
© 2006 IBM Corporation11

Johannes Rieken

IBM Rational Zurich Research Lab

Agile Software Development
-

Experiences from the Trenches

© 2006 IBM Corporation22

Manifesto for Agile Software Development

Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan

(see http://agilemanifesto.org/)

© 2006 IBM Corporation33

What is Agile

An iterative and incremental (evolutionary) approach performed in a
highly collaborative manner with just the right amount of ceremonyjust the right amount of ceremony to
produce high quality software in a cost effective and timely manner
which meets the changing needs of its stakeholders.

Yes
69%

No
31%

Source: Ambler ‘Agile Adoption Rate”
& “Project Success” surveys -
www.ambysoft.com/surveys/

Have you adopted
any Agile techniques?

So Agile is not a method. Its more like a conceptual
framework (abstract class) with concrete
implementations like, Eclipse Way, OpenUp, Scrum,
… or the My Company Way ☺.

© 2006 IBM Corporation44

Agile is Not

Low ceremony
– It is (very) formal and has (very) specific practices

Do what you want (cowboy coding)
– Requires lots of discipline

Easy to do
– See above ☺

– Needs cultural changes

A silver bullet

© 2006 IBM Corporation55

Core Principles

Short development iterations (3 – 6 weeks)

Ongoing customer / stakeholder involvement

Ongoing investment in code quality (refactoring)

Retrospectives (improve the process)

Self organizing teams

© 2006 IBM Corporation66

Short iterations – the main driver

Allows feedback / quality checks any n weeks

Each milestone is a miniature development cycle
– plan, execute, test, ship, retrospective

The iteration outcome (library, product, …) must be
shippable / consumed
– Other teams, betas, demos, …

Short iterations reduce stress !!

ready to ship

© 2006 IBM Corporation77

The Eclipse Way Practices

milestones
first

API
first

end
game

retrospectives

always have
a client

continuous
integration

community
involvement

new &
noteworthy

adaptive
planning

continuous
testing

consume your
own output

component
centric

drive with
open eyes

validate

reduce stress

learn

enable

attract
to latest

transparency

validate
update

dynamic
teams

show progress

enable

explore

validate

live
betas

feedback

sign
off

common agile practices
common Open Source practices

© 2006 IBM Corporation88

What is behind the Eclipse Way

Practices underpinned with values
– ship quality on time
Used, developed and improved over time
Practices are from all kinds of sources

• XP, Scrum, Crystal Clear, RUP, …
• Patterns - Organizational Patterns of Agile Software Development – Coplien

It is not low ceremony
– Approvals, verifications, reviews
It is agile: incremental, iterative, collaborative, transparent,
customizable

Many effective teams work like this

© 2006 IBM Corporation99

Our Timeline

endgame

release

M1a

pl
an

de
ve

lo
p

st
ab

ili
ze

4 weeks

warm-up

re
tr

os
pe

ct
iv

e

in
iti

al
 re

le
as

e
pl

an

de
co

m
pr

es
si

on

M1

pl
an

de
ve

lo
p

st
ab

ili
ze

…

pl
an

de
ve

lo
p

st
ab

ili
ze

sign-off
sign-off sign-off

4 weeks 4 weeks

fix
 -

sp
it

&
 p

ol
is

h
te

st fix te
st

4 week iterations ⇒ end with an end of iteration demo
8 week milestones ⇒ announced with New & Noteworthy ⇒ retrospective at
the end

Retrospective
New&Noteworthy

End of iteration
demo

© 2006 IBM Corporation1010

Our Roles

Project management committee (PMC)

–Accountable for release plan

–Themes to work on

–Facilitator, coordinator
• encourages participatory decisions

– e.g. top 5 architectural issues

Component lead / Team

– Accountable for iteration plan, test plans

Contributor

– Accountable for estimates, code, tests, design

– Plays many roles
• Developer, Tester, Architect
• Customer support, Release Engineering

PMC

Component
Lead

Component
Lead …

Contributor Contributor …

© 2006 IBM Corporation1111

Iteration Plan Input

Community
Stakeholders PMC

Defect
Backlog Team

© 2006 IBM Corporation1212

Iteration Plan Input - continued

PMC
– Requirements (release plan): traceability, …
– Themes: improve performance, …
– Concrete tasks: externalize strings
Community / Stakeholders
– Requirements
– Enhancements
– Defect reports
Team
– Architectural issues
– Redesigns
– Product ideas
Defect Backlog
– Previous test passes
– Self hosting

© 2006 IBM Corporation1313

Iteration Plan

Goal: an estimated 4 weeks plan approved by the team, PMC, and
stakeholders
In the RTC project the steps to get there differ from team to team
– Team lead creates initial plan based on input from PMC, stakeholders
– Team decides on defect backlog, architectural issues, …
– Team members estimate their work
– PMC buddy approves the plan
In Scrum the sprint (iteration) plan is defined in a sprint meeting:
– Stakeholders (product owner) are part of that meeting. They manage a

prioritized list of product requirements, enhancements
– Team manages defect backlog, architectural issues, …
– Team estimates

© 2006 IBM Corporation1414

Iteration Checkpoints

Daily (stand-up meeting, team lead – contributor discussion, …)
– What have you done yesterday
– What are you going to do today
– Any road blocks
– How many work is remaining
2 times a week (Planning call)
– Inter team issues
– Progress on PMC and Community work
Every two weeks
– Iteration Plan walkthrough with PMC buddy
End of iteration
– New & Noteworthy / Milestone
– Demo for PMC, stakeholders and other teams

© 2006 IBM Corporation1515

Tracking Progress

To hit the end target of an iteration it is essential for the team to
track its progress. Teams in RTC do so using

Agile Planning tools and Dashboards.

Single Iteration Single Iteration Trend Trend

© 2006 IBM Corporation1616

Repository workspaces – Provides individual isolation.
You don't have to make your changes visible to the team
just to backup or use the repository features.

Streams – Provides team / project isolation.

Suspend and Resume – Provides task level isolation for
personal work.

Team areas – Provides process isolation.

Development - Isolate Work not people

© 2006 IBM Corporation1717

Maintenance
Stream

Integration
Stream

Developer
workspaces

Build
workspace

Work Item
stream

Stream setup for RTC Development

© 2006 IBM Corporation1818

Build Process

To be able to ship a product every n weeks building it
must be absolutely painless and fully automated. And the
build quality must be verified using automatic unit tests.

versusversus

© 2006 IBM Corporation1919

Maintenance
Stream

Integration
Stream

Developer
workspaces

Work Item
stream

Staged Builds

Team buildsTeam builds – team’s integration stream / n times a day
– discover component problems

Nightly buildsNightly builds – project continuous integration stream
– discover integration problems between components

Integration buildsIntegration builds – weekly integration stream
– all automatic unit tests must be successful
– good enough for our own use

Milestone buildsMilestone builds – weekly integration stream
– test / fix pass
– good enough for the community to use

Reality: build failures occur
– rebuild to create acceptable integration, milestone builds

© 2006 IBM Corporation2020

Build Tracking

Equally important is to track whether a build has compile errors and/or
failing test case. The majority of the builds should be green.

© 2006 IBM Corporation2121

Agile @ Scale: Component Based Development

Component based
– A team is responsible for one or more

component at one site – co-location
• “architecture follows organization”

– Components are distributed across
sites

API first
– An API is a commitment
– Producer / consumer relationships
Team Concert supports component
based development
– Team owns a stream
– Team shares changes in a stream
– Team owns a component
– Stream references components

Eclipse

Components

Members

Build

Release/
Iteration Plan

Work Categories

Queries

Events

has

produces

defines
generates

delivers

is responsible

defines

Process

Component
Team

follows
owns

Components

owns

Streams

© 2006 IBM Corporation2222

Stabilization
Each iteration ends with a stabilization phase.
In the RTC project this is the last week of a 4
weeks iteration

First two days is testing
– Teams create test plan

– Teams do actual testing

Next two days is fixing
– Only critical defects are fixed

– Every fix requires a team lead approval
& a code review

Last day is sanity check day
– Rebuild only for stop ships

– All teams sign off on Milestone build

© 2006 IBM Corporation2323

Process Awareness

Support many different practices and
processes
Rational Team Concert is Process neutral

Reactive, not controlling
Specific to the team, development phase
Reduce team member mistakes
Free the team members minds

“While many aspects of process might be
automatable, we found that productive processes
emphasize the creative value added by the people in
the process.”

Organizational Patterns of Agile Software
Development – Coplien

© 2006 IBM Corporation2424

Retrospective
After each iteration teams reflect on what worked well and what didn’t.

– Retrospectives are captured in a special work item

– Define actions how to tune the process to get more effective

– PMC does a retrospective as well

© 2006 IBM Corporation2525

Endgame
Convergence process applied before release

Sequence of test-fix passes
– community event

With each pass the costs for fixing are increased
– higher burden to work on fix for a problem

– higher burden to release a fix for a problem

– focus on higher priority problems

fixed bugs 608
301

85 fix pass
test pass

time

447

May 21 May 28 June 11 June 20 June 25

Eclipse 3.0 Release

© 2006 IBM Corporation2626

What Else is Important

Transparency
– Who is doing what
– How good is the progress
– …

Traceability
– Which change sets are in a build
– Who fixed the bug
– …

Team First
– Joining a team
– Team controls the way it works
– …

© 2006 IBM Corporation2727

Recommendations

Make sure that you can build the product by pressing a
button
– Run integration build if necessary

Ensure quality with automated unit tests
Being iterative is the key. It will induce almost all the rest.
– Start with 4 – 6 weeks iteration and stick to the rhythm. Adjust

(after a while) if necessary
– Ensure that the iteration produces a deliverable that is consumed
– Plan, execute, test
– Review what you have done and improve (the process)

