapter 3 - Testing Enterprise JavaBeans

Note: To save previous versions of your test assets, be sure to select the following
check boxes: Create new/scratch editions of versioned projects/packages and Version
imported classes and new editions of versioned projects/packages. Doing so lets you
roll back to a known previous version of the test asset.

To roll back to a previous version:

1 Shut down the EJB servers.

2 Right-click the RationalBankAcct package and click Replace with > Another Edition
menu.

Importing Test Assets into Visual Cafe

To import test assets into Visual Cafe:

1 Start Visual Cafe.

2 Create a new, empty project or open an existing project.

3 Click the Files tab under the Project window.

4 Right-click in the Project window and click Insert Files.

5 Navigate to the directory that contains the test assets you want to import.

See Storing Your Tests Scripts on page 6 for information on where the various test
assets are stored.

6 Select the test assets that you want to import, click Add, and then click OK.

7 Save the new project.

Deploying Stubs to a WebLogic Application Server

If you are working in a WebLogic environment, deploy the stubs that you generate
before you actually execute your test scripts.

WebLogic provides two deployment modes:

■ A permanent, production mode in which you must load EJBs and configure the
server offline

■ A temporary, development mode in which you can stage or hot deploy EJBs for
testing purposes without shutting down the WebLogic server

This section provides instructions for both permanent and hot deployment modes.
Deploying Stubs to a WebLogic Application Server 59

Deploying Stubs Permanently to a WebLogic Server

To deploy stubs permanently to a WebLogic server:

1 Shut down the WebLogic application server if it is currently running.

2 Generate the stubs from Rose. For details, see Generating Stubs and Lookup Tables for
the Unit Test on page 56.

3 Launch Visual Café 4.x if it is not currently running and create a new empty
project.

4 Use Insert > Files into project to add the three stub source files into the project. For
example, add the three stub files that were created in Generating Stubs and Lookup
Tables for the Unit Test on page 56. These three stub files include:

❑ The remote interface, ManageAccounts.java

❑ The home interface, ManageAccountsHome.java

❑ The implementation class, ManageAccountsBean.java

5 Add the required JAR files to the project.

a Click Project > Options and then click the Directories tab.

b Click New, the button furthest to the left.

c Click file.

d Add the required JAR files for test script playback. (See Rational Test Script
Playback Requirements on page 33.)

e For WebLogic 5.1, browse to <RQA

Home>\Samples\ejb\bankacct\vc\ratlbankacct51.jar and click Open.

For WebLogic 6.1, browse to <RQA
Home>\Samples\ejb\bankacct\vc\ratlbankacct61.jar and click Open.

f Click OK.

6 Save the project and specify a name.

7 Click Project > Rebuild all to compile the project.

8 Copy the three compiled class files into a directory named after the package name,
for example, RationalBankAcct.

9 Launch a zip utility such as WinZip and open the sample JAR file.

❑ Open ratlbankacct51.jar if you are working in a WebLogic 5.1 environment.

❑ Open ratlbankacct61.jar if you are working in a WebLogic 6.1 environment.
60 Chapter 3 - Testing Enterprise JavaBeans

10 Delete the .class files from the JAR file.

11 Add the stubbed .class files to the JAR file:

a Click the Add icon on the Winzip toolbar.

b Navigate to the stub directory and make sure that Save full path info is checked.
(It’s in Folders options.)

c Select all three .class files and then click Add.

d Close the archive file.

12 Copy the modified JAR file to the appropriate WebLogic directory, for example:

❑ <WebLogic Home>\myserver\RatlBankAcct, for WebLogic 5.1.

❑ <BEA Home>\wlserver6.1\config\examples\applications, for WebLogic 6.1.

13 Before executing any test scripts and stubs, be sure that you have met the
requirements discussed in Requirements for EJB Testing on page 31, particularly the
classpath requirements for WebLogic and the classpath requirements for playback
from TestManager.

14 Restart the WebLogic application server to deploy the stubs.

Deploying Stubs to a Running WebLogic Server (Hot Deployment)

After you generate stubs and lookup tables (see Generating Stubs and Lookup Tables for
the Unit Test on page 56), you need to deploy the stubs to the WebLogic server before
you can actually run the test script associated with the stub.

With WebLogic, it is possible to deploy these stubs to a WebLogic server without
stopping the server. This is known as hot deployment. With this feature, you can deploy
your generated stubs and test your deployed EJBs right away, before they are
deployed permanently to the WebLogic server. Any EJBs that you hot deploy to the
WebLogic server are only deployed temporarily for staging and testing purposes.
Once you stop and restart the server, the EJBs will no longer be deployed.

The following procedures use the Rational Bank Account sample application as an
example. For information about how to permanently deploy the Rational Bank
Account sample application to a WebLogic server, see Deploying the Sample Application
to a WebLogic Application Server on page 45. For information about permanently
deploying stubs to a WebLogic server, see Deploying Stubs Permanently to a WebLogic
Server on page 60.
Deploying Stubs to a WebLogic Application Server 61

The wl_deploy Build Folder

Included with the QualityArchitect installation is a build folder called wl_deploy. This
build folder contains the build scripts required to build and deploy the Rational Bank
Account sample application to a WebLogic server that is already up and running. The
wl_deploy build folder is located in the <RQA HOME>\Samples\ejb\bankacct\vc folder on
the computer where you installed QualityArchitect.

This build folder contains two command script files—setbuildenv.cmd and wl_build.cmd.

■ The setbuildenv.cmd file is a command script that is used to set the required
environment variables for the build and hot deployment process.

■ The wl_build.cmd file is a command script that is used to actually build the EJBs and
hot deploy them to a WebLogic server.

The wl_deploy folder also contains two subfolders: RationalBankAcct and META-INF.

■ The RationalBankAcct folder contains the source code for each of the EJBs required
for the Rational Bank Account sample.

■ The META-INF folder contains the XML deployment descriptors for each of those
EJBs.

Building and Hot Deploying the Sample Application and Stubs

To build and hot deploy the Rational Bank Account sample EJBs and stubs to a
WebLogic server:

1 Execute steps 3, 4, 5, and 6 from Deploying the Sample Application to WebLogic 5.1 on
page 45 if you are working with a WebLogic 5.1 server, or steps 3, 4, 5, and 6 from
Deploying the Sample Application to WebLogic 6.1 on page 47 if you are working with
a WebLogic 6.1 server. These steps only need to be executed once.

2 Open the setbuildenv.cmd file and set the required environment variables.

To do this, find the SET command for each of the required environment variables
and make sure that the value after the '=' sign is the correct value for the variable.
The required environment variables and their description follow:

❑ JAVA_HOME contains the full path to the directory where the JDK/JRE was
installed.

❑ WL_HOME contains the full path to the WebLogic home directory. The default
WebLogic home directory for version 5.1 is C:\WebLogic. The default WebLogic
home directory for version 6.1 is C:\bea\wlserver6.1.

❑ WL_HOST contains the host server name for the running WebLogic server. The
default value is localhost for a local machine.
62 Chapter 3 - Testing Enterprise JavaBeans

❑ WL_PORT contains the port number for the running WebLogic server. The
default value is 7001.

❑ WL_PASSWORD contains the system password for the WebLogic server. This
is required for the hot deployment process.

❑ WL_DEPLOYMODE contains the WebLogic deployment mode to use when
processing the built EJBs. Possible options are deploy, undeploy, and update.

Note: If you have already hot deployed EJBs to a WebLogic server, you cannot
hot deploy them again. You either have to undeploy or update the deployed
EJBs. For directions, see Undeploying the Sample Application on page 64.

❑ WL_DEPLOYNAME contains the label name to use for EJBs deployed to the
WebLogic server.

❑ BUILD is a flag variable used to turn build mode on or off. Use 1 for on and 0
for off.

❑ DEBUG is a flag variable used to turn debug mode on or off. Use for on and 0
for off.

3 Back up the actual EJB files in the <RQA
HOME>\Samples\ejb\bankacct\vc\wl_deploy\RationalBankAcct folder to a separate
directory so you can restore the original EJBs, if necessary.

The RationalBankAcct folder contains the source code for each of the EJBs required
for the Rational Bank Account sample.

4 Copy the generated stubs to the <RQA

HOME>\Samples\ejb\bankacct\vc\wl_deploy\RationalBankAcct folder, essentially
replacing the actual EJB files contained there.

5 Execute the wl_build.cmd command script to build the EJB code for the Rational
Bank Account sample and to deploy the EJBs to a running WebLogic server.

The wl_build.cmd command script:

a Calls the setbuildenv.cmd script and sets the required environment variables.

b Compiles the EJB source code.

c Generates the container code for the EJBs.

d Puts the EJB classes and container classes in a JAR file and hot deploys the EJB
JAR file to a WebLogic server.

Once you successfully execute the wl_build.cmd script, you can immediately start
testing the deployed EJBs on the running WebLogic server.
Deploying Stubs to a WebLogic Application Server 63

Undeploying the Sample Application

If you have already deployed the Rational Bank Account EJB sample to the WebLogic
server using the instructions in Deploying the Sample Application to a WebLogic
Application Server on page 45 or Deploying the Sample Application to WebLogic 6.1 on
page 47, you must undeploy the sample before the hot deployment process will work.

To undeploy the sample application:

1 Open the setbuildenv.cmd file.

2 Set the WL_DEPLOYNAME variable to the deployment name for the Rational
Bank Account EJBs.

If you deployed the Rational Bank Account EJB sample to a WebLogic 5.1 server,
set WL_DEPLOYNAME to <WL_HOME>\myserver\RatlBankAcct\RatlBankAcct51.jar.

If you deployed the Rational Bank Account EJB sample to a WebLogic 6.1 server,
set WL_DEPLOYNAME to RatlBankAcct61.

3 Set the BUILD variable to 0.

4 Set the other required environment variables with the appropriate values.

5 Make sure that the WebLogic Server is running.

6 Execute the undeployment process by running the wl_build command script.

This process undeploys the deployed Rational Bank Account EJBs from the
running WebLogic server.

Deploying Your Own Stubs

To deploy stubs of your own EJBs:

1 Create a new staging environment for your EJBs.

In this staging environment you will need a directory hierarchy containing your
EJB source files, XML deployment descriptors, and the command scripts. Be sure
that your source file directory matches the package structure of your EJBs. Also be
sure that your deployment descriptor directory is META-INF.

2 Copy your EJB source files to the EJB source file directory.

3 Copy your deployment descriptors to the deployment descriptor directory.

4 Copy the setbuildenv.cmd file and the wl_build.cmd file to your staging environment
and then modify the environment variables in those files for your particular EJBs.

5 Run the wl_build.cmd file.
64 Chapter 3 - Testing Enterprise JavaBeans

Deploying Stubs to the Sun J2EE Reference Server

If you are working in a Sun J2EE Reference Server environment, you will need to
deploy any stubs that you generate (see Generating Stubs and Lookup Tables for the Unit
Test on page 56) before you can actually execute your test scripts.

To deploy stubs to the Sun J2EE Reference Server:

1 Verify that you have JAVA_HOME in your system or user classpath. If not, create
a JAVA_HOME environment variable that points to the root of your JDK 1.3.x
installation, for example C:\jdk1.3.1.

Note: Sun JDK 1.3.x is the minimum required JDK for the Sun J2EE Reference
Server.

2 Start the Cloudscape database.

For example:

a Open a Command Prompt window.

b Type <J2EE HOME>\bin\cloudscape -start.

3 In a new Command Prompt window, change the default security settings for the
Sun J2EE Reference Server.

The default security settings for the Sun J2EE Reference Server prevents native
libraries (DLLs) from being loaded. Because stubs require DLLs for logging and
lookup tables, the default security settings will prevent stubs from working. To
enable DLLs, add the following lines to the server.policy file found in the <J2EE
HOME>\lib\security directory:

grant {

permission java.lang.RuntimePermission "loadLibrary.*";

};

Note: You can add these lines anywhere in the file as long as the lines are not
inside another grant{} block.

4 Start the Sun J2EE Reference Server.

For example, type <J2EE HOME>\bin\j2ee.

5 Start the deployment tool.

For example, type <J2EE HOME>\bin\deploytool.
Deploying Stubs to the Sun J2EE Reference Server 65

6 Using the deployment tool, click File > Open Application. For example, to open the
Rational Bank Account sample application, select <RQA
Home>\Samples\ejb\bankacct\j2ee\ratlbankacctee.ear.

7 Add the Rational support class library files to the EAR file.

a In the Local Applications pane, click on the RationalBankAccount package.

b On the General Tab, click Add Library JAR.

c Navigate to <RQA Home>, select Rational_ct.jar, and click Add Library JAR.

d Navigate to <Rational Test Home>, select rttssjava.jar, and click Add Library JAR.

e Navigate to <Rational Test Home>\tsea, select rttseajava.jar, and click Add Library
JAR.

8 Expand the BankAcctEJBJar folder and select the folder that matches the EJBs you
will be replacing with the stub code. You should see the classes associated with
that EJB in the list box.

9 Remove the EJB classes that you will be replacing with the stub code. Normally
there are three classes for each generated stub: the Home Interface class, the
Remote Interface class, and the Implementation class.

In the Contents list box of the General tab, select the existing bean classes to be
removed—RationalBankAcct\ManageAccountsBeans.class,
RationalBankAcct\ManageAccountsHome.class, and
RationalBankAcct\ManageAccounts.class, and click Delete button.

10 Once all of the classes are removed, add the stubbed classes to the currently
selected EJB.

a On the General tab, click the Add button in the Contents list box.

b Using the Browse button, navigate to the directory that contains the stubs, for
example C:\RatlBankAcct\RatlBankAcct, select the stubs—for example,
ManageAccounts.class, ManageAccountsBean.class, and
ManageAccountsHome— and click Choose Root Directory.

c Choose the directory name where the class files exist, click Add, and then click
OK.

11 In the Local Applications pane, click on the RationalBankAccount package.

12 Change Application Display Name to a new name, such as
RatlBankAcctEE_stubbed, click Save > As, and assign a new file name.
66 Chapter 3 - Testing Enterprise JavaBeans

13 Deploy the application by clicking Tools- > Deploy Application.

Note: The application will be changed when you deploy or when you explicitly save
the application. Therefore, it is best to save your changes under a different name.

Executing Test Scripts

This section describes how to execute your test scripts from VAJ, Visual Cafe, and
TestManager.

Editing Host Name and Port Number Variables

Before you can execute a test script, you may need to edit the hostName and
portNumber variables for your particular, remote application server. These variables
are declared as part of the URL string in each template used to generate the script.

The default settings are as follows:

Note: localhost is used if your application server is installed locally.

For WebLogic and Sun J2EE Application Servers

If you need to edit the hostName and portNumber variables for a WebLogic or Sun
J2EE application server, simply replace the host and port number with your own host
and port number.

For WebSphere

For WebSphere, String url="IIOP:///"; expands to "IIOP://localhost:900/.
To edit, simply replace "IIOP:///" with your own host and port number, for
example, "IIOP://MyHost:MyPortNum/.

Server URL Format Default Setting

WebLogic t3://<HostName>:<PortNumber> String url = "t3://localhost:7001";

Sun J2EE IIOP://<HostName>:<PortNumber> String url = "iiop://localhost:1050";

WebSphere IIOP://<HostName>:<PortNumber> String url = "IIOP:///";
Executing Test Scripts 67

Executing Test Scripts from VAJ

To execute the test script from VAJ:

1 Import the test script into VAJ. (For details, see Importing Test Assets into Your IDE
on page 58.)

2 Start the EJB servers to deploy the Rational Bank Account sample EJBs.

For details about starting the EJB servers, see Deploying the Sample Application in the
VAJ Test Environment on page 42.

3 Right-click the generated test script ExecuteTransactiongetBalance in the
VAJ Project window and click Run > Check Classpath.

4 Click Compute Now to add the path of the generated test script to the ClassPath.

5 If you plan to use the WebSphere Test Environment, click the Edit button to the
right of the Project path and make sure the IBM WebSphere Test Environment
package is checked. Click OK.

6 Click OK to accept the generated class path.

7 Right-click on the generated test script ExecuteTransactiongetBalance in
the VAJ Project window and click Run > Run main.

8 If necessary, log in to a project and click OK.

The Specify Log Information dialog box appears:

9 Accept the defaults in the Specify Log Information dialog box and click OK.

Click Help for more information about the Specify Log Information dialog box.

10 View the test results in the Rational Test Log window.

The log should contain entries from the stub, indicating the parameters received
and the values returned.

For more information about the Test Log window, click Help.
68 Chapter 3 - Testing Enterprise JavaBeans

Executing Test Scripts from Visual Cafe

To execute a test script from Visual Cafe:

1 Open the project that contains your test assets (see Importing Test Assets into Visual
Cafe on page 59).

2 Modify your project options by specifying the Main Class and the project
classpath.

a Click Project > Options.

b Enter the Main Class of the test script that you want to execute in the Main Class
text box. You can only execute one test script at a time.

c Be sure that you have added the required Rational test asset JAR files to the
project classpath. (See Rational Test Script Playback Requirements on page 33 for a
list of these files.)

To modify your project classpath, click the Directories tab and add the required
JAR files and/or directories to the Directories list.

d Be sure you have added the required application server JAR files and/or
directories to the project classpath. (See Application Server Classpath
Requirements on page 32.)

e Be sure you have added the required client JAR file(s) for the EJBs you are
testing. If you are testing the Rational Bank account sample EJBs, you will need
the following JAR file:

➑ For WebLogic 5.1,you will need
<RQA_Home>\Samples\ejb\bankacct\vc\RatlBankAcct51.jar

➑ For WebLogic 6.1, you will need
<RQA_Home>\Samples\ejb\bankacct\vc\RatlBankAcct61.jar

f Click OK to save the project options.

3 Click Project > Execute to build and run the test assets.

Executing Test Scripts from TestManager

Essentially, if you can run your client application from a command prompt, you
should be able to execute your test scripts from TestManager. When running a Java
test script, TestManager calls whatever Java compiler you are using to compile the
test script. For a list of prerequisites, see Rational TestManager Playback Requirements on
page 35.
Executing Test Scripts 69

To execute an RQA Java test script in TestManager:

1 Start TestManager.

2 Click File > Run Test Script > RQA Java Test Scripts.

3 Select the script and click Open.

4 From the Run Script dialog box, click OK.

For additional information about other ways to run test scripts from TestManager, see
the Rational TestManager User’s Guide or the TestManager Help.

Using EJB Scenario Tests to Test Transactions

Scenario tests use Rose interaction diagrams to test transactions. To try out this
feature, you can generate a scenario test for one of the sequence diagrams that are
included with the Rational Bank Account sample application. For example, the
following figure shows the Multiple Correlated sequence diagram that is included
with the sample application

When you generate a scenario test, QualityArchitect prompts you to insert a
verification point for each message in your interaction diagram. To add a database
verification point, you need a database and you need to know the fully qualified path
of your JDBC driver and the JDBC URL, which also includes the name of the database.
For information about setting up the database for the sample application, see The
Rational Bank Account Sample Application on page 38.
70 Chapter 3 - Testing Enterprise JavaBeans

To generate a scenario test:

1 Right-click in an active interaction diagram and click QualityArchitect > Select
Scenario Test Template.

2 Expand either the WebSphere folder, the WebLogic folder, or the Sun J2EE folder,
and select the appropriate scenario template for your environment.

3 Click Open.

4 Right-click in the interaction diagram and click QualityArchitect > Generate
Scenario Test.

5 In the Select Scenario Test Targets dialog box, select the scenario test targets—that
is, the receiver objects (where the arrows are pointing).

You can select one or more objects to test.

6 Click OK.

7 If prompted, log in to a project and click OK.
Using EJB Scenario Tests to Test Transactions 71

8 In the Define Verification Points dialog box, click Yes to add a verification point
for the first message in the diagram—getBalance.

9 In the Select Verification Point Type dialog box, select a verification point type and
click OK.

For this release, select the database verification point type—DatabaseVP.

10 At this point, the Query Builder wizard starts. Use the Query Builder to connect to
the database and to define a Select statement that can be used to query the
database. For more information about the Query Builder, see Using the Java Query
Builder to Add Database Verification Points on page 72.

11 Repeat Steps 8 and 9 for each message in the diagram.

12 After the last message, you are prompted to add a verification point at the end of
the scenario. Click Yes.

13 Select a directory to store the tests in and click OK.

Note: You can also start the scenario test generator by right-clicking a diagram in the
Rose browser and then clicking QualityArchitect > Generate Scenario Test.

Using the Java Query Builder to Add Database Verification
Points

The QualityArchitect Java Query Builder is a tool that helps you connect to and
interact with JDBC data sources for the purpose of defining database verification
points. The Query Builder uses a wizard-like interface that lets you build a query one
step at a time. Once built, the query is used with a database verification point.

To understand more about the Query Builder, consider what happens if you generate
a scenario test for the Multiple Correlated sequence diagram in the sample
application. (See Using EJB Scenario Tests to Test Transactions on page 70.) This
sequence diagram contains the following messages:

■ openCheckingAcct

■ deposit
72 Chapter 3 - Testing Enterprise JavaBeans

In testing this scenario, you could choose to create a verification point for each
message. The first verification point could be used to verify that an account was
opened and that the opening balance is as expected. The second verification point
could be used to verify the results of a deposit to this account.

To design the query, you must:

■ Connect to a database via JDBC.

■ Design a SQL statement.

■ Verify the specified SQL query settings.

Connecting to the Database via JDBC

The first step involved in building a custom SQL query is to connect to the database
and enter the required JDBC information.

When the Query Builder starts, specify the JDBC Driver, the JDBC URL, a user name,
and password, and then click Next.
Using the Java Query Builder to Add Database Verification Points 73

JDBC Driver

The JDBC Driver text is the fully qualified class name of the Java JDBC driver class
that was written for the specific DBMS that you would like to connect to. The
following table lists some examples of JDBC Driver text for some common
environments:

JDBC URL

The JDBC URL provides a way of identifying a database to the driver. The standard
syntax for JDBC URLs is as follows:

jdbc:<subprotocol>:<subname>

The three parts of a JDBC URL are broken down as follows:

The following table lists some examples of JDBC URLs for some common
environments:

Environment JDBC Driver Text

WebSphere/DB2 COM.ibm.db2.jdbc.app.DB2Driver

WebLogic/SQL Server weblogic.jdbc.mssqlserver4.Driver

WebLogic/CloudScape COM.cloudscape.core.RmiJdbcDriver

Any ODBC data source sun.jdbc.odbc.JdbcOdbcDriver

Part of URL Description

jdbc The jdbc protocol. The protocol is always jdbc.

subprotocol Contains the name of the driver or the name of a database connectivity
mechanism, which may be supported by one or more drivers. A prominent
example of a subprotocol name is "odbc", which has been reserved for
URLs that specify ODBC-style data source names.

subname Used to identify the database. The subname can vary, depending on the
subprotocol, and it can have a subsubname with any internal syntax that
the driver writer chooses.

Environment JDBC Driver Text

WebSphere/DB2 jdbc:db2:BANKACCT

WebLogic/SQL Server jdbc:weblogic:mssqlserver4:CQSMV
74 Chapter 3 - Testing Enterprise JavaBeans

User Name

The User Name text is the name of the user who has access rights to the specified
database.

Password

The Password text is the password that is associated with the database user.

Designing a Custom Query Statement

After you connect to the JDBC data source, you can design the custom SQL query
statement that will be used to retrieve specific data from the database. You can enter
the SQL query statement manually or design one interactively using the Query
Design Wizard.

For example, in testing openCheckingAcct, you could construct a Select statement
that returns an account ID, a customer ID, and a balance from the Checking table.

If you are familiar with SQL syntax and are familiar with the schema of the data
source that you are connecting to, you can simply enter your custom SQL query
statement in the SQL Text box.

Once you are satisfied with your custom SQL query statement, click Next to apply the
SQL query to the connected data source.

Using the Query Design Wizard

If you are not familiar with SQL syntax or are not familiar with the schema of the data
source that you are connecting to, you can use the Query Design Wizard to
interactively walk through the design of your custom SQL query statement. The
Query Design Wizard helps you easily create complex SQL query statements by
taking you step-by-step through the design process.

WebLogic/CloudScape jdbc:cloudscape:rmi://<hostname:<port>/<Cloudscape
database>

Any ODBC data source jdbc:odbc:nwind

Environment JDBC Driver Text
Using the Java Query Builder to Add Database Verification Points 75

To use the Query Design Wizard:

1 Click the Query Design Wizard button.

2 Select the tables that you want to query and click Next.

To select specific tables, click the table names in the Available Tables list and click
>. As an alternative, simply double-click a table name from the Available Tables
list. To select all of the tables in the list, click >>.
76 Chapter 3 - Testing Enterprise JavaBeans

For our purposes, select the Checking, Customer, and Transact tables.

3 With the Query Design wizard, you can visually join a column from one table with
a column from another table. For example:

a Click the SS_NUMBER column in the CUSTOMER table and click From.

b Click the CUSTOMER_ID column in the TRANSACT table and click To.

This creates an Inner Join between the two columns.

c Click the ACCOUNT_ID column in the TRANSACT table and click From.

d Click the ACCOUNT_ID column in the CHECKING table and click To.

e Click Next.
Using the Java Query Builder to Add Database Verification Points 77

This creates an Inner Join between these two columns.

Note: Column names are listed in TableName.ColumnName format.

4 Select the columns to include in the result set, and then click Next:

5 Enter a WHERE clause for the query and click Next.
78 Chapter 3 - Testing Enterprise JavaBeans

The WHERE clause allows you to specify a search condition that restricts the
returned query results.

6 Specify the columns to order the results by, set the sort order to Descending, and
then click Finish.
Using the Java Query Builder to Add Database Verification Points 79

7 Verify the SQL Text, make any edits as needed, and click Next to exit the Query
Design Wizard.

8 Click Next to verify the connection information and the SQL Text and then click
Finish if you are satisfied with the information.
80 Chapter 3 - Testing Enterprise JavaBeans

To make changes, click Back.

To set advanced database verification point options, click Advanced Options.

See the Query Builder Help for a description of the advanced Database VP Options
Using the Java Query Builder to Add Database Verification Points 81

Viewing and Verifying the SQL Query Results

When the custom SQL query has been successfully executed on the connected data
source, the query results are displayed in the Query Results table. The columns of the
table correspond to the columns that you included in the SQL query in the SELECT
clause.

After you finish creating the query for a scenario test, the script generator asks if you
want to create verification points for each additional message in the diagram. If you
choose to do so, create a database verification for the deposit message.

After you finish entering database verification points, the scenario test script is
generated. The values specified in the Query Builder are placed into a datapool, and
the generated code retrieves these datapool values, allowing the verification point to
be data driven.

A sample verification point is listed in the script as follows:

// A verification point may be automatically inserted below.

String svp1JDBCdriver = dp.value("svp1JDBCdriver").toString();

String svp1JDBCurl = dp.value("svp1JDBCurl").toString();

String svp1JDBCuser = dp.value("svp1JDBCuser").toString();

String svp1JDBCpassword = dp.value("svp1JDBCpassword").toString();

String svp1SQL = dp.value("svp1SQL").toString();

String svp1VPname = dp.value("svp1VPname").toString();

DatabaseVP vp1openCheckingAcctVP = new DatabaseVP("svp1VPname",

svp1SQL, svp1JDBCuser, svp1JDBCpassword, svp1JDBCdriver,

svp1JDBCurl);

vp1openCheckingAcctVP.performTest(null);

For more information about coding verification points, see the Rational Test Script
Services for Java manual.

Using the EJB Session Recorder

The EJB Session Recorder is a tool that lets you visually connect to and interact with
EJBs. As you execute transactions against the component, interaction data is recorded
and stored in an external XML file. The XML file is then converted to a scenario test
script that can be used for testing the EJBs.

Before working with the EJB Session Recorder, see EJB Session Recorder Requirements
on page 34.
82 Chapter 3 - Testing Enterprise JavaBeans

The basic steps for using the EJB Session Recorder are:

1 Start the EJB Session Recorder.

2 Connect to the JNDI (Java Naming and Directory Interface) Naming Service and
select a deployed EJB.

This returns the EJB’s home interface.

3 Select a method on the home interface and enter parameter names and values for
the method.

4 Invoke the method.

This returns the EJB’s remote interface.

5 Select a method on the remote interface and enter parameter names and values for
the method.

For example, to enter parameter names and values for the EJBs installed with
QualityArchitect, you will need to examine the Method Specifications in Rose or
review the EJB’s methods in your IDE.

6 Invoke the method.

7 View the XML log by clicking View > Current XML Log.

8 Generate a test script from the XML log.

Setting Up the Java Runtime Environment (JRE)

To choose the JRE that the Session Recorder runs in:

1 Click Tools > QualityArchitect > Console to display the RQA Console.

2 Click the RQA Options icon.

3 Click the Java Options tab.

4 Specify the desired JRE executable file in the Java Runtime Environment box.

Note: In order to connect to a WebSphere application server outside of the
WebSphere test environment, you must choose the IBM JRE, which is located by
default in the JDK\JRE\bin directory under the WebSphere installation directory.
You must also include the JDK\JRE\bin directory in your system path.
Setting Up the Java Runtime Environment (JRE) 83

Starting the EJB Session Recorder

There are several ways to start the EJB Session Recorder:

■ From the QualityArchitect console

■ From Visual Cafe

■ From IBM Visual Age for Java

Note: We recommend that you start the EJB Session Recorder from the console or the
command line, because it is more complicated to set up and configure the EJB Session
Recorder from the IDE. In addition, performance of the EJB Session Recorder is best if
run outside an IDE.

Starting the EJB Session Recorder from the Console

To start the EJB Session Recorder from the console:

1 Set up the classpath. (See EJB Session Recorder Requirements on page 34.)

2 Click the EJB Session Recorder icon on the QualityArchitect console.

Starting the EJB Session Recorder from Visual Cafe

In order to start the EJB Session Recorder from Visual Cafe, several entries must be
included in the Visual Cafe classpath.

To start the EJB Session Recorder from Visual Cafe:

1 Create a new, empty project in Visual Cafe.

2 After the new project is created, click Project > Options from the main menu.

3 Click the Project tab and enter the following text in the Main Class text box:

com.rational.test.ejbclient.EJBSessionRecorder

4 Click the Directories tab and verify that Input class files is selected in the Show
directories for box.

5 Click the New button (the button furthest to the left) in the Directories area.

6 Click the file button.

7 In the File Open dialog box, navigate to the installation directory for
QualityArchitect (by default, C:\Program Files\Rational\Rational Test\QualityArchitect),
select Rational_ct.jar and click Open.

The imported JAR file appears in the Directories list.
84 Chapter 3 - Testing Enterprise JavaBeans

8 Repeat the JAR import instructions for the rest of the required JAR files. You can
find all of these files, except rttssjava.jar, in the <RQA Home> directory (by default,
C:\Program Files\Rational\Rational Test\QualityArchitect). You can find rttssjava.jar in
C:\Program Files\Rational\Rational Test.

❑ Xerces.jar

❑ collections.jar

❑ Jh.jar

❑ Scriptgen_ct.jar

❑ Ejbsessionrecorder_ct.jar

❑ rttssjava.jar (located under Rational Test, not QualityArchitect)

9 Click Project > Execute from the main menu to launch the EJB Session Recorder.

Passing in Command Line Parameters (optional)

As an added feature, the JNDI Provider URL and Initial Context Factory can be
passed in as command line parameters for the EJB Session Recorder.

To specify these parameters for the EJB Session Recorder:

1 Click Project > Options from the main menu.

2 When the Project Options dialog box opens, enter the command line parameters in
the Program Arguments text box.

An example for Visual Cafe would be:

providerurl=t3://localhost:7001

contextfactory=weblogic.jndi.WLInitialContextFactory

Note: The JNDI Provider URL and the Initial Context Factory can also be set in the
Options dialog box, which can be accessed from the Rational QualityArchitect
console. (To access the console, click Tools > QualityArchitect > Console.)

Starting the EJB Session Recorder from Visual Age for Java

Before you start setting up the EJB Session Recorder in VAJ (v.3.5 or v. 4.x), make sure
that the IBM EJB Development Environment feature and IBM WebSphere Test
Environment feature have been added. You will know that they have been added
because you will see an EJB tab in the Workbench window. For details, see Adding EJB
Support on page 41.
Starting the EJB Session Recorder 85

Creating a New Project

From the VAJ Workbench window, create a new project.

After you create the project, you will see the name of the new project in the current
projects list.

Importing JavaHelp

1 Right click on the name of the project that you just created and click Import.

2 Make sure the Jar file option is selected and click Next.

3 Under What types of files do you want to import, make sure that the class and
resource options are checked.

4 Under Options, make sure Create new/scratch editions of versioned
projects/packages is checked.

5 Click the Browse button and navigate to the installation directory for
QualityArchitect (By default, C:\Rational\Rational Test\QualityArchitect).

6 Select jh.jar and click Open in the File Open dialog box.

7 Click Finish.

All of the class files from the JAR file are then imported into the VAJ repository.

8 Click OK to close the problems dialog box.

The Modify Palette dialog box now appears. This dialog box lets you specify
which Swing classes you want to add to the visual palette.

9 Click Cancel to close this dialog box.

Importing Xerces

The next JAR file to import is xerces.jar. Follow the steps in Importing JavaHelp on
page 86. Be sure to select xerces.jar.

When you click Finish, all of the class files from the JAR file are imported into the VAJ
repository.

Note: A problems dialog box appears stating that One or more classes were imported
into pre-existing packages in other projects. Three of the packages found in xerces.jar
are shared by the IBM XML Parser. Ignore these problems because they will not affect
the EJB Session Recorder. Click OK to close this dialog box.
86 Chapter 3 - Testing Enterprise JavaBeans

Importing the Remaining Jar Files from the QualityArchitect
Directory

Follow the steps in Importing JavaHelp on page 86 to import the following JAR files
from the QualityArchitect directory:

■ collections.jar

■ scriptgen_ct.jar

■ rational_ct.jar

■ Ejbsessionrecorder_ct.jar

Importing rttssjava.jar

The next JAR file to import is rttssjava.jar, which is part of Rational Test Services.
Follow the steps in Importing JavaHelp on page 86. Be sure to select rttssjava.jar, which is
located in the Rational Test directory, one directory above the QualityArchitect
directory.

Importing Deployed EJBs

In order for the EJB Session Recorder to successfully connect to deployed EJBs in VAJ,
you must import the home and remote interface classes for those EJBs into VAJ.

Checking the Classpath and Launching the EJB Session Recorder

1 Expand the package named com.rational.test.ejbclient under the project you created
by clicking the + box next to the package name.

2 Right-click the EJBSessionRecorder class and click Run > Check Class Path.

3 Click the Compute Now button to fill in all of the package dependencies for the EJB
Session Recorder.

4 If you plan to use the WebSphere Test Environment, click the Edit button to the
right of the Project path and make sure that the IBM WebSphere Test Environment
package is checked. Then, click OK.

5 Click OK.

6 Right-click the EJBSessionRecorder class again and click Run > Run main to launch
the EJB Session Recorder.
Starting the EJB Session Recorder 87

Passing in Command Line Parameters (optional)

As an added feature, the JNDI Provider URL and Initial Context Factory can be
passed in as command line parameters for the EJB Session Recorder.

To specify these parameters for the EJB Session Recorder:

1 Right-click the EJBSessionRecorder class and click Run > Check Class Path.

2 When the project properties dialog box opens, click the Program tab.

3 Enter the command line parameters in the Command line arguments text box.

An example for VAJ would be:

providerurl=iiop:///
contextfactory=com.ibm.ejs.ns.jndi.CNInitialContextFactory

Using the EJB Session Recorder with the Sample Application

You can use the EJBs that have been installed with the sample application to try out
the EJB Session Recorder.

In this section, you:

1 Start a recording session.

2 Connect to an EJB.

3 Interact with the home interface.

4 Interact with the remote interface.

5 Insert a verification point.

6 View the XML log.

7 Generate a test script.

Before starting the EJB Session Recorder, be sure to start your application server.

Starting a Recording Session

To start a recording session:

1 Start the EJB Session Recorder, using one of the methods listed in Starting the EJB
Session Recorder on page 84.
88 Chapter 3 - Testing Enterprise JavaBeans

When you start the EJB Session Recorder, the first screen that appears is the
Session panel.

2 Click Start this Session with Recording to an XML file.

3 Specify a path in which to store the XML log file.

4 Click Start.

The Connect Panel appears.

Connecting to an EJB

Use the Connect Panel to enter the settings required to connect to JNDI, to find the
EJB stored in the Naming Service, and to return the home interface.

Application servers, such as IBM WebSphere and BEA WebLogic, may utilize a
completely different Naming Service architecture. In most cases, you should be able
to accept the default settings for your application server.
Starting the EJB Session Recorder 89

A sample Connect Panel appears in the following figure:

To connect to a deployed EJB and return its home interface:

1 Specify the Provider URL.

The Provider URL is used to specify the location of the server that is used to
provide the Naming Service.

❑ The default URL for the WebSphere Naming Service server is iiop:///.

❑ The default URL for the WebLogic Naming Service server is t3://localhost:7001.

❑ The default URL for the Sun J2EE Naming Service server is iiop://localhost:1050.

The general format for the Provider URL is:

service://host:port/

where

❑ service refers to the name given to the Naming Service for the Application
Server.

❑ host is the host machine that the Naming Service is running on.

❑ port refers to the specific port on the host machine that the Naming Service is
listening to for requests.
90 Chapter 3 - Testing Enterprise JavaBeans

2 Specify the Initial Context Factory for your application server.

To access a JNDI service provider, you need to create an initial context and pass it
a context factory, which creates a context for a particular provider. The context
factory is essentially a Java object that contains the JNDI information required by
the Naming Service. Once the context is created, it provides client access to the
Naming Service.

The default context factory for WebSphere is:

com.ibm.ejs.ns.jndi.CNInitialContextFactory

The default context factory for WebLogic is:

weblogic.jndi.WLInitialContextFactory

The default context factory for the Sun J2EE reference platform is:

com.sun.jndi.cosnaming.CNCtxFactory

3 Click the Select Deployed EJB button.

This retrieves the list of deployed EJBs from the application server. In this case,
select the ExecuteTransaction bean and click OK.

4 Click Connect.

This connects you to the JNDI services, which returns the deployed bean’s home
interface and displays the Home Interface panel.

Note: If there is a problem connecting to JNDI or retrieving the home interface, view
the error information that appears in the Messages panel.
Starting the EJB Session Recorder 91

Interacting with the Home Interface

The Home Interface panel displays the public methods for the EJB’s home interface.

The Home Interface panel displays methods, parameters, and messages.

■ The Methods list displays all of the public methods in the EJB’s home interface
class.

■ The Parameters pane displays all the required parameters for the selected home
interface method.

■ The Messages pane is used to display status information for invoked methods.

Invoking a Method on the Home Interface

To invoke a method on the home interface:

1 Verify that the create() method is selected in the Methods list.

There are no required parameters for the create() method.

2 Click Invoke.

When you invoke the create() method on the home interface, the remote
interface is returned and the Remote Interface panel appears.
92 Chapter 3 - Testing Enterprise JavaBeans

Interacting with the Remote Interface

This panel is very similar to the Home Interface panel in that it displays methods,
parameters, and messages.

■ The Methods list contains all of the public methods for the EJB’s remote interface.
The declared methods are displayed in the top section, and the inherited methods
are displayed in the bottom section.

■ When you select a method, its required parameters are displayed in the
Parameters pane.

■ The Messages pane is used to display status information for invoked methods.

To invoke a method on the remote interface, select the method from the Methods list.
If there are any parameters required to invoke the method, enter the desired values
for the parameters in the Parameters pane. Then, click the Invoke button to execute the
method.

Note: To invoke methods for the sample application’s remote interface, you will need
to know the arguments for each method. One way to obtain this information is to
examine one of the supplied Rose models.
Starting the EJB Session Recorder 93

Invoking the openAccount() Method

For example, to invoke the openAccount() method on the ExecuteTransaction
remote interface:

1 Click the openAccount() method from the Methods list.

2 Enter values for the required parameters—for example:

Optionally, you can also enter names for these values. Names are necessary only if
you plan to reuse parameters during the session.

3 Click Invoke.

This operation returns an account ID in the Last Return Value box. The return value
for openAccount is stored in a named variable called openAccount_Return.

Values Names

987-56-1234 ssNumber

Joseph Zenga name

1959 Wright Way address

Burbank city

CA state

98765 zip

(512) 399-5678 phone
94 Chapter 3 - Testing Enterprise JavaBeans

Invoking the deposit() Method

To invoke the deposit() method:

1 Click the deposit() method from the Methods list.

2 Click the value displayed in the Last Return Value box. Drag and drop the value on
to the first Parameter Value.

3 Type Savings for the second Parameter Value and then type accountType in the
Name box.

4 Type 500 for the third Parameter Value and then type depositAmount in the Name
box.

5 Click Invoke to deposit the specified amount into the account.

6 Click View > Method History to see a history of the invoked methods.

Drag and drop the Last Return Value on to the first Parameter Value.
Starting the EJB Session Recorder 95

The history includes methods that are successful, as well as those that have failed
to execute.

When you finish viewing the Method History, click Close.

7 Click View > Objects to see a list of the named objects that were created. The named
objects are the ones that can be reused during the session.

When you finish viewing the objects, click Close.
96 Chapter 3 - Testing Enterprise JavaBeans

Invoking the getBalance() method

To invoke the getBalance() method:

1 Click the getBalance() method from the Methods list.

2 Right-click the first Value box in the Parameters pane and select
openAccount_Return.

The openAccount_Return object was created automatically when the
openAccount method was invoked.

3 Right-click the second Value box in the Parameters pane and select accountType.

4 Click Invoke.

The current account balance should now appear in the Last Return Value box.

Inserting a Verification Point

To insert a verification point:

1 Click Insert > Verification Point.

2 If prompted, log in to a project and click OK.

3 When the Select Verification Point Type dialog box appears, select DatabaseVP, or
another type of verification point that you have implemented.

4 Type a name for the Verification Point and click OK.

5 At this point, the Query Builder wizard starts. Use the Query Builder to connect to
the data source and to define a Select statement that can be used to query the
database. For more information about the Query Builder, see Using the Java Query
Builder to Add Database Verification Points on page 72.
Starting the EJB Session Recorder 97

Viewing the XML Log

To view the XML log of the current session:

1 Click View > XML Log.

2 When you finish viewing the log, click Close.

Generating a Test Script from the XML Log

To stop the session and generate a test script:

1 Click Stop.

You are asked whether or not you want to generate a test script from the XML log.

2 Click Yes to generate the test script.

Note: If you are not already logged into a project, you are now prompted to log in.
Then, you are prompted to enter a Session Name and a Script Name.

3 Enter a name for the current session in the Session Name box.

4 Enter a name for the generated script in the Script Name Box and click OK.

The script is saved in Test DataStore under recordedtests\<session

name>\<scriptname.java>.
98 Chapter 3 - Testing Enterprise JavaBeans

4Testing COM
Components
This section contains the information you need to use Rational QualityArchitect to
test COM-based component applications.

Topics include:

■ Overview

■ Requirements for testing COM components

■ Working with the sample model

■ Executing test scripts

■ Using COM scenario tests to test transactions

■ Using the OLE DB Query Builder to add verification points

Overview

With QualityArchitect, you can test COM components after they have been built, or
you can test iteratively during the development process.

Testing Existing Objects

To test completed COM components, you can use the type library import tool in Rose.
The type library import tool defines the appropriate interfaces, coclasses, and classes
and the relationships among them. The structure for each COM object created in the
model by the imported type library is the same as the structure created with the Rose
ATL (ActiveX Type Library) object creation wizard.

By default, the import tool does not capture the methods on each interface. You can
capture the methods afterwards in one of two ways:

■ By doing a full import from the Rose Component view

■ By doing a full import of selected interfaces from the Logical view

Note: The methods must be imported into the model in order to model method
messages in sequence diagrams.
99

For more information about testing completed COM components, see the topic
Importing Type Libraries Into the Model in the Rose Help.

Testing with Iterative Development

To test iteratively, you can use the Update Code feature of Rose to create new classes
for your component and then round-trip the code that you add to these classes into
the model as you develop.

When you are ready to test, you import the type library for your component and then
model the transactions in interaction diagrams using the interfaces imported from the
type library.

When you change your code, either by updating it from the model or directly, you
simply refresh the type library information in the model by re-importing it.

Programming in Visual Basic

When you program in Visual Basic, VB masks the complexity of dealing with
interfaces and coclasses. You use the class name both to instantiate objects and to call
methods on those objects. VB creates a hidden interface, using your class name
preceded by a leading underscore character.

QualityArchitect treats each test script generated for COM as a Visual Basic project.
Each project consists of several files, as follows:

■ test.vbp – The project file. This is what you open in Visual Basic.

■ test.bas – The main program that calls the test script program in the .cls file. Visual
Basic requires a main program to begin execution.

■ test.cls – The actual test script.

■ test.res – A standard Visual Basic resource file used to store datapool configuration
information. This file is required in order to run test scripts from TestManager and
can be edited with the Visual Basic 6 resource file editor add-in.

Note: A temporary test.rc file is also generated and converted to test.res by the
resource compiler.

Every time you generate a unit test or a scenario test, QualityArchitect uses templates
to produce these files.
100 Chapter 4 - Testing COM Components

Requirements for Testing COM Components

To test COM components with QualityArchitect, you need the following:

■ Visual Basic 6.0

■ A model that represents your COM interfaces and coclasses

You can obtain this model by importing a type library.

In addition, QualityArchitect must be able to find the Visual Basic resource compiler
file, rc.exe. QualityArchitect searches for it on the System or User path and then looks
in one of the following typical installation locations:

■ <Visual Studio Directory>\Common\MSDev98\Bin

■ <Visual Studio Directory>\VB98\Wizards

If QualityArchitect fails to find rc.exe, you are prompted to supply the path.

You can also specify the path to rc.exe in the Rational QualityArchitect Options dialog
box. To do so:

1 In Rose, click Tools > QualityArchitect > Console.

2 Click the Edit Rational QualityArchitect Options button.

3 Click the VB Options tab.

4 Specify the location of rc.exe in the Resource Compiler text box.

Working with the Sample Model

The installation procedure installs a sample Rose model—rqacomsample—that you can
use to try out QualityArchitect. This model reflects a traditional transaction
processing system that allows users to credit or debit their accounts on a server.

The rqacomsample model already contains an imported type library and a component
associated with a Visual Basic source project.

Understanding the Component View

The Rose component view shows the physical pieces of software that are included in
the model, for example:

■ A COM object (RQACOMSample Ver 1.0) that is associated with the imported type
library
Requirements for Testing COM Components 101

■ An optional ActiveX DLL (RQACOMSample) that is associated with the Visual
Basic source project

This DLL is used for round-trip engineering.

Other components, such as Stdole and DAO, are included with COM.

Understanding the Logical View

The Logical View shows the packages, classes, interfaces, and operations in the
model, such as:

■ RQACOMSample (from COM)

The package that is created when the type library is imported. (In the sample
model, the type library has already been imported.) This package contains several
COM interfaces—_Account, _UpdateReceipt, _GetReceipt, and
_MoveMoney.

■ RQACOMSample (from Reverse Engineered)

The package containing objects used in round-trip engineering of the source code.

For script generation, QualityArchitect uses the COM package.

Generating COM Test Assets

This section shows you how to generate the test scripts, stubs, datapools, and lookup
tables that you need to test COM components with QualityArchitect.

Note: In a model it is possible to have more than one coclass that realizes the same
interface. In this case, when you generate a unit test script, QualityArchitect displays a
dialog box that prompts you to specify the coclass that you want to use.

Generating COM Unit Test Scripts and Datapools from a Rose Model

To try out the QualityArchitect unit test generation feature, you can use the
rqacomsample sample model that is installed with QualityArchitect. For example, you
can generate a unit test script for the Perform method, which is part of the
_MoveMoney interface.

To generate the unit test and datapool:

1 If you haven’t already done so, create a project with Administrator for maintaining
your test assets.

For details, see Adding a Project in the Administrator Help.
102 Chapter 4 - Testing COM Components

2 Start Rose and open the rqacomsample.mdl model.

3 Optionally, right-click the Perform method and click QualityArchitect > Select Unit
Test Template.

4 Optionally, select the TestName.vbp template and click Open.

For more information about templates, see Templates on page 7.

5 In Rose, right-click the Perform method again and click QualityArchitect >
Generate Unit Test.

Perform method
Generating COM Test Assets 103

A message appears, indicating that code generation is in progress, after which you
will be prompted to log in to a Rational project.

6 Log in to the project and click OK.

Each project contains a datastore for storing test assets, such as datapools, lookup
tables, and log files.

If this is the first time generating a script for a particular datastore, you are
prompted to select a directory in which to store your scripts. QualityArchitect
maintains an association between this test script directory and any test assets, such
as datapools, that are stored in the project’s test datastore. As a result of this
association, you can execute your test scripts directly from Rational TestManager.

7 Select a directory location and click OK.

QualityArchitect creates a directory hierarchy under the location you have chosen
and saves several files, as follows:

❑ MoveMoneyPerform.vbp

❑ MoveMoneyPerformMain.bas

❑ Perform.cls

❑ MoveMoneyPerform.res

The Visual Basic project file that is created (MoveMoneyPerform.vbp) is assigned a
name of the format InterfacenameMethodname.

Note: You can change the directory location for future test scripts in the VB tab of
the RQA Options dialog box.
104 Chapter 4 - Testing COM Components

Populating the Datapool

Next, QualityArchitect autogenerates a datapool named _MoveMoney_Perform_D,
using the parameters in the Perform method (IPrimeAccount, ISecondAccount,
IAmount, ITranType, expectedReturn, expectedError) for the datapool
columns.

(A datapool is a set of records that you can use to drive a test script.)

Although QualityArchitect generates the datapool automatically, it is up to you to
populate the datapool with records.

To populate the datapool:

1 When QualityArchitect asks if you want to edit the datapool that it created, click
Yes to display the Datapool Properties dialog box.

2 In the Datapool Properties dialog box, click Edit Datapool Data and populate the
datapool with several rows of data.

3 Click Save and then Close when you are finished.
Generating COM Test Assets 105

4 Click OK to close the Datapool Properties dialog box.

5 Click Close to close the progress bar.

The following code fragment shows the datapool name and the parameter (column)
names embedded in the test script:

Note: For more information about datapools, see Datapools on page 23, the Test Script
Services for Visual Basic manual, and the online Help for Rational TestManager.

Generating Stubs and Lookup Tables for the Unit Test

With QualityArchitect, you can create stubs for any component called by the
method-under-test. COM stubs are generated from classes that are stereotyped as
coclasses.

When you generate stubs, QualityArchitect creates Visual Basic class files that you can
copy into your Visual Basic project and use in place of actual components. Simply
replace the actual component with the stub and recompile the project.

Stub generation also creates a lookup table for each method in the stub called by the
method-under-test. Lookup tables are based on Rational datapool technology.
Whereas a datapool is used to test inputs and expected behavior, a lookup table is
used with stubs to simulate the behavior of an actual component.

Because the MoveMoney method calls methods in the Account class, you can either
generate a stub or run the tests directly against the actual Account class.

dp.Open "_MoveMoney_Perform_D"

'Loop over datapool and perform test.

 While dp.Fetch

'Keep counter of number of rows fetched.

 NumRows = NumRows + 1

'Get the column data from the datapool.

 lPrimeAccount = dp.Value("lPrimeAccount")

 lSecondAccount = dp.Value("lSecondAccount")

 lAmount = dp.Value("lAmount")

 lTranType = dp.Value("lTranType")

 expRet = dp.Value("expectedReturn")

 expErr = dp.Value("expectedError")

Datapool name

Column names
106 Chapter 4 - Testing COM Components

To generate the stubs:

1 In the Rose browser, right-click the Account class that is stereotyped as coclass and
click QualityArchitect > Generate Stub.

2 Select a directory for storing the stubs.

3 Click OK.

QualityArchitect creates a Visual Basic class file for the Account class and also
creates a lookup table for each method in the stub called by the method-under-test
(in this case, the Post and Info methods). It then asks you if you want to edit the
newly-created lookup tables.

Populating the Lookup Tables

To populate the lookup tables:

1 When QualityArchitect asks if you want to edit the lookup tables that it created,
click Yes.

2 Select the lookup table to edit, for example, _Account_Post_L, and click Edit to
display the Datapool Properties dialog box.

Account class stereotyped
as coclass
Generating COM Test Assets 107

3 In the Datapool Properties dialog box, click Edit Datapool Data and populate the
lookup table with several rows of data, for example:

4 Click Save and then Close when you are finished.

5 Click OK to close the Datapool Properties dialog box.

6 If necessary, click Close to close the Manage Datapools dialog box.

Recompiling with the Stub

After populating the lookup tables:

1 Make a copy of the Account class.

2 Replace the real Account class in the RQACOMSample application with the
stubbed version.

3 Add a reference to “Rational QualityArchitect Playback Type Library” in the
RQACOMSample project in Visual Basic.

4 Comment out any lines in the code for complex objects.

5 Recompile RQACOMSample.

Note: Stubs must be deployed on the same computer as the test script.

For a high-level overview of stubs, see Stubs on page 18.

Executing Test Scripts

To execute your text script in Visual Basic:

1 Open the Visual Basic project file.

2 Edit the test script (the .cls file) as needed.

3 Click Run > Start with Full Compile.

You can also execute test scripts from TestManager. Before doing so, be sure that
Visual Basic 6.x is included on your system path.

lAccountNo lAmount expectedReturn expected Error

Generated ID 1 amount of Post

incorrect AccountNo 1003
108 Chapter 4 - Testing COM Components

To execute your test script in TestManager:

1 Start TestManager.

2 Click File > Run Test Script > RQA VB Scripts.

3 Select the script and click Open.

4 From the Run Script dialog box, click OK.

Note: If your scripts contain verification points, the baseline must be captured outside
TestManager by running the script once from the IDE or from command line.
TestManager assumes that the baselines already exists. If this is not done, the script
run will fail. For further information about baselines and verification points, see
Verification Points on page 25.

Using COM Scenario Tests to Test Transactions

Scenario tests use Rose interaction diagrams to test transactions. To try out this
feature, you can generate a scenario test for the COMExample sequence diagram (see
the following figure) that is included in the rqacomsample model.

When you generate a scenario test, QualityArchitect prompts you to insert a
verification point for each message in your interaction diagram.
Using COM Scenario Tests to Test Transactions 109

To generate a scenario test:

1 Open the COMExample sequence diagram in Rose.

2 Right-click in the diagram and click QualityArchitect > Select Scenario Test
Template.

3 Verify that com_scenario_script_template appears in the File Name box, and then
click Open.

This template resides in the QualityArchitect\Templates\Scenario Test Templates\COM

VB directory.

4 Right-click in the interaction diagram and click QualityArchitect > Generate
Scenario Test.

5 In the Select Scenario Test Targets dialog box, select the scenario test targets—that
is, the objects you want to test—and click OK.

You can select one or more objects to test.

6 If prompted, log in to a project and click OK.
110 Chapter 4 - Testing COM Components

7 In the Define Verification Points dialog box, click Yes to add a verification point for
the first message in the diagram—getBalance.

8 In the Select Verification Point Type dialog box, select a verification point type and
click OK.

For this release, select the database verification point type—DatabaseVP.

9 At this point, the OLE DB Query Builder wizard starts. Use the Query Builder to
connect to the database and to define a Select statement that can be used as a
query. For more information about the Query Builder, see Using the OLE DB Query
Builder to Add Database Verification Points on page 112.

10 Repeat Steps 8 and 9 for each message in the diagram.

11 After the last message, you are prompted to add a verification point at the end of
the scenario. Click Yes.

12 Select a directory to store the tests in and click OK.

Note: You can also start the scenario test generator by right-clicking on a diagram in
the Rose browser and then clicking QualityArchitect > Generate Scenario Test.
Using COM Scenario Tests to Test Transactions 111

Using the OLE DB Query Builder to Add Database Verification
Points

The OLE DB Query Builder is a tool that helps you connect to and interact with
databases for the purpose of defining database verification points.

Connecting to the Database via OLE DB

The first step involved in building a custom SQL query is to enter an OLE DB
connection string, which allows you to connect to a database.

When the OLE DB Query Builder starts, you can either type the connection string
manually or click the Data Link button to display the Data Link Properties wizard, a
graphical user interface that assists you in building the connection string.
112 Chapter 4 - Testing COM Components

To use the Data Link Properties wizard:

1 Click the Data Link button to display the Provider page of the Data Link Properties
wizard. (Click Help at any point to view online Help for the wizard.)

2 On the Provider page, select the appropriate OLE DB provider and click Next.

3 On the Connection page, select a data source name and enter a user name and
password, if these are required to log in to the server.
Using the OLE DB Query Builder to Add Database Verification Points 113

4 Also, on the Connection page, check Allow Saving Password to allow the password
to be included in the connection string.

Note: If saved, the password is not encrypted.

5 Click Test Connection.

In most cases, it should not be necessary to change any of the default settings on
the Advanced or All pages. Click the Help button for details.

6 Click OK to save the OLE DB Connection String and redisplay the Query Builder.

7 Click Connect to connect to the database.

Designing a Custom SQL Statement

After you connect to the database, you can design the custom SQL query statement to
be used to retrieve specific data from the database.

If you are familiar with SQL syntax and are familiar with the schema of the database
you are connecting to, you can simply enter your custom SQL query statement in the
SQL text box.

Using the Query Design Wizard

Alternatively, you can use the Query Design wizard to interactively walk you through
the design of your custom SQL query statement. The Query Design wizard helps you
easily create complex SQL query statements by taking you step-by-step through the
design process.
114 Chapter 4 - Testing COM Components

To use the Query Design wizard:

1 Click the Query Design button.

2 Select the tables you want to query and click Add.
Using the OLE DB Query Builder to Add Database Verification Points 115

3 Select the columns to include in the result set.

Column names are listed in TableName.ColumnName format so that you can easily
identify the columns in each table.

4 Enter selection criteria that will restrict the returned query results (optional).

5 Enter a sort order in the OrderBy Fields box (optional).

6 Enter a GroupBy order in the GroupBy Fields box (optional).

7 Enter any calculated fields.

8 Click OK.

9 Verify the SQL statement, make any edits as needed, and click Execute.

Note: The round SQL button turns green if the SQL statement is syntactically
correct. Otherwise, the button turns red.
116 Chapter 4 - Testing COM Components

Reviewing the Record Set

The next step in building the query is to review the record set returned by the SQL
statement. If you are satisfied with the results, click the Summary View tab. Otherwise,
click the SQL View tab and redesign the query.

Accepting the Query

The Summary View shows the OLE DB Connection String and the SQL statement that
you have created. Click Accept to generate the query and complete the verification
point.
Using the OLE DB Query Builder to Add Database Verification Points 117

DatabaseVP Advanced Options

The Summary View also includes a number of advanced options that you can set for
the database verification point. These options include:

Option Description

Case Insensitive comparison Specifies that the verification should be case
insensitive. By default, text comparisons are case
sensitive.

Trim leading and trailing
whitespace in captured result set

Specifies that captured values should have
whitespace trimmed from the right and left sides

Prompt for validation of
captured baseline data on first
execution

Specifies that the first run of a static verification
point should display the captured data for the
tester to validate before storing it as the expected
(baseline) data object.

VP succeeds only if comparison
fails (negative test)

Specifies that the verification point's expected
result is failure. If the comparison fails and this
option is set, the verification point succeeds.
118 Chapter 4 - Testing COM Components

ATemplate Replacement
Variables
This section describes the replacement variables that are used in the various templates
used by QualityArchitect. The code generators supplied with QualityArchitect
replace the variables in the templates with real code and data derived from Rose
model elements.

These replacement variables can be logically grouped into the following general
categories:

■ Replacement variables for unit test generation templates

■ Replacement variables for scenario test generation templates

■ Replacement variables for stub generation templates

Replacement Variables for Unit Test Generation Templates

The replacement variables for the unit test generation templates can be logically
divided into the following categories:

■ Variables used in all languages

■ Variables used only in Visual Basic and COM

■ Variables used only with Enterprise JavaBeans (EJBs)

For a list of the unit test generation templates, see Templates on page 7.
119

Variables Used in All Unit Test Generation Templates

The following table lists the replacement variables that are used in all of the unit test
generation templates:

Variable Description and Example

<generation_date> Shows when the script was generated.
<generation_date> in the template becomes Date: 9/19/00 2:56:32 PM in
the script.

<root_package> Root directory location for all generated unit test scripts. The
<root-package> is always unittests.
<root_package> in the template becomes unittests in the script.

<author_name> Login ID supplied when you connect to a test datastore project.

<package_name> The package hierarchy in the Rose model, excluding the class and the
top-level package name.
For example, the Rose Item Fully Qualified Name :=
Logical View::COM::MyComponent::MyClass::MyOperationUnderTest"
TestName := MyClassMyOperationUnderTest
tms.StartTestServices "<root_package>\<package_name>\<test_name>"
becomes
unittests\COM\MyComponent\MyClassMyOperationUnderTest"
in the script.

<operation_name> The name of the operation selected for generation.
Class=<operation_name>; TestNameScript.cls becomes
Class=MyOperationUnderTest; TestNameScript in the script.

<class_name> The name of the class selected for generation.
Template: <class_name>
Script: MyInterface

<test_name> The name of the test script, calculated as follows:
ClassNameOperationName

QualityArchitect may modify <test_name> to conform to the target
generation language.
Example:
ClassName := "_Account", OperationName := "Post", Language := "VB"
Before: ExeName32="<test_name>.exe"
After: ExeName32="AccountPost.exe"

Note: In VB an object name cannot begin with "_" character, so the “_” is
removed at generation time.
120 Appendix A - Template Replacement Variables

<datapool_name> The name of the datapool, calculated as follows:
ClassName_OperationName_CTD_DATAPOOL
The DataStore understands that datapool names are limited to 40
characters, so it takes two parameters and tries to figure out the best name,
such as "ClassNameOperationName", that fits within the 40 character
limit. CTD_DATAPOOL causes "_D" to be appended to the end of the
name and CTD_LOOKUPTABLE causes "_L" to be appended to the end of
the name.
Example:
ClassName := "_Account", OperationName := "Post", Language := "VB"
Before: dp.Open(“<datapool_name>”)
After: dp.Open(“_Account_Post_D”)

<index> Unique index, calculated as follows:
ScriptSource\PackagePath\TestName

CTD_SCRIPTTYPE_VB - Uses the "RQA VB Test Scripts" script source for
the index calculation.
CTD_SCRIPTTYPE_JAVA - Uses the "RQA Java Test Scripts" script source
for the index calculation.

Example:
TestName := "AccountPost", PackagePath :=
"unittests\COM\MyComponent", ScriptType := CTD_SCRIPTTYPE_VB

If no files exist with the name
<ScriptSourceDirectory>\<PackagePath>\TestName
Before: ExeName32="<test_name><index>.exe"
After: ExeName32="AccountPost.exe"

If <ScriptSourceDirectory>\<PackagePath>\AccountPost.vbp exists
Before: ExeName32="<test_name><index>.exe"
After: ExeName32="AccountPost1.exe"

Variable Description and Example
Replacement Variables for Unit Test Generation Templates 121

<check_expected_result> The code generated here depends on the target language for generation
and the return value of the operation. If the operation return type is void,
or if VB is marked as a "Sub", then the actual code that is inserted is as
follows:

If (operation does NOT have a return value) Then
<check_expected_result> :=
‘Log message indicating success.
Else
<check_expected_result> :=
‘If statement to compare the expected return with the actual return for
equivalence.
‘If equal, then log success, otherwise log error.

<method_declaration> The code that is generated here depends on the target language for
generation and the operation that is selected. The result is a string that can
be used to declare a method. No newline characters are added to this
variable.

<parameter_declarations> The code that is generated here depends on the target language for
generation and the operation that is selected. The result is a string that can
be used to declare all of the variables that will be used as arguments to the
operation that has been selected for generation. Newline characters are
added to this string so that each variable is declared on a new line.

<parameter_initialization> The code that is generated here depends on the target language for
generation and the operation that is selected. The result is a string that can
be used to initialize all of the variables that are declared in
<parameter_declarations> to be values from a datapool. Each parameter
type is checked to see if it can be driven using a datapool value. If not, a
comment is inserted in place of the datapool assignment.

<return_val> The code that is generated here depends on the target language for
generation and the operation that is selected. The result is an empty string
if the operation does NOT return a value, or "actRet = " if it does.

Variable Description and Example
122 Appendix A - Template Replacement Variables

<operation_arglist> The code that is generated here depends on the target language for
generation and the operation that is selected. The result is a string that can
be used in the function invocations string.
Example
TestClass::TestShort(ByVal Arg1 As Integer, ByRef Arg2 As Integer) As
Integer
Before:
Dim tc As TestClass
Dim actRet As Integer
<parameter_declarations>

‘ Invoke: <method_declaration> of TestClass
<return_value> tc.<operation_name> (<operation_arglist>)

After:
Dim tc As TestClass
Dim actRet As Integer
Dim arg1 As Integer
Dim arg2 As Integer

‘ Invoke: TestShort(ByVal Arg1 As Integer, ByRef Arg2 As Integer) As
Integer of TestClass
actRet = tc.TestShort (arg1,arg2)

Variable Description and Example
Replacement Variables for Unit Test Generation Templates 123

Variables Used Only with the COM/Visual Basic Templates

The following table lists the replacement variables that are used only with the
COM/VB unit test generation templates:

Variable Description and Example

<interface_name> Interface name of the operation selected for generation.
Example:
Rose Item Fully Qualified Name :=
“Logical
View::COM::MyComponent::_MyInterface::MyOperationUnderTest"

Before: <Interface_name>
After: _MyInteface

Note: Same as <class_name> for VB scripts generated from COM interfaces.

<library_name> Library name that contains the class that is implementing this operation,
calculated as:
Dim rsModule As RoseModule
rsModule = cls.GetAssigendModules(1)
Dim rsProp As RoseProperty
rsProp = rsModule.FindProperty("COM","library")
<library_name> = rsProp.Value

Example:
Rose Item Fully Qualified Name :=
“Component View::COM::MyComponent"

Before: Set obj = CreateObject("<library_name>.Foo")
After: Set obj = CreateObject("MyComponent.Foo")

<coclass_name> CoClass that implements the interface that the operation belongs to.
If more than one coclass implements the interface, the user is prompted to
choose a CoClass.

Example:
Rose Operation := "Logical View::COM::MyComponent::_Account::Post"
Rose Interface := "Logical View::COM::MyComponent::_Account"
Rose CoClass := "Logical View::COM::MyComponent::Account"

Before: Set obj = CreateObject("MyComponent.<coclass_name>")
After: Set obj = CreateObject("MyComponent.Account")
124 Appendix A - Template Replacement Variables

Variables Used Only with the EJB Templates

The following table lists the replacement variables that are used only with the EJB unit
test generation templates:

<coclass_guid> CoClass GUID that implements the interface that the operation belongs to.
If more than one coclass implements the interface, the user is allowed to
select the coclass to use.
Example: Rose Operation := "Logical
View::COM::MyComponent::_Account::Post" Rose Interface := "Logical
View::COM::MyComponent::_Account" Rose CoClass := "Logical
View::COM::MyComponent::Account"
Before: Set obj = createObject(<coclass_guid>)
After: Set obj = createObject(87DD307A-01DD-42BD-997D-967E5CBB3281)

<coclass_progid> Coclass_progID, or programmatic identifier, is a registry entry that is
associated with a CLSID. Like the CLSID, the coclass_progID identifies a
class, but with less precision.
Example: Rose Operation := "Logical
View::COM::MyComponent::_Account::Post" Rose Interface := "Logical
View::COM::MyComponent::_Account" Rose CoClass := "Logical
View::COM::MyComponent::Account"
Before: Set obj = CreateObject("<prog_id>")
After: Set obj = CreateObject("MyComponent.Account")

<project_reference> Project reference allows you to add an object or type library or project
references to your project. This makes another application's objects
available in your code. Once a reference is set, the referenced objects are
displayed in the Object Browser.
Before: <project_reference>
After:
Reference=*\G{F6E99F53-33E7-4478-A5F7-E2801010E673}#1.0#0#RQACO
MSample.dll#Rational QualityArchitect Sample for COM

Variable Description and Example

Variable Description and Example

<remote_interface_name> Name of the EJB Remote Interface
Rose Item Fully Qualified Name :=
Logical View::RationalBankAcct::Checking::getBalance

Before: Object o = initContext.lookup("<remote_interface_name>");
After: Object o = initContext.lookup("Checking");
Replacement Variables for Unit Test Generation Templates 125

<home_interface_name> Name of the EJB Home Interface
Rose Item Fully Qualified Name :=
Logical View::RationalBankAcct::CheckingHome::create

Before: <home_interface_name>
home = (<home_interface_name>) PortableRemoteObject.narrow(o,
<home_interface_name>.class);
After: CheckingHome home = (CheckingHome)
PortableRemoteObject.narrow(o, CheckingHome.class);

<primary_key_class_name> Name of the EJB Primary Key class
Rose Item Fully Qualified Name :=
Logical View::RationalBankAcct::CheckingKey
Before: <primary_key_class_name>
key = new <primary_key_class_name>(<key_params>);
After: CheckingKey key = new CheckingKey(<key_params>)

<createparam_declaration> String that declares all of the parameters for the EJB Home Interface
Create method that is associated with the operation's class selected for
generation.

Example:
Before:
// Declare arguments to the create method
<createparam_declaration>
After:
// Declare arguments to the create method
long accountID = 0;
String customerID = null;
long lastTrans = 0;
java.math.BigDecimal openBalance = null;

<createparam_init> String that will initialize all of the create parameters for the EJB Home
Interface Create method using a datapool initialization.

Before:
// Declare arguments to the create method
<createparam_declaration>

After:
Initialize arguments for the create method
AccountID = dp.value("accountID").longValue();
customerID = dp.value("customerID").toString();
lastTrans = dp.value("lastTrans").longValue();
openBalance = dp.value("openBalance").getBigDecimal();

Variable Description and Example
126 Appendix A - Template Replacement Variables

Replacement Variables for Scenario Test Generation Templates

The replacement variables for the scenario test generation templates can be logically
divided into the following categories:

■ Variables used in both the COM/VB and EJB templates

■ Variables used only in the COM/VB templates

■ Variables used only in the EJB templates

For a list of the scenario test generation templates, see Templates for Scenario Test
Generation on page 13.

<create_params> String that can be used as an arglist for the create method invocation.

Before:
Invoke the create method.
<remote_interface_name> remote = home.create(<create_params>);

After:
Invoke the create method.
Checking remote = home.create(accountID, customerID, lastTrans,
openBalance);

<keyvalue_declaration> Same as <createparam_declaration> but for the Key class constructor
method that is associated with the operation class selected for
generation.

<keyvalue_init> Same as for the <createparam_init> but for the key class constructor's
parameters.

<key_params> Same as for the <create_params> but for the key class constructor's
parameters.

<datapool_init> Same as the <parameter_initialization> that is indicated above for
COM/VB. This is provided only for EJB and NOT for COM, whereas
<parameter_initialization> is provided for both.

Variable Description and Example
Replacement Variables for Scenario Test Generation Templates 127

Variables Used in Both the COM/VB and EJB Templates

The following table lists the replacement variables that are used in both COM/VB and
EJB templates for scenario test generation:

Variable Description Template

<DIAGRAM_NAME> Rose diagram name Com_scenario_project
Com_scenario_basmain
Com_scenario_script
Weblogic_scenario
Websphere_scenario
Sunj2ee_scenario

<QUALIFIED_DIAGRAM_NAME> Fully-qualified diagram name including
the package hierarchy containing the
diagram.
Example:
Use Case View::MyPackage::MyDiagram
The template processor typically removes
embedded blanks and changes the
double-colons to either backslashes, “\”,
or periods, “.”, depending on the usage
(Java package or file path).

Com_scenario_basmain
Com_scenario_script
Weblogic_scenario
Websphere_scenario
Sunj2ee_scenario

<AUTHOR_NAME> Login ID supplied when you connect to a
test datastore project.

Com_scenario_basmain
Com_scenario_script
Weblogic_scenario
Websphere_scenario
Sunj2ee_scenario

<GENERATION_DATE> System time Com_scenario_basmain
Com_scenario_script
Weblogic_scenario
Websphere_scenario
Sunj2ee_scenario

<DATAPOOL_NAME> System assigned name of a datapool for
the diagram.

Com_scenario_script
Weblogic_scenario
Websphere_scenario
Sunj2ee_scenario

<VARIABLE_INITIALIZATIONS> Generated code for initializing script
program variables used in datapools and
as parameters in operations.

Com_scenario_script
Weblogic_scenario
Websphere_scenario
Sunj2ee_scenario
128 Appendix A - Template Replacement Variables

<OPERATIONS> Generated code to call all of the
operations implied by the user’s selection
of test targets.

Com_scenario_script
Weblogic_scenario
Websphere_scenario
Sunj2ee_scenario

<RETURN_VARIABLE> If the operation returns a value, then this
is a variable name generated by
concatenating “retval_” with the
Operation Name. May or may not be
present in generated code.

Com_scenario_operation
Scenario_java_method1

<CLASS_NAME> Name of the Rose interface class. Com_scenario_constructor
Com_scenario_operation
Scenario_java_method1
Scenario_java_method2
Weblogic_scenario_constru
ctor
Websphere_scenario_constr
uctor
sunj2ee_scenario_construct
or

<VERIFICATION> Generated code for handing a verification
point inserted at the user’s option by the
code generator.

Com_scenario_operation
Com_scenario_script
Scenario_java_method1
Scenario_java_method2
Weblogic_scenario
Websphere_scenario
sunj2ee_scenario

<DIAGRAM_NAME> Rose diagram name Com_scenario_project
Com_scenario_basmain
Com_scenario_script
Weblogic_scenario
Websphere_scenario
sunj2ee_scenario

<QUALIFIED_DIAGRAM_NAME> Fully-qualified diagram name including
the package hierarchy containing the
diagram.
Example:
Use Case View::MyPackage::MyDiagram
The template processor typically removes
embedded blanks and changes the
double-colons to either backslashes, “\”,
or periods, “.”, depending on the usage
(Java package or file path).

Com_scenario_basmain
Com_scenario_script
Weblogic_scenario
Websphere_scenario
Sunj2ee_scenario

Variable Description Template
Replacement Variables for Scenario Test Generation Templates 129

Variables Used Only in the COM/VB Scenario Test Templates

The following table lists the replacement variables that are used only in the COM/VB
templates for scenario test generation:

Variable Description Template

<VARIABLE_DECLARATIONS> Generated code for declaring script
program variables used in datapools and
as parameters in operations.

Com_scenario_script

<SCRIPT_DIRECTORY> The directory path where this script lives,
relative to directory “root” where RQA
scripts are stored.
Example:
\scenariotests\ratlbankacct\usecaseview

Com_scenario_script

<MODEL_NAME> The name of the model with the file path
and file extension removed. For example,
given “C:\TEMP\mymodel.mdl”, the
<MODEL_NAME> is “mymodel”.

Com_scenario_basmain

<INDEX> If used, this is a monotonically increasing
integer used to uniquely identify instances
of like-named things. Typically not used in
code generated for secenarios.

Com_scenario_basmain

<OPERATION_NAME> Name of an operation. This corresponds to
the Rose operation name.

Com_scenario_operation

<OPERATION_ARGLIST> The argument list for an operation.
Derived from the Rose parameters
collection associated with an operation.

Com_scenario_operation

<COCLASS_NAME> Name of the coclass implementing the
Interface object referenced in the diagram.

Com_scenario_constructor

<COCLASS_GUID> CoClass GUID that implements the
interface that the operation belongs to. If
more than one coclass implements the
interface, the user is allowed to select the
coclass to use.

Com_scenario_constructor
130 Appendix A - Template Replacement Variables

Variables Used Only in the EJB Scenario Test Templates

The following table lists the replacement variables that are used only in the EJB
templates for scenario test generation:

<COCLASS_PROGID> Coclass_progID, or programmatic
identifier, is a registry entry that is
associated with a CLSID. Like the CLSID,
the coclass_progID identifies a class, but
with less precision.
Example: Rose Operation := "Logical
View::COM::MyComponent::_Account::Po
st" Rose Interface := "Logical
View::COM::MyComponent::_Account"
Rose CoClass := "Logical
View::COM::MyComponent::Account"
Before: Set obj = CreateObject("<prog_id>")
After: Set obj =
CreateObject("MyComponent.Account")

Com_scenario_constructor

<LIBRARY_NAME> Name of the COM Library associated with
the Rose Interface Class associated with the
operation.

Com_scenario_constructor

<OBJECT_NAME> Variable that gets populated with the name
of the object instance (target object) in the
interaction diagram. If the name of the
target object is not present (it is not
required), then the variable is populated
with a concatenation of the COM library
name and the coclass name.

Com_scenario_constructor

Variable Description Template

Variable Description Templates Used In

<OPERATION_SIGNATURE> In Java/EJB this is the
entire signature of an
operation call including the
concatenation of the
operation name and its
argument list.

Scenario_java_method1
Scenario_java_method2

<HOME_INTERFACE_NAME> The name of the home
interface.

Weblogic_scenario_constructor
Websphere_scenario_constructor
sunj2ee_scenario_constructor
Replacement Variables for Scenario Test Generation Templates 131

Replacement Variables for Stub Generation Templates

The replacement variables for the stub generation templates can be logically divided
into the following categories:

■ Variables used only in Visual Basic and COM

■ Variables used only with Enterprise JavaBeans (EJBs)

For a list of the stub generation templates, see Templates for Stub Generation on page 21.

Replacement Variables for the COM/VB Stub Templates

The following table lists the replacement variables that are used in the COM/VB
templates for stub generation:

Variable Description Template

<<!VBClassName!>> Class name for the stub.
Example:
Account

VBCOMClass
FunctionBody
PropertyGetBody
PropertyLetBody
SubBody.template

<<!ImplementsBlock!>> Adds code to the top of the CLS file
listing the interfaces implemented by the
coclass.

VBCOMClass

<<!MethodBodyTemplate!>> Causes the stub generator to use one of
the seven method body templates to
generate the declaration and definition
for each public method in the stub. For
more information, see Templates for Stub
Generation on page 21.

VBCOMClass

<<!Modifier!>> Access modifier for the method. Will
evaluate to either “Public” or “Private.”

FunctionBody
FunctionBodyWith
outLookUp
PropertyGetBody
PropertyGetBodyW
ithoutLookUp
PropertyLetBody
SubBody
SubBodyWithoutLo
okUp
132 Appendix A - Template Replacement Variables

<<!MethodName!>> Name of the method.
Example:
Post

FunctionBody
FunctionBodyWith
outLookUp
PropertyGetBody
PropertyGetBodyW
ithoutLookUp
PropertyLetBody
SubBody
SubBodyWithoutLo
okUp

<<!ParameterDeclarations!>> Comma-separated list of parameter
types and names to be included as part
of the method declaration.
Example:

ByVal lAccountNo As Long, ByVal
lAmount As Long

FunctionBody
PropertyGetBody
PropertyLetBody
SubBody

<<!ReturnType!>> Return type for the method.
Example:
String

FunctionBody
FunctionBodyWith
outLookUp
PropertyGetBody
PropertyGetBodyW
ithoutLookUp

<<!ParameterNamesAsStrings!>> Comma-separated list of parameter
names as strings.
Example:
"lAccountNo", "lAmount"

FunctionBody
PropertyGetBody
PropertyLetBody
SubBody

<<!ParameterNames!>> Comma-separated list of parameter
names.
Example:
lAccountNo, lAmount

FunctionBody
PropertyGetBody
PropertyLetBody
SubBody

<<!ParameterValuesAsStrings!>> Comma-separated list of parameter
values converted to strings.
Example:
"CStr(lAccountNo), CStr(lAmount)"
NOTE: For complex data types such as
arrays, the generated code will need to
be modified to compile and work.

FunctionBody
PropertyGetBody
PropertyLetBody
SubBody

<<!LookUpTableName!>> Name of the lookup table to be used for
the method.
Example:
_Account_Post_L

FunctionBody
PropertyGetBody
PropertyLetBody
SubBody

Variable Description Template
Replacement Variables for Stub Generation Templates 133

Replacement Variables for the EJB Stub Templates

The following table lists the replacement variables that are used in the EJB templates
for stub generation:

<<!ParameterValuesAsSumofStrings!>> Parameter values converted to String
and concatenated.
NOTE: For complex data types such as
arrays, the generated code will need to
be modified to compile and work.
Example:
CStr(lAccountNo) + ", " +
CStr(lAmount)

FunctionBody
PropertyGetBody
PropertyLetBody
SubBody

<<!ReasonForNoLookupCodeGeneratio
n!>>

Describes why lookup code was not
generated.
Example:
This Method does not have parameters.
Lookup code cannot be generated.
Insert code here to add logic.

FunctionBodyWith
outLookUp
PropertyGetBodyW
ithoutLookUp
SubBodyWithoutLo
okUp

Variable Description Template

Variable Description Template

<<!JavaPackage!>> Package name of the EJB.
Example:
RationalBankAcct

Session_Home
Session_Remote
Session_Bean

<<!HomeInterfaceName!>> Class name for the home interface.
Example: ManageAccountsHome

Session_Home

<<!HomeMethods!>> Method declarations for methods in
the home interface. For example,
RationalBankAcct.ManageAccounts
create() throws
javax.ejb.CreateException,java.rmi.Re
moteException.

Session_Home

<<!RemoteInterfaceName!>> Class name for the remote interface.
Example:
ManageAccounts

Session_Remote
MethodBody
MethodBodyWithoutExce
ptions
MethodBodyWithoutRetu
rnValue.
134 Appendix A - Template Replacement Variables

<<!RemoteMethods!>> Method declarations for methods in
the remote interface.
Example:
void deleteAllCheckingAccts()
throws java.rmi.RemoteException;
void deleteAllSavingsAccts() throws
java.rmi.RemoteException;
...
java.math.BigDecimal
withdrawFromChecking(long
accountID, java.math.BigDecimal
amount) throws
java.rmi.RemoteException,javax.nam
ing.NamingException,javax.ejb.EJBE
xception;
java.math.BigDecimal
withdrawFromSavings(long
accountID, java.math.BigDecimal
amount) throws
java.rmi.RemoteException,javax.nam
ing.NamingException,javax.ejb.EJBE
xception;

Session_Remote

<<!ImplementationClassName!>> Class name of the EJB
implementation class.
Example:
ManageAccountsBean

Session_Bean

Variable Description Template
Replacement Variables for Stub Generation Templates 135

<<!MethodBodyTemplate!>> This variable causes the stub
generator to use one of the four
methodbody templates to generate
the declaration and definition for
each public method in the
implementation class.
The method body templates are
chosen via the following criteria:
MethodBodyWithoutLookUp – Used
when lookup code cannot be
generated either because the method
has no parameters, or method has
neither a return value nor exceptions,
or one of the parameters is complex
and lookup code cannot be generated
automatically.
MethodBodyWithoutExceptions –
Used when the method does not
throw exceptions.
MethodBodyWithoutReturnValue –
Used when method does not have a
return value (for example, returns
void).
MethodBody – Used for all other
methods.

Session_Bean

<<!ReturnType!>> Return type for the method
Example:
java.math.BigDecimal

MethodBody
MethodBodyWithoutExce
ptions
MethodBodyWithoutLook
Up

<<!MethodName!>> The Method Name
Example:
depositToChecking

MethodBody
MethodBodyWithoutExce
ptions
MethodBodyWithoutLook
Up
MethodBodyWithoutRetu
rnValue

<<!ParameterDeclarations!>> Comma-separated list of parameter
types and names to be included as
part of the method declaration.
Example:
long accountID,
java.math.BigDecimal amount

MethodBody
MethodBodyWithoutExce
ptions
MethodBodyWithoutLook
Up
MethodBodyWithoutRetu
rnValue

Variable Description Template
136 Appendix A - Template Replacement Variables

<<!Exceptions!>> Comma-separated list of exceptions
that the method throws to be
included as part of the method
declaration. Includes the word
"throws".
Example:
throws
java.rmi.RemoteException,javax.nam
ing.NamingException,javax.ejb.EJBE
xception

MethodBody
MethodBodyWithoutLook
Up
MethodBodyWithoutRetu
rnValue

<<!ParameterCount!>> Number of parameter for the method
Example:
3

MethodBody
MethodBodyWithoutExce
ptions
MethodBodyWithoutRetu
rnValue

<<!ParameterNamesAsStringArray
!>>

Code to turn parameter names into
array of strings.
Example:
ParamNames[0] = "accountID";
ParamNames[1] = "amount";

MethodBody
MethodBodyWithoutExce
ptions
MethodBodyWithoutRetu
rnValue

<<!Return!>> The word "Return" + a space
Example:
Return

MethodBody
MethodBodyWithoutExce
ptions
MethodBodyWithoutLook
Up

<<!ParameterNames!>> Comma-separated list of parameter
names, for example accountID,
amount

MethodBody
MethodBodyWithoutExce
ptions
MethodBodyWithoutRetu
rnValue

<<!InitialReturnValue!>> Initial value assigned to the return
value–for example null.
Zero for numeric types
false for boolean
null for String and Objects

MethodBody
MethodBodyWithoutExce
ptions
MethodBodyWithoutLook
Up

<<!LookUpTableName!>> Name of the lookup table to be used
for the method—for example
ManageAccountsBean_depositToChe
cking_L

MethodBody
MethodBodyWithoutExce
ptions
MethodBodyWithoutRetu
rnValue

<<!ParameterValuesAsStringArray!
>>

Code to turn parameter values into
array of strings.
For example:
values[0] = Long.toString(accountID);
values[1] = amount.toString();

MethodBody
MethodBodyWithoutExce
ptions
MethodBodyWithoutRetu
rnValue

Variable Description Template
Replacement Variables for Stub Generation Templates 137

<<!ParameterValuesAsSumofString
s!>>

Parameter values are converted to
sum of strings.
Example:
values[0] + " " + values[1] + " "

MethodBody
MethodBodyWithoutExce
ptions
MethodBodyWithoutRetu
rnValue

<<!ConvertStringValueToReturnTy
pe!>>

Converts the exptected return value
read from the lookup table to the
return value type.
Example:
retval = new
java.math.BigDecimal(sRetval);

MethodBody
MethodBodyWithoutExce
ptions

<<!CatchBlocks!>> Catch block for the exception (any
class extending java.lang.Throwable)
that the method throws. It is used to
throw the exception that lookup table
instructs.
Example:
catch (java.rmi.RemoteException e)
{
throw e;
}
catch
(javax.naming.NamingException e)
{
throw e;
}

MethodBody
MethodBodyWithoutRetu
rnValue

<<!ReasonForNoLookupCodeGene
ration!>>

Describes why lookup code was not
generated.
For example:
//This Method does not have
parameters. Lookup code cannot be
generated.
//Insert code here to add logic.

MethodBodyWithoutLook
Up

Variable Description Template
138 Appendix A - Template Replacement Variables

BTroubleshooting
This section provides troubleshooting techniques that you can use when running
QualityArchitect.

Resource File Not Found

Symptom

The following message appears when you open a Visual Basic project after generating
a script:

File not found: FileName.Res

Explanation

During script generation, QualityArchitect compiles the resources for datapool
configuration using the Microsoft Visual Studio resource compiler—rc.exe. The end
result is a resource file—test.res.

If this fails for any reason, the original source file, test.rc, is left in the directory with
the script. However, you need to specify where the rc.exe resides using the RQA
Options dialog box. For more information, see Requirements for Testing COM
Components on page 101.
139

COM Test Scripts Fail to Run from TestManager

Symptom

A COM test script cannot be run from TestManager, and an error message such as the
following is displayed:

Compiling Test Scripts ...

Error GetFile Timestamp()from ...

.

.

.

0 warning(s), 1 error(s)

Fatal compiler error, run terminated

Explanation

COM test scripts cannot be run from TestManager without the existence of a .RES file.

To run the test script from TestManager, you must convert the .RC file to a .RES file. To
do this, you can run the resource compiler (rc.exe) from the command line. Typically,
the resource compiler can be found in one of the following two directories:

■ <Visual Studio Directory>\Common\MSDev98\Bin

■ <Visual Studio Directory>\VB98\Wizards

Command Line Example

rc.exe test.rc

See Resource File Not Found on page 139 for further information.

EJB Class or Interface Not Found Messages

The following messages indicate that there are missing dependency relationships in
the model between the bean implementation class, the home interface, the remote
interface, and the primary key class. If you have the Rose J addin enabled, reverse
engineering an EJB or creating a new EJB will create the necessary dependency
relationships automatically. To enable script generation, be sure to insert the
dependency relationships in your class diagram.
140 Chapter B - Troubleshooting

The messages are as follows:

■ EJB remote interface not found

■ EJB entity bean implementation class not found

■ EJB home interface not found

■ EJB session bean implementation class not found

■ EJB primary key class not found

■ Cannot find home, remote or key interface from implementation class. Check
possible missing relationship in model.

■ Cannot find implementation class for home, remote or key interface class. Check
possible missing relationship in model.

Java Query Builder Failing to Connect to Cloudscape Database

The Java Query Builder is a tool that helps you connect to and interact with databases
so you can define database verification points. The Rational Bank Account Sample
Application comes with a sample Cloudscape database that the Java Query Builder
can connect to.

If the Query Builder fails to connect to the Cloudscape database with a message such
as “Database Not Found,” it is because WebLogic is already using the default
Cloudscape JDBC driver. To connect to the database, choose another JDBC driver and
JDBC URL, such as:

JDBC Driver

weblogic.jdbc.rmi.Driver

JDBC URL

jdbc:weblogic:rmi?weblogic.jdbc.datasource=CDShopDataSource&weblogic.s
erver.url=t3://localhost:7001

The argument CDShopDataSource in the JDBC URL is a datasource created via the
BEA WebLogic Server Console. You can access the console from the following URL:

HTTP://LocalHost:7001/console

From there, click JDBC > Data Sources and create a data source that points to the
correct WebLogic connection pool.
Java Query Builder Failing to Connect to Cloudscape Database 141

java.naming.communication Error in Test Log Window

If you have previously connected to a WebLogic 5.1 server by running RQA Java test
script(s) from TestManager on one machine and then attempt to run the same test
script(s) on a remote Test Agent machine, you might see the following error in the Test
Log window:

java.naming.Commuincation error

This error can occur if you only have one license for your WebLogic server. To work
around this problem, shut down your WebLogic server and reboot before proceeding
with Test Agent testing.
142 Chapter B - Troubleshooting

Glossary
application-under-test. The software being tested. See also system-under-test.

baseline results. A persistent snapshot of data that is assumed to be correct and is used as the
expected data object in a static verification point.

bean class. Class that actually implements the bean’s business methods.

black-box testing. Tests that rely on a requirements definition or functional description of the
application-under-test. A record and playback tool, such as Robot, is an example of a
black-box testing tool.

class invariant. A set of rules that hold true when an object is in a stable state. The class
invariant consists of a list of requirements on the data in a class. See also Design by Contract,
precondition, and postcondition.

collaboration diagram. An interaction diagram that shows the sequence of messages that
implement an operation or a transaction. Collaboration diagrams and sequence diagrams are
alternate representations of an interaction. Collaboration diagrams show objects, their links,
and their messages. They can also contain simple class instances and class utility instances.
Each collaboration diagram provides a view of the interactions or structural relationships that
occur between objects and object-like entities in the current model.

container-managed persistence. With container-managed persistence, the container is
responsible for synchronizing the fields in an entity bean with data in a database.

context factory. A Java object that contains the JNDI information required by a naming
service.

data-driven testing. A type of software testing that tests code with specific input and output
values. With data-driven testing, test code is separated from test data. Data-driven tests are
often used to compare expected and actual output values. See also functional testing.

database verification point. A type of verification point used with Rational QualityArchitect.
The database verification point tests the results of a SQL statement.

datapool. A source of test data that test scripts can draw from during playback. You can
generate datapools using the Datapool Manager, or you can derive datapools from other
sources such as your database.

Design By Contract. A programming methodology based on three important concepts:
preconditions, postconditions, and a class invariant.

entity bean. An object representation of persistent data that is maintained in a permanent
data store, such as a database. A primary key identifies each instance of an entity bean. Entity
beans typically model business concepts that can be expressed as nouns, such as a customer or
a bank account. Entity beans are transactional, and they are recoverable following a system
crash.
143

functional test. A test to determine whether a system, application, or component functions as
intended. Functional tests often compare how the application-under-test behaves in the
current build against its behavior in previous builds.

Grid Comparator. The Rational Test component for reviewing, analyzing, and editing data
files for text and numeric verification points in grid formats. The Grid Comparator displays
the differences between the recorded baseline data and the actual data captured during
playback.

home interface. An interface class for an enterprise bean that defines life-cycle methods for
the bean—that is, methods for creating, removing, and finding beans.

IDE. Integrated Development Environment. This environment consists of a set of integrated
tools that are used to develop a software application. Examples of IDEs supported by Rational
QualityArchitect include Visual Age and Visual Cafe.

interaction diagram. See collaboration diagram and sequence diagram.

log. A file that contains the record of events that occur during test script play back.

LogViewer. See Rational LogViewer.

playback. The process of executing a script.

postcondition. A requirement that a method, routine, or function has on its result. The
requirement is checked after the method executes.

precondition. A requirement that a method, routine, or function has on the values supplied
to its parameters. The requirement is checked before the method executes.

Rational Administrator. The Rational Test component that you use to create and maintain
repositories, projects, users, groups, computers, and SQL Anywhere servers.

Rational LogViewer. The Rational Test component for displaying log files, which contain the
record of events that occur while playing back a script or running a schedule. Also, the
component from which you start the four Comparators.

Rational TestManager. The Rational Test product for managing the overall testing effort. You
use it to define and store information about test documents, requirements, scripts, schedules,
and sessions.

receiver object. The object that receives the messages in a Rose interaction diagram.

regression testing. Testing that occurs over successive builds of an application.

remote interface. An interface class for an enterprise bean that defines all of the bean’s
business methods.

requirements-based testing. A testing strategy based on test requirements.
Requirements-based testing measures the number of test requirements that have been verified
compared to all of the requirements that have been identified.

script. See test script.
144

sequence diagram. A graphical view of a scenario that shows object interaction in a
time-based sequence—that is, what happens first, what happens next. Sequence diagrams
establish the roles of objects and help provide essential information to determine class
responsibilities and interfaces. This type of diagram is best used during early analysis phases
in design because they are simple and easy to comprehend. Sequence diagrams are normally
associated with use cases. Sequence diagrams are closely related to collaboration diagrams
and both types of diagrams are alternate representations of an interaction. There are two main
differences between sequence and collaboration diagrams: sequence diagrams show
time-based object interaction while collaboration diagrams show how objects associate with
one another.

session bean. A session bean typically models business concepts that can be expressed as a
verb, such as managing an account or executing a transaction. A session bean is created by a
client and in most cases exists only for the duration of a single client/server session. Session
beans can be transactional, but (normally) they are not recoverable following a system crash.
Session beans can be stateless or stateful.

stub. The minimum set of interfaces for a component that interacts with the
component-under-test. Stubs can be used to control the results returned from components that
are dependent on the component-under-test.

test case. A set of test inputs, execution conditions, and expected results developed for a
particular objective, such as to exercise a particular program path or to verify compliance with
a specific requirement.

test script. Test scripts are the computer-readable instructions that automate the execution of
a test procedure. Test scripts can be generated automatically using test automation tools,
programmed using a programming language, or can result from a combination of recording,
generating, and programming. With Rational test generation tools, the test script also includes
a repository object. EJB test scripts, in particular, are generated in Java, and all generated Java
test scripts extend the TestScript class.

test log. See log.

TestManager. See Rational TestManager.

verification point. A functional testing construct used by a test script to verify a specific
behavior of the application or component-under-test. Static verification points capture
information about the application-under-test and store it as the baseline. During playback, a
verification point recaptures the object information and compares it to the baseline. Results of
the verification point are maintained in a log, allowing for analysis of overall functional
correctness and test case coverage.

white-box testing. Tests that rely on knowledge of the code, specifications, or other source
material to perform the test. White-box testing is also called Structural testing. Rational
QualityArchitect is an example of a white-box testing tool.
145

146

Index
A
ActiveX Type Library 99
actual data objects 25
Administrator, starting 6
application servers

classpath requirements 32
editing hostName and portNumber 67

B
bean class

definition 30

C
classpath requirements

adding Rational classes to VAJ classpath 44
adding WebLogic to Visual Cafe global

classpath 37
deploying stubs to J2EE 65
EJB Session Recorder 34
per application server 32
script playback 33, 35

collaboration diagrams, testing 8
COM components

generating unit tests for 102
requirements for testing 101
testing existing objects 99

Connection page
Data Link Properties wizard 113

correlation of data 13– 18

D
data correlation 13– 18
Data Link Properties wizard 113
data types

list of standard data types 25
database verification points 27
datapools

automatic generation of 54, 105
correlation with message signatures in

Rose 16
definition 9, 23
sample code fragment 55

datastores 6
DB2 36

creating database for sample application 40
JDBC driver 41, 74

directory for storing test scripts 6
dynamic verification points 27

E
editing

datapool data 54, 57, 105, 108
EJB

connecting with the Session Recorder 89
executing test scripts from TestManager 69
executing test scripts from VAJ 68, 69
generating unit tests 52
overview 29
Query Builder 72
requirements for testing 31
script generation overview 51

EJB Session Recorder
generating test scripts from the XML log 98
inserting verification points 97
invoking a method on the home interface 92
starting 84
using with the sample application 88

Enterprise JavaBeans. See EJB
entity beans

in sample application 38
expected data objects 25
Index 147

F
File not found error after generating COM/VB

scripts 139

G
generating

EJB unit test scripts 52
test scripts from the XML log 98

H
home interface

and the Session Recorder 92
definition 29
invoking a method on 92

host name variable, editing the 67

I
implementation class

definition 30
importing

type libraries 99
Initial Context Factory 85, 88

definition 91
Initial Data property in Rose 15
interaction diagrams, testing 8

J
Java Naming and Directory Interface. See JNDI
JDBC

driver 70, 73, 74
URL 70, 73, 74

JDKs supported 32
JNDI 89, 91

Provider URL 88

L
lookup tables

creating 106

M
manual verification points 27
message signatures, in Rational Rose 13– 18
method test. See unit test
MS Access

JDBC driver 74, 75

N
Name and Type option, in Rose message

signatures 18
Name-Only option, in Rose message

signatures 17
Naming Service 90

O
OLE DB

Connection String 112, 114
Query Builder 111

P
Persistent Name Server

for VAJ 42
port number variable, editing the 67
primary key class

definition 30
projects, for storing test assets 6
Provider page

Data Link Properties wizard 113
Provider URL 90

Q
Query Builder (Java) 72– 82
Query Design wizard

Java 75– 80
OLE DB 115– 116
148 Index

R
Rational Administrator, starting 6
Rational Bank Account sample application

definition 38
deployment 42, 45, 48
importing into VAJ 39
picture of 39

receiver objects, generating tests for 9
regression tests 26
remote interface

definition 29
replacement variables

in RQA templates 119
requirements, for using QualityArchitect 2
reverse engineering 51
Rose

ATL (ActiveX Type Library) object creation
wizard 99

initial data property 15
type library import tool 99

round-trip engineering 100, 102
rqacomsample model 101
rttseajava.jar file 33, 34
rttssjava.jar file 33

S
scenario tests 8

datapools in 23, 24
definition 6
for testing transactions 70
generating 71, 109

sequence diagrams, testing 8
session beans

in sample application 38
Session Recorder

generating test scripts from the XML log 98
inserting verification points 97
invoking a method on the home interface 92
starting 84
using with the sample application 88

signature options, in Rational Rose 14
SQL

building queries 73, 75

viewing query results 82
SQL Server

JDBC driver 74
standard data types

list of 25
static verification points 26
stubs

definition 18
deploying 59
generating 20, 56, 106
importing into VAJ 58
templates for generating 21

substitution variables
in RQA templates 119

Sun J2EE Reference Server
deploying the sample application 48

T
techpubs xv
templates

for EJB stub generation 21, 56
for scenario test generation 13
for unit test generation 8
replacement variables in 119

test assets 6
test datastore 6
Test Script Services

definition 23
test scripts

executing from TestManager 69
executing from VAJ 68, 69
executing in Visual Basic 108
types of 5

TestManager
executing test scripts 69

TestScript class 30
transaction test. See scenario test
transactions

testing 70, 109
type library import tool in Rational Rose 99
Type-Only option, in Rose message

signatures 17
Index 149

U
unit tests

definition 5
generating 52

V
VAJ

deployment 42
executing test scripts 68, 69
importing stubs 58
requirements 36
running the sample application 39

VAJ EJB Development Environment
requirements 36

variables
in RQA templates 119

verification points
definition 9, 25
in scenario tests 70, 109
inserting with the Session Recorder 97

Visual Age for Java. See VAJ
Visual Basic

executing test scripts 108
programming in 100
project file 104

Visual Cafe
configuration for sample application 49

W
WebLogic

adding to Visual Cafe global classpath 37
default context factory 91
deployment 45
JDBC driver 74
Naming Service, URL for 90

WebSphere
default context factory 91
deployment 42
JDBC driver 74
Naming Service, URL for 90
Test Environment Control Center 42
Test Environment requirements 36

X
XML log

generating test scripts from 98
Log File Path 89
viewing 98
150 Index

	Rational® QualityArchitect
	User’s Guide
	Preface xi
	1

	Introduction 1
	2

	Basic Concepts 5
	3

	Testing Enterprise JavaBeans 29
	4

	Testing COM Components 99
	A

	Template Replacement Variables 119
	B

	Troubleshooting 139
	Glossary 143
	Index 147

	Contents
	Preface
	Audience
	Other Resources
	Integrations Between Rational Testing Tools and Other�Rational Products
	Contacting Rational Technical Publications
	Contacting Rational Customer Support

	Introduction
	What You Need to Get Started
	Supported Environments
	If You Are Testing Enterprise JavaBeans
	If You Are Testing COM, DCOM, and COM+ Components

	Installing Rational QualityArchitect
	Quick Start
	Step 1: Working in the Rational Administrator
	Step 2: Working in Rose
	Step 3: Working in Your IDE
	Working In Visual Basic

	Basic Concepts
	Test Script Basics
	Test Types
	Storing Your Tests Scripts

	Templates
	Scenario Tests
	Support for Performance Testing
	Modifying the Template
	Modifying a Generated Test Script
	Executing the Load Test

	Support for Verification Points
	Templates for Scenario Test Generation
	Message Signatures and Data Correlation
	Signature Options
	Message Syntax
	Editing Message Signatures
	How Message Signatures Correlate to Datapool Fields
	Message Signature Examples

	Stubs
	Templates for Stub Generation
	EJB
	COM/VB

	Test Script Services
	Datapools
	Datapools in Scenario Tests
	Datapools in Unit Tests
	Data Types

	Verification Points
	How Data Is Verified
	Static, Dynamic, and Manual Verification Points
	Database Verification Point
	The Query Builder
	Extensibility

	Testing Enterprise JavaBeans
	Overview
	EJB TestScripts
	Packages Imported Into EJB Test Scripts
	Documentation Conventions

	Requirements for EJB Testing
	Supported JDKs
	Application Server Classpath Requirements
	Classpath Requirements for the Sun J2EE Reference Server
	Classpath Requirements for WebLogic 5.1
	Classpath Requirements for WebLogic 6.1
	Classpath Requirements for Remote WebSphere 3.5

	Rational Test Script Playback Requirements
	EJB Session Recorder Requirements
	Modifying the Additional Classpath Field

	Rational TestManager Playback Requirements
	Visual Age/WebSphere Requirements
	Visual Cafe/WebLogic Requirements
	Adding WebLogic to the Global Classpath in Visual Café

	The Rational Bank Account Sample Application
	Setting Up the Sample Application for VAJ/WebSphere
	Importing the Sample into VAJ
	Creating the Database
	Configuring VAJ to Use the New Sample Database
	Adding EJB Support
	Deploying the Sample Application in the VAJ Test Environment
	Importing the Required JAR Files

	Deploying the Sample Application to a WebLogic Application Server
	Deploying the Sample Application to WebLogic 5.1
	Deploying the Sample Application to WebLogic 6.1

	Deploying the Sample Application to the Sun J2EE Reference Server
	Configuring Visual Cafe to Run the Sample Application
	Adding Account Information to the Rational Bank Account Sample

	Reverse Engineering a Deployed EJB into Rose
	Generating EJB Test Assets
	Generating EJB Test Scripts
	Generating EJB Unit Test Scripts and Datapools from a Rose Model
	Populating the Datapool
	Generating Test Scripts with the EJB Session Recorder

	Generating Stubs and Lookup Tables for the Unit Test
	Populating the Lookup Tables

	Importing Test Assets into Your IDE
	Importing Test Assets into VAJ
	Importing Test Assets into Visual Cafe

	Deploying Stubs to a WebLogic Application Server
	Deploying Stubs Permanently to a WebLogic Server
	Deploying Stubs to a Running WebLogic Server (Hot Deployment)
	The wl_deploy Build Folder
	Building and Hot Deploying the Sample Application and Stubs
	Undeploying the Sample Application
	Deploying Your Own Stubs

	Deploying Stubs to the Sun J2EE Reference Server
	Executing Test Scripts
	Editing Host Name and Port Number Variables
	For WebLogic and Sun J2EE Application Servers
	For WebSphere

	Executing Test Scripts from VAJ
	Executing Test Scripts from Visual Cafe
	Executing Test Scripts from TestManager

	Using EJB Scenario Tests to Test Transactions
	Using the Java Query Builder to Add Database Verification Points
	Connecting to the Database via JDBC
	JDBC Driver
	JDBC URL
	User Name
	Password

	Designing a Custom Query Statement
	Using the Query Design Wizard
	Viewing and Verifying the SQL Query Results

	Using the EJB Session Recorder
	Setting Up the Java Runtime Environment (JRE)
	Starting the EJB Session Recorder
	Starting the EJB Session Recorder from the Console
	Starting the EJB Session Recorder from Visual Cafe
	Passing in Command Line Parameters (optional)

	Starting the EJB Session Recorder from Visual Age for Java
	Creating a New Project
	Importing JavaHelp
	Importing Xerces
	Importing the Remaining Jar Files from the QualityArchitect Directory
	Importing rttssjava.jar
	Importing Deployed EJBs
	Checking the Classpath and Launching the EJB Session Recorder
	Passing in Command Line Parameters (optional)

	Using the EJB Session Recorder with the Sample Application
	Starting a Recording Session
	Connecting to an EJB
	Interacting with the Home Interface
	Interacting with the Remote Interface
	Inserting a Verification Point
	Viewing the XML Log
	Generating a Test Script from the XML Log

	Testing COM Components
	Overview
	Testing Existing Objects
	Testing with Iterative Development
	Programming in Visual Basic

	Requirements for Testing COM Components
	Working with the Sample Model
	Understanding the Component View
	Understanding the Logical View

	Generating COM Test Assets
	Generating COM Unit Test Scripts and Datapools from a Rose Model
	Populating the Datapool
	Generating Stubs and Lookup Tables for the Unit Test
	Populating the Lookup Tables
	Recompiling with the Stub

	Executing Test Scripts
	Using COM Scenario Tests to Test Transactions
	Using the OLE DB Query Builder to Add Database Verification Points
	Connecting to the Database via OLE DB
	Designing a Custom SQL Statement
	Using the Query Design Wizard

	Reviewing the Record Set
	Accepting the Query
	DatabaseVP Advanced Options

	Template Replacement Variables
	Replacement Variables for Unit Test Generation Templates
	Variables Used in All Unit Test Generation Templates
	Variables Used Only with the COM/Visual Basic Templates
	Variables Used Only with the EJB Templates

	Replacement Variables for Scenario Test Generation Templates
	Variables Used in Both the COM/VB and EJB Templates
	Variables Used Only in the COM/VB Scenario Test Templates
	Variables Used Only in the EJB Scenario Test Templates

	Replacement Variables for Stub Generation Templates
	Replacement Variables for the COM/VB Stub Templates
	Replacement Variables for the EJB Stub Templates

	Troubleshooting
	Resource File Not Found
	Symptom
	Explanation

	COM Test Scripts Fail to Run from TestManager
	Symptom
	Explanation
	Command Line Example

	EJB Class or Interface Not Found Messages
	Java Query Builder Failing to Connect to Cloudscape Database
	java.naming.communication Error in Test Log Window

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Index

