
Rational ® IBM Rational Developer for System z
Version 7.6.1

Host Configuration Guide

SC23-7658-04

����

Rational ® IBM Rational Developer for System z
Version 7.6.1

Host Configuration Guide

SC23-7658-04

����

Note
Before using this document, read the general information under “Documentation notices for IBM Rational Developer for
System z” on page 325.

Fifth edition (May 2010)

This edition applies to IBM Rational Developer for System z Version 7.6.1 (program number 5724-T07) and to all
subsequent releases and modifications until otherwise indicated in new editions.

Order publications by phone or fax. IBM Software Manufacturing Solutions takes publication orders between 8:30
a.m. and 7:00 p.m. eastern standard time (EST). The phone number is (800) 879-2755. The fax number is (800)
445-9269. Faxes should be sent Attn: Publications, 3rd floor.

You can also order publications through your IBM representative or the IBM branch office serving your locality.
Publications are not stocked at the address below.

IBM welcomes your comments. You can send your comments by mail to the following address:

IBM Corporation
Attn: Information Development Department 53NA
Building 501 P.O. Box 12195
Research Triangle Park NC 27709-2195
USA

You can fax your comments to: 1-800-227-5088 (US and Canada)

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

Note to U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

© Copyright IBM Corporation 2005, 2010.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures ix

Tables xi

About this document xiii
Who should use this document xiii
Summary of changes xiii
Description of document content xiv

Planning xiv
Basic customization xiv
(Optional) Common Access Repository Manager
(CARMA). xiv
(Optional) Application Deployment Manager xiv
(Optional) SCLM Developer Toolkit xv
(Optional) Other customization tasks xv
Installation verification xv
Operator commands xvi
Troubleshooting configuration problems . . . xvi
Security considerations xvi
Understanding Developer for System z xvi
WLM considerations xvi
Tuning considerations xvi
Performance considerations xvii
CICSTS considerations xvii
Customizing the TSO environment xvii
Running multiple instances xvii
Migration guide xvii
Setting up SSL and X.509 authentication . . . xvii
Setting up TCP/IP xvii
Setting up INETD xvii
Setting up APPC xvii
Requisites xviii

Part 1. Developer for System z
customization 1

Chapter 1. Planning. 3
Migration considerations 3
Planning considerations 3

Product overview. 3
Skill requirements 4
Time requirements 4

Preinstallation considerations 4
Setup choice 4
Requisite products 5
Required resources 5

Pre-configuration considerations 8
Workload management 8
Resource usage and system limits 8
Required configuration of requisite products. . . 8
User ID considerations 8
Server considerations 9
Configuration method 10

Predeployment considerations 11

Client checklist 11

Chapter 2. Basic customization 13
Requirements and checklist 13
Customization setup 13
PARMLIB changes 14

Set z/OS UNIX limits in BPXPRMxx 14
Add started tasks to COMMNDxx. 15
LPA definitions in LPALSTxx 15
APF authorizations in PROGxx 16
LINKLIST definitions in PROGxx 16
Requisite LINKLIST and LPA definitions . . . 17
LINKLIST definitions for other products. . . . 18

PROCLIB changes 19
JES Job Monitor 19
RSE daemon 19
Lock daemon 20
JCL limitations for the PARM variable 21
ELAXF* remote build procedures 22

Security definitions 23
FEJJCNFG, JES Job Monitor configuration file . . . 24
rsed.envvars, RSE configuration file 28

Defining the PORTRANGE available for RSE
server 36
Defining extra Java startup parameters with
_RSE_JAVAOPTS 37
Defining extra Java startup parameters with
_RSE_CMDSERV_OPTS 41

ISPF.conf, ISPF’s TSO/ISPF Client Gateway
configuration file 42
Optional components 43
Installation verification 43

Chapter 3. (Optional) Common Access
Repository Manager (CARMA). 45
Requirements and checklist 45
CARMA components 46

CARMA VSAM migration notes 46
RSE interface to CARMA 47
CARMA server startup using batch submit 49

Adjust CRASRV.properties 49
Adjust CRASUBMT 49

(Optional) Alternative CARMA server startup using
CRASTART 50

Adjust CRASRV.properties 51
Adjust crastart.conf 51

(Optional) Alternative CARMA server startup using
TSO/ISPF Client Gateway 53

Adjust CRASRV.properties 53
Adjust ISPF.conf 53

(Optional) Activating the sample Repository Access
Managers (RAMs) 55

Activating the PDS RAM 55
Activating the SCLM RAM 55
Activating the skeleton RAM 56

© Copyright IBM Corp. 2005, 2010 iii

||
||
||
||
|
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||

||

||

(Optional) Activating the CA Endevor SCM RAM 56
Requirements and checklist 56
Define the CA Endevor SCM RAM 57
CA Endevor SCM RAM startup using batch
submit 57
CA Endevor SCM RAM startup using
CRASTART 60
(Optional) Customize CRANDVRA 61
(Optional) Customize the CA Endevor SCM
RAM 62

(Optional) Supporting multiple RAMs 62
Example 62

(Optional) IRXJCL versus CRAXJCL 63
Create CRAXJCL 64

Chapter 4. (Optional) Application
Deployment Manager 65
Requirements and checklist 65
CRD repository 66

CICS administrative utility 66
RESTful versus Web Service 67
CRD server using the RESTful interface 67

CICS primary connection region 67
CICS non-primary connection regions 67
(Optional) Customize CRD server transaction IDs 68

CRD server using the Web Service interface . . . 68
Pipeline message handler 69
CICS primary connection region 69
CICS non-primary connection regions 70

(Optional) Manifest repository 70

Chapter 5. (Optional) SCLM Developer
Toolkit 73
Requirements and checklist 73
Prerequisites 73
ISPF.conf updates for SCLMDT 74
rsed.envvars updates for SCLMDT 75
(Optional) Long/short name translation 75

Create LSTRANS.FILE, the long/short name
translation VSAM 76
rsed.envvars updates for long/short name
translation 78

(Optional) Install and customize Ant 78
SCLM updates for SCLMDT 79
Remove old files from WORKAREA 80

Chapter 6. (Optional) Other
customization tasks 81
(Optional) DB2 stored procedure 81

Workload Manager (WLM) changes 81
PROCLIB changes 82
DB2 changes 82

(Optional) Enterprise Service Tools (EST) support. . 83
(Optional) CICS bidirectional language support . . 84
(Optional) Diagnostic IRZ error messages 84
(Optional) RSE SSL encryption 85
(Optional) RSE tracing. 88
(Optional) Host based property groups 89
(Optional) Host based projects 90
(Optional) File Manager integration 91

(Optional) Uneditable characters 92
(Optional) Using REXEC (or SSH) 93

Remote (host-based) actions for z/OS UNIX
subprojects 94
Alternate RSE connection method 94
REXEC (or SSH) set up 94

(Optional) APPC transaction for the TSO
Commands service 95

Preparation 95
Implementation 97
APPC usage considerations 98

(Optional) WORKAREA cleanup 98

Chapter 7. Installation verification . . . 99
Verify started tasks 99

JMON, JES Job Monitor 99
LOCKD, Lock daemon 99
RSED, RSE daemon. 99

Verify services 101
IVP initialization 102
Port availability 103
TCP/IP setup 103
RSE daemon connection 104
JES Job Monitor connection. 105
Lock daemon connection 105
ISPF's TSO/ISPF Client Gateway connection . . 106
(Optional) TSO Commands service connection
using APPC 107
(Optional) SCLMDT connection 108
(Optional) REXEC connection 109
(Optional) REXEC/SSH shell script 110

Part 2. Developer for System z
information. 113

Chapter 8. Operator commands . . . 115
Start (S) 115

JES Job Monitor 115
RSE daemon. 115
Lock daemon 116

Modify (F) 117
JES Job Monitor 117
RSE daemon. 118
Lock daemon 121

Stop (P) 121
Console messages 121

JES Job Monitor 121
RSE daemon, RSE thread pool server, and lock
daemon 122

How to read a syntax diagram 123
Symbols 123
Operands. 124
Syntax example 124
Nonalphanumeric characters and blank spaces 124
Selecting more than one operand 124
Longer than one line 124
Syntax fragments 125

iv IBM Rational Developer for System z: Host Configuration Guide

||
||
||
|
||
|
||
||
|
||
||
||

Chapter 9. Troubleshooting
configuration problems 127
Log and setup analysis using FEKLOGS 127
Log files 128

JES Job Monitor logging 129
Lock daemon logging 129
RSE daemon and thread pool logging 129
RSE user logging 130
Fault Analyzer Integration logging 131
File Manager Integration logging 131
SCLM Developer Toolkit logging 131
CARMA logging 131
APPC transaction (TSO Commands service)
logging 132
fekfivpi IVP test logging. 132
fekfivps IVP test logging 132

Dump files 133
MVS dumps. 133
Java dumps 133
z/OS UNIX dump locations 134

Tracing 135
JES Job Monitor tracing 135
RSE tracing 135
Lock daemon tracing 136
CARMA tracing 136
Error feedback tracing 136

z/OS UNIX permission bits 137
SETUID file system attribute 137
Program Control authorization 137
APF authorization 139
Sticky bit 139

Reserved TCP/IP ports 140
Address Space size 141

startup JCL requirements 141
Limitations set in SYS1.PARMLIB(BPXPRMxx) 141
Limitations stored in the security profile . . . 142
Limitations enforced by system exits 142
Limitations for 64-bit addressing 142

APPC transaction and TSO Commands service . . 142
Miscellaneous information 144

System limits 144
Known requisite issues 144
Host Connect Emulator 145

Chapter 10. Security considerations 147
Authentication methods 147

User ID and password 148
User ID and one-time password 148
X.509 certificate. 148
JES Job Monitor authentication 148

Connection security 148
Limit external communication to specified ports 149
Communication encryption using SSL 149
Port Of Entry checking 149

TCP/IP ports 150
External communication 150
Internal communication 151
CARMA and TCP/IP ports 151

Using PassTickets 152
Audit logging 152

Audit control 153
Audit data 153

JES security 153
Actions against jobs - target limitations 153
Actions against jobs - execution limitations . . 155
Access to spool files 156

SSL encrypted communication. 157
Client authentication using X.509 certificates . . . 158

Certificate Authority (CA) validation 158
(Optional) Query a Certificate Revocation List
(CRL) 159
Authentication by your security software . . . 159
Authentication by RSE daemon 160

Port Of Entry (POE) checking 161
CICSTS security 161

CRD repository. 161
CICS transactions 162
SSL encrypted communication. 162

SCLM security 162
Developer for System z configuration files. . . . 162

JES Job Monitor - FEJJCNFG 162
RSE - rsed.envvars 162
RSE - ssl.properties 163

Security definitions 163
Requirements and checklist. 164
Activate security settings and classes 165
Define an OMVS segment for Developer for
System z users 166
Define data set profiles 166
Define the Developer for System z started tasks 169
Define JES command security 170
Define RSE as a secure z/OS UNIX server. . . 171
Define MVS program controlled libraries for
RSE 172
Define application protection for RSE 172
Define PassTicket support for RSE 173
Define z/OS UNIX program controlled files for
RSE 174
Verify security settings 174

Chapter 11. Understanding Developer
for System z 177
Component overview. 177
RSE as a Java application 179
Task owners 180
Connection flow 182
Lock daemon 183

Freeing a lock 184
z/OS UNIX directory structure 185

Update privileges for non-system administrators 186

Chapter 12. WLM considerations . . . 187
Workload classification 187

Classification rules 188
Setting goals. 189

Considerations for goal selection 190
STC 191
OMVS. 191
JES 192
ASCH 193

Contents v

||

||
||
||
||
||
||
||
||
||

CICS 194

Chapter 13. Tuning considerations 195
Resource usage 195

Overview. 196
Address space count 197
Process count 200
Thread count 202

Storage usage 205
Java heap size limit 205
Address space size limit 205
Size estimate guidelines 206
Sample storage usage analysis 206

z/OS UNIX file system space usage 210
Key resource definitions 212

/etc/rdz/rsed.envvars 212
SYS1.PARMLIB(BPXPRMxx) 213

Various resource definitions 216
EXEC card in the server JCL 216
FEK.#CUST.PARMLIB(FEJJCNFG) 216
SYS1.PARMLIB(IEASYSxx) 216
SYS1.PARMLIB(IVTPRMxx) 216
SYS1.PARMLIB(ASCHPMxx) 217

Monitoring 217
Monitoring RSE 217
Monitoring z/OS UNIX 218
Monitoring the network 220
Monitoring z/OS UNIX file systems. 220

Sample setup 220
Thread pool count 221
Determine minimum limits 221
Defining limits 221
Monitor resource usage 222

Chapter 14. Performance
considerations 225
Use zFS file systems 225
Avoid use of STEPLIB 225
Improve access to system libraries 225

Language Environment (LE) runtime libraries 225
Application development 226

Improving performance of security checking . . . 226
Workload management 227
Fixed Java heap size 227
Java -Xquickstart option 227
Class sharing between JVMs 228

Enable class sharing 228
Cache size limits 228
Cache security 228
SYS1.PARMLIB(BPXPRMxx) 229
Disk space 229
Cache management utilities 229

Chapter 15. CICSTS considerations 231
RESTful versus Web Service 232
Primary versus non-primary connection regions 232
CICS resource install logging 232
Application Deployment Manager security . . . 233

CRD repository security 233
Pipeline security 233

Transaction security 233
SSL encrypted communication. 234
Resource security 234

Administrative utility 235
Administrative utility migration notes 239
Administrative utility messages 240

Chapter 16. Customizing the TSO
environment 243
The TSO Commands service 243

Access methods 243
Using the TSO/ISPF Client Gateway access
method 243

Basic customization – ISPF.conf 243
Advanced – Use existing ISPF profiles 244
Advanced – Using an allocation exec 244
Advanced – Use multiple allocation execs . . . 245
Advanced – Multiple ISPF.conf files with
multiple Developer for System z setups . . . 245

Using the APPC access method 246
Basic customization – APPC transaction JCL . . 246
Advanced – Use existing ISPF profiles 246
Advanced – Using an allocation exec 247
Advanced – Multiple APPC transactions with
multiple Developer for System z setups . . . 247

Chapter 17. Running multiple
instances 249
Identical setup across a sysplex 249
Identical software level, different configuration files 250
All other situations 250

Chapter 18. Migration guide 255
Migration considerations 255

Backing up previously configured files 255
Version 7.6.1 migration notes 257
Migrate from version 7.5 to version 7.6 258

IBM Rational Developer for System z, FMID
HHOP760 258
Configurable files 260

Migrate from version 7.1 to version 7.5 263
IBM Rational Developer for System z, FMID
HHOP750 263
Configurable files 264

Migrate from version 7.0 to version 7.1 266
IBM Rational Developer for System z, FMID
HHOP710 266
IBM Common Access Repository Manager
(CARMA), FMID HCMA710 266
Configurable files 267

Appendix A. Setting up SSL and X.509
authentication 269
Decide where to store private keys and certificates 269
Create a key ring with RACF 271

(Optional) Using a signed certificate 271
Clone the existing RSE setup 272
Update rsed.envvars to enable coexistence. . . . 273
Update ssl.properties to enable SSL 273

vi IBM Rational Developer for System z: Host Configuration Guide

||

||

||

Activate SSL by creating a new RSE daemon . . . 273
Test the connection 274
(Optional) Add X.509 client authentication support 277
(Optional) Create a key database with gskkyman 277
(Optional) Create a key store with keytool. . . . 280

Appendix B. Setting up TCP/IP 283
Hostname dependency 283
Understanding resolvers. 284
Understanding search orders of configuration
information 284
Search orders used in the z/OS UNIX environment 285

Base resolver configuration files 285
Translate tables 285
Local host tables 286

Applying this set up information to Developer for
System z 286

Host address is not resolved correctly 289

Appendix C. Setting up INETD 291
inetd.conf 291
ETC.SERVICES 292

Search order used in the z/OS UNIX
environment. 293
Search order used in the native MVS
environment. 293

PROFILE.TCPIP port definitions 294
/etc/inetd.pid 294
Startup 294

/etc/rc 295
/etc/inittab 295
BPXBATCH 295
Shell session. 296

Security 296
Developer for System z requirements 297

INETD 297
REXEC (or SSH) 298

Appendix D. Setting up APPC 299
VSAM. 299
VTAM. 300
SYS1.PARMLIB(APPCPMxx) 301

SYS1.PARMLIB(ASCHPMxx) 302
Activating APPC changes 303
Defining the TSO Commands service transaction 303
(Optional) Alternative setup options 303

Alternative transaction name 304
Multiple LUs 304
LU security 304

Appendix E. Requisites 305
z/OS host prerequisites 305

z/OS 305
SMP/E 306
SDK for z/OS Java 2 Technology Edition . . . 307

z/OS host corequisites 307
z/OS 308
COBOL compiler 310
PL/I compiler 310
Debug Tool for z/OS 311
CICS Transaction Server 311
IMS 312
DB2 for z/OS 312
Rational Team Concert for System z 313
File Manager 313
Fault Analyzer 314
REXX 314
Ported tools 314
Ant. 314
Endevor 315

Bibliography. 317
Referenced publications 317
Informational publications 319

Glossary 321

Documentation notices for IBM
Rational Developer for System z . . . 325
Copyright license 326
Trademark acknowledgments 326

Index 329

Contents vii

viii IBM Rational Developer for System z: Host Configuration Guide

Figures

1. JMON - JES Job Monitor started task 19
2. RSED - RSE daemon started task 20
3. LOCKD - Lock daemon started task 21
4. RSED - alternate RSE daemon startup. . . . 21
5. rsed.stdin.sh - alternate RSE daemon startup 22
6. FEJJCNFG, JES Job Monitor configuration file 25
7. rsed.envvars - RSE configuration file 30
8. (continued). 31
9. ISPF.conf - ISPF configuration file 42

10. CRASRV.properties – CARMA configuration
file 47

11. CRASRV.properties - CARMA startup using
batch submit 49

12. CRASUBMT - CARMA startup using batch
submit 50

13. CRASRV.properties - *CRASTART alternative
CARMA startup 51

14. crastart.conf - *CRASTART alternative CARMA
startup 52

15. CRASRV.properties - *ISPF alternative CARMA
startup 53

16. ISPF.conf - *ISPF alternative CARMA startup 54
17. Figure x1. CRASRV.properties - CA Endevor

SCM RAM startup using batch submit . . . 58
18. Figure x2. CRASUBCA - CA Endevor SCM

RAM startup using batch submit 59
19. Figure x3. CRASRV.properties - CA Endevor

SCM RAM startup using CRASTART 60
20. crastart.conf - CA Endevor SCM RAM startup

using CRASTART 61
21. ISPF.conf updates for SCLMDT 75
22. rsed.envvars updates for SCLMDT 75
23. FLM02LST - long/short name translation setup

JCL 77
24. ELAXMSAM - DB2 stored procedure task 82
25. ELAXMJCL – DB2 stored procedure definition 83
26. ssl.properties – SSL configuration file 86
27. rsecomm.properties – Logging configuration

file 88
28. propertiescfg.properties - Host-based property

groups configuration file 90
29. projectcfg.properties – Host-based projects

configuration file. 91

30. FMIEXT.properties – File Manager
configuration file. 92

31. uchars.settings - Uneditable characters
configuration file. 93

32. REXX for APPC ISPF panels 96
33. START JMON operator command 115
34. START RSED operator command 115
35. START LOCKD operator command 116
36. MODIFY JMON operator command 117
37. MODIFY RSED operator command 118
38. MODIFY LOCKD operator command 121
39. STOP operator command 121
40. TCP/IP ports 150
41. Component overview 177
42. RSE as a Java application 179
43. Task owners 180
44. Connection flow 182
45. Lock daemon flow 183
46. z/OS UNIX directory structure 185
47. WLM classification. 187
48. Maximum number of address spaces 198
49. Number of address spaces per client 199
50. Maximum number of processes 201
51. Number of processes per client 202
52. Maximum number of RSE thread pool

threads. 204
53. Maximum number of JES Job Monitor threads 204
54. Resource usage with 5 logons 207
55. Resource usage with 5 logons (continued) 208
56. Resource usage while editing a PDS member 209
57. z/OS UNIX file system space usage 211
58. Resource usage of sample setup 223
59. ADNJSPAU - CICSTS administrative utility 237
60. FEKAPPCC - create a second APPC

transaction 248
61. RSEDSSL - RSE daemon user job for SSL 274
62. Import Host Certificate dialog 275
63. Preferences dialog - SSL 276
64. INETD startup JCL 296
65. JCL to create APPC VSAMs 300
66. SYS1.SAMPLIB(ATBAPPL) 301
67. SYS1.PARMLIB(APPCPMxx) 301
68. SYS1.PARMLIB(ASCHPMxx) 302

© Copyright IBM Corp. 2005, 2010 ix

|
||
|
||
|
||
|
||

||

x IBM Rational Developer for System z: Host Configuration Guide

Tables

1. Required resources 5
2. Optional resources 6
3. Administrators needed for required tasks 6
4. Administrators needed for optional tasks 7
5. Client checklist - mandatory parts 12
6. Client checklist - optional parts 12
7. Sample ELAXF* procedures 22
8. ELAXF* high level qualifier checklist 23
9. LIMIT_COMMANDS command permission

matrix 27
10. crastart.conf variables 52
11. Default CRD server transaction IDs 68
12. Default CRD server transaction IDs 69
13. SCLM administrator checklist 79
14. SSL certificate storage mechanisms 86
15. Valid keystore types. 87
16. APPC transaction checklist 96
17. IVPs for services 101
18. Thread pool error status 119
19. RSE console messages. 122
20. JAVA_DUMP_TDUMP_PATTERN variables 133
21. JES Job Monitor console commands 154
22. LIMIT_COMMANDS command permission

matrix 154
23. Extended JESSPOOL profiles 154
24. LIMIT_VIEW browse permission matrix 156
25. SSL certificate storage mechanisms 157
26. Security setup variables 164

27. JES2 Job Monitor operator commands 170
28. JES3 Job Monitor operator commands 171
29. WLM entry-point subsystems 188
30. WLM work qualifiers 188
31. WLM workloads 189
32. WLM workloads - STC 191
33. WLM workloads - OMVS 191
34. WLM workloads - JES 193
35. WLM workloads - ASCH 193
36. WLM workloads - CICS 194
37. Common resource usage 196
38. User-specific requisite resource usage 196
39. User-specific resource usage 196
40. Address space count 197
41. Address space limits 199
42. Process count 200
43. Process limits 202
44. Thread count 202
45. Thread limits 205
46. Log output directives 212
47. Version 7.6 customizations 260
48. Version 7.5 customizations 264
49. Version 7.1 customizations 267
50. SSL certificate storage mechanisms 270
51. Local definitions available to resolver 288
52. Referenced publications 317
53. Referenced Web sites 319
54. Informational publications 319

© Copyright IBM Corp. 2005, 2010 xi

||
||
||
||
||
||
||
||

xii IBM Rational Developer for System z: Host Configuration Guide

About this document

This document discusses the configuration of the IBM Rational Developer for
System z functions. It includes instructions on how to configure IBM Rational
Developer for System z Version 7.6.1 on your z/OS® host system.

From here on, the following names are used in this manual:
v IBM Rational Developer for System z is called Developer for System z.
v Common Access Repository Manager is abbreviated to CARMA.
v Software Configuration and Library Manager Developer Toolkit is called SCLM

Developer Toolkit, abbreviated to SCLMDT.
v z/OS UNIX® System Services is called z/OS UNIX.
v Customer Information Control System Transaction Server is called CICSTS,

abbreviated to CICS®.

For earlier releases, including IBM WebSphere Developer for System z, IBM
WebSphere Developer for zSeries and IBM® WebSphere Studio Enterprise
Developer, use the configuration information found in the Host Configuration
Guide and Program Directories for those releases.

Who should use this document
This document is intended for system programmers installing and configuring IBM
Rational Developer for System z Version 7.6.1, FMID HHOP760, on their z/OS host
system.

It lists in detail the different steps needed to do a full setup of the product,
including some non-default scenarios. To use this document, you need to be
familiar with the z/OS UNIX System Services and MVS™ host systems.

Summary of changes
This section summarizes the changes for Rational® Developer for System z® Version
7.6.1 Host Configuration Guide, SC23-7658-04 (updated May 2010).

Technical changes or additions to the text and illustrations are indicated by a
vertical line to the left of the change.

This document contains information previously presented in Rational Developer for
System z Version 7.6 Host Configuration Guide, SC23-7658-03.

New information:
v Corrections and additional information presented in Rational Developer for System

z v7.6 Host Configuration Release Notes® are incorporated.
v Version 7.6.1 specific migration notes. See “Version 7.6.1 migration notes” on

page 257.
v Added document overview. See “Description of document content” on page xiv.
v Support for 64-bit Java™. See Appendix E, “Requisites,” on page 305.
v Product configuration through ISPF panels. See “Pre-configuration

considerations” on page 8.

© Copyright IBM Corp. 2005, 2010 xiii

|

|
|

|
|

|
|

|

|
|

|
|

|

|

|
|

v New directives in rsed.envvars. See “rsed.envvars, RSE configuration file” on
page 28.

v New proclib members. See “ELAXF* remote build procedures” on page 22.
v New CARMA VSAM layout. See “CARMA VSAM migration notes” on page 46.
v Supporting multiple CARMA RAMs. See “(Optional) Supporting multiple

RAMs” on page 62.
v New Application Deployment Manager options. See “Administrative utility” on

page 235.
v New Application Deployment Manager VSAM layout. See “Administrative

utility migration notes” on page 239
v New operator commands. See Chapter 8, “Operator commands,” on page 115.
v New console messages. See “Console messages” on page 121
v Workload Management information. See Chapter 12, “WLM considerations,” on

page 187.

Description of document content
This section summarizes the information presented in this document.

Planning
Use the information in this chapter to plan the installation and deployment of
Developer for System z.

Basic customization
The customization steps below are for a basic Developer for System z setup:
v Customization setup
v PARMLIB changes
v PROCLIB changes
v Security definitions
v FEJJCNFG, JES Job Monitor configuration file
v rsed.envvars, RSE configuration file
v ISPF.conf, ISPF’s TSO/ISPF Client Gateway configuration file

(Optional) Common Access Repository Manager (CARMA)
Common Access Repository Manager (CARMA) is a productivity aid for
developers who are creating Repository Access Managers (RAMs). A RAM is an
Application Programming Interface (API) for z/OS based Software Configuration
Managers (SCMs).

In turn, user-written applications can start a CARMA server which loads the
RAMS(s) and provides a standard interface to access the SCM.

The IBM® Rational® Developer for System z Interface for CA Endevor® Software
Configuration Manager gives Developer for System z clients direct access to CA
Endevor® SCM.

(Optional) Application Deployment Manager
Developer for System z uses certain functions of Application Deployment Manager
as a common deployment approach for various components. Optional

xiv IBM Rational Developer for System z: Host Configuration Guide

|
|

|

|

|
|

|
|

|
|

|

|

|
|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|
|
|
|

|
|

|
|
|

|

|
|

customization enables more features of Application Deployment Manager and can
add the following services to Developer for System z:
v IBM CICS Explorer provides an Eclipse-based infrastructure to view and manage

CICS resources and enables greater integration between CICS tools.
v CICS Resource Definition (CRD) client and server provide the following

functions:
– CICS Resource Definition editor
– Allow application developers to define CICS resources in a limited,

controlled, and secure fashion.
– Prevent CICS development access to unauthorized or incorrect VSAM data

sets by providing the CICS administrator control over the physical data set
name attribute in File definitions.

– Miscellaneous CICS development aids
– Miscellaneous CICS Web Service development aids

(Optional) SCLM Developer Toolkit
SCLM Developer Toolkit provides the tools needed to extend the capabilities of
SCLM to the client. SCLM itself is a host-based source code manager that is
shipped as part of ISPF.

The SCLM Developer Toolkit has an Eclipse-based plugin that interfaces to SCLM
and provides for access to all SCLM processes for legacy code development as well
as support for full Java and J2EE development on the workstation with
synchronization to SCLM on the mainframe including building, assembling, and
deployment of the J2EE code from the mainframe.

(Optional) Other customization tasks
This section combines a variety of optional customization tasks. Follow the
instructions in the appropriate section to configure the desired service.
v DB2 stored procedure
v Enterprise Service Tools (EST) support
v CICS bidirectional language support
v Diagnostic IRZ error messages
v RSE SSL encryption
v RSE tracing
v Host based property groups
v Host based projects
v File Manager integration
v Uneditable characters
v Using REXEC (or SSH)
v APPC transaction for the TSO Commands service
v WORKAREA cleanup

Installation verification
After completing the product customization, you can use the Installation
Verification Programs (IVPs) described in this chapter to verify the successful setup
of key product components.

About this document xv

|
|

|
|

|
|

|

|
|

|
|
|

|

|

|

|
|
|

|
|
|
|
|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|

Operator commands
This chapter provides an overview of the available operator (or console)
commands for Developer for System z.

Troubleshooting configuration problems
This chapter is provided to assist you with some common problems that you may
encounter during your configuration of Developer for System z, and has the
following sections:
v Log and setup analysis using FEKLOGS
v Log files
v Dump files
v Tracing
v z/OS UNIX permission bits
v Reserved TCP/IP ports
v Address Space size
v APPC transaction and TSO Commands service
v Miscellaneous information

Security considerations
Developer for System z provides mainframe access to users on a non-mainframe
workstation. Validating connection requests, providing secure communication
between the host and the workstation, and authorizing and auditing activity are
therefore important aspects of the product configuration.

Understanding Developer for System z
The Developer for System z host consists of several components that interact to
give the client access to the host services and data. Understanding the design of
these components can help you make the correct configuration decisions.

WLM considerations
Unlike traditional z/OS applications, Developer for System z is not a monolithic
application that can be identified easily to Workload Manager (WLM). Developer
for System z consists of several components that interact to give the client access to
the host services and data. Some of these services are active in different address
spaces, resulting in different WLM classifications.

Tuning considerations
RSE (Remote Systems Explorer) is the core of Developer for System z. To manage
the connections and workloads from the clients, RSE is composed of a daemon
address space, which controls thread pooling address spaces. The daemon acts as a
focal point for connection and management purposes, while the thread pools
process the client workloads.

This makes RSE a prime target for tuning the Developer for System z setup.
However, maintaining hundreds of users, each using 16 or more threads, a certain
amount of storage, and possibly one or more address spaces requires proper
configuration of both Developer for System z and z/OS.

xvi IBM Rational Developer for System z: Host Configuration Guide

|

|
|

|

|
|
|

|

|

|

|

|

|

|

|

|

|

|
|
|
|

|

|
|
|

|

|
|
|
|
|

|

|
|
|
|
|

|
|
|
|

Performance considerations
z/OS is a highly customizable operating system, and (sometimes small) system
changes can have a huge impact on the overall performance. This chapter
highlights some of the changes that can be made to improve the performance of
Developer for System z.

CICSTS considerations
This chapter contains information useful for a CICS Transaction Server
administrator.

Customizing the TSO environment
This chapter assists you with mimicking a TSO logon procedure by adding DD
statements and data sets to the TSO environment in Developer for System z.

Running multiple instances
There are times that you want multiple instances of Developer for System z active
on the same system, for example, when testing an upgrade. However, some
resources such as TCP/IP ports cannot be shared, so the defaults are not always
applicable. Use the information in this chapter to plan the coexistence of the
different instances of Developer for System z, after which you can use this
configuration guide to customize them.

Migration guide
This section highlights installation and configuration changes compared to
previous releases of the product. It also gives some general guidelines to migrate
to this release. Refer to the related sections in this manual for more information.

Setting up SSL and X.509 authentication
This appendix is provided to assist you with some common problems that you
may encounter when setting up Secure Socket Layer (SSL), or during checking or
modifying an existing setup. This appendix also provides a sample setup to
support users authenticating themselves with an X.509 certificate.

Setting up TCP/IP
This appendix is provided to assist you with some common problems that you
may encounter when setting up TCP/IP, or during checking or modifying an
existing setup.

Setting up INETD
This appendix is provided to assist you with some common problems that you
may encounter when setting up INETD, or during checking or modifying an
existing setup. INETD is used by Developer for System z for REXEC/SSH
functionality.

Setting up APPC
This appendix is provided to assist you with some common problems that you
may encounter when setting up APPC (Advanced Program-to-Program
Communication), or during checking or modifying an existing setup.

About this document xvii

|

|
|
|
|

|

|
|

|

|
|

|

|
|
|
|
|
|

|

|
|
|

|

|
|
|
|

|

|
|
|

|

|
|
|
|

|

|
|
|

Requisites
This appendix lists the host prerequisites and corequisites for this version of
Developer for System z.

xviii IBM Rational Developer for System z: Host Configuration Guide

|

|
|

Part 1. Developer for System z customization

© Copyright IBM Corp. 2005, 2010 1

2 IBM Rational Developer for System z: Host Configuration Guide

Chapter 1. Planning

Use the information in this chapter, together with the information in Appendix E,
“Requisites,” on page 305, to plan the installation and deployment of Developer for
System z. The following subjects are described:
v “Migration considerations”
v “Planning considerations”
v “Preinstallation considerations” on page 4
v “Pre-configuration considerations” on page 8
v “Predeployment considerations” on page 11
v “Client checklist” on page 11

Migration considerations
Chapter 18, “Migration guide,” on page 255 describes installation and
configuration changes compared to previous releases of the product. Use this
information to plan your migration to the current release of Developer for System
z.

Notes:

1. If you are a previous user of IBM Rational Developer for System z, IBM
WebSphere Developer for System z, IBM WebSphere Developer for zSeries or
IBM WebSphere Studio Enterprise Developer, it is recommended that you save
the related customized files BEFORE installing IBM Rational Developer for
System z Version 7.6.1. Refer to Chapter 18, “Migration guide,” on page 255 for
an overview of files that required customization.

2. Refer to Chapter 17, “Running multiple instances,” on page 249, if you plan on
running multiple instances of Developer for System z.

Planning considerations

Product overview
Developer for System z consists of a client, installed on the user’s personal
computer, and a server, installed on one or more hosts. This documentation will
focus on the host being a z/OS system. However, other operating systems, such as
AIX® and Linux® on System z, are also supported.

The client provides developers an Eclipse-based development environment that
facilitates a uniform graphical interface to the host, and that, among other things,
can offload work from the host to the client, saving resources on the host.

The host portion consists of several permanently active tasks and tasks that are
started ad-hoc. These tasks allow the client to work with the various components
of your z/OS host, such as MVS data sets, TSO commands, z/OS UNIX files and
commands, job submit, and job output.

Developer for System z can also interact with subsystems and other application
software on the host, such as CICS, Debug Tool, and Software Configuration
Managers (SCMs), if Developer for system z is configured to do so, and if these
(corequisite) products are available.

© Copyright IBM Corp. 2005, 2010 3

Refer to Chapter 11, “Understanding Developer for System z,” on page 177 to get a
basic understanding of the Developer for System z design.

Refer to the Developer for System z website, http://www-01.ibm.com/software/
awdtools/rdz/, or your local IBM representative to learn more about the
functionality offered by Developer for System z.

Skill requirements
Minimal SMP/E skills are needed for a Developer for System z host installation.

The configuration of Developer for System z requires more than the typical system
programming permissions and expertise, so assistance from others may be needed.
Table 3 on page 6 and Table 4 on page 7 list the administrators needed for the
required and optional customization tasks.

Time requirements
The amount of time required to install and configure the Developer for System z
host components depends on various factors, such as:
v the current z/OS UNIX and TCP/IP configuration
v the availability of prerequisite software and maintenance
v whether or not OMVS segments are defined for Developer for System z users
v the availability of a user, who has successfully installed the client, to test the

install and report any problems that might occur

Experience has shown that the installation and configuration process of the
Developer for System z host requires from one to four days to complete. This time
requirement is for a clean installation performed by an experienced system
programmer. If problems are encountered, or if the required skills are not available,
then the setup will take longer.

Preinstallation considerations
Refer to Program Directory for IBM Rational Developer for System z (GI11-8298) for
detailed instructions on the SMP/E installation of the product.

Note: The file system (HFS or zFS) in which Developer for System z is installed
must be mounted with the SETUID permission bit on (this is the system
default). Mounting the file system with the NOSETUID parameter will prevent
Developer for System z from creating the user’s security environment, and
will fail the connection request of the client.

Refer to Chapter 17, “Running multiple instances,” on page 249 if you plan on
running multiple instances of Developer for System z.

Setup choice
Developer for System z provides a choice on how to access the TSO Commands
service. The choice made here impacts the required configuration of prerequisites.
One of the following methods must be selected and configured:
v ISPF’s TSO/ISPF Client Gateway service, which requires a minimum ISPF

service level. This is the default method used in the provided samples.
v An APPC transaction (as in pre-version 7.1 releases)

4 IBM Rational Developer for System z: Host Configuration Guide

Note: ISPF’s TSO/ISPF Client Gateway is also used by SCLM Developer Toolkit
and optionally by an alternative startup method for Common Access
Repository Manager (CARMA).

Requisite products
Appendix E, “Requisites,” on page 305 has a list of prerequisite software that must
be installed and operational before Developer for System z will work. There is also
a list of corequisite software to support specific features of Developer for System z.
These requisites must be installed and operational at runtime for the corresponding
feature to work as designed.

Refer to Rational Developer for System z Prerequisites (SC23-7659) in the Developer for
System z online library at http://www-01.ibm.com/software/awdtools/rdz/
library/ for an up-to-date list of prerequisite and corequisite products for your
version of Developer for System z. Plan ahead to have these requisite products
available, as it might take some time, depending on the policies at your site. The
key requisites for a basic setup are the following:
v z/OS 1.8 or higher
v ISPF APAR OA29489 (TSO/ISPF Client Gateway)
v Java 5.0 or higher

Note: The PTF for Developer for System z APAR PM07305 must be applied when
using a 64-bit version of Java. The PTF is available via the Developer for
System z recommend service page, http://www-01.ibm.com/support/
docview.wss?rs=2294&context=SS2QJ2&uid=swg27006335.

Required resources
Developer for System z requires the allocation of the systems resources listed in
Table 1. The resources listed in Table 2 on page 6 are required for optional services.
Plan ahead to have these resources available, as it might take some time to get
them, depending on the policies at your site.

Note: Developer for System z consists of multiple tasks that communicate with
each other and the client. These tasks use various timers to detect
communication loss with their partner or partners. This implies that timeout
issues can arise (due to lack of CPU time during the timeout window) on
systems with a heavy CPU load or incorrect Workload Management (WLM)
settings for Developer for system z.

Table 1. Required resources

Resource Default value Information

APF authorized data set FEK.SFEKAUTH “APF authorizations in
PROGxx” on page 16

started task JMON, RSED, and LOCKD “Server considerations” on
page 9

port for host-confined use 6715 “FEJJCNFG, JES Job Monitor
configuration file” on page
24

port for host-confined use 4036 “rsed.envvars, RSE
configuration file” on page
28

port for client-host
communication

4035 “PROCLIB changes” on page
19

Chapter 1. Planning 5

|
|
|
|

http://www-01.ibm.com/support/docview.wss?rs=2294&context=SS2QJ2&uid=swg27006335
http://www-01.ibm.com/support/docview.wss?rs=2294&context=SS2QJ2&uid=swg27006335

Table 1. Required resources (continued)

Resource Default value Information

port range for client-host
communication

any available port is used “Defining the PORTRANGE
available for RSE server” on
page 36

Application security
definition

Universal access READ for
FEKAPPL

“Define application
protection for RSE” on page
172

PassTicket security
definitions

no default “Define PassTicket support
for RSE” on page 173

Table 2. Optional resources

Resource Default value Information

LINKLIST data set FEK.SFEKAUTH and
FEK.SFEKLOAD

Chapter 5, “(Optional) SCLM
Developer Toolkit,” on page
73

LPA data set FEK.SFEKLPA Chapter 3, “(Optional)
Common Access Repository
Manager (CARMA),” on
page 45

port range for host-confined
use

5227-5326 (100 ports) Chapter 3, “(Optional)
Common Access Repository
Manager (CARMA),” on
page 45

ports for host-confined use any available port is used “(Optional) APPC transaction
for the TSO Commands
service” on page 95

port for client-host
communication

no default Chapter 4, “(Optional)
Application Deployment
Manager,” on page 65

CICS CSD update multiple values Chapter 4, “(Optional)
Application Deployment
Manager,” on page 65

CICS JCL update FEK.SFEKLOAD v Chapter 4, “(Optional)
Application Deployment
Manager,” on page 65

v “(Optional) CICS
bidirectional language
support” on page 84

The configuration of Developer for System z requires more than the typical system
programming permissions and expertise, so minimal assistance from others may be
needed. Table 3 and Table 4 on page 7 list the administrators needed for the
required and optional customization tasks.

Table 3. Administrators needed for required tasks

Administrator Task Information

System Typical system programmer
actions are required for all
customization tasks

N/A

6 IBM Rational Developer for System z: Host Configuration Guide

Table 3. Administrators needed for required tasks (continued)

Administrator Task Information

Security v Define OMVS segment for
Developer for System z
users

v Define data set profiles

v Define started tasks

v Define operator command
security

v Define z/OS UNIX server
profiles

v Define application security

v Define PassTicket support

v Define program controlled
data sets

v Define program controlled
z/OS UNIX files

Chapter 10, “Security
considerations,” on page 147

TCP/IP Define new TCP/IP ports “TCP/IP ports” on page 150

WLM Assign started task goals to
the servers and their child
processes

Chapter 12, “WLM
considerations,” on page 187

Table 4. Administrators needed for optional tasks

Administrator Task Information

System Typical system programmer
actions are required for all
customization tasks

N/A

Security v Define data set profiles

v Define program controlled
data sets

v Define permission to
submit xxx* jobs

v Define CICS transaction
security

v Add certificate for SSL

v Define X.509 client
certificate support

v Chapter 10, “Security
considerations,” on page
147

v Chapter 15, “CICSTS
considerations,” on page
231

v Appendix A, “Setting up
SSL and X.509
authentication,” on page
269

TCP/IP Define new TCP/IP ports “TCP/IP ports” on page 150

SCLM v Define SCLM language
translators for JAVA/J2EE
support

v Define SCLM types for
JAVA/J2EE support

Chapter 5, “(Optional) SCLM
Developer Toolkit,” on page
73

CICS TS v Update CICS region JCL

v Update CICS region CSD

v Define CICS group

v Define CICS transaction
names

v Define a program to CICS

v Chapter 4, “(Optional)
Application Deployment
Manager,” on page 65

v “(Optional) CICS
bidirectional language
support” on page 84

Chapter 1. Planning 7

Table 4. Administrators needed for optional tasks (continued)

Administrator Task Information

DB2® Define a DB2 stored
procedure

“(Optional) DB2 stored
procedure” on page 81

WLM v Assign goals to a DB2
stored procedure

v Assign TSO-like goals to
an APPC transaction

v “(Optional) DB2 stored
procedure” on page 81

v Chapter 12, “WLM
considerations,” on page
187

APPC Define an APPC transaction “(Optional) APPC transaction
for the TSO Commands
service” on page 95

Pre-configuration considerations

Workload management
Unlike traditional z/OS applications, Developer for System z is not a monolithic
application that can be identified easily to Workload Manager (WLM). Developer
for System z consists of several components that interact to give the client access to
the host services and data. Refer to Chapter 12, “WLM considerations,” on page
187 to plan your WLM configuration accordingly.

Resource usage and system limits
When in use, Developer for System z will use a variable number of system
resources like address spaces and z/OS UNIX processes and threads. The
availability of these resources is limited by various system definitions. Refer to
Chapter 13, “Tuning considerations,” on page 195 to estimate the usage of key
resources, so you can plan your system configuration accordingly.

Required configuration of requisite products
Consult your MVS system programmer, security administrator and TCP/IP
administrator to check if the requisite products and software are installed, tested,
and working. Some requisite customization tasks that are easily overlooked are
listed below:
v All Developer for System z users must have READ and EXECUTE access to the

Java directories.
v All Developer for System z users must have READ, WRITE and EXECUTE

access to the /tmp/ directory.
v Remote (host based) actions for z/OS UNIX subprojects require that z/OS UNIX

version of REXEC or SSH is active on the host.

User ID considerations
The user ID of a Developer for System z user must have (at least) the following
attributes:
v TSO access (with a normal region size).

Note: A large region size is required for the user ID that executes the
Installation Verification Programs (IVPs), because functions requiring a lot
of memory (such as Java) will be executed. You should set the region size
to 131072 kilobytes (128 megabytes) or higher.

8 IBM Rational Developer for System z: Host Configuration Guide

v An OMVS segment defined to the security system (for example, RACF®), both
for the user ID and its default group.
– The HOME field must refer to a home directory allocated for the user (with

READ, WRITE and EXECUTE access).
– The PROGRAM field in the OMVS segment should be /bin/sh or other valid

z/OS UNIX shell, such as /bin/tcsh.
– The ASSIZEMAX field should not be set, so that system defaults will be used.
– The user ID does not require UID 0.

Example (command LISTUSER userid NORACF OMVS):
USER=userid

OMVS INFORMATION

UID= 0000003200
HOME= /u/userid
PROGRAM= /bin/sh
CPUTIMEMAX= NONE
ASSIZEMAX= NONE
FILEPROCMAX= NONE
PROCUSERMAX= NONE
THREADSMAX= NONE
MMAPAREAMAX= NONE

– The user ID’s default group requires a GID.
Example (command LISTGRP group NORACF OMVS):
GROUP group

OMVS INFORMATION

GID= 0000003243

v READ and EXECUTE access to the Developer for System z installation and
configuration directories and files, default /usr/lpp/rdz/*, /etc/rdz/*, and
/var/rdz/*.

v READ, WRITE, and EXECUTE access to the Developer for System z
WORKAREA directory, default /var/rdz/WORKAREA.

v READ access to the Developer for System z installation data sets, default
FEK.SFEK*.

Server considerations
Developer for System z consists of 3 permanently active servers, which can be
started tasks or user jobs. These servers provide the requested services themselves,
or start other servers (as z/OS UNIX threads or user jobs) to provide the service.
v JES Job Monitor (JMON) provides all JES-related services.
v Lock Daemon (LOCKD) provides tracking services for data set locks.
v Remote Systems Explorer (RSE) provides core services such as connecting the

client to the host and starting other servers for specific services. RSE consists of
2 logical entities:
– RSE daemon (RSED), which manages connection setup and which is

responsible for running in single server mode.
– RSE server, which handles individual client request.

JES Job Monitor (JMON) provides all JES related services.
v The security mechanisms used by JES Job Monitor rely on the data sets it resides

in being secure. This implies that only trusted system administrators should be
able to update the libraries and configuration files.

Chapter 1. Planning 9

Remote Systems Explorer (RSE) is the Developer for System z component that
provides core services such as connecting the client to the host.
v Since version 7.5, RSE daemon is no longer an INETD managed process but a

started task.
v Since version 7.5, RSE server uses a single server model whereas with previous

versions, each client-host connection had a private RSE server.
v Different levels of communication security are supported by RSE:

– External (client-host) communication can be limited to specified ports. This
feature is disabled by default.

– External (client-host) communication can be encrypted using SSL. This feature
is disabled by default.

– Port Of Entry (POE) checking can be used to allow access only to trusted
TCP/IP addresses. This feature is disabled by default.

v RSE also supports multiple client authentication methods:
– User ID and password
– User ID and one-time password
– X.509 certificate

v The security mechanisms used by RSE rely on the file system it resides in being
secure. This implies that only trusted system administrators should be able to
update the libraries and configuration files.

As documented in “TCP/IP ports” on page 150, certain host services, and thus
their ports, must be available for the client to connect to, and must be defined to
your firewall protecting the host. All other ports used by Developer for System z
have host-only traffic. Listed below are the ports needed for a basic Developer for
System z setup.
v RSE daemon for client-host communication setup (using the tcp protocol),

default port 4035.
v RSE server for client-host communication (using the tcp protocol). By default,

any available port is used, but this can be limited to a specified range.

Note: Previous clients (version 7.0 and older) communicate directly with JES Job
Monitor (using the tcp protocol), default port 6715.

Configuration method
Beginning with version 7.6.1, Developer for System z provides an alternative
method, using an ISPF panel application, to configure the host side of the product.
This gives you a choice of the following methods:
v Using the ISPF panel application. This guides you through the required

customization steps and selected optional customization steps. For more
information, refer to the Host Configuration Utility whitepaper, available at the
Developer for System z internet library, http://www-306.ibm.com/software/
awdtools/rdz/library/.

v Using the Host Configuration Quick Start Guide. This guides you through the
required customization steps. The scope of this guide is limited to a basic setup.

v Using the Host Configuration Guide. This guides you through the required
customization steps and all optional customization steps. All configurable
options are covered in this guide, including some non-default scenarios

10 IBM Rational Developer for System z: Host Configuration Guide

|

|
|
|

|
|
|
|
|

|
|

|
|
|

Predeployment considerations
Developer for System z supports cloning an installation to a different system,
avoiding the need for a SMP/E install on each system.

The following data sets, directories, and files are mandatory for deployment to
other systems. If you copied a file to a different location, then this file must replace
its counterpart in the lists below.

Note: The list below does not cover the deployment needs of the pre- and
corequisite software.

v FEK.SFEKAUTH(*)
v FEK.SFEKLOAD(*)
v FEK.SFEKPROC(*)
v FEK.#CUST.PARMLIB(*)
v FEK.#CUST.PROCLIB(*)
v /usr/lpp/rdz/*
v /etc/rdz/*
v /var/rdz/* (directory structure only)
v optional parts:

– FEK.SFEKLPA(*)
– FEK.#CUST.CNTL(*)
– definitions, data sets, files, and directories resulting from customization jobs

in FEK.#CUST.JCL

Notes:

1. FEK and /usr/lpp/rdz are the high level qualifier and path used during the
installation of the product. FEK.#CUST, /etc/rdz and /var/rdz are the default
locations used during the customization of the product (see “Customization
setup” on page 13 for more information).

2. You should install Developer for System z in a private file system (HFS or zFS)
to easy deploying the z/OS UNIX parts of the product.

3. If you can not use a private file system, you should use an archiving tool such
as the z/OS UNIX tar command to transport the z/OS UNIX directories from
system to system. This to preserve the attributes (such as program control) for
the Developer for System z files and directories.
Refer to UNIX System Services Command Reference (SA22-7802) for more
information on the following sample commands to archive and restore the
Developer for System z installation directory.
v Archive: cd /SYS1/usr/lpp/rdz; tar -cSf /u/userid/rdz.tar

v Restore: cd /SYS2/usr/lpp/rdz; tar -xSf /u/userid/rdz.tar

Client checklist

Users of the Developer for System z client must know the result of certain host
customizations, such as TCP/IP port numbers, for the client to work properly. Use
these checklists to gather the information needed.

The checklist in Table 5 on page 12 lists the required results of mandatory
customization steps. Table 6 on page 12 list the required results of optional
customization steps.

Chapter 1. Planning 11

Table 5. Client checklist - mandatory parts

Customization Value

JES Job Monitor server port number (default 6715):

See SERV_PORT in “FEJJCNFG, JES Job Monitor configuration file” on page
24.

RSE daemon TCP/IP port number (default 4035):

See “RSE daemon” on page 19.

Table 6. Client checklist - optional parts

Customization Value

Location of the ELAXF* procedures if they are not in a system procedure
library:

See note on JCLLIB in “ELAXF* remote build procedures” on page 22.

Procedure or step names of the ELAXF* procedures if they were changed:

See note on changing them in “ELAXF* remote build procedures” on
page 22.

DB2 stored procedure name (default ELAXMSAM):

See information on DB2 stored procedures in Chapter 17, “Running
multiple instances,” on page 249.

Location of the DB2 stored procedure if it is not in a system procedure
library:

See “(Optional) DB2 stored procedure” on page 81.

(corequisite) TN3270 port number for Host Connect Emulator (default 23).

See Chapter 10, “Security considerations,” on page 147

(corequisite) REXEC or SSH port number (default 512 or 22, respectively):

See “(Optional) Using REXEC (or SSH)” on page 93.

Location of the server.zseries file if the REXEC/SSH connection method
is used (default /etc/rdz).

See “(Optional) Using REXEC (or SSH)” on page 93.

Location of the CRA#ASLM JCL for CARMA SCLM RAM data set
allocations (default FEK.#CUST.JCL):

See note on CRA#ASLM in “Activating the SCLM RAM” on page 55.

12 IBM Rational Developer for System z: Host Configuration Guide

Chapter 2. Basic customization

The customization steps below are for a basic Developer for System z setup. Refer
to the chapters about the optional components for their customization
requirements.

Requirements and checklist
You will need the assistance of a security administrator and a TCP/IP
administrator to complete this customization task, which requires the following
resources and special customization tasks:
v APF authorized data set
v Various PARMLIB updates
v Various security software updates
v Various TCP/IP ports for internal and client-host communication

In order to verify the installation and to start using Developer for System z at your
site, you must perform the following tasks. Unless otherwise indicated, all tasks
are mandatory.
1. Create customizable copies of samples and create the work environment for

Developer for system z. For details, see “Customization setup.”
2. Update z/OS UNIX system limits, start started tasks, define APF authorized

and LINKLIST data sets and optionally LPA data sets. For details, see
“PARMLIB changes” on page 14.

3. Create started task procedures and compile/link procedures. For details, see
“PROCLIB changes” on page 19.

4. Update security definitions. For details, see “Security definitions” on page 23.
You must also be aware of and understand how PassTickets are used to
establish thread security. See “Using PassTickets” on page 152 for details.

5. Customize Developer for System z configuration files. For details, see:
v “FEJJCNFG, JES Job Monitor configuration file” on page 24
v “rsed.envvars, RSE configuration file” on page 28
v “ISPF.conf, ISPF’s TSO/ISPF Client Gateway configuration file” on page 42

Customization setup
Developer for System z comes with several sample configuration files and sample
JCL. To avoid overwriting your customizations when applying maintenance, you
should copy all these members and z/OS UNIX files to a different location and to
customize the copy.

Some functions of Developer for System z also require the existence of certain
directories in z/OS UNIX, which must be created during the customization of the
product. To ease the installation effort, a sample job, FEKSETUP, is provided to create
the copies and the required directories.

Customize and submit sample member FEKSETUP in data set FEK.SFEKSAMP to create
customizable copies of configuration files and configuration JCL, and to create
required z/OS UNIX directories. The required customization steps are described
within the member.

© Copyright IBM Corp. 2005, 2010 13

This job performs the following tasks:
v Create FEK.#CUST.PARMLIB and populate it with sample configuration files.
v Create FEK.#CUST.PROCLIB and populate it with sample SYS1.PROCLIB members.
v Create FEK.#CUST.JCL and populate it with sample configuration JCL.
v Create FEK.#CUST.CNTL and populate it with sample server startup scripts.
v Create FEK.#CUST.ASM and populate it with sample assembler source code.
v Create FEK.#CUST.COBOL and populate it with sample COBOL source code.
v Create /etc/rdz/* and populate it with sample configuration files.
v Create /var/rdz/* as work directories for various Developer for System z

functions.

Notes:

1. The configuration steps in this publication use the member/file locations
created by the FEKSETUP job, unless noted otherwise. The original samples,
which should not be updated, can be found in FEK.SFEKSAMP and
/usr/lpp/rdz/samples/.

2. If you want to keep all Developer for System z z/OS UNIX files in the same
file system (HFS or zFS), but also want the configuration files placed in
/etc/rdz, you can use symbolic links to solve this problem. The following
sample z/OS UNIX commands create a new directory in the existing file
system (/usr/lpp/rdz/cust) and define a symbolic link (/etc/rdz) to it:
mkdir /usr/lpp/rdz/cust
ln -s /usr/lpp/rdz/cust /etc/rdz

PARMLIB changes
Refer to MVS Initialization and Tuning Reference (SA22-7592) for more information
on the PARMLIB definitions listed below. Refer to MVS System Commands
(SA22-7627) for more information on the sample console commands.

Set z/OS UNIX limits in BPXPRMxx
Remote Systems Explorer (RSE), which provides core services such as connecting
the client to the host, is a z/OS UNIX based process. Therefore it is important to
set correct values for the z/OS UNIX system limits in BPXPRMxx, based upon the
number of concurrently active Developer for System z users and their average
workload.

Refer to Chapter 13, “Tuning considerations,” on page 195 for more information on
different BPXPRMxx defined limits and their impact on Developer for System z.

MAXASSIZE specifies the maximum address space (process) region size. Set
MAXASSIZE in SYS1.PARMLIB(BPXPRMxx) to 2G. This is the maximum value allowed.
This is a system-wide limit, and thus active for all z/OS UNIX address spaces. If
this is not what you want, then you can set the limit also just for Developer for
System z in your security software, as described in “Define the Developer for
System z started tasks” on page 169.

MAXTHREADS specifies the maximum number of active threads for a single process.
Set MAXTHREADS in SYS1.PARMLIB(BPXPRMxx) to 1500 or higher. This is a system-wide
limit, and thus active for all z/OS UNIX address spaces. If this is not what you
want, then you can set the limit also just for Developer for System z in your
security software, as described in “Define the Developer for System z started
tasks” on page 169.

14 IBM Rational Developer for System z: Host Configuration Guide

MAXTHREADTASKS specifies the maximum number of active MVS tasks for a single
process. Set MAXTHREADTASKS in SYS1.PARMLIB(BPXPRMxx) to 1500 or higher. This is a
system-wide limit, and thus active for all z/OS UNIX address spaces. If this is not
what you want, then you can set the limit also just for Developer for System z in
your security software, as described in “Define the Developer for System z started
tasks” on page 169.

MAXPROCUSER specifies the maximum number of processes that a single z/OS UNIX
user ID can have concurrently active. Set MAXPROCUSER in SYS1.PARMLIB(BPXPRMxx)
to 50 or higher. This setting is intended to be a system-wide limit, as it should be
active for each client using Developer for System z.

These values can be checked and set dynamically (until the next IPL) with the
following console commands:
v DISPLAY OMVS,O

v SETOMVS MAXASSIZE=2G

v SETOMVS MAXTHREADS=1500

v SETOMVS MAXTHREADTASKS=1500

v SETOMVS MAXPROCUSER=50

Notes:

1. Refer to “Address Space size” on page 141 for more information on other
locations where address space sizes can be set or limited.

2. The MAXPROCUSER value used above is based upon users having a unique z/OS
UNIX user ID (UID). Increase this value if your users share the same UID.

3. Ensure that other BPXPRMxx values, such as those for MAXPROCSYS and MAXUIDS,
are sufficient to handle the expected amount of concurrently active Developer
for System z users. Refer to Chapter 13, “Tuning considerations,” on page 195
for more details.

Add started tasks to COMMNDxx
Add start commands for the Developer for System z RSED, LOCKD, and JMON servers
to SYS1.PARMLIB(COMMANDxx) to start them automatically at next system IPL.

Once the servers are defined and configured, they can be started dynamically
(until the next IPL) with the following console commands:
v S RSED

v S LOCKD

v S JMON

Note: The lock daemon should be started before Developer for System z users log
on to the RSE daemon. This is so the lock daemon can track the data set
lock requests by these users. Therefore you should start the lock daemon at
system startup.

LPA definitions in LPALSTxx
The (optional) Common Access Repository Manager (CARMA) service supports
alternative server startup methods that do not require the usage of a JES initiator.
The most flexible of these alternatives requires that module CRASTART in the
FEK.SFEKLPA load library is in the Link Pack Area (LPA).

LPA data sets are defined in SYS1.PARMLIB(LPALSTxx).

Chapter 2. Basic customization 15

LPA definitions can be set dynamically (until the next IPL) with the following
console commands:
v SETPROG LPA,ADD,DSN=FEK.SFEKLPA

APF authorizations in PROGxx
In order for JES Job Monitor to access JES spool files, module FEJJMON in the
FEK.SFEKAUTH load library and the Language Environment® (LE) runtime libraries
(CEE.SCEERUN*) must be APF authorized.

In order for the (optional) SCLM Developer Toolkit service to work, module
BWBTSOW in the FEK.SFEKAUTH load library and the REXX runtime library
(REXX.*.SEAGLPA) must be APF authorized.

In order for ISPF to create the TSO/ISPF Client Gateway, module ISPZTSO in
SYS1.LINKLIB must be APF authorized. The TSO/ISPF Client Gateway is used by
Developer for System z’s TSO Commands service, SCLM Developer Toolkit and
optionally CARMA.

APF authorizations are defined in SYS1.PARMLIB(PROGxx), if your site followed IBM
recommendations.

APF authorizations can be set dynamically (until the next IPL) with the following
console commands, where volser is the volume on which the data set resides if it
is not SMS managed:
v SETPROG APF,ADD,DSN=FEK.SFEKAUTH,SMS

v SETPROG APF,ADD,DSN=CEE.SCEERUN,VOL=volser

v SETPROG APF,ADD,DSN=CEE.SCEERUN2,VOL=volser

v SETPROG APF,ADD,DSN=REXX.V1R4M0.SEAGLPA,VOL=volser

v SETPROG APF,ADD,DSN=SYS1.LINKLIB,VOL=volser

Notes:

1. When you use the Alternate Library for REXX product package, the default
REXX runtime library name is REXX.*.SEAGALT, instead of REXX.*.SEAGLPA as
used in the preceding sample.

2. LPA libraries, such as REXX.*.SEAGLPA, are automatically APF authorized when
located in LPA, and thus do not require explicit definitions.

3. Some of the corequisite products, such as IBM Debug Tool, also require APF
authorization. Refer to the related product customization guides for more
information on this.

LINKLIST definitions in PROGxx
LINKLIST definitions for Developer for System z can be grouped in 3 categories:
v Developer for System z load libraries needed for Developer for System z

functions. These definitions are described in this section.
v Requisite load libraries needed for Developer for System z functions. These

definitions are described in “Requisite LINKLIST and LPA definitions” on page
17.

v Developer for System z load libraries needed by other products. These
definitions are described in “LINKLIST definitions for other products” on page
18.

16 IBM Rational Developer for System z: Host Configuration Guide

In order for the (optional) SCLM Developer Toolkit service to work, all BWB*
modules in the FEK.SFEKAUTH and FEK.SFEKLOAD load libraries must be made
available either through STEPLIB or LINKLIST.

If you opt to use STEPLIB, you must define the libraries not available through
LINKLIST in the STEPLIB directive of rsed.envvars, the RSE configuration file. Be
aware, however, that:
v using STEPLIB in z/OS UNIX has a negative performance impact.
v If one STEPLIB library is APF authorized, then all must be authorized. Libraries

lose their APF authorization when they are mixed with non-authorized libraries
in STEPLIB.

LINKLIST data sets are defined in SYS1.PARMLIB(PROGxx), if your site followed IBM
recommendations.

The required definitions will look like the following, where listname is the name
of the LINKLIST set that will be activated, and volser is the volume on which the
data set resides if it is not cataloged in the master catalog:
v LNKLST ADD NAME(listname) DSNAME(FEK.SFEKAUTH) VOLUME(volser)

v LNKLST ADD NAME(listname) DSNAME(FEK.SFEKLOAD)

LINKLIST definitions can be created dynamically (until the next IPL) with the
following group of console commands, where listname is the name of the current
LINKLIST set, and volser is the volume on which the data set resides if it is not
cataloged in the master catalog:
1. LNKLST DEFINE,NAME=LLTMP,COPYFROM=CURRENT

2. LNKLST ADD NAME=LLTMP,DSN=FEK.SFEKAUTH,VOL=volser

3. LNKLST ADD NAME=LLTMP,DSN=FEK.SFEKLOAD

4. LNKLST ACTIVATE,NAME=LLTMP

5. LNKLST UNDEFINE,NAME=listname

6. LNKLST UPDATE,JOB=*

Requisite LINKLIST and LPA definitions
Remote Systems Explorer (RSE) is a z/OS UNIX process that requires access to
MVS load libraries. The following (prerequisite) libraries must be made available,
either through STEPLIB or LINKLIST/LPALIB:
v System load library

– SYS1.LINKLIB

v Language Environment runtime
– CEE.SCEERUN

– CEE.SCEERUN2

v C++’s DLL class library
– CBC.SCLBDLL

v ISPF’s TSO/ISPF Client Gateway
– ISP.SISPLOAD

– ISP.SISPLPA

Chapter 2. Basic customization 17

The following additional libraries must be made available, either through STEPLIB
or LINKLIST/LPALIB, to support the use of optional services. This list does not
include data sets that are specific to a product that Developer for System z
interacts with, such as IBM Debug Tool:
v REXX runtime library (for SCLM Developer Toolkit)

– REXX.*.SEAGLPA

v System load library (for SSL encryption)
– SYS1.SIEALNKE

v TCP/IP load library (when using APPC for the TSO Commands service)
– TCPIP.SEZALOAD

Notes:

1. When you use the Alternate Library for REXX product package, the default
REXX runtime library name is REXX.*.SEAGALT, instead of REXX.*.SEAGLPA as
used in the preceding sample.

2. Libraries that are designed for LPA placement, such as REXX.*.SEAGLPA, might
require additional program control and/or APF authorizations if they are
accessed through LINKLIST or STEPLIB.

3. Some of the corequisite products, such as IBM Debug Tool, also require
STEPLIB or LINKLIST/LPALIB definitions. Refer to the related product
customization guides for more information on this.

4. If CEE.SCEELKED is in LINKLIST or STEPLIB, TCPIP.SEZALOAD must be placed
before CEE.SCEELKED. Failure to do so will result in a 0C1 system abend for the
TCP/IP REXX socket calls.

LINKLIST data sets are defined in SYS1.PARMLIB(PROGxx), if your site followed IBM
recommendations. LPA data sets are defined in SYS1.PARMLIB(LPALSTxx).

If you opt to use STEPLIB, you must define the libraries not available through
LINKLIST/LPALIB in the STEPLIB directive of rsed.envvars, the RSE
configuration file. Be aware, however, that:
v Using STEPLIB in z/OS UNIX has a negative performance impact.
v If one STEPLIB library is APF authorized, then all must be authorized. Libraries

lose their APF authorization when they are mixed with non-authorized libraries
in STEPLIB.

v Libraries added to the STEPLIB DD in a JCL are not propagated to the z/OS
UNIX processes started by the JCL.

LINKLIST definitions for other products
The Developer for System z client has a code generation component called
Enterprise Service Tools (EST). In order for the generated code to issue diagnostic
error messages, all IRZ* and IIRZ* modules in the FEK.SFEKLOAD load library must
be made available either through STEPLIB or LINKLIST.

LINKLIST data sets are defined in SYS1.PARMLIB(PROGxx), if your site followed IBM
recommendations.

If you opt to use STEPLIB, you must define the libraries not available through
LINKLIST in the STEPLIB directive of the task that executes the code (IMS™ or
batch job). However, be aware of the following:

18 IBM Rational Developer for System z: Host Configuration Guide

v If one STEPLIB library is APF authorized, then all must be authorized. Libraries
loose their APF authorization when they are mixed with non-authorized libraries
in STEPLIB.

PROCLIB changes
The started task and remote build procedures listed below must reside in a system
procedure library defined to your JES subsystem. In the instructions below, the
IBM default procedure library, SYS1.PROCLIB, is used.

JES Job Monitor
Customize the sample started task member FEK.#CUST.PROCLIB(JMON), as described
within the member, and copy it to SYS1.PROCLIB. As shown in the code sample
below, you have to provide the following:
v The high level qualifier of the (authorized) load library, default FEK
v The JES Job Monitor configuration file, default FEK.#CUST.PARMLIB(FEJJCNFG)

Notes:

1. Refer to Chapter 8, “Operator commands,” on page 115 for more information
on the startup parameters.

2. The sample JCL is initially shipped as FEK.SFEKSAMP(FEJJJCL) and is renamed
to FEK.#CUST.PROCLIB(JMON) in “Customization setup” on page 13.

3. Tracing can also be controlled by console commands, as described in Chapter 8,
“Operator commands,” on page 115.

4. This task must be assigned to SYSSTC or equivalent goal in Workload Manager
(WLM).

5. The LE environment variable _CEE_ENVFILE_S requires z/OS 1.8 or higher. The
variable can be substituted with _CEE_ENVFILE on older z/OS levels, but due to
a bug in the C runtime, the TZ variable in the JES Job Monitor configuration file
(FEJJCNFG) might not be interpreted correctly.

RSE daemon
Customize the sample started task member FEK.#CUST.PROCLIB(RSED), as described
within the member, and copy it to SYS1.PROCLIB. As shown in the code sample
below, you have to provide the following:
v The RSE daemon port, default 4035.

//*
//* JES JOB MONITOR
//*
//JMON PROC PRM=, * PRM=’-TV’ TO START TRACING
// LEPRM=’RPTOPTS(ON)’,
// HLQ=FEK,
// CFG=FEK.#CUST.PARMLIB(FEJJCNFG)
//*
//JMON EXEC PGM=FEJJMON,REGION=0M,TIME=NOLIMIT,
// PARM=(’&LEPRM,ENVAR("_CEE_ENVFILE_S=DD:ENVIRON")/&PRM’)
//STEPLIB DD DISP=SHR,DSN=&HLQ..SFEKAUTH
//ENVIRON DD DISP=SHR,DSN=&CFG
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
// PEND
//*

Figure 1. JMON - JES Job Monitor started task

Chapter 2. Basic customization 19

|
|
|
|

v The home directory where Developer for System z is installed, default
/usr/lpp/rdz.

v The location of the configuration files, default /etc/rdz

Note:

v Refer to Chapter 8, “Operator commands,” on page 115 for more
information on the startup parameters.

v The sample JCL is initially shipped as FEK.SFEKSAMP(FEKRSED) and is
renamed to FEK.#CUST.PROCLIB(RSED) in “Customization setup” on page
13.

v Limit the length of the job name to 7 characters or less. The modify and
stop operator commands will fail with message “IEE342I MODIFY
REJECTED-TASK BUSY” if an 8 character name is used. This behavior is
caused by the z/OS UNIX design for child processes.

v This task, and the child processes it creates, must be assigned to SYSSTC
or equivalent goal in Workload Manager (WLM). The child processes have
the same name as the parent task, RSED, appended with a random 1-digit
number, for example RSED8.

Lock daemon
Customize the sample started task member FEK.#CUST.PROCLIB(LOCKD), as
described within the member, and copy it to SYS1.PROCLIB. As shown in the code
sample below, you have to provide the following:
v The home directory where Developer for System z is installed, default

/usr/lpp/rdz.
v The location of the configuration files, default /etc/rdz.
v The initial log detail level, default 1.

//*
//* RSE DAEMON
//*
//RSED PROC IVP=’’, * ’IVP’ to do an IVP test
// PORT=4035,
// HOME=’/usr/lpp/rdz’,
// CNFG=’/etc/rdz’
//*
//RSE EXEC PGM=BPXBATSL,REGION=0M,TIME=NOLIMIT,
// PARM=’PGM &HOME/bin/rsed.sh &IVP &PORT &CNFG’
//STDERR DD SYSOUT=*
//STDOUT DD SYSOUT=*
// PEND
//*

Figure 2. RSED - RSE daemon started task

20 IBM Rational Developer for System z: Host Configuration Guide

Notes:

1. Refer to Chapter 8, “Operator commands,” on page 115 for more information
on the startup parameters.

2. The sample JCL is initially shipped as FEK.SFEKSAMP(FEKLOCKD) and is renamed
to FEK.#CUST.PROCLIB(LOCKD) in “Customization setup” on page 13.

3. This task must be assigned to SYSSTC or equivalent goal in Workload Manager
(WLM).

JCL limitations for the PARM variable
The maximum length for the PARM variable is 100 characters, which might cause
problems if you use custom directory names. To bypass this problem, you can
either:
v Use symbolic links

Symbolic links can be used as shorthand for a long directory name. The
following sample z/OS UNIX command defines a symbolic link (/usr/lpp/rdz)
to another directory (/long/directory/name/usr/lpp/rdz).
ln -s /long/directory/name/usr/lpp/rdz /usr/lpp/rdz

v Use STDIN
When the PARM field is empty, BPXBATSL will start a z/OS UNIX shell and
execute the shell script that is provided by STDIN. Note that STDIN must be a
z/OS UNIX file (allocated as ORDONLY) and that using STDIN disables the
usage of PROC variables for the port etc. Also note that the shell will execute
the shell logon scripts /etc/profile and $HOME/.profile.
To use this method, you must first update the startup JCL to match something
like the following sample:

//*
//* RSE LOCK DAEMON
//*
//LOCKD PROC HOME=’/usr/lpp/rdz’,
// CNFG=’/etc/rdz’,
// LOG=1
//*
//LOCKD EXEC PGM=BPXBATSL,REGION=0M,TIME=NOLIMIT,

PARM=PGM &HOME./bin/lockd.sh &CNFG &LOG’
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
// PEND
//*

Figure 3. LOCKD - Lock daemon started task

//*
//* RSE DAEMON - USING STDIN
//*
//RSED PROC CNFG=’/etc/rdz’
//*
//RSE EXEC PGM=BPXBATSL,REGION=0M,TIME=NOLIMIT
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//STDIN DD PATHOPTS=(ORDONLY),PATH=’&CNFG./rsed.stdin.sh’
//STDENV DD PATHOPTS=(ORDONLY),PATH=’&CNFG./rsed.envvars’
// PEND
//*

Figure 4. RSED - alternate RSE daemon startup

Chapter 2. Basic customization 21

Second, you must create the shell script (/etc/rdz/rsed.stdin.sh in this
example) that will start the RSE daemon. The content of this script will look like
the following sample:

Note: You should allocate rsed.envvars to STDENV in the daemon startup JCL,
as it defines some z/OS UNIX directives that help save system resources
when using this startup method.

ELAXF* remote build procedures
Developer for System z provides sample JCL procedures that can be used for the
JCL generation, remote project builds, and remote syntax check features of CICS
BMS maps, IMS MFS screens, COBOL, PL/I, Assembler, and C/C++ programs.
These procedures allow installations to apply their own standards, and ensure that
developers use the same procedures with the same compiler options and compiler
levels.

The sample procedures and their function are listed in Table 7.

Table 7. Sample ELAXF* procedures

Member Purpose

ELAXFADT Sample procedure for assembling and debugging High Level assembler
programs.

ELAXFASM Sample procedure for assembling High Level assembler programs.

ELAXFBMS Sample procedure for creating CICS BMS object and corresponding copy,
dsect, or include member.

ELAXFCOC Sample procedure for doing COBOL Compiles, Integrated CICS translate
and integrated DB2 translate.

ELAXFCOP Sample procedure for doing DB2 preprocess of EXEC SQL statements
embedded in COBOL programs.

ELAXFCOT Sample procedure for doing CICS translation for EXEC CICS statements
embedded in COBOL programs.

ELAXFCPC Sample procedure for doing C compiles.

ELAXFCPP Sample procedure for doing C++ compiles.

ELAXFCP1 Sample procedure for COBOL compiles with SCM preprocessor
statements (-INC and ++INCLUDE).

ELAXFDCL Sample procedure for running a program in TSO mode.

ELAXFGO Sample procedure for the GO step.

ELAXFLNK Sample procedure for linking C/C++, COBOL. PLI and High Level
Assembler programs.

ELAXFMFS Sample procedure for creating IMS MFS screens.

ELAXFPLP Sample procedure for doing DB2 preprocess of EXEC SQL statements
embedded in PLI programs.

ELAXFPLT Sample procedure for doing CICS translation of EXEC CICS statements
embedded in PLI programs.

ELAXFPL1 Sample procedure for doing PL/I compiles, integrated CICS translate and
integrated DB2 translate.

/long/directory/name/usr/lpp/rdz/bin/rsed.sh 4035 /etc/rdz

Figure 5. rsed.stdin.sh - alternate RSE daemon startup

22 IBM Rational Developer for System z: Host Configuration Guide

|

Table 7. Sample ELAXF* procedures (continued)

Member Purpose

ELAXFPP1 Sample procedure for PL/I compiles with SCM preprocessor statements
(-INC and ++INCLUDE).

ELAXFTSO Sample procedure for running/debugging generated DB2 code in TSO
mode.

ELAXFUOP Sample procedure for generating the UOPT step when building programs
that run in CICS or IMS subsystems.

The names of the procedures and the names of the steps in the procedures match
the default properties that are shipped with the Developer for System z client. If
you decide to change the name of a procedure or the name of a step in a
procedure, the corresponding properties file on all the clients should also be
updated. We recommend that you do not change the procedure and step names.

Customize the sample build procedure members, FEK.#CUST.PROCLIB(ELAXF*), as
described within the members, and copy them to SYS1.PROCLIB. You have to
provide the correct high level qualifiers for different product libraries, as described
in Table 8.

Table 8. ELAXF* high level qualifier checklist

Product Default HLQ Value

Developer for System z FEK

CICS CICSTS32.CICS

DB2 DSN910

IMS IMS

COBOL IGY.V4R1M0

PL/I IBMZ.V3R8M0

C/C++ CBC

LE CEE

system LINKLIB SYS1

system MACLIB SYS1

If the ELAXF* procedures cannot be copied into a system procedure library, ask the
Developer for System z users to add a JCLLIB card (right after the JOB card) to the
job properties on the client.
//MYJOB JOB <job parameters>
//PROCS JCLLIB ORDER=(FEK.#CUST.PROCLIB)

Security definitions
Customize and submit sample member FEKRACF in data set FEK.#CUST.JCL to create
the security definitions for Developer for System z. The user submitting this job
must have security administrator privileges, such as being RACF SPECIAL.

Note:

v For those sites that use CA ACF2TM for z/OS, please refer to the following
link, https://support.ca.com/irj/portal/kbtech?ipLogNrow=0

Chapter 2. Basic customization 23

&docid=492389&searchID=TEC492389, for details on the security commands
necessary to properly configure Developer for System z.

v For those sites that use CA Top Secret® for z/OS, please refer to your
product page on the CA support site (https://support.ca.com) and check
for the related Developer for System z Knowledge Document. This
Knowledge Document has details on the security commands necessary to
properly configure Developer for System z.

The following list of mandatory security-related definitions for Developer for
System z are discussed in detail in Chapter 10, “Security considerations,” on page
147. This chapter also discusses general security-related aspects of Developer for
System z, including security aspects of requisite products that are not covered by
the sample FEKRACF job.
v Activate security settings and classes
v Define an OMVS segment for Developer for System z users
v Define data set profiles
v Define the JMON, RSED, and LOCKD started tasks
v Define JES command security
v Define RSE as a secure z/OS UNIX server
v Define MVS program controlled libraries for RSE
v Define application security for RSE
v Define PassTicket support for RSE
v Define z/OS UNIX program controlled files for RSE

Note: The sample FEKRACF job holds more than just RACF commands. The last
step of the security definitions consists of making a z/OS UNIX file
program controlled. Depending on the policies at your site, this might be a
task for the system programmer and not the security administrator.

Attention: The client connection request will fail if application security and PassTickets
are not set up correctly.

FEJJCNFG, JES Job Monitor configuration file
JES Job Monitor (JMON) provides all JES-related services. The behavior of JES Job
Monitor can be controlled with the definitions in FEJJCNFG.

FEJJCNFG is located in FEK.#CUST.PARMLIB, unless you specified a different location
when you customized and submitted job FEK.SFEKSAMP(FEKSETUP). See
“Customization setup” on page 13 for more details.

Customize the sample JES Job Monitor configuration member FEJJCNFG, as shown
in the following sample. Comment lines start with a pound sign (#), when using a
US code page. Data lines can only have a directive and its assigned value,
comments are not allowed on the same line.

Note: The JMON started task must be restarted to pick up any changes you make.

24 IBM Rational Developer for System z: Host Configuration Guide

SERV_PORT

The port number for JES Job Monitor host server. The default port is 6715.
Change as desired, however, BOTH the server and the Developer for
System z clients must be configured with the same port number. If you
change the server port number, all clients must also change the JES Job
Monitor port for this system in the Remote Systems View.

Note:

v Before selecting a port, verify that the port is available on your
system with the TSO commands NETSTAT and NETSTAT
PORTL.

v When using a version 7.1 or higher client, all communication on
this port is confined to your z/OS host machine.

TZ Time zone selector. The default is EST5EDT. The default time zone is UTC
+5 hours (Eastern Standard Time (EST) Eastern Daylight Savings Time
(EDT)). Change this to represent your time zone. Additional information
can be found in the UNIX System Services Command Reference (SA22-7802).

The following definitions are optional. If omitted, default values will be used as
specified below:

_BPXK_SETIBMOPT_TRANSPORT
Specifies the name of the TCPIP stack to be used. The default is TCPIP.
Uncomment and change to the requested TCPIP stack name, as defined in
the TCPIPJOBNAME statement in the related TCPIP.DATA.

Note:

v Coding a SYSTCPD DD statement in the server JCL does not set
the requested stack affinity.

v When this directive is not active, JES Job Monitor binds to every
available stack on the system (BIND INADDRANY).

APPLID
Specifies the application identifier used for identifying JES Job Monitor to
your security software. The default is FEKAPPL. Uncomment and change to
the desired application ID.

SERV_PORT=6715
TZ=EST5EDT
#_BPXK_SETIBMOPT_TRANSPORT=TCPIP
#APPLID=FEKAPPL
#AUTHMETHOD=SAF
#CODEPAGE=UTF-8
#CONCHAR=$
#CONSOLE_NAME=JMON
#GEN_CONSOLE_NAME=OFF
#HOST_CODEPAGE=IBM-1047
#LIMIT_COMMANDS=NOLIMIT
#LIMIT_VIEW=USERID
#LISTEN_QUEUE_LENGTH=5
#MAX_DATASETS=32
#MAX_THREADS=200
#TIMEOUT=3600
#TIMEOUT_INTERVAL=1200
#SUBMITMETHOD=TSO
#TSO_TEMPLATE=FEK.#CUST.CNTL(FEJTSO)

Figure 6. FEJJCNFG, JES Job Monitor configuration file

Chapter 2. Basic customization 25

|
|

Note: This value must match the application ID set for RSE in the
rsed.envvars configuration file. If these values differ, RSE cannot
connect the client to JES Job Monitor.

AUTHMETHOD
The default is SAF, which means that the System Authorization Facility
(SAF) security interface is used. Do not change unless directed to do so by
the IBM support center.

CODEPAGE
The workstation codepage. The default is UTF-8. The workstation codepage
is set to UTF-8 and generally should not be changed. You might need to
uncomment the directive and change UTF-8 to match the workstation's
codepage if you have difficulty with NLS characters, such as the currency
symbol.

CONCHAR
Specifies the JES console command character. CONCHAR defaults to CONCHAR=$
for JES2, or CONCHAR=* for JES3. Uncomment and change to the requested
command character.

CONSOLE_NAME
Specifies the name of the EMCS console used for issuing commands
against jobs (Hold, Release, Cancel, and Purge). The default is JMON.
Uncomment and change to the desired console name, using the guidelines
below.
v CONSOLE_NAME must be either a console name consisting of 2 to 8

alphanumeric characters, or ’&SYSUID’ (without quotes).
v If a console name is specified, a single console by that name is used for

all users. If the console by that name happens to be in use, then the
command issued by the client will fail.

v If &SYSUID is specified, the client user ID is used as the console name.
Thus a different console is used for each user. If the console by that
name happens to be in use (for example, the user is using the SDSF
ULOG), then the command issued by the client might fail, depending on
the GEN_CONSOLE_NAME setting.

No matter which console name is used, the user ID of the client requesting
the command is used as the LU of the console, leaving a trace in syslog
messages IEA630I and IEA631.
IEA630I OPERATOR console NOW ACTIVE, SYSTEM=sysid, LU=id
IEA631I OPERATOR console NOW INACTIVE, SYSTEM=sysid, LU=id

GEN_CONSOLE_NAME
Enables or disables automatic generating of alternative console names. The
default is OFF. Uncomment and change to ON to enable alternative console
names.

This directive is only used when CONSOLE_NAME equals &SYSUID and the user
ID is not available as console name.

If GEN_CONSOLE_NAME=ON, an alternative console name is generated by
appending a single numeric digit to the user ID. The digits 0 through 9 are
attempted. If no available console is found, the command issued by the
client fails.

If GEN_CONSOLE_NAME=OFF, the command issued by the client fails.

Note: The only valid settings are ON and OFF.

26 IBM Rational Developer for System z: Host Configuration Guide

HOST_CODEPAGE
The host codepage. The default is IBM-1047. Uncomment and change to
match your host codepage.

From version 7.6.1 on, Developer for System z clients ignore the
HOST_CODEPAGE value specified here and use the codepage specified locally
in the properties of the “MVS Files” subsystem.

Note: Even for recent clients, JES Job Monitor will use the host codepage
specified in HOST_CODEPAGE during initial client communication
setup.

LIMIT_COMMANDS
Defines against which jobs the user can issue selected JES commands
(Show JCL, Hold, Release, Cancel, and Purge). The default
(LIMIT_COMMANDS=USERID) limits the commands to jobs owned by the user.
Uncomment this directive and specify LIMITED or NOLIMIT to allow the user
to issue commands against all spool files, if permitted by your security
product.

Table 9. LIMIT_COMMANDS command permission matrix

Job owner

LIMIT_COMMANDS User Other

USERID (default) Allowed Not allowed

LIMITED Allowed Allowed only if explicitly
permitted by security
profiles

NOLIMIT Allowed Allowed if permitted by
security profiles or when the
JESSPOOL class is not active

Note: The only valid settings are USERID, LIMITED, and NOLIMIT.

LIMIT_VIEW
Defines what output the user can view. The default (LIMIT_VIEW=NOLIMIT)
allows the user to view all JES output, if permitted by your security
product. Uncomment this directive and specify USERID to limit the view to
output owned by the user.

Note: The only valid settings are USERID and NOLIMIT.

LISTEN_QUEUE_LENGTH
The TCP/IP listen queue length. The default is 5. Do not change unless
directed to do so by the IBM support center.

MAX_DATASETS
The maximum number of spooled output data sets that JES Job Monitor
will return to the client (for example, SYSOUT, SYSPRINT, SYS00001, and
so on). The default is 32. The maximum value is 2147483647.

MAX_THREADS
Maximum number of users that can be using one JES Job Monitor at a
time. The default is 200. The maximum value is 2147483647. Increasing this
number may require you to increase the size of the JES Job Monitor
address space.

TIMEOUT
The length of time, in seconds, before a thread is killed due to lack of

Chapter 2. Basic customization 27

|
|
|

|
|
|

|
|
|

interaction with the client. The default is 3600 (1 hour). The maximum
value is 2147483647. TIMEOUT=0 disables the function.

TIMEOUT_INTERVAL
The number of seconds between timeout checks. The default is 1200. The
maximum value is 2147483647.

SUBMITMETHOD=TSO
Submit jobs through TSO. The default (SUBMITMETHOD=JES) submits jobs
directly into JES. Uncomment this directive and specify TSO to submit the
job through TSO SUBMIT command. This method allows TSO exits to be
invoked; however, it has a performance drawback and for that reason it is
not recommended.

Note:

v The only valid settings are TSO and JES.
v If SUBMITMETHOD=TSO is specified, then TSO_TEMPLATE must also be

defined.

TSO_TEMPLATE
Wrapper JCL for submitting the job through TSO. The default value is
FEK.#CUST.CNTL(FEJTSO). This statement refers to the fully qualified
member name of the JCL to be used as a wrapper for the TSO submit. See
the SUBMITMETHOD statement for more information.

Note:

v A sample wrapper job is provided in FEK.#CUST.CNTL(FEJTSO).
Refer to this member for more information on the customization
needed.

v TSO_TEMPLATE has no effect unless SUBMITMETHOD=TSO is also
specified.

rsed.envvars, RSE configuration file
The RSE lock daemon and the RSE server processes (RSE daemon, RSE thread
pool, and RSE server) use the definitions in rsed.envvars. Optional Developer for
System z and third-party services can use this configuration file also to define
environment variables for their use.

Remote Systems Explorer (RSE) provides core services such as connecting the client
to the host and starting other servers for specific services. Lock daemon provides
tracking services for data set locks.

rsed.envvars is located in /etc/rdz/, unless you specified a different location
when you customized and submitted job FEK.SFEKSAMP(FEKSETUP). See
“Customization setup” on page 13 for more details. You can edit the file with the
TSO OEDIT command.

See the following sample rsed.envvars file, which must be customized to match
your system environment. Comment lines start with a pound sign (#), when using
a US code page. Data lines can only have a directive and its assigned value,
comments are not allowed on the same line. Line continuations and spaces around
the equal sign (=) are not supported.

Note: The RSED and LOCKD started tasks must be restarted to pick up any
changes you make.

28 IBM Rational Developer for System z: Host Configuration Guide

Chapter 2. Basic customization 29

#===
(1) required definitions
JAVA_HOME=/usr/lpp/java/J5.0
RSE_HOME=/usr/lpp/rdz
_RSE_LOCKD_PORT=4036
_RSE_HOST_CODEPAGE=IBM-1047
TZ=EST5EDT
LANG=C
PATH=/bin:/usr/sbin
_CEE_DMPTARG=/tmp
STEPLIB=NONE
#STEPLIB=$STEPLIB:CEE.SCEERUN:CEE.SCEERUN2:CBC.SCLBDLL
_RSE_SAF_CLASS=/usr/include/java_classes/IRRRacf.jar
_RSE_JAVAOPTS=""
_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Xms1m -Xmx256m"
_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Ddaemon.log=/var/rdz/logs"
_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Duser.log=/var/rdz/logs"
_RSE_JAVAOPTS="$_RSE_JAVAOPTS -DDSTORE_LOG_DIRECTORY="
#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Dmaximum.clients=60"
#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Dmaximum.threads=1000"
#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Dminimum.threadpool.process=1"
#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Dmaximum.threadpool.process=100"
#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Dipv6=true"
#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Dkeep.last.log=true"
#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Denable.standard.log=true"
#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Denable.port.of.entry=true"
#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Denable.certificate.mapping=false"
#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Denable.automount=true"
#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Denable.audit.log=true"
#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Daudit.cycle=30"
#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Daudit.retention.period=0"
#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Ddeny.nonzero.port=true"
#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Dsingle.logon=false"
#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Dprocess.cleanup.interval=0"
#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -DAPPLID=FEKAPPL"
#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -DDENY_PASSWORD_SAVE=true"
#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -DHIDE_ZOS_UNIX=true"
#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -DDSTORE_IDLE_SHUTDOWN_TIMEOUT=3600000"
#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -DDSTORE_TRACING_ON=true"
#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -DDSTORE_MEMLOGGING_ON=true"
#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -DTSO_SERVER=APPC"
#===
(2) required definitions for TSO/ISPF Client Gateway
_CMDSERV_BASE_HOME=/usr/lpp/ispf
_CMDSERV_CONF_HOME=/etc/rdz
_CMDSERV_WORK_HOME=/var/rdz
#STEPLIB=$STEPLIB:ISP.SISPLOAD:ISP.SISPLPA:SYS1.LINKLIB
_RSE_CMDSERV_OPTS=""
#_RSE_CMDSERV_OPTS="$_RSE_CMDSERV_OPTS&ISPPROF=&SYSUID..ISPPROF"
#===
(3) required definitions for SCLM Developer Toolkit
_SCLMDT_CONF_HOME=/var/rdz/sclmdt
#STEPLIB=$STEPLIB:FEK.SFEKAUTH:FEK.SFEKLOAD
#_SCLMDT_TRANTABLE=FEK.#CUST.LSTRANS.FILE
#ANT_HOME=/usr/lpp/Apache/Ant/apache-ant-1.7.1
#===
(4) optional definitions
#_RSE_PORTRANGE=8108-8118
#_BPXK_SETIBMOPT_TRANSPORT=TCPIP
#_FEKFSCMD_TP_NAME_=FEKFRSRV
#_FEKFSCMD_PARTNER_LU_=lu_name
#GSK_CRL_SECURITY_LEVEL=HIGH
#GSK_LDAP_SERVER=ldap_server_url
#GSK_LDAP_PORT=ldap_server_port
#GSK_LDAP_USER=ldap_userid
#GSK_LDAP_PASSWORD=ldap_server_password
#===

Figure 7. rsed.envvars - RSE configuration file30 IBM Rational Developer for System z: Host Configuration Guide

(5) do not change unless directed by IBM support center
_CEE_RUNOPTS="ALL31(ON) HEAP(32M,32K,ANYWHERE,KEEP,,) TRAP(ON)"
_BPX_SHAREAS=YES
_BPX_SPAWN_SCRIPT=YES
JAVA_PROPAGATE=NO
RSE_LIB=$RSE_HOME/lib
PATH=.:$JAVA_HOME/bin:$RSE_HOME/bin:$_CMDSERV_BASE_HOME/bin:$PATH
LIBPATH=$JAVA_HOME/bin:$JAVA_HOME/bin/classic:$RSE_LIB:$RSE_LIB/icuc
LIBPATH=.:/usr/lib:$LIBPATH
CLASSPATH=$RSE_LIB:$RSE_LIB/dstore_core.jar:$RSE_LIB/clientserver.jar
CLASSPATH=$CLASSPATH:$RSE_LIB/dstore_extra_server.jar
CLASSPATH=$CLASSPATH:$RSE_LIB/zosserver.jar
CLASSPATH=$CLASSPATH:$RSE_LIB/dstore_miners.jar
CLASSPATH=$CLASSPATH:$RSE_LIB/universalminers.jar:$RSE_LIB/mvsminers.jar
CLASSPATH=$CLASSPATH:$RSE_LIB/carma.jar:$RSE_LIB/luceneminer.jar
CLASSPATH=$CLASSPATH:$RSE_LIB/mvsluceneminer.jar:$RSE_LIB/cdzminer.jar
CLASSPATH=$CLASSPATH:$RSE_LIB/mvscdzminer.jar:$RSE_LIB/jesminers.jar
CLASSPATH=$CLASSPATH:$RSE_LIB/FAMiner.jar
CLASSPATH=$CLASSPATH:$RSE_LIB/mvsutil.jar:$RSE_LIB/jesutils.jar
CLASSPATH=$CLASSPATH:$RSE_LIB/lucene-core-2.3.2.jar
CLASSPATH=$CLASSPATH:$RSE_LIB/cdtparser.jar
CLASSPATH=$CLASSPATH:$RSE_LIB/wdzBidi.jar:$RSE_LIB/fmiExtensions.jar
CLASSPATH=$CLASSPATH:$_RSE_SAF_CLASS
CLASSPATH=.:$CLASSPATH
_RSE_CMDSERV_OPTS="&SESSION=SPAWN$_RSE_CMDSERV_OPTS"
_RSE_JAVAOPTS="$_RSE_JAVAOPTS -DISPF_OPTS=’$_RSE_CMDSERV_OPTS’"
_RSE_JAVAOPTS="$_RSE_JAVAOPTS -DA_PLUGIN_PATH=$RSE_LIB"
_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Xbootclasspath/p:$RSE_LIB/bidiTools.jar"
_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Dfile.encoding=$_RSE_HOST_CODEPAGE"
_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Dconsole.encoding=$_RSE_HOST_CODEPAGE"
_RSE_JAVAOPTS="$_RSE_JAVAOPTS -DDSTORE_SPIRIT_ON=true"
_RSE_JAVAOPTS="$_RSE_JAVAOPTS -DSPIRIT_EXPIRY_TIME=6"
_RSE_JAVAOPTS="$_RSE_JAVAOPTS -DSPIRIT_INTERVAL_TIME=6"
_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Dcom.ibm.cacheLocalHost=true"
_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Duser.home=$HOME"
_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Dclient.username=$RSE_USER_ID"
_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Dlow.heap.usage.ratio=15"
_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Dmaximum.heap.usage.ratio=40"
_RSE_JAVAOPTS="$_RSE_JAVAOPTS -DDSTORE_KEEPALIVE_ENABLED=true"
_RSE_JAVAOPTS="$_RSE_JAVAOPTS -DDSTORE_KEEPALIVE_RESPONSE_TIMEOUT=30000"
_RSE_JAVAOPTS="$_RSE_JAVAOPTS -DDSTORE_IO_SOCKET_READ_TIMEOUT=90000"
_RSE_JAVAOPTS="$_RSE_JAVAOPTS -DRSECOMM_LOGFILE_MAX=0"
_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Dlock.daemon.port=$_RSE_LOCKD_PORT"
_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Dlock.daemon.cleanup.interval=1440"
_RSE_JAVAOPTS="$_RSE_JAVAOPTS -showversion"
_RSE_SERVER_CLASS=org.eclipse.dstore.core.server.Server
_RSE_DAEMON_CLASS=com.ibm.etools.zos.server.RseDaemon
_RSE_POOL_SERVER_CLASS=com.ibm.etools.zos.server.ThreadPoolProcess
_RSE_LOCKD_CLASS=com.ibm.ftt.rse.mvs.server.miners.MVSLockDaemon
_RSE_SERVER_TIMEOUT=120000
_SCLMDT_BASE_HOME=$RSE_HOME
_SCLMDT_WORK_HOME=$_CMDSERV_WORK_HOME
CGI_DTWORK=$_SCLMDT_WORK_HOME
#===
(6) additional environment variables

Figure 8. (continued)

Chapter 2. Basic customization 31

Note: Symbolic links are allowed when specifying directories in rsed.envvars.

The following definitions are required:

JAVA_HOME
Java home directory. The default is /usr/lpp/java/J5.0. Change to match
your Java installation.

RSE_HOME
RSE home directory. The default is /usr/lpp/rdz. Change to match your
Developer for System z installation.

_RSE_LOCKD_PORT
RSE lock daemon port number. The default is 4036. Can be changed if
desired.

Note:

v Before selecting a port, verify that the port is available on your
system with the TSO commands NETSTAT and NETSTAT
PORTL.

v All communication on this port is confined to your z/OS host
machine.

_RSE_HOST_CODEPAGE
The host codepage. The default is IBM-1047. Change to match your host
codepage.

TZ Time zone selector. The default is EST5EDT. The default time zone is UTC
+5 hours (Eastern Standard Time (EST) Eastern Daylight Savings Time
(EDT)). Change to match your time zone.

Additional information can be found in the UNIX System Services Command
Reference (SA22-7802).

LANG
Specifies the name of the default locale. The default is C. C specifies the
POSIX locale and (for example) Ja_JP specifies the Japanese locale. Change
to match your locale.

PATH Command path. The default is /bin:/usr/sbin:.. Can be changed if
desired.

_CEE_DMPTARG
Language Environment (LE) z/OS UNIX dump location used by the Java
Virtual Machine (JVM). The default is /tmp.

STEPLIB
Access MVS data sets not in LINKLIST/LPALIB. The default is NONE.

You can bypass the need of having (prerequisite) libraries in
LINKLIST/LPALIB by uncommenting and customizing one or more of the
following STEPLIB directives. Refer to “PARMLIB changes” on page 14 for
more information on the usage of the libraries listed below:
STEPLIB=$STEPLIB:CEE.SCEERUN:CEE.SCEERUN2:CBC.SCLBDLL
STEPLIB=$STEPLIB:ISP.SISPLOAD:ISP.SISPLPA:SYS1.LINKLIB
STEPLIB=$STEPLIB:FEK.SFEKAUTH:FEK.SFEKLOAD

Note:

v Using STEPLIB in z/OS UNIX has a negative performance
impact.

32 IBM Rational Developer for System z: Host Configuration Guide

v If one STEPLIB library is APF authorized, then all must be
authorized. Libraries lose their APF authorization when they are
mixed with non-authorized libraries in STEPLIB.

v Libraries that are designed for LPA placement might require
additional program control and APF authorizations if they are
accessed through LINKLIST or STEPLIB.

v Coding a STEPLIB DD statement in the server JCL does not set
the requested STEPLIB concatenation.

RSE_SAF_CLASS
Specifies the Java interface to your security product. The default is
/usr/include/java_classes/IRRRacf.jar. Change to match your security
software setup.

Note: Since z/OS 1.10, /usr/include/java_classes/IRRRacf.jar is part of
SAF, which ships with base z/OS, so it is available also to
non-RACF customers.

RSE_JAVAOPTS
Additional RSE-specific Java options. . See “Defining extra Java startup
parameters with _RSE_JAVAOPTS” on page 37 for more information on
this definition.

Developer for System z uses ISPF’s TSO/ISPF Client Gateway by default
for the TSO Commands service. An APPC transaction is used instead when
the following _RSE_JAVAOPTS option is uncommented:
RSE_JAVAOPTS="$_RSE_JAVAOPTS -DTSO_SERVER=APPC"

The following definitions are required if ISPF’s TSO/ISPF Client Gateway is used
for the TSO Commands service, SCLM Developer Toolkit or CARMA.

_CMDSERV_BASE_HOME
Home directory for the ISPF code that provides the TSO/ISPF Client
Gateway service. The default is /usr/lpp/ispf. Change to match your ISPF
installation. This directive is only required when ISPF’s TSO/ISPF Client
Gateway is used.

_CMDSERV_CONF_HOME
ISPF base configuration directory. The default is /etc/rdz. Change to
match the location of ISPF.conf, the TSO/ISPF Client Gateway
customization file. This directive is only required when ISPF’s TSO/ISPF
Client Gateway is used.

_CMDSERV_WORK_HOME
ISPF base work directory. The default is /var/rdz. Change to match the
location of the WORKAREA directory used by the TSO/ISPF Client
Gateway. This directive is only required when ISPF’s TSO/ISPF Client
Gateway is used.

Notes:
v The TSO/ISPF Client Gateway will add /WORKAREA to the path specified

in _CMDSERV_WORK_HOME. Do not add it yourself.
v If you did not use the SFEKSAMP(FEKSETUP) sample job to build the

customizable environment, then you should verify that the WORKAREA
directory exists in the path specified in _CMDSERV_WORK_HOME. The
directory permission bits must be 777.

STEPLIB
STEPLIB is described previously in the required definitions section.

Chapter 2. Basic customization 33

RSE_CMDSERV_OPTS
Additional TSO/ISPF Client Gateway specific Java options. The default is
"". See “Defining extra Java startup parameters with
_RSE_CMDSERV_OPTS” on page 41 for more information on this
definition. This directive is only required when ISPF’s TSO/ISPF Client
Gateway is used.

The following definitions are required if SCLM Developer Toolkit is used.

SCLMDT_CONF_HOME
SCLM Developer Toolkit base configuration directory. The default is
/var/rdz/sclmdt. Change to match the location of the CONFIG directory
used by SCLMDT to store SCLM project information. This directive is only
required when SCLMDT is used.

Note: SCLMDT will add /CONFIG and /CONFIG/PROJECT to the path
specified in SCLMDT_CNF_HOME. Do not add it yourself.

STEPLIB
STEPLIB is described previously in the required definitions section.

_SCLMDT_TRANTABLE
Name of the long/short name translation VSAM. The default is
FEK.#CUST.LSTRANS.FILE. Uncomment and change to match the name used
in the SCLM sample job ISP.SISPSAMP(FLM02LST). This directive is only
required if the long/short name translation in SCLM Developer Toolkit is
used.

ANT_HOME
Home directory for your Ant installation. The default is
/usr/lpp/Apache/Ant/apache-ant-1.7.1. Change to match your Ant
installation. This directive is only required when the JAVA/J2EE build
support is used with SCLM Developer Toolkit.

The following definitions are optional. If omitted, default values will be used:

_RSE_PORTRANGE
Specifies the port range that the RSE server can open for communication
with a client. Any port can be used by default. See “Defining the
PORTRANGE available for RSE server” on page 36 for more information
on this definition. This is an optional directive.

_BPXK_SETIBMOPT_TRANSPORT
Specifies the name of the TCP/IP stack to be used. The default is TCPIP.
Uncomment and change to the requested TCP/IP stack name, as defined in
the TCPIPJOBNAME statement in the related TCPIP.DATA. This is an optional
directive.

Note:

v Coding a SYSTCPD DD statement in the server JCL does not set
the requested stack affinity.

v When this directive is not active, RSE binds to every available
stack on the system (BIND INADDRANY).

_FEKFSCMD_TP_NAME_
APPC transaction program name. The default value is FEKFRSRV.
Uncomment and change this definition if you did not use the default
transaction program name when defining the APPC transaction. This is an
optional directive.

34 IBM Rational Developer for System z: Host Configuration Guide

|
|

_FEKFSCMD_PARTNER_LU_
Force RSE server to use this APPC partner LU. The default is the base LU
specified during APPC configuration. This is an optional directive.

GSK_CRL_SECURITY_LEVEL
Specifies the level of security SSL applications will use when contacting
LDAP servers to check CRLs for revoked certificates during certificate
validation. The default is MEDIUM. Uncomment and change to enforce the
usage of the specified value. This is an optional directive. The following
values are valid:
v LOW - Certificate validation will not fail if the LDAP server cannot be

contacted.
v MEDIUM - Certificate validation requires the LDAP server to be

contactable, but does not require a CRL to be defined. This is the default
v HIGH - Certificate validation requires the LDAP server to be contactable

and a CRL to be defined.

Note: This directive requires z/OS 1.9 or higher.

GSK_LDAP_SERVER
Specifies one or more blank-separated LDAP server host names.
Uncomment and change to enforce the usage of the specified LDAP servers
to obtain their CRL. This is an optional directive.

The host name can either be a TCP/IP address or an URL. Each host name
can contain an optional port number separated from the host name by a
colon (:).

GSK_LDAP_PORT
Specifies the LDAP server port. The default is 389. Uncomment and change
to enforce the usage of the specified value. This is an optional directive.

GSK_LDAP_USER
Specifies the distinguished name to use when connecting to the LDAP
server. Uncomment and change to enforce the usage of the specified value.
This is an optional directive.

GSK_LDAP_PASSWORD
Specifies the password to use when connecting to the LDAP server.
Uncomment and change to enforce the usage of the specified value. This is
an optional directive.

The following definitions are required, and should not be changed unless directed
by the IBM support center:

_CEE_RUNOPTS
Language Environment (LE) runtime options. The default is "ALL31(ON)
HEAP(32M,32K,ANYWHERE,KEEP,,) TRAP(ON)". Do not modify.

_BPX_SHAREAS
Run foreground processes in the same address space as the shell. The
default is YES. Do not modify.

_BPX_SPAWN_SCRIPT
Run shell scripts directly from the spawn() function. The default is YES. Do
not modify.

JAVA_PROPAGATE
Propagates the security and workload context during thread creation (Java
version 1.4 and older only). The default is NO. Do not modify.

Chapter 2. Basic customization 35

RSE_LIB
RSE library path. The default is $RSE_HOME/lib. Do not modify.

PATH
Command path. The default is .:$JAVA_HOME/bin:$RSE_HOME/
bin:$_CMDSERV_BASE_HOME/bin:$PATH. Do not modify.

LIBPATH
Library path. The default is too long to repeat. Do not modify.

CLASSPATH
Class path. The default is too long to repeat. Do not modify.

_RSE_CMDSERV_OPTS
Additional TSO Commands service-specific Java options. The default is
"&SESSION=SPAWN$_RSE_CMDSERV_OPTS". Do not modify.

_RSE_JAVAOPTS
Additional RSE-specific Java options. The default is too long to repeat. Do
not modify.

_RSE_SERVER_CLASS
Java class for the RSE server. The default is
org.eclipse.dstore.core.server.Server. Do not modify.

_RSE_DAEMON_CLASS
Java class for the RSE daemon. The default is
com.ibm.etools.zos.server.RseDaemon. Do not modify.

_RSE_POOL_SERVER_CLASS
Java class for the RSE thread pool. The default is
com.ibm.etools.zos.server.ThreadPoolProcess. Do not modify.

_RSE_LOCKD_CLASS
Java class for the RSE lock daemon. The default is
com.ibm.ftt.rse.mvs.server.miners.MVSLockDaemon. Do not modify.

_RSE_SERVER_TIMEOUT
Time out value for the RSE server (waiting on the client) in milliseconds.
The default is 120000 (2 minutes). Do not modify.

SCLMDT_BASE_HOME
Home directory for SCLM Developer Toolkit code. The default is
$RSE_HOME. Do not modify.

SCLMDT_WORK_HOME
SCLM Developer Toolkit base work directory. The default is
$_CMDSERV_WORK_HOME. Do not modify.

CGI_DTWORK
SCLM Developer Toolkit support for older clients. The default is
$_SCLMDT_WORK_HOME. Do not modify.

Defining the PORTRANGE available for RSE server
This is a part of rsed.envvars customization that specifies the ports on which the
RSE server can communicate with the client. This range of ports has no connection
with the RSE daemon port.

To help understand the port usage, a brief description of RSE's connection process
follows:
1. The client connects to host port 4035, RSE daemon.

36 IBM Rational Developer for System z: Host Configuration Guide

2. The RSE daemon creates an RSE server thread.
3. The RSE server opens a host port for the client to connect. The selection of this

port can be configured by the user, either on the client in the subsystem
properties tab (this is not recommended) or through the _RSE_PORTRANGE
definition in rsed.envvars.

4. The RSE daemon returns the port number to the client.
5. The client connects to the host port.

Note:

v The process is similar for the (optional) alternative connection method
using REXEC/SSH.

v Refer to Chapter 11, “Understanding Developer for System z,” on page
177 for more information.

To specify the port range, for the client to communicate with z/OS, uncomment
and customize the following line in rsed.envvars:
#_RSE_PORTRANGE=8108-8118

Note: Before selecting a port range, verify that the range is available on your
system with the NETSTAT and NETSTAT PORTL commands.

The format of PORTRANGE is: _RSE_PORTRANGE=min-max (max is non-inclusive; for
example _RSE_PORTRANGE=8108-8118 means port numbers from 8108 up to 8117 are
usable). The port number used by the RSE server is determined in the following
order:
1. If a nonzero port number is specified in the subsystem properties on the client,

then the specified port number is used. If the port is not available connect will
fail. This setup is not recommended.

Note: The host can deny this type of connection request by specifying the
deny.nonzero.port=true directive in rsed.envvars. Refer to “Defining
extra Java startup parameters with _RSE_JAVAOPTS” for more
information on this directive.

2. If the port number in the subsystem properties is 0, and if _RSE_PORTRANGE is
specified in rsed.envvars, then the port range specified by _RSE_PORTRANGE is
used. If no port in the range is available, connect will fail.

3. If the port number in the subsystem properties is 0, and _RSE_PORTRANGE is not
specified in rsed.envvars, then any available port is used.

Note: When a server opens a port and is listening, the port number cannot be
used by another server, but once it is connected, the same port number can
be used again. This means that the number of ports in the range does not
limit the number of users connected concurrently.

Defining extra Java startup parameters with _RSE_JAVAOPTS
With the different _RSE_*OPTS directives, rsed.envvars provides the possibility to
give extra parameters to Java when it starts the RSE processes. The sample options
included in rsed.envvars can be activated by uncommenting them.

_RSE_JAVAOPTS defines standard and RSE-specific Java options.

_RSE_JAVAOPTS=""
Variable initialization. Do not modify.

Chapter 2. Basic customization 37

_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Xms1m -Xmx256m"
Set initial (Xms) and maximum (Xmx) heap size. The defaults are 1M and
256M respectively. Change to enforce the desired heap size values. If this
directive is commented out, the Java default values will be used, which are
4M and 512M respectively (1M and 64M for Java 5.0).

Note: Refer to “Key resource definitions” on page 212 to determine the
optimal values for this directive.

_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Ddaemon.log=/var/rdz/logs"
Directory holding the RSE daemon and server logging and RSE audit data.
The default is /var/rdz/logs. Change to enforce the desired location. If this
directive is commented out, the home directory of the user ID assigned to
RSE daemon will be used. The home directory is defined in the OMVS
security segment of the user ID.

Note: If this directive (or its counterpart, the home directory) does not
specify an absolute path (the path does not start with a forward
slash (/)), then the actual log location is relative to the configuration
directory (by default /etc/rdz).

_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Duser.log=/var/rdz/logs"
Directory leading to the user-specific logs. The default is /var/rdz/logs.
Change to enforce the desired location. If this directive is commented out,
the home directory of the client user ID will be used. The home directory
is defined in the OMVS security segment of the user ID.

Note:

v If this directive (or its counterpart, the home directory) does not
specify an absolute path (the path does not start with a forward
slash (/)), then the actual log location is relative to the
configuration directory (by default /etc/rdz).

v The complete path to the user logs is userlog/dstorelog/
$LOGNAME/, where userlog is the value of the user.log directive,
dstorelog is the value of the DSTORE_LOG_DIRECTORY directive and
$LOGNAME is the client’s user ID in uppercase.

v Ensure that the permission bits for userlog/dstorelog are set so
that each client can create $LOGNAME.

_RSE_JAVAOPTS="$_RSE_JAVAOPTS -DDSTORE_LOG_DIRECTORY="
This directory is appended to the path specified in the user.log directive.
Together they create the path leading to the user-specific logs. The default
is a null-string. Change to enforce the usage of the specified directory. If
this directive is commented out, .eclipse/RSE/ will be used.

Note:

v The complete path to the user logs is userlog/dstorelog/
$LOGNAME/, where userlog is the value of the user.log directive,
dstorelog is the value of the DSTORE_LOG_DIRECTORY directive, and
$LOGNAME is the client’s user ID in uppercase.

v The directory specified here is relative to the directory specified in
user.log, and thus may not start with a forward slash (/).

v Ensure that the permission bits for userlog/dstorelog are set so
that each client can create $LOGNAME.

The following directives are commented out by default.

38 IBM Rational Developer for System z: Host Configuration Guide

#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Dmaximum.clients=60"
Maximum amount of clients serviced by one thread pool. The default is 60.
Uncomment and customize to limit the number of clients per thread pool.
Note that other limits may prevent RSE from reaching this limit.

#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Dmaximum.threads=1000"
Maximum amount of active threads in one thread pool to allow new
clients. The default is 1000. Uncomment and customize to limit the number
of clients per thread pool based on the number of threads in use. Note that
each client connection uses multiple threads (16 or more) and that other
limits may prevent RSE from reaching this limit.

Note: This value must be lower than the setting for MAXTHREADS and
MAXTHREADTASKS in SYS1.PARMLIB(BPXPRMxx).

#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Dminimum.threadpool.process=1"
The minimum number of active thread pools. The default is 1. Uncomment
and customize to start at least the listed number of thread pool processes.
Thread pool processes are used for load balancing the RSE server threads.
More new processes are started when they are needed. Starting the new
processes up front helps prevent connection delays but uses more
resources during idle times.

#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Dmaximum.threadpool.process=100"
The maximum number of active thread pools. The default is 100.
Uncomment and customize to limit the number of thread pool processes.
Thread pool processes are used for load balancing the RSE server threads,
so limiting them will limit the amount of active client connections.

#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Dipv6=true"
TCP/IP version. The default is false, which means that an IPv4 interface
will be used. Uncomment and specify true to use an IPv6 interface.

#_RSE_JAVAOPTS="$_RSE_JAVAOPTS –Dkeep.last.log=true"
Keep a copy of the host log files belonging to the previous session. The
default is false. Uncomment and specify true to rename the previous log
files to *.last during server startup and client connect.

#_RSE_JAVAOPTS="$_RSE_JAVAOPTS –Denable.standard.log=true"
Write the stdout and stderr streams of the thread pools to a log file. The
default is false. Uncomment and specify true to save the stdout and
stderr streams. The resulting log files are located in the directory
referenced by the daemon.log directive.

Note:

v The MODIFY RSESTANDARDLOG operator command can be
used to dynamically stop or start the update of the stream log
files.

v There are no user-specific stdout.log and stderr.log log files
when the enable.standard.log directive is active. The
user-specific data is now written to the matching RSE thread pool
stream.

#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Denable.port.of.entry=true"
Port Of Entry (POE) check option. The default is false. Uncomment and
specify true to enforce POE checking for client connections. During POE
checking, the IP address of the client is mapped into a network access
security zone by your security software. The client user ID must have
permission to use the profile that defines the security zone.

Chapter 2. Basic customization 39

Note:

v POE checking must also be enabled in your security product.
v Enabling POE checking will enable it for other z/OS UNIX

services also, such as INETD.

#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Denable.certificate.mapping=false"
Use your security software to authenticate a logon with a X.509 certificate.
The default is true. Uncomment and specify false to have RSE daemon do
the authentication without relying on the X.509 support of your security
software.

#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Denable.automount=true"
Support home directories created by z/OS UNIX automount. The default is
false. Uncomment and specify true to ensure that z/OS UNIX automount
uses the client user ID as owner of the directory.

Note: z/OS UNIX automount uses the user ID of the process that invoked
the service when creating a file system. If this option is disabled,
this process is the RSE thread pool server (user ID STCRSE). If this
option is enabled, a new, temporary process is created using the
client user ID before invoking the service.

#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Denable.audit.log=true"
Audit option. The default is false. Uncomment and specify true to enforce
audit logging of actions done by clients. Audit logs are written to the RSE
daemon log location. See the daemon.log option of the _RSE_JAVAOPTS
variable to know where this is.

#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Daudit.cycle=30"
Number of days stored in 1 audit log file. The default is 30. Uncomment
and customize to control how much audit data is written to 1 audit log
file. The maximum value is 365.

#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Daudit.retention.period=0"
Number of days audit logs are kept. The default is 0 (no limit).
Uncomment and customize to delete audit logs after a given number of
days. The maximum value is 365.

#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Ddeny.nonzero.port=true"
Disallow the client to choose the communication port number. The default
is false. Uncomment and specify true to refuse connections where the
client specifies which host port must be used by RSE server for the
connection. Refer to “Defining the PORTRANGE available for RSE server”
on page 36 for more information.

#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Dsingle.logon=false"
Disallow a user ID to log on multiple times. The default is true.
Uncomment and specify false to allow a user ID to log on multiple times
to a single RSE daemon.

Note: A second logon attempt will cause the first one to be cancelled by
the host if this directive is not active or set to false. This cancel will
be accompanied by console message FEK210I.

RSE_JAVAOPTS="$_RSE_JAVAOPTS -Dprocess.cleanup.interval=0"
Automatically remove RSE thread pools that are in an unrecoverable error
state. By default, erroneous RSE thread pools are not automatically

40 IBM Rational Developer for System z: Host Configuration Guide

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|

removed. Uncomment and customize to automatically remove erroneous
RSE thread pool servers at every interval (interval unit is seconds).
Specifying 0 disables the function.

#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -DAPPLID=FEKAPPL"
RSE server application ID. The default is FEKAPPL. Uncomment and
customize this option to enforce the use of the desired application ID.

Note:

v The application ID must be defined to your security software.
Failure to do so will prevent the client from logging on.

v Refer to “Using PassTickets” on page 152 for the security
implications when changing this value.

v The application ID must match the application ID used by JES Job
Monitor. Refer to “FEJJCNFG, JES Job Monitor configuration file”
on page 24 to learn how to define the application ID for JES Job
Monitor.

#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -DDENY_PASSWORD_SAVE=true"
Password save option. The default is false. Uncomment and specify true
to prevent users from saving their host password on the client. Previously
saved passwords will be removed. This option only works with clients
version 7.1 and higher.

#_RSE_JAVAOPTS="$_RSE_JAVAOPTS –DHIDE_ZOS_UNIX=true"
Hide z/OS UNIX option. The default is false. Uncomment and specify
true to prevent users from seeing z/OS UNIX elements (directory structure
and command line) on the client. This option only works with clients
version 7.6 and higher.

#_RSE_JAVAOPTS="$_RSE_JAVAOPTS
-DDSTORE_IDLE_SHUTDOWN_TIMEOUT=3600000"

Disconnect idle clients. By default, idle clients are not disconnected.
Uncomment and customize to disconnect clients who are idle for the listed
amount of milliseconds (3600000 equals 1 hour).

#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -DDSTORE_TRACING_ON=true"
Start dstore tracing. Use only when directed by the IBM support center.
Note that the resulting .dstoreTrace log file is created in Unicode (ASCII),
not EBCDIC.

#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -DDSTORE_MEMLOGGING_ON=true"
Start dstore memory tracing. Use only when directed by the IBM support
center. Note that the resulting .dstoreMemLogging log file is created in
Unicode (ASCII), not EBCDIC.

#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -DTSO_SERVER=APPC"
Use an APPC transaction for the TSO Commands service. By default,
ISPF’s TSO/ISPF Client Gateway is used. Uncomment to use an APPC
transaction instead. Do not change the assigned value.

Defining extra Java startup parameters with
_RSE_CMDSERV_OPTS

With the different _RSE_*OPTS directives, rsed.envvars provides the possibility to
give extra parameters to Java when it starts the RSE processes. The sample options
included in rsed.envvars can be activated by uncommenting them.

Chapter 2. Basic customization 41

|
|
|

The _RSE_CMDSERV_OPTS directives are RSE-specific Java options and are only in
effect when ISPF's TSO/ISPF Client Gateway is used by the Developer for System
z. (This is the default.)

_RSE_CMDSERV_OPTS=""
Variable initialization. Do not modify.

_RSE_CMDSERV_OPTS="$_RSE_CMDSERV_OPTS &ISPROF=
&SYSUID..ISPROF="

Use an existing ISPF profile for the ISPF initialization. Uncomment and
change the data set name to use the specified ISPF profile.

The following variables can be used in the data set name:
v &SYSUID, to substitute the developer's user ID
v &SYSPREF, to substitute the developer’s TSO prefix

ISPF.conf, ISPF’s TSO/ISPF Client Gateway configuration file
ISPF’s TSO/ISPF Client Gateway uses the definitions in ISPF.conf to create a valid
environment to execute batch TSO and ISPF commands. Developer for System z
uses this environment to run some MVS based services. These services include the
TSO Commands service, SCLM Developer Toolkit service and an alternate CARMA
startup method.

ISPF.conf is located in /etc/rdz/, unless you specified a different location when
you customized and submitted job FEK.SFEKSAMP(FEKSETUP). See “Customization
setup” on page 13 for more details. You can edit the file with the TSO OEDIT
command.

Comment lines start with an asterisk (*) when using a US code page. Data lines
can only have a directive and its assigned value. Comments are not allowed on the
same line. Line continuations are not supported. When concatenating data set
names, add them on the same line and separate the names with a comma (,).

In addition to providing the correct names for the ISPF data sets, you must also
add the TSO Commands service data set name, FEK.SFEKPROC, to the SYSPROC or
SYSEXEC statement, as shown in the following example.

Note:

v You can add your own DD-like statements and data set concatenations to
customize the TSO environment, thus mimicking a TSO logon procedure.
See Chapter 16, “Customizing the TSO environment,” on page 243 for
more details.

v The TSO/ISPF Client Gateway may not function properly if you use a
(third party) product that intercepts ISPF commands, such as ISPSTART.

* REQUIRED:
sysproc=ISP.SISPCLIB,FEK.SFEKPROC
ispmlib=ISP.SISPMENU
isptlib=ISP.SISPTENU
ispplib=ISP.SISPPENU
ispslib=ISP.SISPSLIB
ispllib=ISP.SISPLOAD

* OPTIONAL:
*allocjob = FEK.#CUST.CNTL(CRAISPRX)
*ISPF_timeout = 900

Figure 9. ISPF.conf - ISPF configuration file

42 IBM Rational Developer for System z: Host Configuration Guide

Check the documentation for that product on how it can be disabled for
Developer for System z. If the product requires the allocation of a specific
DD statement to DUMMY, you can simulate this in ISPF.conf by
allocating that DD statement to nullfile.
For example:
ISPTRACE=nullfile

v When using the allocjob directive, be careful not to undo the DD
definitions done earlier in ISPF.conf.

v System abend 522 for module ISPZTSO is to be expected if the JWT
parameter in the SMFPRMxx parmlib member is set lower than the
ISPF_timeout value in ISPF.conf. This does not impact Developer for
System z operations, as the TSO/ISPF Client Gateway is restarted
automatically when needed.

v Changes are active for all new invocations. No server restart is needed.

Optional components
The customization steps above are for a basic Developer for System z setup. Refer
to the chapters about the optional components for their customization
requirements:
v Chapter 3, “(Optional) Common Access Repository Manager (CARMA),” on

page 45
v Chapter 4, “(Optional) Application Deployment Manager,” on page 65
v Chapter 5, “(Optional) SCLM Developer Toolkit,” on page 73
v “(Optional) DB2 stored procedure” on page 81
v “(Optional) CICS bidirectional language support” on page 84
v “(Optional) RSE SSL encryption” on page 85
v “(Optional) RSE tracing” on page 88
v “(Optional) Host based property groups” on page 89
v “(Optional) Host based projects” on page 90
v “(Optional) File Manager integration” on page 91
v “(Optional) Uneditable characters” on page 92
v “(Optional) Using REXEC (or SSH)” on page 93
v “(Optional) APPC transaction for the TSO Commands service” on page 95
v “(Optional) WORKAREA cleanup” on page 98

Installation verification
The description of the various installation verification programs (IVPs) is located in
Chapter 7, “Installation verification,” on page 99, because some of the IVPs are for
the optional components.

Chapter 2. Basic customization 43

44 IBM Rational Developer for System z: Host Configuration Guide

Chapter 3. (Optional) Common Access Repository Manager
(CARMA)

Common Access Repository Manager (CARMA) is a productivity aid for
developers who are creating Repository Access Managers (RAMs). A RAM is an
Application Programming Interface (API) for z/OS based Software Configuration
Managers (SCMs).

In turn, user-written applications can start a CARMA server which loads the RAMs
and provides a standard interface to access the SCM.

Developer for System z supports multiple methods to start a CARMA server, each
with their own benefits and drawbacks.
v The “batch submit” method starts the CARMA server by submitting a job. This

is the default method used in the provided sample configuration files. The
benefit of this method is that the CARMA logs are easily accessible in the job
output. It also allows the use of custom server JCL for each developer, which is
maintained by the developer himself. However, this method uses one JES
initiator per developer starting a CARMA server.

v The “CRASTART” method starts the CARMA server as a subtask within RSE. It
provides a very flexible setup by using a separate configuration file that defines
data set allocations and program invocations needed to start a CARMA server.
This method provides the best performance and uses the fewest resources, but
requires that module CRASTART is located in LPA.

v The “TSO/ISPF Client Gateway” method uses ISPF’s TSO/ISPF Client Gateway
to create a TSO or ISPF environment, in which the CARMA server is started. It
allows for flexible data set allocations using the possibilities of ISPF.conf.
However, this method is not suited to access SCMs that interfere with normal
TSO or ISPF operations.

Requirements and checklist
You will need the assistance of a security administrator and a TCP/IP
administrator to complete this customization task, which requires the following
resources or special customization tasks:
v TCP/IP port range for internal communication
v Security rule to allow developers update to CARMA VSAM files
v (Optional) Security rule to allow users to submit CRA* jobs
v (Optional) LPA update

In order to start using CARMA at your site, you must perform the following tasks.
Unless otherwise indicated, all tasks are mandatory.
1. Create required CARMA components. For details, see “CARMA components”

on page 46.
2. Initial customization of RSE configuration files to interface with CARMA. The

complete customization is dependent on the method chosen to start CARMA.
For details, see “RSE interface to CARMA” on page 47.

3. Choose a method to start CARMA and do the required customization of the
related configuration files. For details see:
v “CARMA server startup using batch submit” on page 49

© Copyright IBM Corp. 2005, 2010 45

v “(Optional) Alternative CARMA server startup using CRASTART” on page
50

v “(Optional) Alternative CARMA server startup using TSO/ISPF Client
Gateway” on page 53

4. Optionally activate sample Repository Access Managers (RAMs). For details see
“(Optional) Activating the sample Repository Access Managers (RAMs)” on
page 55.

5. Optionally activate CA Endevor® RAM. For details see “(Optional) Activating
the CA Endevor® SCM RAM” on page 56.

6. Optionally create CRAXJCL as replacement for IRXJCL. For details, see
“(Optional) IRXJCL versus CRAXJCL” on page 63.

Note: The sample members referenced in this chapter are located in FEK.#CUST.*
and /etc/rdz, unless you specified a different location when you
customized and submitted job FEK.SFEKSAMP(FEKSETUP). See “Customization
setup” on page 13 for more details.

CARMA components
The following CARMA components must be customized, regardless of the chosen
startup method. The sample members referenced below are located in
FEK.#CUST.JCL, unless you specified a different location when you customized and
submitted job FEK.SFEKSAMP(FEKSETUP). See “Customization setup” on page 13 for
more details.
1. Customize and submit the FEK.#CUST.JCL(CRA$VDEF) JCL. Refer to the

documentation within CRA$VDEF for customization instructions. CRA$VDEF creates
and primes the CARMA configuration VSAM data set, CRADEF.

2. Customize and submit the FEK.#CUST.JCL(CRA$VMSG) JCL. Refer to the
documentation within CRA$VMSG for customization instructions. CRA$VMSG creates
and primes the CARMA message VSAM data set, CRAMSG.

3. Customize and submit the FEK.#CUST.JCL(CRA$VSTR) JCL. Refer to the
documentation within CRA$VSTR for customization instructions. CRA$VSTR creates
and primes the CARMA custom information VSAM data set, CRASTRS.

Note:

v The CARMA VSAMs created with these jobs define the sample RAMs.
Refer to “(Optional) Activating the CA Endevor® SCM RAM” on page 56
to define the CA Endevor® RAM.

v Refer to sample job FEK.#CUST.JCL(CRA#UADD) if you need to merge the
definitions for a (custom) RAM into an existing VSAM configuration. This
job must be customized and submitted for each CARMA VSAM that
changes. Refer to the Rational Developer for System z Common Access
Repository Manager Developer's Guide (SC23-7660) for more information on
the record structure used by the different CARMA VSAMs.

v Use sample job FEK.#CUST.JCL(CRA#UQRY) to extract the active definitions
from a VSAM to a sequential data set.

CARMA VSAM migration notes
Developer for System z version 7.6.1 supports a new data structure layout for the
CARMA custom information VSAM data set, CRASTRS, to remove message length
limitations.

46 IBM Rational Developer for System z: Host Configuration Guide

|

|
|
|

Prior to Developer for System z version 7.6.1, strings defined in the CARMA
custom information VSAM data set are limited to predefined lengths. This
limitation forces RAM developers to shorten descriptive strings, or to use
client-side plug-ins to display full-length strings.

Developer for System z version 7.6.1 supports a new, variable-length, data
structure layout for the CARMA custom information VSAM data set, CRASTRS,
where strings are separated by a delimiter character instead of being fixed length.

Customize and submit the FEK.SFEKSAMP(CRA#VS2) JCL to convert your existing,
fixed-length, CARMA custom information VSAM data set, CRASTRS, to the new
variable-length format.

Note:

v Beginning with version 7.6.1, the sample CARMA custom information
VSAM data set is shipped in variable-length format.

v Beginning with version 7.6.1, the CARMA load module, CRASERV, supports
both the fixed-length format and the variable-length format for the
CARMA custom information VSAM data set.

v Older versions of the CARMA load module do not support the
variable-length format and will produce garbled strings when used with a
variable-length CARMA custom information VSAM data set.

RSE interface to CARMA
The CARMA server provides a standard API for other host-based products to
access one or more Software Configuration Managers (SCMs). However, it does not
provide methods for direct communication with a client PC. For this, it relies on
other products, such as the RSE server. The RSE server uses the settings in
CRASRV.properties to start and connect to a CARMA server.

CRASRV.properties is located in /etc/rdz/, unless you specified a different location
when you customized and submitted job FEK.SFEKSAMP(FEKSETUP). See
“Customization setup” on page 13 for more details. You can edit the file with the
TSO OEDIT command.

Note: The RSED started task must be restarted to pick up any changes you make.

port.start
First port used for communication between CARMA and the RSE server.
The default port is 5227. Communication on this port is confined to your
host machine.

CRASRV.properties - CARMA configuration options
#
port.start=5227
port.range=100
startup.script.name=/usr/lpp/rdz/bin/carma.startup.rex
clist.dsname=’FEK.#CUST.CNTL(CRASUBMT)’
crastart.stub=/usr/lpp/rdz/bin/CRASTART
crastart.configuration.file=/etc/rdz/crastart.conf
crastart.syslog=Partial
crastart.timeout=420
#crastart.steplib=FEK.SFEKLPA
#crastart.tasklib=TASKLIB

Figure 10. CRASRV.properties – CARMA configuration file

Chapter 3. (Optional) Common Access Repository Manager (CARMA) 47

|
|
|
|

|
|
|

|
|
|

|

|
|

|
|
|

|
|
|

|

Note: Before selecting a port, verify that the port is available on your
system with the NETSTAT and NETSTAT PORTL commands. See
“Reserved TCP/IP ports” on page 140 for more information.

port.range
Range of ports, starting at port.start, which will be used for CARMA
communication. The default is 100. For example, when using the defaults,
port 5227 until 5326 (inclusive) can be used by CARMA.

startup.script.name
Defines the absolute path of the CARMA startup script. The default is
/usr/lpp/rdz/bin/carma.startup.rex. This REXX exec will trigger the
startup of a CARMA server.

clist.dsname
Defines the startup method for the CARMA server.
v *CRASTART indicates that the CARMA server should be started as a

subtask within RSE using CRASTART. Refer to “(Optional) Alternative
CARMA server startup using CRASTART” on page 50 for more details.
If you specify *CRASTART, you must also specify the crastart.*
directives.

v *ISPF indicates that the CARMA server should be started using ISPF’s
TSO/ISPF Client Gateway. Refer to“(Optional) Alternative CARMA
server startup using TSO/ISPF Client Gateway” on page 53 for more
details.

v Any other value defines the location of the CRASUBMT CLIST, using
TSO-like naming conventions. With quotes (') the data set name is an
absolute reference, without quotes (') the data set name is prefixed with
the client's user ID, not the TSO prefix. The latter requires that all
CARMA users must maintain their own CRASUBMT CLIST.

The default is 'FEK.#CUST.CNTL(CRASUBMT)'. This CLIST will start a CARMA server
when opening a connection using the batch submit method.

crastart.stub
z/OS UNIX stub for calling CRASTART. The default is
/usr/lpp/rdz/bin/CRASTART. This stub makes the MVS based CRASTART
load module available to z/OS UNIX processes. This directive is only used
if the clist.dsname directive has *CRASTART as value.

crastart.configuration.file
Specifies the name of the CRASTART configuration file. The default is
/etc/rdz/crastart.conf. This file specifies the data set allocations and
program invocations needed to start a CARMA server. This directive is
only used if the clist.dsname directive has *CRASTART as value.

crastart.syslog
Specifies how much information is written to the system log while
CRASTART starts a CARMA server. The default is Partial. Valid values
are:

A (All) All tracing information is printed to SYSLOG

P (Partial) Only connect, disconnect, and error information is printed to
SYSLOG

anything else Only error conditions are printed to SYSLOG

48 IBM Rational Developer for System z: Host Configuration Guide

This directive is only used if the clist.dsname directive has *CRASTART as
value.

crastart.timeout
The length of time, in seconds, before a CARMA server ends due to lack of
activity. The default is 420 (7 minutes). This directive is only used if the
clist.dsname directive has *CRASTART as value.

crastart.steplib
The location of the CRASTART module when accessed through the
STEPLIB directive in rsed.envvars. The default is FEK.SFEKLPA.
Uncomment and customize this directive if the CRASTART module cannot
be part of LPA or LINKLIST. Note that program control and APF issues
may arise if the CRASTART module is not in LPA. This directive is only
used if the clist.dsname directive has *CRASTART as value.

crastart.tasklib
Alternate name for the TASKLIB DD name in crastart.conf. The default is
TASKLIB. Uncomment and customize this directive if DD name TASKLIB
has a special meaning for your SCM or RAM and cannot be used as
STEPLIB replacement. This directive is only used if the clist.dsname
directive has *CRASTART as value.

CARMA server startup using batch submit
The information in this section describes how to configure the default method for
Developer for System z to start a CARMA server. This customization step can be
bypassed if you use another startup method.

Developer for System z uses by default the batch submit CARMA server startup
method that does not require the CRASTART module to be in LPA and does not
depend on the TSO/ISPF Client Gateway. The method submits the CARMA server
as a long-running batch job in your JES.

Adjust CRASRV.properties
RSE server uses the settings in /etc/rdz/CRASRV.properties to start and connect to
a CARMA server, as documented in “RSE interface to CARMA” on page 47. You
can edit the file with the TSO OEDIT command. Note that RSE must be restarted
for the changes to take effect.

Change the value of the clist.dsname directive to the data set and member name
of the CRASUBMT CARMA server startup CLIST, as shown in the following example.
Refer to “RSE interface to CARMA” on page 47 for more information on the
different directives.

Adjust CRASUBMT
Customize the CRASUBMT CLIST, as shown in the following code sample. Refer to
the documentation within CRASUBMT for customization instructions. The CRASUBMT
CLIST submits a CARMA server.

port.start=5227
port.range=100
startup.script.name=/usr/lpp/rdz/bin/carma.startup.rex
clist.dsname=’FEK.#CUST.CNTL(CRASUBMT)’

Figure 11. CRASRV.properties - CARMA startup using batch submit

Chapter 3. (Optional) Common Access Repository Manager (CARMA) 49

CRASUBMT is located in FEK.#CUST.CNTL, unless you specified a different location
when you customized and submitted job FEK.SFEKSAMP(FEKSETUP). See
“Customization setup” on page 13 for more details.

Note:

v You can add your own DD statements and data set concatenations to
customize the CARMA TSO environment, thus mimicking a TSO logon
procedure.

v You can optionally change CARMA's timeout value by modifying the
PROC 1 PORT TIMEOUT(420) line in FEK.#CUST.CNTL(CRASUBMT) CLIST. The
timeout value is the number of seconds CARMA will wait for the next
command from the client. Setting a value of 0 results in the default
timeout value, currently 420 seconds (7 minutes).

v Details of the CARMA startup process are shown in rsecomm.log. Refer to
“(Optional) RSE tracing” on page 88 for more information on setting the
detail level of rsecomm.log.

v Changes are in effect for all CARMA servers started after the update.

(Optional) Alternative CARMA server startup using CRASTART
The information in this section describes how to configure an alternative method
for Developer for System z to start a CARMA server. This customization step can
be bypassed if you use another startup method.

Developer for System z supports an alternative CARMA server startup method
that does not depend on the TSO/ISPF Client Gateway and that does not submit a
server job using a JES initiator. The method uses CRASTART to start the CARMA
server as a subtask within RSE and is similar to the TSO/ISPF Client Gateway
service.

PROC 1 PORT TIMEOUT(420)
SUBMIT * END($$)
//CRA&PORT JOB CLASS=A,MSGCLASS=A,MSGLEVEL=(1,1)
//RUN EXEC PGM=IKJEFT01,DYNAMNBR=25,REGION=1024K,TIME=NOLIMIT
//STEPLIB DD DISP=SHR,DSN=FEK.SFEKLOAD
//* DD DISP=SHR,DSN=FEK.#CUST.LOAD
//CRADEF DD DISP=SHR,DSN=FEK.#CUST.CRADEF
//CRAMSG DD DISP=SHR,DSN=FEK.#CUST.CRAMSG
//CRASTRS DD DISP=SHR,DSN=FEK.#CUST.CRASTRS
//*CRARAM1 DD DISP=SHR,DSN=FEK.#CUST.CRARAM1
//*
//ISPPROF DD DISP=(NEW,DELETE,DELETE),
// SPACE=(TRK,(1,1,5)),LRECL=80,RECFM=FB,UNIT=SYSALLDA
//ISPMLIB DD DISP=SHR,DSN=ISP.SISPMENU
//ISPPLIB DD DISP=SHR,DSN=ISP.SISPPENU
//ISPSLIB DD DISP=SHR,DSN=ISP.SISPSENU
//ISPTLIB DD DISP=SHR,DSN=ISP.SISPTENU
//ISPEXEC DD DISP=SHR,DSN=ISP.SISPEXEC
//SYSPROC DD DISP=SHR,DSN=ISP.SISPCLIB
//*
//CARMALOG DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
ISPSTART PGM(CRASERV) PARM(&PORT &TIMEOUT)
//*
$$
EXIT CODE(0)

Figure 12. CRASUBMT - CARMA startup using batch submit

50 IBM Rational Developer for System z: Host Configuration Guide

Note: Details of the CARMA startup process are shown in rsecomm.log. Refer to
“(Optional) RSE tracing” on page 88 for more information on setting the
detail level of rsecomm.log.

Adjust CRASRV.properties
RSE server uses the settings in /etc/rdz/CRASRV.properties to start and connect to
a CARMA server, as documented in “RSE interface to CARMA” on page 47. You
can edit the file with the TSO OEDIT command. Note that RSE must be restarted
for the changes to take effect.

Change the value of the clist.dsname directive to *CRASTART and provide the
correct values for the crastart.* directives, as shown in the following example.
Refer to “RSE interface to CARMA” on page 47 for more information on the
different directives.

Note: System abend 522 for module CRASERV will occur if the JWT parameter in the
SMFPRMxx parmlib member is set to a value lower than the time out value in
CRASRV.properties. This does not impact CARMA operations, as the server
is restarted automatically if needed.

Adjust crastart.conf
Keep a printout of the customized CRASUBMT (see “CARMA server startup using
batch submit” on page 49) handy for easy reference during this customization step.
The printout will be valuable even if you have not customized the member.

CRASTART uses the definitions in crastart.conf to create a valid environment to
execute batch TSO and ISPF commands. Developer for System z uses this
environment to run the CARMA server called CRASERV.

crastart.conf is located in /etc/rdz/, unless you specified a different location
when you customized and submitted job FEK.SFEKSAMP(FEKSETUP). See
“Customization setup” on page 13 for more details. You can edit the file with the
TSO OEDIT command.

Note: Changes are in effect for all CARMA servers started after the update.

The following customization steps are needed to adjust the configuration file
shown in the code sample below.
v Add the data sets allocated to the STEPLIB concatenation of the CRASUBMT

procedure to the TASKLIB statement in crastart.conf.
v Create entries for the mandatory CARMA VSAM DD's, CRADEF, CRAMSG, and

CRSTRS. Use the data set names provided in the (customized) CRASUBMT
procedure.

port.start=5227
port.range=100
startup.script.name=/usr/lpp/rdz/bin/carma.startup.rex
clist.dsname=*CRASTART
crastart.stub=/usr/lpp/rdz/bin/CRASTART
crastart.configuration.file=/etc/rdz/crastart.conf
crastart.syslog=Partial
crastart.timeout=420
#crastart.steplib=FEK.SFEKLPA
#crastart.tasklib=TASKLIB

Figure 13. CRASRV.properties - *CRASTART alternative CARMA startup

Chapter 3. (Optional) Common Access Repository Manager (CARMA) 51

v Add any custom DD statement and the related data set concatenations, available
in the (customized) CRASUBMT procedure. For example, add the CRARAM1 DD
statement and data set name if you use the sample PDS RAM. Note that you can
use data set names (allocated with DISP=SHR), SYSOUT and DUMMY
constructs.

v Optionally add any BPXWDYN command using the -COMMAND statement. There
can be multiple -COMMAND statements. BPXWDYN allows you to do more
complex allocations, including creating temporary data sets, dispositions other
than SHR, allocations to other subsystems, and so on. Refer to Using REXX and
z/OS UNIX System Services (SA22-7806) for more information on BPXWDYN.

v Select the desired program invocation method using the PROGRAM statement. The
advised method is “PROGRAM=IKJEFT01 CRASERV &CRAPRM1. &CRAPRM2.”, as it
gives you a TSO environment that can handle a mixture of APF and non-APF
data sets. See the sample crastart.conf for other methods.

Note: crastart.conf definitions cannot be split across multiple lines.

The following variables can be used in the configuration file:

Table 10. crastart.conf variables

&CRAUSER. Logon user ID of the client.

&CRADATE. Current® date in Dyyyyddd format (7
character Julian).

&CRATIME. Current time in Thhmmss format (hour
minute second).

&CRAPRM3. through &CRAPRM9. Additional variables with user-assigned
values. The usage of these variables requires
customizing the CARMA startup REXX
referenced by startup.script.name in
CRASRV.properties.

When you use these variables, you should
customize a copy of the default startup
REXX, /usr/lpp/rdz/bin/
carma.startup.rex, and point
startup.script.name to this copy. This to
avoid losing your work when maintenance
updates the default REXX.

system symbol Any system symbol defined in
SYS1.PARMLIB(IEASYMxx)

* crastart.conf - CARMA allocation options

TASKLIB = FEK.SFEKLOAD
CRADEF = FEK.#CUST.CRADEF
CRAMSG = FEK.#CUST.CRAMSG
CRASTRS = FEK.#CUST.CRASTRS
*CRARAM1 = FEK.#CUST.CRARAM1
*
CARMALOG = SYSOUT(H)
SYSTSPRT = SYSOUT(H)
SYSTSIN = DUMMY
-COMMAND=ALLOC FI(SCRATCH) NEW DELETE DSORG(PS) RECFM(F,B) LRECL(80) UNIT(VIO)
*
PROGRAM=IKJEFT01 CRASERV &CRAPRM1. &CRAPRM2.

Figure 14. crastart.conf - *CRASTART alternative CARMA startup

52 IBM Rational Developer for System z: Host Configuration Guide

Table 10. crastart.conf variables (continued)

-<DD> A dash (-) followed by a previously defined
DD name acts like a *.ddname backward
reference in JCL. The original DD must be
allocated using the -COMMAND statement.

Note: There is no variable for the TSO prefix, because TSO is not active when the
configuration file is interpreted.

(Optional) Alternative CARMA server startup using TSO/ISPF Client
Gateway

The information in this section describes how to configure an alternative method
for Developer for System z to start a CARMA server. This customization step can
be bypassed if you use another startup method.

Developer for System z supports an alternative CARMA server startup method
that does not require the CRASTART module to be in LPA and that does not
submit a server job using a JES initiator. The method uses ISPF's TSO/ISPF Client
Gateway and is similar to the default way of accessing the TSO Commands
service.

Note: Details of the CARMA startup process are shown in rsecomm.log. Refer to
“(Optional) RSE tracing” on page 88 for more information on setting the
detail level of rsecomm.log.

Adjust CRASRV.properties
RSE server uses the settings in /etc/rdz/CRASRV.properties to start and connect to
a CARMA server, as documented in “RSE interface to CARMA” on page 47. You
can edit the file with the TSO OEDIT command. Note that RSE must be restarted
for the changes to take effect.

Change the value of the clist.dsname directive to *ISPF, as shown in the following
example. Refer to “RSE interface to CARMA” on page 47 for more information on
the different directives.

Adjust ISPF.conf
Keep a printout of the customized CRASUBMT (see “CARMA server startup using
batch submit” on page 49) handy for easy reference during this customization
step. The printout will be valuable even if you have not customized the member.

ISPF’s TSO/ISPF Client Gateway uses the definitions in ISPF.conf to create a valid
environment to execute batch TSO and ISPF commands. Developer for System z
uses this environment to run the CARMA server.

port.start=5227
port.range=100
startup.script.name=/usr/lpp/rdz/bin/carma.startup.rex
clist.dsname=*ISPF

Figure 15. CRASRV.properties - *ISPF alternative CARMA startup

Chapter 3. (Optional) Common Access Repository Manager (CARMA) 53

ISPF.conf is located in /etc/rdz/, unless you specified a different location when
you customized and submitted job FEK.SFEKSAMP(FEKSETUP). See “Customization
setup” on page 13 for more details. You can edit the file with the TSO OEDIT
command.

Note: Changes are in effect for all CARMA servers started after the update.

The following customization steps are needed to adjust the configuration file
shown in the code sample below.
v Provide the correct names for the mandatory ISPF data sets (do not allocate

ISPPROF however, this one is allocated dynamically).
v Append the Developer for System z proclib, FEK.SFEKPROC, to the SYSPROC or

SYSEXEC statement, so that the CRASRVI exec can be found by the system. This
exec starts the CARMA server (and thus replaces CRASUBMT’s SYSTSIN DD).

v Append the DD STEPLIB concatenation of the CRASUBMT procedure to the
ispllib statement.

v Create entries for the mandatory CARMA VSAM DDs, CRADEF, CRAMSG, and
CRSTRS. Use the data set names provided in the (customized) CRASUBMT
procedure.

v Add any custom DD statement and the related data set concatenation, available
in the (customized) CRASUBMT procedure. For example, add the CRARAM1 DD
statement and data set name if you use the sample PDS RAM. Note that you can
only use data set names (allocated with DISP=SHR).

v Optionally uncomment and customize the allocexec directive to do additional
allocations using an exec.

Note: Do not include the SYSTSIN, SYSTSOUT, or CARMALOG DDs, nor any
other DD statement that uses JES constructs such as instream data and
SYSOUT=. These entries must be converted to use data sets.

DD CARMALOG refers to SYSOUT=* by default, which cannot be mapped in
ISPF.conf. You cannot map the DD directly to a data set either, since all Developer
for System z users will be using the same ISPF.conf file and thus the same data
sets.

However, as described in Chapter 16, “Customizing the TSO environment,” on
page 243, section “Advanced – Using an allocation exec” on page 244, you can use
an allocation exec to create and allocate a data set based upon the active user ID.
See sample member CRAISPRX in data set FEK.#CUST.CNTL as an example that
allocates DD CARMALOG to data set name
TSOPREFIX’.’USERID’.CRA.’TIMESTAMP’.CARMALOG’.

Note:

sysproc=ISP.SISPCLIB,FEK.SFEKPROC
ispllib=FEK.SFEKLOAD
ispmlib=ISP.SISPMENU
isptlib=ISP.SISPTENU
ispplib=ISP.SISPPENU
ispslib=ISP.SISPSLIB
CRADEF =FEK.#CUST.CRADEF
CRAMSG =FEK.#CUST.CRAMSG
CRASTRS=FEK.#CUST.CRASTRS
*CRARAM1=FEK.#CUST.CRARAM1
allocjob=FEK.#CUST.CNTL(CRAISPRX)

Figure 16. ISPF.conf - *ISPF alternative CARMA startup

54 IBM Rational Developer for System z: Host Configuration Guide

v When using the allocjob directive, be careful not to undo the DD
definitions done earlier in ISPF.conf.

v System abend 522 for module CRASERV is to be expected if the JWT
parameter in the SMFPRMxx parmlib member is set lower than the
ISPF_timeout value in ISPF.conf. This does not impact CARMA
operations, as the server is restarted automatically if needed.

(Optional) Activating the sample Repository Access Managers (RAMs)
Repository Access Managers (RAMs) are user-written APIs to interface with z/OS
Software Configuration Managers (SCMs). Follow the instructions in the sections
below for the sample RAMs you want to activate.

Note: The sample RAMs are provided for the purpose of testing the configuration
of your CARMA environment and as examples for developing your own
RAMs. Do NOT use the provided sample RAMs in a production
environment.

Refer to Rational Developer for System z Common Access Repository Manager
Developer's Guide (SC23-7660) for more information on the sample RAMs and
sample source code provided.

The sample members referenced below are located in FEK.#CUST.JCL, unless you
specified a different location when you customized and submitted job
FEK.SFEKSAMP(FEKSETUP). See “Customization setup” on page 13 for more details.

Activating the PDS RAM
The PDS RAM gives a data set list similar to MVS Files -> My Data Sets in the
Remote Systems view. The PDS RAM uses RAM ID 0 by default.

Note: The PDS RAM expects that CARMA is started within ISPF (using
ISPSTART).

1. Customize and submit the FEK.#CUST.JCL(CRA#VPDS) JCL. Refer to the
documentation within CRA#VPDS for customization instructions. CRA#VPDS creates
and primes the PDS RAM message VSAM data set.

2. Add the CRARAM1 DD statement to the selected CARMA startup method and
provide the data set name of the PDS RAM message VSAM.

Activating the SCLM RAM
The SCLM RAM gives a basic entry into SCLM, ISPF’s Software Configuration
Manager. The SCLM RAM uses RAM ID 1 by default.

Note: The SCLM RAM expects that CARMA is started within ISPF (using
ISPSTART).

1. Customize and submit the FEK.#CUST.JCL(CRA#VSLM) JCL. Refer to the
documentation within CRA#VSLM for customization instructions. CRA#VSLM creates
and primes the SCLM RAM message VSAM data set.

2. Add the CRARAM2 DD statement to the selected CARMA startup method and
provide the data set name of the SCLM RAM message VSAM.

3. Customize the FEK.#CUST.JCL(CRA#ASLM) JCL. Refer to the documentation
within CRA#ASLM for customization instructions. CRA#ASLM allocates data sets
needed by SCLM RAM clients.

Chapter 3. (Optional) Common Access Repository Manager (CARMA) 55

Note: Each user must submit FEK.#CUST.JCL(CRA#ASLM) once before using
CARMA with the SCLM RAM. Failing to do so will result in an
allocation error.

Activating the skeleton RAM
The skeleton RAM gives a skeleton framework that can be used to develop your
own RAMs. The skeleton RAM uses RAM ID 3 by default.
1. Customize and submit the FEK.#CUST.JCL(CRA#CRAM) JCL. Refer to the

documentation within CRA#CRAM for customization instructions. CRA#CRAM
compiles the skeleton RAM.

2. Add the load library holding the compiled skeleton RAM module, CRARAMSA, to
the STEPLIB DD of the selected CARMA startup method (TASKLIB DD for the
CRASTART method).

(Optional) Activating the CA Endevor® SCM RAM
The IBM® Rational® Developer for System z Interface for CA Endevor® Software
Configuration Manager gives Developer for System z clients direct access to CA
Endevor® SCM. From here on, IBM® Rational® Developer for System z Interface for
CA Endevor® SCM is abbreviated to CA Endevor® SCM RAM (Repository Access
Manager).

In contradiction with the sample RAMs documented in this publication, CA
Endevor® SCM RAM is a production type RAM. You should not activate both
types of RAM in the same setup.

Attention: The provided setup jobs for CA Endevor® SCM RAM replace the active CARMA
setup with one that holds only the CA Endevor® SCM RAM.

Note: The TSO/ISPF Client Gateway startup method can not be used together
with the CA Endevor® SCM RAM.

Requirements and checklist
You need the assistance of a security administrator and a TCP/IP administrator to
complete this customization task, which requires the following resources or special
customization tasks:
v TCP/IP port range for internal communication
v (Optional) Security rule to allow users to submit CRA* jobs
v (Optional) LPA update

In order to start using the CA Endevor® SCM RAM at your site, you must perform
the following tasks. Unless otherwise indicated, all tasks are mandatory.
1. Allocate and prime VSAM data sets that define the CA Endevor® SCM RAM to

CARMA. For details, see “Define the CA Endevor® SCM RAM” on page 57.
2. Choose your preferred startup method, batch submit or CRASTART, and do the

required customization of the related configuration files. For details see:
v “CA Endevor® SCM RAM startup using batch submit” on page 57
v “CA Endevor® SCM RAM startup using CRASTART” on page 60

3. Optionally customize the allocation exec used for dynamic allocation of
user-specific data sets. For details, see “(Optional) Customize CRANDVRA” on
page 61.

56 IBM Rational Developer for System z: Host Configuration Guide

|

|
|
|
|
|

|
|
|

||
|
|

|
|

|

|
|
|

|

|

|

|
|

|
|

|
|

|

|

|
|
|

4. Optionally customize the CA Endevor® SCM RAM specific configuration files.
For details, see “(Optional) Customize the CA Endevor® SCM RAM” on page
62.

Define the CA Endevor® SCM RAM
The following CARMA components must be customized, regardless of the chosen
startup method. The sample members referenced below are located in
FEK.#CUST.JCL, unless you specified a different location when you customized and
submitted job FEK.SFEKSAMP(FEKSETUP). See “Customization setup” on page 13 for
more details.
1. Customize and submit the FEK.#CUST.JCL(CRA#VCAD) JCL. Refer to the

documentation within CRA$VDEF for customization instructions. CRA#VCAD creates
and primes the CARMA configuration VSAM data set, CRADEF.

2. Customize and submit the FEK.#CUST.JCL(CRA$VMSG) JCL. Refer to the
documentation within CRA$VMSG for customization instructions. CRA$VMSG creates
and primes the CARMA message VSAM data set, CRAMSG.

Note: This is the same job as for the sample RAMs.
3. Customize and submit the FEK.#CUST.JCL(CRA#VCAS) JCL. Refer to the

documentation within CRA$VSTR for customization instructions. CRA#VCAS creates
and primes the CARMA custom information VSAM data set, CRASTRS.

Note:

v The CA Endevor® SCM RAM uses RAM ID 0 by default.
v Refer to sample job FEK.#CUST.JCL(CRA#UADD) if you need to merge the

definitions for a (custom) RAM into an existing VSAM configuration. This
job must be customized and submitted for each CARMA VSAM that
changes. Refer to the Rational Developer for System z Common Access
Repository Manager Developer's Guide (SC23-7660) for more information on
the record structure used by the different CARMA VSAMs.

v Use sample job FEK.#CUST.JCL(CRA#UQRY) to extract the active definitions
from a VSAM to a sequential data set.

CA Endevor® SCM RAM startup using batch submit
Do not execute this step if you use the CRASTART method to start the CARMA
server with the CA Endevor® SCM RAM.

Developer for System z can use the batch submit CARMA server startup method
to start the CA Endevor® SCM RAM. The method submits the CARMA server as a
long-running batch job in your JES.

Refer to “CARMA server startup using batch submit” on page 49 for more
information on the batch submit startup method.

Adjust CRASRV.properties
RSE server uses the settings in /etc/rdz/CRASRV.properties to start and connect to
a CARMA server, as documented in “RSE interface to CARMA” on page 47. You
can edit the file with the TSO OEDIT command. Note that RSE must be restarted
for the changes to take effect.

Change the value of the clist.dsname directive to the data set and member name
of the CRASUBCA CARMA server startup CLIST, as shown in the following example.
Refer to “RSE interface to CARMA” on page 47 for more information on the

Chapter 3. (Optional) Common Access Repository Manager (CARMA) 57

|
|
|

|

|
|
|
|
|

|
|
|

|
|
|

|

|
|
|

|

|

|
|
|
|
|
|

|
|

|

|
|

|
|
|

|
|

|
|
|
|
|

|
|
|

different directives.

Adjust CRASUBCA
Customize the CRASUBCA CLIST, as shown in the following code sample. Refer to
the documentation within CRASUBCA for customization instructions. The CRASUBCA
CLIST submits a CARMA server for CA Endevor® SCM.

CRASUBCA is located in FEK.#CUST.CNTL, unless you specified a different location
when you customized and submitted job FEK.SFEKSAMP(FEKSETUP). See
“Customization setup” on page 13 for more details.

port.start=5227
port.range=100
startup.script.name=/usr/lpp/rdz/bin/carma.startup.rex
clist.dsname=’FEK.#CUST.CNTL(CRASUBCA)’

Figure 17. Figure x1. CRASRV.properties - CA Endevor® SCM RAM startup using batch submit

58 IBM Rational Developer for System z: Host Configuration Guide

|
||

|
|
|
|

|
|
|
|

Note:

v You can add your own DD statements and data set concatenations to
customize the CARMA TSO environment, thus mimicking a TSO logon
procedure.

v You can optionally change CARMA's timeout value by modifying the
PROC 1 PORT TIMEOUT(420) line in the CLIST. The timeout value is the
number of seconds CARMA will wait for the next command from the
client. Setting a value of 0 results in the default timeout value, currently
420 seconds (7 minutes).

v Details of the CARMA startup process are shown in rsecomm.log. Refer to
“(Optional) RSE tracing” on page 88 for more information on setting the
detail level of rsecomm.log.

v Changes are in effect for all CARMA servers started after the update.

PROC 1 PORT TIMEOUT(420)
SUBMIT * END($$)
//CRA&PORT JOB CLASS=A,MSGCLASS=A,MSGLEVEL=(1,1)
//RUN EXEC PGM=IKJEFT01,DYNAMNBR=125,REGION=0M,TIME=NOLIMIT,
// PARM=’%CRANDVRA NDVRC1 PGM(CRASERV) PARM(&PORT &TIMEOUT)’
//STEPLIB DD DISP=SHR,DSN=FEK.SFEKLOAD
// DD DISP=SHR,DSN=CA.NDVR.AUTHLIB
// DD DISP=SHR,DSN=CA.NDVRU.AUTHLIB
//CRADEF DD DISP=SHR,DSN=FEK.#CUST.CRADEF
//CRAMSG DD DISP=SHR,DSN=FEK.#CUST.CRAMSG
//CRASTRS DD DISP=SHR,DSN=FEK.#CUST.CRASTRS
//*
//SYSPROC DD DISP=SHR,DSN=ISP.SISPCLIB
// DD DISP=SHR,DSN=FEK.SFEKPROC
//ISPEXEC DD DISP=SHR,DSN=ISP.SISPEXEC
//ISPMLIB DD DISP=SHR,DSN=ISP.SISPMENU
//ISPPLIB DD DISP=SHR,DSN=ISP.SISPPENU
//ISPSLIB DD DISP=SHR,DSN=ISP.SISPSENU
//ISPTLIB DD DISP=SHR,DSN=ISP.SISPTENU
//ISPCTL0 DD DISP=(NEW,DELETE,DELETE),UNIT=SYSALLDA,
// SPACE=(TRK,(1,1)),LRECL=80,RECFM=FB
//ISPCTL1 DD DISP=(NEW,DELETE,DELETE),UNIT=SYSALLDA,
// SPACE=(TRK,(1,1)),LRECL=80,RECFM=FB
//ISPPROF DD DISP=(NEW,DELETE,DELETE),UNIT=SYSALLDA,
// SPACE=(TRK,(1,1,5)),LRECL=80,RECFM=FB
//*
//CARMALOG DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD DUMMY
//*
//CONLIB DD DISP=SHR,DSN=CA.NDVR.CONLIB
//JCLOUT DD SYSOUT=(A,INTRDR),DCB=(LRECL=80,RECFM=F,BLKSIZE=80)
//EXT1ELM DD DISP=(NEW,DELETE),UNIT=SYSALLDA,
// RECFM=VB,LRECL=4096,BLKSIZE=27998,SPACE=(TRK,(5,5))
//EXT1DEP DD DISP=(NEW,DELETE),UNIT=SYSALLDA,
// RECFM=VB,LRECL=4096,BLKSIZE=27998,SPACE=(TRK,(5,5))
//MSG3FILE DD DISP=(NEW,DELETE),UNIT=SYSALLDA,
// RECFM=FB,LRECL=133,BLKSIZE=27930,SPACE=(TRK,(5,5))
//C1MSGS1 DD DISP=(NEW,DELETE),UNIT=SYSALLDA,
// RECFM=FB,LRECL=133,BLKSIZE=27930,SPACE=(TRK,(5,5))
//C1EXMSGS DD DISP=(NEW,DELETE),UNIT=SYSALLDA,
// RECFM=FB,LRECL=133,BLKSIZE=27930,SPACE=(TRK,(5,5))
//TYPEMAP DD DISP=SHR,DSN=FEK.#CUST.PARMLIB(CRATMAP)
//SHOWVIEW DD DISP=SHR,DSN=FEK.#CUST.PARMLIB(CRASHOW)
$$
EXIT CODE(0)

Figure 18. Figure x2. CRASUBCA - CA Endevor® SCM RAM startup using batch submit

Chapter 3. (Optional) Common Access Repository Manager (CARMA) 59

|

|
|
|

|
|
|
|
|

|
|
|

|

CA Endevor® SCM RAM startup using CRASTART
Do not execute this step if you use the batch submit method to start the CARMA
server with the CA Endevor® SCM RAM.

Developer for System z can use the CRASTART CARMA server startup method to
start the CA Endevor® SCM RAM. The method uses CRASTART to start the
CARMA server as a subtask within RSE..

Refer to “(Optional) Alternative CARMA server startup using CRASTART” on
page 50 for more information on the CRASTART startup method.

Note: Details of the CARMA startup process are shown in rsecomm.log. Refer to
“(Optional) RSE tracing” on page 88 for more information on setting the
detail level of rsecomm.log.

Adjust CRASRV.properties
RSE server uses the settings in /etc/rdz/CRASRV.properties to start and connect to
a CARMA server, as documented in “RSE interface to CARMA” on page 47. You
can edit the file with the TSO OEDIT command. Note that RSE must be restarted
for the changes to take effect.

Change the value of the clist.dsname directive to *CRASTART and provide the
correct values for the crastart.* directives, as shown in the following example.
Refer to “RSE interface to CARMA” on page 47 for more information on the
different directives.

Note: System abend 522 for module CRASERV will occur if the JWT parameter in the
SMFPRMxx parmlib member is set to a value lower than the time out value in
CRASRV.properties. This does not impact CARMA operations, because the
server is restarted automatically if needed.

Adjust crastart.endevor.conf
CRASTART uses the definitions in crastart.endevor.conf to create a valid
(TSO/ISPF) environment to invoke CA Endevor® SCM. Developer for System z
uses this environment to run the CA Endevor ® SCM RAM.

crastart.endevor.conf is located in /etc/rdz/, unless you specified a different
location when you customized and submitted job FEK.SFEKSAMP(FEKSETUP). See
“Customization setup” on page 13 for more details. You can edit the file with the
TSO OEDIT command.

Note: Changes are in effect for all CARMA servers started after the update.

port.start=5227
port.range=100
startup.script.name=/usr/lpp/rdz/bin/carma.startup.rex
clist.dsname=*CRASTART
crastart.stub=/usr/lpp/rdz/bin/CRASTART
crastart.configuration.file=/etc/rdz/crastart.endevor.conf
crastart.syslog=Partial
crastart.timeout=420
#crastart.steplib=FEK.SFEKLPA
#crastart.tasklib=TASKLIB

Figure 19. Figure x3. CRASRV.properties - CA Endevor® SCM RAM startup using CRASTART

60 IBM Rational Developer for System z: Host Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|
|

|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|

(Optional) Customize CRANDVRA
Both the batch submit and the CRASTART startup method invoke REXX exec
CRANDVRA to allocate user-specific data sets used by CA Endevor® SCM RAM.

DD Data set name Type

DEPEND &SYSPREF..&SYSUID..
&SYSNAME..CRA$NDVR.DEPEND

Permanent

BROWSE &SYSPREF..&SYSUID..
&SYSNAME..CRA$NDVR.BROWSE

Temporary

C1PRINT &SYSPREF..&SYSUID..
&SYSNAME..CRA$NDVR.LISTING

Temporary

TASKLIB = FEK.SFEKLOAD,CA.NDVR.AUTHLIB,CA.NDVRU.AUTHLIB
CRADEF = FEK.#CUST.CRADEF
CRAMSG = FEK.#CUST.CRAMSG
CRASTRS = FEK.#CUST.CRASTRS

SYSPROC = ISP.SISPCLIB,FEK.SFEKPROC
SYSEXEC = ISP.SISPEXEC
ISPMLIB = ISP.SISPMENU
ISPPLIB = ISP.SISPPENU
ISPSLIB = ISP.SISPSENU
-COMMAND=ALLOC FI(ISPCTL0) NEW DELETE DSORG(PS) RECFM(F,B) LRECL(80)
BLKSIZE(6160) SPACE(2,2) TRACKS UNIT(SYSALLDA)
-COMMAND=ALLOC FI(ISPCTL1) NEW DELETE DSORG(PS) RECFM(F,B) LRECL(80)
BLKSIZE(6160) SPACE(2,2) TRACKS UNIT(SYSALLDA)
-COMMAND=ALLOC FI(ISPPROF) NEW DELETE DSORG(PO) DIR(5) RECFM(F,B) LRECL(80)
BLKSIZE(6160) SPACE(2,2) TRACKS UNIT(SYSALLDA)
ISPTLIB = -ISPPROF,ISP.SISPTENU
ISPTABL = -ISPPROF

CARMALOG= SYSOUT(H)
SYSPRINT= SYSOUT(H)
SYSTSPRT= SYSOUT(H)
SYSTSIN = DUMMY

TYPEMAP = FEK.#CUST.PARMLIB(CRATMAP)
SHOWVIEW= FEK.#CUST.PARMLIB(CRASHOW)
CONLIB = CA.NDVR.CONLIB
-COMMAND=ALLOC FI(JCLOUT) SYSOUT(A) WRITER(INTRDR) RECFM(F) LRECL(80)
BLKSIZE(80)
-COMMAND=ALLOC FI(EXT1ELM) NEW DELETE DSORG(PS) RECFM(V,B) LRECL(4096)
BLKSIZE(27998) SPACE(5,5) TRACKS UNIT(SYSALLDA)
-COMMAND=ALLOC FI(EXT1DEP) NEW DELETE DSORG(PS) RECFM(V,B) LRECL(4096)
BLKSIZE(27998) SPACE(5,5) TRACKS UNIT(SYSALLDA)
-COMMAND=ALLOC FI(MSG3FILE) NEW DELETE DSORG(PS) RECFM(F,B) LRECL(133)
BLKSIZE(27930) SPACE(5,5) TRACKS UNIT(SYSALLDA)
-COMMAND=ALLOC FI(C1EXMSGS) NEW DELETE DSORG(PS) RECFM(F,B) LRECL(133)
BLKSIZE(27930) SPACE(5,5) TRACKS UNIT(SYSALLDA)
-COMMAND=ALLOC FI(C1MSGS1) NEW DELETE DSORG(PS) RECFM(F,B) LRECL(133)
BLKSIZE(27930) SPACE(5,5) TRACKS UNIT(SYSALLDA)

PROGRAM=IKJEFT01 %CRANDVRA NDVRC1 PGM(CRASERV) PARM(&CRAPRM1.
&CRAPRM2.)

Figure 20. crastart.conf - CA Endevor® SCM RAM startup using CRASTART

Chapter 3. (Optional) Common Access Repository Manager (CARMA) 61

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

||||

||
|
|

||
|
|

||
|
|

|

You can customize a copy of this allocation REXX exec if certain defaults, such as
the data set name, do not match your site standards. CRANDVRA is located in
FEK.SFEKPROC, unless you used a different high level qualifier during the SMP/E
install of Developer for System z.

Refer to the documentation within CRANDVRA for customization instructions.

Note: You should copy the sample allocation REXX to a new data set and
customize this copy to avoid overwriting it when applying maintenance.
When you do this, you must update the reference to SFEKPROC in the
SYSEXEC DD of your chosen CARMA startup method to match your new
data set name.

(Optional) Customize the CA Endevor® SCM RAM
The following CARMA components can be customized, regardless of the chosen
startup method. The sample members referenced below are located in
FEK.#CUST.PARMLIB, unless you specified a different location when you customized
and submitted job FEK.SFEKSAMP(FEKSETUP). See “Customization setup” on page 13
for more details.
1. (Optional) Customize FEK.#CUST.PARMLIB(CRASHOW). Refer to the documentation

within CRASHOW for customization instructions. CRASHOW defines default filters for
CA Endevor® SCM environments, systems, and so forth.

2. (Optional) Customize FEK.#CUST.PARMLIB(CRATMAP). Refer to the documentation
within CRATMAP for customization instructions. CRATMAP overrides CA Endevor®

SCM type to file extension mappings.

(Optional) Supporting multiple RAMs
CARMA allows that multiple RAMs are defined and can run them concurrently.
However, since there is only one CARMA server active per user, even when there
are multiple RAMs, some configuration changes might be required to make this
setup work.

RAMs are defined by a RAM developer in the CARMA configuration VSAM data
set, CRADEF. During startup, the CARMA server, CRASERV, will identify all defined
RAMs and present the information to the CARMA client. The user can then select
one or more RAMs, which will be loaded into the CARMA server.

Since RAMs are active as plug-ins of the CARMA server, you must ensure that all
prerequisites (such as data set allocations) for each of the RAMs are available in
the address space of the CARMA server. This might require changes to the
CARMA configuration samples, such as CRASUBMT or crastart.conf, which are
shipped with Developer for System z.

Example
In the following example, you start from an existing setup with the CA Endevor®

SCM RAM, using the CRASTART startup method, and add the sample PDS RAM.

Definitions for the CA Endevor® SCM RAM:
v FEK.SFEKVSM2(CRA0VCAD) - CRADEF definitions
v FEK.SFEKVSM2(CRA0VCAS) - CRASTRS definitions
v /etc/rdz/crastart.endevor.conf - CRASTART configuration file

Definitions for the PDS RAM:

62 IBM Rational Developer for System z: Host Configuration Guide

|
|
|
|

|

|
|
|
|
|

|

|
|
|
|
|

|
|
|

|
|
|

|

|
|
|
|

|
|
|
|

|
|
|
|
|

|

|
|

|

|

|

|

|

v FEK.SFEKVSM2(CRA0VDEF) - CRADEF definitions
v FEK.SFEKVSM2(CRA0VSTR) - CRASTRS definitions
v FEK.#CUST.CRARAM1 - CRARAM1 definitions

The process starts with a RAM developer gathering the data and information
needed by the system programmer to complete the setup.
1. Extract the data specific for the PDS RAM from the SFEKVSM2 members (these

members hold definitions for all sample RAMs, not just the PDS RAM).
2. Merge this data with the CA Endevor® SCM RAM SFEKVSM2 members.
3. Create a list of PDS RAM specific prerequisites:

v DD CRARAM1, linked to FEK.#CUST.CRARAM1

v TSO environment

The system programmer then uses this data to create the updated CARMA VSAM
data sets and uses the prerequisite information to create a CRASTART
configuration file that is capable of supporting both RAMs.
1. Use the combined data as input for the CRA$VDEF and CRA$VSTR jobs to create

the updated CARMA configuration and custom information VSAM data sets,
CRADEF and CRASTRS.

2. Add a CRARAM1 definition to crastart.endevor.conf:

CRARAM1 = FEK.#CUST.CRARAM1

3. Verify the PROGRAM statement in crastart.endevor.conf to ensure it is
capable of providing the environment needed by both RAMs:

PROGRAM=IKJEFT01 %CRANDVRA NDVRC1 PGM(CRASERV)
PARM(&CRAPRM1. &CRAPRM2.)

v IKJEFT01: TSO, used to allow certain authorized calls in a non-authorized
environment, and used as environment to run the CA Endevor® SCM RAM
pre-allocation exec.

v %CRANDVRA: CA Endevor® SCM RAM pre-allocation exec (located in
FEK.SFEKPROC), that allocates temporary (and permanent) user-specific
working data sets.

v NDVRC1: CA Endevor® back-end, which has a built in mechanism to execute
TSO and ISPF commands.

v PGM(CRASERV): command to start a CARMA server, in ISPF command format
v PARM(&CRAPRM1. &CRAPRM2.): parameters for CRASERV, in ISPF command

format. &CRAPRM1 is the port to be used and &CRAPRM2 is the timeout value.

The CA Endevor® SCM RAM is active in an ISPF environment, which implies that
the TSO environment required by the PDS RAM is also available.

(Optional) IRXJCL versus CRAXJCL
If the CARMA server is started using TSO (IKJEFTxx), you may experience
problems if your RAMs call services which in turn call the IRXJCL REXX batch
interface. The problem can occur when the processors called by the RAM
previously ran either without TSO, or only in online TSO and dynamically
allocates DD SYSTSIN or SYSTSPRT. A sample program, CRAXJCL, is provided to
work around this problem.

Chapter 3. (Optional) Common Access Repository Manager (CARMA) 63

|

|

|

|
|

|
|

|

|

|

|

|
|
|

|
|
|

|

|

|
|

|
|

|
|
|

|
|
|

|
|

|

|
|

|
|

Your processor might fail if it attempts to allocate SYSTSIN or SYSTSPRT (required
for IRXJCL) because batch TSO (required for CARMA) already has those DD
names allocated and open. The CRAXJCL replacement module attempts to allocate
SYSTSIN and SYSTSPRT to DUMMY but ignores the errors which occur if the
allocations fail.

This means that when your processors run in a CARMA environment started by
TSO, the allocations to SYSTSIN and SYSTSPRT are the same as those used by
CARMA. When the processors are run outside of TSO/CARMA, the SYSTSIN and
SYSTSPRINT allocations will be created by CRAXJCL. Therefore, your processors
must not rely on the contents of the data set allocated to SYSTSIN.

It is assumed that calls to IRXJCL use the PARM field to pass the REXX name and
startup parameters, as documented in TSO/E REXX Reference (SA22-7790). This
means that SYSTSIN can safely be used by CARMA. Any output sent to SYSTSPRT
by IRXJCL will end up in CARMA’s log.

Processors that call the CRAXJCL replacement module should not attempt to
allocate DD SYSTSIN or SYSTSPRT before calling CRAXJCL.

Create CRAXJCL
The CRAXJCL replacement module is shipped in source format because you will
need to customize it to specify the specific allocations you want to use for
SYSTSPRT. SYSTSIN should usually be allocated to a dummy data set.

Sample assembler source code and a sample compile/bind job are shipped as
FEK.#CUST.ASM(CRAXJCL) and FEK.#CUST.JCL(CRA#CIRX) respectively, unless you
specified a different location when you customized and submitted job
FEK.SFEKSAMP(FEKSETUP). See “Customization setup” on page 13 for more details.

Customize the CRAXJCL assembler source code per your needs, using the
documentation within the member. Afterwards, customize and submit the CRA#CIRX
JCL to create the CRAXJCL load module. Refer to the documentation within
CRA#CIRX for customization instructions.

64 IBM Rational Developer for System z: Host Configuration Guide

Chapter 4. (Optional) Application Deployment Manager

Developer for System z uses certain functions of Application Deployment Manager
as a common deployment approach for various components. The customization
steps listed in this chapter are required if your developers use any of the following
functions:
v Enterprise Service Tools (EST)
v BMS Screen Designer
v MFS Screen Designer
v CICSTS Code Generation

Note: Enterprise Service Tools (EST) encompasses multiple tools, such as the
Service Flow Modeler (SFM) and XML Services for the Enterprise (XSE).

Customizing Application Deployment Manager adds the CICS Resource Definition
(CRD) server, which runs as a CICS application on z/OS to support the following
functions:
v CICS resource queries
v CICS resource definition install and uninstall requests in both CICSplex SM and

non-CICSplex SM environments
v Program and mapset phase-in requests
v Pipeline scan requests
v Manifest export, import, and update requests

CICS administrators can find more information on the CRD server in Chapter 15,
“CICSTS considerations,” on page 231.

Requirements and checklist
You will need assistance of a CICS administrator, a TCP/IP administrator and a
security administrator to complete this customization task, which requires the
following resources or special customization tasks:
v TCP/IP port for external communication
v Update CICS region JCL
v Update CICS region CSD
v Define group to CICS region
v Security rule to allow administrators update to an Application Deployment

Manager VSAM
v CICSTS security setup
v (Optional) Define CICS transaction names
v (Optional) Security rule to allow users update to an Application Deployment

Manager VSAM

In order to start using Application Deployment Manager at your site, you must
perform the following tasks. Unless otherwise indicated, all tasks are mandatory.
1. Create the CRD repository. For details, see “CRD repository” on page 66.
2. Choose the CICS interface (RESTful or Web Service) to be used. (The interfaces

can co-exist). For details see “RESTful versus Web Service” on page 67.

© Copyright IBM Corp. 2005, 2010 65

3. If desired, do the RESTful specific customizations. For details see “CRD server
using the RESTful interface” on page 67.
v Define the CRD server to the CICS primary connection region
v Optionally define the CRD server to CICS non-primary connection regions.
v Optionally customize the CRD server transaction IDs.

4. If desired, do the Web Service specific customizations. For details see “CRD
server using the Web Service interface” on page 68.
v Add the (possibly customized) pipeline message handler to the CICS RPL

concatenation.
v Define the CRD server to the CICS primary connection region.
v Optionally define the CRD server to CICS non-primary connection regions.

5. Optionally create the manifest repository. For details, see “(Optional) Manifest
repository” on page 70.

CRD repository
Customize and submit job ADNVCRD to allocate and initialize the CRD repository
VSAM data set. Refer to the documentation within the member for customization
instructions.

ADNVCRD is located in FEK.#CUST.JCL, unless you specified a different location when
you customized and submitted job FEK.SFEKSAMP(FEKSETUP). See “Customization
setup” on page 13 for more details.

You should create a separate repository for each CICS primary connection region.
Sharing the repository implies that all related CICS regions will use the same
values stored in the repository.

Note:

v An existing CRD server repository must be enlarged to enable the
URIMAP support added to the Administrative utility in Developer for
System z version 7.6.1. See “Administrative utility migration notes” on
page 239 for more details.

v Unless notified otherwise, your current CRD server repository (holding
your customized values) can be reused across Developer for System z
releases.

Users require READ access to the CRD repository, CICS administrators require
UPDATE access.

CICS administrative utility
Developer for System z provides the administrative utility to let CICS
administrators provide the default values for CICS resource definitions. These
defaults can be read-only, or can be editable by the application developer.

The administrative utility is invoked by sample job ADNJSPAU. The usage of this
utility requires UPDATE access to the CRD repository.

ADNJSPAU is located in FEK.#CUST.JCL, unless you specified a different location
when you customized and submitted job FEK.SFEKSAMP(FEKSETUP). See
“Customization setup” on page 13 for more details.

More information is available in Chapter 15, “CICSTS considerations,” on page 231.

66 IBM Rational Developer for System z: Host Configuration Guide

|
|
|
|

RESTful versus Web Service
CICS Transaction Server provides in version 4.1 and higher support for an HTTP
interface designed using Representational State Transfer (RESTful) principles. This
RESTful interface is now the strategic CICSTS interface for use by client
applications. The older Web Service interface has been stabilized, and
enhancements will be for the RESTful interface only.

Application Deployment Manager follows this statement of direction and requires
the RESTful CRD server for all services that are new to Developer for System
version 7.6 or higher.

The RESTful and Web Service interfaces can be active concurrently in a single CICS
region, if desired. In this case, there will be two CRD servers active in the region.
Both servers will share the same CRD repository. Note that CICS will issue some
warnings about duplicate definitions when the second interface is defined to the
region.

CRD server using the RESTful interface
The information in this section describes how to define the CRD server that uses
the RESTful interface to communicate with the Developer for System z client.

The RESTful and Web Service interfaces can be active concurrently in a single CICS
region, if desired. In this case, there will be two CRD servers active in the region.
Both servers will share the same CRD repository. Note that CICS will issue some
warnings about duplicate definitions when the second interface is defined to the
region.

CICS primary connection region
The CRD server must be defined to the primary connection region. This is the Web
Owning Region (WOR) that will process Web Service requests from Developer for
System z.
v Place the load modules FEK.SFEKLOAD(ADNCRD*, ADNANAL and ADNREST) in the

CICS RPL concatenation (DD statement DFHRPL) of the CICS primary
connection region. It is recommended that you do this by adding the installation
data set to the concatenation so that applied maintenance is automatically
available to CICS.

v Customize and submit job ADNCSDRS to update the CICS System Definition (CSD)
for the CICS primary connection region. Refer to the documentation within the
member for customization instructions.
ADNCSDRS is located in FEK.#CUST.JCL, unless you specified a different location
when you customized and submitted job FEK.SFEKSAMP(FEKSETUP). See
“Customization setup” on page 13 for more details.

v Use the appropriate CEDA command to install the Application Deployment
Manager group for this region, for example:
CEDA INSTALL GROUP(ADNPCRGP)

CICS non-primary connection regions
The CRD server can also be used with one or more additional non-primary
connection regions, which are usually Application Owning Regions (AOR).

Chapter 4. (Optional) Application Deployment Manager 67

Note: It is not necessary to perform these steps if CICSPlex® SM Business
Application Services (BAS) is used to manage your CICS resource
definitions.

v Place the Application Deployment Manager load module FEK.SFEKLOAD(ADNCRD*)
in the CICS RPL concatenation (DD statement DFHRPL) of these non-primary
connection regions. It is recommended that you do this by adding the
installation data set to the concatenation so that applied maintenance is
automatically available to CICS.

v Customize and submit job ADNCSDAR to update the CSD for these non-primary,
connection regions. Refer to the documentation within the member for
customization instructions.
ADNCSDAR is located in FEK.#CUST.JCL, unless you specified a different location
when you customized and submitted job FEK.SFEKSAMP(FEKSETUP). See
“Customization setup” on page 13 for more details.

v Use the appropriate CEDA command to install the Application Deployment
Manager group for these regions, for example:
CEDA INSTALL GROUP(ADNARRGP)

(Optional) Customize CRD server transaction IDs
Developer for System z supplies multiple transactions that are used by the CRD
server when defining and inquiring CICS resources.

Table 11. Default CRD server transaction IDs

Transaction Description

ADMS For requests from the Manifest Processing tool to change CICS
resources. Typically, this is intended for CICS administrators.

ADMI For requests that define, install, or uninstall CICS resources.

ADMR For all other requests that retrieve CICS environmental or resource
information.

You can change the transaction IDs to match your site standards by following
these steps:
1. Customize and submit ADNTXNC to create load module ADNRCUST. Refer to the

documentation within the member for customization instructions.
2. Place the resulting ADNRCUST load module in the CICS RPL concatenation (DD

statement DFHRPL) of the CICS regions where the CRD server is defined.
3. Customize and submit ADNCSDTX to define ADNRCUST as program to the CICS

regions where the CRD server is defined. Refer to the documentation within
the member for customization instructions.

Note: The RESTful CRD server will always try to load the ADNRCUST load module.
So you can get a small performance benefit by creating and defining the
ADNRCUST load module, even if you do not change the transaction IDs.

CRD server using the Web Service interface
The information in this section describes how to define the CRD server that uses
the Web Service interface to communicate with the Developer for System z client.

The RESTful and Web Service interfaces can be active concurrently in a single CICS
region, if desired. In this case, there will be two CRD servers active in the region.

68 IBM Rational Developer for System z: Host Configuration Guide

Both servers will share the same CRD repository. Note that CICS will issue some
warnings about duplicate definitions when the second interface is defined to the
region.

Pipeline message handler
The pipeline message handler (ADNTMSGH) is used for security by processing the
user ID and password in the SOAP header. ADNTMSGH is referenced by the
sample pipeline configuration file and must therefore be placed into the CICS RPL
concatenation. Refer to Chapter 15, “CICSTS considerations,” on page 231 to learn
more about the pipeline message handler and the required security setup.

Developer for System z supplies multiple transactions that are used by the CRD
server when defining and inquiring CICS resources. These transaction IDs are set
by ADNTMSGH, depending on the requested operation. Sample COBOL source
code is provided to allow site-specific customizations to ADNTMSGH:

Table 12. Default CRD server transaction IDs

Transaction Description

ADMS For requests from the Manifest Processing tool to change CICS resources.
Typically, this is intended for CICS administrators.

ADMI For requests that define, install or uninstall CICS resources.

ADMR For all other requests that retrieve CICS environmental or resource
information.

Using the default:
v Place the FEK.SFEKLOAD(ADNTMSGH) load module in the CICS RPL concatenation

(DD statement DFHRPL) of the CICS primary connection region. It is
recommended that you do this by adding the installation data set to the
concatenation so that applied maintenance is automatically available to CICS.

Customizing ADNTMSGH:

Sample members ADNMSGH* are located in FEK.#CUST.JCL and FEK.#CUST.COBOL,
unless you specified a different location when you customized and submitted job
FEK.SFEKSAMP(FEKSETUP). See “Customization setup” on page 13 for more details.
v Customize the sample Pipeline Message Handler (COBOL) source code,

FEK.#CUST.COBOL(ADNMSGHS), to match your site’s standards.
v Customize and submit job FEK.#CUST.JCL(ADNMSGHC) to compile the customized

ADNMSGHS source. Refer to the documentation within ADNMSGHC for customization
instructions. Note that the resulting load module must be named ADNTMSGH.

v Place the resulting ADNTMSGH load module in the CICS RPL concatenation (DD
statement DFHRPL) of the CICS primary connection region.

Note: Ensure that the customized ADNTMSGH load module is located before any
reference to FEK.SFEKLOAD, otherwise the default one will be used.

CICS primary connection region
The CRD server must be defined to the primary connection region. This is the
region that will process service requests from Developer for System z.
v Place the load modules FEK.SFEKLOAD(ADNCRD*, ADNANAL and ADNREST) in the

CICS RPL concatenation (DD statement DFHRPL) of the CICS primary
connection region. It is recommended that you do this by adding the installation

Chapter 4. (Optional) Application Deployment Manager 69

data set to the concatenation so that applied maintenance is automatically
available to CICS. Note that the pipeline message handler load module,
ADNTMSGH, must also be placed in the RPL concatenation, as described in
“Pipeline message handler” on page 69.

v Customize and submit job ADNCSDWS to update the CICS System Definition (CSD)
for the CICS primary connection region. Refer to the documentation within the
member for customization instructions. Note that the transaction IDs used in this
job must match the ones used by the Pipeline message handler (which may have
been customized).
ADNCSDWS is located in FEK.#CUST.JCL, unless you specified a different location
when you customized and submitted job FEK.SFEKSAMP(FEKSETUP). See
“Customization setup” on page 13 for more details.

v Use the appropriate CEDA command to install the Application Deployment
Manager group for this region, for example:
CEDA INSTALL GROUP(ADNPCRGP)

CICS non-primary connection regions
The CRD server can also be used with one or more additional non-primary
connection regions, which are usually Application Owning Regions (AOR).

Note: It is not necessary to perform these steps if CICSPlex SM Business
Application Services (BAS) is used to manage your CICS resource
definitions.

v Place the Application Deployment Manager load modules
FEK.SFEKLOAD(ADNCRD*) in the CICS RPL concatenation (DD statement DFHRPL)
of these non-primary connection regions. You should do this by adding the
installation data set to the concatenation so that applied maintenance is
automatically available to CICS.

v Customize and submit job ADNCSDAR to update the CSD for these non-primary,
connection regions. Refer to the documentation within the member for
customization instructions.
ADNCSDAR is located in FEK.#CUST.JCL, unless you specified a different location
when you customized and submitted job FEK.SFEKSAMP(FEKSETUP). See
“Customization setup” on page 13 for more details.

v Use the appropriate CEDA command to install the Application Deployment
Manager group for these regions, for example:
CEDA INSTALL GROUP(ADNARRGP)

(Optional) Manifest repository
Developer for System z allows clients to browse and optionally change manifests
describing selected CICS resources. Depending on permissions set by the CICS
administrator, changes can be done directly or exported to the manifest repository
for further processing by a CICS administrator.

Note:

v This step is only required for customers that export manifests from
Developer for System z to be processed by the Manifest Processing tool.

v The Manifest Processing tool is a plug-in for IBM CICS Explorer.

Customize and submit job ADNVMFST to allocate and initialize the manifest
repository VSAM data set, and to define it to the CICS primary connection region.
Refer to the documentation within the member for customization instructions. A

70 IBM Rational Developer for System z: Host Configuration Guide

separate manifest repository must be created for each CICS primary connection
region. All users need UPDATE access to the manifest repository.

ADNVMFST is located in FEK.#CUST.JCL, unless you specified a different location
when you customized and submitted job FEK.SFEKSAMP(FEKSETUP). See
“Customization setup” on page 13 for more details.

Chapter 4. (Optional) Application Deployment Manager 71

72 IBM Rational Developer for System z: Host Configuration Guide

Chapter 5. (Optional) SCLM Developer Toolkit

SCLM Developer Toolkit provides the tools needed to extend the capabilities of
SCLM to the client. SCLM itself is a host-based source code manager that is
shipped as part of ISPF.

The SCLM Developer Toolkit has an Eclipse-based plugin that interfaces to SCLM
and provides for access to all SCLM processes for legacy code development as well
as support for full Java and J2EE development on the workstation with
synchronization to SCLM on the mainframe including building, assembling, and
deployment of the J2EE code from the mainframe.

Requirements and checklist
You will need assistance of an SCLM administrator and optionally a security
administrator to complete this customization task, which requires the following
resources and/or special customization tasks:
v APF and LINKLIST updates
v Define SCLM language translators for JAVA/J2EE support
v Define SCLM types for JAVA/J2EE support
v (Optional) Security rule to allow users update to an SCLM VSAM
v (Optional) Installation of Ant

In order to start using SCLM Developer Toolkit at your site, you must perform the
following tasks. Unless otherwise indicated, all tasks are mandatory.
1. Verify and adjust prerequisites and PARMLIB updates. For details, see

“Prerequisites.”
2. Customize Developer for System z configuration files. For details see:

v “ISPF.conf updates for SCLMDT” on page 74
v “rsed.envvars updates for SCLMDT” on page 75

3. Optionally define long/short name translation support. For details, see
“(Optional) Long/short name translation” on page 75.

4. Optionally install and customize Ant to use the JAVA/J2EE build support. For
details, see “(Optional) Install and customize Ant” on page 78.

5. Update SCLM to define SCLMDT-specific parts. For details, see “SCLM updates
for SCLMDT” on page 79.

6. Optionally set up automation to periodically clean up the SCLMDT work area.
For details, see “Remove old files from WORKAREA” on page 80.

Prerequisites
Refer to Appendix E, “Requisites,” on page 305 for a list of required SCLM
maintenance.

This appendix also documents the Ant specifications needed for JAVA/J2EE builds
in SCLM Developer Toolkit.

Attention: SCLM Developer Toolkit requires the usage of ISPF’s TSO/ISPF Client
Gateway, which implies that z/OS 1.8 or higher is required.

© Copyright IBM Corp. 2005, 2010 73

As described in “PARMLIB changes” on page 14, SCLM Developer Toolkit requires
additional customization of system settings. These changes include:
v (BPXPRMxx) Increase the maximum number of processes per z/OS UNIX user ID.
v (PROGxx) APF authorize SYS1.LINKLIB and the REXX runtime,

REXX.V1R4M0.SEAGLPA or REXX.V1R4M0.SEAGALT.
v (PROGxx/LPALSTxx) Place ISP.SISPLPA, ISP.SISPLOAD, SYS1.LINKLIB and the

REXX runtime in LINKLIST/LPALIB.

Also, SCLM Developer Toolkit uses SDSF or the TSO OUTPUT command to
retrieve job completion status and job output. Both methods require some
additional attention:
v SDSF must be ordered, installed, and configured separately. It also requires the

usage of JES2.
v The default settings for the TSO OUTPUT command let a user retrieve job

output that begins with his user ID only. If you want to use the OUTPUT
facility fully, then the sample TSO/E exit IKJEFF53 might need to be modified so
that a user can retrieve job output he owns, but that does not begin with his
user ID. For more information about this exit, refer to TSO/E Customization
(SA22-7783).

Users require READ, WRITE, and EXECUTE permission to the z/OS UNIX
directories /tmp/ and /var/rdz/WORKAREA/. Directory WORKAREA/ is located in
/var/rdz/, unless you specified a different location when you customized and
submitted job FEK.SFEKSAMP(FEKSETUP). See “Customization setup” on page 13 for
more details.

ISPF.conf updates for SCLMDT
SCLM Developer Toolkit uses the standard ISPF/SCLM skeletons, so ensure that
skeleton library ISP.SISPSLIB is allocated to the ISPSLIB concatenation in
ISPF.conf. The usage of the ISP.SISPSENU data set is optional.

ISPF.conf is located in /etc/rdz/, unless you specified a different location when
you customized and submitted job FEK.SFEKSAMP(FEKSETUP). See “Customization
setup” on page 13 for more details. You can edit the file with the TSO OEDIT
command.

Note: Changes are in effect for all clients connecting to the host after the update.

The following sample code shows the ISPF.conf file, which must be customized to
match your system environment. Comment lines start with an asterisk (*). Add
data sets to the concatenation on the same line and separate the names with a
comma (,). See “ISPF.conf, ISPF’s TSO/ISPF Client Gateway configuration file” on
page 42 for more details on customizing ISPF.conf.

74 IBM Rational Developer for System z: Host Configuration Guide

Note:

v You can add your own DD-like statements and data set concatenations to
customize the TSO environment, thus mimicking a TSO logon procedure.
See Chapter 16, “Customizing the TSO environment,” on page 243 for
more details.

v When you are doing batch builds, ensure that the customized version of
the FLMLIBS skeleton is concatenated before the ISPF/SCLM skeleton
library.
ispslib=hlq.USERSKEL,ISP.SISPSLIB

rsed.envvars updates for SCLMDT
SCLM Developer Toolkit uses some directives set in rsed.envvars to locate data
sets and directories.

rsed.envvars is located in /etc/rdz/, unless you specified a different location
when you customized and submitted job FEK.SFEKSAMP(FEKSETUP). See
“Customization setup” on page 13 for more details. You can edit the file with the
TSO OEDIT command.

Note: The RSED started task must be restarted to pick up any changes you make.

The following code sample shows the SCLMDT directives in rsed.envvars, which
must be customized to match your system environment. See “rsed.envvars, RSE
configuration file” on page 28 for more details on customizing rsed.envvars.

(Optional) Long/short name translation
SCLM Developer Toolkit provides the ability to store long name files (which are
files with names greater than 8 characters or in mixed case) into SCLM. This is
achieved through the use of a VSAM file that contains the mapping of the long file
name to the 8 character member name used in SCLM.

Note:

v For versions previous to z/OS 1.8, this facility is provided through a base
ISPF/SCLM PTF that addresses APAR OA11426.

* REQUIRED:
sysproc=ISP.SISPCLIB,FEK.SFEKPROC
ispmlib=ISP.SISPMENU
isptlib=ISP.SISPTENU
ispplib=ISP.SISPPENU
ispslib=ISP.SISPSLIB

* OPTIONAL:
*allocjob = FEK.#CUST.CNTL(CRAISPRX)
*ISPF_timeout = 900

Figure 21. ISPF.conf updates for SCLMDT

_SCLMDT_CONF_HOME=/var/rdz/sclmdt
#STEPLIB=$STEPLIB:FEK.SFEKAUTH:FEK.SFEKLOAD
#_SCLMDT_TRANTABLE=FEK.#CUST.LSTRANS.FILE
#ANT_HOME=/usr/lpp/Apache/Ant/apache-ant-1.7.1
_SCLMDT_BASE_HOME=$RSE_HOME
_SCLMDT_WORK_HOME=$_CMDSERV_WORK_HOME
CGI_DTWORK=$_SCLMDT_WORK_HOME

Figure 22. rsed.envvars updates for SCLMDT

Chapter 5. (Optional) SCLM Developer Toolkit 75

v The long/short name translation is also used by other SCLM-related
products, such as IBM SCLM Administrator Toolkit.

Create LSTRANS.FILE, the long/short name translation VSAM
Customize and submit sample member FLM02LST in the ISPF sample library
ISP.SISPSAMP, to create the long/short name translation VSAM. The configuration
steps in this publication expect the VSAM to be named FEK.#CUST.LSTRANS.FILE, as
shown in the following sample setup JCL.

76 IBM Rational Developer for System z: Host Configuration Guide

Note: Users need UPDATE authority to this VSAM data set, as described in
Chapter 10, “Security considerations,” on page 147.

//FLM02LST JOB <job parameters>
//*
//* CAUTION: This is neither a JCL procedure nor a complete job.
//* Before using this sample, you will have to make the following
//* modifications:
//* 1. Change the job parameters to meet your system requirements.
//* 2. Change ****** to the volume that will hold the VSAM.
//* 3. Change all references of FEK.#CUST.LSTRANS.FILE to
//* match your naming convention for the SCLM translate VSAM.
//*
//CREATE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DELETE FEK.#CUST.LSTRANS.FILE
SET MAXCC=0
DEFINE CLUSTER(NAME(FEK.#CUST.LSTRANS.FILE) -

VOLUMES(******) -
RECORDSIZE(58 2048) -
SHAREOPTIONS(3 3) -
CYLINDERS(1 1) -
KEYS(8 0) -
INDEXED) -

DATA (NAME(FEK.#CUST.LSTRANS.FILE.DATA)) -
INDEX (NAME(FEK.#CUST.LSTRANS.FILE.INDEX))

/* DEFINE ALTERNATE INDEX WITH NONUNIQUE KEYS -> ESDS */

DEFINE ALTERNATEINDEX(-
NAME(FEK.#CUST.LSTRANS.FILE.AIX) -
RELATE(FEK.#CUST.LSTRANS.FILE) -
RECORDSIZE(58 2048) -
VOLUMES(******) -
CYLINDERS(1 1) -
KEYS(50 8) -
UPGRADE -
NONUNIQUEKEY) -

DATA (NAME(FEK.#CUST.LSTRANS.FILE.AIX.DATA)) -
INDEX (NAME(FEK.#CUST.LSTRANS.FILE.AIX.INDEX))

/*
//*
//PRIME EXEC PGM=IDCAMS,COND=(0,LT)
//SYSPRINT DD SYSOUT=*
//INITREC DD *
INITREC1
/*
//SYSIN DD *

REPRO INFILE(INITREC) -
OUTDATASET(FEK.#CUST.LSTRANS.FILE)

IF LASTCC = 4 THEN SET MAXCC=0

BLDINDEX IDS(FEK.#CUST.LSTRANS.FILE) -
ODS(FEK.#CUST.LSTRANS.FILE.AIX)

IF LASTCC = 0 THEN -
DEFINE PATH (NAME(FEK.#CUST.LSTRANS.FILE.PATH) -

PATHENTRY (FEK.#CUST.LSTRANS.FILE.AIX))
/*

Figure 23. FLM02LST - long/short name translation setup JCL

Chapter 5. (Optional) SCLM Developer Toolkit 77

rsed.envvars updates for long/short name translation
Before using the long/short name translation, uncomment and set the
rsed.envvars environment variable _SCLMDT_TRANTABLE to match the name of the
long/short name translation VSAM.

rsed.envvars is located in /etc/rdz/, unless you specified a different location
when you customized and submitted job FEK.SFEKSAMP(FEKSETUP). See
“Customization setup” on page 13 for more details. You can edit the file with the
TSO OEDIT command.

Note: The RSED started task must be restarted to pick up any changes you make.

(Optional) Install and customize Ant
This step is only required if you plan to use the JAVA/J2EE build support in
SCLM.

Apache Ant is an open source Java build tool and can be downloaded from
http://ant.apache.org/. Ant consists of text files and scripts which are distributed
in ASCII format and thus require an ASCII/EBCDIC translation to run in z/OS
UNIX.

Perform the following steps to implement Ant on z/OS, and to define it to
Developer for System z:
v Download, in binary format, the latest Ant compressed file into the z/OS UNIX

file system. It is recommended that you download the .zip version of ANT due
to problems that might be encountered on z/OS when extracting versions of
suffix format tar.gz or tar.bz2.

v Open a z/OS UNIX command-line session to continue the installation, for
example with the TSO OMVS command.

v Make a home directory for the Ant install with the mkdir -p /home-dir
command and make it your current directory with the cd /home-dir command.

v Use the JAR extract command jar -xf apache-ant-1.7.1.zip to extract the file to
the current directory. A Java bin directory must be in your local z/OS UNIX
PATH to use the jar command. Otherwise, fully qualify the command with the
Java bin location (for example, /usr/lpp/java/J5.0/bin/jar -xf apache-ant-1.7.1.zip).

v Convert all Ant text files to EBCDIC by (optionally customizing and) executing
sample script /usr/lpp/rdz/samples/BWBTRANT.

Note: Execute this script only once. Multiple runs will corrupt your Ant install.
v To check for successful translation, locate and browse a text file within the ANT

directory, such as apache-ant-1.7.1/README. If the file is readable, then the
translation was successful.

v Use the chmod –R 755 * command to enable all users to READ and EXECUTE
files in the ANT directory.

v Before using Ant, set the rsed.envvars environment variables JAVA_HOME and
ANT_HOME.
– JAVA_HOME is required to point to the Java home directory, for example:

JAVA_HOME=/usr/lpp/java/IBM/J5.0

– ANT_HOME is required to point to the Ant home directory, for example:
ANT_HOME=/usr/lpp/Apache/Ant/apache-ant-1.7.1

For example:

78 IBM Rational Developer for System z: Host Configuration Guide

v TSO OMVS

v mkdir –p /usr/lpp/Apache/Ant

v cd /usr/lpp/Apache/Ant

v jar –xf /u/userid/apache-ant-1.7.1

v /usr/lpp/rdz/samples/BWBTRANT

v cat ./apache-ant-1.7.1/README

v chmod -R 755 *

v oedit /etc/rsed.envvars

To test that the Ant initialization has been successful:
v Add the Ant and Java bin directories to the environment variable PATH.

Example:
export PATH=/usr/lpp/Apache/Ant/apache-ant-1.7.1/bin:$PATH
export PATH=/usr/lpp/java/IBM/J5.0/bin:$PATH

v Execute ant -version to display the version, if successfully installed.
Example:
ant -version

Note: Setting the PATH statement in this way is necessary for testing only, not for
operational use.

SCLM updates for SCLMDT
SCLM itself also requires customization to work with SCLM Developer Toolkit.
Refer to IBM Rational Developer for System z SCLM Developer Toolkit Administrator's
Guide (SC23-9801) for more information on the required customization tasks:
v Define language translators for JAVA/J2EE support
v Define SCLM types for JAVA/J2EE support

To complete the customization and project definition tasks, the SCLM
administrator needs to know several Developer for System z customizable values,
as described in Table 13.

Table 13. SCLM administrator checklist

Description

v Default value

v Where to find the answer Value

Developer for System z sample
library

v FEK.SFEKSAMV

v SMP/E installation

Developer for System z sample
directory

v /usr/lpp/rdz/samples

v SMP/E installation

Java bin directory v /usr/lpp/java/J5.0/bin

v rsed.envvars - $JAVA_HOME/bin

Ant bin directory v /usr/lpp/Apache/Ant/apache-ant-1.7.1/
bin

v rsed.envvars - $ANT_HOME/bin

WORKAREA home directory v /var/rdz

v rsed.envvars - $_CMDSERV_CONF_HOME

Chapter 5. (Optional) SCLM Developer Toolkit 79

Table 13. SCLM administrator checklist (continued)

Description

v Default value

v Where to find the answer Value

SCLMDT project configuration
home directory

v /var/rdz/sclmdt

v rsed.envvars - $_SCLMDT_CONF_HOME

Long/short name translation
VSAM

v FEK.#CUST.LSTRANS.FILE

v rsed.envvars - $_SCLMDT_TRANTABLE

Remove old files from WORKAREA
SCLM Developer Toolkit and ISPF’s TSO/ISPF Client Gateway share the same
WORKAREA, which might need a periodical cleanup. Refer to “(Optional)
WORKAREA cleanup” on page 98 for more information on this.

80 IBM Rational Developer for System z: Host Configuration Guide

Chapter 6. (Optional) Other customization tasks

This section combines a variety of optional customization tasks. Follow the
instructions in the appropriate section to configure the desired service.
v “(Optional) DB2 stored procedure”
v “(Optional) Enterprise Service Tools (EST) support” on page 83
v “(Optional) CICS bidirectional language support” on page 84
v “(Optional) Diagnostic IRZ error messages” on page 84
v “(Optional) RSE SSL encryption” on page 85
v “(Optional) RSE tracing” on page 88
v “(Optional) Host based property groups” on page 89
v “(Optional) Host based projects” on page 90
v “(Optional) File Manager integration” on page 91
v “(Optional) Uneditable characters” on page 92
v “(Optional) Using REXEC (or SSH)” on page 93
v “(Optional) APPC transaction for the TSO Commands service” on page 95
v “(Optional) WORKAREA cleanup” on page 98

(Optional) DB2 stored procedure

You will need the assistance of a WLM administrator and a DB2 administrator to complete
this customization task, which requires the following resources or special customization
tasks:

v WLM update

v New PROCLIB member

v DB2 update

Developer for System z provides a sample DB2 stored procedure (PL/I and
COBOL Stored Procedure Builder) for building COBOL and PL/I Stored
Procedures from within the Developer for System z client.

Note: Sample members ELAXM* are located in FEK.#CUST.JCL and
FEK.#CUST.PROCLIB, unless you specified a different location when you
customized and submitted job FEK.SFEKSAMP(FEKSETUP). See “Customization
setup” on page 13 for more details.

Workload Manager (WLM) changes
Use the workload management (WLM) panels to associate an application
environment with the JCL procedure of the WLM address space for the PL/I and
COBOL Stored Procedure Builder. Refer to MVS Planning Workload Management
(SA22-7602) for information on how to do this.

Note: You can create a new application environment in WLM for the PL/I and
COBOL Stored Procedure Builder, or you can add the necessary definitions
to an existing one.

© Copyright IBM Corp. 2005, 2010 81

PROCLIB changes
Customize the sample Stored Procedure task FEK.#CUST.PROCLIB(ELAXMSAM), as
described within the member, and copy it to SYS1.PROCLIB. As shown in the
following code sample, you have to provide the following:
v The name of the application environment defined in WLM for this Stored

Procedure
v The DB2 subsystem name
v The high-level qualifier of various data sets

Note:

v The DB2 stored procedure uses REXX exec ELAXMREX, located in
FEK.SFEKPROC. Do not change this location if you want possible SMP/E
maintenance to be activated automatically.

v See Chapter 17, “Running multiple instances,” on page 249 if you want to
rename members ELAXMSAM or ELAXMREX.

DB2 changes
Customize and submit sample member ELAXMJCL in data set FEK.#CUST.JCL to
define the Stored Procedure to DB2. Refer to the documentation within the
member for customization instructions.

//ELAXMSAM PROC RGN=0M,
// NUMTCB=1,
// APPLENV=#wlmwd4z,
// DB2SSN=#ssn,
// DB2PRFX=’DSN810’,
// COBPRFX=’IGY.V3R4M0’,
// PLIPRFX=’IBMZ.V3R6M0’,
// LIBPRFX=’CEE’,
// LODPRFX=’FEK’
//*
//DSNX9WLM EXEC PGM=DSNX9WLM,REGION=&RGN,TIME=NOLIMIT,DYNAMNBR=10,
// PARM=’&DB2SSN,&NUMTCB,&APPLENV’
//STEPLIB DD DISP=SHR,DSN=&DB2PRFX..SDSNEXIT
// DD DISP=SHR,DSN=&DB2PRFX..SDSNLOAD
// DD DISP=SHR,DSN=&LIBPRFX..SCEERUN
// DD DISP=SHR,DSN=&COBPRFX..SIGYCOMP
// DD DISP=SHR,DSN=&PLIPRFX..SIBMZCMP
//SYSEXEC DD DISP=SHR,DSN=&LODPRFX..SFEKPROC
//SYSTSPRT DD SYSOUT=*
//CEEDUMP DD SYSOUT=*
//SYSABEND DD DUMMY
//SYSUT1 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT2 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT3 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT4 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT5 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT6 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT7 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//*

Figure 24. ELAXMSAM - DB2 stored procedure task

82 IBM Rational Developer for System z: Host Configuration Guide

Note: Make sure the WLM ENVIRONMENT clause in the CREATE PROCEDURE statement
specifies the name of the WLM environment procedure which has been
defined for the PL/I and COBOL Stored Procedure Builder (default
ELAXMSAM).

(Optional) Enterprise Service Tools (EST) support

This customization task does not require assistance, special resources, or special
customization tasks.

The Developer for System z client has a code generation component called
Enterprise Service Tools (EST). Depending on the type of code being generated,
this code relies on functions provided by the Developer for System z host install.
Making these host functions available is described in the following sections:
v Chapter 4, “(Optional) Application Deployment Manager,” on page 65
v “(Optional) CICS bidirectional language support” on page 84
v “(Optional) Diagnostic IRZ error messages” on page 84

//ELAXMJCL JOB <job parameters>
//JOBPROC JCLLIB ORDER=(#hlq.SDSNPROC)
//JOBLIB DD DISP=SHR,DSN=#hlq.SDSNEXIT
// DD DISP=SHR,DSN=#hlq.SDSNLOAD
//*
//RUNTIAD EXEC PGM=IKJEFT01,DYNAMNBR=20
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
DSN S(#ssn) R(1) T(1)
RUN PROGRAM(DSNTIAD) PLAN(DSNTIAD) -
LIB(’#hlq.RUNLIB.LOAD’)
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
CREATE PROCEDURE SYSPROC.ELAXMREX
(IN FUNCTION_REQUEST VARCHAR(20) CCSID EBCDIC
, IN SQL_ROUTINE_NAME VARCHAR(27) CCSID EBCDIC
, IN SQL_ROUTINE_SOURCE VARCHAR(32672) CCSID EBCDIC
, IN BIND_OPTIONS VARCHAR(1024) CCSID EBCDIC
, IN COMPILE_OPTIONS VARCHAR(255) CCSID EBCDIC
, IN PRECOMPILE_OPTIONS VARCHAR(255) CCSID EBCDIC
, IN PRELINK_OPTIONS VARCHAR(32672) CCSID EBCDIC
, IN LINK_OPTIONS VARCHAR(255) CCSID EBCDIC
, IN ALTER_STATEMENT VARCHAR(32672) CCSID EBCDIC
, IN SOURCE_DATASETNAME VARCHAR(80) CCSID EBCDIC
, IN BUILDOWNER VARCHAR(8) CCSID EBCDIC
, IN BUILDUTILITY VARCHAR(18) CCSID EBCDIC
, OUT RETURN_VALUE VARCHAR(255) CCSID EBCDIC)
PARAMETER STYLE GENERAL RESULT SETS 1
LANGUAGE REXX EXTERNAL NAME ELAXMREX
COLLID DSNREXCS WLM ENVIRONMENT ELAXMSAM
PROGRAM TYPE MAIN MODIFIES SQL DATA
STAY RESIDENT NO COMMIT ON RETURN NO
ASUTIME NO LIMIT SECURITY USER;

COMMENT ON PROCEDURE SYSPROC.ELAXMREX IS
’PLI & COBOL PROCEDURE PROCESSOR (ELAXMREX), INTERFACE LEVEL 0.01’;

GRANT EXECUTE ON PROCEDURE SYSPROC.ELAXMREX TO PUBLIC;
//*

Figure 25. ELAXMJCL – DB2 stored procedure definition

Chapter 6. (Optional) Other customization tasks 83

Note: Enterprise Service Tools (EST) encompasses multiple tools, such as the
Service Flow Modeler (SFM) and XML Services for the Enterprise (XSE).

(Optional) CICS bidirectional language support

You will need the assistance of a CICS administrator to complete this customization task,
which requires the following resources or special customization tasks:

v Update CICS region JCL

v Define a program to CICS

The Developer for System z Enterprise Service Tools (EST) component supports
different formats of Arabic and Hebrew interface messages, as well as bidirectional
data presentation and editing in all editors and views. In terminal applications,
both left-to-right and right-to-left screens are supported, as well as numeric fields
and fields with opposite-to-screen orientation.

Additional bidirectional features and functionality include the following:
v The EST service requestor dynamically specifies bidirectional attributes of

interface messages.
v Bidirectional data processing in service flows is based on bidirectional attributes

(text type, text orientation, numeric swapping, and symmetric swapping). These
attributes can be specified in different stages of flow creation for both interface
and terminal flows.

v EST-generated runtime code includes conversion of data between fields in
messages that have different bidirectional attributes.

Additionally, EST-generated code can support bidi transformation in environments
other than CICS SFR (Service Flow Runtime). One example is batch applications.
You can make the EST generators to include calls to the bidirectional conversion
routines by specifying the appropriate bidi transformation options in the EST
generation wizards and linking the generated programs with the appropriate
bidirectional conversion library, FEK.SFEKLOAD.

Perform the following tasks to activate CICS Bidirectional language support:
1. Place the FEK.SFEKLOAD load modules FEJBDCMP and FEJBDTRX in the CICS RPL

concatenation (DD statement DFHRPL). You should do this by adding the
installation data set to the concatenation so that applied maintenance is
automatically available to CICS.

Note: If you do not concatenate the installation data set but copy the modules
into a new or existing data set, keep in mind that those modules are
DLLs and MUST reside in a PDSE library.

2. Define FEJBDCMP and FEJBDTRX as programs to CICS using the appropriate
CEDA command, for example:
CEDA DEF PROG(FEJBDCMP) LANG(LE) G(xxx)
CEDA DEF PROG(FEJBDTRX) LANG(LE) G(xxx)

(Optional) Diagnostic IRZ error messages

This customization task does not require assistance, but does require the following resources
or special customization tasks:

v LINKLIST update

v Update CICS region JCL

84 IBM Rational Developer for System z: Host Configuration Guide

The Developer for System z client has a code generation component called
Enterprise Service Tools (EST). In order for code generated by EST to issue
diagnostic error messages, all IRZ* and IIRZ* modules in the FEK.SFEKLOAD load
library must be made available to the generated code. EST can generate code for
the following environments:
v CICS
v IMS
v MVS batch

When the generated code is executed in a CICS transaction, then add all IRZ* and
IIRZ* modules in FEK.SFEKLOAD to the DFHRPL DD of the CICS region. You should
do this by adding the installation data set to the concatenation so that applied
maintenance is automatically available to CICS.

In all other situations, make all IRZ* and IIRZ* modules in FEK.SFEKLOAD available
either through STEPLIB or LINKLIST. You should do this by adding the
installation data set to the concatenation so that applied maintenance is
automatically available to CICS.

If you decide to use STEPLIB, you must define the modules not available through
LINKLIST in the STEPLIB directive of the task that executes the code.

If the load modules are not available and an error is encountered by the generated
code, then following message will be issued:
IRZ9999S Failed to retrieve the text of a Language Environment runtime
message. Check that the Language Environment runtime message module for
facility IRZ is installed in DFHRPL or STEPLIB.

(Optional) RSE SSL encryption

You will need assistance of a security administrator to complete this customization task, which requires the following
resources or special customization tasks:

v LINKLIST update

v Security rule to add program controlled data sets

v (Optional) Security rule to add certificate for SSL

External (client-host) communication can be encrypted using SSL (Secure Socket
Layer). This feature is disabled by default and is controlled by the settings in
ssl.properties.

ssl.properties is located in /etc/rdz/, unless you specified a different location
when you customized and submitted job FEK.SFEKSAMP(FEKSETUP). See
“Customization setup” on page 13 for more details. You can edit the file with the
TSO OEDIT command. Note that RSE must be restarted for the changes to take
effect.

The client communicates with RSE daemon during connection setup and with RSE
server during the actual session. Both data streams are encrypted when SSL is
enabled.

RSE daemon and RSE server support different mechanisms to store certificates due
to architectural differences between the two. This implies that SSL definitions are

Chapter 6. (Optional) Other customization tasks 85

required for both RSE daemon and RSE server. A shared certificate can be used if
RSE daemon and RSE server use the same certificate management method.

Table 14. SSL certificate storage mechanisms

Certificate storage
Created and
managed by RSE daemon RSE server

key ring SAF-compliant
security product

supported supported

key database z/OS UNIX's
gskkyman

supported /

key store Java's keytool / supported

Note:

v SAF-compliant key rings are the preferred method for managing
certificates.

v SAF-compliant key rings can store the certificate’s private key either in
the security database or by using ICSF, the interface to System z
cryptographic hardware. Access to ICSF is protected by profiles in the
CSFSERV security class.

RSE daemon uses System SSL functions to manage SSL. This implies that
SYS1.SIEALNKE must be program controlled by your security software and available
to RSE via LINKLIST or the STEPLIB directive in rsed.envvars.

The following code sample shows the sample ssl.properties file, which must be
customized to match your system environment. Comment lines start with a pound
sign (#), when using a US code page. Data lines can only have a directive and its
assigned value, comments are not allowed on the same line. Line continuations are
not supported.

The daemon and server properties only need to be set if you enable SSL. Refer to
Appendix A, “Setting up SSL and X.509 authentication,” on page 269 for more
information on SSL setup.

enable_ssl
Enable or disable SSL communication. The default is false. The only valid
options are true and false.

daemon_keydb_file
RACF (or similar security product) key ring name. Provide the key

ssl.properties – SSL configuration file
enable_ssl=false

Daemon Properties

#daemon_keydb_file=
#daemon_keydb_password=
#daemon_key_label=

Server Properties

#server_keystore_file=
#server_keystore_password=
#server_keystore_label=
#server_keystore_type=JCERACFKS

Figure 26. ssl.properties – SSL configuration file

86 IBM Rational Developer for System z: Host Configuration Guide

database name if you used gskkyman to create a key database instead of
using a key ring. Uncomment and customize this directive if SSL is
enabled.

daemon_keydb_password
Leave commented out or blank if you use a key ring, otherwise provide
the key database password. Uncomment and customize this directive if
SSL is enabled and you are using a gskkyman key database.

daemon_key_label
The certificate label used in the key ring or key database, if it is not
defined as the default one. Must be commented out if the default is used.
Uncomment and customize this directive if SSL is enabled and you are not
using the default security certificate.

server_keystore_file
Name of the key store created by Java’s keytool command, or the RACF
(or similar security product) key ring name if
server_keystore_type=JCERACFKS. Uncomment and customize this directive
if SSL is enabled.

server_keystore_password
Leave commented out or blank if you use a key ring, otherwise provide
the key store password. Uncomment and customize this directive if SSL is
enabled and you are using a keytool key store.

server_keystore_label
The certificate label used in the key ring or key store. The default is the
first valid certificate encountered. Uncomment and customize this directive
if SSL is enabled and you are not using the default security certificate.

server_keystore_type
Key store type. The default is JKS. Valid values are:

Table 15. Valid keystore types

Keyword Key store type

JKS Java key store

JCERACFKS SAF-compliant key ring, where the
certificate’s private key is stored in the
security database.

JCECCARACFKS SAF-compliant key ring, where the
certificate’s private key is stored using ICSF,
the interface to System z cryptographic
hardware.

Note: At the time of publication, IBM z/OS Java requires an update of the
/usr/lpp/java/J5.0/lib/security/java.security file to support
JCECCARACFKS. The following line must be added:
security.provider.1=com.ibm.crypto.hdwrCCA.provider.IBMJCECCA

The resulting file will look like this:
security.provider.1=com.ibm.crypto.hdwrCCA.provider.IBMJCECCA
security.provider.2=com.ibm.jsse2.IBMJSSEProvider2
security.provider.3=com.ibm.crypto.provider.IBMJCE
security.provider.4=com.ibm.security.jgss.IBMJGSSProvider
security.provider.5=com.ibm.security.cert.IBMCertPath
security.provider.6=com.ibm.security.sasl.IBMSASL

Chapter 6. (Optional) Other customization tasks 87

(Optional) RSE tracing

This customization task does not require assistance, special resources, or special
customization tasks.

Developer for System z supports different levels of tracing the internal program
flow for problem solving purposes. RSE, and some of the services called by RSE,
use the settings in rsecomm.properties to know the desired detail level in the
output logs.

Attention: Changing these settings can cause performance degradations and should only
be done under the direction of the IBM support center.

rsecomm.properties is located in /etc/rdz/, unless you specified a different
location when you customized and submitted job FEK.SFEKSAMP(FEKSETUP). See
“Customization setup” on page 13 for more details. You can edit the file with the
TSO OEDIT command.

The following code sample shows the rsecomm.properties file, which can be
customized to match your tracing needs. Comment lines start with a pound sign
(#), when using a US code page. Data lines can only have a directive and its
assigned value, comments are not allowed on the same line. Line continuations are
not supported.

server.version
Logging server version. The default is 5.0.0. Do not modify.

debug_level
Detail level for output logs. The default is 1 (log error and warning
messages). Note that debug_level controls the detail level of multiple
services (and thus multiple output files). Increasing the detail level will
cause performance degradations and should only be done under the
direction of the IBM support center. Refer to “RSE tracing” on page 135 for
more information on which logs are controlled by this directive.

The valid values are the following:

0 Log error messages only.

1 Log error and warning messages.

2 Log error, warning, and informational messages.

server.version - DO NOT MODIFY!
server.version=5.0.0

Logging level
0 - Log error messages
1 - Log error and warning messages
2 - Log error, warning and info messages
debug_level=1

Log location
Log_To_StdOut
Log_To_File
log_location=Log_To_File

Figure 27. rsecomm.properties – Logging configuration file

88 IBM Rational Developer for System z: Host Configuration Guide

Note: debug_level can be changed dynamically with the modify
rsecommlog operator command, as described in Chapter 8,
“Operator commands,” on page 115.

log_location
Output medium for RSE related logging. The default is Log_To_File. Do
not change when using the RSE daemon connection method (default),
unless directed by the IBM support center.

The valid values are the following:

Log_To_File Send log messages to a separate file in the log output directory.

v RSE daemon: rsedaemon.log in daemonlog

v RSE thread pools: rseserver.log in daemonlog

v User: rsecomm.log in userlog/.eclipse/RSE/$LOGNAME

Log_To_StdOut Send log messages to stdout.

v RSE daemon: rerouted to DD STDOUT in the RSED started task

v RSE thread pools: undefined

v User: rerouted to stdout.log in userlog/.eclipse/RSE/$LOGNAME

daemonlog is the value of the daemon.log directive in rsed.envvars. If the
daemon.log directive is commented out or not present, the home path of the user
ID assigned to the RSED started task is used. The home path is defined in the
OMVS security segment of the user ID.

User-specific logs go to userlog/.eclipse/RSE/$LOGNAME, where userlog is the
value of the user.log directive in rsed.envvars, and $LOGNAME is the logon user ID
(uppercase). If the user.log directive is commented out or not present, the home
path of the user is used. The home path is defined in the OMVS security segment
of the user ID.

(Optional) Host based property groups

This customization task does not require assistance, special resources, or special
customization tasks.

Developer for System z clients can define property groups which hold default
values for various properties (for example, the COBOL compiler options to use
when compiling COBOL source code). Developer for System z has some default
values built in, but also allows defining custom, system-specific defaults.

The location of the custom property group and default value configuration files is
defined in propertiescfg.properties, which is located in/etc/rdz/, unless you
specified a different location when you customized and submitted job
FEK.SFEKSAMP(FEKSETUP). See “Customization setup” on page 13 for more details.
You can edit the file with the TSO OEDIT command. Note that RSE must be
restarted for the changes to take effect.

The following code sample shows the propertiescfg.properties file, which must
be customized to match your system environment. Comment lines start with a
pound sign (#), when using a US code page. Data lines can only have a directive
and its assigned value. Comments are not allowed on the same line. Line
continuations are not supported.

Chapter 6. (Optional) Other customization tasks 89

ENABLED
Indicates whether Developer for System z will use the property group and
default value configuration files. The default is FALSE. The only valid
options are TRUE and FALSE.

RDZ-VERSION
Minimum Developer for System z client level to use host-based property
groups. The default is 7.5.0.0. Do not modify.

PROPERTY-GROUP
The location of the property group configuration file. The default is
/var/rdz/properties.

DEFAULT-VALUES
The location of the default value configuration file. The default is
/var/rdz/properties.

Refer to the Developer for System z Information Center (http://
publib.boulder.ibm.com/infocenter/ratdevz/v7r6/index.jsp) for more
information on creating the property group configuration file (propertygroups.xml)
and the default value configuration file (defaultvalues.xml).

(Optional) Host based projects

This customization task does not require assistance, special resources, or special
customization tasks.

z/OS Projects can be defined individually through the z/OS Projects perspective
on the client or can be defined centrally on the host and propagated to the client
on a per user basis. These "host-based projects" look and function exactly like
projects defined on the client except that their structure, members, and properties
cannot be modified by the client and they are only accessible when connected to
the host.

The location of the project definitions is defined in projectcfg.properties, which
is located in /etc/rdz/, unless you specified a different location when you
customized and submitted job FEK.SFEKSAMP(FEKSETUP). See “Customization setup”
on page 13 for more details. You can edit the file with the TSO OEDIT command.
Note that RSE must be restarted for the changes to take effect.

The following code sample shows the projectcfg.properties file, which must be
customized to match your system environment. Comment lines start with a pound
sign (#), when using a US code page. Data lines can only have a directive and its
assigned value. Comments are not allowed on the same line. Line continuations are
not supported.

#
host based property groups - root configuration file
#
ENABLED=FALSE
RDZ-VERSION=7.5.0.0
PROPERTY-GROUP=/var/rdz/properties
DEFAULT-VALUES=/var/rdz/properties

Figure 28. propertiescfg.properties - Host-based property groups configuration file

90 IBM Rational Developer for System z: Host Configuration Guide

WSED-VERSION
Minimum Developer for System z client level to use host-based projects.
The default is 7.0.0.0. Do not modify.

PROJECT-HOME
The base directory for the project definitions. The default is
/var/rdz/projects.

Note: In order to activate host-based projects, a project.instance file must exist in
/var/rdz/projects/USERID, where /var/rdz/projects is the location of the
project definition files and USERID is the user ID (uppercase) with which the
developer logs on.

Refer to Developer for System z Information Center (http://
publib.boulder.ibm.com/infocenter/ratdevz/v7r6/index.jsp) for more
information on host-based projects.

(Optional) File Manager integration

You will need the assistance of a security administrator to complete this customization task,
which requires the following resources or special customization tasks:

v Security rule to add program controlled data sets

Developer for System z supports direct access from the client to a limited set of
IBM File Manager for z/OS functions. IBM File Manager for z/OS provides
comprehensive tools for working with MVS data sets, z/OS UNIX files, DB2, IMS
and CICS data. These tools include the familiar browse, edit, copy, and print
utilities found in ISPF, enhanced to meet the needs of application developers. In
the current version of Developer for System z, only browse and edit of MVS data
sets (including all types of VSAM), creating and editing MVS data set templates
(including dynamic templates), and advanced copy utilities are supported.

Note that the IBM File Manager for z/OS product must be ordered, installed and
configured separately. Refer to Rational Developer for System z Prerequisites
(SC23-7659) to know which level of File Manger is required for your version of
Developer for System z. The installation and customization of this product is not
described in this manual.

Note that both Developer for System z and File Manger no longer support the
batch interface to access File Manager services. Usage of the File Manager listener
is now required.

Note: In addition to the normal listener setup tasks described in your File
Manager documentation, Developer for System z requires that the server's
STEPLIB data sets are program controlled.

#
host based projects – root configuration file
#
WSED-VERSION – do not modify !
WSED-VERSION=7.0.0.0
specify the location of the host based project definition files
PROJECT-HOME=/var/rdz/projects

Figure 29. projectcfg.properties – Host-based projects configuration file

Chapter 6. (Optional) Other customization tasks 91

The File Manager Integration definitions needed by Developer for System z are
stored in FMIEXT.properties, which is located in /etc/rdz/, unless you specified a
different location when you customized and submitted job
FEK.SFEKSAMP(FEKSETUP). See “Customization setup” on page 13 more details. You
can edit the file with the TSO OEDIT command. Note that RSE must be restarted
for the changes to take effect.

The following code sample shows the FMIEXT.properties file, which must be
customized to match your system environment. Comment lines start with a pound
sign (#), when using a US code page. Data lines can only have a directive and its
assigned value. Comments are not allowed on the same line. Line continuations are
not supported.

enabled
Indicates whether the File Manager listener is available on the same host
system or not. The default value is false. The only values allowed are true
and false.

fmlistenport
Port used by the File Manager listener. The default is 1960. Communication
on this port is confined to your host machine.

(Optional) Uneditable characters

This customization task does not require assistance, special resources, or special
customization tasks.

Some characters do not translate well between host code pages (EBCDIC based)
and client code pages (ASCII based). The Developer for System z client editor uses
the definitions in uchars.settings file to identify these uneditable characters.
When opening a data set with a character identified in uchars.settings, the editor
will enforce read-only mode, to avoid corrupting the data set when it is saved.

uchars.settings is located in /etc/rdz/, unless you specified a different location
when you customized and submitted job FEK.SFEKSAMP(FEKSETUP). See
“Customization setup” on page 13 for more details. You can edit the file with the
TSO OEDIT command. Note that RSE must be restarted for the changes to take
effect. Also note that it is advised not to change this file, unless directed by IBM
support center.

File Manager Integration (FMI) Extension properties
#
enabled=false
fmlistenport=1960

Figure 30. FMIEXT.properties – File Manager configuration file

92 IBM Rational Developer for System z: Host Configuration Guide

The file consists of multiple entries in the following format:
HOST-CODEPAGE LOCAL-CODEPAGE HEX-CODEPOINTS ;

Where HEX-CODEPOINTS is a blank-delimited list of 2-digit hexadecimal code
points which identify the uneditable characters. The list must end with a semicolon
(;).

The following syntax rules apply:
v Comment lines start with a pound sign (#), when using a US code page.
v Data lines can only have data, comments are not allowed on the same line.
v An asterisk (*) can be used for HOST-CODEPAGE and/or LOCAL-CODEPAGE.

It acts as a wildcard and represents all codepages.
v Specific entries take precedence over generic (wildcard) entries.
v "host-cp *" takes precedence if "host-cp *" and "* local-cp" are both specified and

not overridden by "host-cp local-cp".
v If the same codepage pair is specified more than once, then the last entry will be

used.

(Optional) Using REXEC (or SSH)

This customization task does not require assistance, special resources, or special
customization tasks.

REXEC (Remote Execution) is a TCP/IP service to let clients execute a command
on the host. SSH (Secure Shell) is a similar service, but here all communication is
encrypted using SSL (Secure Socket Layer). Developer for System z uses either
service for doing remote (host-based) actions in z/OS UNIX subprojects.

Developer for System z can also be configured to use REXEC (or SSH) to start an
RSE server on the host. Note, however, that each connection started this way will
result in a separate RSE server, each using a fair amount of system resources.
Therefore, this alternate connection method is only viable for a small number of
connections.

uchars.settings - uneditable code points
#
* * 0D 15 25;

DBCS (Japanese, Korean & Chinese)
IBM-930 * 0D 15 1E 1F 25;
IBM-933 * 0D 15 1E 1F 25;
IBM-935 * 0D 15 1E 1F 25;
IBM-937 * 0D 15 1E 1F 25;
IBM-939 * 0D 15 1E 1F 25;
IBM-1390 * 0D 15 1E 1F 25;
IBM-1399 * 0D 15 1E 1F 25;
IBM-1364 * 0D 15 1E 1F 25;
IBM-1371 * 0D 15 1E 1F 25;
IBM-1388 * 0D 15 1E 1F 25;

UNICODE
UTF-8 * 0D 0A;
UTF-16BE * 0D 0A;
UTF-16LE * 0D 0A;
UTF-16 * 0D 0A;

Figure 31. uchars.settings - Uneditable characters configuration file

Chapter 6. (Optional) Other customization tasks 93

Also, since the REXEC (or SSH) alternative connection method bypasses the RSE
daemon, it does not have access to all host services described in this publication,
such as single server processing and audit. Contact IBM support to learn if a
specific host service is supported by the REXEC alternate connection method.

Note: Developer for System z uses the z/OS UNIX version of REXEC, not the TSO
version.

Remote (host-based) actions for z/OS UNIX subprojects
Remote (host-based) actions for z/OS UNIX subprojects require that REXEC or
SSH is active on the host. If REXEC/SSH is not configured to use the default port,
the Developer for System z client must define the correct port for use by z/OS
UNIX subprojects. This can be done by selecting the Window > Preferences... >
z/OS Solutions > USS Subprojects > Remote Action Options preference page.
Refer to “REXEC (or SSH) set up” to know which port is used.

Alternate RSE connection method
Developer for System z clients need to know two values to start an RSE connection
through REXEC (or SSH), as follows:
v The directory where the server.zseries startup script is located.

server.zseries is located in /etc/rdz/, unless you specified a different location
when you customized and submitted job FEK.SFEKSAMP(FEKSETUP). See
“Customization setup” on page 13 for more details.

Note: To discourage the usage of REXEC (or SSH) as alternate logon method,
server.zseries is no longer copied automatically to /etc/rdz. If you
want to use this function, you must manually copy it from
/usr/lpp/rdz/bin, as shown in the following sample command:
cp /usr/lpp/rdz/bin/server.zseries /etc/rdz

v The port that is being used.
Refer to “REXEC (or SSH) set up” to know which port is used.

REXEC (or SSH) set up
Communications Server IP Configuration Guide (SC31-8775) describes the steps
required to set up REXEC (or SSH). Refer to Appendix C, “Setting up INETD,” on
page 291 for Developer for System z specific setup considerations (there are no
Developer for System z specific setup steps).

A common port used by REXEC is 512. To verify this, you can check
/etc/inetd.conf and /etc/services to find the port number used.
v Find the service name (1st word, exec in this example) of the rexecd server (7th

word) in /etc/inetd.conf.
exec stream tcp nowait OMVSKERN /usr/sbin/orexecd rexecd –LV

v Find the port (2nd word, 512 in this example) attached to this service name (1st
word) in /etc/services.
exec 512/tcp #REXEC Command Server

The same principle applies to SSH. Its common port is 22, and the server name is
sshd.

Note: /etc/inetd.conf and /etc/services can have different names. Refer to
Appendix C, “Setting up INETD,” on page 291 for more information.

94 IBM Rational Developer for System z: Host Configuration Guide

|
|
|
|

|

(Optional) APPC transaction for the TSO Commands service

You will need assistance of an APPC administrator and a WLM administrator to complete
this customization task, which requires the following resources or special customization
tasks:

v LINKLIST update

v APPC transaction

v WLM update

The TSO Commands service can be implemented as an APPC transaction program,
FEKFRSRV. This transaction acts as a host server to execute TSO and ISPF
commands that are issued from the workstation. APPC is not required on the
workstation because the client communicates with FEKFRSRV through RSE. Each
client can have an active connection to multiple hosts at the same time.

Note:

v By default, Developer for System z uses ISPF’s TSO/ISPF Client Gateway
to access the TSO Commands service.

v If you are unfamiliar with APPC, refer toAppendix D, “Setting up APPC,”
on page 299 before continuing with this section.

v RSE uses the TCP/IP REXX socket API to communicate with FEKFRSRV.
This implies that the TCP/IP load library, default TCPIP.SEZALOAD, must
be available either via LINKLIST or the STEPLIB directive in
rsed.envvars.

v RSE must be restarted for the described changes to take effect.

Preparation
v The following tasks are a prerequisite and must be completed before configuring

the TSO Commands Server. The mentioned publications describe these tasks.
1. Install, configure, and start VTAM® on your z/OS system. Refer to

Communications Server IP SNA Network Implementation Guide (SC31-8777) for
more information.

2. Install, configure, and start TCP/IP on your z/OS system. Refer to
Appendix B, “Setting up TCP/IP,” on page 283 for more information.

3. Configure and start APPC and the APPC transaction scheduler (ASCH)
subsystem. Refer to Appendix D, “Setting up APPC,” on page 299 for more
information.

v The following sample REXX can be used to manage APPC through ISPF panels.

Chapter 6. (Optional) Other customization tasks 95

Note: Be aware that you can deactivate the APPC transaction with this tool; the
transaction is still there but will not accept any connections.

v The definition of the APPC transaction requires skills in various fields of the
MVS operating system. Consult with experienced administrators using following
checklist before continuing.

Table 16. APPC transaction checklist

Expertise

Required information:

v Default value

v Where to find the answer Value

APPC Data set name of TPDATA

v Default: SYS1.APPCTP

v Value is listed in SYS1.PARMLIB(APPCPMxx)

APPC Transaction name to be used (may not exist)

v Default: FEKFRSRV

v Existing transactions can be queried by selecting "TP
Profile Administration" in the APPC ISPF menu

APPC APPC transaction class to be used

v Default: A

v APPC classes are defined in SYS1.PARMLIB(ASCHPMxx)

WLM/SRM TSO performance group and domain

v No IBM default (site-dependent)

RACF Every Developer for System z user has access to an
OMVS segment (this is required)

v No IBM default (site-dependent)

v TSO RACF command LU userid OMVS will display
an existing personal OMVS segment

RACF Every Developer for System z user must have READ
access to hlq.SFEKPROC(FEKFRSRV)

v No IBM default (site-dependent)

v TSO RACF command LD AUTHUSER
DATASET('hlq.SFEKPROC.**') will display users
and groups and their access level for the data sets
covered by the data set profile

/* REXX –- APPC administration using ISPF panels */
address ISPEXEC
"LIBDEF ISPMLIB DATASET ID(’ICQ.ICQMLIB’) STACK"
"LIBDEF ISPPLIB DATASET ID(’ICQ.ICQPLIB’) STACK"
"LIBDEF ISPSLIB DATASET ID(’ICQ.ICQSLIB’) STACK"
"LIBDEF ISPTLIB DATASET ID(’ICQ.ICQTLIB’) STACK"
address TSO "ALTLIB ACT APPLICATION(CLIST)",

"DSN(’ICQ.ICQCCLIB’) UNCOND QUIET"
"SELECT CMD(%ICQASRM0) NEWAPPL(ICQ) PASSLIB"
address TSO "ALTLIB DEACT APPLICATION(CLIST) QUIET"
"LIBDEF ISPMLIB"
"LIBDEF ISPPLIB"
"LIBDEF ISPSLIB"
"LIBDEF ISPTLIB"
exit

Figure 32. REXX for APPC ISPF panels

96 IBM Rational Developer for System z: Host Configuration Guide

Refer to MVS Planning Workload Management (SA22-7602) for more information on
WLM/SRM management. Refer to Security Server RACF Security Administrator’s
Guide (SA22-7683) for more information on OMVS segments and data set
protection profiles.

Implementation

Note: Sample members FEKAPPC* are located in FEK.#CUST.JCL, unless you
specified a different location when you customized and submitted job
FEK.SFEKSAMP(FEKSETUP). See “Customization setup” on page 13 for more
details.

1. Define the scheduling information (class) for the APPC transaction scheduler if
you are not using an existing transaction class. Include a definition in
SYS1.PARMLIB(ASCHPMxx) for the class to be used by the transaction program
FEKFRSRV. This class is used in sample JCL FEK.#CUST.JCL(FEKAPPCC). Therefore
the class in FEKAPPCC must match the class defined in SYS1.PARMLIB(ASCHPMxx).
For example:
CLASSADD

CLASSNAME(A)
MAX(20)
MIN(1)
MSGLIMIT(200)

Note:

v The TSO Commands service needs the default specifications to be
specified in the OPTIONS and TPDEFAULT sections of
SYS1.PARMLIB(ASCHPMxx). Refer to Appendix D, “Setting up APPC,” on
page 299 for more information.

v The APPC transaction class used must have enough APPC initiators to
allow one initiator for each concurrent user of Developer for System z.

2. Define the APPC transaction that will act as a command server. You can use the
sample JCL FEK.#CUST.JCL(FEKAPPCC) to define this transaction. Instructions on
how to customize this JCL are located within the JCL.

Note:

a. If you changed the transaction program name (default FEKFRSRV) in
this step, the new name must be assigned to _FEKFSCMD_TP_NAME_ in
rsed.envvars, as described in “rsed.envvars, RSE configuration file”
on page 28.

b. The APPC transaction uses the REXX exec FEKFRSRV, located in
FEK.SFEKPROC. Do not change this location if you want possible
SMP/E maintenance to be activated automatically.

c. Sample JCL is also provided to display, FEK.#CUST.JCL(FEKAPPCL), or
delete, FEK.#CUST.JCL(FEKAPPCX), the transaction.

3. Enable RSE to use APPC by uncommenting the RSE_JAVAOPTS="$_RSE_JAVAOPTS
-DTSO_SERVER=APPC" directive in rsed.envvars, as described in “rsed.envvars,
RSE configuration file” on page 28.

4. Control the dispatching priority of the transaction program by associating
FEKFRSRV with a domain and performance group in Workload Manager (WLM).
Because FEKFRSRV issues TSO commands, it should be assigned to a TSO
performance group.

5. Define a default OMVS segment for the system or an individual one for each
user of Developer for System z.

Chapter 6. (Optional) Other customization tasks 97

6. Give Developer for System z users READ access to FEK.SFEKPROC, the
Developer for System z TSO executable library.

APPC usage considerations
v When using APPC for the TSO Commands service, Developer for System z is

dependent upon TCP/IP having the correct hostname when it is initialized. This
implies that the different TCP/IP and Resolver configuration files must be set up
correctly. For TCP/IP and Resolver customization information, refer to
Appendix B, “Setting up TCP/IP,” on page 283 and TCPIP.DATA configuration
statements in the Communications Server IP Configuration Reference (SC31-8776).
You can test your TCP/IP configuration by starting the RSE daemon with the
IVP=IVP parameter or with the fekfivpt installation verification program (IVP),
as documented in Chapter 7, “Installation verification,” on page 99.

v When using APPC for the TSO Commands service, Developer for System z
requires an extra socket (TCP/IP port) for host-confined communication per
opened MVS file. Any available port will be used. This port selection mechanism
cannot be changed.

v When using APPC for the TSO Commands service, reading and writing an MVS
data set requires the use of a socket physical file system domain. If the file
system is not properly defined or it has not enough sockets, the lock manager
(FFS) might fail read/write requests. See “Opening MVS data sets fails” on page
144.

v When using APPC for the TSO Commands service to avoid setting up ISPF’s
TSO/ISPF Client Gateway, be aware that other services, such as SCLM
Developer Toolkit, rely on the TSO/ISPF Client Gateway.

v Refer to Appendix D, “Setting up APPC,” on page 299 for general APPC usage
considerations

(Optional) WORKAREA cleanup

This customization task does not require assistance, special resources, or special
customization tasks.

ISPF’s TSO/ISPF Client Gateway and the SCLM Developer Toolkit function use the
WORKAREA directory to store temporary work files, which are removed before the
session is closed. However, temporary output is sometimes left behind, for
example, if there is a communication error while processing. For this reason, it is
recommended that you clear out the WORKAREA directory from time to time.

z/OS UNIX provides a shell script, skulker, that deletes files based upon the
directory they are in and their age. Combined with the z/OS UNIX cron daemon,
which runs commands at specified dates and times, you can set up an automated
tool that periodically cleans out the WORKAREA directory. Refer to UNIX System
Services Command Reference (SA22-7802) for more information on the skulker script
and the cron daemon.

Note: WORKAREA is located in /var/rdz/, unless you specified a different location
when you customized and submitted job FEK.SFEKSAMP(FEKSETUP). See
“Customization setup” on page 13 for more details.

98 IBM Rational Developer for System z: Host Configuration Guide

Chapter 7. Installation verification

After completing the product customization, you can use the Installation
Verification Programs (IVPs) described in this chapter to verify the successful setup
of key product components.

Verify started tasks

JMON, JES Job Monitor
Start the JMON started task (or user job). The startup information in DD STDOUT
should end with the following message:
JM200I Server initialization complete.

If the job ends with return code 66, then FEK.SFEKAUTH is not APF authorized.

Note: Start JES Job Monitor before continuing with the other IVP tests.

LOCKD, Lock daemon
Start the LOCKD started task (or user job). The lock daemon issues the following
console message upon successful startup:
FEK501I Lock daemon started, port=4036, cleanup interval=1440,
log level=1

RSED, RSE daemon
Start the RSED started task (or user job) with the IVP=IVP parameter. With this
parameter, the server will end after doing some installation verification tests. The
output of these tests is available in DD STDOUT. In case of certain errors, data will
also be available in DD STDERR. The STDOUT data should look like the following
sample:

Note: Start the RSE daemon, without the IVP parameter, before continuing with
the other IVP tests. RSE daemon issues the following console message upon
successful startup:
FEK002I RseDaemon started. (port=4035)

RSE daemon IVP test

Wed Jul 2 17:11:52 2008 UTC
uid=8(STCRSE) gid=1(STCGROUP)

RSE daemon port is 4035
RSE configuration files located in /etc/rdz

current environment variables

@="/usr/lpp/rdz/bin/rsed.sh" @[1]="4035" @[2]="/etc/rdz"
CGI_DTCONF="/var/rdz/sclmdt"
CGI_DTWORK="/var/rdz"
CGI_TRANTABLE="FEK.#CUST.LSTRANS.FILE"
CLASSPATH=".:/usr/lpp/rdz/lib:/usr/lpp/rdz/lib/dstore_core.jar:/usr/lpp/
ERRNO="0"
HOME="/tmp"
IFS="

© Copyright IBM Corp. 2005, 2010 99

"
JAVA_HOME="/usr/lpp/java/J5.0"
JAVA_PROPAGATE="NO"
LANG="C"
LIBPATH=".:/usr/lib:/usr/lpp/java/J5.0/bin:/usr/lpp/java/J5.0/bin/classi
LINENO="66"
LOGNAME="STCRSE"
MAILCHECK="600"
OLDPWD="/tmp"
OPTIND="1"
PATH=".:/usr/lpp/java/J5.0/bin:/usr/lpp/rdz/bin:/usr/lpp/ispf/bin:/bin:/
PPID="33554711"
PS1="\$ "
PS2="> "
PS3="#? "
PS4="+ "
PWD="/etc/rdz"
RANDOM="27298"
RSE_CFG="/etc/rdz"
RSE_HOME="/usr/lpp/rdz"
RSE_LIB="/usr/lpp/rdz/lib"
SECONDS="0"
SHELL="/bin/sh"
STEPLIB="NONE"
TZ="EST5EDT"
_BPX_SHAREAS="YES"
_BPX_SPAWN_SCRIPT="YES"
_CEE_DMPTARG="/tmp"
_CEE_RUNOPTS="ALL31(ON) HEAP(32M,32K,ANYWHERE,KEEP,,) TRAP(ON)"
_CMDSERV_BASE_HOME="/usr/lpp/ispf"
_CMDSERV_CONF_HOME="/etc/rdz"
_CMDSERV_WORK_HOME="/var/rdz"
_RSE_CMDSERV_OPTS="&SESSION=SPAWN"
_RSE_DAEMON_CLASS="com.ibm.etools.zos.server.RseDaemon"
_RSE_DAEMON_IVP_TEST="1"
_RSE_DAEMON_PORT="4035"
_RSE_JAVAOPTS=" -DISPF_OPTS=’&SESSION=SPAWN’ -DA_PLUGIN_PATH=/usr/lpp/rd
_RSE_POOL_SERVER_CLASS="com.ibm.etools.zos.server.ThreadPoolProcess"
_RSE_PWD="/tmp"
_RSE_SERVER_CLASS="org.eclipse.dstore.core.server.Server"
_RSE_SERVER_TIMEOUT="120000"
_SCLMDT_BASE_HOME="/usr/lpp/rdz"
_SCLMDT_CONF_HOME="/var/rdz/sclmdt"
_SCLMDT_TRANTABLE="FEK.#CUST.LSTRANS.FILE"
_SCLMDT_WORK_HOME="/var/rdz"
_SCLM_BASE="/var/rdz/WORKAREA"
_SCLM_BWBCALL="/usr/lpp/rdz/bin/BWBCALL"
_SCLM_DWGET="/var/rdz/WORKAREA"
_SCLM_DWTRANSFER="/var/rdz/WORKAREA"
_SCLM_J2EEPUT="/var/rdz/WORKAREA"

java startup test...

java version "1.5.0"
Java(TM) 2 Runtime Environment, Standard Edition (build pmz31dev-2008031
IBM J9 VM (build 2.3, J2RE 1.5.0 IBM J9 2.3 z/OS s390-31 j9vmmz3123-2008
J9VM - 20080314_17962_bHdSMr
JIT - 20080130_0718ifx2_r8
GC - 200802_08)
JCL - 20080314

TCP/IP IVP test...

Wed Jul 2 13:11:54 EDT 2008

100 IBM Rational Developer for System z: Host Configuration Guide

uid=8(STCRSE) gid=1(STCGROUP)
using /etc/rdz/rsed.envvars

TCP/IP resolver configuration (z/OS UNIX search order):

Resolver Trace Initialization Complete -> 2008/07/02 13:11:54.745964

res_init Resolver values:
Global Tcp/Ip Dataset = None
Default Tcp/Ip Dataset = None
Local Tcp/Ip Dataset = /etc/resolv.conf
Translation Table = Default
UserId/JobName = STCRSE
Caller API = LE C Sockets
Caller Mode = EBCDIC
(L) DataSetPrefix = TCPIP
(L) HostName = CDFMVS08
(L) TcpIpJobName = TCPIP
(L) DomainOrigin = RALEIGH.IBM.COM
(L) NameServer = 9.42.206.2

9.42.206.3
(L) NsPortAddr = 53 (L) ResolverTimeout = 10
(L) ResolveVia = UDP (L) ResolverUdpRetries = 1
(*) Options NDots = 1
(*) SockNoTestStor
(*) AlwaysWto = NO (L) MessageCase = MIXED
(*) LookUp = DNS LOCAL
res_init Succeeded
res_init Started: 2008/07/02 13:11:54.755363
res_init Ended: 2008/07/02 13:11:54.755371
**
MVS TCP/IP NETSTAT CS V1R9 TCPIP Name: TCPIP 13:11:54
Tcpip started at 01:28:36 on 06/23/2008 with IPv6 enabled

host IP address:

hostName=CDFMVS08
hostAddr=9.42.112.75
bindAddr=9.42.112.75
localAddr=9.42.112.75

Success, addresses match

PassTicket IVP test...

Success, PassTicket IVP finished normally

RSE daemon IVP ended

Verify services
The Developer for System z installation provides several Installation Verification
Programs (IVP) for the basic and optional services. The IVP scripts are located in
the installation directory, default /usr/lpp/rdz/bin/.

Table 17. IVPs for services

fekfivpa “(Optional) TSO Commands service
connection using APPC” on page 107

fekfivpd “RSE daemon connection” on page 104

Chapter 7. Installation verification 101

Table 17. IVPs for services (continued)

fekfivpi “ISPF's TSO/ISPF Client Gateway
connection” on page 106

fekfivpj “JES Job Monitor connection” on page 105

fekfivpl “Lock daemon connection” on page 105

fekfivpr “(Optional) REXEC connection” on page 109

fekfivps “(Optional) SCLMDT connection” on page
108

fekfivpt “TCP/IP setup” on page 103

fekfivpz “(Optional) REXEC/SSH shell script” on
page 110

The tasks described below expect you to be active in z/OS UNIX. This can be done
by issuing the TSO command OMVS. Use the exit command to return to TSO.

A large region size is required for the user ID that executes the IVPs, because
functions such as Java, which require a lot of memory, will be executed. You
should set the region size to 131072 kilobytes (128 megabytes) or higher.

The following sample error is a clear indication of an insufficient region size. (But
other errors can occur, too. For example, Java may fail to start.)
CEE5213S The signal SIGPIPE was received.
%z/OS UNIX command%: command was killed by signal number 13

%line-number% *-* %REXX command%
+++ RC(137) +++

Note: The Developer for System z started tasks must be active before starting the
IVP test.

IVP initialization
All sample commands in this section expect that certain environment variables are
set. This way, the IVP scripts are available through the PATH statement and the
location of the customized configuration files is known. Use the pwd and cd
commands to verify and change your current directory to the directory with the
customized configuration files. The ivpinit shell script can then be used to set the
RSE environment variables, such as in the following sample ($ is the z/OS UNIX
prompt):
$ pwd
/u/userid
$ cd /etc/rdz
$. ./ivpinit
RSE configuration files located in /etc/rdz --default
added /usr/lpp/rdz/bin to PATH

The first "." (dot) in . ./ivpinit is a z/OS UNIX command to run the shell in the
current environment, so that the environment variables set in the shell are effective
even after exiting the shell. The second one is referring to the current directory.

Note:

v If . ./ivpinit is NOT executed before the fekfivp* scripts, the path to
these scripts must be specified when calling them, as in the following
sample:
/usr/lpp/rdz/bin/fekfivpr 512 USERID

102 IBM Rational Developer for System z: Host Configuration Guide

Also, most fekfivp* scripts will ask for the location of the customized
rsed.envvars if . ./ivpinit is not executed first.

v Some IVP tests use the TCP/IP REXX socket API, which requires that the
TCP/IP load library, default TCPIP.SEZALOAD, is in LINKLIST or STEPLIB.
The following commands might be necessary to be able to execute these
IVP tests ($ is the z/OS UNIX prompt):
$ EXPORT STEPLIB=$STEPLIB:TCPIP.SEZALOAD

Note that adding a non-APF authorized library to an existing STEPLIB
removes the APF authorization for existing STEPLIB data sets.
Also note that if CEE.SCEELKED is in LINKLIST or STEPLIB,
TCPIP.SEZALOAD must be placed before CEE.SCEELKED. Failure to do so will
result in a 0C1 system abend for the TCP/IP REXX socket calls.

For information on diagnosing RSE connection problems, see Chapter 9,
“Troubleshooting configuration problems,” on page 127 or the Technotes on the
Developer for System z Support Page http://www-306.ibm.com/software/
awdtools/rdz/support/.

Port availability
The JES Job Monitor, RSE daemon, and optionally REXEC or SSH port availability
can be verified by issuing the netstat command. The result should show the ports
used by these services, as in the following samples ($ is the z/OS UNIX prompt):

IPv4
$ netstat
MVS TCP/IP NETSTAT CS VxRy TCPIP Name: TCPIP 13:57:36
User Id Conn Local Socket Foreign Socket State
------- ---- ------------ -------------- -----
RSED 0000004B 0.0.0.0..4035 0.0.0.0..0 Listen
LOCKD 0000004C 0.0.0.0..4036 0.0.0.0..0 Listen
JMON 00000037 0.0.0.0..6715 0.0.0.0..0 Listen

IPv6
$ netstat
MVS TCP/IP NETSTAT CS VxRy TCPIP Name: TCPIP 14:03:35
User Id Conn State
------- ---- -----
RSED 0000004B Listen

Local Socket: 0.0.0.0..4035
Foreign Socket: 0.0.0.0..0

LOCKD 0000004C Listen
Local Socket: 0.0.0.0..4036
Foreign Socket: 0.0.0.0..0

JMON 00000037 Listen
Local Socket: 0.0.0.0..6715
Foreign Socket: 0.0.0.0..0

TCP/IP setup
When using APPC for the TSO Commands service, Developer for System z is
dependent upon TCP/IP having the correct hostname when it is initialized. This
implies that the different TCP/IP and Resolver configuration files must be set up
correctly. Refer to Appendix B, “Setting up TCP/IP,” on page 283 for more
information on TCP/IP and Resolver setup. Verify the current settings by executing
the following command:
fekfivpt

Chapter 7. Installation verification 103

Note: This IVP issues the TCPIP netstat command, which might be protected
against execution by your security software.

The command should return an output like that in this sample ($ is the z/OS
UNIX prompt):
$ fekfivpt

Wed Jul 2 13:11:54 EDT 2008
uid=1(USERID) gid=0(GROUP)
using /etc/rdz/rsed.envvars

current address space size limit is 1914675200 (1826.0 MB)
maximum address space size limit is 2147483647 (2048.0 MB)

TCP/IP resolver configuration (z/OS UNIX search order):

Resolver Trace Initialization Complete -> 2008/07/02 13:11:54.745964

res_init Resolver values:
Global Tcp/Ip Dataset = None
Default Tcp/Ip Dataset = None
Local Tcp/Ip Dataset = /etc/resolv.conf
Translation Table = Default
UserId/JobName = USERID
Caller API = LE C Sockets
Caller Mode = EBCDIC
(L) DataSetPrefix = TCPIP
(L) HostName = CDFMVS08
(L) TcpIpJobName = TCPIP
(L) DomainOrigin = RALEIGH.IBM.COM
(L) NameServer = 9.42.206.2

9.42.206.3
(L) NsPortAddr = 53 (L) ResolverTimeout = 10
(L) ResolveVia = UDP (L) ResolverUdpRetries = 1
(*) Options NDots = 1
(*) SockNoTestStor
(*) AlwaysWto = NO (L) MessageCase = MIXED
(*) LookUp = DNS LOCAL
res_init Succeeded
res_init Started: 2008/07/02 13:11:54.755363
res_init Ended: 2008/07/02 13:11:54.755371
**
MVS TCP/IP NETSTAT CS V1R9 TCPIP Name: TCPIP 13:11:54
Tcpip started at 01:28:36 on 06/23/2008 with IPv6 enabled

host IP address:

hostName=CDFMVS08
hostAddr=9.42.112.75
bindAddr=9.42.112.75
localAddr=9.42.112.75

Success, addresses match

RSE daemon connection
Verify the RSE daemon connection by executing the following command. Replace
4035 with the port used by the RSE daemon and USERID by a valid user ID.
fekfivpd 4035 USERID

After prompting you for a password, the command should return an output like
that in the following sample ($ is the z/OS UNIX prompt):

104 IBM Rational Developer for System z: Host Configuration Guide

$ fekfivpd 4035 USERID

Wed Jul 2 15:00:27 EDT 2008
uid=1(USERID) gid=0(GROUP)
using /etc/rdz/rsed.envvars

current address space size limit is 1914675200 (1826.0 MB)
maximum address space size limit is 2147483647 (2048.0 MB)

Password:
SSL is disabled
connected
8108
570655399
Success

Note: When testing an SSL enabled connection, verify that you specified the
correct port if you get this error message: gsk_secure_socket_init()
failed: Socket closed by remote partner.

JES Job Monitor connection
Verify the JES Job Monitor connection by executing the following command.
Replace 6715 with the JES Job Monitor port number.
fekfivpj 6715

The command should return the JES Job Monitor acknowledge message, like that
in the following sample ($ is the z/OS UNIX prompt):
$ fekfivpj 6715

Wed Jul 2 15:00:27 EDT 2008
uid=1(USERID) gid=0(GROUP)
using /etc/rdz/rsed.envvars

current address space size limit is 1914675200 (1826.0 MB)
maximum address space size limit is 2147483647 (2048.0 MB)

hostName=CDFMVS08
hostAddr=9.42.112.75
Waiting for JES Job Monitor response...
ACKNOWLEDGE01v03

Success

Lock daemon connection
Verify the lock daemon connection by executing the following command.
fekfivpl

The command should return an output like that in the following sample ($ is the
z/OS UNIX prompt):
$ fekfivpl

Mon Jun 29 08:00:38 EDT 2009
uid=1(USERID) gid=0(GROUP)
using /etc/rdz/rsed.envvars

current address space size limit is 1914675200 (1826.0 MB)
maximum address space size limit is 2147483647 (2048.0 MB)

hostName=CDFMVS08
hostAddr=9.42.112.75

Chapter 7. Installation verification 105

Registering user to Lock Daemon...
Waiting for Lock Daemon response...

Querying to Lock Daemon...
Waiting for Lock Daemon response...
USERID

Unregistering user from Lock Daemon...
Waiting for Lock Daemon response...

Querying to Lock Daemon...
Waiting for Lock Daemon response...

Success

ISPF's TSO/ISPF Client Gateway connection
Verify the connection to ISPF's TSO/ISPF client Gateway by executing the
following command:
fekfivpi

The command should return the result of ISPF's TSO/ISPF client Gateway-related
checks (variables, HFS modules, starting and stopping TSO/ISPF session), like that
in the following sample ($ is the z/OS UNIX prompt):
$ fekfivpi

Wed Jul 2 15:00:27 EDT 2008
uid=1(USERID) gid=0(GROUP)
using /etc/rdz/rsed.envvars

current address space size limit is 1914675200 (1826.0 MB)
maximum address space size limit is 2147483647 (2048.0 MB)

/etc/rdz/ISPF.conf content:

ispmlib=ISP.SISPMENU
isptlib=ISP.SISPTENU
ispplib=ISP.SISPPENU
ispslib=ISP.SISPSLIB
sysproc=ISP.SISPCLIB,FEK.SFEKPROC

Host install verification for RSE
Review IVP log messages from HOST below :

RSE connection and base TSO/ISPF session initialization check only

*** CHECK : ENVIRONMENT VARIABLES - key variables displayed below :

Server PATH =
/usr/lpp/java/J5.0/bin:/usr/lpp/rdz/lib:/usr/lpp/ispf/bin:
/bin:/usr/sbin:.

STEPLIB = FEK.SFEKAUTH:FEK.SFEKLOAD

_CMDSERV_BASE_HOME = /usr/lpp/ispf
_CMDSERV_CONF_HOME = /etc/rdz
_CMDSERV_WORK_HOME = /var/rdz

*** CHECK : USS MODULES

106 IBM Rational Developer for System z: Host Configuration Guide

Checking ISPF Directory : /usr/lpp/ispf
Checking modules in /usr/lpp/ispf/bin directory
Checking for ISPF configuration file ISPF.conf
RC=0
MSG: SUCCESSFUL

*** CHECK : TSO/ISPF INITIALIZATION
(TSO/ISPF session will be initialized)
RC=0
MSG: SUCCESSFUL

*** CHECK: Shutting down TSO/ISPF IVP session
RC=0
MSG: SUCCESSFUL

Host installation verification completed successfully

Note: If any of the ISPF checks fail, more detailed information will be shown.

fekfivpi has the following optional, non-positional, parameters:

-file fekfivpi can produce large amounts of output (hundreds of lines). The
-file parameter sends this output to a file, userlog/.eclipse/RSE/
$LOGNAME/fekfivpi.log, where userlog is the value of the user.log
directive in rsed.envvars, and $LOGNAME is your user ID (uppercase). If the
user.log directive is commented out or not present, your home path is
used. The home path is defined in your OMVS security segment.

-debug
The -debug parameter creates detailed test output. Do not use this option
unless directed by the IBM support center.

(Optional) TSO Commands service connection using APPC
Verify the connection to the TSO Commands server (using APPC) by executing the
following command. Replace USERID with a valid user ID:
fekfivpa USERID

After prompting you for a password, the command should return the APPC
conversation, like that in the following sample ($ is the z/OS UNIX prompt):
$ fekfivpa USERID
Enter password:

Wed Jul 2 15:00:27 EDT 2008
uid=1(USERID) gid=0(GROUP)
using /etc/rdz/rsed.envvars

current address space size limit is 1914675200 (1826.0 MB)
maximum address space size limit is 2147483647 (2048.0 MB)

20070607 13:57:18.584060 /usr/lpp/rdz/bin/fekfscmd: version=Oct 2003
20070607 13:57:18.584326 Input parms: 1.2.3.4 * NOTRACE USERID ********
20070607 13:57:18.586800 APPC: Allocate succeeded
20070607 13:57:18.587022 Conversation id is 0DDBD3F80000000D
20070607 13:57:18.587380 APPC: Set Send Type succeeded
20070607 13:57:26.736674 APPC: Confirm succeeded
20070607 13:57:26.737027 Req to send recd value is 0
20070607 13:57:26.737546 APPC: SEND_DATA return_code = 0
20070607 13:57:26.737726 request_to_send_received = 0
20070607 13:57:26.737893 Send Data succeeded

Chapter 7. Installation verification 107

20070607 13:57:26.738169 APPC: Set Prepare to Receive type succeeded
20070607 13:57:26.738580 APPC: Prepare to Receive succeeded
20070607 13:57:26.808899 APPC: Receive data
20070607 13:57:26.809122 RCV return_code = 0
20070607 13:57:26.809270 RCV data_received= 2
20070607 13:57:26.809415 RCV received_length= 29
20070607 13:57:26.809556 RCV status_received= 4
20070607 13:57:26.809712 RCV req_to_send= 0
20070607 13:57:26.809868 Receive succeeded
:IP: 0 9.42.112.75 1674 50246
20070607 13:57:26.810533 APPC: CONFIRMED succeeded

(Optional) SCLMDT connection
Verify the connection to SCLM Developer Toolkit by executing the following
command:
fekfivps

The command should return the result of SCLM Developer Toolkit related checks
(variables, HFS modules, REXX runtime, starting and stopping TSO/ISPF session),
like that in the following sample ($ is the z/OS UNIX prompt):
$ fekfivps

Wed Jul 2 15:00:27 EDT 2008
uid=1(USERID) gid=0(GROUP)
using /etc/rdz/rsed.envvars

current address space size limit is 1914675200 (1826.0 MB)
maximum address space size limit is 2147483647 (2048.0 MB)

/etc/rdz/ISPF.conf content:

ispmlib=ISP.SISPMENU
isptlib=ISP.SISPTENU
ispplib=ISP.SISPPENU
ispslib=ISP.SISPSLIB
sysproc=ISP.SISPCLIB,FEK.SFEKPROC

Host install verification for RSE
Review IVP log messages from HOST below :

*** CHECK : ENVIRONMENT VARIABLES - key variables displayed below :

Server PATH = /usr/lpp/java/J5.0/bin:/usr/lpp/rdz/lib:/usr/lpp/ispf/bin:
/bin:/usr/sbin:.

STEPLIB = FEK.SFEKAUTH:FEK.SFEKLOAD

_CMDSERV_BASE_HOME = /usr/lpp/ispf
_CMDSERV_CONF_HOME = /etc/rdz
_CMDSERV_WORK_HOME = /var/rdz
_SCLMDT_CONF_HOME = /var/rdz/sclmdt
_SCLMDT_WORK_HOME = /var/rdz
_SCLMDT_TRANTABLE = FEK.#CUST.LSTRANS.FILE

*** CHECK : JAVA PATH SETUP VERIFICATION
RC=0
MSG: SUCCESSFUL

*** CHECK : USS MODULES

108 IBM Rational Developer for System z: Host Configuration Guide

Checking ISPF Directory : /usr/lpp/ispf
Checking modules in /usr/lpp/ispf/bin directory
Checking for ISPF configuration file ISPF.conf
Checking install bin Directory : /usr/lpp/rdz/bin
RC=0
MSG: SUCCESSFUL

*** CHECK : REXX RUNTIME ENVIRONMENT
RC=0
MSG: SUCCESSFUL

*** CHECK : TSO/ISPF INITIALIZATION
(TSO/ISPF session will be initialized)
RC=0
MSG: SUCCESSFUL

*** CHECK: Shutting down TSO/ISPF IVP session
RC=0
MSG: SUCCESSFUL

Host installation verification completed successfully

Note: If any of the SCLMDT checks fail, more detailed information will be shown.

fekfivps has the following optional, non-positional, parameters:

-file fekfivps can produce large amounts of output (hundreds of lines). The
-file parameter sends this output to a file, userlog/.eclipse/RSE/
$LOGNAME/fekfivps.log, where userlog is the value of the user.log
directive in rsed.envvars, and $LOGNAME is your user ID (uppercase). If the
user.log directive is commented out or not present, your home path is
used. The home path is defined in your OMVS security segment.

-debug
The -debug parameter creates detailed test output. Do not use this option
unless directed by the IBM support center.

(Optional) REXEC connection
Verify the REXEC connection by executing the following command. Replace 512
with the port used by REXEC and USERID by a valid user ID.
fekfivpr 512 USERID

After prompting you for a password, the command should return the REXEC
trace, a timeout warning, the Java version, and the RSE server message, like that in
the following sample ($ is the z/OS UNIX prompt):
$ fekfivpr 512 USERID
Enter password:

Wed Jul 2 15:00:27 EDT 2008
uid=1(USERID) gid=0(GROUP)
using /etc/rdz/rsed.envvars

current address space size limit is 1914675200 (1826.0 MB)
maximum address space size limit is 2147483647 (2048.0 MB)

$ EZYRC01I Calling function rexec_af with the following:
EZYRC02I Host: CDFMVS08, user USERID, cmd cd /etc/rdz;export RSE_USER_ID=USERI

Chapter 7. Installation verification 109

D;./server.zseries -ivp, port 512
EZYRC19I Data socket = 4, Control socket = 6.

RSE server IVP test

CDFMVS08 -- Wed Jul 2 15:00:27 EDT 2008
uid=1(USERID) gid=0(GROUP)

RSE configuration files located in /etc/rdz -–default

RSE userid is USERID -–default

Address Space size limits

current address space size limit is 2147483647 (2048.0 MB)
maximum address space size limit is 2147483647 (2048.0 MB)

service history

Fri Jun 19 00:01:00 2009 -- COPY -- HHOP760 v7600 created 18 Jun 2009

expect to see time out messages after a successful IVP test

starting RSE server in background -- Fri Jun 19 15:59:05 EDT 2009

java version "1.5.0"
Java(TM) 2 Runtime Environment, Standard Edition (build pmz31dev-20070201 (SR4))
IBM J9 VM (build 2.3, J2RE 1.5.0 IBM J9 2.3 z/OS s390-31 j9vmmz3123-20070201 (JI
T enabled)
J9VM - 20070131_11312_bHdSMr
JIT - 20070109_1805ifx1_r8
GC - 200701_09)
JCL - 20070126

DStore Server Starting...
Server Started Successfully
8108
Server running on: CDFMVS08

Note:

v If you do not get any Java and RSE server output, the INETD region size
is probably too small (must be 2096128 or larger if started from a
TSO/OMVS shell session, or region size 0 for BPXBATCH).

v You can test the shell script used by REXEC separately, as described in the
next IVP test, “(Optional) REXEC/SSH shell script.”

v The server is started without a client trying to connect, so it will time out
(after 5 seconds). This results in a Connection error message that looks
like the following sample:
Connection error
Server: error initializing socket: java.net.SocketTimeoutException:

Accept timed out

(Optional) REXEC/SSH shell script
This IVP test can be skipped if the previous test outlined in, “(Optional) REXEC
connection” on page 109, completed successfully.

Verify the shell script used by the REXEC and SSH connection by executing the
following command:

110 IBM Rational Developer for System z: Host Configuration Guide

fekfivpz

The command should return a timeout warning, the Java version and the RSE
server message, like that in the following sample ($ is the z/OS UNIX prompt):
$ fekfivpz

Wed Jul 2 15:00:27 EDT 2008
uid=1(USERID) gid=0(GROUP)

using /etc/rdz/rsed.envvars

current address space size limit is 1914675200 (1826.0 MB)
maximum address space size limit is 2147483647 (2048.0 MB)

RSE server IVP test

CDFMVS08 -- Wed Jul 2 15:00:27 EDT 2008
uid=1(USERID) gid=0(GROUP)

RSE configuration files located in /etc/rdz -–default
RSE userid is USERID -–default

Address Space size limits

current address space size limit is 2147483647 (2048.0 MB)
maximum address space size limit is 2147483647 (2048.0 MB)

service history

Fri Jun 19 00:01:00 2009 -- COPY -- HHOP760 v7600 created 18 Jun 2009

expect to see time out messages after a successful IVP test

starting RSE server in background -- Fri Jun 19 15:59:05 EDT 2009

java version "1.5.0"
Java(TM) 2 Runtime Environment, Standard Edition (build pmz31dev-20070201 (SR4))
IBM J9 VM (build 2.3, J2RE 1.5.0 IBM J9 2.3 z/OS s390-31 j9vmmz3123-20070201 (JI
T enabled)
J9VM - 20070131_11312_bHdSMr
JIT - 20070109_1805ifx1_r8
GC - 200701_09)
JCL - 20070126

DStore Server Starting...
Server Started Successfully
8108
Server running on: CDFMVS08

Note:

v If you do not get any output, your (TSO) region size is probably too small
(must be 2096128).

v The server is started without a client trying to connect, so it will time out
(after 5 seconds). This results in a Connection error message that looks
like the following sample:
Connection error
Server: error initializing socket: java.net.SocketTimeoutException:

Accept timed out

Chapter 7. Installation verification 111

112 IBM Rational Developer for System z: Host Configuration Guide

Part 2. Developer for System z information

© Copyright IBM Corp. 2005, 2010 113

114 IBM Rational Developer for System z: Host Configuration Guide

Chapter 8. Operator commands

This chapter provides an overview of the available operator (or console)
commands for Developer for System z. Refer to “How to read a syntax diagram”
on page 123 if you are unfamiliar with the syntax diagrams used to explain the
command format.

Start (S)
Use the START command to dynamically start a started task (STC). The
abbreviated version of the command is the letter S.

JES Job Monitor

procname
The name of the member in a procedure library that is used to start the
server. The default name used during the host configuration is JMON.

HLQ=install_hlq
High-level qualifier used to install Developer for System z. The default is
FEK.

CFG=config_member
Absolute data set and member name of the JES Job Monitor configuration
file. The default is FEK.#CUST.PARMLIB(FEJJCNFG).

PRM=-TV
Enable verbose (trace) mode. Tracing will cause performance degradations
and should only be done under the direction of the IBM support center.

RSE daemon

Figure 33. START JMON operator command

Figure 34. START RSED operator command

© Copyright IBM Corp. 2005, 2010 115

procname
The name of the member in a procedure library that is used to start the
server. The default name used during the host configuration is RSED.

PORT=port
The port used by the RSE daemon for the clients to connect. The default is
4035.

HOME='install_path'
Path prefix and the mandatory /usr/lpp/rdz used to install Developer for
System z. The default is ’/usr/lpp/rdz’. Note that the z/OS UNIX path is
case sensitive and that it must be enclosed in single quotes (') to preserve
lower case characters.

CNFG='config_path'
Absolute location of the configuration files stored in z/OS UNIX. The
default is ’/etc/rdz’. Note that the z/OS UNIX path is case sensitive and
that it must be enclosed in single quotes (') to preserve lower case
characters.

IVP=IVP
Do not start the server but run the RSE daemon installation verification
program (IVP).

Lock daemon

procname
The name of the member in a procedure library that is used to start the
server. The default name used during the host configuration is LOCKD.

HOME='install_path'
Path prefix and the mandatory /usr/lpp/rdz used to install Developer for
System z. The default is ’/usr/lpp/rdz’. Note that the z/OS UNIX path is
case sensitive and that it must be enclosed in single quotes (') to preserve
lower case characters.

CNFG='config_path'
Absolute location of the configuration files stored in z/OS UNIX. The
default is ’/etc/rdz’. Note that the z/OS UNIX path is case sensitive and
that it must be enclosed in single quotes (') to preserve lower case
characters.

LOG=log_level
The detail level of output in DD STDOUT.
v 0 : Log error messages only.
v 1 : Log error and warning messages (default).
v 2 : Log error, warning and informational messages.

Figure 35. START LOCKD operator command

116 IBM Rational Developer for System z: Host Configuration Guide

Modify (F)
The MODIFY command allows you to dynamically query and change the
characteristics of an active task. The abbreviated version of the command is the
letter F.

JES Job Monitor

procname
The name of the member in a procedure library that was used to start the
server. The default name used during the host configuration is JMON.

-TV Enable verbose (trace) mode. Tracing will cause performance degradations
and should only be done under the direction of the IBM support center.

-TN Disable verbose (trace) mode.

Figure 36. MODIFY JMON operator command

Chapter 8. Operator commands 117

RSE daemon

procname
The name of the member in a procedure library that was used to start the
server. The default name used during the host configuration is RSED.

DISPLAY CLIENT
Display the active clients.
<clientid> : <userid> : <connected since>

DISPLAY PROCESS[,CLEANUP,DETAIL]
Display the RSE thread pool processes. There can be multiple processes,
which are used for load balancing the connected users.
ProcessId(<processid>) Memory Usage(<java heap usage>%)

Clients(<number of clients>) Order(<startup order>) <error status>

Note:

v <processid> can be used in process specific z/OS UNIX operator
commands.

v Each process has its own Java heap, whose size can be set in
rsed.envvars.

Figure 37. MODIFY RSED operator command

118 IBM Rational Developer for System z: Host Configuration Guide

|

|
|

v <startup order> is a sequential number that indicates the order
that the thread pools were started. The number corresponds to the
number used in the filename of the stderr.*.log and
stdout.*.log files.

In normal situations, <error status> is blank. Table 18 documents the
possible non-blank values for <error status>.

Table 18. Thread pool error status

Status Description

severe error The thread pool process encountered an
unrecoverable error and halted
operations. The other status fields show
the last known values. Use the
CLEANUP option of the DISPLAY
PROCESS modify command to remove
this entry from the table.

killed process The thread pool process was killed by
Java, z/OS UNIX or an operator
command. The other status fields show
the last known values. Use the
CLEANUP option of the DISPLAY
PROCESS modify command to remove
this entry from the table.

timeout The thread pool process did not
respond in a timely manner to RSE
daemon during a client connect request.
The other status fields show the current
values. The thread pool is excluded for
future client connect requests. The
timeout status is reset when a client
served by this thread pool logs off.

More information is provided when the DETAIL option of the DISPLAY
PROCESS modify command is used:
ProcessId(33555087) ASId(002E) JobName(RSED8) Order(1)
PROCESS LIMITS: CURRENT HIGHWATER LIMIT
JAVA HEAP USAGE(%) 10 56 100
CLIENTS 0 25 60
MAXFILEPROC 83 103 64000
MAXPROCUSER 97 99 200
MAXTHREADS 9 14 1500
MAXTHREADTASKS 9 14 1500

The ASId field is the address space ID, in hexadecimal notation. The
process limits table shows the current resource usage, the high-water mark
for the resource usage, and the resource limit. Note that due to other
limiting factors, the defined limit might never be reached.

CANCEL ID=clientid
Cancel a client connection based upon the client ID, which is shown in the
DISPLAY CLIENT modify command.

CANCEL USER=userid
Cancel a client connection based upon the client’s user ID, which is shown
in the DISPLAY CLIENT modify command.

RSECOMMLOG {ON,OFF,I,W,E,2,1,0}
Control the trace detail level for RSE server (rsecomm.log) and the MVS

Chapter 8. Operator commands 119

|
|
|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|

data set services (lock.log and ffs*.log). The startup default is defined in
rsecomm.properties. There are three detail levels available:

E or 0 or OFF Error messages only.

W or 1 Error and Warning messages. This is the default
setting in rsecomm.properties.

I or 2 or ON Error, Warning and Informational messages.

Detailed tracing will cause performance degradations and should only be
done under the direction of the IBM support center.

RSEDAEMONLOG {ON,OFF,I,E,2,0}
Control the trace detail level for RSE daemon (rsedaemon.log). The startup
default is defined in rsecomm.properties. There are two detail levels
available:

E or 0 or OFF Error messages only.

I or 2 or ON Error, Warning, and Informational
messages.

Detailed tracing will cause performance degradations and should only be
done under the direction of the IBM support center.

RSESERVERLOG {ON,OFF,I,E,2,0}
Control the trace detail level for RSE thread pools (rseserver.log). The
startup default is defined in rsecomm.properties. There are two detail
levels available:

E or 0 or OFF Error messages only.

I or 2 or ON Error, Warning, and Informational
messages.

Detailed tracing will cause performance degradations and should only be
done under the direction of the IBM support center.

RSESTANDARDLOG {ON,OFF}
Disable (OFF) or enable (ON) updating the log files holding the stdout and
stderr streams of the thread pools (stdout.*.log and stderr.*.log). The
startup default is defined by the enable.standard.log directive in
rsed.envvars.

Detailed tracing will cause performance degradations and should only be
done under the direction of the IBM support center.

SWITCH
Switch to a new audit log file.

Note:

v Refer to “Log files” on page 128 in Chapter 9, “Troubleshooting
configuration problems,” on page 127 for more information on the log
files mentioned above.

v Refer to “Audit logging” on page 152 in Chapter 10, “Security
considerations,” on page 147 for more information on audit.

120 IBM Rational Developer for System z: Host Configuration Guide

Lock daemon

procname
The name of the member in a procedure library that was used to start the
server. The default name used during the host configuration is LOCKD.

QUERY dataset[(member)]
Query the lock status of the listed data set or member. The server will
reply with one of the following messages:
BPXM023I (stclock) dataset[(member)] NOT LOCKED
BPXM023I (stclock) dataset[(member)] LOCKED BY userid

Note:

v The server will also report locks held by other products, such as
ISPF.

v Locks held by Developer for System z clients who were unable to
register with the lock daemon will result in the thread pool server
address space (RSEDx) being reported as lock owner.
Console message FEK513W is generated when RSE server is unable
to register the client with the lock daemon. The ASID and TCB
values mentioned in this message can be compared against the
output of the D GRS,RES=(*,dataset[(member)]) operator
command in order to find the actual user holding the lock.

Stop (P)
Use the STOP command to stop an active task. The abbreviated version of the
command is the letter P.

procname
The name of the member in a procedure library that was used to start the
server. The default names used during the host configuration are JMON,
RSED, and LOCKD for JES Job Monitor, RSE daemon, and the lock daemon,
respectively.

Console messages

JES Job Monitor
JES Job Monitor does not have product-specific console messages. The server relies
on z/OS and JES to generate console messages for actions done by Developer for
System z clients.

Figure 38. MODIFY LOCKD operator command

Figure 39. STOP operator command

Chapter 8. Operator commands 121

RSE daemon, RSE thread pool server, and lock daemon
Table 19 lists the product-specific console messages generated by RSE daemon, RSE
thread pool server, and the lock daemon.

Table 19. RSE console messages

Message ID Message text

FEK001I RseDaemon being initialized in {0} bit mode

FEK002I RseDaemon started. (port={0})

FEK003I Stop command being processed

FEK004I RseDaemon: Max Heap Size={0}MB and private AS Size={1}MB

FEK005I Server process started. (processId={0})

FEK009I RseDaemon is waiting for the server process to start.

FEK010I (rsed.envvars location = {0})

FEK011I (log directory = {0})

FEK100E Daemon port/timeout value must be digits

FEK101E JRE {0} or higher required

FEK102E Invalid arguments received: {0}

FEK103E Almost Disk-Full in {0}

FEK104E Maximum number of processes has been reached

FEK105E Error in sending audit data (rc={0})

FEK110E socket() failed. reason=({0})

FEK111E setsockopt() failed. reason=({0})

FEK112E bind() failed. reason=({0})

FEK113E listen() failed. reason=({0})

FEK114E accept() failed. reason=({0})

FEK115E write() failed. reason=({0})

FEK116E pipe() failed. reason=({0})

FEK117E socketpair() failed. reason=({0})

FEK118E select() failed. reason=({0})

FEK119E _console() failed. reason=({0})

FEK130E gsk_environment_open() failed. reason=({0})

FEK131E gsk_attribute_set_enum(GSK_PROTOCOL_SSLV2) failed. reason=({0})

FEK132E gsk_attribute_set_enum(GSK_PROTOCOL_SSLV3) failed. reason=({0})

FEK133E gsk_attribute_set_enum(GSK_PROTOCOL_TLSV1) failed. reason=({0})

FEK134E gsk_attribute_set_buffer(GSK_KEYRING_FILE) failed. reason=({0})

FEK135E gsk_attribute_set_buffer(GSK_KEYRING_PW) failed. reason=({0})

FEK136E gsk_environment_init() failed. reason=({0})

FEK137E gsk_secure_socket_open() failed. reason=({0})

FEK138E gsk_attribute_set_numeric_value(GSK_FD) failed. reason=({0})

FEK139E gsk_attribute_set_buffer(GSK_KEYRING_LABEL) failed. reason=({0})

FEK140E gsk_attribute_set_enum(GSK_SESSION_TYPE) failed. reason=({0})

FEK141E gsk_attribute_set_callback(GSK_IO_CALLBACK) failed. reason=({0})

FEK142E gsk_secure_socket_init() failed. reason=({0})

122 IBM Rational Developer for System z: Host Configuration Guide

|

Table 19. RSE console messages (continued)

Message ID Message text

FEK143E gsk_attribute_set_enum(GSK_CLIENT_AUTH_TYPE) failed.
reason=({0})

FEK144E gsk_get_cert_info failed. reason=({0})

FEK145E gsk_secure_socket_read() failed. reason=({0})

FEK146E gsk_secure_socket_write() failed. reason=({0})

FEK150E RseDaemon abnormally terminated; {0}

FEK201I {0} Command has been processed

FEK202E Invalid Command Entered

FEK203E Invalid Display Command: Display Process|Client

FEK204E Invalid Cancel Command: Cancel ID=|User=

FEK205E Command was not processed owing to consecutive SWITCHs

FEK206E Audit Log facility is not active

FEK207I No Client to be displayed

FEK208I {0} canceled

FEK209I No Process to be displayed

FEK210I {0} canceled owing to duplicate logon

FEK501I Lock daemon started, port={0}, cleanup interval={1}, log level={2}

FEK502I Lock daemon terminating

FEK510E Lock daemon, missing port

FEK511E Lock daemon, wrong port, port={0}

FEK512E Lock daemon, socket error, port={0}

FEK513W Lock daemon, registration failed, ASID={0}, TCB={1}, USER={2}

FEK514W Lock daemon, wrong log level, log level={0}

BPXM023I (stclock) dataset[(member)] NOT LOCKED

BPXM023I (stclock) dataset[(member)] LOCKED BY userid

BPXM023I (stclock) command, WRONG COMMAND

BPXM023I (stclock) command, MISSING ARGUMENT

BPXM023I (stclock) argument, WRONG ARGUMENT

How to read a syntax diagram
The syntax diagram shows you how to specify a command so that the operating
system can correctly interpret what you type. Read the syntax diagram from left to
right and from top to bottom, following the horizontal line (the main path).

Symbols
The following symbols are used in syntax diagrams:

Symbol Description

>> Marks the beginning of the syntax diagram.

> Indicates that the syntax diagram is continued.

Chapter 8. Operator commands 123

|

Symbol Description

| Marks the beginning and end of a fragment or part of the syntax
diagram.

>< Marks the end of the syntax diagram.

Operands
The following types of operands are used in syntax diagrams:
v Required operands are displayed on the main path line:

>>──REQUIRED_OPERAND──><

v Optional operands are displayed below the main path line:
>>─┬──────────────────┬─><

└─OPTIONAL_OPERAND─┘

v Default operands are displayed above the main path line:
┌─DEFAULT_OPERAND─┐

>>─┴─────────────────┴─><

Operands are classified as keywords or variables:
v Keywords are constants that must be provided. If the keyword appears in the

syntax diagram in both uppercase and lowercase, the uppercase portion is the
abbreviation for the keyword (for example, KEYword). Keywords are not
case-sensitive. You can code them in uppercase or lowercase.

v Variables are italicized, appear in lowercase letters, and represent names or
values you supply. For example, a data set name is a variable. Variables can be
case sensitive.

Syntax example
In the following example, the USER command is a keyword. The required variable
parameter is user_id, and the optional variable parameter is password. Replace the
variable parameters with your own values:
>>──USER──user_id─┬──────────┬──────────────────────────────────><

└─password─┘

Nonalphanumeric characters and blank spaces
If a diagram shows a character that is not alphanumeric (such as parentheses,
periods, commas, equal signs, and blank spaces), you must code the character as
part of the syntax. In this example, you must code OPERAND=(001 0.001):
>>──OPERAND──=──(──001── ──0.001──)────────────────────────><

Selecting more than one operand
An arrow returning to the left in a group of operands means that more than one
can be selected, or that a single one can be repeated:
>>──┬──────────────────────┬────────────────────────────><

├─REPEATABLE_OPERAND_1─┤
├─REPEATABLE_OPERAND_2─┤
└─<────────────────────┘

Longer than one line
If a diagram is longer than one line, the first line ends with a single arrowhead
and the second line begins with a single arrowhead:

124 IBM Rational Developer for System z: Host Configuration Guide

>>──| The first line of a syntax diagram that is longer than one line |──>
>──| The continuation of the subcommands, parameters, or both |─────────><

Syntax fragments
Some diagrams might contain syntax fragments, which serve to break up diagrams
that are too long, too complex, or too repetitious. Syntax fragment names are in
mixed case and are shown in the diagram and in the heading of the fragment. The
fragment is placed below the main diagram:
>>──| Syntax fragment |───────────────────────────────────────><

Syntax fragment:
|──1ST_OPERAND──,──2ND_OPERAND──,──3RD_OPERAND──|

Chapter 8. Operator commands 125

126 IBM Rational Developer for System z: Host Configuration Guide

Chapter 9. Troubleshooting configuration problems

This chapter is provided to assist you with some common problems that you may
encounter during your configuration of Developer for System z, and has the
following sections:
v “Log and setup analysis using FEKLOGS”
v “Log files” on page 128
v “Dump files” on page 133
v “Tracing” on page 135
v “z/OS UNIX permission bits” on page 137
v “Reserved TCP/IP ports” on page 140
v “Address Space size” on page 141
v “APPC transaction and TSO Commands service” on page 142
v “Miscellaneous information” on page 144

More information is available through the Support section of the Developer for
System z Web site (http://www-306.ibm.com/software/awdtools/rdz/support/)
where you can find Technotes that bring you the latest information from our
support team.

In the Library section of the Web site (http://www-306.ibm.com/software/
awdtools/rdz/library/) you can also find the latest version of the Developer for
System z documentation, including whitepapers.

The Developer for System z Information Center (http://publib.boulder.ibm.com/
infocenter/ratdevz/v7r6/index.jsp) documents the Developer for System z client,
and how it interacts with the host (from a client’s perspective).

Valuable information can also be found in the z/OS internet library, available at
http://www-03.ibm.com/servers/eserver/zseries/zos/bkserv/.

Please notify us if you think that Developer for System z misses a certain function.
You can open a Request For Enhancement (RFE) at
https://www.ibm.com/developerworks/support/rational/rfe/

Log and setup analysis using FEKLOGS
Developer for System z provides a sample job, FEKLOGS, which gathers all z/OS
UNIX log files as well as Developer for System z installation and configuration
information.

Sample job FEKLOGS is located in FEK.#CUST.JCL, unless you specified a different
location when you customized and submitted job FEK.SFEKSAMP(FEKSETUP). See
“Customization setup” on page 13 for more details.

The customization of FEKLOGS is described within the JCL. The customization
encompasses the provision of a few key variables.

Note: SDSF customers can use the XDC line command in SDSF to save the job
output in a data set, which in turn can be given to the IBM support center.

© Copyright IBM Corp. 2005, 2010 127

Log files
Developer for System z creates log files that can assist you and IBM support center
in identifying and solving problems. The following list is an overview of log files
that can be created on your z/OS host system. Next to these product-specific logs,
be sure to check the SYSLOG for any related messages.

MVS based logs can be located through the appropriate DD statement. z/OS UNIX
based log files are located in the following directories:
v userlog/$LOGNAME/

User-specific log files are located in userlog/$LOGNAME/, where userlog is the
combined value of the user.log and DSTORE_LOG_DIRECTORY directives in
rsed.envvars, and $LOGNAME is the logon user ID (uppercase). If the user.log
directive is commented out or not present, the home path of the user is used.
The home path is defined in the OMVS security segment of the user ID. If the
DSTORE_LOG_DIRECTORY directive is commented out or not present, then
.eclipse/RSE/ is appended to the user.log value.
– .dstoreMemLogging - DataStore memory usage logging
– .dstoreTrace - DataStore action logging
– fa.log - The log of the Fault Analyzer Integration
– fekfivpi.log - The log of the fekfivpi IVP test
– fekfivps.log - The log of the fekfivps IVP test
– ffs.log - The log of the Foreign File System (FFS) server, that executes native

MVS functions
– ffsget.log - The log of the file reader, that reads a sequential data set or a

PDS member
– ffsput.log - The log of the file writer, that writes a sequential data set or a

PDS member
– lock.log - The log of the lock manager, that locks/unlocks a sequential data

set or a PDS member
– rmt_class_loader.cache.jar - The cache of classes loaded by the RSE remote

class loader
– rsecomm.log - The log of the RSE server, that handles commands from the

client and the communication logging of all services relying on RSE (may
contain Java exception stack trace)

– stderr.log - The redirected data of stderr, standard error output
– stdout.log - The redirected data of stdout, standard output

Note: The .eclipse directory and the .dstore* log files start with a dot (.),
which makes them hidden. Use z/OS UNIX command ls –lA to list
hidden files and directories. When using the Developer for System z
client, select the Window > Preferences... > Remote Systems > Files
preference page and enable “Show hidden files”.

v daemon-home
The RSE daemon and RSE thread pool specific log files are located in
daemon-home, where daemon-home is the value of the daemon.log directive in
rsed.envvars. If the daemon.log directive is commented out or not present, the
home directory of the user ID assigned to the RSED started task is used. The
home directory is defined in the OMVS security segment of the user ID.
– rsedaemon.log - The log of the RSE daemon
– rseserver.log - The log of the RSE thread pools

128 IBM Rational Developer for System z: Host Configuration Guide

– audit.log - The RSE audit trail
– serverlogs.count - Counter for logging RSE thread pool streams
– stderr.*.log - RSE thread pool standard error stream
– stdout.*.log - RSE thread pool standard output stream

Note: There are operator commands available to control the amount of data
written to some of the mentioned log files. Refer to Chapter 8, “Operator
commands,” on page 115 for more information.

JES Job Monitor logging
v SYSOUT DD

Logging of normal operations. The default value in the sample JCL
FEK.#CUST.PROCLIB(JMON) is SYSOUT=*.

v SYSPRINT DD

Trace logging. The default value in the sample JCL FEK.#CUST.PROCLIB(JMON) is
SYSOUT=*. Tracing is activated with the –TV parameter, see “JES Job Monitor
tracing” on page 135 for more details.

Lock daemon logging
v STDOUT DD

The redirected data of stdout, Java standard output. The default value in the
sample JCL FEK.#CUST.PROCLIB(LOCKD) is SYSOUT=*.

v STDERR DD

The redirected data of stderr, Java standard error output. The default value in
the sample JCL FEK.#CUST.PROCLIB(LOCKD) is SYSOUT=*.

RSE daemon and thread pool logging
v STDOUT DD

The redirected data of stdout, Java standard output of RSE daemon. The default
value in the sample JCL FEK.#CUST.PROCLIB(RSED) is SYSOUT=*.

v STDERR DD

The redirected data of stderr, Java standard error output of RSE daemon. The
default value in the sample JCL FEK.#CUST.PROCLIB(RSED) is SYSOUT=*.

v daemon-home

The RSE daemon and RSE thread pool specific log files are located in
daemon-home, where daemon-home is the value of the daemon.log directive in
rsed.envvars. If the daemon.log directive is commented out or not present, the
home directory of the user ID assigned to the RSED started task is used. The
home directory is defined in the OMVS security segment of the user ID.
– rsedaemon.log - The log of the RSE daemon
– rseserver.log - The log of the RSE thread pools
– audit.log - The RSE audit trail
– serverlogs.count - Counter for logging RSE thread pool streams
– stderr.*.log - RSE thread pool standard error stream
– stdout.*.log - RSE thread pool standard output stream

Note:

Chapter 9. Troubleshooting configuration problems 129

v serverlogs.count, stderr.*.log, and stdout.*.log are only created if
the enable.standard.log directive in rsed.envvars is active, or if the
function is dynamically activated with the modify rsestandardlog on
operator command.

v The * in stderr.*.log and stdout.*.log is 1 by default. However, there
can be multiple RSE thread pools, in which case the number is
incremented for each new RSE thread pool to ensure unique file names.

v There are no user-specific stdout.log and stderr.log log files when the
enable.standard.log directive is active. The user-specific data is now
written to the matching RSE thread pool stream.

v There are operator commands available to control the amount of data
written to some of the mentioned log files. Refer to Chapter 8, “Operator
commands,” on page 115 for more information.

RSE user logging
v userlog/$LOGNAME/

There are several log files created by the components related to RSE. All are
located in userlog/$LOGNAME/, where userlog is the combined value of the
user.log and DSTORE_LOG_DIRECTORY directives in rsed.envvars, and $LOGNAME is
the logon user ID (uppercase). If the user.log directive is commented out or not
present, the home path of the user is used. The home path is defined in the
OMVS security segment of the user ID. If the DSTORE_LOG_DIRECTORY directive is
commented out or not present, then .eclipse/RSE/ is appended to the user.log
value.
– .dstoreMemLogging - DataStore memory usage logging
– .dstoreTrace - DataStore action logging
– ffs.log - The log of the Foreign File System (FFS) server, which executes

native MVS functions
– ffsget.log - The log of the file reader, that reads a sequential data set or a

PDS member
– ffsput.log - The log of the file writer, that writes a sequential data set or a

PDS member
– lock.log - The log of the lock manager, that locks or unlocks a sequential

data set or a PDS member
– rmt_class_loader.cache.jar - The cache of classes loaded by the RSE remote

class loader
– rsecomm.log - The log of the RSE server, that handles commands from the

client and the communication logging of all services relying on RSE (may
contain Java exception stack trace)

– stderr.log - The redirected data of stderr, standard error output
– stdout.log - The redirected data of stdout, standard output

Note:

v The .eclipse directory and the .dstore* log files start with a dot (.),
which makes them hidden. Use z/OS UNIX command ls –lA to list
hidden files and directories. When using the Developer for System z
client, select the Window > Preferences... > Remote Systems > Files
preference page and enable “Show hidden files”.

v The creation of the .dstore* log files is controlled by the -DDSTORE_* Java
startup options, as described in “Defining extra Java startup parameters
with _RSE_JAVAOPTS” on page 37.

130 IBM Rational Developer for System z: Host Configuration Guide

v The .dstore* log files are created in ASCII. Use z/OS UNIX command
iconv -f ISO8859-1 -t IBM-1047 .dstore* to display them in EBCDIC
(when using code page IBM-1047).

v There are no user-specific stdout.log and stderr.log log files when the
enable.standard.log directive is active. The user-specific data is now
written to the matching RSE thread pool stream.

v There are operator commands available to control the amount of data
written to some of the mentioned log files. Refer to Chapter 8, “Operator
commands,” on page 115 for more information.

Fault Analyzer Integration logging
v userlog/$LOGNAME/

Fault Analyzer Integration logging, where userlog is the combined value of the
user.log and DSTORE_LOG_DIRECTORY directives in rsed.envvars, and $LOGNAME is
the logon user ID (uppercase). If the user.log directive is commented out or not
present, the home path of the user is used. The home path is defined in the
OMVS security segment of the user ID. If the DSTORE_LOG_DIRECTORY directive is
commented out or not present, then .eclipse/RSE/ is appended to the user.log
value.
– fa.log - The log of the Fault Analyzer Integration
– rsecomm.log - Communication logging of Fault Analyzer Integration

File Manager Integration logging
v userlog/$LOGNAME/rsecomm.log

Communication logging of File Manager Integration, where userlog is the
combined value of the user.log and DSTORE_LOG_DIRECTORY directives in
rsed.envvars, and $LOGNAME is the logon user ID (uppercase). If the user.log
directive is commented out or not present, the home path of the user is used.
The home path is defined in the OMVS security segment of the user ID. If the
DSTORE_LOG_DIRECTORY directive is commented out or not present, then
.eclipse/RSE/ is appended to the user.log value.

SCLM Developer Toolkit logging
v userlog/$LOGNAME/rsecomm.log

Communication logging of SCLM Developer Toolkit, where userlog is the
combined value of the user.log and DSTORE_LOG_DIRECTORY directives in
rsed.envvars, and $LOGNAME is the logon user ID (uppercase). If the user.log
directive is commented out or not present, the home path of the user is used.
The home path is defined in the OMVS security segment of the user ID. If the
DSTORE_LOG_DIRECTORY directive is commented out or not present, then
.eclipse/RSE/ is appended to the user.log value.

CARMA logging
v CARMA server job

When opening a connection with CARMA, using the batch interface,
FEK.#CUST.SYSPROC(CRASUBMT) will start a server job (with the user's user ID as
owner) named CRAport, where port is the TCP/IP port used.

v CARMALOG DD

If DD statement CARMALOG is specified in the chosen CARMA startup
method, CARMA logging is redirected to this DD statement in the server job,
otherwise it goes to SYSPRINT.

Chapter 9. Troubleshooting configuration problems 131

v SYSPRINT DD

The SYSPRINT of the server job holds the CARMA logging, if DD statement
CARMALOG is not defined.

v userlog/$LOGNAME/rsecomm.log

Communication logging of CARMA, where userlog is the combined value of the
user.log and DSTORE_LOG_DIRECTORY directives in rsed.envvars, and $LOGNAME is
the logon user ID (uppercase). If the user.log directive is commented out or not
present, the home path of the user is used. The home path is defined in the
OMVS security segment of the user ID. If the DSTORE_LOG_DIRECTORY directive is
commented out or not present, then .eclipse/RSE/ is appended to the user.log
value.

APPC transaction (TSO Commands service) logging
v SYSPRINT DD

When the APPC administration utility adds and modifies a transaction program
(TP) profile, it checks the TP profile and its JCL for syntax errors. Output from
this phase consists of TP profile syntax error messages, utility processing
messages, and JCL conversion statements. Logging for messages from this phase
is controlled by the SYSPRINT DD statement for the ATBSDFMU utility. The default
value in sample JCL FEK.SFEKSAMP(FEKAPPCC) is SYSOUT=*. Refer to MVS
Planning: APPC/MVS Management (SA22-7599) for more details.

v &SYSUID.FEKFRSRV.&TPDATE.&TPTIME.LOG

When a TP executes, the TP runtime messages, such as allocation and
termination messages, go to a log named by the MESSAGE_DATA_SET keyword in
its TP profile. The default value in sample JCL FEK.SFEKSAMP(FEKAPPCC) is
&SYSUID.FEKFRSRV.&TPDATE.&TPTIME.LOG. Refer to MVS Planning: APPC/MVS
Management (SA22-7599) for more details.

Note: Depending on your APPC transaction definitions and site defaults, this
log file might not appear unless the KEEP_MESSAGE_LOG(ALWAYS) keyword
is added to the transaction definitions. Refer to MVS Planning: APPC/MVS
Management (SA22-7599) for more information on this.

fekfivpi IVP test logging
v userlog/$LOGNAME/fekfivpi.log

Output of the fekfivpi -file command (TSO/ISPF Client Gateway related IVP
test), where userlog is the combined value of the user.log and
DSTORE_LOG_DIRECTORY directives in rsed.envvars, and $LOGNAME is the logon user
ID (uppercase). If the user.log directive is commented out or not present, the
home path of the user is used. The home path is defined in the OMVS security
segment of the user ID. If the DSTORE_LOG_DIRECTORY directive is commented out
or not present, then .eclipse/RSE/ is appended to the user.log value.

fekfivps IVP test logging
v userlog/$LOGNAME/fekfivps.log

Output of the fekfivps -file command (SCLMDT-related IVP test), where
userlog is the combined value of the user.log and DSTORE_LOG_DIRECTORY
directives in rsed.envvars, and $LOGNAME is the logon user ID (uppercase). If the
user.log directive is commented out or not present, the home path of the user is
used. The home path is defined in the OMVS security segment of the user ID. If
the DSTORE_LOG_DIRECTORY directive is commented out or not present, then
.eclipse/RSE/ is appended to the user.log value.

132 IBM Rational Developer for System z: Host Configuration Guide

Dump files
When a product abnormally terminates, a storage dump is created to assist in
problem determination. The availability and location of these dumps depends
heavily on site-specific settings. So it could be that they are not created, or created
in different locations than mentioned below.

MVS dumps
When the program is running in MVS, check the system dump files and check
your JCL for the following DD statements (depending on the product):
v SYSABEND
v SYSMDUMP
v SYSUDUMP
v CEEDUMP
v SYSPRINT
v SYSOUT

Refer to MVS JCL Reference (SA22-7597) and Language Environment Debugging Guide
(GA22-7560) for more information on these DD statements.

Java dumps
In z/OS UNIX, most Developer for System z dumps are controlled by the Java
Virtual Machine (JVM).

The JVM creates a set of dump agents by default during its initialization
(SYSTDUMP and JAVADUMP). You can override this set of dump agents using the
JAVA_DUMP_OPTS environment variable and further override the set by the use of
-Xdump on the command line. JVM command-line options are defined in the
_RSE_JAVAOPTS directive of rsed.envvars. Do not change any of the dump settings
unless directed by the IBM support center.

Note: The -Xdump:what option on the command line can be used for determining
which dump agents exist at the completion of startup.

The types of dump that can be produced are the following:

SYSTDUMP
Java Transaction dump. An unformatted storage dump generated by z/OS.

The dump is written to a sequential MVS data set, using a default name of
the form %uid.JVM.TDUMP.%job.D%y%m%d.T%H%M%S, or as determined by the
setting of the JAVA_DUMP_TDUMP_PATTERN environment variable. If you do
not want transaction dumps to be created, add environment variable
IBM_JAVA_ZOS_TDUMP=NO to rsed.envvars.

Note: JAVA_DUMP_TDUMP_PATTERN allows the usage of variables, which are
translated to an actual value at the time the transaction dump is
taken.

Table 20. JAVA_DUMP_TDUMP_PATTERN variables

Variable Usage

%uid User ID

%job Job name

Chapter 9. Troubleshooting configuration problems 133

Table 20. JAVA_DUMP_TDUMP_PATTERN variables (continued)

Variable Usage

%y Year (2 digits)

%m Month (2 digits)

%d Day (2 digits)

%H Hour (2 digits)

%M Minute (2 digits)

%S Second (2 digits)

CEEDUMP
Language Environment (LE) dump. A formatted summary system dump
that shows stack traces for each thread that is in the JVM process, together
with register information and a short dump of storage for each register.

The dump is written to a z/OS UNIX file named
CEEDUMP.yyyymmdd.hhmmss.pid, where yyyymmdd equals the current date,
hhmmss the current time and pid the current process ID. The possible
locations of this file are described in “z/OS UNIX dump locations.”

HEAPDUMP
A formatted dump (a list) of the objects that are on the Java heap.

The dump is written to a z/OS UNIX file named
HEAPDUMP.yyyymmdd.hhmmss.pid.TXT, where yyyymmdd equals the current
date, hhmmss the current time and pid the current process ID. The possible
locations of this file are described in “z/OS UNIX dump locations.”

JAVADUMP
A formatted analysis of the JVM. It contains diagnostic information related
to the JVM and the Java application, such as the application environment,
threads, native stack, locks, and memory.

The dump is written to a z/OS UNIX file named
JAVADUMP.yyyymmdd.hhmmss.pid.TXT, where yyyymmdd equals the current
date, hhmmss the current time and pid the current process ID. The possible
locations of this file are described in “z/OS UNIX dump locations.”

Refer to Java Diagnostic Guide (SC34-6358) for more information on JVM dumps,
and Language Environment Debugging Guide (GA22-7560) for LE-specific
information.

z/OS UNIX dump locations
The JVM checks each of the following locations for existence and write-permission,
and stores the CEEDUMP, HEAPDUMP, and JAVADUMP files in the first one
available. Note that you must have enough free disk space for the dump file to be
written correctly.
1. The directory in environment variable _CEE_DMPTARG, if found. This variable is

set in rsed.envvars as /tmp. It can be changed to /dev/null to avoid creating
the dump files.

2. The current working directory, if the directory is not the root directory (/), and
the directory is writable.

3. The directory in environment variable TMPDIR (an environment variable that
indicates the location of a temporary directory if it is not /tmp), if found.

4. The /tmp directory.

134 IBM Rational Developer for System z: Host Configuration Guide

5. If the dump cannot be stored in any of the above, it is put to stderr.

Tracing

JES Job Monitor tracing
JES Job Monitor tracing is controlled by the system operator, as described in
Chapter 8, “Operator commands,” on page 115.
v Starting the JMON started task with the PRM=-TV parameter activates verbose

mode (tracing)
v The modify –TV and modify –TN commands activate and deactivate tracing

RSE tracing
There are several log files created by the components related to RSE. Most are
located in userlog/$LOGNAME/, where userlog is the combined value of the
user.log and DSTORE_LOG_DIRECTORY directives in rsed.envvars, and $LOGNAME is
the logon user ID (uppercase). If the user.log directive is commented out or not
present, the home path of the user is used. The home path is defined in the OMVS
security segment of the user ID. If the DSTORE_LOG_DIRECTORY directive is
commented out or not present, then .eclipse/RSE/ is appended to the user.log
value.

The amount of data written to ffs*.log, lock.log and rsecomm.log is controlled
by the modify rsecommlog operator command, or by setting debug_level in
rsecomm.properties. See Chapter 8, “Operator commands,” on page 115 and
“(Optional) RSE tracing” on page 88 for more details.

The creation of the .dstore* log files is controlled by the –DDSTORE_* Java startup
options, as described in “Defining extra Java startup parameters with
_RSE_JAVAOPTS” on page 37.

Note:

v The .eclipse directory and the .dstore* log files start with a dot (.),
which makes them hidden. Use z/OS UNIX command ls –lA to list
hidden files and directories. When using the Developer for System z
client, select the Window > Preferences... > Remote Systems > Files
preference page and enable “Show hidden files”.

v The .dstore* log files are created in ASCII. Use z/OS UNIX command
iconv -f ISO8859-1 -t IBM-1047 .dstore* to display them in EBCDIC
(when using code page IBM-1047).

The RSE daemon and RSE thread pool specific log files are located in daemon-home,
where daemon-home is the value of the daemon.log directive in rsed.envvars. If the
daemon.log directive is commented out or not present, the home directory of the
user ID assigned to the RSED started task is used. The home directory is defined in
the OMVS security segment of the user ID.

The amount of data written to rsedaemon.log and rseserver.log is controlled by
the modify rsedaemonlog and modify rseserverlog operator commands or by
setting debug_level in rsecomm.properties . See Chapter 8, “Operator commands,”
on page 115 and “(Optional) RSE tracing” on page 88 for more details.

Chapter 9. Troubleshooting configuration problems 135

serverlogs.count, stderr.*.log, and stdout.*.log are only created if the
enable.standard.log directive in rsed.envvars is active, or if the function is
dynamically activated with the modify rsestandardlog on operator command..

Lock daemon tracing
The lock daemon-specific log is located in the STDOUT DD of the LOCKD started
task. The amount of data written to the log is controlled by the LOG startup
parameter. See Chapter 8, “Operator commands,” on page 115 and “(Optional) RSE
tracing” on page 88 for more details.

CARMA tracing
The user can control the amount of trace info CARMA generates by setting Trace
Level in the properties tab of the CARMA connection on the client. The choices for
Trace Level are:
v Disable Logging
v Error Logging
v Warning Logging
v Informational Logging
v Debug Logging

The default value is the following:
Error Logging

Refer to “Log files” on page 128 for more information on log file locations.

Error feedback tracing
The following procedure allows gathering of information needed to diagnosis error
feedback problems with remote build procedures. This tracing will cause
performance degradation and should only be done under the direction of the IBM
support center. All references to hlq in this section refer to the high-level qualifier
used during installation of Developer for System z. The installation default is FEK,
but this might not apply to your site.
1. Make a backup copy of your active ELAXFCOC compile procedure. This

procedure is default shipped in data set hlq.SFEKSAMP, but could have been
copied to a different location, such as SYS1.PROCLIB, as described in “ELAXF*
remote build procedures” on page 22.

2. Change the active ELAXFCOC procedure to include the 'MAXTRACE' string on the
EXIT(ADEXIT(ELAXMGUX)) compile option.
//COBOL EXEC PGM=IGYCRCTL,REGION=2048K,
//* PARM=(’EXIT(ADEXIT(ELAXMGUX))’,
// PARM=(’EXIT(ADEXIT(’’MAXTRACE’’,ELAXMGUX))’,
// ’ADATA’,
// ’LIB’,
// ’TEST(NONE,SYM,SEP)’,
// ’LIST’,
// ’FLAG(I,I)’&CICS &DB2 &COMP)

Note: You have to double the apostrophes around MAXTRACE. The option is
now: EXIT(ADEXIT(’’MAXTRACE’’,ELAXMGUX)).

3. Perform a Remote Syntax Check on the COBOL program for which you want
detailed tracing.

4. The SYSOUT part of the JES output will start by listing the names of the data sets
for SIDEFILE1, SIDEFILE2, SIDEFILE3 and SIDEFILE4.

136 IBM Rational Developer for System z: Host Configuration Guide

ABOUT TOO OPEN SIDEFILE1 - NAME = ’uid.DT021207.TT110823.M0000045.C0000000’
SUCCESSFUL OPEN SIDEFILE1 - NAME = ’uid.DT021207.TT110823.M0000045.C0000000’
ABOUT TOO OPEN SIDEFILE2 - NAME = ’uid.DT021207.TT110823.M0000111.C0000001’
SUCCESSFUL OPEN SIDEFILE2 - NAME = ’uid.DT021207.TT110823.M0000111.C0000001’
ABOUT TOO OPEN SIDEFILE3 - NAME = ’uid.DT021207.TT110823.M0000174.C0000002’
SUCCESSFUL OPEN SIDEFILE3 - NAME = ’uid.DT021207.TT110823.M0000174.C0000002’
ABOUT TOO OPEN SIDEFILE4 - NAME = ’uid.DT021207.TT110823.M0000236.C0000003’
SUCCESSFUL OPEN SIDEFILE4 - NAME = ’uid.DT021207.TT110823.M0000236.C0000003’

Note: Depending on your settings, SIDEFILE1 and SIDEFILE2 may be pointing
to a DD statement (SUCCESSFUL OPEN SIDEFILE1 - NAME = DD:WSEDSF1).
Refer to the JESJCL part of the output (which is located before the SYSOUT
part) to get the actual data set name.
22 //COBOL.WSEDSF1 DD DISP=MOD,

// DSN=uid.ERRCOB.member.SF.Z682746.XML
23 //COBOL.WSEDSF2 DD DISP=MOD,

// DSN=uid.ERRCOB.member.SF.Z682747.XML

5. Copy these four data sets to your PC, for example, by creating a local COBOL
project in Developer for System z and adding the SIDEFILE1->4 data sets.

6. Copy the complete JES job log to your PC, for example, by opening the job
output in Developer for System z and saving it to the local project by selecting
File > Save As

7. Restore procedure ELAXFCOC to the original state, either by undoing the change
(remove the ''MAXTRACE'', string in the compile options) or restoring the backup.

8. Send the collected files (SIDEFILE1->4 and job log) to the IBM support center.

z/OS UNIX permission bits
Developer for System z requires that the z/OS UNIX file system and some z/OS
UNIX files have certain permission bits set.

SETUID file system attribute
Remote Systems Explorer (RSE) is the Developer for System z component that
provides core services such as connecting the client to the host. It must be allowed
to perform tasks such as creating the user’s security environment.

The file system (HFS or zFS) in which Developer for System z is installed must be
mounted with the SETUID permission bit on (this is the system default). Mounting
the file system with the NOSETUID parameter will prevent Developer for System z
from creating the user’s security environment, and will fail the connection request.

Use the TSO ISHELL command to list the current status of the SETUID bit. In the
ISHELL panel, select File_systems > 1. Mount table... to list the mounted file
systems. The a line command will show the attributes for the selected file system,
where the “Ignore SETUID” field should be 0.

Program Control authorization
Remote Systems Explorer (RSE) is the Developer for System z component that
provides core services such as connecting the client to the host. It must run
program controlled in order to perform tasks such as switching to the user ID of
the client.

The z/OS UNIX program control bit is set during SMP/E install where needed,
except for the Java interface to your security product, as documented in

Chapter 9. Troubleshooting configuration problems 137

Chapter 10, “Security considerations,” on page 147. This permission bit might get
lost if you did not preserve it during a manual copy of the Developer for System z
directories.

The following Developer for System z files must be program controlled:
v /usr/lpp/rdz/bin/

– fekfdivp

– fekfomvs

– fekfrivp

v /usr/lpp/rdz/lib/

– fekfdir.dll

– libfekdcore.so

– libfekfmain.so

v /usr/lpp/rdz/lib/icuc/

– libicudata.dll

– libicudata40.1.dll

– libicudata40.dll

– libicudata64.40.1.dll

– libicudata64.40.dll

– libicudata64.dll

– libicuuc.dll

– libicuuc40.1.dll

– libicuuc40.dll

– libicuuc64.40.1.dll

– libicuuc64.40.dll

– libicuuc64.dll

Note: The libicu*64.* files are only present if you applied the Developer for
System z PTF that addresses APAR AM07305 to enable 64-bit support.

Use z/OS UNIX command ls –E to list the extended attributes, in which the
program control bit is marked with the letter p, as shown in the following sample
($ is the z/OS UNIX prompt):
$ cd /usr/lpp/rdz
$ ls -E lib/fekf*
-rwxr-xr-x -ps- 2 user group 94208 Jul 8 12:31 lib/fekfdir.dll

Use z/OS UNIX command extattr +p to set the program control bit manually, as
shown in the following sample ($ and # are the z/OS UNIX prompt):
$ cd /usr/lpp/rdz
$ su
extattr +p lib/fekf*
exit
$ ls -E lib/fekf*
-rwxr-xr-x -ps- 2 user group 94208 Jul 8 12:31 lib/fekfdir.dll

Note: To be able to use the extattr +p command, you must have at least READ
access to the BPX.FILEATTR.PROGCTL profile in the FACILITY class of your
security software, or be a superuser (UID 0) if this profile is not defined. For
more information, refer to UNIX System Services Planning (GA22-7800).

138 IBM Rational Developer for System z: Host Configuration Guide

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

APF authorization
Remote Systems Explorer (RSE) is the Developer for System z component that
provides core services such as connecting the client to the host. It must run APF
authorized in order to perform tasks such as displaying detailed process resource
usage.

The z/OS UNIX APF bit is set during SMP/E install where needed. This
permission bit might get lost if you did not preserve it during a manual copy of
the Developer for System z directories.

The following Developer for System z files must be APF authorized:
v /usr/lpp/rdz/bin/

– fekfomvs

– fekfrivp

Use z/OS UNIX command ls -E to list the extended attributes, in which the APF
bit is marked with the letter a, as shown in the following sample ($ is the z/OS
UNIX prompt):
$ cd /usr/lpp/rdz
$ ls -E bin/fekfrivp
-rwxr-xr-x aps- 2 user group 114688 Sep 17 06:41 bin/fekfrivp

Use z/OS UNIX command extattr +a to set the APF bit manually, as shown in the
following sample ($ and # are the z/OS UNIX prompts):
$ cd /usr/lpp/rdz
$ su
extattr +a bin/fekfrivp
exit
$ ls -E bin/fekfrivp
-rwxr-xr-x aps- 2 user group 114688 Sep 17 06:41 bin/fekfrivp

Note: To be able to use the extattr +a command, you must have at least READ
access to the BPX.FILEATTR.APF profile in the FACILITY class of your security
software, or be a superuser (UID 0) if this profile is not defined. For more
information, refer to UNIX System Services Planning (GA22-7800).

Sticky bit
Some of the optional Developer for System z services require that MVS load
modules are available to z/OS UNIX. This is done by creating a stub (a dummy
file) in z/OS UNIX with the "sticky" bit on. When the stub is executed, z/OS UNIX
will look for an MVS load module with the same name and execute the load
module instead.

The z/OS UNIX sticky bit is set during SMP/E install where needed. These
permission bits might get lost if you did not preserve them during a manual copy
of the Developer for System z directories.

The following Developer for System z files must have the sticky bit on:
v /usr/lpp/rdz/bin/

– BWBTSOW

– CRASTART

Chapter 9. Troubleshooting configuration problems 139

|

|
|
|
|

|
|
|

|

|

|

|

|
|
|

|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

Use z/OS UNIX command ls –l to list the permissions, in which the sticky bit is
marked with the letter t, as shown in the following sample ($ is the z/OS UNIX
prompt):
$ cd /usr/lpp/rdz
$ ls -l bin/CRA*
-rwxr-xr-t 2 user group 71 Jul 8 12:31 bin/CRASTART

Use z/OS UNIX command chmod +t to set the sticky bit manually, as shown in
the following sample ($ and # are the z/OS UNIX prompt):
$ cd /usr/lpp/rdz
$ su
chmod +t bin/CRA*
exit
$ ls -l bin/CRA*
-rwxr-xr-t 2 user group 71 Jul 8 12:31 bin/CRASTART

Note: To be able to use the chmod command, you must have at least READ access
to the SUPERUSER.FILESYS.CHANGEPERMS profile in the UNIXPRIV class of your
security software, or be a superuser (UID 0) if this profile is not defined. For
more information, refer to UNIX System Services Planning (GA22-7800).

Reserved TCP/IP ports
With the netstat command (TSO or z/OS UNIX) you can get an overview of the
ports currently in use. The output of this command will look similar to the
example below. The ports used are the last number (behind the "..") in the "Local
Socket" column. Since these ports are already in use, they cannot be used for the
Developer for System z configuration.

IPv4
MVS TCP/IP NETSTAT CS VxRy TCPIP Name: TCPIP 16:36:42
User Id Conn Local Socket Foreign Socket State
------- ---- ------------ -------------- -----
BPXOINIT 00000014 0.0.0.0..10007 0.0.0.0..0 Listen
INETD4 0000004D 0.0.0.0..512 0.0.0.0..0 Listen
RSED 0000004B 0.0.0.0..4035 0.0.0.0..0 Listen
JMON 00000038 0.0.0.0..6715 0.0.0.0..0 Listen

IPv6
MVS TCP/IP NETSTAT CS VxRy TCPIP Name: TCPIP 12:46:25
User Id Conn State
------- ---- -----
BPXOINIT 00000018 Listen

Local Socket: 0.0.0.0..10007
Foreign Socket: 0.0.0.0..0

INETD4 00000046 Listen
Local Socket: 0.0.0.0..512
Foreign Socket: 0.0.0.0..0

RSED 0000004B Listen
Local Socket: 0.0.0.0..4035
Foreign Socket: 0.0.0.0..0

JMON 00000037 Listen
Local Socket: 0.0.0.0..6715
Foreign Socket: 0.0.0.0..0

Another limitation that can exist is reserved TCP/IP ports. There are the following
two common places to reserve TCP/IP ports:
v PROFILE.TCPIP

140 IBM Rational Developer for System z: Host Configuration Guide

This is the data set referred to by the PROFILE DD statement of the TCP/IP
started task, often named SYS1.TCPPARMS(TCPPROF).
– PORT: Reserves a port for specified job names.
– PORTRANGE: Reserves a range of ports for specified job names.
Refer to Communications Server: IP Configuration Guide (SC31-8775) for more
information on these statements.

v SYS1.PARMLIB(BPXPRMxx)

– INADDRANYPORT: Specifies the starting port number for the range of port
numbers that the system reserves for use with PORT 0, INADDR_ANY binds.
This value is only needed for CINET (multiple TCP/IP stacks active on a
single host).

– INADDRANYCOUNT: Specifies the number of ports that the system reserves,
starting with the port number specified in the INADDRANYPORT parameter.
This value is only needed for CINET (multiple TCP/IP stacks active on a
single host).

Refer to UNIX System Services Planning (GA22-7800) and MVS Initialization and
Tuning Reference (SA22-7592) for more information on these statements.

These reserved ports can be listed with the netstat portl command (TSO or z/OS
UNIX), which creates an output like that in the example as follows:
MVS TCP/IP NETSTAT CS VxRy TCPIP Name: TCPIP 17:08:32
Port# Prot User Flags Range IP Address
----- ---- ---- ----- ----- ----------
00007 TCP MISCSERV DA
00009 TCP MISCSERV DA
00019 TCP MISCSERV DA
00020 TCP OMVS D
00021 TCP FTPD1 DA
00025 TCP SMTP DA
00053 TCP NAMESRV DA
00080 TCP OMVS DA
03500 TCP OMVS DAR 03500-03519
03501 TCP OMVS DAR 03500-03519

Refer to Communications Server: IP System Administrator’s Commands (SC31-8781) for
more information on the NETSTAT command.

Note: The NETSTAT command only shows the information defined in
PROFILE.TCPIP, which should overlap the BPXPRMxx definitions. In case of
doubt or problems, check the BPXPRMxx parmlib member to verify the ports
being reserved here.

Address Space size
The RSE daemon, which is a z/OS UNIX Java process, requires a large region size
to perform its functions. Therefore it is important to set large storage limits for
OMVS address spaces.

startup JCL requirements
The RSE daemon is started by JCL using BPXBATSL, whose region size must be 0.

Limitations set in SYS1.PARMLIB(BPXPRMxx)
Set MAXASSIZE in SYS1.PARMLIB(BPXPRMxx), which defines the default OMVS
address space (process) region size, to 2G. This is the maximum size allowed. This

Chapter 9. Troubleshooting configuration problems 141

is a system-wide limit, and thus active for all z/OS UNIX address spaces. If this is
not desired, then you can set the limit also just for Developer for System z in your
security software.

This value can be checked and set dynamically (until the next IPL) with the
following console commands, as described in MVS System Commands (GC28-1781):
1. DISPLAY OMVS,O

2. SETOMVS MAXASSIZE=2G

Limitations stored in the security profile
Check ASSIZEMAX in the daemon’s user ID OMVS segment, and set it to 2147483647
or, preferably, to NONE to use the SYS1.PARMLIB(BPXPRMxx) value.

Using RACF, this value can be checked and set with the following TSO commands,
as described in Security Server RACF Command Language Reference (SA22-7687):
1. LISTUSER userid NORACF OMVS

2. ALTUSER userid OMVS(NOASSIZEMAX)

Limitations enforced by system exits
Make sure you are not allowing system exits IEFUSI or IEALIMIT to control OMVS
address space region sizes. A possible way to accomplish this is by coding
SUBSYS(OMVS,NOEXITS) in SYS1.PARMLIB(SMFPRMxx).

SYS1.PARMLIB(SMFPRMxx) values can be checked and activated with the following
console commands, as described in MVS System Commands (GC28-1781):
1. DISPLAY SMF,O

2. SET SMF=xx

Limitations for 64-bit addressing
Keyword MEMLIMIT in SYS1.PARMLIB(SMFPRMxx) limits how much virtual storage a
64-bit task can allocate above the 2GB bar. Unlike the REGION parameter in JCL,
MEMLIMIT=0M means that the process cannot use virtual storage above the bar.

If MEMLIMIT is not specified in SMFPRMxx, the default value is 0M, so tasks are bound
to the (31-bit) 2GB below the bar. The default changed in z/OS 1.10 to 2G, allowing
64-bit tasks to use up to 4GB (the 2GB below the bar and the 2GB above the bar
granted by MEMLIMIT).

SYS1.PARMLIB(SMFPRMxx) values can be checked and activated with the following
console commands, as described in MVS System Commands (GC28-1781):
1. DISPLAY SMF,O

2. SET SMF=xx

MEMLIMIT can also be specified as parameter on an EXEC card in JCL. If no MEMLIMIT
parameter is specified, the default is the value defined to SMF, except when
REGION=0M is specified, in which case the default is NOLIMIT.

APPC transaction and TSO Commands service
If you cannot use the APPC version of the TSO Commands service, there are two
areas where problems may arise: starting the APPC server transaction and
connecting to RSE.

142 IBM Rational Developer for System z: Host Configuration Guide

v If you do not see the messages about setting up APPC, check the system log for
RACF messages (message id ICHxxxxx) or other messages related to the
command that was issued or the user ID that issued it. Common causes of
problems include the following:
– You do not have read authority to the FEK.SFEKPROC data set.
– TCP/IP is not active, has a wrong DNS name attached or the system is

unreachable (not pingable) due to network problems, a bad IP address or
other causes.

v If you see the messages about setting up APPC but do not see the message
confirming that setup succeeded, the APPC server transaction was probably
unable to start. Check the transaction error log (userid.FEKFRSRV.&TPDATE.
&TPTIME.LOG). Some of the likely causes of problems are the following:
– The TCP/IP stack is not using the default name of TCPIP and the SYSTCPD

DD card has not been set or is pointing to the wrong data set.
– The server was unable to allocate SYSPROC or SYSTSPRT.
– The JCL points to the wrong SYSPROC (SYSPROC must include

FEK.SFEKPROC).
– The server could not open or access the message (log) data set referred to by

MESSAGE_DATA_SET.
– There are not enough APPC scheduler initiators available.
– APPC or ASCH address spaces are not active.
– The class used (default named "A") is not defined to the APPC scheduler

ASCH.
– There is no default OMVS segment for the system, and the user does not

have a personal OMVS segment, or there is a definition error in either.
– The default group of the default OMVS segment or the default group of the

user does not have a GID number.

The REXX provided in “(Optional) APPC transaction for the TSO Commands
service” on page 95 can help with solving APPC problems since it gives you the
possibility to manage APPC interactively through ISPF panels. Be aware however
that you can deactivate the transaction with this tool; the transaction is still there
but will not accept any connections.

The following list is a selection of Technotes currently available on the support
Web site (http://www-306.ibm.com/software/awdtools/rdz/support/). Refer to the
support Web site for additional information:
v APPC verification fails with Return code 2016 - EHOSTNOTFOUND
v APPC verification fails with Return code 1004 - EIBMIUCVERR
v APPC verification fails with Return code 9 - TP Name not recognized
v APPC verification fails with Return code 10 - TP not avail no retry
v APPC verification fails with Return code 19 - Parameter Error
v APPC verification fails with Return code 20 - Product specific error
v APPC verification fails with Return code 26 - Resource failure
v CEE3501S: The module IOSTREAM was not found
v Server Failed to Start: EDC5129I No such file or directory
v exec/tcp: bind: EDC5111I Permission denied, rsn=744C7246
v No response from server, with either one of the following messages:

– IEA995I SYMPTOM DUMP OUTPUT 473 USER COMPLETION CODE=4093
REASON CODE=0000001C (in SDSF LOG)

Chapter 9. Troubleshooting configuration problems 143

– CEE3512S An HFS load of module libicudata32.0.dll failed. The system return
code was 0000000157; the reason code was 0BDF019B. (in CEEDUMP)

– Get Space failed (in client .log)
v Command C_CONNECT is not available
v “FFS server initialization failed” error message when connecting to the host
v “EDC5139I Operation not permitted” when connecting to the host
v "RSEG1056U FFS server initialization failed" when opening an MVS file

Note: This list is not definitive. Check the support Web site for additional
Technotes.

Miscellaneous information

System limits
SYS1.PARMLIB(BPXPRMxx) defines many z/OS UNIX related limitations, which
might be reached when several Developer for System z clients are active. Most
BPXPRMxx values can be changed dynamically with the SETOMVS and SET OMVS
console commands.

Use the SETOMVS LIMMSG=ALL console command to have z/OS UNIX display
console messages (BPXI040I) when any of the BPXPRMxx limits is about to be
reached.

Connection refused
Each RSE connection starts several processes which are permanently active. New
connections can be refused due to the limit set in SYS1.PARMLIB(BPXPRMxx) on the
amount of processes, especially when users share the same UID (such as when
using the default OMVS segment).
v The limit per UID is set by the MAXPROCUSER keyword and has a default value of

25.
v The system-wide limit is set by the MAXPROCSYS keyword and has a default value

of 200.

Another source of refused connections is the limit on the amount of active z/OS
address spaces and z/OS UNIX users.
v The maximum amount of Address Space IDs (ASID) is defined in

SYS1.PARMLIB(IEASYSxx) with the MAXUSER keyword, and has a default value of
255.

v The maximum amount of z/OS UNIX user IDs (UID) is defined in
SYS1.PARMLIB(BPXPRMxx) with the MAXUIDS keyword, and has a default value of
200.

Known requisite issues

Opening MVS data sets fails
When using APPC for the TSO Commands service, reading, and writing an MVS
data set requires the use of a socket physical file system domain. If the file system
is not properly defined or it has not enough sockets, the lock manager (FFS) might
fail read/write requests. The ffs*.log files will show messages like the following:
v Error 127 getting socket pair - setting port to 0.
v Unable to create socket in the UNIX domain. Error is: "The address family is

not supported"

144 IBM Rational Developer for System z: Host Configuration Guide

Verify that the SYS1.PARMLIB(BPXPRMxx) member contains the following statements:
FILESYSTYPE TYPE(UDS) ENTRYPOINT(BPXTUINT)
NETWORK DOMAINNAME(AF_UNIX)

DOMAINNUMBER(1)
MAXSOCKETS(2000)
TYPE(UDS)

Another probable cause for this problem, when using APPC for the TSO
Commands service, is that TCP/IP Resolver cannot resolve the host address
properly due to a missing or incomplete resolver configuration file. A clear
indication for this problem is the following message in lock.log:
clientip(0.0.0.0) <> callerip(<host IP address>)

Execute the fekfivpt TCP/IP IVP, as described in Chapter 7, “Installation
verification,” on page 99. The resolver configuration section of the output will look
like the following sample:
Resolver Trace Initialization Complete -> 2008/07/02 13:11:54.745964

res_init Resolver values:
Global Tcp/Ip Dataset = None
Default Tcp/Ip Dataset = None
Local Tcp/Ip Dataset = /etc/resolv.conf
Translation Table = Default
UserId/JobName = USERID
Caller API = LE C Sockets
Caller Mode = EBCDIC

Ensure that the definitions in the file (or data set) referenced by “Local Tcp/Ip
Dataset” are correct.

This field will be blank if you do not use a default name for the IP resolver file
(using the z/OS UNIX search order). If so, add the following statement to
rsed.envvars, where <resolver file> or <resolver data> represents the name of
your IP resolver file:
RESOLVER_CONFIG=<resolver file>

or
RESOLVER_CONFIG=’<resolver data set>’

Host Connect Emulator
v Host Connect Emulator uses TN3270 telnet and not the RSE server to connect to

the host.
v When using secure telnet (SSL) and you are working with certificates that are

not signed by a well-known CA, every client must add the CA certificate to their
Host Connect Emulator list of trusted CAs.

v The NOSNAEXT option of TCP/IP’s TELNETPARMS might be necessary to disable the
SNA functional extensions. If NOSNAEXT is specified, the TN3270 telnet server
does not negotiate for contention resolution and SNA sense functions.

Chapter 9. Troubleshooting configuration problems 145

146 IBM Rational Developer for System z: Host Configuration Guide

Chapter 10. Security considerations

Developer for System z provides mainframe access to users on a non-mainframe
workstation. Validating connection requests, providing secure communication
between the host and the workstation, and authorizing and auditing activity are
therefore important aspects of the product configuration.

The security mechanisms used by Developer for System z servers and services rely
on the file system it resides in being secure. This implies that only trusted system
administrators should be able to update the program libraries and configuration
files.

The following topics are covered in this chapter:
v “Authentication methods”
v “Connection security” on page 148
v “TCP/IP ports” on page 150
v “Using PassTickets” on page 152
v “Audit logging” on page 152
v “JES security” on page 153
v “SSL encrypted communication” on page 157
v “Client authentication using X.509 certificates” on page 158
v “Port Of Entry (POE) checking” on page 161
v “CICSTS security” on page 161
v “SCLM security” on page 162
v “Developer for System z configuration files” on page 162
v “Security definitions” on page 163

Note: Remote Systems Explorer (RSE), which provides core services such as
connecting the client to the host, consists of 2 logical entities:
v RSE daemon, which manages connection setup, and is started as a started

task or long running user job.
v RSE server, which handles individual client request, and is started as a

thread in one or more child processes by RSE daemon.

Refer to Chapter 11, “Understanding Developer for System z,” on page 177 to learn
about basic Developer for System z design concepts.

Authentication methods
Developer for System z supports multiple ways to authenticate a user ID provided
by a client upon connection.
v User ID and password
v User ID and one-time password
v X.509 certificate

Note that the authentication data provided by the client is only used once, during
initial connection setup. Once a user ID is authenticated, the user ID and
self-generated PassTickets are used for all actions that require authentication.

© Copyright IBM Corp. 2005, 2010 147

User ID and password
The client provides a user ID and matching password upon connection. The user
ID and password are used to authenticate the user with your security product.

User ID and one-time password
Based upon a unique token, a one-time password can be generated by a
third-party product. One-time passwords improve your security setup as the
unique token cannot be copied and used without the user's knowledge, and an
intercepted password is useless because it is valid only once.

The client provides a user ID and the one-time password upon connection, which
is used to authenticate the user ID with the security exit provided by the third
party. This security exit is expected to ignore the PassTickets used to satisfy
authentication requests during normal processing. The PassTickets must be
processed by your security software.

X.509 certificate
A third party can provide one or more X.509 certificates that can be used for
authenticating a user. When stored on secure devices, X.509 certificates combine a
secure setup with ease of use for the user (no user ID or password needed).

Upon connection, the client provides a selected certificate, and optionally a selected
extension, which is used to authenticate the user ID with your security product.

Note that this authentication method is only supported by the RSE daemon
connection method, and that SSL must be enabled.

JES Job Monitor authentication
Client authentication is done by RSE daemon (or REXEC/SSH) as part of the
client's connection request. Once the user is authenticated, self-generated
PassTickets are used for all future authentication requests, including the automatic
logon to JES Job Monitor.

In order for JES Job Monitor to validate the user ID and PassTicket presented by
RSE, JES Job Monitor must be allowed to evaluate the PassTicket. This implies the
following:
v Load module FEJJMON, by default located in load library FEK.SFEKAUTH, must be

APF authorized.
v Both RSE and JES Job Monitor must use the same application ID (APPLID). By

default both servers use FEKAPPL as APPLID, but this can be changed by the
APPLID directive in rsed.envvars for RSE and in FEJJCNFG for JES Job Monitor.

Note: Previous clients (version 7.0 and older) communicate directly with JES Job
Monitor. For these connections, only the user ID and password
authentication method is supported.

Connection security
Different levels of communication security are supported by RSE, which controls
all communication between the client and Developer for System z services:
v External (client-host) communication can be limited to specified ports. This

feature is disabled by default.

148 IBM Rational Developer for System z: Host Configuration Guide

v External (client-host) communication can be encrypted using SSL. This feature is
disabled by default.

v Port Of Entry (POE) checking can be used to allow host access only to trusted
TCP/IP addresses. This feature is disabled by default.

Limit external communication to specified ports
The system programmer can specify the ports on which the RSE server can
communicate with the client. By default, any available port is used. This range of
ports has no connection with the RSE daemon port.

To help understand the port usage, a brief description of RSE's connection process
follows:
1. The client connects to host port 4035, RSE daemon.
2. The RSE daemon creates an RSE server thread.
3. The RSE server opens a host port for the client to connect. The selection of this

port can be configured by the user, either on the client in the subsystem
properties tab (this is not recommended) or through the _RSE_PORTRANGE
definition in rsed.envvars.

4. The RSE daemon returns the port number to the client.
5. The client connects to the host port.

Note: The process is similar for the (optional) alternative connection method using
REXEC/SSH, which is described in “(Optional) Using REXEC (or SSH)” on
page 93.

Communication encryption using SSL
All external Developer for System z data streams that pass through RSE can be
encrypted using Secure Socket Layer (SSL). The usage of SSL is controlled by the
settings in the ssl.properties configuration file, as described in “SSL encrypted
communication” on page 157.

The Host Connect Emulator on the client connects to a TN3270 server on the host.
The usage of SSL is controlled by TN3270, as documented in the Communications
Server IP Configuration Guide (SC31-8775).

The Application Deployment Manager client uses the CICS TS Web Service or the
RESTful interface to invoke the Application Deployment Manger host services. The
usage of SSL is controlled by CICS TS, as documented in RACF Security Guide for
CICS TS.

Port Of Entry checking
Developer for System z supports Port Of Entry (POE) checking, which allows host
access only to trusted TCP/IP addresses. The usage of POE is controlled by the
definition of specific profiles in your security software and the
enable.port.of.entry directive in rsed.envvars, as described in “Port Of Entry
(POE) checking” on page 161.

Note that activating POE will impact other TCPIP applications that support POE
checking, such as INETD.

Chapter 10. Security considerations 149

TCP/IP ports

Figure 40 shows the TCP/IP ports that can be used by Developer for System z. The
arrows show which party does the bind (arrowhead side) and which one connects.

External communication
Define the following ports to your firewall protecting the z/OS host, as they are
used for client-host communication (using the tcp protocol):
v RSE daemon for client-host communication setup, default port 4035.

Communication on this port can be encrypted using SSL.
v RSE server for client-host communication. By default, any available port is used,

but this can be limited to a specified range with the _RSE_PORTRANGE definition in
rsed.envvars. Communication on this port can be encrypted using SSL.

v (optional) Either INETD service for remote (host-based) actions in z/OS UNIX
subprojects:
– REXEC (z/OS UNIX version), default port 512.
– SSH (z/OS UNIX version), default port 22. Communication on this port is

encrypted using SSL.
v (optional) TN3270 Telnet service for the Host Connect Emulator, default port 23.

Communication can be encrypted using SSL (default port 992). The default port
assigned to the TN3270 Telnet service depends on whether or not the user
chooses to use encryption.

v (optional) Either or both CICSTS application interfaces for Application
Deployment Manager:
– RESTful interface, default port 5130.

Figure 40. TCP/IP ports

150 IBM Rational Developer for System z: Host Configuration Guide

– Web Services interface, default port 5129. Communication on this port can be
encrypted using SSL.

Note:

v Previous clients (version 7.0 and older) communicate directly with JES Job
Monitor, default port 6715.

v During a remote debug session for Cobol, PL/I or Assembler, IBM Debug
Tool for z/OS is invoked. This product communicates directly with the
client. This communication is initiated on the host, and connects to port
8001 on the client.

Internal communication
Several Developer for System z host services run in separate threads or address
spaces and are using TCP/IP sockets as communication mechanism. All these
services use RSE for communicating with the client, making their data stream
confined to the host only. For some services any available port will be used, for
others the system programmer can choose the port or port range that will be used:
v JES Job Monitor for JES-related services, default port 6715. The port can be set in

the FEJJCNFG configuration member.
v Lock daemon for data set lock-related services, default port 4036. The port can

be set in the rsed.envvars configuration member.
v (optional) File Manager Integration for interacting with IBM File Manager,

default port 1960.
v (optional) CARMA communication, default port range 5227-5326 (100 ports).

The port range can be set in the CRASRV.properties configuration file.
v (optional) The APPC version of the TSO Commands service uses any socket

available to communicate with the lock manager (which enqueues MVS data sets
for clients). You cannot set a specific port range to be used.

Note: Previous clients (version 7.0 and older) communicate directly with the JES
Job Monitor server, default port 6715.

CARMA and TCP/IP ports
In most cases, like for RSE daemon, a server binds to a port and listens for
connection requests. CARMA however uses a different approach, as the CARMA
server is not active yet when the client initiates the connection request.

When the client sends a connection request, the CARMA miner, which is active as
a user thread in a RSE thread pool, will find a free port in the range specified in
the CRASRV.properties configuration file and binds to it. The miner then starts the
CARMA server and passes the port number, so that the server knows to which
port to connect. Once the server is connected, the client can send requests to the
server and receive the results.

So from a TCP/IP perspective, RSE (via the CARMA miner) is the server that
binds to the port, and the CARMA server is the client connecting to it.

Chapter 10. Security considerations 151

Using PassTickets
After logon, PassTickets are used to establish thread security within the RSE server.
This feature cannot be disabled. PassTickets are system generated passwords with
a lifespan of about 10 minutes. The generated PassTickets are based upon the DES
encryption algorithm, the user ID, the application ID, a time and date stamp, and a
secret key. This secret key is a 64 bit number (16 hex characters) that must be
defined to your security software.

To help understand the PassTicket usage, a brief description of RSE's security
process follows:
1. The client connects to host port 4035, RSE daemon.
2. The RSE daemon authenticates the client, using the credentials presented by the

client.
3. The RSE daemon creates a unique client ID and an RSE server thread.
4. The RSE server generates a PassTicket and creates a security environment for

the client, using the PassTicket as password.
5. The client connects to the host port returned by the RSE daemon.
6. The RSE server validates the client using the client ID.
7. The RSE server uses a newly generated PassTicket as password for all future

actions requiring a password.

The actual password of the client is no longer needed after initial authentication
because SAF-compliant security products can evaluate both PassTickets and regular
passwords. RSE server generates and uses a PassTicket each time a password is
required, resulting in a (temporary) valid password for the client.

Using PassTickets allows RSE to set up a user-specific security environment at will,
without the need of storing all user IDs and passwords in a table, which could be
compromised. It also allows for client authentication methods that do not use
reusable passwords, such as X.509 certificates.

Security profiles in the APPL and PTKTDATA classes are required to be able to use
PassTickets. These profiles are application specific and thus do not impact your
current system setup.

PassTickets being application specific implies that both RSE and JES Job Monitor
must use the same application ID (APPLID). By default both servers use FEKAPPL
as APPLID, but this can be changed by the APPLID directive in rsed.envvars for
RSE and in FEJJCNFG for JES Job Monitor.

You should not use OMVSAPPL as application ID, because it will open the secret key
to most z/OS UNIX applications. You should also not use the default MVS
application ID, which is MVS followed by the system's SMF ID, because this will
open the secret key to most MVS applications (including user batch jobs).

Attention: The client connection request will fail if PassTickets are not set up correctly.

Audit logging
Developer for System z supports audit logging of actions that are managed by the
RSE daemon. The audit logs are stored as text files in the daemon log directory,
using the CSV (Comma Separated Value) format.

152 IBM Rational Developer for System z: Host Configuration Guide

Audit control
Multiple options in rsed.envvars influence the audit function, as documented in
“Defining extra Java startup parameters with _RSE_JAVAOPTS” on page 37.
v The audit function is enabled/disabled by the enable.audit.log option.
v The audit defaults are controlled by the audit.* options.
v The location of the audit log files is controlled by the daemon.log option.
v The code page used for writing the audit log is controlled by the

_RSE_HOST_CODEPAGE directive, as documented in “rsed.envvars, RSE
configuration file” on page 28.

The modify switch operator command can be used to manually switch to a new
audit log file, as documented in Chapter 8, “Operator commands,” on page 115.

A warning message is sent to the console when the file system holding the audit
log files is running low on free space. This console message (FEK103E) is repeated
regularly until the low space issue is resolved. Refer to “Console messages” on
page 121 for a list of console messages generated by RSE.

Audit data
A new audit log file is started after a predetermined time or when the modify
switch operator command is issued. The old log file is saved as
audit.log.yyyymmdd.hhmmss, where yyyymmdd.hhmmss is the date/timestamp when
this log was closed. The system date/timestamp assigned to the file indicates the
creation of the log file. The combination of the two dates shows the time period
covered by this audit log file.

The following actions are logged:
v System access (connect, disconnect)
v JES spool access (submit, display, hold, release, cancel, purge)
v Data set access (read, write, create, delete, rename, compress, migration, recall)
v Execution of TSO commands

Each logged action is stored (with a date/timestamp) using the CSV (Comma
Separated Value) format, which can be read by an automation or data analysis tool.

Audit log files have permission bit mask 640 (-rw-r-----), which means that the
owner (RSE daemon z/OS UNIX uid) has read and write access, and the owner’s
(default) group has read access. All other access attempts are denied, unless it is
done by a super user (UID 0) or somebody with sufficient permission to the
SUPERUSER.FILESYS profile in the UNIXPRIV class.

JES security
Developer for System z allows clients access to the JES spool through the JES Job
Monitor. The server provides basic access limitations, which can be extended with
the standard spool file protection features of your security product. Operator
actions (Hold, Release, Cancel, and Purge) against spool files are done through an
EMCS console, for which conditional permits must be set up.

Actions against jobs - target limitations
JES Job Monitor does not provide Developer for System z users full operator access
to the JES spool. Only the Hold, Release, Cancel, and Purge commands are

Chapter 10. Security considerations 153

available, and by default, only for spool files owned by the user. The commands
are issued by selecting the appropriate option in the client menu structure (there is
no command prompt). The scope of the commands can be widened, using security
profiles to define for which jobs the commands are available.

Similar to the SDSF SJ action character, JES Job Monitor also supports the Show
JCL command to retrieve the JCL that created the selected job output, and show it
in an editor window. JES Job Monitor retrieves the JCL from JES, making it a
useful function for situations in which the original JCL member is not easily
located.

Table 21. JES Job Monitor console commands

Action JES2 JES3

Hold $Hx(jobid)

with x = {J, S or T}

*F,J=jobid,H

Release $Ax(jobid)

with x = {J, S or T}

*F,J=jobid,R

Cancel $Cx(jobid)

with x = {J, S or T}

*F,J=jobid,C

Purge $Cx(jobid),P

with x = {J, S or T}

*F,J=jobid,C

Show JCL not applicable not applicable

The available JES commands listed in Table 21 are by default limited to jobs owned
by the user. This can be changed with the LIMIT_COMMANDS directive, as
documented in “FEJJCNFG, JES Job Monitor configuration file” on page 24.

Table 22. LIMIT_COMMANDS command permission matrix

Job owner

LIMIT_COMMANDS User Other

USERID (default) Allowed Not allowed

LIMITED Allowed Allowed only if explicitly
permitted by security
profiles

NOLIMIT Allowed Allowed if permitted by
security profiles or when the
JESSPOOL class is not active

JES uses the JESSPOOL class to protect SYSIN/SYSOUT data sets. Similar to SDSF,
JES Job Monitor extends the use of the JESSPOOL class to protect job resources as
well.

If LIMIT_COMMANDS is not USERID, then JES Job Monitor will query for permission to
the related profile in the JESSPOOL class, as shown in the following table.

Table 23. Extended JESSPOOL profiles

Command JESSPOOL profile Required access

Hold nodeid.userid.jobname.jobid ALTER

154 IBM Rational Developer for System z: Host Configuration Guide

Table 23. Extended JESSPOOL profiles (continued)

Command JESSPOOL profile Required access

Release nodeid.userid.jobname.jobid ALTER

Cancel nodeid.userid.jobname.jobid ALTER

Purge nodeid.userid.jobname.jobid ALTER

Show JCL nodeid.userid.jobname.jobid.JCL READ

Use the following substitutions in the preceding table:

nodeid NJE node ID of the target JES subsystem

userid Local user ID of the job owner

jobname Name of the job

jobid JES job ID

If the JESSPOOL class is not active, then there is different behavior for the LIMITED
and NOLIMIT value of LIMIT_COMMANDS, as described in Table 9 on page 27. The
behavior is identical when JESSPOOL is active, since the class, by default, denies
permission if a profile is not defined.

Actions against jobs - execution limitations
The second phase of JES spool command security, after specifying the permitted
targets, includes the permits needed to actually execute the operator command.
This execution authorization is enforced by the z/OS and JES security checks.

Note that Show JCL is not an operator command such as the other JES Job Monitor
commands (Hold, Release, Cancel, and Purge), so the limitations below do not
apply because there is no further security check.

JES Job Monitor issues all JES operator commands requested by a user through an
extended MCS (EMCS) console, whose name is controlled with the CONSOLE_NAME
directive, as documented in “FEJJCNFG, JES Job Monitor configuration file” on
page 24.

This setup allows the security administrator to define granular command execution
permits using the OPERCMDS and CONSOLE classes.
v In order to use an EMCS console, a user must have (at least) READ authority to

the MVS.MCSOPER.console-name profile in the OPERCMDS class. Note that if no
profile is defined, the system will grant the authority request.

v In order to execute a JES operator command, a user must have sufficient
authority to the JES%.** (or more specific) profile in the OPERCMDS class. Note
that if no profile is defined, or the OPERCMDS class is not active, JES will fail the
command.

v The security administrator can also require that a user must use JES Job Monitor
when executing the operator command by specifying WHEN(CONSOLE(JMON)) on
the PERMIT definition. The CONSOLE class must be active for this setup to work.
Note that the CONSOLE class being active is sufficient; no profiles are checked for
EMCS consoles.

Assuming the identity of the JES Job Monitor server by creating a JMON console
from a TSO session is prevented by your security software. Even though the

Chapter 10. Security considerations 155

console can be created, the point of entry is different (JES Job Monitor versus TSO).
JES commands issued from this console will fail the security check, if your security
is set up as documented in this publication and the user does not have authority to
JES commands through other means.

Note that JES Job Monitor cannot create the console when a command must be
executed if the console name is already in use. To prevent this, the system
programmer can set the GEN_CONSOLE_NAME=ON directive in the JES Job Monitor
configuration file or the security administrator can define security profiles to stop
TSO users from creating a console. The following sample RACF commands prevent
everyone (except those permitted) from creating a TSO or SDSF console:
v RDEFINE TSOAUTH CONSOLE UACC(NONE)

v PERMIT CONSOLE CLASS(TSOAUTH) ACCESS(READ) ID(#userid)

v RDEFINE SDSF ISFCMD.ODSP.ULOG.* UACC(NONE)

v PERMIT ISFCMD.ODSP.ULOG.* CLASS(SDSF) ACCESS(READ) ID(#userid)

Note: Without being authorized for these operator commands, users will still be
able to submit jobs and read job output through the JES Job Monitor, if they
have sufficient authority to possible profiles that protect these resources
(such as those in the JESINPUT, JESJOBS and JESSPOOL classes).

Refer to Security Server RACF Security Administrator's Guide (SA22-7683) for more
information on operator command protection.

Access to spool files
JES Job Monitor allows browse access to all spool files by default. This can be
changed with the LIMIT_VIEW directive, as documented in “FEJJCNFG, JES Job
Monitor configuration file” on page 24.

Table 24. LIMIT_VIEW browse permission matrix

Job owner

LIMIT_VIEW User Other

USERID Allowed Not allowed

NOLIMIT (default) Allowed Allowed if permitted by
security profiles or when the
JESSPOOL class is not active

To limit users to their own jobs on the JES spool, define the "LIMIT_VIEW=USERID"
statement in the JES Job Monitor configuration file, FEJJCNFG. If the users need
access to a wider range of jobs, but not all, use the standard spool file protection
features of your security product, such as the JESSPOOL class.

When defining further protection, keep in mind that JES Job Monitor uses SAPI
(SYSOUT application program interface) to access the spool. This implies that the
user needs at least UPDATE access to the spool files, even for browse functionality.
This requisite does not apply if you run z/OS 1.7 (z/OS 1.8 for JES3) or higher.
Here READ permission is sufficient for browse functionality.

Refer to Security Server RACF Security Administrator's Guide (SA22-7683) for more
information on JES spool file protection.

156 IBM Rational Developer for System z: Host Configuration Guide

SSL encrypted communication
External (client-host) communication can be encrypted using SSL (Secure Socket
Layer). This feature is disabled by default and is controlled by the settings in
ssl.properties, as documented in “(Optional) RSE SSL encryption” on page 85.

RSE daemon and RSE server support different mechanisms to store certificates due
to architectural differences between the two. This implies that SSL definitions and
certificates are required for both RSE daemon and RSE server. A shared certificate
can be used if RSE daemon and RSE server use the same certificate management
method.

Table 25. SSL certificate storage mechanisms

Certificate storage
Created and
managed by RSE daemon RSE server

key ring SAF compliant
security product

supported supported

key database z/OS UNIX's
gskkyman

supported /

key store Java's keytool / supported

Note: SAF-compliant key rings are the preferred method for managing certificates.

SAF-compliant key rings can store the certificate’s private key either in the
security database or by using ICSF (Integrated Cryptographic Service
Facility), the interface to System z cryptographic hardware.

ICSF is recommended for the storage of the private keys associated with
digital certificates, because it is a more secure solution than non-ICSF
private key management. ICSF ensures that private keys are encrypted
under the ICSF master key and that access to them is controlled by general
resources in the CSFKEYS and CSFSERV security classes. In addition,
operational performance is improved because ICSF utilizes the hardware
Cryptographic Coprocessor.

RSE daemon uses System SSL functions to manage SSL encrypted communications.
This implies that SYS1.SIEALNKE must be program controlled by your security
software and available to RSE via LINKLIST or the STEPLIB directive in
rsed.envvars.

The RSE user ID (STCRSE in the sample commands below) needs authorization to
access his key ring and the related certificates when SAF-compliant key rings are
used for either RSE daemon or RSE server.
v RDEFINE FACILITY IRR.DIGTCERT.LIST UACC(NONE)

v RDEFINE FACILITY IRR.DIGTCERT.LISTRING UACC(NONE)

v PERMIT IRR.DIGTCERT.LIST CLASS(FACILITY) ACCESS(READ) ID(stcrse)

v PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ACCESS(READ) ID(stcrse)

v SETROPTS RACLIST(FACILITY) REFRESH

Refer to Appendix A, “Setting up SSL and X.509 authentication,” on page 269 for
more details on activating SSL for Developer for System z.

Chapter 10. Security considerations 157

Client authentication using X.509 certificates
RSE daemon supports users authenticating themselves with an X.509 certificate.
Using SSL encrypted communication is a prerequisite for this function, as it is an
extension to the host authentication with a certificate used in SSL.

RSE daemon starts the client authentication process by validating the client
certificate. Some key aspects that are checked are the dates the certificate is valid
and the trust-worthiness of the Certificate Authority (CA) used to sign the
certificate. Optionally, a (third party) Certificate Revocation List (CRL) can also be
consulted.

After RSE daemon validates the certificate, it is processed for authentication. The
certificate is passed on to your security product for authentication, unless
rsed.envvars directive enable.certificate.mapping is set to false, at which point
RSE daemon will do the authentication.

If successful, the authentication process will determine the user ID to be used for
this session, which is then tested by RSE daemon to ensure it is usable on the host
system where RSE daemon is running

The last check (which is done for every authentication mechanism, not just X.509
certificates) verifies that the user ID is allowed to use Developer for System z.

If you are familiar with the SSL security classifications used by TCP/IP, the
combination of these validation steps match the “Level 3 Client authentication”
specifications (the highest available).

Certificate Authority (CA) validation
Part of the certificate validation process includes checking that the certificate was
signed by a Certificate Authority (CA) you trust. In order to do so, RSE daemon
must have access to a certificate that identifies the CA.

When using the gskkyman key database for your SSL connection, the CA
certificate must be added to the key database.

When using an SAF key ring (which is the advised method), you must add the CA
certificate to your security database as a CERTAUTH certificate with the TRUST or
HIGHTRUST attribute, as shown in this sample RACF command:
v RACDCERT CERTAUTH ADD(dsn) HIGHTRUST WITHLABEL(’label’)

Note that most security products already have the certificates for well known CA’s
available in their database with a NOTRUST status. Use the following sample
RACF commands to list the existing CA certificates and mark one as trusted based
on the label assigned to it.
v RACDCERT CERTAUTH LIST

v RACDCERT CERTAUTH ALTER(LABEL(’HighTrust CA’)) HIGHTRUST

Note: The HIGHTRUST status is required if you rely on RACF authenticating the
user based upon the HostIdMappings extension in the certificate. Refer to
“Authentication by your security software” on page 159 for more
information.

Once the CA certificate is added to your security database, it must be connected to
the RSE key ring, as shown in this sample RACF command:

158 IBM Rational Developer for System z: Host Configuration Guide

v RACDCERT ID(stcrse) CONNECT(CERTAUTH LABEL(’HighTrust CA’)
RING(rdzssl.racf))

Refer to Security Server RACF Command Language Reference (SA22-7687) for more
information on the RACDCERT command.

Attention: If you rely on RSE daemon instead of your security software to authenticate a
user you must be cautious not to mix CAs with a TRUST and HIGHTRUST status in your
SAF key ring or gskkyman key database. RSE daemon is not able to differentiate between
the two, so certificates signed by a CA with TRUST status will be valid for user ID
authentication purposes.

(Optional) Query a Certificate Revocation List (CRL)
If desired, you can instruct RSE daemon to check one or more Certificate
Revocation List(s) (CRL) to add extra security to the validation process. This is
done by adding CRL-related environment variables to rsed.envvars. Refer to
“rsed.envvars, RSE configuration file” on page 28 for information on these sample
variables:
v GSK_CRL_SECURITY_LEVEL
v GSK_LDAP_SERVER
v GSK_LDAP_PORT
v GSK_LDAP_USER
v GSK_LDAP_PASSWORD

Refer to the Cryptographic Services System Secure Sockets Layer Programming
(SC24-5901) for more information on these and other environment variables used
by z/OS System SSL.

Note: Be careful when specifying other z/OS System SSL environment variables
(GSK_*) in rsed.envvars, as they might change the way RSE daemon
handles SSL connections and certificate authentication.

Authentication by your security software
RACF performs several checks to authenticate a certificate and return the
associated user ID. Note that other security products might do this differently.
Refer to your security product documentation for more information on the
initACEE function used to do the authentication (query mode).
1. RACF checks if the certificate is defined in the DIGTCERT class. If so, RACF

returns the user ID that was associated with this certificate when it was added
to the RACF database.
Certificates are defined to RACF using the RACDCERT command, as in the
following example:
RACDCERT ID(userid) ADD(dsn) TRUST WITHLABEL(’label’)

2. If the certificate is not defined, RACF checks to see if there is a matching
certificate name filter defined in the DIGTNMAP or DIGTCRIT classes. If so, it
returns the user ID associated with the most specific matching filter.

Note: It is advised not to use name filters for certificates used by Developer for
System z, as these filters map all certificates to a single user ID. The
result is that all your Developer for System z users will log on with the
same user ID.

Chapter 10. Security considerations 159

3. If there is no matching name filter, RACF locates the HostIdMappings
certificate extension and extracts the embedded user ID and host name pair. If
found and validated, RACF returns the user ID defined within the
HostIdMappings extension.
The user ID and host name pair is valid if all these conditions are true:
v The CA certificate used to sign this certificate is marked as HIGHTRUST in

the DIGTCERT class.
v The user ID stored in the extension has a valid length (1 to 8 characters).
v The user ID assigned to RSE daemon has (at least) READ authority to the

IRR.HOST.hostname profile in the SERVAUTH class, where hostname is the host
name stored in the extension. This is usually a domain name, such as
CDFMVS08.RALEIGH.IBM.COM.

The definition of the HostIdMappings extension in ASN.1 syntax is:
id-ce-hostIdMappings OBJECT IDENTIFIER::= {1 3 18 0 2 18 1}
HostIdMappings::= SET OF HostIdMapping
HostIdMapping::= SEQUENCE{

hostName IMPLICIT[1] IA5String,
subjectId IMPLICIT[2] IA5String,
proofOfIdPossession IdProof OPTIONAL

}
IdProof::= SEQUENCE{

secret OCTET STRING,
encryptionAlgorithm OBJECT IDENTIFIER

}

Note: A HostIdMappings extension is not honored if the target user ID was
created after the start of the validity period for the certificate containing
the HostIdMappings extension. Therefore, if you are creating user IDs
specifically for certificates with HostIdMappings extensions, make sure
that you create the user IDs before the certificate requests are submitted.

Refer to Security Server RACF Security Administrator’s Guide (SA22-7683) for
more information on X.509 certificates, how they are managed by RACF, and
how to define certificate name filters. Refer to Security Server RACF Command
Language Reference (SA22-7687) for more information on the RACDCERT
command.

Authentication by RSE daemon
Developer for System z can do basic X.509 certificate authentication without
relying on your security product. Authentication done by RSE daemon requires a
user ID and host name to be defined in a certificate extension, and is only
activated if the enable.certificate.mapping directive in rsed.envvars is set to
FALSE.

This function is intended to be used if your security product does not support
authenticating a user based upon an X.509 certificate, or if your certificate would
fail the test(s) done by your security product (for example, the certificate has a
faulty identifier for the HostIdMappings extension and there is no name filter or
definition in DIGTCERT).

The client will query the user for the extension identifier (OID) to use, which is by
default the HostIdMappings OID, {1 3 18 0 2 18 1}.

RSE daemon will extract the user ID and host name from it using the format of the
HostIdMappings extension. This format is described in “Authentication by your
security software” on page 159.

160 IBM Rational Developer for System z: Host Configuration Guide

The user ID and host name pair is valid if all these conditions are true:
v The user ID stored in the extension has a valid length (1 to 8 characters).
v The user ID assigned to RSE daemon has (at least) READ authority to the

IRR.HOST.hostname profile in the SERVAUTH class, where hostname is the host
name stored in the extension. This is usually a domain name, such as
CDFMVS08.RALEIGH.IBM.COM.

Attention: It is up to the security administrator to ensure that all CAs known to RSE
daemon are highly trusted, because RSE daemon cannot check if the one who signed the
client certificate is highly trusted or just trusted. See “Certificate Authority (CA) validation”
on page 158 for more information on accessible CA certificates.

Port Of Entry (POE) checking
Developer for System z supports Port Of Entry (POE) checking, which allows host
access only to trusted TCP/IP addresses. This feature is disabled by default and
requires the definition of the BPX.POE security profile, as shown in the following
sample RACF commands:
v RDEFINE FACILITY BPX.POE UACC(NONE)

v PERMIT BPX.POE CLASS(FACILITY) ACCESS(READ) ID(STCRSE)

v SETROPTS RACLIST(FACILITY) REFRESH

Note:

v RSE must be configured to use POE by uncommenting the
“enable.port.of.entry=true” option in rsed.envvars, as documented in
“Defining extra Java startup parameters with _RSE_JAVAOPTS” on page
37.

v The RSE user ID STCRSE requires UID(0) when this profile is not defined
and POE checking is enabled in rsed.envvars.

v Defining BPX.POE will impact other TC/PIP applications that support POE
checking, such as INETD.

v Security zones (EZB.NETACCESS.** profiles, which are IP address ranges)
should be set up in the SERVAUTH class to use the full strength of POE
checking.

Refer to Communications Server IP Configuration Guide (SC31-8775) for more
information on network access control using POE checking.

CICSTS security
Developer for System z allows, through Application Deployment Manager, CICS
administrators to control which CICS resource definitions are editable by the
developer, their default values, and the display of a CICS resource definition by
means of the CICS Resource Definition (CRD) server. Refer to Chapter 15, “CICSTS
considerations,” on page 231 for more information on the required CICS TS
security definitions.

CRD repository
The CRD server repository VSAM data set holds all the default resource definitions
and must therefore be protected against updates, but developers must be allowed
to read the values stored here.

Chapter 10. Security considerations 161

CICS transactions
Developer for System z supplies multiple transactions that are used by the CRD
server when defining and inquiring CICS resources. When the transaction is
attached, CICS resource security checking, if enabled, insures that the user ID is
authorized to run the transaction ID.

SSL encrypted communication
The Application Deployment Manager client uses CICS TS Web Services or the
RESTful interface to invoke the CRD server. The usage of SSL for this
communication is controlled by the CICS TS TCPIPSERVICE definition, as
documented in and RACF Security Guide for CICS TS.

SCLM security
The SCLM Developer Toolkit service offers optional security functionality for the
Build, Promote, and Deploy functions.

If security is enabled for a function by the SCLM administrator, SAF calls are made
to verify authority to execute the protected function with the caller’s or a surrogate
user ID.

Refer to SCLM Developer Toolkit Administrator’s Guide (SC23-9801), for more
information on the required SCLM security definitions.

Developer for System z configuration files
There are several Developer for System z configuration files whose directives
impact the security setup. Based upon the information in this chapter, the security
administrator and systems programmer can decide what the settings should be for
the following directives.

JES Job Monitor - FEJJCNFG
v LIMIT_COMMANDS={USERID | LIMITED | NOLIMIT}

Define against which jobs actions can be done (excluding browse and submit).
For more information, see “Actions against jobs - target limitations” on page 153.

v LIMIT_VIEW={USERID | NOLIMIT}

Define which spool files can be browsed. For more information, see “Access to
spool files” on page 156.

v APPLID={FEKAPPL | *}

Application ID used for PassTicket creation/validation. For more information,
see “Using PassTickets” on page 152.

Note: Details on these and other FEJJCNFG directives are available in “FEJJCNFG,
JES Job Monitor configuration file” on page 24.

RSE - rsed.envvars
v (_RSE_JAVAOPTS) -DDENY_PASSWORD_SAVE={true | false}

Deny users to save their host password on the client. For more information, see
“Defining extra Java startup parameters with _RSE_JAVAOPTS” on page 37.

v (_RSE_JAVAOPTS) -DDSTORE_IDLE_SHUTDOWN_TIMEOUT=value

Timer to disconnect idle clients. For more information, see “Defining extra Java
startup parameters with _RSE_JAVAOPTS” on page 37.

162 IBM Rational Developer for System z: Host Configuration Guide

v (_RSE_JAVAOPTS) -DAPPLID={FEKAPPL | *}

Application ID used for PassTicket creation/validation. For more information,
see “Using PassTickets” on page 152.

v (_RSE_JAVAOPTS) -Denable.port.of.entry={true | false}

Enable Port Of Entry checking. For more information, see “Port Of Entry (POE)
checking” on page 161.

v (_RSE_JAVAOPTS) -Denable.certificate.mapping={true | false}

Use your security product to authenticate users with an X.509 certificate. For
more information, see “Client authentication using X.509 certificates” on page
158.

v (_RSE_JAVAOPTS) -Ddaemon.log={/var/rdz/logs | *}

Location of the audit log files. For more information, see “Audit logging” on
page 152.

Note: Details on these and other rsed.envvars directives are available in
“rsed.envvars, RSE configuration file” on page 28.

RSE - ssl.properties
v daemon_keydb_file={SAF key ring name | gskkyman key database name}

Location of the RSE daemon certificate. For more information, see “SSL
encrypted communication” on page 157.

v daemon_key_label=certificate label

Name of the RSE daemon certificate. For more information, see “SSL encrypted
communication” on page 157.

v server_keystore_file={SAF key ring name | Java key store name}

Location of the RSE server certificate. For more information, see “SSL encrypted
communication” on page 157.

v server_keystore_label=certificate label

Name of the RSE server certificate. For more information, see “SSL encrypted
communication” on page 157.

v server_keystore_type={JKS | JCERACFKS | JCECCARACFKS}

Type of key store used (Java key store or SAF key ring). For more information,
see “SSL encrypted communication” on page 157.

Note: Details on these and other ssl.properties directives are available in
“(Optional) RSE SSL encryption” on page 85.

Security definitions
Customize and submit sample member FEKRACF, which has sample RACF and
z/OS UNIX commands to create the basic security definitions for Developer for
System z.

FEKRACF is located in FEK.#CUST.JCL, unless you specified a different location when
you customized and submitted job FEK.SFEKSAMP(FEKSETUP). See “Customization
setup” on page 13 for more details.

Refer to the RACF Command Language Reference (SA22–7687), for more information
on RACF commands.

Note:

Chapter 10. Security considerations 163

v For those sites that use CA ACF2TM for z/OS, please refer to the following
link, https://support.ca.com/irj/portal/kbtech?ipLogNrow=0
&docid=492389&searchID=TEC492389, for details on the security commands
necessary to properly configure Developer for System z.

v For those sites that use CA Top Secret® for z/OS, please refer to your
product page on the CA support site (https://support.ca.com) and check
for the related Developer for System z Knowledge Document. This
Knowledge Document has details on the security commands necessary to
properly configure Developer for System z.

The following sections describe the required steps, optional configuration and
possible alternatives.

Requirements and checklist
To complete the security setup, the security administrator needs to know the
values listed in Table 26. These values were defined during previous steps of the
installation and customization of Developer for System z.

Table 26. Security setup variables

Description

v Default value

v Where to find the answer Value

Developer for System z
product high level qualifier

v FEK

v SMP/E installation

Developer for System z
customization high level
qualifier

v FEK.#CUST

v FEK.SFEKSAMP(FEKSETUP),
as described in
“Customization setup” on
page 13.

JES Job Monitor started task
name

v JMON

v FEK.#CUST.PROCLIB(JMON),
as described in “PROCLIB
changes” on page 19.

RSE daemon started task
name

v RSED

v FEK.#CUST.PROCLIB(RSED),
as described in “PROCLIB
changes” on page 19.

Lock daemon started task
name

v LOCKD

v FEK.#CUST.PROCLIB(LOCKD),
as described in “PROCLIB
changes” on page 19.

Application ID v FEKAPPL

v /etc/rdz/rsed.envvars, as
described in “Defining
extra Java startup
parameters with
_RSE_JAVAOPTS” on page
37

The following list is an overview of the required actions to complete the basic
security setup of Developer for System z. As documented in the sections below,
different methods can be used to fulfill these requirements, depending on the

164 IBM Rational Developer for System z: Host Configuration Guide

desired security level. Refer to the previous sections for information on the security
setup of optional Developer for System z services.
v “Activate security settings and classes”
v “Define an OMVS segment for Developer for System z users” on page 166
v “Define data set profiles” on page 166
v “Define the Developer for System z started tasks” on page 169
v “Define JES command security” on page 170
v “Define RSE as a secure z/OS UNIX server” on page 171
v “Define MVS program controlled libraries for RSE” on page 172
v “Define application protection for RSE” on page 172
v “Define PassTicket support for RSE” on page 173
v “Define z/OS UNIX program controlled files for RSE” on page 174
v “Verify security settings” on page 174

Activate security settings and classes
Developer for System z utilizes a variety of security mechanisms to ensure a secure
and controlled host environment for the client. In order to do so, several classes
and security settings must be active, as shown with the following sample RACF
commands:
v Display current settings

– SETROPTS LIST

v Activate facility class for z/OS UNIX and digital certificate profiles
– SETROPTS GENERIC(FACILITY)
– SETROPTS CLASSACT(FACILITY) RACLIST(FACILITY)

v Activate started task definitions
– SETROPTS GENERIC(STARTED)
– RDEFINE STARTED ** STDATA(USER(=MEMBER) GROUP(STCGROUP) TRACE(YES))
– SETROPTS CLASSACT(STARTED) RACLIST(STARTED)

v Activate console security for JES Job Monitor
– SETROPTS GENERIC(CONSOLE)
– SETROPTS CLASSACT(CONSOLE) RACLIST(CONSOLE)

v Activate operator command protection for JES Job Monitor
– SETROPTS GENERIC(OPERCMDS)
– SETROPTS CLASSACT(OPERCMDS) RACLIST(OPERCMDS)

v Activate application protection for RSE
– SETROPTS GENERIC(APPL)
– SETROPTS CLASSACT(APPL) RACLIST(APPL)

v Activate secured signon using PassTickets for RSE
– SETROPTS GENERIC(PTKTDATA)
– SETROPTS CLASSACT(PTKTDATA) RACLIST(PTKTDATA)

v Activate program control to ensure that only trusted code can be loaded by RSE
– RDEFINE PROGRAM ** ADDMEM(’SYS1.CMDLIB’//NOPADCHK) UACC(READ)
– SETROPTS WHEN(PROGRAM)

Note: Do not create the ** profile if you already have a * profile in the
PROGRAM class. It obscures and complicates the search path used by your
security software. In this case, you must merge the existing * and the
new ** definitions. IBM recommends to use the ** profile, as
documented in Security Server RACF Security Administrator's Guide
(SA22-7683).

Chapter 10. Security considerations 165

Attention: Some products, such as FTP, require being program controlled if "WHEN
PROGRAM" is active. Test this before activating it on a production system.

v (Optional) Activate X.509 HostIdMappings and extended Port Of Entry (POE)
support
– SETROPTS GENERIC(SERVAUTH)
– SETROPTS CLASSACT(SERVAUTH) RACLIST(SERVAUTH)

Define an OMVS segment for Developer for System z users
A RACF OMVS segment (or equivalent) that specifies a valid non-zero z/OS UNIX
user ID (UID), home directory, and shell command must be defined for each user
of Developer for System z. Their default group also requires an OMVS segment
with a group id.

Replace in the following sample RACF commands the #userid, #user-identifier,
#group-name and #group-identifier placeholders with actual values:
v ALTUSER #userid

OMVS(UID(#user-identifier) HOME(/u/#userid) PROGRAM(/bin/sh) NOASSIZEMAX)
v ALTGROUP #group-name OMVS(GID(#group-identifier))

Although it is advised not to do so, you can use the shared OMVS segment
defined in the BPX.DEFAULT.USER profile of the FACILITY class to fulfill the OMVS
segment requirement for Developer for System z.

Define data set profiles
READ access for users and ALTER for system programmers suffices for most
Developer for System z data sets. Replace the #sysprog placeholder with valid user
IDs or RACF group names. Also ask the system programmer who installed and
configured the product for the correct data set names. FEK is the default high-level
qualifier used during installation and FEK.#CUST is the default high-level qualifier
for data sets created during the customization process.
v ADDGROUP (FEK) OWNER(IBMUSER) SUPGROUP(SYS1)

DATA(’RATIONAL DEVELOPER FOR SYSTEM Z - HLQ STUB’)
v ADDSD ’FEK.*.**’ UACC(READ)

DATA(’RATIONAL DEVELOPER FOR SYSTEM Z’)
v PERMIT ’FEK.*.**’ CLASS(DATASET) ACCESS(ALTER) ID(#sysprog)
v SETROPTS GENERIC(DATASET) REFRESH

Note:

v You are strongly advised to protect FEK.SFEKAUTH against updates since
this data set is APF authorized. The same is true for FEK.SFEKLOAD and
FEK.SFEKLPA, but here because these data sets are program controlled.

v The sample commands in this publication and in the FEKRACF job assume
that EGN (Enhanced Generic Naming) is active. This allows the usage of
the ** qualifier to represent any number of qualifiers in the DATASET class.
Substitute ** with * if EGN is not active on your system. Refer to Security
Server RACF Security Administrator's Guide (SA22-7683) for more
information on EGN.

Some of the optional Developer for System z components require additional
security data set profiles. Replace the #sysprog, #ram-developer and #cicsadmin
placeholders with valid user ID’s or RACF group names:
v If SCLM Developer Toolkit’s long/short name translation is used, then users

require UPDATE access to the mapping VSAM, FEK.#CUST.LSTRANS.FILE.

166 IBM Rational Developer for System z: Host Configuration Guide

– ADDSD ’FEK.#CUST.LSTRANS.*.**’ UACC(UPDATE)
DATA(’RATIONAL DEVELOPER FOR SYSTEM Z - SCLMDT’)

– PERMIT ’FEK.#CUST.LSTRANS.*.**’ CLASS(DATASET) ACCESS(ALTER) ID(#sysprog)
– SETROPTS GENERIC(DATASET) REFRESH

v CARMA RAM (Repository Access Manager) developers require UPDATE access to
the CARMA VSAMs, FEK.#CUST.CRA*.
– ADDSD ’FEK.#CUST.CRA*.**’ UACC(READ)

DATA(’RATIONAL DEVELOPER FOR SYSTEM Z - CARMA’)
– PERMIT ’FEK.#CUST.CRA*.**’ CLASS(DATASET) ACCESS(ALTER) ID(#sysprog)
– PERMIT ’FEK.#CUST.CRA*.**’ CLASS(DATASET) ACCESS(UPDATE) ID(#ram-developer)
– SETROPTS GENERIC(DATASET) REFRESH

v If Application Deployment Manager’s CRD server (CICS Resource Definition) is
used, then CICS administrators require UPDATE access to the CRD repository
VSAM.
– ADDSD ’FEK.#CUST.ADNREP*.**’ UACC(READ)

DATA(’RATIONAL DEVELOPER FOR SYSTEM Z - ADN’)
– PERMIT ’FEK.#CUST.ADNREP*.**’ CLASS(DATASET) ACCESS(ALTER) ID(#sysprog)
– PERMIT ’FEK.#CUST.ADNREP*.**’ CLASS(DATASET) ACCESS(UPDATE) ID(#cicsadmin)
– SETROPTS GENERIC(DATASET) REFRESH

v If Application Deployment Manager’s manifest repository is defined, then all
CICS Transaction Server users require UPDATE access to the manifest repository
VSAM.
– ADDSD ’FEK.#CUST.ADNMAN*.**’ UACC(UPDATE)

DATA(’RATIONAL DEVELOPER FOR SYSTEM Z - ADN’)
– PERMIT ’FEK.#CUST.ADNMAN*.**’ CLASS(DATASET) ACCESS(ALTER) ID(#sysprog)
– SETROPTS GENERIC(DATASET) REFRESH

Use the following sample RACF commands for a more secure setup where READ
access is also controlled.
v uacc(none) data set protection

– ADDGROUP (FEK)
DATA(’RATIONAL DEVELOPER FOR SYSTEM Z - HLQ STUB’)
OWNER(IBMUSER) SUPGROUP(SYS1)"

– ADDSD ’FEK.*.**’ UACC(NONE)
DATA(’RATIONAL DEVELOPER FOR SYSTEM Z’)

– ADDSD ’FEK.SFEKAUTH’ UACC(NONE)
DATA(’RATIONAL DEVELOPER FOR SYSTEM Z’)

– ADDSD ’FEK.SFEKLOAD’ UACC(NONE)
DATA(’RATIONAL DEVELOPER FOR SYSTEM Z’)

– ADDSD ’FEK.SFEKPROC’ UACC(NONE)
DATA(’RATIONAL DEVELOPER FOR SYSTEM Z’)

– ADDSD ’FEK.#CUST.PARMLIB’ UACC(NONE)
DATA(’RATIONAL DEVELOPER FOR SYSTEM Z’)

– ADDSD ’FEK.#CUST.CNTL’ UACC(NONE)
DATA(’RATIONAL DEVELOPER FOR SYSTEM Z’)

– ADDSD ’FEK.#CUST.LSTRANS.*.**’ UACC(NONE)
DATA(’RATIONAL DEVELOPER FOR SYSTEM Z - SCLMDT’)

– ADDSD ’FEK.#CUST.CRA*.**’ UACC(NONE)
DATA(’RATIONAL DEVELOPER FOR SYSTEM Z - CARMA’)

– ADDSD ’FEK.#CUST.ADNREP*.**’ UACC(NONE)
DATA(’RATIONAL DEVELOPER FOR SYSTEM Z - ADN’)

– ADDSD ’FEK.#CUST.ADNMAN*.**’ UACC(NONE)
DATA(’RATIONAL DEVELOPER FOR SYSTEM Z - ADN’)

v permit system programmer to manage all libraries
– PERMIT ’FEK.*.** CLASS(DATASET) ACCESS(ALTER) ID(#sysprog)
– PERMIT ’FEK.SFEKAUTH CLASS(DATASET) ACCESS(ALTER) ID(#sysprog)
– PERMIT ’FEK.SFEKLOAD CLASS(DATASET) ACCESS(ALTER) ID(#sysprog)
– PERMIT ’FEK.SFEKLOAD CLASS(DATASET) ACCESS(ALTER) ID(#sysprog)

Chapter 10. Security considerations 167

– PERMIT ’FEK.SFEKLOAD CLASS(DATASET) ACCESS(ALTER) ID(#sysprog)
– PERMIT ’FEK.SFEKPROC CLASS(DATASET) ACCESS(ALTER) ID(#sysprog)
– PERMIT ’FEK.#CUST.PARMLIB CLASS(DATASET) ACCESS(ALTER) ID(#sysprog)
– PERMIT ’FEK.#CUST.CNTL CLASS(DATASET) ACCESS(ALTER) ID(#sysprog)
– PERMIT ’FEK.#CUST.LSTRANS.*.**’ CLASS(DATASET) ACCESS(ALTER) ID(#sysprog)
– PERMIT ’FEK.#CUST.CRA*.**’ CLASS(DATASET) ACCESS(ALTER) ID(#sysprog)
– PERMIT ’FEK.#CUST.ADNREP*.**’ CLASS(DATASET) ACCESS(ALTER) ID(#sysprog)
– PERMIT ’FEK.#CUST.ADNMAN*.**’ CLASS(DATASET) ACCESS(ALTER) ID(#sysprog)

v permit clients to access the load and exec libraries
– PERMIT ’FEK.SFEKAUTH’ CLASS(DATASET) ACCESS(READ) ID(*)
– PERMIT ’FEK.SFEKLOAD’ CLASS(DATASET) ACCESS(READ) ID(*)
– PERMIT ’FEK.SFEKPROC’ CLASS(DATASET) ACCESS(READ) ID(*)
– PERMIT ’FEK.#CUST.CNTL’ CLASS(DATASET) ACCESS(READ) ID(*)

Note: No permits are needed for FEK.SFEKLPA, as all code that resides in LPA is
accessible by everyone.

v permit JES Job Monitor to access the load & parameter library
– PERMIT ’FEK.SFEKAUTH’ CLASS(DATASET) ACCESS(READ) ID(STCJMON)
– PERMIT ’FEK.#CUST.PARMLIB’ CLASS(DATASET) ACCESS(READ) ID(STCJMON)

v (optional) permit clients to update the long/short name translation VSAM for
SCLMDT
– PERMIT ’FEK.#CUST.LSTRANS.*.**’ CLASS(DATASET) ACCESS(UPDATE) ID(*)

v (optional) permit RAM developers to update the CARMA VSAMs for CARMA
– PERMIT ’FEK.#CUST.CRA*.**’ CLASS(DATASET) ACCESS(UPDATE) ID(#ram-developer)

v (optional) permit CICS users to read the CRD repository VSAM for Application
Deployment Manager
– PERMIT ’FEK.#CUST.ADNREP*.**’ CLASS(DATASET) ACCESS(READ) ID(*)

v (optional) permit CICS administrators to update the CRD repository VSAM for
Application Deployment Manager
– PERMIT ’FEK.#CUST.ADNREP*.**’ CLASS(DATASET) ACCESS(UPDATE) ID(#cicsadmin)

v (optional) permit CICS users to update the manifest repository VSAM for
Application Deployment Manager
– PERMIT ’FEK.#CUST.ADNMAN*.**’ CLASS(DATASET) ACCESS(UPDATE) ID(*)

v (optional) permit CICS TS server to access the load library for bidi and
Application Deployment Manager
– PERMIT ’FEK.SFEKLOAD’ CLASS(DATASET) ACCESS(READ) ID(#cicsts)

v (optional) permit DB2 server to access the exec library for DB2 stored procedure
builder
– PERMIT ’FEK.SFEKPROC’ CLASS(DATASET) ACCESS(READ) ID(#db2)

v activate security profiles
– SETROPTS GENERIC(DATASET) REFRESH

When controlling READ access to system data sets, you must provide Developer for
System z servers and users permission to READ the following data sets:
v CEE.SCEERUN

v CEE.SCEERUN2

v CBC.SCLBDLL

v ISP.SISPLOAD

v ISP.SISPLPA

v SYS1.LINKLIB

v SYS1.SIEALNKE

168 IBM Rational Developer for System z: Host Configuration Guide

v REXX.V1R4M0.SEAGLPA

Note: When you use the Alternate Library for REXX product package, the default
REXX runtime library name is REXX.*.SEAGALT. instead of REXX.*.SEAGLPA, as
used in the sample above.

Define the Developer for System z started tasks
The following sample RACF commands create the JMON, RSED, and LOCKD started
tasks, with protected user IDs (STCJMON, STCRSE, and STCLOCK respectively) and
group STCGROUP assigned to them. Replace the #group-id and #user-id-*
placeholders with valid OMVS IDs.
v ADDGROUP STCGROUP OMVS(GID(#group-id))

DATA(’GROUP WITH OMVS SEGMENT FOR STARTED TASKS’)
v ADDUSER STCJMON DFLTGROUP(STCGROUP) NOPASSWORD NAME(’RDZ - JES JOBMONITOR’)

OMVS(UID(#user-id-jmon) HOME(/tmp) PROGRAM(/bin/sh) NOASSIZEMAX
NOTHREADSMAX)
DATA(’RATIONAL DEVELOPER FOR SYSTEM Z’)

v ADDUSER STCRSE DFLTGROUP(STCGROUP) NOPASSWORD NAME(’RDZ - RSE DAEMON’)
OMVS(UID(#user-id-rse) HOME(/tmp) PROGRAM(/bin/sh) ASSIZEMAX(2147483647)
NOTHREADSMAX)
DATA(’RATIONAL DEVELOPER FOR SYSTEM Z’)

v ADDUSER STCLOCK DFLTGROUP(STCGROUP) NOPASSWORD NAME(’RDZ - LOCK DAEMON’)
OMVS(UID(#user-id-lock) HOME(/tmp) PROGRAM(/bin/sh) NOASSIZEMAX)
NOTHREADSMAX)
DATA(’RATIONAL DEVELOPER FOR SYSTEM Z’)

v RDEFINE STARTED JMON.* DATA(’RDZ - JES JOBMONITOR’)
STDATA(USER(STCJMON) GROUP(STCGROUP) TRUSTED(NO))

v RDEFINE STARTED RSED.* DATA(’RDZ - RSE DAEMON’)
STDATA(USER(STCRSE) GROUP(STCGROUP) TRUSTED(NO))

v RDEFINE STARTED LOCKD.* DATA(’RDZ - LOCK DAEMON’)
STDATA(USER(STCLOCK) GROUP(STCGROUP) TRUSTED(NO))

v SETROPTS RACLIST(STARTED) REFRESH

Notes:

1. Ensure that the started tasks user IDs are protected by specifying the
NOPASSWORD keyword.

2. Ensure that RSE server has a unique OMVS uid due to the z/OS UNIX related
privileges granted to this uid.

3. RSE daemon requires a large address space size (2GB) for proper operation.
You should set this value in the ASSIZEMAX variable of the OMVS segment for
user ID STCRSE. This to ensure that RSE daemon will get the required region
size, regardless of changes to MAXASSIZE in SYS1.PARMLIB(BPXPRMxx).

4. RSE also requires a large number of threads for proper operation. You can set
the limit in the THREADSMAX variable of the OMVS segment for user ID STCRSE.
This ensures that RSE will get the required thread limit, regardless of changes
to MAXTHREADS or MAXTHREADTASKS in SYS1.PARMLIB(BPXPRMxx). Refer to
Chapter 13, “Tuning considerations,” on page 195 to determine the correct
value for the thread limit.

5. User ID STCJMON is another good candidate for setting THREADSMAX in the OMVS
segment, because JES Job Monitor uses a thread per client connection.

You might want to consider making the STCRSE user ID restricted. Users with the
RESTRICTED attribute cannot access protected (MVS) resources they are not
specifically authorized to access.
ALTUSER STCRSE RESTRICTED

Chapter 10. Security considerations 169

To ensure that restricted users do not gain access to z/OS UNIX file system
resources through the “other” permission bits, you must define the
RESTRICTED.FILESYS.ACCESS profile in the UNIXPRIV class with UACC(NONE). Refer to
Security Server RACF Security Administrator's Guide (SA22-7683) for more
information on restricting user IDs.

Attention: If you use restricted user IDs, you must explicitly add the permission to access
a resource with the TSO PERMIT or the z/OS UNIX setfacl commands. This includes
resources where the Developer for System z documentation uses UACC (such as the **
profile in the PROGRAM class) or where it relies on common z/OS UNIX conventions (such as
everyone having read and execute permission for Java libraries). Test this before activating
it on a production system.

Define JES command security
JES Job Monitor issues all JES operator commands requested by a user through an
extended MCS (EMCS) console, whose name is controlled with the CONSOLE_NAME
directive, as documented in “FEJJCNFG, JES Job Monitor configuration file” on
page 24.

The following sample RACF commands give Developer for System z users
conditional access to a limited set of JES commands (Hold, Release, Cancel, and
Purge). Users only have execution permission if they issue the commands through
JES Job monitor. Replace the #console placeholder with the actual console name.
v RDEFINE OPERCMDS MVS.MCSOPER.#console UACC(READ)

DATA(’RATIONAL DEVELOPER FOR SYSTEM Z’)
v RDEFINE OPERCMDS JES%.** UACC(NONE)
v PERMIT JES%.** CLASS(OPERCMDS) ACCESS(UPDATE) WHEN(CONSOLE(JMON)) ID(*)
v SETROPTS RACLIST(OPERCMDS) REFRESH

Note:

v Usage of the console is permitted if no MVS.MCSOPER.#console profile is
defined

v The CONSOLE class must be active for WHEN(CONSOLE(JMON)) to work, but
there is no actual profile check in the CONSOLE class for EMCS consoles.

v Do not replace JMON with the actual console name in the
WHEN(CONSOLE(JMON)) clause. The JMON keyword represents the
point-of-entry application, not the console name.

Attention: Defining JES commands with universal access NONE in your security software
might impact other applications and operations. Test this before activating it on a
production system.

Table 27 and Table 28 on page 171 show the operator commands issued for JES2
and JES3, and the discrete security profiles that can be used to protect them.

Table 27. JES2 Job Monitor operator commands

Action Command OPERCMDS profile Required access

Hold $Hx(jobid)

with x = {J, S or T}

jesname.MODIFYHOLD.BAT
jesname.MODIFYHOLD.STC
jesname.MODIFYHOLD.TSU

UPDATE

Release $Ax(jobid)

with x = {J, S or T}

jesname.MODIFYRELEASE.BAT
jesname.MODIFYRELEASE.STC
jesname.MODIFYRELEASE.TSU

UPDATE

170 IBM Rational Developer for System z: Host Configuration Guide

Table 27. JES2 Job Monitor operator commands (continued)

Action Command OPERCMDS profile Required access

Cancel $Cx(jobid)

with x = {J, S or T}

jesname.CANCEL.BAT
jesname.CANCEL.STC
jesname.CANCEL.TSU

UPDATE

Purge $Cx(jobid),P

with x = {J, S or T}

jesname.CANCEL.BAT
jesname.CANCEL.STC
jesname.CANCEL.TSU

UPDATE

Table 28. JES3 Job Monitor operator commands

Action Command OPERCMDS profile Required access

Hold *F,J=jobid,H jesname.MODIFY.JOB UPDATE

Release *F,J=jobid,R jesname.MODIFY.JOB UPDATE

Cancel *F,J=jobid,C jesname.MODIFY.JOB UPDATE

Purge *F,J=jobid,C jesname.MODIFY.JOB UPDATE

Note:

v The Hold, Release, Cancel, and Purge JES operator commands, and the
Show JCL command, can only be executed against spool files owned by
the client user ID, unless LIMIT_COMMANDS= with value LIMITED or NOLIMIT
is specified in the JES Job Monitor configuration file. Refer to “Actions
against jobs - target limitations” on page 153 for more information on this.

v Users can browse any spool file, unless LIMIT_VIEW=USERID is defined in
the JES Job Monitor configuration file. Refer to “Access to spool files” on
page 156 for more information on this.

v Without being authorized for these operator commands, users will still be
able to submit jobs and read job output through JES Job Monitor, if they
have sufficient authority to possible profiles that protect these resources
(such as those in the JESINPUT, JESJOBS and JESSPOOL classes).

Assuming the identity of the JES Job Monitor server by creating a JMON console
from a TSO session is prevented by your security software. Even though the
console can be created, the point of entry is different (JES Job Monitor versus TSO).
JES commands issued from this console will fail the security check, if your security
is set up as documented in this publication and the user does not have authority to
the JES commands through other means.

Define RSE as a secure z/OS UNIX server
RSE requires UPDATE access to the BPX.SERVER profile to create/delete the security
environment for the client’s thread. If this profile is not defined, UID(0) is required
for RSE.
v RDEFINE FACILITY BPX.SERVER UACC(NONE)

v PERMIT BPX.SERVER CLASS(FACILITY) ACCESS(UPDATE) ID(STCRSE)

v SETROPTS RACLIST(FACILITY) REFRESH

Attention: Defining the BPX.SERVER profile makes z/OS UNIX as a whole switch from
UNIX level security to z/OS UNIX level security, which is more secure. This might impact
other z/OS UNIX applications and operations. Test this before activating it on a production
system. Refer to UNIX System Services Planning (GA22-7800) for more information on the
different security levels.

Chapter 10. Security considerations 171

Define MVS program controlled libraries for RSE
Servers with authority to BPX.SERVER must run in a clean, program-controlled
environment. This implies that all programs called by RSE must also be program
controlled. For MVS load libraries, program control is managed by your security
software.

RSE uses system (SYS1.LINKLIB), Language Environment’s runtime (CEE.SCEERUN*)
and ISPF’s TSO/ISPF Client Gateway (ISP.SISPLOAD) load library.
v RALTER PROGRAM ** UACC(READ) ADDMEM(’SYS1.LINKLIB’//NOPADCHK)

v RALTER PROGRAM ** UACC(READ) ADDMEM(’CEE.SCEERUN’//NOPADCHK)

v RALTER PROGRAM ** UACC(READ) ADDMEM(’CEE.SCEERUN2’//NOPADCHK)

v RALTER PROGRAM ** UACC(READ) ADDMEM(’ISP.SISPLOAD’//NOPADCHK)

v SETROPTS WHEN(PROGRAM) REFRESH

Note: Do not use the ** profile if you already have a * profile in the PROGRAM class.
It obscures and complicates the search path used by your security software.
In this case, you must merge the existing * and the new ** definitions. IBM
recommends using the ** profile, as documented in Security Server RACF
Security Administrator's Guide (SA22-7683).

The following additional (prerequisite) libraries must be made program controlled
to support the use of optional services. This list does not include data sets that are
specific to a product that Developer for System z interacts with, such as IBM
Debug Tool.
v Alternate REXX runtime library (for SCLM Developer Toolkit)

– REXX.*.SEAGALT

v System load library (for SSL encryption)
– SYS1.SIEALNKE

v File Manager listener load library (for File Manager integration)
– FMN.SFMNMODA

Note: Libraries that are designed for LPA placement also require program control
authorizations if they are accessed through LINKLIST or STEPLIB. This
publication documents the usage of the following LPA libraries:
v ISPF (for TSO/ISPF Client Gateway)

– ISP.SISPLPA

v REXX runtime library (for SCLM Developer Toolkit)
– REXX.*.SEAGLPA

v Developer for System z (for CARMA)
– FEK.SFEKLPA

Define application protection for RSE
During client logon, RSE daemon verifies that a user is allowed to use the
application.
v RDEFINE APPL FEKAPPL UACC(READ) DATA(’RATIONAL DEVELOPER FOR SYSTEM Z’)
v SETROPTS RACLIST(APPL) REFRESH

Note:

172 IBM Rational Developer for System z: Host Configuration Guide

As described in more detail in “Define PassTicket support for RSE,” RSE
supports the usage of an application ID other than FEKAPPL. The APPL class
definition must match the actual application ID used by RSE.

Attention: The client connection request will fail if the application profile is not
defined, or when the user lacks READ access to the profile.

Define PassTicket support for RSE
The client’s password (or other means of identification, such as an X.509 certificate)
is only used to verify his identity upon connection. Afterwards, PassTickets are
used to maintain thread security.

PassTickets are system-generated passwords with a lifespan of about 10 minutes.
The generated PassTickets are based upon a secret key. This key is a 64 bit number
(16 hex characters). Replace in the sample RACF commands below the key16
placeholder with a user-supplied 16 character hex string (characters 0-9 and A-F).
v RDEFINE PTKTDATA FEKAPPL UACC(NONE) SSIGNON(KEYMASKED(key16))

APPLDATA(’NO REPLAY PROTECTION – DO NOT CHANGE’)
DATA(’RATIONAL DEVELOPER FOR SYSTEM Z’)

v RDEFINE PTKTDATA IRRPTAUTH.FEKAPPL.* UACC(NONE)
DATA(’RATIONAL DEVELOPER FOR SYSTEM Z’)

v PERMIT IRRPTAUTH.FEKAPPL.* CLASS(PTKTDATA) ACCESS(UPDATE) ID(STCRSE)
v SETROPTS RACLIST(PTKTDATA) REFRESH

RSE supports the usage of an application ID other than FEKAPPL. Uncomment and
customize the "APPLID=FEKAPPL" option in rsed.envvars to activate this, as
documented in “Defining extra Java startup parameters with _RSE_JAVAOPTS” on
page 37. The PTKTDATA class definitions must match the actual application ID used
by RSE.

You should not use OMVSAPPL as application ID, because it will open the secret key
to most z/OS UNIX applications. You should also not use the default MVS
application ID, which is MVS followed by the system’s SMF ID, because this will
open the secret key to most MVS applications (including user batch jobs).

Note:

v If the PTKTDATA class is already defined, verify that it is defined as a
generic class before creating the profiles listed above. The support for
generic characters in the PTKTDATA class is new since z/OS release 1.7,
with the introduction of a Java interface to PassTickets.

v Substitute the wildcard (*) in the IRRPTAUTH.FEKAPPL.* definition with a
valid user ID mask to limit the user IDs for which RSE can generate a
PassTicket.

v Depending on your RACF settings, the user defining a profile may also be
on the access list of the profile. It is advised that you remove this
permission for the PTKTDATA profiles.

v JES Job Monitor and RSE must have the same application ID to allow JES
Job Monitor to evaluate the PassTickets presented by RSE.

v If the system has a cryptographic product installed and available, you can
encrypt the secured signon application key for added protection. In order
to do so, use the KEYENCRYPTED keyword instead of KEYMASKED. Refer to
Security Server RACF Security Administrator's Guide (SA22-7683) for more
information on this.

Chapter 10. Security considerations 173

Attention: The client connection request will fail if PassTickets are not set up correctly.

Define z/OS UNIX program controlled files for RSE
Servers with authority to BPX.SERVER must run in a clean, program-controlled
environment. This implies that all programs called by RSE must also be program
controlled. For z/OS UNIX files, program control is managed by the extattr
command. To execute this command, you need READ access to
BPX.FILEATTR.PROGCTL in the FACILITY class, or be UID(0).

RSE server uses RACF’s Java shared library (/usr/lib/libIRRRacf.so).
v extattr +p /usr/lib/libIRRRacf.so

Note:

v Since z/OS 1.9, /usr/lib/libIRRRacf.so is installed program controlled
during SMP/E RACF install.

v Since z/OS 1.10, /usr/lib/libIRRRacf.so is part of SAF, which ships with
base z/OS, so it is available also to non-RACF customers.

v The setup might be different if you use a security product other than
RACF. Consult the documentation of your security product for more
information.

v The SMP/E install of Developer for System z sets the program control bit
for internal RSE programs.

v Use the ls -Eog z/OS UNIX command to display the current status of the
program control bit (the file is program controlled if the letter p shows in
the second string).
$ ls -Eog /usr/lib/libIRRRacf.so
-rwxr-xr-x aps- 2 69632 Oct 5 2007 /usr/lib/libIRRRacf.so

Verify security settings
Use the following sample commands to display the results of your security-related
customizations.
v Security settings and classes

– SETROPTS LIST

v OMVS segment for users
– LISTUSER #userid NORACF OMVS

– LISTGRP #group-name NORACF OMVS

v Data set profiles
– LISTGRP FEK

– LISTDSD PREFIX(FEK) ALL

v Started tasks
– LISTGRP STCGROUP OMVS

– LISTUSER STCJMON OMVS

– LISTUSER STCRSE OMVS

– LISTUSER STCLOCK OMVS

– RLIST STARTED JMON.* ALL STDATA

– RLIST STARTED RSED.* ALL STDATA

– RLIST STARTED LOCKD.* ALL STDATA

v JES command security

174 IBM Rational Developer for System z: Host Configuration Guide

– RLIST CONSOLE JMON ALL

– RLIST OPERCMDS MVS.MCSOPER.JMON ALL

– RLIST OPERCMDS JES%.** ALL

v RSE as a secure z/OS UNIX server
– RLIST FACILITY BPX.SERVER ALL

v MVS program controlled libraries for RSE
– RLIST PROGRAM ** ALL

v Application protection for RSE
– RLIST APPL FEKAPPL ALL

v PassTicket support for RSE
– RLIST PTKTDATA FEKAPPL ALL SSIGNON

– RLIST PTKTDATA IRRPTAUTH.FEKAPPL.* ALL

v z/OS UNIX program controlled files for RSE
– ls -E /usr/lib/libIRRRacf.so

Chapter 10. Security considerations 175

176 IBM Rational Developer for System z: Host Configuration Guide

Chapter 11. Understanding Developer for System z

The Developer for System z host consists of several components that interact to
give the client access to the host services and data. Understanding the design of
these components can help you make the correct configuration decisions.

The following topics are covered in this chapter:
v “Component overview”
v “RSE as a Java application” on page 179
v “Task owners” on page 180
v “Connection flow” on page 182
v “Lock daemon” on page 183
v “z/OS UNIX directory structure” on page 185

Component overview

Figure 41 shows a generalized overview of the Developer for System z layout on
your host system.
v Remote Systems Explorer (RSE) provides core services, such as connecting the

client to the host and starting other servers for specific services. RSE consists of
two logical entities:

Figure 41. Component overview

© Copyright IBM Corp. 2005, 2010 177

– RSE daemon (RSED), which manages connection setup. RSE daemon is also
responsible for running in single server mode. To do so, RSE daemon creates
one or more child processes known as RSE thread pools (RSEDx).

– RSE server, which handles individual client request. An RSE server is active
as a thread inside a RSE thread pool.

v Lock Daemon (LOCKD) provides tracking services for data set locks.
v TSO Commands Service (TSO cmd) provides a batch-like interface for TSO and

ISPF commands.
v JES Job Monitor (JMON) provides all JES related services.
v Common Access Repository Manager (CARMA) provides an interface to interact

with Software Configuration Managers (SCMs), such as CA Endevor.
v SCLM Developer Toolkit (SCLMDT) provides an interface to enhance and

interact with SCLM.
v Application Deployment Manager (ADM) provides various CICS related

services.
v More services are available, which can be provided by Developer for System z

itself or corequisite software.

The description in the previous paragraph and list shows the central role assigned
to RSE. With few exceptions, all client communication goes through RSE. This
allows for easy security related network setup, as only a limited set of ports are
used for client-host communication.

To manage the connections and workloads from the clients, RSE is composed of a
daemon address space, which controls thread pooling address spaces. The daemon
acts as a focal point for connection and management purposes, while the thread
pools process the client workloads. Based upon the values defined in the
rsed.envvars configuration file, and the amount of actual client connections,
multiple thread pool address spaces can be started by the daemon.

178 IBM Rational Developer for System z: Host Configuration Guide

RSE as a Java application

Figure 42 shows a basic view of resource usage (processes and storage) by RSE.

RSE is a Java application, which means that it is active in the z/OS UNIX
environment. This allows for easy porting to different host platforms and
straightforward communication with the Developer for System z client, which is
also a Java application (based on the Eclipse framework). Therefore, basic
knowledge of how z/OS UNIX and Java work is very helpful when you try to
understand Developer for System z.

In z/OS UNIX, a program runs in a process, which is identified by a PID (Process
ID). Each program is active in its own process, so invoking another program
creates a new process. The process that started a process is referenced with a PPID
(Parent PID), the new process is called a child process. The child process can run
in the same address space or it can be spawned (created) in a new address space.
A new process that runs in the same address space can be compared to executing a
command in TSO, while the spawning one in a new address space is similar to
submitting a batch job.

Note that a process can be single- or multi-threaded. In a multi-threaded
application (such as RSE), the different threads compete for system resources as if
they were separate address spaces (with less overhead).

Mapping this process information to the RSE sample in Figure 42, we get the
following flow:

Figure 42. RSE as a Java application

Chapter 11. Understanding Developer for System z 179

1. When the RSED task is started, it executes BPXBATSL, which invokes z/OS
UNIX and creates a shell environment – PID 50331904.

2. In this process, the rsed.sh shell script is executed, which runs in a separate
process (/bin/sh) – PID 67109114.

3. The shell script sets the environment variables defined in rsed.envvars and
executes Java with the required parameters to start the RSE daemon – PID
50331949.

4. RSE daemon will spawn off a new shell in a child process (RSED8) – PID 307.
5. In this shell, the environment variables defined in rsed.envvars are set and

Java is executed with the required parameters to start the RSE thread pool –
PID 308.

Java applications, such as RSE, do not allocate storage directly, but use Java
memory management services. These services, like allocating storage, freeing
storage, and garbage collection, work within the limits of the Java heap. The
minimum and maximum size of the heap is defined (implicitly or explicitly)
during Java startup.

This implies that getting the most out of the available address space size is a
balancing act of defining a large heap size while leaving enough room for z/OS to
store a variable amount of system control blocks (dependant on the number of
active threads).

Task owners

Figure 43. Task owners

180 IBM Rational Developer for System z: Host Configuration Guide

Figure 43 on page 180 shows a basic overview of the owner of the security
credentials used for various Developer for System z tasks.

The ownership of a task can be divided into two sections. Started tasks are owned
by the user ID that is assigned to the started task in your security software. All
other tasks, with the RSE thread pools (RSEDx) as exception, are owned by the
client user ID.

Figure 43 on page 180 shows the Developer for system z started tasks (LOCKD,
JMON and RSED), and sample started tasks and system services that Developer
for System z communicates with. Application Deployment Manager (ADM) is
active inside a CICS region. FMNCAS is the File Manager started task. The USS
REXEC tag represents the z/OS UNIX REXEC (or SSH) service.

RSE daemon (RSED) creates one or more RSE thread pool address spaces (RSEDx)
to process client requests. Each RSE thread pool supports multiple clients and is
owned by the same user as the RSE daemon. Each client has his own threads
inside a thread pool, and these threads are owned by the client user ID.

Depending on actions done by the client, one or more additional address spaces
can be started, all owned by the client user ID, to perform the requested action.
These address spaces can be an MVS batch job, an APPC transaction, or a z/OS
UNIX child process. Note that a z/OS UNIX child process is active in a z/OS
UNIX initiator (BPXAS), and the child process shows up as a started task in JES.

The creation of these address spaces is most often triggered by a user thread in a
thread pool, either directly or by using system services like ISPF. But the address
space could also be created by a third party. For example, File Manager will start a
new address space for each data set (or member) it has to process on behalf of
Developer for System z. z/OS UNIX REXEC or SSH are involved when starting
builds in z/OS UNIX.

The user-specific address spaces end at task completion or when an inactivity
timer expires. The started tasks remain active. The address spaces listed in
Figure 43 on page 180 remain in the system long enough to be visible. However,
you should be aware that due to the way z/OS UNIX is designed, there are also
several short-lived temporary address spaces.

Chapter 11. Understanding Developer for System z 181

Connection flow

Figure 44 shows a schematic overview of how a client connects to the host using
Developer for System z. It also briefly explains how PassTickets are used.
1. The client logs on to the daemon (port 4035).
2. RSE daemon authenticates the client, using the credentials presented by the

client.
3. RSE daemon selects an existing thread pool or starts a new one if all are full.
4. RSE daemon passes the client user ID on to the thread pool.
5. The thread pool creates a client specific RSE server thread, using the client user

ID and a PassTicket for authentication.
6. The client server thread binds to a port for future client communication.
7. The client server thread returns the port number for the client to connect to.
8. The client disconnects from RSE daemon and connects to the provided port

number.
9. The client server thread starts other user specific threads (miners), always using

the client user ID and a PassTicket for authentication. These threads provide
the user-specific services requested by the client.

The description above shows the thread-oriented design of RSE. Instead of starting
an address space per user, multiple users are serviced by a single thread pool
address space. Within the thread pool, each miner (a user specific service) is active
in its own thread with the user’s security context assigned to it, ensuring a secure
setup. This design accommodates large number of users with limited resource
usage, but does imply that each client will use multiple threads (16 or more,
depending on the performed tasks).

From a network point of view, Developer for system z acts similar to FTP in
passive mode. The client connects to a focal point (RSE daemon) and then drops

Figure 44. Connection flow

182 IBM Rational Developer for System z: Host Configuration Guide

the connection and reconnects to a port number provided by the focal point. The
following logic controls the selection of the port that is used for the second
connection:
1. If the client specified a non-zero port number in the subsystem properties tab,

then RSE server will use that port for the bind. If this port is not available, the
connection fails.

2. If _RSE_PORTRANGE is specified in rsed.envvars, then RSE server will bind to a
port from this range. If no port is available, the connection fails. Note that RSE
server does not need the port exclusively for the duration of the client
connection. It is only in the time span between the (server) bind and the (client)
connect that no other RSE server can bind to the port.

3. If no limitations are set, RSE server will bind to port 0. The result is that
TCP/IP chooses the port number.

The usage of PassTickets for all z/OS services that require authentication allows
Developer for System z to invoke these services at will without storing the
password or constantly prompting the user for it. Use of PassTickets for all z/OS
services also allows for alternative authentication methods during logon, such as
one-time passwords and X.509 certificates.

Lock daemon

Figure 45 shows a schematic overview of how the lock daemon determines which
Developer for System z client owns a data set lock.
1. The client logs on, which creates a user-specific RSE server thread (USER)

inside a thread pool (RSEDx).

Figure 45. Lock daemon flow

Chapter 11. Understanding Developer for System z 183

2. RSE server registers a newly-connected user with the lock daemon. The
registration information contains the Address Space Identifier (which is the
ASID of the thread pool), the Task Control Block (TCB) identifier (user-specific),
and the user ID.

3. The client opens a data set in edit, which instructs RSE server to get an
exclusive lock on the data set.

4. The system registers the ASID, TCB and task name (RSEDx) of the requestor as
part of lock process. This information is stored in the Global Resource
Serialization (GRS) queues.

5. An operator (or RSE server on behalf of a client) queries the lock daemon for
the lock status of the data set.

6. The lock daemon scans the GRS queues to learn if the data set is locked.
7. The daemon retrieves the ASID, TCB and task name of the lock owner.
8. The retrieved ASID and TCB are compared against the ASID and TCB combos

of registered clients.
9. The related client user ID is returned to the requestor when a match is found.

Otherwise, the task name retrieved from GRS is returned.

With the single-server setup of Developer for System z, where multiple users are
assigned to a single thread pool address space, z/OS lost the ability to track who
owns a lock on a data set or member. System commands stop at address space
level, which is the thread pool.

To address this problem, Developer for System z provides the lock daemon. The
lock daemon can track all dataset/member locks done by RSE users, as well as
locks done by other products, such as ISPF.

RSE server registers a newly-connected user with the lock daemon. The registration
information contains the Address Space Identifier (which is the ASID of the thread
pool), the Task Control Block (TCB) ID (user-specific), and the user ID.

Note that registration is done at connect time only, so all RSE users active before
the lock daemon was started (or restarted) will not be registered.

When the lock daemon receives a dataset query (by means of a modify query
operator command or from the client by way of RSE server), the daemon scans the
system's Global Resource Serialization (GRS) queues. If the ASID and TCB match
that of a registered user, the user ID is returned as lock owner. Otherwise the
jobname/user ID related to the ASID is returned as lock owner.

A console message (FEK513W) with the registration information is displayed if the
registration fails. This allows an operator to match the values against the output of
a DISPLAY GRS,RES=(*,dataset*) operator command in order to find the lock
owner.

Note: Successful registrations are also listed in DD STDOUT of the server if
log_level is set to 2. This is useful to do the manual mapping for successful
registrations that were removed after a restart of the lock daemon.

Freeing a lock
Under normal circumstances, a data set or member is locked when the client opens
it in edit mode, and freed when the client closes the edit session.

184 IBM Rational Developer for System z: Host Configuration Guide

Certain error conditions can prevent this mechanism from working as designed. In
this case, the user holding the lock can be canceled using RSE’s modify cancel
operator command, as described in Chapter 8, “Operator commands,” on page 115.
Active data set locks belonging to this user are freed during the process.

z/OS UNIX directory structure

Figure 46 shows an overview of the z/OS UNIX directories used by Developer for
System z. The following list describes each directory touched by Developer for
System z, how the location can be changed, and who maintains the data within.
v /usr/lpp/rdz/ is the root path for the Developer for System z product code. The

actual location is specified in the RSED and LOCKD started tasks (variable HOME).
The files within are maintained by SMP/E.

v /etc/rdz/ holds the RSE and miner related configuration files. The actual
location is specified in the RSED and LOCKD started tasks (variable CNFG). The files
within are maintained by the system programmer.

v /var/rdz/sclmdt/CONFIG/ holds general SCLMDT configuration files. The actual
location is specified in rsed.envvars (variable SCLMDT_CONF_HOME). The files
within are maintained by the SCLM administrator.

v /var/rdz/sclmdt/CONFIG/PROJECT/ holds SCLMDT project configuration files.
The actual location is specified in rsed.envvars (variable SCLMDT_CONF_HOME). The
files within are maintained by the SCLM administrator.

v /var/rdz/sclmdt/CONFIG/script/ holds SCLMDT-related scripts that can be used
by other products. The actual location is not specified anywhere. The files within
are maintained by the SCLM administrator.

v /var/rdz/projects/ holds the host-based project definition files. The actual
location is specified in projectcfg.properties (variable PROJECT-HOME). The files
within are maintained by a project manager or lead developer.

Figure 46. z/OS UNIX directory structure

Chapter 11. Understanding Developer for System z 185

v /var/rdz/properties/ holds the host-based property groups. The actual location
is specified in propertiescfg.properties (variables PROPERTY-GROUP and
DEFAULT-VALUES). The files within are maintained by a project manager or lead
developer.

v /var/rdz/logs/ holds the logs of RSE daemon and RSE thread pool servers. The
actual location is specified in rsed.envvars (variable daemon.log). The files
within are maintained by RSE.

v /var/rdz/logs/$LOGNAME/ holds the user-specific logs of the RSE server and
miners. The actual location is specified in rsed.envvars (variable user.log and
DSTORE_LOG_DIRECTORY). The files within are maintained by RSE and the miners.

Note: /var/rdz/logs/ requires permission bit mask 777 to allow each client to
create his $LOGNAME directory and store the user-specific log files.

v /var/rdz/WORKAREA/ is used by ISPF’s TSO/ISPF Client Gateway and SCLMDT
to transfer data between z/OS UNIX and MVS based address spaces. The actual
location is specified in rsed.envvars (variable _CMDSERV_WORK_HOME). The files
within are maintained by ISPF and SCLMDT.

Note: /var/rdz/WORKAREA/ requires permission bit mask 777 to allow each client
to create temporary files.

v /tmp/ is used by ISPF’s TSO/ISPF Client Gateway and various miners to store
temporary data. The location is not customizable. The files within are
maintained by ISPF and the miners. It is also the default location for Java dump
files, which can be customized with the _CEE_DUMPTARG variable in rsed.envvars.

Note: /tmp/ requires permission bit mask 777 to allow each client to create
temporary files.

Update privileges for non-system administrators
The data in some directories, such as /var/rdz/projects/, is maintained by
non-system administrators, such as project managers, who might not have many
update privileges in z/OS UNIX. If there is just one user ID maintaining the files,
there is not a problem after the user ID has been made owner of the directory and
everything in the directory.
chown –R IBMUSER /var/rdz/projects/

When multiple user IDs need update permission to the directory, you can work
with the group-permission bits.
1. Create a group in your security software that has a valid OMVS segment and

connect all user ID’s that require update access. This is preferably their default
group.
ADDGROUP RDZPROJ OMVS(GID(1200))
CONNECT IBMUSER GROUP(RDZPROJ)
ALTUSER IBMUSER DFLTGRP(RDZPROJ)

2. Use the z/OS UNIX chgrp command to assign the group to the directory and
all files within. This command must be repeated each time a new file is added
and the desired group ID is not the default group for the user ID who added
the file.
chgrp –R IBMUSER /var/rdz/projects/

3. Use the z/OS UNIX chmod command to give the whole group update
permission to the directory and all files within.
chmod –R 775 /var/rdz/projects/

186 IBM Rational Developer for System z: Host Configuration Guide

Chapter 12. WLM considerations

Unlike traditional z/OS applications, Developer for System z is not a monolithic
application that can be identified easily to Workload Manager (WLM). Developer
for System z consists of several components that interact to give the client access to
the host services and data. As described in Chapter 11, “Understanding Developer
for System z,” on page 177, some of these services are active in different address
spaces, resulting in different WLM classifications.

The following topics are covered in this chapter:
v “Workload classification”
v “Setting goals” on page 189

Workload classification

Figure 47 shows a basic overview of the subsystems via which Developer for
System z workloads are presented to WLM.

Application Deployment Manager (ADM) is active within a CICS region, and will
therefore follow the CICS classification rules in WLM.

Figure 47. WLM classification

© Copyright IBM Corp. 2005, 2010 187

|

|

|
|
|
|
|
|

|

|

|

|
|

|

|
|

|
|

RSE daemon (RSED), Lock daemon (LOCKD) and JES Job Monitor (JMON) are
Developer for System z started tasks (or long-running batch jobs), each with their
individual address space.

As documented in “RSE as a Java application” on page 179, RSE daemon spawns a
child process for each RSE thread pool server (which supports a variable number
of clients). Each thread pool is active in a separate address space (using a z/OS
UNIX initiator, BPXAS). Because these are spawned processes, they are classified
using the WLM OMVS classification rules, not the started task classification rules.

The clients that are active in a thread pool can create a multitude of other address
spaces, depending on the actions done by the users. Depending on the
configuration of Developer for System z, some workloads, such as the TSO
Commands service (TSO cmd) or CARMA, can run in different subsystems.

The address spaces listed in Figure 47 on page 187 remain in the system long
enough to be visible, but you should be aware that due to the way z/OS UNIX is
designed, there are also several short-lived temporary address spaces. These
temporary address spaces are active in the OMVS subsystem.

Note that while the RSE thread pools use the same user ID and a similar job name
as the RSE daemon, all address spaces started by a thread pool are owned by the
user ID of the client requesting the action. The client user ID is also used as (part
of) the job name for all OMVS based address spaces stated by the thread pool.

More address spaces are created by other services that Developer for System z
uses, such as File Manager (FMNCAS) or z/OS UNIX REXEC (USS build).

Classification rules
WLM uses classification rules to map work coming into the system to a service
class. This classification is based upon work qualifiers. The first (mandatory)
qualifier is the subsystem type that receives the work request. Table 29 lists the
subsystem types that can receive Developer for System z workloads.

Table 29. WLM entry-point subsystems

Subsystem type Work description

ASCH The work requests include all APPC transaction programs scheduled by
the IBM-supplied APPC/MVS transaction scheduler, ASCH.

CICS The work requests include all transactions processed by CICS.

JES The work requests include all jobs that JES2 or JES3 initiates.

OMVS The work requests include work processed in z/OS UNIX System
Services forked children address spaces.

STC The work requests include all work initiated by the START and MOUNT
commands. STC also includes system component address spaces.

Table 30Table 2 lists additional qualifiers that can be used to assign a workload to a
specific service class. Refer to MVS Planning: Workload Management (SA22-7602)
for more details on the listed work qualifiers.

Table 30. WLM work qualifiers

ASCH CICS JES OMVS STC

AI Accounting Information x x x x

188 IBM Rational Developer for System z: Host Configuration Guide

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|

|

|
|
|
|

||

||

||
|

||

||

||
|

||
|
|

|
|
|

||

|||||||

|||||||

Table 30. WLM work qualifiers (continued)

ASCH CICS JES OMVS STC

LU LU Name (*) x

PF Perform (*) x x

PRI Priority x

SE Scheduling Environment Name x

SSC Subsystem Collection Name x

SI Subsystem Instance (*) x x

SPM Subsystem Parameter x

PX Sysplex Name x x x x x

SY System Name (*) x x x

TC Transaction/Job Class (*) x x

TN Transaction/Job Name (*) x x x x x

UI User ID (*) x x x x x

Note: For the qualifiers marked with (*), you can specify classification groups by
adding a G to the type abbreviation. For example, a transaction name group
would be TNG.

Setting goals
As documented in “Workload classification” on page 187, Developer for System z
creates different types of workloads on your system. These different tasks
communicate with each other, which implies that the actual elapse time becomes
important to avoid time-out issues for the connections between the tasks. As a
result, Developer for System z tasks should be placed in high-performance service
classes, or in moderate-performance service classes with a high priority.

A revision, and possibly an update, of your current WLM goals is therefore
advised. This is especially true for traditional MVS shops new to time-critical
OMVS workloads.

Note:

v The goal information in this section is deliberately kept at a descriptive
level, because actual performance goals are very site-specific.

v To help understand the impact of a specific task on your system, terms
like minimal, moderate and substantial resource usage are used. These are
all relative to the total resource usage of Developer for System z itself, not
the whole system.

Table 31 lists the address spaces that are used by Developer for System z. z/OS
UNIX will substitute "x" in the "Task Name" column by a random 1-digit number.

Table 31. WLM workloads

Description Task name Workload

JES Job Monitor JMON STC

Lock daemon LOCKD STC

RSE daemon RSED STC

Chapter 12. WLM considerations 189

|

|||||||

|||||||

|||||||

|||||||

|||||||

|||||||

|||||||

|||||||

|||||||

|||||||

|||||||

|||||||

|||||||
|

|
|
|

|
|

|
|
|
|
|
|

|
|
|

|

|
|

|
|
|
|

|
|

||

|||

|||

|||

|||

Table 31. WLM workloads (continued)

Description Task name Workload

RSE thread pool RSEDx OMVS

ISPF Client Gateway (TSO Commands service and
SCLMDT)

<userid>x OMVS

TSO Commands service (APPC) FEKFRSRV ASCH

CARMA (batch) CRA<port> JES

CARMA (crastart) <userid>x OMVS

CARMA (ISPF Client Gateway) <userid> and <userid>x OMVS

MVS build (batch job) * JES

z/OS UNIX build (shell commands) <userid>x OMVS

z/OS UNIX shell <userid> OMVS

File Manager task <userid>x OMVS

Application Deployment Manager CICSTS CICS

Considerations for goal selection
The following general WLM considerations can help you to properly define the
correct goal definitions for Developer for System z:
v You should base goals on what can actually be achieved, not what you want to

happen. If you set goals higher than necessary, WLM moves resources from
lower importance work to higher importance work which might not actually
need the resources.

v Limit the amount of work assigned to the SYSTEM and SYSSTC service classes,
because these classes have a higher dispatching priority than any WLM
managed class. Use these classes for work that is of high importance but uses
little CPU.

v Work that falls through the classification rules ends up in the SYSOTHER class,
which has a discretionary goal. A discretionary goal tells WLM to just do the
best it can when the system has spare resources.

When using response time goals:
v There must be a steady arrival rate of tasks (at least 10 tasks in 20 minutes) for

WLM to properly manage a response time goal.
v Use average response time goals only for well controlled workloads, because a

single long transaction has a big impact on the average response time and can
make WLM overreact.

When using velocity goals:
v You usually cannot achieve a velocity goal above 90% for various reasons. For

example, all the SYSTEM and SYSSTC address spaces have a higher dispatching
priority than any velocity-type goal.

v WLM uses a minimum number of (using and delay) samples on which to base
its velocity goal decisions. So the less work running in a service class, the longer
it will take to collect the required number of samples and adjust the dispatching
policy.

v Reevaluate velocity goals when you change your hardware. In particular,
moving to fewer, faster processors requires changes to velocity goals.

190 IBM Rational Developer for System z: Host Configuration Guide

|

|||

|||

|
|
||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|

|
|

|
|
|
|

|
|
|
|

|
|
|

|

|
|

|
|
|

|

|
|
|

|
|
|
|

|
|

STC
All Developer for System z started tasks, RSE daemon, Lock daemon and JES Job
Monitor, are servicing real-time client requests.

Table 32. WLM workloads - STC

Description Task name Workload

JES Job Monitor JMON STC

Lock daemon LOCKD STC

RSE daemon RSED STC

v JES Job Monitor
JES Job Monitor provides all JES related services such as submitting jobs,
browsing spool files and executing JES operator commands. You should specify
a high-performance, one-period velocity goal, because the task does not report
individual transactions to WLM. Resource usage depends heavily on user
actions, and will therefore fluctuate, but is expected to be minimal to moderate.

v Lock daemon
The lock daemon queries the GRS enqueue tables upon client and operator
request, and matches the result against known Developer for System z users.
You should specify a high-performance, one-period velocity goal, because the
task does not report individual transactions to WLM. Resource usage is expected
to be minimal.

v RSE daemon
RSE daemon handles client logon and authentication, and manages the different
RSE thread pools. You should specify a high-performance, one-period velocity
goal, because the task does not report individual transactions to WLM. Resource
usage is expected to be moderate, with a peak at the beginning of the workday.

OMVS
The OMVS workloads can be divided into two groups, RSE thread pools and
everything else. This because all workloads, except RSE thread pools, use the client
user ID as base for the address space name. (z/OS UNIX will substitute "x" in the
"Task Name" column by a random 1-digit number.)

Table 33. WLM workloads - OMVS

Description Task name Workload

RSE thread pool RSEDx OMVS

ISPF Client Gateway (TSO
Commands service and
SCLMDT)

<userid>x OMVS

CARMA (crastart) <userid>x OMVS

CARMA (ISPF Client
Gateway)

<userid> and <userid>x OMVS

z/OS UNIX build (shell
commands)

<userid>x OMVS

z/OS UNIX shell <userid> OMVS

File Manager task <userid>x OMVS

v RSE thread pool

Chapter 12. WLM considerations 191

|

|
|

||

|||

|||

|||

|||
|

|

|
|
|
|
|

|

|
|
|
|
|

|

|
|
|
|

|

|
|
|
|

||

|||

|||

|
|
|

||

|||

|
|
||

|
|
||

|||

|||
|

|

An RSE thread pool is like the heart and brain of Developer for System z.
Almost all data flows through here, and the miners (user specific threads) inside
the thread pool control the actions of most other Developer for System z related
tasks. You should specify a high-performance, one-period velocity goal, because
the task does not report individual transactions to WLM. Resource usage
depends heavily on user actions, and will therefore fluctuate, but is expected to
be substantial.

The remaining workloads will all end up in the same service class due to a
common address space naming convention. You should specify a multi-period goal
for this service class. The first periods should be high-performance, percentile
response time goals, while the last period should have a moderate-performance
velocity goal. Some workloads, such as the ISPF Client Gateway, will report
individual transactions to WLM, while others do not.
v ISPF Client Gateway

The ISPF Client Gateway is an ISPF service invoked by Developer for System z
to execute non-interactive TSO and ISPF commands. This includes explicit
commands issued by the client as well as implicit commands issued by
Developer for System z, such as getting a PDS member list. Resource usage
depends heavily on user actions, and will therefore fluctuate, but is expected to
be minimal.

v CARMA
CARMA is an optional Developer for System z server that is used to interact
with host based Software Configuration Managers (SCMs), such as CA Endevor®

SCM. Developer for System z allows for different startup methods for a CARMA
server, some of which become an OMVS workload. Resource usage depends
heavily on user actions, and will therefore fluctuate, but is expected to be
minimal.

v z/OS UNIX build
When a client initiates a build for a z/OS UNIX project, z/OS UNIX REXEC (or
SSH) will start a task that executes a number of z/OS UNIX shell commands to
perform the build. Resource usage depends heavily on user actions, and will
therefore fluctuate, but is expected to be moderate to substantial, depending on
the size of the project.

v z/OS UNIX shell
This workload processes z/OS UNIX shell commands that are issued by the
client. Resource usage depends heavily on user actions, and will therefore
fluctuate, but is expected to be minimal.

v IBM File Manager
Although not Developer for System z address spaces, the spawned File Manager
child processes are listed here because they can be started upon request of a
Developer for System z client, and these tasks use the same naming convention
as Developer for System z tasks. These File Manager tasks process non-trivial
MVS data set actions, such as formatted editing of a VSAM file. Resource usage
depends heavily on user actions, and will therefore fluctuate, but is expected to
be minimal to moderate.

JES
JES-managed batch processes are used in various manners by Developer for
System z. The most common usage is for MVS builds, where a job is submitted
and monitored to determine when it ends. But Developer for System z could also
start a CARMA server in batch, and communicate with it using TCP/IP.

192 IBM Rational Developer for System z: Host Configuration Guide

|
|
|
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|
|
|

|

|
|
|
|
|
|

|

|
|
|
|
|

|

|
|
|

|

|
|
|
|
|
|
|

|

|
|
|
|

Table 34. WLM workloads - JES

Description Task name Workload

CARMA (batch) CRA<port> JES

MVS build (batch job) * JES

v CARMA
CARMA is an optional Developer for System z server that is used to interact
with host based Software Configuration Managers (SCMs), such as CA Endevor®

SCM. Developer for System z allows for different startup methods for a CARMA
server, some of which become a JES workload. You should specify a
high-performance, one-period velocity goal, because the task does not report
individual transactions to WLM. Resource usage depends heavily on user
actions, and will therefore fluctuate, but is expected to be minimal.

v MVS build
When a client initiates a build for an MVS project, Developer for System z will
start a batch job to perform the build. Resource usage depends heavily on user
actions, and will therefore fluctuate, but is expected to be moderate to
substantial, depending on the size of the project. Different moderate-
performance goal strategies can be advisable, depending on your local
circumstances.
– You could specify a multi-period goal with a percentile response time period

and a trailing velocity period. In this case, your developers should be using
mostly the same build procedure and similar sized input files to create jobs
with uniform response times. There must also be a steady arrival rate of jobs
(at least 10 jobs in 20 minutes) for WLM to properly manage a response time
goal.

– A velocity goal is best suited for most batch-jobs, because this goal can handle
highly variable execution times and arrival rates.

ASCH
In the current Developer for System z versions, the ISPF Client Gateway is used to
execute non-interactive TSO and ISPF commands. Due to historical reasons,
Developer for System z also supports executing these commands via an APPC
transaction.

Table 35. WLM workloads - ASCH

Description Task name Workload

TSO Commands service
(APPC)

FEKFRSRV ASCH

v TSO Commands service
The TSO Commands service can be started as an APPC transaction by
Developer for System z to execute non-interactive TSO and ISPF commands.
This includes explicit commands issued by the client as well as implicit
commands issued by Developer for System z, such as getting a PDS member list.
You should specify a multi-period goal for this service class. For the first
periods, you should specify high-performance, percentile response time goals.
For the last period, you should specify a moderate-performance velocity goal.
Resource usage depends heavily on user actions, and will therefore fluctuate, but
is expected to be minimal.

Chapter 12. WLM considerations 193

||

|||

|||

|||
|

|

|
|
|
|
|
|
|

|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|

|
|
|
|

||

|||

|
|
||

|

|

|
|
|
|
|
|
|
|
|

CICS
Application Deployment Manager is an optional Developer for System z server
that is active inside a CICS Transaction Server region.

Table 36. WLM workloads - CICS

Description Task name Workload

Application Deployment
Manager

CICSTS CICS

v Application Deployment Manager
The optional Application Deployment Manager server, which is active inside a
CICSTS region, allows you to securely offload selected CICSTS management
tasks to developers. Resource usage depends heavily on user actions, and will
therefore fluctuate, but is expected to be minimal. The type of service class you
should use depends on the other transactions active in this CICS region, and is
therefore not discussed in detail.

WLM supports multiple types of management that you can use for CICS:
v Managing CICS toward a region goal

The goal is set to a service class that manages the CICS address spaces. You can
only use an execution velocity goal for this service class. WLM uses the JES or
STC classification rules for the address spaces but does not use the CICS
subsystem classification rules for transactions.

v Managing CICS toward a transaction response time goal
A response time goal can be set in a service class assigned to a single transaction
or a group of transactions. WLM uses the JES or STC classification rules for the
address spaces and the CICS subsystem classification rules for transactions.

194 IBM Rational Developer for System z: Host Configuration Guide

|

|
|

||

|||

|
|
||

|

|

|
|
|
|
|
|

|

|

|
|
|
|

|

|
|
|

Chapter 13. Tuning considerations

As explained in Chapter 11, “Understanding Developer for System z,” on page 177,
RSE (Remote Systems Explorer) is the core of Developer for System z. To manage
the connections and workloads from the clients, RSE is composed of a daemon
address space, which controls thread pooling address spaces. The daemon acts as a
focal point for connection and management purposes, while the thread pools
process the client workloads.

This makes RSE a prime target for tuning the Developer for System z setup.
However, maintaining hundreds of users, each using 16 or more threads, a certain
amount of storage, and possibly 1 or more address spaces requires proper
configuration of both Developer for System z and z/OS.

The following topics are covered in this chapter:
v “Resource usage”
v “Storage usage” on page 205
v “z/OS UNIX file system space usage” on page 210
v “Key resource definitions” on page 212
v “Various resource definitions” on page 216
v “Monitoring” on page 217
v “Sample setup” on page 220

Resource usage
Use the information in this section to estimate the normal and maximum resource
usage by Developer for System z, so you can plan your system configuration
accordingly.

When you use the numbers and formulas presented in this section to define the
values for system limits, be aware that you are working with fairly accurate
estimates. Leave enough margin when setting the system limits to allow resource
usage by temporary and other tasks, or by users connecting multiple times to the
host simultaneously. (For example, by way of RSE and TN3270).

Note:

v The information is limited in scope to services accessed through RSE that
are provided by Developer for System z itself. For example, resource
usage of TN3270 is not documented (not accessed through RSE), nor is
the resource usage of the programs called during remote (host-based)
builds of MVS or z/OS UNIX projects (not provided by Developer for
System z).

v Adding third-party extensions to Developer for System z can increase the
resource usage counters.

v All services have short-lived "housekeeping" tasks, which use resources
during their execution, and which may run sequential or parallel to each
other. The resources used by these tasks are not documented.

v Where useful, user-specific resource usage of requisite software, such as
the ISPF Client Gateway, is documented.

v The numbers presented here can change without prior notification.

© Copyright IBM Corp. 2005, 2010 195

Overview
The following tables give an overview of the number of address spaces, processes,
and threads used by Developer for System z. More details on the numbers
presented here can be found in the next sections:
v “Address space count” on page 197
v “Process count” on page 200
v “Thread count” on page 202

Table 37 gives a general overview of the key resources used by the Developer for
System z started tasks. These resources are allocated only once. They are shared
among all Developer for System z clients.

Table 37. Common resource usage

Started task Address spaces Processes Threads

JMON 1 1 3

LOCKD 1 3 10

RSED 1 3 11

RSEDx (a) 2 10

Note: (a) There is at least 1 RSE thread pool address space active. Refer to
“Address space count” on page 197 to determine the actual number of RSE
thread pool address spaces.

Table 38 gives a general overview of the key resources used by requisite software.
These resources are allocated for each Developer for System z client that invokes
the related function.

Table 38. User-specific requisite resource usage

Requisite software Address spaces Processes Threads

ISPF Client Gateway 1 2 4

APPC 1 1 2

File Manager 1 1 2

Table 39 gives a general overview of the key resources used by each Developer for
System z client when executing the specified function. Non-numeric values, such
as ISPF, are a reference to the corresponding value in Table 38.

Table 39. User-specific resource usage

User action
Address
spaces

User ID

Processes

User ID

Threads

User ID RSEDx JMON

Logon - - - 16 1

Timer for idle
timeout

- - - 1 -

Expand
PDS(E)

ISPF ISPF ISPF - -

Open data set ISPF ISPF ISPF - -

196 IBM Rational Developer for System z: Host Configuration Guide

Table 39. User-specific resource usage (continued)

User action
Address
spaces

User ID

Processes

User ID

Threads

User ID RSEDx JMON

TSO
command

ISPF ISPF ISPF - -

z/OS UNIX
shell

1 1 1 6 -

MVS build 1 - - - -

z/OS UNIX
build

3 3 3 - -

CARMA
(batch)

1 1 2 1 -

CARMA
(crastart)

1 1 2 4 -

CARMA
(ispf)

4 4 7 5 -

SCLMDT ISPF ISPF ISPF - -

File Manager
Integration

ISPF + FM ISPF + FM ISPF + FM - -

Fault
Analyzer
Integration

- - - - -

Note: ISPF can be substituted by APPC, except for SCLM Developer Toolkit.

Address space count
Table 40 lists the address spaces that are used by Developer for System z, where
“u” in the “Count” column indicates that the amount must be multiplied by the
number of concurrently active users using the function. z/OS UNIX will substitute
“x” in the “Task Name” column by a random 1-digit number.

Table 40. Address space count

Count Description Task name Shared Ends after

1 JES Job Monitor JMON Yes Never

1 Lock daemon LOCKD Yes Never

1 RSE daemon RSED Yes Never

(a) RSE thread pool RSEDx Yes Never

lu ISPF Client Gateway (TSO
Commands service and SCLMDT)

<userid>x No 15 minutes or user logoff

lu TSO Commands service (APPC) FEKFRSRV No 60 minutes or user logoff

lu CARMA (batch) CRA<port> No 7 minutes or user logoff

lu CARMA (crastart) <userid>x No 7 minutes or user logoff

4u CARMA (ispf) (1)<userid> or (3)<userid>x No 7 minutes or user logoff

(b) Simultaneous ISPF Client Gateway
usage by 1 user

<userid>x No Task completion

1u MVS build (batch job) * No Task completion

Chapter 13. Tuning considerations 197

Table 40. Address space count (continued)

Count Description Task name Shared Ends after

3u z/OS UNIX build (shell
commands)

<userid>x No Task completion

1u z/OS UNIX shell <userid> No User logoff

(c) File Manager <userid>x No Task completion

Note:

v (a) There is at least one RSE thread pool address space active. The actual
number depends on:
– The minimum.threadpool.process directive in rsed.envvars. The default

value is 1.
– The number of users that can be serviced by one thread pool. The

default settings aim for 60 users per thread pool.
– The high-water mark of concurrently active users, because idle thread

pools are not stopped automatically.
v (b) Developer for System z has multiple threads active per user. In the

event that the ISPF Client Gateway address space has not finished serving
the request of one thread when another thread sends a request, ISPF will
start up a new Client Gateway to process the new request. This address
space ends after task completion.

v (c) The File Manager listener starts an address space per object that must
be manipulated, for example a VSAM. This address space stays active
until Developer for System z signals that the object is no longer needed,
for example by closing the VSAM.

v SCLMDT requires an ISPF Client Gateway address space. SCLMDT shares
the address space with the TSO Commands service.

v Most MVS data set-related actions use the TSO Commands service, which
can be active in the ISPF Client Gateway or an APPC transaction,
respectively.

Use the formula in Figure 48 to estimate the maximum number of address spaces
used by Developer for System z.

Where
v “3” equals the number of permanent active server address spaces.
v “A” represents the number of RSE thread pool address spaces.
v “N” represents the maximum number of concurrent users.
v “x” is one of the following values, depending on the selected configuration

options.

X SCLMDT TSO by way of Client Gateway TSO by way of APPC

1 No No Yes

1 No Yes No

Figure 48. Maximum number of address spaces

198 IBM Rational Developer for System z: Host Configuration Guide

X SCLMDT TSO by way of Client Gateway TSO by way of APPC

1 Yes Yes No

v “y” is one of the following values, depending on the selected configuration
options.

Y

0 No CARMA

1 CARMA (batch)

1 CARMA (crastart)

4 CARMA (ispf)

v “z” is 0 by default, but can increase depending on user actions:
– Add 1 when a MVS build is performed. These address spaces end when the

related build task (a batch job) completes.
– Add 3 when a z/OS UNIX build is performed. Note that the actual number

may be higher, depending on the needs of the programs invoked. These
address spaces end when the related build task completes.

– Add 1 for each concurrent interaction with IBM File Manager. These address
spaces end when the requested object is no longer needed.

v “2 + N*0.01” adds a buffer for temporary address spaces. The required buffer
size might differ at your site.

Use the formula in Figure 49 to estimate the maximum number of address spaces
used by a Developer for System z client (not counting the undocumented
temporary address spaces).

Where
v "x" depends on the selected configuration options and is documented for the

formula to calculate the maximum number of address spaces (Figure 48 on page
198).

v "y" depends on the selected configuration options and is documented for the
formula to calculate the maximum number of address spaces (Figure 48 on page
198).

v “z” is 0 by default, but can increase depending on user actions, as documented
for the formula to calculate the maximum number of address spaces (Figure 48
on page 198).

The definitions in Table 41 can limit the actual number of address spaces.

Table 41. Address space limits

Location Limit Affected resources

rsed.envvars maximum.threadpool.process Limits the number of RSE thread pools

IEASYMxx MAXUSER Limits the number of address spaces

ASCHPMxx MAX Limits the number of APPC initiators for
TSO Commands service (APPC)

Figure 49. Number of address spaces per client

Chapter 13. Tuning considerations 199

Process count
Table 42 lists the number of processes per address space that is used by Developer
for System z. “u” In the “Address Spaces” column indicates that the amount must
be multiplied by the number of concurrently active users using the function.

Table 42. Process count

Processes
Address
spaces Description User ID

1 1 JES Job Monitor STCJMON

3 1 Lock daemon STCLOCK

3 1 RSE daemon STCRSE

2 (a) RSE thread pool STCRSE

2 (b) ISPF Client Gateway (TSO Commands service
and SCLMDT)

<userid>

1 1u TSO Commands service (APPC) <userid>

1 1u CARMA (batch) <userid>

1 1u CARMA (crastart) <userid>

1 1u CARMA (ispf) <userid>

1 3u z/OS UNIX build (shell commands) <userid>

1 1u z/OS UNIX shell <userid>

1 (c) File Manager <userid>

(5) (u) SCLM Developer Toolkit <userid>

Note:

v (a) There is at least 1 RSE thread pool address space active. Refer to
“Address space count” on page 197 to determine the actual number of
RSE thread pool address spaces.

v RSE daemon and all RSE thread pools use the same user ID.
v (b) In normal situations, and when using the default configuration

options, there is 1 ISPF Client Gateway active per user. The actual number
can vary, as described in “Address space count” on page 197.

v (c) The File Manager listener uses a process per object that must be
manipulated, for example a VSAM. This process stays active until
Developer for System z signals that the object is no longer needed, for
example by closing the VSAM.

v SCLMDT requires an ISPF Client Gateway address space. SCLMDT shares
the address space with the TSO Commands service.

v (u) SCLMDT processes run in the ISPF Client Gateway address space, and
thus do not have a value for the address space count.

v SCLMDT processes are temporary and end at task completion, but
multiple processes can be active simultaneously for a single user. Table 42
lists the maximum number of concurrent SCLMDT processes.

v Most MVS data set-related actions use the TSO Commands service, which
can be active in the ISPF Client Gateway or an APPC transaction,
respectively.

v A z/OS UNIX build uses three processes in total, each running in their
own address space.

200 IBM Rational Developer for System z: Host Configuration Guide

v All listed processes stay active until the related address space ends, unless
noted otherwise.

Use the formula in Figure 50 to estimate the maximum number of processes used
by Developer for System z.

Where
v “7” equals the number of processes used by permanent active server address

spaces.
v “A” represents the number of RSE thread pool address spaces.
v “N” represents the maximum number of concurrent users.
v “x” is one of the following values, depending on the selected configuration

options.

X SCLMDT TSO by way of Client Gateway TSO by way of APPC

1 No No Yes

2 No Yes No

7 Yes Yes No

v “y” is one of the following values, depending on the selected configuration
options.

Y

0 No CARMA

1 CARMA (batch)

1 CARMA (crastart)

4 CARMA (ispf)

v “z” is 0 by default, but can increase depending on user actions:
– Add 1 when a z/OS UNIX shell is opened. This process stays active until the

user logs off.
– Add 3 when a z/OS UNIX build is performed. Note that the actual number

may be higher, depending on the needs of the programs invoked. These
processes end when the related build task completes.

– Add 1 for each concurrent interaction with IBM File Manager. These processes
end when the requested object is no longer needed.

v "10 + N*0.05" adds a buffer for temporary processes. The required buffer size
might differ at your site.

Use the formula in Figure 51 on page 202 to estimate the maximum number of
processes used by a Developer for System z client (not counting the undocumented
temporary processes).

Figure 50. Maximum number of processes

Chapter 13. Tuning considerations 201

Where
v "x" depends on the selected configuration options and is documented for the

formula to calculate the maximum number of processes (Figure 50 on page 201).
v "y" depends on the selected configuration options and is documented for the

formula to calculate the maximum number of processes (Figure 50 on page 201).
v “z” is 0 by default, but can increase depending on user actions, as documented

for the formula to calculate the maximum number of processes (Figure 50 on
page 201).

v “s” is 1 when SCLM Developer Toolkit is used, or 0 otherwise.

The definitions in Table 43 can limit the actual number of processes.

Table 43. Process limits

Location Limit Affected resources

BPXPRMxx MAXPROCSYS Limits the total number of processes

BPXPRMxx MAXPROCUSER Limits the number of processes per z/OS
UNIX UID

Note:
v RSE daemon and the RSE thread pools use the same user ID. Since RSE daemon

starts a new thread pool whenever needed, the number of processes for this user
ID can grow. So MAXPROCUSER must be set to accommodate this growth, which
can be formulated as “3 + 2*A”.

v The MAXPROCUSER limit is per unique z/OS UNIX user ID (UID). Multiply the
estimated per-user process count by the number of concurrently active clients if
your users share the same UID.

Thread count
Table 44 lists the number of threads used by selected Developer for System z
functions. "u" In the "Threads" columns indicates that the amount must be
multiplied by the number of concurrently active users using the function. The
thread count is listed per process, as limits are set at this level.
v RSEDx: These threads are created in the RSE thread pool, which is shared by

multiple clients. All threads ending up in the same thread pool must be added
together to get the total count.

v Active: These threads are part of the process that actually does the requested
function. Each process is a stand-alone unit, so there is no need to sum the
thread counts, even if they are assigned to same user ID, unless noted otherwise.

v Bootstrap: Bootstrap processes are needed to start the actual process. Each has 1
thread, and there can be multiple consecutive bootstraps. There is no need to
sum the thread counts.

Table 44. Thread count

Threads User ID Description

RSEDx Active Bootstrap

Figure 51. Number of processes per client

202 IBM Rational Developer for System z: Host Configuration Guide

Table 44. Thread count (continued)

Threads User ID Description

- 3 + 1u - STCJMON JES Job Monitor

- 10 2 STCLOCK Lock daemon

- 11 2 STCRSE RSE daemon

10 (a) + 16u - 1 (a) STCRSE RSE thread pool

- 4u (b) 1u (b) <userid> ISPF Client
Gateway (TSO
Commands service
and SCLMDT)

- 2u - <userid> TSO Commands
service (APPC)

1u 2u - STCRSE and
<userid>

CARMA (batch)

4u 2u - STCRSE and
<userid>

CARMA (crastart)

5u 4u 3u STCRSE and
<userid>

CARMA (ispf)

- 1u (d) 2u <userid> z/OS UNIX build
(shell commands)

6u 1u - STCRSE and
<userid>

z/OS UNIX shell

- 2u (c) - <userid> File Manager

- (5) - <userid> SCLM Developer
Toolkit

1u - - STCRSE Timer for idle
timeout

Note:

v (a) There is at least 1 RSE thread pool address space active. Refer to
“Address space count” on page 197 to determine the actual number of
RSE thread pool address spaces.

v (b) In normal situations, and when using the default configuration
options, there is 1 ISPF Client Gateway active per user. The actual number
can vary, as described in “Address space count” on page 197.

v (c) There is one user-specific process (with the listed thread count) per
interaction with IBM File Manager. These processes end when the
requested object is no longer needed.

v SCLMDT requires an ISPF Client Gateway address space. SCLMDT shares
the address space with the TSO Commands service.

v Depending on the selected action, SCLMDT can use multiple single-thread
processes that end at task completion. Table 44 on page 202 lists the
maximum number of concurrent SCLMDT threads.

v Most MVS data set-related actions use the TSO Commands service, which
can be active in the ISPF Client Gateway or an APPC transaction,
respectively.

Chapter 13. Tuning considerations 203

v (d) A z/OS UNIX build invokes different build utilities, which might be
multi-threaded. Table 44 on page 202 lists the minimum number of
concurrent z/OS UNIX build threads.

v All listed threads stay active until the related process ends, unless noted
otherwise.

Use the formula in Figure 52 to estimate the maximum number of threads used by
a RSE thread pool. Use the formula in Figure 53 to estimate the maximum number
of threads used by JES Job Monitor.

Where
v "N" represents the maximum number of concurrent users in this thread pool or

JES Job Monitor. The default settings aim for 60 users per thread pool.
v "x" is one of the following values, depending on the selected configuration

options.

X SCLMDT
TSO by way of
Client Gateway TSO by way of APPC Timeout

0 No No Yes No

0 No Yes No No

0 Yes Yes No No

1 No No Yes Yes

1 No Yes No Yes

1 Yes Yes No Yes

v “y” is one of the following values, depending on the selected configuration
options.

Y

0 No CARMA

1 CARMA (batch)

4 CARMA (crastart)

5 CARMA (ispf)

v “z” is 0 by default, but can increase depending on user actions:
– Add 6 when a z/OS UNIX shell is opened. These threads stay active until the

user logs off.
v "20 + N*0.1" adds a buffer for temporary threads. The required buffer size might

differ at your site.

Figure 52. Maximum number of RSE thread pool threads

Figure 53. Maximum number of JES Job Monitor threads

204 IBM Rational Developer for System z: Host Configuration Guide

The definitions in Table 45 can limit the actual number of threads in a process,
which is mostly of importance for the RSE thread pools.

Table 45. Thread limits

Location Limit Affected resources

BPXPRMxx MAXTHREADS Limits the number of threads in a process.

BPXPRMxx MAXTHREADTASKS Limits the number of MVS tasks in a process.

BPXPRMxx MAXASSIZE Limits the address space size, and thus the storage
available for thread related control blocks.

rsed.envvars Xmx Sets the maximum Java heap size. This storage is
reserved and thus no longer available for thread
related control blocks.

rsed.envvars maximum.clients Limits the number of clients (and thus their
threads) in an RSE thread pool.

rsed.envvars maximum.threads Limits the number of client threads in a RSE thread
pool.

FEJJCNFG MAX_THREADS Limits the number of threads in JES Job Monitor.

Note: The value for maximum.threads in rsed.envvars must be lower than the
value for MAXTHREADS and MAXTHREADTASKS in BPXPRMxx.

Storage usage
RSE is a Java application, which implies that storage (memory) usage planning for
Developer for System z must take two storage allocation limits into consideration,
Java heap size and Address Space size.

Java heap size limit
Java offers many services to ease coding efforts for Java applications. One of these
services is storage management.

Java’s storage management allocates large blocks of storage and uses these for
storage requests by the application. This storage managed by Java is called the
Java heap. Periodic garbage collection (defragmentation) reclaims unused space in
the heap and reduces its size.

The maximum Java heap size is defined in rsed.envvars with the Xmx directive. If
this directive is not specified, Java uses a default size of 64 MB.

Each RSE thread pool (which services the client actions) is a separate Java
application, and thus has a personal Java heap. Note that all thread pools use the
same rsed.envvars configuration file, and thus have the same Java heap size limit.

The thread pool’s usage of the Java heap depends heavily on the actions done by
the connected clients. Regular monitoring of the heap usage is required to set the
optimal heap size limit. Use the modify display process operator command to
monitor the Java heap usage by RSE thread pools.

Address space size limit
All z/OS applications, including Java applications, are active within an address
space, and are thus bound by address space size limitations.

Chapter 13. Tuning considerations 205

The desired address space size is specified during startup, for example with the
REGION parameter in JCL. However, system settings can limit the actual address
space size. Refer to “Address Space size” on page 141 to learn more about these
limits.
v MAXASSIZE in SYS1.PARMLIB(BPXPRMxx)

v ASSIZEMAX in the OMVS segment of the user ID assigned to the started task
v system exits IEFUSI and IEALIMIT

RSE thread pools inherit the address space size limits from RSE daemon. The
address space size must be sufficient to house the Java heap, Java itself, common
storage areas, and all control blocks the system creates to support the thread pool
activity, such as a TCB (Task Control Block) per thread. Note that some of this
storage usage is below the 16 MB line.

You should monitor the actual address space size before changing any settings that
influence it, like changing the size of the Java heap or the amount of users
supported by a single thread pool. Use your regular system monitoring software to
track the actual storage usage by Developer for system z. If you do not have a
dedicated monitoring tool, then basic information can be gathered with tools like
the SDSF DA view or TASID (an as-is system information tool available via the
ISPF "Support and downloads" webpage).

Size estimate guidelines
As stated before, the actual storage usage by Developer for system z is heavily
influenced by user activity. Some actions use a fixed amount of storage (for
example, logon), while others are variable (for example, listing data sets with a
specified high level qualifier).
v Use a 2 GB address space for RSE to allow room for the Java heap and all the

system control blocks.
v The sample rsed.envvars setup aims for 60 users per thread pool.

– maximum.clients=60

– maximum.threads=1000 (10+16*60 = 970, so 1000 allows for 61 clients)
v The sample rsed.envvars setup lets the Java heap grow up to 256 MB. This

allows for 60 clients using an average of 4 MB per client (60*4 = 240).

Note that RSE displays the current Java heap and address space size limit during
startup in console message FEK004I.

Use either of the following scenarios if monitoring shows that the current Java
heap size is insufficient for the actual workload:
v Increase the maximum Java heap size with the Xmx directive in rsed.envvars.

Before doing so, ensure that there is room in the address space for the size
increase.

v Decrease the maximum number of clients per thread pool with the
maximum.clients directive in rsed.envvars. RSE will still support the same
number of clients, but the clients will be distributed among more thread pools.

Sample storage usage analysis
The displays in the following figures show some sample resource usage numbers
for a default Developer for system z setup with one modification. The maximum
Java heap size is set to 10 MB, as a small maximum will result in a bigger

206 IBM Rational Developer for System z: Host Configuration Guide

percentile usage and the heap size limits will be reached sooner.

Max Heap Size=10MB and private AS Size=1,959MB

startup

BPXM023I (STCRSE)
ProcessId(268) Memory Usage(7%) Clients(0)

Jobname Cpu time Storage EXCP
-------- ----------- ------- ----------
JMON 0.01 2740 72
LOCKD 1.60 28.7M 14183
RSED 4.47 32.8M 15910
RSED8 1.15 27.4M 12612

logon 1

BPXM023I (STCRSE)
ProcessId(268) Memory Usage(13%) Clients(1)

Jobname Cpu time Storage EXCP
-------- ----------- ------- ----------
JMON 0.01 2864 81
LOCKD 1.64 28.8M 14259
RSED 4.55 32.8M 15980
RSED8 3.72 55.9M 24128

logon 2

BPXM023I (STCRSE)
ProcessId(268) Memory Usage(23%) Clients(2)

Jobname Cpu time Storage EXCP
-------- ----------- ------- ----------
JMON 0.02 2944 86
LOCKD 1.66 28.9M 14268
RSED 4.58 32.9M 16027
RSED8 4.20 57.8M 25205

logon 3

BPXM023I (STCRSE)
ProcessId(268) Memory Usage(37%) Clients(3)

Jobname Cpu time Storage EXCP
-------- ----------- ------- ----------
JMON 0.02 3020 91
LOCKD 1.67 29.0M 14277
RSED 4.60 32.9M 16076
RSED8 4.51 59.6M 26327

logon 4

BPXM023I (STCRSE)
ProcessId(268) Memory Usage(41%) Clients(4)

Jobname Cpu time Storage EXCP
-------- ----------- ------- ----------
JMON 0.02 3108 96
LOCKD 1.68 29.0M 14286
RSED 4.61 32.9M 16125
RSED8 4.77 62.3M 27404

Figure 54. Resource usage with 5 logons

Chapter 13. Tuning considerations 207

Figure 54 on page 207 and Figure 55 show a scenario where 5 clients log on to an
RSE daemon with a 10 MB Java heap.
v A thread pool (RSED8) is in a dormant state upon startup, using about 27 MB,

of which 0.7 MB is in the Java heap (7% of 10 MB).
v The thread pool becomes active when the first client connects, using another 27

MB plus 2 MB for each client that connects.
v Part of this 2MB per connection will be in the Java heap, as the increase in heap

usage shows.
v However, there is no real pattern in the heap usage, because it depends on Java

mechanisms that estimate the required storage and allocate more than needed.
Intermittent garbage collection frees up storage, making trends even harder to
detect.

v Internal mechanisms that limit the number of connections per thread pool to
ensure sufficient heap size for the active threads result in the fifth connection
being created in a new thread pool (RSED9). These internal safety nets are
normally not invoked when using a properly configured setup, because other
limits would be reached first (most likely the maximum.clients one in
rsed.envvars).

logon 5

BPXM023I (STCRSE)
ProcessId(268) Memory Usage(41%) Clients(4)
ProcessId(33554706) Memory Usage(13%) Clients(1)

Jobname Cpu time Storage EXCP
-------- ----------- ------- ----------
JMON 0.03 3184 101
LOCKD 1.69 29.1M 14295
RSED 4.64 32.9M 16229
RSED8 4.78 62.4M 27413
RSED9 4.60 56.6M 24065

Figure 55. Resource usage with 5 logons (continued)

208 IBM Rational Developer for System z: Host Configuration Guide

Figure 56 shows a scenario where 1 client logs on to an RSE daemon with a 10 MB
Java heap and edits a PDS member.

Max Heap Size=10MB and private AS Size=1,959MB

startup

BPXM023I (STCRSE)
ProcessId(212) Memory Usage(7%) Clients(0)

Jobname Cpu time Storage EXCP
-------- ----------- ------- ----------
JMON 0.01 2736 71
LOCKD 1.73 30.5M 14179
RSED 4.35 32.9M 15117
RSED8 1.43 27.4M 12609

logon

BPXM023I (STCRSE)
ProcessId(212) Memory Usage(13%) Clients(1)

Jobname Cpu time Storage EXCP
-------- ----------- ------- ----------
JMON 0.01 2864 80
LOCKD 1.76 30.6M 14255
RSED 4.48 33.0M 15187
RSED8 3.53 53.9M 24125

expand large MVS tree (195 data sets)
BPXM023I (STCRSE)
ProcessId(212) Memory Usage(13%) Clients(1)

Jobname Cpu time Storage EXCP
-------- ----------- ------- ----------
JMON 0.01 2864 80
LOCKD 1.78 30.6M 14255
RSED 4.58 33.1M 16094
RSED8 4.28 56.1M 24740

expand small PDS (21 members)
BPXM023I (STCRSE)
ProcessId(212) Memory Usage(13%) Clients(1)

Jobname Cpu time Storage EXCP
-------- ----------- ------- ----------
IBMUSER2 0.22 2644 870
JMON 0.01 2864 80
LOCKD 1.78 30.6M 14255
RSED 4.61 33.1M 16108
RSED8 4.40 56.2M 24937

open medium sized member (86 lines)

BPXM023I (STCRSE)
ProcessId(212) Memory Usage(13%) Clients(1)

Jobname Cpu time Storage EXCP
-------- ----------- ------- ----------
IBMUSER2 0.22 2644 870
JMON 0.01 2864 80
RSED 4.61 33.1M 16108
RSED8 8.12 62.7M 27044

Figure 56. Resource usage while editing a PDS member

Chapter 13. Tuning considerations 209

v The catalog search that results in 195 data set names used about 2MB of storage,
all due to system activity, because the Java heap usage does not increase.

v Opening a 21-member PDS uses hardly any memory in the thread pool, but the
display shows that TSO Commands service was invoked. There is a new address
space active (IBMUSER2), which uses the region size assigned to this user ID in
TSO. This address space stays active for a specified amount of time so it can be
reused for future requests by the TSO Commands service.

v Opening a member shows similar numbers as expanding a high level qualifier.
The Java heap usage stays the same, but there is a 6.5 MB storage increase due
to system activity.

z/OS UNIX file system space usage
Most of the Developer for System z related data that is not written to a DD
statement ends up in a z/OS UNIX file. The system programmer has control over
which data is written and where it goes. However, there is no control over the
amount of data written.

The data can be grouped in the following categories:
v Problem analysis (log and system dump files), for which many details are

documented in Chapter 9, “Troubleshooting configuration problems,” on page
127

v Auditing, as documented in “Audit logging” on page 152
v Temporary data

As documented in Chapter 9, “Troubleshooting configuration problems,” on page
127, Developer for System z writes the RSE-related host logs to the following z/OS
UNIX directories:
v /var/rdz/logs for the RSE started task logs
v /var/rdz/logs/$LOGNAME for user logs

By default, only error and warning messages are written to the logs. So if all goes
as planned, these directories should hold only empty or nearly-empty files (not
counting audit logs).

You can enable logging of informational messages, preferably under direction of
the IBM support center, which increases the size of log files noticeably.

210 IBM Rational Developer for System z: Host Configuration Guide

Figure 57 shows the minimal z/OS UNIX file system space usage when using
debug level 2 (informational messages).
v The started task logs use 34 KB after startup and grow slowly when users log

on, log off, or operator commands are issued.
v A client log directory uses 11 KB after logon and grows at a steady pace when

the user starts working (not shown in the sample).
v Logoff adds another 40 KB to the user logs, bringing them to 51 KB.

Except for audit logs, log files are overwritten on every restart (for the RSE started
task) or logon (for a client), keeping the total size in check. The keep.last.log
directive in rsed.envvars changes this slightly, as it can instruct RSE to keep a
copy of the previous logs. Older copies are always removed.

startup

$ ls -l /var/rdz/logs
total 144
-rw-rw-rw- 1 STCRSE STCGRP 33642 Jul 10 12:10 rsedaemon.log
-rw-rw-rw- 1 STCRSE STCGRP 1442 Jul 10 12:10 rseserver.log

logon

$ ls -l /var/rdz/logs
total 144
drwxrwxrwx 3 IBMUSER SYS1 8192 Jul 10 12:11 IBMUSER
-rw-rw-rw- 1 STCRSE STCGRP 36655 Jul 10 12:11 rsedaemon.log
-rw-rw-rw- 1 STCRSE STCGRP 1893 Jul 10 12:11 rseserver.log
$ ls -l /var/rdz/logs/IBMUSER
total 160
-rw-rw-rw- 1 IBMUSER SYS1 3459 Jul 10 12:11 ffs.log
-rw-rw-rw- 1 IBMUSER SYS1 0 Jul 10 12:11 ffsget.log
-rw-rw-rw- 1 IBMUSER SYS1 0 Jul 10 12:11 ffsput.log
-rw-rw-rw- 1 IBMUSER SYS1 303 Jul 10 12:11 lock.log
-rw-rw-rw- 1 IBMUSER SYS1 126 Jul 10 12:11 rmt_classloader_cache.jar
-rw-rw-rw- 1 IBMUSER SYS1 7266 Jul 10 12:11 rsecomm.log
-rw-rw-rw- 1 IBMUSER SYS1 0 Jul 10 12:11 stderr.log
-rw-rw-rw- 1 IBMUSER SYS1 0 Jul 10 12:11 stdout.log

logoff
$ ls -l /var/rdz/logs
total 80
drwxrwxrwx 3 IBMUSER SYS1 8192 Jul 10 12:11 IBMUSER
-rw-rw-rw- 1 STCRSE STCGRP 36655 Jul 10 12:11 rsedaemon.log
-rw-rw-rw- 1 STCRSE STCGRP 2208 Jul 10 12:11 rseserver.log
$ ls -l /var/rdz/logs/IBMUSER
total 296
-rw-rw-rw- 1 IBMUSER SYS1 6393 Jul 10 12:11 ffs.log
-rw-rw-rw- 1 IBMUSER SYS1 0 Jul 10 12:11 ffsget.log
-rw-rw-rw- 1 IBMUSER SYS1 0 Jul 10 12:11 ffsput.log
-rw-rw-rw- 1 IBMUSER SYS1 609 Jul 10 12:11 lock.log
-rw-rw-rw- 1 IBMUSER SYS1 126 Jul 10 12:11 rmt_classloader_cache.jar
-rw-rw-rw- 1 IBMUSER SYS1 45157 Jul 10 12:11 rsecomm.log
-rw-rw-rw- 1 IBMUSER SYS1 0 Jul 10 12:11 stderr.log
-rw-rw-rw- 1 IBMUSER SYS1 176 Jul 10 12:11 stdout.log

stop

$ ls -l /var/rdz/logs
total 80
drwxrwxrwx 3 IBMUSER SYS1 8192 Jul 10 12:11 IBMUSER
-rw-rw-rw- 1 STCRSE STCGRP 36655 Jul 10 12:11 rsedaemon.log
-rw-rw-rw- 1 STCRSE STCGRP 2490 Jul 10 12:12 rseserver.log

Figure 57. z/OS UNIX file system space usage

Chapter 13. Tuning considerations 211

A warning message is sent to the console when the file system holding the audit
log files is running low on free space and auditing is active. This console message
(FEK103E) is repeated regularly until the low space issue is resolved. Refer to
“Console messages” on page 121 for a list of console messages generated by RSE.

The definitions in Table 46 control which data is written to the log directories, and
where the directories are located.

Table 46. Log output directives

Location Directive Function

resecomm.properties debug_level Set the default log detail level.

rsed.envvars keep.last.log Keep a copy of the previous logs
before startup/logon.

rsed.envvars enable.audit.log Keep an audit trace of client
actions.

rsed.envvars enable.standard.log Write the stdout and stderr
streams of the thread pool (or
pools) to a log file.

rsed.envvars DSTORE_TRACING_ON Enable DataStore action logging.

rsed.envvars DSTORE_MEMLOGGING_ON Enable DataStore memory usage
logging.

Operator command modify rsecommlog <level> Dynamically change the log detail
level of rsecomm.log

Operator command modify rsedaemonlog <level> Dynamically change the log detail
level of rsedaemon.log

Operator command modify rseserverlog <level> Dynamically change the log detail
level of rseserver.log

Operator command modify rsestandardlog {on|off} Dynamically change the updating
of std*.*.log

rsed.envvars daemon.log Home path for RSE started task
and audit logs.

rsed.envvars user.log Home path for user logs.

Developer for System z, together with requisite software such as the ISPF Client
Gateway, also writes temporary data to /tmp and /var/rdz/WORKAREA. The amount
of data written here as a result of user actions is unpredictable, so you should have
ample free space in the file systems holding these directories.

Developer for system z always tries to clean up these temporary files, but manual
cleanup, as documented in “(Optional) WORKAREA cleanup” on page 98, can be
performed at virtually any time.

Key resource definitions

/etc/rdz/rsed.envvars
The environment variables defined in rsed.envvars are used by RSE, Java, and
z/OS UNIX. The sample file that comes with Developer for System z is targeted at
small to medium sized installations that do not require the optional components of
Developer for System z. “rsed.envvars, RSE configuration file” on page 28
describes each variable that is defined in the sample file, where the following
variables require special attention:

212 IBM Rational Developer for System z: Host Configuration Guide

_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Xms128m -Xmx256m"
Set initial (Xms) and maximum (Xmx) heap size. The defaults are 128M and 256M
respectively. Change to enforce the desired heap size values. If this directive is
commented out, the Java default values will be used, which are 4M and 512M
respectively (1M and 64M for Java 5.0).

#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Dmaximum.clients=60"
Maximum amount of clients serviced by one thread pool. The default is 60.
Uncomment and customize to limit the number of clients per thread pool. Note
that other limits may prevent RSE from reaching this limit.

#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Dmaximum.threads=1000"
Maximum amount of active threads in one thread pool to allow new clients.
The default is 1000. Uncomment and customize to limit the number of clients
per thread pool based upon the number of threads in use. Note that each client
connection uses multiple threads (16 or more) and that other limits may
prevent RSE from reaching this limit.

Note: This value must be lower than the setting for MAXTHREADS and
MAXTHREADTASKS in SYS1.PARMLIB(BPXPRMxx).

#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Dminimum.threadpool.process=10"
The minimum number of active thread pools. The default is 1. Uncomment
and customize to start at least the listed number of thread pool processes.
Thread pool processes are used for load balancing the RSE server threads.
More new processes are started when they are needed. Starting the new
processes up front helps prevent connection delays but uses more resources
during idle times.

#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Dmaximum.threadpool.process=100"
The maximum number of active thread pools. The default is 100. Uncomment
and customize to limit the number of thread pool processes. Thread pool
processes are used for load balancing the RSE server threads, so limiting them
will limit the amount of active client connections.

SYS1.PARMLIB(BPXPRMxx)
RSE is a Java application, which means that it is active in the z/OS UNIX
environment. This promotes BPXPRMxx to become a crucial parmlib member, as it
contains the parameters that control the z/OS UNIX environment and file systems.
BPXPRMxx is described in the MVS Initialization and Tuning Reference (SA22-7592).
The following directives are known to impact Developer for System z:

MAXPROCSYS(nnnnn)
Specifies the maximum number of processes that the system allows.

Value Range: nnnnn is a decimal value from 5 to 32767.
Default: 900

MAXPROCUSER(nnnnn)
Specifies the maximum number of processes that a single z/OS UNIX user ID
can have concurrently active, regardless of how the processes were created.

Value Range: nnnnn is a decimal value from 3 to 32767.
Default: 25

Note:

Chapter 13. Tuning considerations 213

v All RSE processes use the same z/OS UNIX user ID (that of the user
who is assigned to RSE daemon), because all clients run as threads
within the RSE processes.

v This value can also be set with the PROCUSERMAX variable in the
OMVS security profile segment of the user assigned to the RSED
started task.

MAXTHREADS(nnnnnn)
Specifies the maximum number of pthread_created threads, including running,
queued, and exited but undetached, that a single process can have
concurrently active. Specifying a value of 0 prevents applications from using
pthread_create.

Value Range: nnnnnn is a decimal value from 0 to 100000.
Default: 200

Note:

v Each client uses at least 16 threads within the RSE thread pool
process, and multiple clients are active within the process.

v This value can also be set with the THREADSMAX variable in the
OMVS security profile segment of the user assigned to the RSED
started task. When set, the THREADSMAX value is used for both
MAXTHREADS and MAXTHREADTASKS.

MAXTHREADTASKS(nnnnn)
Specifies the maximum number of MVS tasks that a single process can have
concurrently active for pthread_created threads.

Value Range: nnnnn is a decimal value from 0 to 32768.
Default: 1000

Note:

v Each active thread has an MVS task (TCB, Task Control Block).
v Each concurrent MVS task requires additional storage, some of which

must be below the 16MB line.
v Each client uses at least 16 threads within the RSE thread pool

process, and multiple clients are active within the process.
v This value can also be set with the THREADSMAX variable in the

OMVS security profile segment of the user assigned to the RSED
started task. When set, the THREADSMAX value is used for both
MAXTHREADS and MAXTHREADTASKS.

MAXUIDS(nnnnn)
Specifies the maximum number of z/OS UNIX user IDs (UIDs) that can
operate concurrently.

Value Range: nnnnn is a decimal value from 1 to 32767.
Default: 200

MAXASSIZE(nnnnn)
Specifies the RLIMIT_AS resource values that will be established as the initial
values for new processes. RLIMIT_AS indicates the address space region size.

Value Range: nnnnn is a decimal value from 10485760 (10 Megabytes)
to 2147483647 (2 Gigabytes).

Default: 209715200 (200 Megabytes)

214 IBM Rational Developer for System z: Host Configuration Guide

Note:

v This value should be set to 2G.
v This value can also be set with the ASSIZEMAX variable in the OMVS

security profile segment of the user assigned to the RSED started task.

MAXFILEPROC(nnnnnn)
Specifies the maximum number of descriptors for files, sockets, directories, and
any other file system objects that a single process can have concurrently active
or allocated.

Value Range: nnnnnn is a decimal value from 3 to 524287.
Default: 64000

Note:

v A thread pool has all his client threads in a single process.
v This value can also be set with the FILEPROCMAX variable in the

OMVS security profile segment of the user assigned to the RSED
started task.

MAXMMAPAREA(nnnnn)
Specifies the maximum amount of data space storage space (in pages) that can
be allocated for memory mappings of z/OS UNIX files. Storage is not allocated
until the memory mapping is active.

Value Range: nnnnn is a decimal value from 1 to 16777216.
Default: 40960

Note: This value can also be set with the MMAPAREAMAX variable in the
OMVS security profile segment of the user assigned to the RSED started
task.

Use the SETOMVS or SET OMVS operator command to dynamically (until next
IPL) increase or decrease the value of any of the previous BPXPRMxx variables. To
make a permanent change, edit the BPXPRMxx member that will be used for IPLs.
Refer to MVS System Commands (SA22-7627) for more information on these
operator commands.

The following definitions are sub-parameters of the NETWORK statement.

MAXSOCKETS(nnnnnnnn)
Specifies the maximum number of sockets supported by this file system for
this address family. This is an optional parameter.

Value Range: nnnnnnnn is a decimal value from 0 to 16777215.
Default: 100

INADDRANYCOUNT(nnnn)
Specifies the number of ports that the system reserves for use with PORT 0,
INADDR_ANY binds, starting with the port number specified in the
INADDRANYPORT parameter. This value is only needed for CINET (multiple
TCP/IP stacks).

Value Range: nnnn is a decimal value from 1 to 4000.
Default: If neither INADDRANYPORT or INADDRANYCOUNT

is specified, the default for INADDRANYCOUNT is 1000.
Otherwise, no ports are reserved (0).

Chapter 13. Tuning considerations 215

Various resource definitions

EXEC card in the server JCL
The following definitions are recommended to be added to the EXEC card in the
JCL of the Developer for System z servers.

REGION=0M
REGION=0M is recommended for the RSE daemon and JES Job Monitor started
tasks, RSED and JMON respectively. By doing so, the address space size is
limited only by the available private storage, or by the IEFUSI or IEALIMIT
system exits. Note that IBM strongly recommends not to use these exits for
z/OS UNIX address spaces, like RSE daemon.

TIME=NOLIMIT
TIME=NOLIMIT is recommended to be used for all Developer for System z
servers. This because the CPU time of all Developer for System z clients
accumulates in the server address spaces.

FEK.#CUST.PARMLIB(FEJJCNFG)
The environment variables defined in FEJJCNFG are used by JES Job Monitor. The
sample file that comes with Developer for System z is targeted at small to medium
sized installations. “FEJJCNFG, JES Job Monitor configuration file” on page 24
describes each variable that is defined in the sample file, where the following
variables require special attention:

MAX_THREADS
Maximum number of users that can be using one JES Job Monitor at a time.
The default is 200. The maximum value is 2147483647. Increasing this number
may require you to increase the size of the JES Job Monitor address space.

SYS1.PARMLIB(IEASYSxx)
IEASYSxx holds system parameters and is described in the MVS Initialization and
Tuning Reference (SA22-7592). The following directives are known to impact
Developer for System z:

MAXUSER=nnnnn
This parameter specifies a value that, under most conditions, the system uses
to limit the number of jobs and started tasks that can run concurrently during
a given IPL.

Value Range: nnnnn is a decimal value from 0-32767. Note that the
sum of the values specified for the MAXUSER, RSVSTRT,
and RSVNONR system parameters cannot exceed 32767.

Default Value: 255

SYS1.PARMLIB(IVTPRMxx)
IVTPRMxx sets parameters for the Communication Storage Manager (CSM), and is
described in the MVS Initialization and Tuning Reference (SA22-7592). The following
directives are known to impact Developer for System z:

FIXED MAX(maxfix)
Defines the maximum amount of storage dedicated to fixed CSM buffers.

Value Range: maxfix is a value from 1024K to 2048M.
Default: 100M

216 IBM Rational Developer for System z: Host Configuration Guide

ECSA MAX(maxecsa)
Defines the maximum amount of storage dedicated to ECSA CSM buffers.

Value Range: maxecsa is a value from 1024K to 2048M.
Default: 100M

SYS1.PARMLIB(ASCHPMxx)
The ASCHPMxx parmlib member contains scheduling information for the ASCH
transaction scheduler, and is described in the MVS Initialization and Tuning Reference
(SA22-7592). The following directives are known to impact Developer for System z:

MAX(nnnnn)
An optional parameter of the CLASSADD definition that specifies the
maximum number of APPC transaction initiators that are allowed for a
particular class of transaction initiators. After this limit is reached, no new
address spaces are created and incoming requests are queued to wait until
existing initiator address spaces become available. The value should not exceed
the maximum number of address spaces allowed by your installation, and you
should be aware of competing products on the system that will also require
address spaces.

Value Range: nnnnn is a decimal value from 1 to 64000.
Default: 1

Note: If you use APPC to start the TSO Commands service, then the
transaction class used must have enough transaction initiators to allow
one initiator for each concurrent user of Developer for System z.

Monitoring
Since user workloads can change the need for system resources, the system should
be monitored regularly to measure resource usage so that Rational Developer for
System z and system configurations can be adjusted in response to user
requirements. The following commands can be used to aid in this monitoring
process.

Monitoring RSE
RSE thread pools are the focal point for user activity in Developer for System z,
and thus require monitoring for optimal use. RSE daemon can be queried for
information that cannot be gathered with regular system monitoring tools.
v Use your regular system monitoring tools, such as RMF™, to gather address

space-specific data such as used real storage and CPU-time. If you do not have a
dedicated monitoring tool, then basic information can be gathered with tools like
the SDSF DA view or TASID (an as-is system information tool available via the
ISPF “Support and downloads” webpage).

v During startup, the RSE daemon reports the available address space size and
Java heap size with console message FEK004I.
FEK004I RseDaemon: Max Heap Size=65MB and private AS Size=1,959MB

v The MODIFY RSED,APPL=DISPLAY PROCESS operator command displays
the RSE thread pool processes. The “Memory Usage” field shows how much of
the defined Java heap is actually used. Refer to Chapter 8, “Operator
commands,” on page 115 for more information on this command.
f rsed,appl=d p
BPXM023I (STCRSE)
ProcessId(16777456) Memory Usage(33%) Clients(4) Order(1)

Chapter 13. Tuning considerations 217

More information is provided when the DETAIL option of the DISPLAY
PROCESS modify command is used:
f rsed,appl=d p,detail
BPXM023I (STCRSE)
ProcessId(33555087) ASId(002E) JobName(RSED8) Order(1)
PROCESS LIMITS: CURRENT HIGHWATER LIMIT
JAVA HEAP USAGE(%) 10 56 100
CLIENTS 0 25 60
MAXFILEPROC 83 103 64000
MAXPROCUSER 97 99 200
MAXTHREADS 9 14 1500
MAXTHREADTASKS 9 14 1500

Monitoring z/OS UNIX
Most z/OS UNIX limits that are of interest for Developer for System z can be
displayed using operator commands. Some commands even show the current
usage and the high-water mark for a specific limit. Refer to MVS System Commands
(SA22-7627) for more information on these commands.
v The LIMMSG(ALL) directive in SYS1.PARMLIB(BPXPRMxx) tells z/OS UNIX to

display console messages (BPXI040I) when any of the parmlib limits is about to
be reached. The default value for LIMMSG is NONE, which disables the function.
Use operator command SETOMVS LIMMSG=ALL to dynamically activate this
function (until next IPL). Refer to MVS Initialization and Tuning Reference
(SA22-7592) for more information on this directive.

v The DISPLAY OMVS,OPTIONS operator command displays the current values
of z/OS UNIX directives that can be set dynamically.
d omvs,o
BPXO043I 13.10.16 DISPLAY OMVS 066
OMVS 000D ETC/INIT WAIT OMVS=(M7)
CURRENT UNIX CONFIGURATION SETTINGS:
MAXPROCSYS = 256 MAXPROCUSER = 16
MAXFILEPROC = 256 MAXFILESIZE = NOLIMIT
MAXCPUTIME = 1000 MAXUIDS = 200
MAXPTYS = 256
MAXMMAPAREA = 256 MAXASSIZE = 209715200
MAXTHREADS = 200 MAXTHREADTASKS = 1000
MAXCORESIZE = 4194304 MAXSHAREPAGES = 4096
IPCMSGQBYTES = 2147483647 IPCMSGQMNUM = 10000
IPCMSGNIDS = 500 IPCSEMNIDS = 500
IPCSEMNOPS = 25 IPCSEMNSEMS = 1000
IPCSHMMPAGES = 25600 IPCSHMNIDS = 500
IPCSHMNSEGS = 500 IPCSHMSPAGES = 262144
SUPERUSER = BPXROOT FORKCOPY = COW
STEPLIBLIST =
USERIDALIASTABLE=
SERV_LINKLIB = POSIX.DYNSERV.LOADLIB BPXLK1
SERV_LPALIB = POSIX.DYNSERV.LOADLIB BPXLK1
PRIORITYPG VALUES: NONE
PRIORITYGOAL VALUES: NONE
MAXQUEUEDSIGS = 1000 SHRLIBRGNSIZE = 67108864
SHRLIBMAXPAGES = 4096 VERSION = /
SYSCALL COUNTS = NO TTYGROUP = TTY
SYSPLEX = NO BRLM SERVER = N/A
LIMMSG = NONE AUTOCVT = OFF
RESOLVER PROC = DEFAULT
AUTHPGMLIST = NONE
SWA = BELOW

v The DISPLAY OMVS,LIMITS operator command displays information about
current z/OS UNIX System Services parmlib limits, their high-water marks, and
current system usage.

218 IBM Rational Developer for System z: Host Configuration Guide

d omvs,l
BPXO051I 14.05.52 DISPLAY OMVS 904
OMVS 0042 ACTIVE OMVS=(69)
SYSTEM WIDE LIMITS: LIMMSG=SYSTEM

CURRENT HIGHWATER SYSTEM
USAGE USAGE LIMIT

MAXPROCSYS 1 4 256
MAXUIDS 0 0 200
MAXPTYS 0 0 256
MAXMMAPAREA 0 0 256
MAXSHAREPAGES 0 10 4096
IPCMSGNIDS 0 0 500
IPCSEMNIDS 0 0 500
IPCSHMNIDS 0 0 500
IPCSHMSPAGES 0 0 262144 *
IPCMSGQBYTES --- 0 262144
IPCMSGQMNUM --- 0 10000
IPCSHMMPAGES --- 0 256
SHRLIBRGNSIZE 0 0 67108864
SHRLIBMAXPAGES 0 0 4096

The command displays high-water marks and current usage for an individual
process when the PID=processid keyword is also specified.
d,omvs,l,pid=16777456
BPXO051I 14.06.28 DISPLAY OMVS 645
OMVS 000E ACTIVE OMVS=(76)
USER JOBNAME ASID PID PPID STATE START CT_SECS
STCRSE RSED8 007E 16777456 67109106 HF---- 20.00.56 113.914
LATCHWAITPID= 0 CMD=java -Ddaemon.log=/var/rdz/logs -
PROCESS LIMITS: LIMMSG=NONE

CURRENT HIGHWATER PROCESS
USAGE USAGE LIMIT

MAXFILEPROC 83 103 256
MAXFILESIZE --- --- NOLIMIT
MAXPROCUSER 97 99 200
MAXQUEUEDSIGS 0 1 1000
MAXTHREADS 9 14 200
MAXTHREADTASKS 9 14 1000
IPCSHMNSEGS 0 0 500
MAXCORESIZE --- --- 4194304
MAXMEMLIMIT 0 0 16383P

v The DISPLAY OMVS,PFS operator command displays information about each
physical file system that is currently part of the z/OS UNIX configuration,
which includes the TCP/IP stacks.
d omvs,p
BPXO046I 14.35.38 DISPLAY OMVS 092
OMVS 000E ACTIVE OMVS=(33)
PFS CONFIGURATION INFORMATION
PFS TYPE DESCRIPTION ENTRY MAXSOCK OPNSOCK HIGHUSED
TCP SOCKETS AF_INET EZBPFINI 50000 244 8146
UDS SOCKETS AF_UNIX BPXTUINT 64 6 10
ZFS LOCAL FILE SYSTEM IOEFSCM

14:32.00 RECYCLING
HFS LOCAL FILE SYSTEM GFUAINIT
BPXFTCLN CLEANUP DAEMON BPXFTCLN
BPXFTSYN SYNC DAEMON BPXFTSYN
BPXFPINT PIPE BPXFPINT
BPXFCSIN CHAR SPECIAL BPXFCSIN
NFS REMOTE FILE SYSTEM GFSCINIT
PFS NAME DESCRIPTION ENTRY STATUS FLAGS
TCP41 SOCKETS EZBPFINI ACT CD
TCP42 SOCKETS EZBPFINI ACT
TCP43 SOCKETS EZBPFINI INACT SD
TCP44 SOCKETS EZBPFINI INACT

Chapter 13. Tuning considerations 219

PFS PARM INFORMATION
HFS SYNCDEFAULT(60) FIXED(50) VIRTUAL(100)

CURRENT VALUES: FIXED(55) VIRTUAL(100)
NFS biod(6)

v The DISPLAY OMVS,PID=processid operator command displays the thread
information for a specific process.
d omvs,pid=16777456
BPXO040I 15.30.01 DISPLAY OMVS 637
OMVS 000E ACTIVE OMVS=(76)
USER JOBNAME ASID PID PPID STATE START CT_SECS
STCRSE RSED8 007E 16777456 67109106 HF---- 20.00.56 113.914
LATCHWAITPID= 0 CMD=java -Ddaemon.log=/var/rdz/logs -
THREAD_ID TCB@ PRI_JOB USERNAME ACC_TIME SC STATE
0E08A00000000000 005E6DF0 OMVS .927 RCV FU
0E08F00000000001 005E6C58 .001 PTX JYNV
0E09300000000002 005E6AC0 7.368 PTX JYNV
0E0CB00000000008 005C2CF0 OMVS 1.872 SEL JFNV
0E192000000003CE 005A0B70 OMVS IBMUSER 14.088 POL JFNV
0E18D000000003CF 005A1938 IBMUSER .581 SND JYNV

Monitoring the network
When supporting a large number of clients connecting to the host, then not only
Developer for System z, but also your network infrastructure must be able to
handle the workload. Network management is a broad and well documented
subject that falls out of the scope of Developer for System z documentation.
Therefore, only the following pointers are provided.
v The DISPLAY NET,CSM operator command allows you to monitor the use of

storage managed by the communications storage manager (CSM). You can use
this command to determine how much CSM storage is in use for ECSA and data
space storage pools, as documented in Communications Server SNA Operations
(SC31-8779).

Monitoring z/OS UNIX file systems
Developer for System z uses z/OS UNIX file systems to store various types of
data, such as logs and temporary files. Use the z/OS UNIX df command to see
how many file descriptors are still available and how much free space is left before
the next extent of the underlying HFS or zFS data set will be created.
$ df
Mounted on Filesystem Avail/Total Files Status
/tmp (OMVS.TMP) 1393432/1396800 4294967248 Available
/u/ibmuser (OMVS.U.IBMUSER) 1248/1728 4294967281 Available
/usr/lpp/rdz (OMVS.FEK.HHOP760) 3062/43200 4294967147 Available
/var (OMVS.VAR) 27264/31680 4294967054 Available

Sample setup
The following sample setup shows the required configuration to support these
requirements:
v 500 simultaneous client connections
v 300 simultaneous MVS builds (batch job)
v 200 simultaneous CARMA connections (using the CRASTART startup method)
v 3 hour inactivity time-out
v disallow usage of z/OS UNIX
v SCLM Developer Toolkit and File Manager Integration are not used
v Foresee an average Java heap usage of 5 MB

220 IBM Rational Developer for System z: Host Configuration Guide

v Users have unique z/OS UNIX UIDs

Thread pool count
By default, Developer for system z tries to add 60 users to a single thread pool.
However, our requirements indicate that the inactivity time-out will be active.
Table 44 on page 202 shows that this will add 1 thread per connected client. This
thread is a timer thread, and thus constantly active. This will prevent RSE from
putting 60 users in a single thread pool, as 60*(16+1)=1020, and maximum.threads is
set to 1000 by default.

We could increase maximum.threads, but due to the requirement to have on average
5 MB of Java heap per user, we choose to lower maximum.clients to 50. This keeps
us within the default 256 MB maximum Java heap size (5*50 = 250).

With 50 clients per thread pool and the need to support 500 connections, we now
know we will need 10 thread pool address spaces.

Determine minimum limits
Using the formulas shown earlier in this chapter and the criteria stated at the
beginning of this section, we can determine the resource usage that must be
accommodated.
v Address space count - maximum

3 + A + N*(x + y + z) + (2 + N*0.01)
3 + 10 + 500*1 + 200*1 + 300*1 + (2 + 500*0.01) = 1020

v Address space count - per user
x + y + z
1 + 1 + 1 = 3

v Process count - maximum
7 + 2*A + N*(x + y + z) + (10 + N*0.05)
7 + 2*10 + 500*2 + 200*1 + 300*0 + (10 + 500*0.05) = 1562

v Process count - per user
(x + y + z) + 5*s
(2 + 1 + 0) + 5*0 = 3

v Thread count - RSE thread pool
9 + N*(16 + x + y + z) + (20 + N*0.1)
9 + 60*(16 + 1 + 4 + 0) + (20 + 60*0.1) = 1295

v Thread count - JES Job Monitor
3 + N
3 + 500 = 503

v User IDs
500 + 3 = 503
The 3 extra user IDs are for STCJMON, STCLOCK and STCRSE, the Developer
for System z started task user IDs.

Defining limits
Now that the resource usage numbers are known, we can customize the limiting
directives with appropriate values.
v /etc/rdz/rsed.envvars

– Xmx256m

Chapter 13. Tuning considerations 221

not changed
– Dmaximum.clients=50
– Dmaximum.threads=1000

not changed
– Dminimum.threadpool.process=10

This change is optional; RSE will start new thread pools as needed
– DHIDE_ZOS_UNIX=true
– DDSTORE_IDLE_SHUTDOWN_TIMEOUT=10800000

v FEK.#CUST.PARMLIB(FEJJCNFG)
– MAX_THREADS=503

v SYS1.PARMLIB(BPXPRMxx)
– MAXPROCSYS(2500)

1562 minimum, added extra buffer for tasks other than Developer
for System z

– MAXPROCUSER(25)

not changed, minimum 3
– MAXTHREADS(1500)

must be minimum 503 (for JES Job Monitor) if THREADSMAX in the
OMVS segment of user ID STCRSE is used to set the limit for RSE
(minimum 1295)

– MAXTHREADTASKS(1500)

must be minimum 503 (for JES Job Monitor) if THREADSMAX in the
OMVS segment of user ID STCRSE is used to set the limit for RSE
(minimum 1295)

– MAXUIDS(700)

503 minimum, added extra buffer for tasks other than Developer
for System z

– MAXASSIZE(209715200)

not changed (200 MB system default), we use ASSIZEMAX in the OMVS
segment of user ID STCRSE

v SYS1.PARMLIB(IEASYSxx)
– MAXUSER=2000

1020 minimum, added extra buffer for tasks other than
Developer for System z

v OMVS segment of user ID STCRSE
– ASSIZEMAX(2147483647)

2 GB

Monitor resource usage
After activating the system limits as documented in “Defining limits” on page 221,
we can start monitoring the resource usage by Developer for System z to see if
adjustment of some variables is needed. Figure 58 on page 223 shows the resource

222 IBM Rational Developer for System z: Host Configuration Guide

usage after 495 users logged on. (The example in the figure shows just the logging
on. No user actions are indicated in the example.)

BPXM023I (STCRSE)
ProcessId(16779764) Memory Usage(10%) Clients(50) Order(1)
ProcessId(67108892) Memory Usage(16%) Clients(50) Order(2)
ProcessId(67108908) Memory Usage(10%) Clients(50) Order(3)
ProcessId(67108898) Memory Usage(16%) Clients(50) Order(4)
ProcessId(67108916) Memory Usage(16%) Clients(50) Order(5)
ProcessId(67108897) Memory Usage(16%) Clients(50) Order(6)
ProcessId(67108921) Memory Usage(16%) Clients(50) Order(7)
ProcessId(83886146) Memory Usage(16%) Clients(50) Order(8)
ProcessId(67108920) Memory Usage(16%) Clients(50) Order(9)
ProcessId(3622) Memory Usage(8%) Clients(45) Order(10)

Jobname Cpu time Storage EXCP
-------- ----------- ------- ----------
JMON 1.74 43.0M 2753
LOCKD 10.05 31.9M 24621
RSED 6.65 40.1M 41780
RSED1 8.17 187.0M 76566
RSED2 13.04 184.9M 78946
RSED3 17.77 181.1M 76347
RSED4 11.63 174.9M 74638
RSED5 15.27 172.9M 72883
RSED6 13.85 180.8M 75031
RSED7 9.79 174.3M 76636
RSED8 21.59 176.1M 70583
RSED8 18.88 184.7M 76953
RSED9 9.52 189.8M 80490

Figure 58. Resource usage of sample setup

Chapter 13. Tuning considerations 223

224 IBM Rational Developer for System z: Host Configuration Guide

Chapter 14. Performance considerations

z/OS is a highly customizable operating system, and (sometimes small) system
changes can have a huge impact on the overall performance. This chapter
highlights some of the changes that can be made to improve the performance of
Developer for System z.

Refer to the MVS Initialization and Tuning Guide (SA22-7591) and UNIX System
Services Planning (GA22-7800) for more information on system tuning.

Use zFS file systems
zFS (zSeries® File System) and HFS (Hierarchical File System) are both UNIX file
systems that can be used in a z/OS UNIX environment. However, zFS provides the
following features and benefits:
v Performance gains in many customer environments when accessing files

approaching 8K in size that are frequently accessed and updated. The access
performance of smaller files is equivalent to that of HFS.

v Read-only cloning of a file system in the same data set. The cloned file system
can be made available to users to provide a read-only point-in-time copy of a
file system. This is an optional feature that is available only in a non-sysplex
environment.

v zFS is the strategic z/OS UNIX file system. The HFS functionality has been
stabilized, and enhancements to the file system will be for zFS only.

Refer to UNIX System Services Planning (GA22-7800) to learn more about zFS.

Avoid use of STEPLIB
Each z/OS UNIX process that has a STEPLIB that is propagated from parent to
child or across an exec will consume about 200 bytes of Extended Common
Storage Area (ECSA). If no STEPLIB environment variable is defined, or when it is
defined as STEPLIB=CURRENT, z/OS UNIX propagates all currently active TASKLIB,
STEPLIB, and JOBLIB allocations during a fork(), spawn(), or exec() function.

Developer for System z has a default of STEPLIB=NONE coded in rsed.envvars, as
described in rsed.envvars, configuration file. For the reasons mentioned above, it
is advised not to change this directive and place the targeted data sets in
LINKLIST or LPA (Link Pack Area) instead.

Improve access to system libraries
Certain system libraries and load modules are heavily used by z/OS UNIX and
application development activities. Improving access to these, such as adding them
to the Link Pack Area (LPA) can improve your system performance. Refer to MVS
Initialization and Tuning Reference (SA22-7592) for more information on changing the
SYS1.PARMLIB members described as follows:

Language Environment (LE) runtime libraries
When C programs (including the z/OS UNIX shell) are run, they frequently use
routines from the Language Environment (LE) runtime library. On average, about 4

© Copyright IBM Corp. 2005, 2010 225

MB of the runtime library are loaded into memory for every address space running
a LE-enabled program, and copied on every fork.

CEE.SCEELPA

The CEE.SCEELPA data set contains a subset of the LE runtime routines, which are
heavily used by z/OS UNIX. You should add this data set to
SYS1.PARMLIB(LPALSTxx) for maximum performance gain. By doing so, the
modules are read from disk only once and are stored in a shared location.

Note: Add the following statement to SYS1.PARMLIB(PROGxx) if you prefer to add
the load modules into dynamic LPA (Link Pack Area):
LPA ADD MASK(*) DSNAME(CEE.SCEELPA)

It is also advised to place the LE runtime libraries CEE.SCEERUN and CEE.SCEERUN2
in LINKLIST, by adding the data sets to SYS1.PARMLIB(LNKLSTxx) or
SYS1.PARMLIB(PROGxx). This eliminates z/OS UNIX STEPLIB overhead and there is
reduced input/output due to management by LLA and VLF, or similar products.

Note: Add the C/C++ DLL class library CBC.SCLBDLL also to LINKLIST for the
same reasons.

If you decide not to put these libraries in LINKLIST, then you must set up the
appropriate STEPLIB statement in rsed.envvars, as described in rsed.envvars,
configuration file. Although this method always uses additional virtual storage,
you can improve performance by defining the LE runtime libraries to LLA or a
similar product. This reduces the I/O that is needed to load the modules.

Application development
On systems where application development is the primary activity, performance
may also benefit if you put the linkage editor into dynamic LPA, by adding the
following lines to SYS1.PARMLIB(PROGxx):
LPA ADD MODNAME(CEEBINIT,CEEBLIBM,CEEEV003,EDCZV) DSNAME(CEE.SCEERUN)
LPA ADD MODNAME(IEFIB600,IEFXB603) DSNAME(SYS1.LINKLIB)

For C/C++ development, you can also add the CBC.SCCNCMP compiler data set to
SYS1.PARMLIB(LPALSTxx).

The statements above are samples of possible LPA candidates, but the needs at
your site may vary. Refer to Language Environment Customization (SA22-7564) for
information on putting other LE load modules into dynamic LPA. Refer to UNIX
System Services Planning (GA22-7800) for more information on putting C/C++
compiler load modules into dynamic LPA.

Improving performance of security checking
To improve the performance of security checking done for z/OS UNIX, define the
BPX.SAFFASTPATH profile in the FACILITY class of your security software. This
reduces overhead when doing z/OS UNIX security checks for a wide variety of
operations. These include file access checking, IPC access checking, and process
ownership checking. Refer to UNIX System Services Planning (GA22-7800) for more
information on this profile.

Note: Users do not need to be permitted to the BPX.SAFFASTPATH profile.

226 IBM Rational Developer for System z: Host Configuration Guide

Workload management
Each site has specific needs, and can customize the z/OS operating system to get
the most out of the available resources to meet those needs. With workload
management, you define performance goals and assign a business importance to
each goal. You define the goals for work in business terms, and the system decides
how much resource, such as CPU and storage, should be given to the work to
meet its goal.

Developer for System z performance can be balanced by setting the correct goals
for its processes. Some general guidelines are listed as follows:
v When used, assign the APPC transaction to a TSO performance group.
v Assign a started task performance group (SYSSTC) to the Developer for System

z server address spaces: JES Job Monitor (JMON), Lock daemon (LOCKD), RSE
daemon (RSED), and RSE thread pools (RSEDx).

Refer to MVS Planning Workload Management (SA22-7602) for more information on
this subject.

Fixed Java heap size
With a fixed-size heap, no heap expansion or contraction occurs and this can lead
to significant performance gains in some situations. However, using a fixed-size
heap is usually not a good idea, because it delays the start of garbage collection
until the heap is full, at which point it will be a major task. It also increases the
risk of fragmentation, which requires a heap compaction. Therefore, use fixed-size
heaps only after proper testing or under the direction of the IBM support center.
Refer to Java Diagnostics Guide (SC34-6650) for more information on heap sizes and
garbage collection.

By default, the initial heap size of a z/OS Java Virtual Machine (JVM) is 1
megabyte. The maximum size is 64 megabytes. The limits can be set with the -Xms
(initial) and -Xmx (maximum) Java command-line options.

In Developer for System z, Java command-line options are defined in the
_RSE_JAVAOPTS directive of rsed.envvars, as described in “Defining extra Java
startup parameters with _RSE_JAVAOPTS” on page 37.
#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Xms128m -Xmx128m"

Java -Xquickstart option

Note: Java -Xquickstart is only useful if you use the REXEC/SSH alternate startup
method for RSE server. This method is documented in “(Optional) Using
REXEC (or SSH)” on page 93.

The -Xquickstart option can be used for improving startup time of some Java
applications. -Xquickstart causes the JIT (Just In Time) compiler to run with a
subset of optimizations; that is, a quick compile. This quick compile allows for
improved startup time.

-Xquickstart is appropriate for shorter running applications, especially those where
execution time is not concentrated into a small number of methods. -Xquickstart
can degrade performance if it is used on longer-running applications that contain
hot methods.

Chapter 14. Performance considerations 227

To enable the -Xquickstart option for the RSE server, add the following directive to
the end of rsed.envvars:
_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Xquickstart"

Class sharing between JVMs
The IBM Java Virtual Machine (JVM) version 5 and higher allows you to share
bootstrap and application classes between JVMs by storing them in a cache in
shared memory. Class sharing reduces the overall virtual memory consumption
when more than one JVM shares a cache. Class sharing also reduces the startup
time for a JVM after the cache has been created.

The shared class cache is independent of any active JVM and persists beyond the
lifetime of the JVM that created the cache. Because the shared class cache persists
beyond the lifetime of any JVM, the cache is updated dynamically to reflect any
modifications that might have been made to JARs or classes on the file system.

The overhead to create and populate a new cache is minimal. The JVM startup cost
in time for a single JVM is typically between 0 and 5% slower compared with a
system not using class sharing, depending on how many classes are loaded. JVM
startup time improvement with a populated cache is typically between 10% and
40% faster compared with a system not using class sharing, depending on the
operating system and the number of classes loaded. Multiple JVMs running
concurrently will show greater overall startup time benefits.

Refer to the Java SDK and Runtime Environment User Guide to learn more about
class sharing.

Enable class sharing
To enable class sharing for the RSE server, add the following directive to the end of
rsed.envvars. The first statement defines a cache named RSE with group access
and it allows the RSE server to start even if class sharing fails. The second
statement is optional and it sets the cache size to 6 megabytes (system default is 16
MB). The third statement adds the class sharing parameters to the Java startup
options.
_RSE_CLASS_OPTS=-Xshareclasses:name=RSE,groupAccess,nonFatal
#_RSE_CLASS_OPTS="$_RSE_CLASS_OPTS -Xscmx6m
_RSE_JAVAOPTS="$_RSE_JAVAOPTS $_RSE_CLASS_OPTS"

Note: As mentioned in “Cache security,” all users using the shared class must
have the same primary group ID (GID). This means that the users must
have the same default group defined in the security software, or that the
different default groups have the same GID in their OMVS segment.

Cache size limits
The maximum theoretical shared cache size is 2 GB. The size of cache you can
specify is limited by the amount of physical memory and swap space available to
the system. Because the virtual address space of a process is shared between the
shared class cache and the Java heap, increasing the maximum size of the Java
heap will reduce the size of the shared class cache you can create.

Cache security
Access to the shared class cache is limited by operating system permissions and
Java security permissions.

228 IBM Rational Developer for System z: Host Configuration Guide

By default, class caches are created with user-level security, so only the user that
created the cache can access it. On z/OS UNIX, there is an option, groupAccess,
which gives access to all users in the primary group of the user that created the
cache. However, regardless of the access level used, a cache can only be destroyed
by the user that created it or by a root user (UID 0).

Refer to Java SDK and Runtime Environment User Guide to learn more about extra
security options using a Java SecurityManager.

SYS1.PARMLIB(BPXPRMxx)
Some of the SYS1.PARMLIB(BPXPRMxx) settings affect shared classes performance.
Using the wrong settings can stop shared classes from working. These settings
might also have performance implications. For further information about
performance implications and use of these parameters, refer to MVS Initialization
and Tuning Reference (SA22-7592) and UNIX System Services Planning (GA22-7800).
The most significant BPXPRMxx parameters that affect the operation of shared classes
are the following:
v MAXSHAREPAGES, IPCSHMSPAGES, IPCSHMMPAGES and IPCSHMNSEGS

These settings affect the amount of shared memory pages available to the JVM.
The shared page size for a 31-bit z/OS UNIX system service is fixed at 4 KB.
Shared classes try to create a 16 MB cache by default. Therefore set IPCSHMMPAGES
greater than 4096.
If you set a cache size using -Xscmx, the JVM will round up the value to the
nearest megabyte. You must take this into account when setting IPCSHMMPAGES on
your system.

v IPCSEMNIDS and IPCSEMNSEMS

These settings affect the amount of semaphores available to UNIX processes.
Shared classes use IPC semaphores to communicate between the JVMs.

Disk space
The shared class cache requires disk space to store identification information about
the caches that exist on the system. This information is stored in
/tmp/javasharedresources. If the identification information directory is deleted, the
JVM cannot identify the shared classes on the system and must recreate the cache.

Cache management utilities
The Java -Xshareclasses line command can take a number of options, some of
which are cache management utilities. Three of them are shown in the sample
below ($ is the z/OS UNIX prompt). Refer to Java SDK and Runtime Environment
User Guide for a complete overview of supported command-line options.
$ java -Xshareclasses:listAllCaches
Shared Cache OS shmid in use Last detach time
RSE 401412 0 Mon Jun 18 17:23:16 2007

Could not create the Java virtual machine.

$ java -Xshareclasses:name=RSE,printStats

Current statistics for cache "RSE":

base address = 0x0F300058
end address = 0x0F8FFFF8
allocation pointer = 0x0F4D2E28

cache size = 6291368

Chapter 14. Performance considerations 229

free bytes = 4355696
ROMClass bytes = 1912272
Metadata bytes = 23400
Metadata % used = 1%

ROMClasses = 475
Classpaths = 4
URLs = 0
Tokens = 0
Stale classes = 0
% Stale classes = 0%

Cache is 30% full

Could not create the Java virtual machine.

$ java -Xshareclasses:name=RSE,destroy
JVMSHRC010I Shared Cache "RSE" is destroyed
Could not create the Java virtual machine.

Note:

v Cache utilities perform the required operation on the specified cache
without starting the JVM, so the "Could not create the Java virtual
machine." message is normal.

v A cache can be destroyed only if all JVMs using it have shut down, and
the user issuing the command has sufficient permissions.

230 IBM Rational Developer for System z: Host Configuration Guide

Chapter 15. CICSTS considerations

Traditionally, the role of defining resources to CICS has been the domain of the
CICS administrator. There has been a reluctance to allow the application developer
to define CICS resources for various reasons:
v Most CICS resource definitions have many parameters that because of their

complexity, interrelationship with other resource definitions, and shop standards
require CICS administrator knowledge to define correctly. Incorrect definitions
can cause unexpected results that might impact the entire CICS region.

v Most customer shops provide CICS development and test environments that
must be available for shared use by multiple application groups and developers.
Many customer shops have Service Level Agreements in place for these
environments. Meeting these agreements requires strict control of the
environments.

Developer for System z addresses these issues by allowing CICS administrators to
control CICS resource definition defaults, and to control the display properties of a
CICS resource definition parameter by means of the CICS Resource Definition
(CRD) server, which is part of Application Deployment Manager.

For example, the CICS administrator can supply certain CICS resource definition
parameters that might not be updated by the application developer. Other CICS
resource definition parameters may be updatable, with or without supplied
defaults, or the CICS resource definition parameter can be hidden to avoid
unnecessary complexity.

Once the application developer is satisfied with the CICS resource definitions they
may be installed immediately in the running CICS test environment, or the
definitions may be exported in a manifest for further editing and approval by a
CICS administrator. The CICS administrator can use the administrative utility
(batch utility) or the Manifest Processing tool to implement resource definition
changes.

Note: The Manifest Processing tool is a plugin for IBM CICS Explorer.

Refer to Chapter 4, “(Optional) Application Deployment Manager,” on page 65 for
more information on the tasks needed to set up Application Deployment Manager
on your host system.

Customizing Application Deployment Manager adds the following services to
Developer for System z:
v (on the client) IBM CICS Explorer™ provides an Eclipse-based infrastructure to

view and manage CICS resources and enables greater integration between CICS
tools

v (on the client) CICS Resource Definition (CRD) editor
v (on the host) CICS Resource Definition (CRD) server, which runs as a CICS

application

The Application Deployment Manager CICS Resource Definition (CRD) server
consists of the CRD server itself, a CRD repository, associated CICS resource
definitions, and, when using the Web Service interface, Web Service bind files, and

© Copyright IBM Corp. 2005, 2010 231

a sample pipeline message handler. The CRD server must run in a Web Owning
Region (WOR), which is referenced in the Developer for System z documentation
as the CICS primary connection region.

Refer to the Developer for System z Information Center (http://
publib.boulder.ibm.com/infocenter/ratdevz/v7r6/index.jsp) to learn more about
the services Application Deployment Manager available in the current release of
Developer for System z.

RESTful versus Web Service
CICS Transaction Server provides in version 4.1 and higher support for an HTTP
interface designed using Representational State Transfer (RESTful) principles. This
RESTful interface is now the strategic CICSTS interface for use by client
applications. The older Web Service interface has been stabilized, and
enhancements will be for the RESTful interface only.

Application Deployment Manager follows this statement of direction and requires
the RESTful CRD server for all services that are new to Developer for System
version 7.6 or higher.

The RESTful and Web Service interfaces can be active concurrently in a single CICS
region, if desired. In this case, there will be two CRD servers active in the region.
Both servers will share the same CRD repository. Note that CICS will issue some
warnings about duplicate definitions when the second interface is defined to the
region.

Primary versus non-primary connection regions
A CICS test environment may consist of several Multi-Region Option (MRO)
connected regions. Over time, unofficial designations have been used to categorize
these regions. Typical designations are Terminal Owning Region (TOR), Web
Owning Region (WOR), Application Owning Region (AOR), and Data Owning
Region (DOR).

A Web Owning Region is used to implement CICS Web Services support, and the
Application Deployment Manager CICS Resource Definition (CRD) server must
run in this region. This region is known to Application Deployment Manager as
the CICS primary connection region. The CRD client implements a Web service
connection to the CICS primary connection region.

CICS non-primary connection regions are all other regions that the CRD server can
service. This service includes viewing resources using IBM CICS Explorer and
defining resources using the CICS resource definition editor.

If CICSPlex SM Business Application Services (BAS) is used to manage the CICS
resource definitions of the CICS primary connection region, then all other CICS
regions managed by BAS can be serviced by the CRD server.

CICS regions not managed by BAS require additional changes to be serviceable by
the CRD server.

CICS resource install logging
Actions done by the CRD server against the CICS resources are logged in the CICS
CSDL TD queue, which typically points to DD MSGUSR of your CICS region.

232 IBM Rational Developer for System z: Host Configuration Guide

If CICSPlex SM Business Application Services (BAS) is used to manage your CICS
resource definitions, then the CICSPlex SM EYUPARM directive BASLOGMSG must be set
to (YES) for the logging to be created.

Application Deployment Manager security

CRD repository security
The CRD server repository VSAM data set holds all the default resource definitions
and must therefore be protected against updates, but developers must be allowed
to read the values stored here. Refer to “Define data set profiles” on page 166 for
sample RACF commands to protect the CRD repository.

Pipeline security
When a SOAP message is received by CICS through the Web Service interface, the
message is processed by a pipeline. A pipeline is a set of message handlers that are
executed in sequence. CICS reads the pipeline configuration file to determine
which message handlers should be invoked in the pipeline. A message handler is a
program in which you can perform special processing of Web service requests and
responses.

Application Deployment Manager provides a sample pipeline configuration file
that specifies the invocation of a message handler and a SOAP header processing
program.

The pipeline message handler (ADNTMSGH) is used for security by processing the
user ID and password in the SOAP header. ADNTMSGH is referenced by the sample
pipeline configuration file and must therefore be placed into the CICS RPL
concatenation.

Transaction security
CPIH is the default transaction ID under which an application invoked by a
pipeline will run. Typically, CPIH is set for a minimal level of authorization.

Developer for System z supplies multiple transactions that are used by the CRD
server when defining and inquiring CICS resources. These transaction IDs are set
by the CRD server, depending on the requested operation. Refer to Chapter 4,
“(Optional) Application Deployment Manager,” on page 65 for more information
on customizing the transaction IDs.

Transaction Description

ADMS For requests from the Manifest Processing
tool to change CICS resources. Typically, this
is intended for CICS administrators. This
transaction requires a high level or
authorization.

ADMI For requests that define, install or uninstall
CICS resources. This transaction might
require a medium level of authorization,
depending on your site policies.

ADMR For all other requests that retrieve CICS
environmental or resource information. This
transaction might require a minimal level of
authorization, depending on your site
policies.

Chapter 15. CICSTS considerations 233

Some, or all, of the resource definition requests done by the CRD server
transactions should be secured. At a minimum, the update commands (update
default Web service parameters, default descriptor parameters, and file name to
data set name binding) should be secured to prevent all but CICS administrators
from issuing these commands used to set global resource defaults.

When the transaction is attached, CICS resource security checking, if enabled,
insures that the user ID is authorized to run the transaction ID.

Resource checking is controlled by the RESSEC option in the transaction that is
running, the RESSEC system initialization parameter, and for the CRD server, the
XPCT system initialization parameter.

Resource checking occurs only if the XPCT system initialization parameter has a
value other than NO and either the RESSEC option in the TRANSACTION definition is
YES or the RESSEC system initialization parameter is ALWAYS.

The following RACF commands give a sample on how the CRD server transactions
can be protected. Refer to RACF Security Guide for CICSTS for more information on
defining CICS security.
v RALTER GCICSTRN SYSADM UACC(NONE) ADDMEM(ADMS)
v PERMIT SYSADM CLASS(GCICSTRN) ID(#cicsadmin)
v RALTER GCICSTRN DEVELOPER UACC(NONE) ADDMEM(ADMI)
v PERMIT DEVELOPER CLASS(GCICSTRN) ID(#cicsdeveloper)
v RALTER GCICSTRN ALLUSER UACC(READ) ADDMEM(ADMR)
v SETROPTS RACLIST(TCICSTRN) REFRESH

SSL encrypted communication
SSL encryption of the data stream is supported when the Application Deployment
Manager client uses the Web Services interface to invoke the CRD server. The
usage of SSL for this communication is controlled by the SSL(YES) keyword in the
CICSTS TCPIPSERVICE definition, as documented in RACF Security Guide for
CICSTS.

Resource security
CICSTS provides the ability to protect resources and the commands to manipulate
them. Certain Application Deployment Manager actions might fail if security is
active, but not configured completely (for example, granting permissions to
manipulate new resource types).

Upon function failure in Application Deployment Manager, examine the CICS log
for messages like the following, and take corrective action, as documented in RACF
Security Guide for CICSTS.
DFHXS1111 %date %time %applid %tranid Security violation by user
%userid at netname %portname for resource %resource in class
%classname. SAF codes are (X’safresp’,X’safreas’). ESM codes are
(X’esmresp’,X’esmreas’).

234 IBM Rational Developer for System z: Host Configuration Guide

Administrative utility
Developer for System z provides the administrative utility to let CICS
administrators provide the default values for CICS resource definitions. These
defaults can be read-only, or can be editable by the application developer.

The administrative utility provides the following functions:
v CICSPlex name for CICSPlex managed test environments
v CICSPlex SM staging group name
v Manifest export rule setting
v CICS resource attribute defaults and display permissions
v CICS logical to physical binding used for VSAM data set definitions

The administrative utility is invoked by sample job ADNJSPAU in data set
FEK.#CUST.JCL. The usage of this utility requires UPDATE access to the CRD
repository.

ADNJSPAU is located in FEK.#CUST.JCL, unless the z/OS system programmer
specified a different location when he customized and submitted job
FEK.SFEKSAMP(FEKSETUP). See “Customization setup” on page 13 for more details.

Note: The CRD repository must be closed in CICS before running the ADNJSPAU
job. The repository can be opened again after job completion. For example,
after signing on to CICS, enter the following commands to close and open
the file, respectively:
v CEMT S FILE(ADNREPF0) CLOSED

v CEMT S FILE(ADNREPF0) OPEN

Input control statements are used to update the CRD repository for a CICS test
environment, for which the following general syntax rules apply:
v An asterisk in position 1 indicates a comment line.
v A DEFINE command must begin in position 1, followed by a single space,

followed by a valid keyword, such as TRANSACTION.
v A keyword value must immediately follow a keyword. No intervening spaces

are permitted. The only exception is for display permission keywords UPDATE,
PROTECT, and HIDDEN, which have no values.

v Keyword values are enclosed within parenthesis.
v A keyword and its value must be contained on a single line.

The following sample definitions follow the structure of the DFHCSDUP
commands, as defined in the CICS Resource Definition Guide for CICSTS. The only
difference is the insertion of the following display permission keywords used to
group the attribute values into three permission sets:

UPDATE Attributes following this keyword will be
updatable by an application developer using
Developer for System z. This is also the
default for omitted attributes.

PROTECT Attributes following this keyword will
display, but be protected from update by an
application developer using Developer for
System z.

Chapter 15. CICSTS considerations 235

HIDDEN Attributes following this keyword will not
display, and will be protected from update
by an application developer using Developer
for System z.

See the following ADNJSPAU code sample.

236 IBM Rational Developer for System z: Host Configuration Guide

//ADNJSPAU JOB <JOB PARAMETERS>
//*
//ADNSPAU EXEC PGM=ADNSPAU,REGION=1M
//STEPLIB DD DISP=SHR,DSN=FEK.SFEKLOAD
//ADMREP DD DISP=OLD,DSN=FEK.#CUST.ADNREPF0
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
*
* CICSPlex SM parameters
*
DEFINE CPSMNAME()
*DEFINE STAGINGGROUPNAME(ADMSTAGE)
*
* Manifest export rule
*
DEFINE MANIFESTEXPORTRULE(installOnly)
*
* CICS resource definition defaults
* Omitted attributes default to UPDATE.
*
* DB2TRAN default attributes
*
DEFINE DB2TRAN()

UPDATE DESCRIPTION()
ENTRY()
TRANSID()

*
* DOCTEMPLATE default attributes
*
DEFINE DOCTEMPLATE()

UPDATE DESCRIPTION()
TEMPLATENAME()
FILE() TSQUEUE() TDQUEUE() PROGRAM() EXITPGM()
DDNAME(DFHHTML) MEMBERNAME()
HFSFILE()
APPENDCRLF(YES) TYPE(EBCDIC)

*
* File default attributes
*
DEFINE FILE()

UPDATE DESCRIPTION()
RECORDSIZE() KEYLENGTH()
RECORDFORMAT(V) ADD(NO)
BROWSE(NO) DELETE(NO) READ(YES) UPDATE(NO)
REMOTESYSTEM() REMOTENAME()

PROTECT DSNAME() RLSACCESS(NO) LSRPOOLID(1) STRINGS(1)
STATUS(ENABLED) OPENTIME(FIRSTREF)
DISPOSITION(SHARE) DATABUFFERS(2) INDEXBUFFERS(1)
TABLE(NO) MAXNUMRECS(NOLIMIT)
READINTEG(UNCOMMITTED) DSNSHARING(ALLREQS)
UPDATEMODEL(LOCKING) LOAD(NO)
JNLREAD(NONE) JOURNAL(NO)
JNLSYNCREAD(NO) JNLUPDATE(NO)
JNLADD(NONE) JNLSYNCWRITE(YES)
RECOVERY(NONE) FWDRECOVLOG(NO)
BACKUPTYPE(STATIC)
PASSWORD() NSRGROUP()
CFDTPOOL() TABLENAME()

Figure 59. ADNJSPAU - CICSTS administrative utility (Part 1 of 3)

Chapter 15. CICSTS considerations 237

*
* Mapset default attributes
*
DEFINE MAPSET()

UPDATE DESCRIPTION()
PROTECT RESIDENT(NO) STATUS(ENABLED)

USAGE(NORMAL) USELPACOPY(NO)
** Processtype default attributes
*
DEFINE PROCESSTYPE()

UPDATE DESCRIPTION()
FILE(BTS)

PROTECT STATUS(ENABLED)
AUDITLOG() AUDITLEVEL(OFF)

*
* Program default attributes
*
DEFINE PROGRAM()

UPDATE DESCRIPTION()
CEDF(YES) LANGUAGE(LE370)
REMOTESYSTEM() REMOTENAME() TRANSID()

PROTECT API(CICSAPI) CONCURRENCY(QUASIRENT)
DATALOCATION(ANY) DYNAMIC(NO)
EXECKEY(USER) EXECUTIONSET(FULLAPI)
RELOAD(NO) RESIDENT(NO)
STATUS(ENABLED) USAGE(NORMAL) USELPACOPY(NO)

HIDDEN JVM(NO) JVMCLASS() JVMPROFILE(DFHJVMPR)
*
* TDQueue default attributes
*
DEFINE TDQUEUE()

UPDATE DESCRIPTION()
TYPE(INTRA)

* Extra partition parameters
DDNAME() DSNAME()
REMOTENAME() REMOTESYSTEM() REMOTELENGTH(1)
RECORDSIZE() BLOCKSIZE(0) RECORDFORMAT(UNDEFINED)
BLOCKFORMAT() PRINTCONTROL() DISPOSITION(SHR)

* Intra partition parameters
FACILITYID() TRANSID() TRIGERRLEVEL(1)
USERID()

* Indirect parameters
INDIRECTNAME()

PROTECT WAIT(YES) WAITACTION(REJECT)
* Extra partition parameters

DATABUFFERS(1)
SYSOUTCLASS() ERROROPTION(IGNORE)
OPENTIME(INITIAL) REWIND(LEAVE) TYPEFILE(INPUT)

* Intra partition parameters
ATIFACILITY(TERMINAL) RECOVSTATUS(NO)

Figure 59. ADNJSPAU - CICSTS administrative utility (Part 2 of 3)

238 IBM Rational Developer for System z: Host Configuration Guide

Administrative utility migration notes
Developer for System z version 7.6.1 added URIMAP support to the
Administrative utility. To be able to use the URIMAP support, the CRD repository

*
* Transaction default attributes
*
DEFINE TRANSACTION()

UPDATE DESCRIPTION()
PROGRAM()
TWASIZE(0)
REMOTESYSTEM() REMOTENAME() LOCALQ(NO)

PROTECT PARTITIONSET() PROFILE(DFHCICST)
DYNAMIC(NO) ROUTABLE(NO)
ISOLATE(YES) STATUS(ENABLED)
RUNAWAY(SYSTEM) STORAGECLEAR(NO)
SHUTDOWN(DISABLED)
TASKDATAKEY(USER) TASKDATALOC(ANY)
BREXIT() PRIORITY(1) TRANCLASS(DFHTCL00)
DTIMOUT(NO) RESTART(NO) SPURGE(NO) TPURGE(NO)
DUMP(YES) TRACE(YES) CONFDATA(NO)
OTSTIMEOUT(NO) WAIT(YES) WAITTIME(00,00,00)
ACTION(BACKOUT) INDOUBT(BACKOUT)
RESSEC(NO) CMDSEC(NO)
TRPROF()
ALIAS() TASKREQ()
XTRANID() TPNAME() XTPNAME()

*
* URDIMAP attributes
*
DEFINE URIMAP()

UPDATE USAGE(CLIENT)
DESCRIPTION()
PATH(/required/path)
TCPIPSERVICE()
TRANSACTION()
PROGRAM()

PROTECT ANALYZER(NOANALYZER)
ATOMSERVICE()
CERTIFICATE()
CHARACTERSET()
CIPHERS()
CONVERTER()
HFSFILE()
HOST(host.mycompany.com)
HOSTCODEPAGE()
LOCATION()
MEDIATYPE()
PIPELINE()
PORT(NO)
REDIRECTTYPE(NONE)
SCHEME(HTTP)
STATUS(ENABLED)
TEMPLATENAME()
USERID()
WEBSERVICE()

*
* Optional file name to VSAM data set name binding
*
*DEFINE DSBINDING() DSNAME()
/*

Figure 59. ADNJSPAU - CICSTS administrative utility (Part 3 of 3)

Chapter 15. CICSTS considerations 239

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

VSAM data set must be allocated with a maximum record size of 3000. Up till
Developer for System z version 7.6.1, the sample CRD repository allocation job
uses a maximum record size of 2000.

Follow these steps to enable the URIMAP support if you’re using an older CRD
repository:
1. Create a backup of your existing CRD repository, FEK.#CUST.ADNREPF0.
2. Delete the existing CRD repository.
3. Customize and submit job FEK.SFEKSAMP(ADNVCRD) to allocate and initialize a

new CRD repository. Refer to the documentation within the member for
customization instructions.

4. Customize and submit job FEK.SFEKSAMP(ADNJSPAU) to use the Administrative
utility to populate the new CRD repository.

Note:

v Migrating the existing CRD repository is not necessary, because the
Administrative utility replaces the complete contents of the CRD
repository each time it is executed.

v There are no version compatibility issues with the CRD repository. All
supported Developer for System z client and host code will work with
either maximum record size. But URIMAP support will be disabled if the
maximum record size is not 3000.

Administrative utility messages
The following messages are issued by the Administrative utility to the SYSPRINT
DD. Messages CRAZ1803E, CRAZ1891E, CRAZ1892E, and CRAZ1893E contain file status,
VSAM return, VSAM function, and VSAM feedback codes. VSAM return, function,
and feedback codes are documented in DFSMS Macro Instructions for Data Sets
(SC26-7408). File status codes are documented in Enterprise COBOL for z/OS
Language Reference (SC27-1408).

CRAZ1800I
completed successfully on line <last control statement line number>

Explanation: The system programmer administrative utility completed
successfully.

User response: None.

CRAZ1801W
completed with warnings on line <last control statement line number>

Explanation: The system programmer administrative utility completed
with one or more warnings found when processing control statements.

User response: Check other warning messages.

CRAZ1802E
encountered an error on line < line number>

Explanation: The system programmer administrative utility encountered a
severe error.

User response: Check other warning messages.

CRAZ1803E
Repository open error, status=<file status code> RC=<VSAM return
code> FC=<VSAM function code> FB=<VSAM feedback code>

240 IBM Rational Developer for System z: Host Configuration Guide

|
|
|

|
|

|

|

|
|
|

|
|

|

|
|
|

|
|
|
|

|

Explanation: The system programmer administrative utility encountered a
severe error opening the CRD repository.

User response: Check VSAM status, return, function, and feedback codes.

CRAZ1804E
Unrecognized input record on line <line number>

Explanation: The system programmer administrative utility encountered an
unrecognized input control statement.

User response: Check a DEFINE command was followed by a single
space, followed by the keyword CPSMNAME, STAGINGGROUPNAME,
MANIFESTEXPORTRULE, DSBINDING, DB2TRAN, DOCTEMPLATE, FILE, MAPSET,
PROCESSTYPE, PROGRAM, TDQUEUE, or TRANSACTION.

CRAZ1805E
Processing keyword <keyword> on line <line number>

Explanation: The system programmer administrative utility is processing
the DEFINE keyword input control statement.

User response: None.

CRAZ1806E
Invalid manifest export rule on line <line number>

Explanation: The system programmer administrative utility encountered an
invalid manifest export rule.

User response: Check that the MANIFESTEXPORTRULE keyword value is
"installOnly", "exportOnly", or "both".

CRAZ1807E
Missing DSNAME keyword on line <line number>

Explanation: The system programmer administrative utility was processing
a DEFINE DSBINDING control statement which is missing the DSNAME
keyword.

User response: Check that the DEFINE DSBINDING control statement contains
the DSNAME keyword.

CRAZ1808E
Invalid keyword value for keyword <keyword> on line <line number>

Explanation: The system programmer administrative utility was processing
a DEFINE control statement and encountered an invalid value for the named
keyword.

User response: Check that the length and value of the named keyword is
correct.

CRAZ1890W
Keyword syntax error on line <line number>

Explanation: The system programmer administrative utility was processing
a DEFINE control statement and encountered a syntax error for a keyword
or keyword value.

User response: Check that the keyword value is enclosed in parenthesis
and immediately follows the keyword. The keyword and keyword value
must both be contained on the same line.

Chapter 15. CICSTS considerations 241

CRAZ1891W
Repository duplicate key write error, status=<file status code>
RC=<VSAM return code> FC=<VSAM function code> FB=<VSAM
feedback code>

Explanation: The system programmer administrative utility encountered a
duplicate key error writing to the CRD repository.

User response: Check VSAM status, return, function, and feedback codes.

CRAZ1892W
Repository write error, status=<file status code> RC=<VSAM return
code> FC=<VSAM function code> FB=<VSAM feedback code>

Explanation: The system programmer administrative utility encountered a
severe error writing to the CRD repository.

User response: Check VSAM status, return, function, and feedback codes.

CRAZ1893W
Repository read error, status=<file status code> RC=<VSAM return
code> FC=<VSAM function code> FB=<VSAM feedback code>

Explanation: The system programmer administrative utility encountered a
severe error reading from the CRD repository.

User response: Check VSAM status, return, function, and feedback codes.

242 IBM Rational Developer for System z: Host Configuration Guide

Chapter 16. Customizing the TSO environment

This appendix is provided to assist you with mimicking a TSO logon procedure by
adding DD statements and data sets to the TSO environment in Developer for
System z.

The TSO Commands service
The TSO Commands service is the Developer for System z component which
executes TSO and (batch) ISPF commands, and returns the result to the requesting
client. These commands can be requested implicitly by the product, or explicitly by
the user.

The sample members provided with Developer for System z create a minimal
TSO/ISPF environment. If the developers in your shop need access to custom or
third-party libraries, the z/OS system programmer must add the necessary DD
statements and libraries to the TSO Commands service environment. Although the
implementation is different in Developer for System z, the logic behind it is
identical to the TSO logon procedure.

Note: The TSO Commands service is a non-interactive command-line tool, so
commands or procedures that prompt for data or display ISPF panels will
not work. A 3270 emulator, such as the Host Connect Emulator which is part
of the Developer for System z client, is needed to execute these.

Access methods
Since version 7.1, Developer for System z provides a choice on how to access the
TSO Commands service.
v ISPF’s TSO/ISPF Client Gateway service, which requires a minimum ISPF

service level. This is the default method used in the provided samples.
v An APPC transaction (as in pre-version 7.1 releases).

Note: ISPF’s TSO/ISPF Client Gateway service replaces the SCLM Developer
Toolkit function used in version 7.1.

Check rsed.envvars to determine which access method is used for version 7.1 and
higher hosts. If defaults were used during the configuration process, rsed.envvars
resides in /etc/rdz/.
v If the _RSE_JAVAOPTS="$_RSE_JAVAOPTS -DTSO_SERVER=APPC" statement is not

present (or commented out, which is the default), ISPF’s TSO/ISPF Client
Gateway service is used.

v If the _RSE_JAVAOPTS="$_RSE_JAVAOPTS -DTSO_SERVER=APPC" statement is present
(and not commented out), APPC is used.

Using the TSO/ISPF Client Gateway access method

Basic customization – ISPF.conf
The ISPF.conf configuration file (by default located in /etc/rdz/) defines the
TSO/ISPF environment used by Developer for System z. There is only one active
ISPF.conf configuration file, which is used by all Developer for System z users.

© Copyright IBM Corp. 2005, 2010 243

The main section of the configuration file defines the DD names and the related
data set concatenations, like that in the following sample:
sysproc=ISP.SISPCLIB,FEK.SFEKPROC
ispmlib=ISP.SISPMENU
isptlib=ISP.SISPTENU
ispplib=ISP.SISPPENU
ispslib=ISP.SISPSLIB
ispllib=ISP.SISPLOAD
myDD=HLQ1.LLQ1,HLQ2.LLQ2

v Each DD definition uses exactly one line (multi-line is not supported), and there
are no line length limits.

v The definitions are not case sensitive, and any white space will be ignored.
v Comment lines start with an asterisk (*).
v DD names are followed by an equal sign (=), which in turn is followed by the

data set concatenation. Multiple data set names are separated by a comma (,).
v Data set concatenations are searched in the order they are listed.
v Data sets must be fully qualified, without being enclosed in quotes (‘), and

without the use of variables.
v All data sets are allocated with DISP=SHR.
v New DD names can be added at will, but must obey the (JCL) rules for DD

names and may not conflict with other configuration parameters in ISPF.conf.
Also, ISPPROF is allocated dynamically (DISP=NEW,DELETE) by the TSO/ISPF
Client Gateway service.

Advanced – Use existing ISPF profiles
By default, the TSO/ISPF Client Gateway creates a temporary ISPF profile for the
TSO Commands service. However, you can instruct the TSO/ISPF Client Gateway
z to use a copy of an existing ISPF profile. The key here is the _RSE_CMDSERV_OPTS
statement in rsed.envvars.
#_RSE_CMDSERV_OPTS="$_RSE_CMDSERV_OPTS &ISPPROF=&SYSUID..ISPPROF"

Uncomment the statement (remove the leading pound sign (#) character) and
provide the fully qualified data set name of the existing ISPF profile to use this
facility.

The following variables can be used in the data set name:
v &SYSUID. to substitute the developer's user ID
v &SYSPREF. to substitute the developer's TSO prefix

Note:

v If the data set name passed in “ISPPROF” is invalid, a temporary, empty
ISPF profile is used instead.

v The ISPF profile (both temporary and copied) is deleted at the end of the
session. Changes made to the profile are not merged into the existing ISPF
profile.

Advanced – Using an allocation exec
The allocjob statement in ISPF.conf (which is commented out by default) points
to an exec which can be used to provide further data set allocations by user ID.
*allocjob = FEK.#CUST.CNTL(CRAISPRX)

244 IBM Rational Developer for System z: Host Configuration Guide

Uncomment the statement (remove the leading asterisk (*) character) and provide
the fully qualified reference to the allocation exec to use this facility.
v The exec is executed after allocation of ISPPROF and the DDs defined in

ISPF.conf, but before ISPF is initialized. Ensure that your allocation exec does
not undo these definitions.

v 1 parameter is passed to the exec; the user ID of the caller.
v A sample exec CRAISPRX is provided in sample library FEK.#CUST.CNTL, unless

you specified a different location when you customized and submitted job
FEK.SFEKSAMP(FEKSETUP). See “Customization setup” on page 13 for more details.

Note: As the exec is called before ISPF is initialized, you cannot use VPUT and
VGET. You can however create your own implementation of these functions
using a PDS(E) or VSAM file.

Advanced – Use multiple allocation execs
Although ISPF.conf only supports calling one allocation exec, there are no limits
on that exec calling another exec. And the user ID of the client being passed as
parameter opens the door to calling personalized allocation execs. You can, for
example, check if member USERID’.EXEC(ALLOC)’ exists and execute it.

An elaborate variation to this theme enables you to use the existing TSO logon
procedures, as follows:
v Read a user-specific configuration file, such as USERID’.FEKPROF’.
v See which logon procedure is mentioned in the file.
v Read the mentioned procedure from SYS1.PROCLIB and parse it to find the DD

statements and data set allocations within.
v Allocate the data set in a similar fashion as the real logon procedure.

Advanced – Multiple ISPF.conf files with multiple Developer
for System z setups

If the allocation exec scenarios described above cannot handle your specific needs,
you can create different instances of Developer for System z’s RSE communication
server, each using their own ISPF.conf file. The main drawback of the method
described below is that Developer for System z users must connect to different
servers on the same host to get the desired TSO environment.

Note: Creating a second instance of the RSE server only requires duplicating and
updating configuration files, startup JCL and started task definitions. A new
installation of the product is not necessary, nor is any code duplicated.

$ cd /etc/rdz
$ mkdir /etc/rdz/tso2
$ cp rsed.envvars /etc/rdz/tso2
$ cp ISPF.conf /etc/rdz/tso2
$ ls /etc/rdz/tso2
ISPF.conf rsed.envvars
$ oedit /etc/rdz/tso2/rsed.envvars

-> change: _CMDSERV_CONF_HOME=/etc/rdz/tso2
-> uncomment and change: -Ddaemon.log=/var/rdz/logs/tso2
-> add at the END:

-- NEEDED TO FIND THE REMAINING CONFIGURATION FILES
CFG_BASE=/etc/rdz
CLASSPATH=.:$CFG_BASE:$CLASSPATH
--

$ oedit /etc/rdz/tso2/ISPF.conf
-> change: change as needed

Chapter 16. Customizing the TSO environment 245

The commands in the previous example copy the Developer for System z
configuration files that require changes to a newly created tso2 directory. The
_CMDSERV_CONF_HOME variable in rsed.envvars must be updated to define the new
ISPF.conf home directory and daemon.log must be updated to define a new log
location (which is created automatically if it does not exist). The CLASSPATH update
ensures that RSE can find the configuration files that were not copied to tso2. The
ISPF.conf file itself can be updated to match your needs. Note that the ISPF
workarea (variable _CMDSERV_WORK_HOME in rsed.envvars) can be shared among
both instances.

What is left now is creating a new started task for RSE that uses a new port
number and the new /etc/rdz/tso2 configuration files.

Refer to the related sections in this publication for more information on the actions
shown above.

Using the APPC access method

Basic customization – APPC transaction JCL
The definition of an APPC transaction consists of APPC parameters and a
transaction JCL. The sample JCL to create a Developer for System z APPC
transaction, FEK.#CUST.JCL(FEKAPPCC), holds two options to define the transaction
JCL, with and without ISPF support.
//SYSIN DD DDNAME=SYSINISP * use SYSINTSO or SYSINISP

The client gets the TSO/ISPF environment defined in the transaction JCL, so by
customizing this section, following regular DD rules, you can customize the
environment for the client.
...
//CMDSERV EXEC PGM=IKJEFT01,DYNAMNBR=50,
// PARM=’ISPSTART CMD(%FEKFRSRV TIMEOUT=60) NEWAPPL(ISR) NESTMACS’
//SYSPROC DD DISP=SHR,DSN=FEK.SFEKPROC
//ISPPLIB DD DISP=SHR,DSN=ISP.SISPPENU
//ISPMLIB DD DISP=SHR,DSN=ISP.SISPMENU
//ISPTLIB DD DISP=SHR,DSN=ISP.SISPTENU
//ISPSLIB DD DISP=SHR,DSN=ISP.SISPSENU
//ISPPROF DD DISP=(NEW,DELETE,DELETE),UNIT=SYSALLDA,
// SPACE=(TRK,(1,1,5)),LRECL=80,RECFM=FB
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSTSIN DD DUMMY
//MYDD DD DISP=SHR,DSN=HLQ1.LLQ1
// DISP=SHR,DSN=HLQ2.LLQ2

Note: An existing APPC transaction can be modified using the APPC ISPF panels.

Advanced – Use existing ISPF profiles
If ISPF support is selected, Developer for System z creates by default a temporary
ISPF profile for the TSO Commands service. However, you can instruct Developer
for System z to use a copy of an existing ISPF profile. As described in the
FEK.SFEKSAMP(FEKAPPCC) sample job, you must perform the following:
v Uncomment the COPY step in the transaction JCL (EXEC and related DD cards).
v Change &SYSUID..ISPPROF to match the user's ISPF profile data set name.
v Comment out the first ISPPROF DD statement in the CMDSERV step, and

uncomment the second one.

246 IBM Rational Developer for System z: Host Configuration Guide

...
//COPY EXEC PGM=IEBCOPY * (optional) clone existing ISPF profile
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DISP=SHR,DSN=&SYSUID..ISPROF
//SYSUT2 DD DISP=(MOD,PASS),DSN=&&PROF,
// UNIT=SYSALLDA,
// LIKE=&SYSUID..ISPROF
//*
//CMDSERV EXEC PGM=IKJEFT01,DYNAMNBR=50,
// PARM=’ISPSTART CMD(%FEKFRSRV TIMEOUT=60) NEWAPPL(ISR) NESTMACS’
//*ISPPROF DD DISP=(NEW,DELETE,DELETE),UNIT=SYSALLDA,
//* SPACE=(TRK,(1,1,5)),LRECL=80,RECFM=FB
//ISPPROF DD DISP=(OLD,DELETE,DELETE),DSN=&&PROF

Note: If an invalid data set name is used, the startup of the APPC transaction (and
thus the TSO Commands service) will fail.

Advanced – Using an allocation exec
The sample transaction JCL calls the TSO Commands service directly by passing its
name (FEKFRSRV) as parameter to program IKJEFT01. You can change this to call
another exec. This exec can do allocations based on the current user ID and then
call the TSO Commands service.

Contrary to the TSO/ISPF Client Gateway access method, variables stored in the
user’s ISPF profile can be used by this exec to assist in customizing the
environment. But keep in mind that updates to the profile will be lost at session
end since you are using a temporary copy, not the actual profile.

Note, however, that the use of an allocation exec in the APPC transaction is not
supported and the description above is as-is.

Advanced – Multiple APPC transactions with multiple
Developer for System z setups

If you need multiple unique TSO environments, you can create different instances
of Developer for System z's RSE communication server, each using their own
APPC transaction. The main drawback of the method described below is that
Developer for System z users must connect to different servers on the same host to
get the desired TSO environment.

Note: Creating a second instance of the RSE server only requires duplicating and
updating configuration files, startup JCL and started task definitions. A new
installation of the product is not necessary, nor is any code duplicated.

$ cd /etc/rdz
$ mkdir /etc/rdz/tso2
$ cp rsed.envvars /etc/rdz/tso2
$ ls /etc/rdz/tso2/
rsed.envvars
$ oedit /etc/rdz/tso2/rsed.envvars

-> uncomment and change: _FEKFSCMD_TP_NAME_=FEKFTSO2
-> uncomment and change: -Ddaemon.log=/var/rdz/logs/tso2
-> add at the END:

-- NEEDED TO FIND THE REMAINING CONFIGURATION FILES
CFG_BASE=/etc/rdz
CLASSPATH=.:$CFG_BASE:$CLASSPATH
--

The commands above create a new tso2 directory and copy the Developer for
System z configuration files that require changes to the new location. The
_FEKFSCMD_TP_NAME_ variable in rsed.envvars must be updated to define the new

Chapter 16. Customizing the TSO environment 247

APPC transaction name, and daemon.log must be updated to define a new
daemon log location (which is created automatically if it does not exist). The
CLASSPATH update ensures that RSE can find the configuration files that were not
copied to tso2.

Next, create a new APPC transaction by customizing and submitting sample job
FEK.#CUST.JCL(FEKAPPCC), as shown in the sample above. On top of the normal
customization (described in the JCL) you must also change the TPNAME to
TPNAME(FEKFTSO2) to match the _FEKFSCMD_TP_NAME_ definition in the new
rsed.envvars. You should also change the name in the MESSAGE_DATA_SET variable
and the JOB name of the transaction JCL.

What is left now is creating a new started task for RSE that uses a new port
number and the new /etc/rdz/tso2 configuration files.

Refer to the related sections in this publication for more information on the actions
shown above.

//FEKAPPCC JOB CLASS=A,MSGCLASS=A,MSGLEVEL=(1,1),NOTIFY=&SYSUID
//*
//TPADD EXEC PGM=ATBSDFMU
//SYSSDLIB DD DISP=SHR,DSN=SYS1.APPCTP
//SYSSDOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSIN DD DDNAME=SYSINISP * use SYSINTSO or SYSINISP
//SYSINISP DD DATA,DLM=’QT’

TPADD
TPNAME(FEKFTSO2)
ACTIVE(YES)
TPSCHED_DELIMITER(DLM1)
KEEP_MESSAGE_LOG(ERROR)
MESSAGE_DATA_SET(&SYSUID..FEKFTSO2.&TPDATE..&TPTIME..LOG)
DATASET_STATUS(MOD)
CLASS(A)
JCL_DELIMITER(DLM2)

//FEKFTSO2 JOB CLASS=A,MSGCLASS=A,MSGLEVEL=(1,1)
//*
//CMDSERV EXEC PGM=IKJEFT01,DYNAMNBR=50,
// PARM=’ISPSTART CMD(%FEKFRSRV TIMEOUT=60) NEWAPPL(ISR) NESTMACS’
//SYSPROC DD DISP=SHR,DSN=FEK.SFEKPROC
//ISPPLIB DD DISP=SHR,DSN=ISP.SISPPENU
//ISPMLIB DD DISP=SHR,DSN=ISP.SISPMENU
//ISPTLIB DD DISP=SHR,DSN=ISP.SISPTENU
//ISPSLIB DD DISP=SHR,DSN=ISP.SISPSENU
//ISPPROF DD DISP=(NEW,DELETE,DELETE),UNIT=SYSALLDA,
// SPACE=(TRK,(1,1,5)),LRECL=80,RECFM=FB
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSTSIN DD DUMMY
//MYDD DD DISP=SHR,DSN=HLQ1.LLQ1
// DISP=SHR,DSN=HLQ2.LLQ2
DLM2
DLM1
QT

Figure 60. FEKAPPCC - create a second APPC transaction

248 IBM Rational Developer for System z: Host Configuration Guide

Chapter 17. Running multiple instances

There are times that you want multiple instances of Developer for System z active
on the same system, for example, when testing an upgrade. However, some
resources such as TCP/IP ports cannot be shared, so the defaults are not always
applicable. Use the information in this appendix to plan the coexistence of the
different instances of Developer for System z, after which you can use this
configuration guide to customize them.

Although it is possible to share certain parts of Developer for System z between
two (or more) instances, it is advised NOT to do so, unless their software levels are
identical and the only changes are in configuration members. Developer for System
z leaves enough customization room to make multiple instances that do not
overlap and we strongly advise you to use these features.

Note:

v FEK and /usr/lpp/rdz are the high level qualifier and path used during
the installation of the product. FEK.#CUST, /etc/rdz and /var/rdz are the
default locations used during the customization of the product (see
“Customization setup” on page 13 for more information).

v You should install Developer for System z in a private file system (HFS or
zFS) to ease deploying the z/OS UNIX parts of the product.

v If you can not use a private file system, you should use an archiving tool
such as the z/OS UNIX tar command to transport the z/OS UNIX
directories from system to system. This to preserve the attributes (such as
program control) for the Developer for System z files and directories.
Refer to UNIX System Services Command Reference (SA22-7802) for more
information on the following sample commands to archive and restore the
Developer for System z installation directory.
– Archive: cd /SYS1/usr/lpp/rdz; tar -cSf /u/userid/rdz.tar

– Restore: cd /SYS2/usr/lpp/rdz; tar -xSf /u/userid/rdz.tar

Identical setup across a sysplex
Developer for System z configuration files (and code) can be shared across
different systems in a sysplex, with each system running its own identical copy of
Developer for System z, if a few guidelines are obeyed.
v The log files should end up in unique locations to avoid one system overwriting

information from another. By routing the z/OS UNIX logs to specific locations
with the daemon.log and user.log directives in rsed.envvars, you can share the
configuration files if you mount a system specific z/OS UNIX file system on the
specified path. This way, all logs are written to the same logical place, but due to
the unshared file system underneath, they end up in different physical locations.

v Configuration-type directories like /etc/rdz/ and /var/rdz/projects/ can be
shared across the sysplex, as Developer for System z uses them in read-only
mode.

v Temporary data directories like /tmp/ and /var/rdz/WORKAREA/ should be unique
per system, as temporary file names are not sysplex-aware.

© Copyright IBM Corp. 2005, 2010 249

v If you share the code, you should also share the configuration files to ensure you
do not have some systems that are out of synchronization after applying
maintenance.

Identical software level, different configuration files
In a limited set of circumstances, you can share all but (some of) the customizable
parts. An example is providing non-SSL access for on-site usage, and SSL encoded
communication for off-site usage.

Attention: The shared setup CANNOT be used safely to test maintenance, a technical
preview, or a new release.

To set up another instance of an active Developer for System z installation, redo
the customization steps for the parts that are different, using different data sets,
directories, and ports to avoid overlapping the current setup.

In the SSL sample mentioned above, the current RSE daemon setup can be cloned,
after which the cloned setup can be updated. Next the RSE daemon startup JCL
can be cloned and customized with a new TCP/IP port and the location of the
updated configuration files. The MVS customizations (JES Job Monitor, and so on)
can be shared between the SSL and non-SSL instances. This would result in the
following actions:
$ cd /etc/rdz
$ mkdir /etc/rdz/ssl
$ cp rsed.envvars /etc/rdz/ssl
$ cp ssl.properties /etc/rdz/ssl
$ ls /etc/rdz/ssl/
rsed.envvars ssl.properties
$ oedit /etc/rdz/ssl/rsed.envvars

-> uncomment and change: -Ddaemon.log=/var/rdz/logs/ssl
-> add at the END:

-- NEEDED TO FIND THE REMAINING CONFIGURATION FILES
CFG_BASE=/etc/rdz
CLASSPATH=.:$CFG_BASE:$CLASSPATH
--

$ oedit /etc/rdz/ssl/ssl.properties
-> change: change as needed

The commands above copy the Developer for System z configuration files that
require changes to a newly created ssl directory. The daemon.log variable in
rsed.envvars must be updated to define a new log location (which is created
automatically if it does not exist). The CLASSPATH update ensures that RSE can find
the configuration files that were not copied to ssl. The ssl.properties file itself
can be updated to match your needs.

What is left now is creating a new started task for RSE that uses a new port
number and the new /etc/rdz/ssl configuration files.

Refer to the related sections in this publication for more information on the actions
shown above.

All other situations
When code changes are involved (maintenance, technical previews, new release),
or your changes are fairly complex, you should do another installation of
Developer for System z. This section describes possible points of conflict between
the different installations.

250 IBM Rational Developer for System z: Host Configuration Guide

The following list is a brief overview of items that must or are strongly advised to
be different between the instances of Developer for System z:
v SMP/E CSI
v Installation libraries
v JES Job Monitor TCP/IP port, and thus its configuration file FEJJCNFG
v JES Job Monitor startup JCL
v APPC transaction name
v RSE configuration files, rsed.envvars, *.properties and *.settings
v RSE TCP/IP port
v RSE startup JCL

A more detailed overview is listed as follows:
v SMP/E CSI

1. Install each instance of Developer for System z in a separate CSI. SMP/E will
prevent a second install of the same FMID in a CSI, but will accept installing
another FMID. If the second FMID is a newer version, it will delete the
existing version of the product. If the second FMID is an older version, the
install will fail due to duplicate part names.

v Installation libraries
1. Install each instance of Developer for System z in separate data sets and

directories. Keep in mind that you can only change the z/OS UNIX path by
prefixing the IBM supplied default of /usr/lpp/rdz. A valid sample would
be /service/usr/lpp/rdz.

2. Customization setup job FEK.SFEKSAMP(FEKSETUP) creates the data sets and
directories used to store configuration files. Since the configuration files must
be unique, and to avoid overwriting existing customizations, you must use
unique data set and directory names when submitting this job.

v Mandatory parts
1. JES Job Monitor configuration file FEK.#CUST.PARMLIB(FEJJCNFG) holds the

TCP/IP port number of JES Job Monitor and thus cannot be shared. The
member itself can be renamed (if the JCL is updated also), so you can place
all customized versions of this member in the same data set if you are not
doing the updates in the install data set.

2. JES Job Monitor startup JCL FEK.#CUST.PROCLIB(JMON) refers to FEJJCNFG and
therefore cannot be shared either. After renaming the member (and the JOB
card if you start it as a user job) you can place all JCL’s in the same data set.

3. The RSE configuration file /etc/rdz/rsed.envvars holds references to the
install path, and optionally to the server log location, which requires it to be
unique. The file name is mandatory, so you cannot keep the different copies
in the same directory.

4. The ISPF.conf configuration file has a reference to FEK.SFEKPROC(FEKFRSRV),
the TSO Commands server. This is software level specific, so you must create
an ISPF.conf file per instance.

5. All other z/OS UNIX based configuration files (such as *.properties) must
reside in the same directory as rsed.envvars and thus cannot be shared,
since rsed.envvars must be in an unshared location.

6. The RSE startup JCL FEK.#CUST.PROCLIB(RSED) cannot be shared since it
defines the TCP/IP port number and it has a reference to the install and
configuration directories, which must be unique. After renaming the member
(and the JOB card if you start it as a user job) you can place all JCL's in the
same data set.

Chapter 17. Running multiple instances 251

7. The lock daemon startup JCL FEK.#CUST.PROCLIB(LOCKD) cannot be shared
since it has a reference to the installation and configuration directories, which
must be unique. After renaming the member (and the JOB card if you start it
as a user job) you can place all JCLs in the same data set.

v Optional parts
1. The REXEC and SSH TCP/IP ports can be shared without any restrictions.
2. The APPC transaction has a reference to FEK.SFEKPROC(FEKFRSRV), the TSO

Commands server. This is software level specific, so you must create an
APPC transaction per instance. Keep in mind that, since the APPC
transaction name changes, the _FEKFSCMD_TP_NAME_ variable must be defined
in rsed.envvars.

3. Some ELAXF* procedures have a reference to hlq.SFEKLOAD, the Developer
for System z load library. See the note on JCLLIB in “ELAXF* remote build
procedures” on page 22 for a possible solution on making different sets
available to the users.

4. To activate two instances of the DB2 stored procedure, the following tasks
must be completed. Note however that this is a non-supported, as-is
description:
a. Copy hlq.SFEKPROC(ELAXMREX) to a differently named member, for

example, ELAXMRXX.
b. Copy sample member hlq.SFEKSAMP(ELAXMSAM) to a differently named

member, for example, ELAXMWDZ.
c. Change sample member hlq.SFEKSAMP(ELAXMJCL) to reflect these name

changes, for example:
//SYSIN DD *
CREATE PROCEDURE SYSPROC.ELAXMRXX
(IN FUNCTION_REQUEST VARCHAR(20) CCSID EBCDIC

...
, OUT RETURN_VALUE VARCHAR(255) CCSID EBCDIC)
PARAMETER STYLE GENERAL RESULT SETS 1
LANGUAGE REXX EXTERNAL NAME ELAXMRXX
COLLID DSNREXCS WLM ENVIRONMENT ELAXMWDZ
PROGRAM TYPE MAIN MODIFIES SQL DATA
STAY RESIDENT NO COMMIT ON RETURN NO
ASUTIME NO LIMIT SECURITY USER;

COMMENT ON PROCEDURE SYSPROC.ELAXMRXX IS
’PLI & COBOL PROCEDURE PROCESSOR (ELAXMRXX), INTERFACE LEVEL 0.01’;

GRANT EXECUTE ON PROCEDURE SYSPROC.ELAXMRXX TO PUBLIC;
//

d. Proceed with the customization as described in “(Optional) DB2 stored
procedure” on page 81, but with the new members.

e. The new WLM environment name (for example, ELAXMWDZ) must be used
in the DB2 stored procedure wizard on the client.

5. Bidi support in CICS regions relies on a load library member and thus
cannot be shared across releases. However, if the load module name is
identical for all instances, you can share the most recent version between the
instances, even across releases. Backward compatibility is not available if the
load module's name has changed.

6. The Application Deployment Manager load modules that are included in
CICS regions are backwards compatible, and thus the most recent version
can be shared across releases.

7. The Application Deployment Manager CRD VSAM is backwards compatible,
and thus the most recent version can be shared across releases.

252 IBM Rational Developer for System z: Host Configuration Guide

8. The Application Deployment Manager CICS resource definitions are
backwards compatible, and thus the most recent version can be shared across
releases.

9. CARMA VSAMs could change between software levels, thus it is not advised
to share these.

Chapter 17. Running multiple instances 253

254 IBM Rational Developer for System z: Host Configuration Guide

Chapter 18. Migration guide

Migration considerations
This section highlights installation and configuration changes compared to
previous releases of the product. It also gives some general guidelines to migrate
to this release. Refer to the related sections in this manual for more information.
v If you are a previous user of IBM Rational Developer for System z, IBM

WebSphere Developer for System z, IBM WebSphere Developer for zSeries or
IBM WebSphere® Studio Enterprise Developer, it is recommended that you save
the related customized files BEFORE installing the upgrade to this version of
IBM Rational Developer for System z Version 7.6.1.

v Read Chapter 17, “Running multiple instances,” on page 249 if you plan on
running multiple instances of Developer for System z.

Note: The migration information listed here is for Developer for System z versions
that are still supported at the time of publication.

Backing up previously configured files
If you are a previous user of Developer for System z, it is recommended that you
save the related customized files before installing this version of IBM Developer for
System z.

Customizable Developer for system z files can be found at the following locations:
v Version 7.5

– FEK.SFEKSAMP, some members are copied to FEK.#CUST.* by the FEKSETUP
sample job, where * equals PARMLIB, PROCLIB, JCL, CNTL, ASM and COBOL

– FEK.SFEKSAMV

– /usr/lpp/rdz/samples/, some files are copied to /etc/rdz/ and
/etc/rdz/sclmdt/* by the FEKSETUP sample job, where * equals CONFIG/,
CONFIG/PROJECT/ and CONFIG/script/

v Version 7.1
– FEK.SFEKSAMP

– CRA.SCRASAMP

– /usr/lpp/wd4z/rse/lib/, customizable files are advised to be copied to
/etc/wd4z/

v Version 7.0
– FEK.SFEKSAMP

– CRA.SCRASAMP

– /usr/lpp/wd4z/rse/lib/, customizable files are advised to be copied to
/etc/wd4z/

Previous Developer for system z setups also document changes to configuration
files owned by other products.
v Version 7.5

– SYS1.PARMLIB(ASCHPMxx)

define an APPC transaction class for the TSO Commands service
– SYS1.PARMLIB(BPXPRMxx)

© Copyright IBM Corp. 2005, 2010 255

set z/OS UNIX system defaults
– SYS1.PARMLIB(COMMNDxx)

start servers at IPL time
– SYS1.PARMLIB(LPALSTxx)

add FEK.SFEKLPA to LPA
– SYS1.PARMLIB(PROGxx)

APF authorize FEK.SFEKAUTH

add FEK.SFEKAUTH and FEK.SFEKLOAD to LINKLIST
– (APPC)

define an APPC transaction for the TSO Commands service
– (WLM)

associate an APPC transaction program with a TSO performance group
– (WLM)

assign an application environment for a DB2 stored procedure
v Version 7.1

– SYS1.PARMLIB(ASCHPMxx)

define an APPC transaction class for the TSO Commands service
– SYS1.PARMLIB(BPXPRMxx)

set z/OS UNIX system defaults
– SYS1.PARMLIB(PROGxx)

APF authorize FEK.SFEKLOAD

– /etc/services

define the RSE daemon port
– /etc/inetd.conf

define the RSE daemon service
– /etc/SCLMDT/COMFIG/ISPF.conf

define the location of the TSO Commands server
– (APPC)

define an APPC transaction for the TSO Commands service
– (WLM)

associate an APPC transaction program with a TSO performance group
– (WLM)

assign an application environment for a DB2 stored procedure
v Version 7.0

– SYS1.PARMLIB(ASCHPMxx)
define an APPC transaction class for the TSO Commands service

– SYS1.PARMLIB(BPXPRMxx)

set z/OS UNIX system defaults
– SYS1.PARMLIB(PROGxx)

APF authorize FEK.SFEKLOAD

– /etc/services

define the RSE daemon port
– /etc/inetd.conf

define the RSE daemon service
– (APPC)

256 IBM Rational Developer for System z: Host Configuration Guide

define an APPC transaction for the TSO Commands service
– (WLM)

associate an APPC transaction program with a TSO performance group
– (WLM)

assign an application environment for a DB2 stored procedure

Version 7.6.1 migration notes
The following migration notes are version 7.6.1 specific. They are valid for
migrating from version 7.6, or are additions to the existing version 7.6 migration
notes.
v Application Deployment Manager - Existing ADN* modules in the CICS RPL

concatenation must be updated.
v Application Deployment Manager - The following sample members have been

updated to add URIMAP support in the Administrative utility:
– ADNJSPAU
– ADNVCRD

v Application Deployment Manager - An existing CRD repository VSAM must be
replaced to enable URIMAP support.

v CARMA - Added support for a variable-length layout for the CARMA custom
information VSAM data set, CRASTRS

v CARMA - New sample members have been added:
– CRA#VS2 - migrate CRASTRS to variable-length format

v JES Job Monitor - Usage of _CEE_ENVFILE_S in the started task JCL.
v JES Job Monitor - The following FEJJCNFG directives became optional:

– HOST_CODEPAGE
v PROCLIB - New PROCLIB members have been added

– ELAXFDCL
v RSE - Usage of 64-bit Java is now supported.
v RSE - New operator commands have been added (since version 7.6.1.0):

– MODIFY DISPLAY PROCESS,DETAIL
v RSE - The following non-customizable directives have changed or are new in

rsed.envvars (since version 7.6.0.0):
– (_RSE_JAVAOPTS) -DDSTORE_KEEPALIVE_RESPONSE_TIMEOUT
– (_RSE_JAVAOPTS) -DDSTORE_IO_SOCKET_READ_TIMEOUT
– (_RSE_JAVAOPTS) -DRSECOMM_LOGFILE_MAX

v RSE - New optional directives have been added to rsed.envvars (since version
7.6.0.0 and 7.6.0.1):
– (_RSE_JAVAOPTS) -Denable.automount
– (_RSE_JAVAOPTS) -Ddeny.nozero.port
– (_RSE_JAVAOPTS) -Dsingle.logon
– (_RSE_JAVAOPTS) -Dprocess.cleanup.interval

v RSE - The following console messages have changed or are new (since version
7.6.0.1 and 7.6.1.0):
– FEK001I
– FEK210I

Chapter 18. Migration guide 257

|

|
|
|

|
|

|
|

|

|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|

Migrate from version 7.5 to version 7.6

IBM Rational Developer for System z, FMID HHOP760
v The default SMP/E install location for MVS and z/OS UNIX components did

not change and thus remain FEK.* and /usr/lpp/rdz/*.
v Application Deployment Manager - Existing ADN* modules in the CICS RPL

concatenation must be updated.
v Application Deployment Manager - New load modules, which must be part of

the CICS RPL concatenation, have been added to support the CICS RESTful
interface.
– ADNANAL
– ADNCRD41
– ADNREST

v Application Deployment Manager - New sample members have been added to
support the CICS RESTful interface.
– ADNCSDRS
– ADNCSDTX
– ADNTXNC

v Application Deployment Manager - Existing sample members are renamed.
– ADNARCSD -> ADNCSDAR
– ADNCMSGH -> ADNMSGHC
– ADNMFEST -> ADNVMFST
– ADNPCCSD -> ADNCSDWS
– ADNSMSGH -> ADNMSGHS
– ADNVSAM -> ADNVCRD

v A new, production type, RAM is provided to access CA Endevor® SCM.
– CRARNDVR

v CARMA - New sample members have been provided to support the CA
Endevor® SCM RAM.
– FEK.#CUST.JCL(CRA#VCAD)
– FEK.#CUST.JCL(CRA#VCAS)
– FEK.#CUST.CNTL(CRASUBCA)
– FEK.#CUST.PARMLIB(CRASHOW)
– FEK.#CUST.PARMLIB(CRATMAP)
– FEK.SFEKPROC(CRANDVRA)
– /etc/rdz/crastart.endevor.conf

v CARMA - New sample members have been provided to support merging RAM
definitions.
– CRA#UADD
– CRA#UQRY

v File Manager Integration - The batch interface to access File Manager is no
longer supported.

v File Manager Integration - The FMIEXT.properties configuration file has changed
completely and must be replaced.

v JES Job Monitor - LE options are embedded in the FEJJMON load module (since
version 7.5.0.1), which might require changes to your started task definition. See
the FEK.SFEKSAMP(FEJJJCL) sample JCL for more details.

258 IBM Rational Developer for System z: Host Configuration Guide

v JES Job Monitor - New optional directives have been added to FEJJCNFG (in
version 7.5.0.1 and 7.5.1.0).
– APPLID
– CONSOLE_NAME
– GEN_CONSOLE_NAME

v JES Job Monitor - A new command, Show JCL, is supported (since version
7.5.1.0) which might require updates to your security software.

v Lock daemon – The lock daemon (LOCKD) is a new started task (since version
7.5.0.1). This started task can be queried to identify which Developer for z client
is holding a data set lock. (System commands stop at address space level, which
is the RSE thread pool.)

v SCLMDT - the default location for the SCLMDT project configuration files has
changed.
– /var/rdz/sclmdt

v RSE - New operator commands have been added.
– MODIFY RSESTANDARDLOG

v RSE - New required directives have been added to rsed.envvars (in version
7.5.0.1 and 7.6.0.0).
– _RSE_LOCKD_PORT
– (_RSE_JAVAOPTS) -Dlock.daemon.port
– (_RSE_JAVAOPTS) -Dlock.daemon.cleanup.interval
– _RSE_LOCKD_CLASS
– _RSE_HOST_CODEPAGE
– (_RSE_JAVAOPTS) -Dfile.encoding
– (_RSE_JAVAOPTS) -Dconsole.encoding

v RSE - New optional directives have been added to rsed.envvars (since version
7.5.0.1, 7.5.1.0 and 7.6.0.0).
– (_RSE_JAVAOPTS) -Duser.log
– (_RSE_JAVAOPTS) -Dkeep.last.log
– (_RSE_JAVAOPTS) -Denable.standard.log
– (_RSE_JAVAOPTS) -DDSTORE_LOG_DIRECTORY
– (_RSE_JAVAOPTS) -DHIDE_ZOS_UNIX
– (_RSE_JAVAOPTS) -Denable.certificate.mapping
– GSK_CRL_SECURITY_LEVEL
– GSK_LDAP_SERVER
– GSK_LDAP_PORT
– GSK_LDAP_USER
– GSK_LDAP_PASSWORD

v RSE - Some optional directives have changed in rsed.envvars.
– (_RSE_JAVAOPTS) -Ddaemon.log
– (_RSE_JAVAOPTS) -Xmx
– SCLMDT_CONF_HOME

v RSE - New optional directives have been added to ssl.properties (since version
7.5.1.0 and 7.6.0.0).
– server_keystore_label
– server_keystore_type

Chapter 18. Migration guide 259

v RSE - RSE daemon supports X.509 client certificate authentication (since version
7.5.1.0), which requires updates to your current certificate and security setup
when used.

v RSE - Security has been tightened, failing connection requests upon PassTicket
and FEKAPPL errors.

v RSE - The default location for all log files (daemon and user logs) has changed.
– /var/rdz/logs
– /var/rdz/logs/$LOGNAME

v RSE - A new sample JCL has been provided to gather Developer for System z
logs and configuration information.
– FEKLOGS

Configurable files
Table 47 gives an overview of files that are customized in version 7.6. Note that the
Developer for System z sample libraries, FEK.SFEKSAMP, FEK.SFEKSAMV and
/usr/lpp/rdz/samples/, come with more customizable members than listed here,
such as sample CARMA source code and jobs to compile them.

Note: Sample job FEKSETUP copies all listed members to different data sets and
directories, default FEK.#CUST.* and /etc/rdz/*.

Table 47. Version 7.6 customizations

Member/File Default location Purpose Migration notes

FEKSETUP FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to create data sets and
directories, and populate
them with customizable
files

Updated to
include new
customizable
members

JMON FEK.SFEKSAMP(FEJJJCL)
[FEK.#CUST.PROCLIB]

JCL for JES Job Monitor Added option to
change LE options

FEJJJCL FEK.SFEKSAMP
[FEK.#CUST.PROCLIB(JMON)]

Shipping name for JMON
member

See JMON
member

RSED FEK.SFEKSAMP(FEKRSED)
[FEK.#CUST.PROCLIB]

JCL for RSE daemon none

FEKRSED FEK.SFEKSAMP
[FEK.#CUST.PROCLIB(RSED)]

Shipping name for RSED
member

See RSED member

LOCKD FEK.SFEKSAMP(FEKLOCKD)
[FEK.#CUST.PROCLIB]

JCL for lock daemon NEW,
customization is
required

FEKLOCKD FEK.SFEKSAMP
[FEK.#CUST.PROCLIB(LOCKD)]

Shipping name for LOCKD
member

See LOCKD
member

ELAXF* FEK.SFEKSAMP
[FEK.#CUST.PROCLIB]

JCL for remote project
builds, and so forth

none

FEKRACF FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL for security definitions Minor updates

FEJJCNFG FEK.SFEKSAMP
[FEK.#CUST.PARMLIB]

JES Job Monitor
configuration file

New optional
directives have
been added

FEJTSO FEK.SFEKSAMP
[FEK.#CUST.CNTL]

JCL for TSO submits none

CRA$VMSG FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to create the CARMA
message VSAM

none

260 IBM Rational Developer for System z: Host Configuration Guide

Table 47. Version 7.6 customizations (continued)

Member/File Default location Purpose Migration notes

CRA$VDEF FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to create the CARMA
configuration VSAM

none

CRA$VSTR FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to create the CARMA
custom information VSAM

none

CRASUBMT FEK.SFEKSAMP
[FEK.#CUST.CNTL]

CARMA batch startup
CLIST

none

CRASUBCA FEK.SFEKSAMP
[FEK.#CUST.CNTL]

CARMA batch startup
CLIST for CA Endevor®

SCM RAM

NEW,
customization is
optional

CRASHOW FEK.SFEKSAMP
[FEK.#CUST.PARMLIB]

CARMA configuration for
CA Endevor® SCM RAM

NEW,
customization is
optional

CRATMAP FEK.SFEKSAMP
[FEK.#CUST.PARMLIB]

CARMA configuration for
CA Endevor® SCM RAM

NEW,
customization is
optional

CRANDVRA FEK.SFEKPROC CARMA allocation REXX
for CA Endevor® SCM
RAM

NEW,
customization is
optional

CRAISPRX FEK.SFEKSAMP
[FEK.#CUST.CNTL]

Sample DD allocation exec
for CARMA using
TSO/ISPF Client Gateway

none

CRA#VSLM FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to create the SCLM
RAM's message VSAM

none

CRA#ASLM FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to create the SCLM
RAM's data sets

none

CRA#VPDS FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to create the PDS
RAM's message VSAM

none

CRA#CRAM FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to compile the skeleton
RAM

none

CRA#VCAD FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to create the CARMA
configuration VSAM for
CA Endevor® SCM RAM

NEW,
customization is
optional

CRA#VCAS FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to create the CARMA
custom information VSAM
for CA Endevor® SCM
RAM

NEW,
customization is
optional

CRA#UADD FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to merge RAM
definitions

NEW,
customization is
optional

CRA#UQRY FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to extract RAM
definitions

NEW,
customization is
optional

CRAXJCL FEK.SFEKSAMP
[FEK.#CUST.ASM]

Sample source code for
IRXJCL replacement

none

CRA#CIRX FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to compile CRAXJCL none

ADNCSDRS FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to define the RESTful
CRD server to primary
CICS region

NEW,
customization is
optional

Chapter 18. Migration guide 261

Table 47. Version 7.6 customizations (continued)

Member/File Default location Purpose Migration notes

ADNCSDTX FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to define alternate
transaction IDs to CICS
region

NEW,
customization is
optional

ADNTXNC FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to create alternate
transaction IDs

NEW,
customization is
optional

ADNMSGHC FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to compile
ADNMSGHS

Renamed, was
ADNCMSGH

ADNMSGHS FEK.SFEKSAMP
[FEK.#CUST.COBOL]

Sample source code for the
Pipeline Message Handler

Renamed, was
ADNSMSGH

ADNVCRD FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to create the CRD
repository

Renamed, was
ADNVSAM

ADNCSDWS FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to define the Web
Service CRD server to
primary CICS region

Renamed, was
ADNPCCSD

ADNCSDAR FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to define the CRD
server to non-primary CICS
regions

Renamed, was
ADNARCSD

ADNJSPAU FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to update the CRD
defaults

Definitions for the
RESTful service
are added,
customizations
must be redone

ADNVMFST FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to create and define the
Manifest repository

Renamed, was
ADNMFEST

ELAXMSAM FEK.SFEKSAMP
[FEK.#CUST.PROCLIB]

JCL procedure of the WLM
address space for the PL/I
and COBOL Stored
Procedure Builder

none

ELAXMJCL FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to define the PL/I and
COBOL Stored Procedure
Builder to DB2

none

FEKAPPCC FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to create an APPC
transaction

none

FEKAPPCL FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to display an APPC
transaction

none

FEKAPPCX FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to delete an APPC
transaction

none

FEKLOGS FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to collect log files NEW,
customization is
optional

rsed.envvars /usr/lpp/rdz/samples/
[/etc/rdz/]

RSE environment variables Older copies must
be replaced by
this one
(customizations
must be redone).

ISPF.conf /usr/lpp/rdz/samples/
[/etc/rdz/]

TSO/ISPF Client Gateway
configuration file

ISP.SISPCLIB
added to
SYSPROC for
SCLMDT

262 IBM Rational Developer for System z: Host Configuration Guide

Table 47. Version 7.6 customizations (continued)

Member/File Default location Purpose Migration notes

CRASRV.properties /usr/lpp/rdz/samples/
[/etc/rdz/]

CARMA configuration file none

crastart.conf /usr/lpp/rdz/samples/
[/etc/rdz/]

CARMA configuration file
for CRASTART usage

none

crastart.endevor.conf /usr/lpp/rdz/samples/
[/etc/rdz/]

CARMA configuration file
for CRASTART usage for
CA Endevor® SCM RAM

NEW,
customization is
optional

ssl.properties /usr/lpp/rdz/samples/
[/etc/rdz/]

RSE SSL configuration file New optional
directives have
been added

rsecomm.properties /usr/lpp/rdz/samples/
[/etc/rdz/]

RSE trace configuration file none

propertiescfg.properties /usr/lpp/rdz/samples/
[/etc/rdz/]

Host based property
groups configuration file

none

projectcfg.properties /usr/lpp/rdz/samples/
[/etc/rdz/]

Host based projects
configuration file

none

FMIEXT.properties /usr/lpp/rdz/samples/
[/etc/rdz/]

File Manager Integration
configuration file

Older copies must
be replaced by
this one
(customizations
must be redone).

uchars.settings /usr/lpp/rdz/samples/
[/etc/rdz/]

Uneditable characters
configuration file

none

Migrate from version 7.1 to version 7.5

IBM Rational Developer for System z, FMID HHOP750
v The default SMP/E install location for MVS components did not change and

thus remains FEK.*.
v The default SMP/E install location for z/OS UNIX components changed to

/usr/lpp/rdz/*.
v Common Access Repository Manager (CARMA) has merged into Developer for

System z Version 7.5, disabling the need to install it as a separate product.
v SCLM Developer Toolkit has merged into Developer for System z Version 7.5,

disabling the need to install it as a separate product.
v In version 7.5 ISPF's TSO/ISPF Client Gateway service replaces the SCLM

Developer Toolkit function used in version 7.1 to connect to the TSO Commands
service. The APPC connection method is still supported.

v In version 7.5, RSE server is no longer an INETD managed process but a started
task. RSE server now also uses a single server model whereas with previous
versions, each client-host connection had a private RSE server.

v All modules requiring APF authorization (JES Job Monitor and SCLM Developer
Toolkit) moved to FEK.SFEKAUTH in version 7.5, requiring an update to the
existing APF definitions.

v JES Job Monitor load module moved to FEK.SFEKAUTH in version 7.5, requiring an
update to the existing started task procedure.

v CARMA load modules moved to new libraries, requiring an update to the
existing CRASUBMT server startup script.

Chapter 18. Migration guide 263

v SCLM Developer Toolkit load modules moved to new libraries, requiring and
update to the existing LINKLIST definitions.

v ELAXFTSO is a new sample build procedure since version 7.1.1, ELAXFCP1 and
ELAXFPP1 are new in version 7.5.

v uchars.settings is a new configuration file for uneditable characters.
v propertiescfg.properties is a new configuration file for default property

groups.
v FEJJCNFG, CRASRV.properties and FMIEXT.properties have new optional

directives.
v rsed.envvars has changed in version 7.5 and must be replaced.
v The sample ISPF.conf file shipped with version 7.5 is similar to the one used by

SCLM Developer Toolkit in version 7.1.
v Some of the existing Application Deployment manager customizations must be

redone.
v Application Deployment Manager has new functions which require

customization.
v The security settings for RSE server changed drastically in version 7.5.
v The MVS.MCSOPER.JMON security profile is new for JES Job monitor in version 7.5.
v The CARMA startup script changed name and moved to a new location,

requiring an update to the existing CRASRV.properties configuration file.
v The FMI startup script changed name and moved to a new location, requiring

an update to the existing FMIEXT.properties configuration file.
v A new load module has been added for bidirectional support, requiring an

update to the existing CICS DFHRPL concatenation if you are not using the
FEK.SFEKLOAD library.

v Changes to the MAXPROCUSER parameter of SYS1.PARMLIB(BPXPRMxx) are
now also documented.

Configurable files
Table 48 gives an overview of files that are customized in version 7.5. Note that the
Developer for System z sample libraries, FEK.SFEKSAMP, FEK.SFEKSAMV and
/usr/lpp/rdz/samples/, come with more customizable members than listed here,
such as sample CARMA source code and jobs to compile them.

Note: Sample job FEKSETUP copies all listed members to different data sets and
directories, default FEK.#CUST.* and /etc/rdz/*.

Table 48. Version 7.5 customizations

Member/File Default location Purpose Migration notes

FEKSETUP FEK.SFEKSAMP

[FEK.#CUST.JCL]

JCL to create data sets and
directories, and populate
them with customizable
files

NEW,
customization is
required

JMON FEK.SFEKSAMP(FEJJJCL)

[FEK.#CUST.PROCLIB]

JCL for JES Job Monitor STEPLIB changed
to SFEKAUTH

RSED FEK.SFEKSAMP(FEKRSED)

[FEK.#CUST.PROCLIB]

JCL for RSE daemon NEW,
customization is
required

264 IBM Rational Developer for System z: Host Configuration Guide

Table 48. Version 7.5 customizations (continued)

Member/File Default location Purpose Migration notes

ELAXF* FEK.SFEKSAMP

[FEK.#CUST.PROCLIB]

JCL for remote project
builds, and so on

ELAXFTSO,
ELAXFCP1 and
ELAXFPP1 are
new

FEKRACF FEK.SFEKSAMP

[FEK.#CUST.JCL]

JCL for security definitions NEW, required

FEJJCNFG FEK.SFEKSAMP

[FEK.#CUST.PARMLIB]

JES Job Monitor
configuration file

v Some directives
became optional

v New optional
directives have
been added

FEJTSO FEK.SFEKSAMP

[FEK.#CUST.CNTL]

JCL for TSO submits Job name can now
be a variable

CRAISPRX FEK.SFEKSAMP

[FEK.#CUST.CNTL]

Sample DD allocation exec
for CARMA using
TSO/ISPF Client Gateway

NEW,
customization is
optional

CRAXJCL FEK.SFEKSAMP

[FEK.#CUST.ASM]

Sample source code for
IRXJCL replacement

NEW,
customization is
optional

CRA#CIRX FEK.SFEKSAMP

[FEK.#CUST.JCL]

JCL to compile CRAXJCL NEW,
customization is
optional

ADNSMSGH FEK.SFEKSAMP

[FEK.#CUST.COBOL]

Sample source code for the
Pipeline Message Handler

Older copies must
be replaced by
this one
(customizations
must be redone)

ADNPCCSD FEK.SFEKSAMP

[FEK.#CUST.JCL]

JCL to define the CRD
server to primary CICS
region

Older copies must
be replaced by
this one
(customizations
must be redone)

ADNJSPAU FEK.SFEKSAMP

[FEK.#CUST.JCL]

JCL to update the CRD
defaults

NEW,
customization is
optional

ADNMFEST FEK.SFEKSAMP

[FEK.#CUST.JCL]

JCL to create and define the
Manifest repository

NEW,
customization is
optional

rsed.envvars /usr/lpp/rdz/samples/

[/etc/rdz/]

RSE environment variables Older copies must
be replaced by
this one
(customizations
must be redone)

ISPF.conf /usr/lpp/rdz/samples/

[/etc/rdz/]

TSO/ISPF Client Gateway
configuration file

Identical to the
ISPF.conf shipped
with SCLMDT in
v7.1

Chapter 18. Migration guide 265

Table 48. Version 7.5 customizations (continued)

Member/File Default location Purpose Migration notes

CRASRV.properties /usr/lpp/rdz/samples/

[/etc/rdz/]

CARMA configuration file v Startup script
changed
location and
name

v New optional
directives have
been added

crastart.conf /usr/lpp/rdz/samples/

[/etc/rdz/]

CARMA configuration file
for CRASTART usage

NEW,
customization is
optional

FMIEXT.properties /usr/lpp/rdz/samples/

[/etc/rdz/]

File Manager Integration
configuration file

v Startup script
changed
location and
name

v New optional
directives have
been added

uchars.settings /usr/lpp/rdz/samples/

[/etc/rdz/]

Uneditable characters
configuration file

NEW,
customization is
optional

Migrate from version 7.0 to version 7.1

IBM Rational Developer for System z, FMID HHOP710
v The default SMP/E install location for MVS and z/OS UNIX components did

not change and thus remains FEK.* and /usr/lpp/wd4z/*.
v Added: Setup choice - TSO/ISPF commands through an APPC transaction or

through SCLM Developer Toolkit
v Changed: The APPC transaction exploits a new ISPF feature
v Added: The following customizable members are new:

– samplib ELAXFADT
– samplib ADNCMSGH
– /usr/lpp/wd4z/rse/lib/FMIEXT.properties

v Changed: The following members have moved:
– SFEKDLL(FEJBDTRX) -> SFEKLOAD(FEJBDTRX)

v Changed: The following customizable members have changed:
– samplib FEKFAPPCC
– /usr/lpp/wd4z/rse/lib/rsed.envvars
– /usr/lpp/wd4z/rse/lib/setup.env.zseries
– /usr/lpp/wd4z/rse/lib/server.zseries

IBM Common Access Repository Manager (CARMA), FMID
HCMA710

v The default SMP/E install location for MVS components did not change and
thus remains CRA.*.

v Changed: Logging is written to CARMALOG DD statement

266 IBM Rational Developer for System z: Host Configuration Guide

v Changed: The CARMA message VSAM (CRAMSG) and configuration VSAM
(CRADEF) are updated

v Added: The following customizable members are new:
– samplib CRA#ECOB
– samplib CRA#EPDS
– samplib CRA#ERAM
– samplib CRA#ESLM

v Renamed: The following customizable members are renamed:
– samplib CRAREPR -> CRA$VDEF
– samplib CRAMREPR -> CRA$VMSG
– samplib CRASREPR -> CRA$VSTR
– samplib CRASALX -> CRA#ASLM
– samplib CRACOBJ1 -> CRA#CCB1
– samplib CRACOBJ2 -> CRA#CCB2
– samplib CRACLICM -> CRA#CCLT
– samplib CRARAMCS -> CRA#CPDS
– samplib CRARAMCM -> CRA#CRAM
– samplib CRATREPR -> CRA#VPDS
– samplib CRALREPR -> CRA#VSLM
– samplib CRACLIRN -> CRA#XCLT

v Changed: The following customizable members have changed:
– clist CRASUBMT

Configurable files
Table 23 gives an overview of files that are customized in version 7.1. Note that the
CARMA and Developer for System z sample libraries, CRA.SCRASAMP, FEK.SFEKSAMP
and /usr/lpp/wd4z/rse/lib/, come with more customizable members than listed
here, such as sample CARMA source code and jobs to compile them.

Table 49. Version 7.1 customizations

Member/File Default location Purpose Migration notes

ELAXF* FEK.SFEKSAMP JCL for remote project
builds, and other jobs

ELAXFADT is
new

CRA$VMSG CRA.SCRASAMP JCL to create the CARMA
message VSAM

v renamed, was
CRAMREPR

v the VSAM
created by this
job is updated

CRA$VDEF CRA.SCRASAMP JCL to create the CARMA
configuration VSAM

v renamed, was
CRAREPR

v the VSAM
created by this
job is updated

CRA$VSTR CRA.SCRASAMP JCL to create the CARMA
custom information VSAM

renamed, was
CRASREPR

CRASUBMT CRA.SCRASAMP CARMA batch startup
CLIST

add DD
CARMALOG

Chapter 18. Migration guide 267

Table 49. Version 7.1 customizations (continued)

Member/File Default location Purpose Migration notes

CRA#VSLM CRA.SCRASAMP JCL to create the SCLM
RAM's message VSAM

renamed, was
CRALREPR

CRA#ASLM CRA.SCRASAMP JCL to create the SCLM
RAM's data sets

renamed, was
CRASALX

CRA#VPDS CRA.SCRASAMP JCL to create the PDS
RAM's message VSAM

renamed, was
CRATREPR

CRA#CRAM CRA.SCRASAMP JCL to compile the skeleton
RAM

renamed, was
CRARAMCM

FEKAPPCC FEK.SFEKSAMP JCL to create an APPC
transaction

exploit ISPF NEST
support

rsed.envvars /usr/lpp/wd4z/rse/lib/
[/etc/wd4z/]

RSE environment variables Older copies must
be replaced by
this one
(customizations
must be redone)

FMIEXT.properties /usr/lpp/wd4z/rse/lib/
[/etc/wd4z/]

File Manager Integration
configuration file

NEW,
customization is
required when
used

268 IBM Rational Developer for System z: Host Configuration Guide

Appendix A. Setting up SSL and X.509 authentication

This appendix is provided to assist you with some common problems that you
may encounter when setting up Secure Socket Layer (SSL), or during checking
and/or modifying an existing setup. This appendix also provides a sample setup
to support users authenticating themselves with an X.509 certificate.

Secure communication means ensuring that your communication partner is who he
claims to be, and transmitting information in a manner that makes it difficult for
others to intercept and read the data. SSL provides this ability in a TCP/IP
network. It works by using digital certificates to identify yourself and a public key
protocol to encrypt the communication. Refer to Security Server RACF Security
Administrator's Guide (SA22-7683) for more information on digital certificates and
the public key protocol used by SSL.

The actions needed to set up SSL communications for Developer for System z will
vary from site to site, depending on the exact needs, the RSE communication
method used and what’s already available at the site.

In this appendix we will clone the current RSE definitions, so that we have a 2nd
RSE daemon connection that will use SSL. We will also create our own security
certificates to be used by the different parts of the RSE connection.
v “Decide where to store private keys and certificates”
v “Create a key ring with RACF” on page 271
v “Clone the existing RSE setup” on page 272
v “Update rsed.envvars to enable coexistence” on page 273
v “Update ssl.properties to enable SSL” on page 273
v “Activate SSL by creating a new RSE daemon” on page 273
v “Test the connection” on page 274
v “(Optional) Add X.509 client authentication support” on page 277
v “(Optional) Create a key database with gskkyman” on page 277
v “(Optional) Create a key store with keytool” on page 280

Throughout this appendix, a uniform naming convention is used:
v Certificate : rdzrse
v Key and certificate storage : rdzssl.*
v Password : rsessl
v Daemon user ID : stcrse

Some tasks described below expect you to be active in z/OS UNIX. This can be
done by issuing the TSO command OMVS. Use the exit command to return to
TSO.

Decide where to store private keys and certificates
The identity certificates and the encryption/decryption keys used by SSL are
stored in a key file. Different implementations of this key file exist, depending on
the application type.

© Copyright IBM Corp. 2005, 2010 269

However, all implementations follow the same principle. A command generates a
key pair (a public key and associated private key). The command then wraps the
public key into an X.509 self-signed certificate, which is stored as a single-element
certificate chain. This certificate chain and the private key are stored as an entry
(identified by an alias) in a key file.

The RSE daemon is a System SSL application and uses a key database file. This
key database can be a physical file created by gskkyman or a key ring managed by
your SAF-compliant security software (for example, RACF). The RSE server (which
is started by the daemon) is a Java SSL application and uses a key store file created
by keytool or a key ring managed by your security software.

Table 50. SSL certificate storage mechanisms

Certificate
storage Created and managed by RSE daemon RSE server

key ring SAF-compliant security product supported supported

key database z/OS UNIX’s gskkyman supported /

key store Java’s keytool / supported

To connect through SSL, we need both the key store and the key database, either
as a z/OS UNIX file or as a SAF-compliant key ring:
v key store (RACF or keytool)
v key database (RACF or gskkyman)

Note:

v SAF-compliant key rings are the preferred method for managing
certificates.

v A shared certificate can be used if RSE daemon and RSE server use the
same certificate management method.

v RSE daemon must run program controlled. Using System SSL within
implies that SYS1.SIEALNKE must be made program controlled by your
security software.

v In order to run a System SSL application (daemon connection),
SYS1.SIEALNKE must be in LINKLIST or STEPLIB. If you prefer the
STEPLIB method, add the following statement to the end of rsed.envvars.
STEPLIB=$STEPLIB:SYS1.SIEALNKE

Be aware, however, that:
– Using STEPLIB in z/OS UNIX has a negative performance impact.
– If one STEPLIB library is APF authorized, then all must be authorized.

Libraries lose their APF authorization when they are mixed with
non-authorized libraries in STEPLIB.

v System SSL uses the Integrated Cryptographic Service Facility (ICSF) if it
is available. ICSF provides hardware cryptographic support which will be
used instead of the System SSL software algorithms. Refer to System SSL
Programming (SC24-5901) for more information.

Refer to Security Server RACF Security Administrator’s Guide (SA22-7683) for
information on RACF and digital certificates. gskkyman documentation can be
found in System SSL Programming (SC24-5901), and keytool documentation is
available at http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/
keytool.html.

270 IBM Rational Developer for System z: Host Configuration Guide

Create a key ring with RACF
Do not execute this step if you use gskkyman to create the RSE daemon key
database and keytool to create the RSE server key store.

The RACDCERT command installs and maintains private keys and certificates in
RACF. RACF supports multiple private keys and certificates to be managed as a
group. These groups are called key rings.

Refer to Security Server RACF Command Language Reference (SA22-7687) for details
on the RACDCERT command.
RDEFINE FACILITY IRR.DIGTCERT.LIST UACC(NONE)
RDEFINE FACILITY IRR.DIGTCERT.LISTRING UACC(NONE)
PERMIT IRR.DIGTCERT.LIST CLASS(FACILITY) ACCESS(READ) ID(stcrse)
PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ACCESS(READ) ID(stcrse)
SETROPTS RACLIST(FACILITY) REFRESH

RACDCERT ID(stcrse) GENCERT SUBJECTSDN(CN(’rdz rse ssl’) +
OU(’rdz’) O(’IBM’) L(’Raleigh’) SP(’NC’) C(’US’)) +
NOTAFTER(DATE(2017-05-21)) WITHLABEL(’rdzrse’) KEYUSAGE(HANDSHAKE)

RACDCERT ID(stcrse) ADDRING(rdzssl.racf)
RACDCERT ID(stcrse) CONNECT(LABEL(’rdzrse’) RING(rdzssl.racf) +

DEFAULT USAGE(PERSONAL))

The sample above starts by creating the necessary profiles and permitting user ID
STCRSE access to key rings and certificates owned by that user ID. The user ID used
must match the user ID used to run the SSL RSE daemon. The next step is creating
a new, self-signed, certificate with label rdzrse. No password is needed. This
certificate is then added to a newly created key ring (rdzssl.racf). Just as with the
certificate, no password is needed for the key ring.

The result can be verified with the following list option:
RACDCERT ID(stcrse) LIST
Digital certificate information for user STCRSE:

Label: rdzrse
Certificate ID: 2QjW1OXi0sXZ1aaEqZmihUBA
Status: TRUST
Start Date: 2007/05/24 00:00:00
End Date: 2017/05/21 23:59:59
Serial Number:

>00<
Issuer’s Name:

>CN=rdz rse ssl.OU=rdz.O=IBM.L=Raleigh.SP=NC.C=US<
Subject’s Name:

>CN=rdz rse ssl.OU=rdz.O=IBM.L=Raleigh.SP=NC.C=US<
Private Key Type: Non-ICSF
Private Key Size: 1024
Ring Associations:

Ring Owner: STCRSE
Ring:

>rdzssl.racf<

(Optional) Using a signed certificate
Certificates can be either self-signed or signed by a Certificate Authority (CA). A
certificate signed by a CA means that the CA guarantees that the owner of the
certificate is who he claims to be. The signing process adds the CA credentials
(also a certificate) to your certificate, making it a multi-element certificate chain.

Appendix A. Setting up SSL and X.509 authentication 271

When using a certificate signed by a CA you can avoid trust validation questions
by the Developer for System z client, if the client already trusts the CA.

Follow these steps to create and use a CA signed certificate:
1. Create a self-signed certificate.

RACDCERT ID(stcrse) GENCERT WITHLABEL(’rdzrse’) . . .

2. Create a signing request for this certificate.
RACDCERT ID(stcrse) GENREQ (LABEL(’rdzrse’)) DSN(dsn)

3. Send the signing request to your CA of choice.
4. Check if the CA credentials (also a certificate) are already known.

RACDCERT CERTAUTH LIST

5. Mark the CA certificate as trusted.
RACDCERT CERTAUTH ALTER(LABEL(’CA cert’)) TRUST

Or add the CA certificate to the database.
RACDCERT CERTAUTH ADD(dsn) WITHLABEL(’CA cert’) TRUST

6. Add the signed certificate to the database; this will replace the self-signed one.
RACDCERT ID(stcrse) ADD(dsn) WTIHLABEL(’rdzrse’) TRUST

Note: Do NOT delete the self-signed certificate before replacing it. If you do,
you lose the private key that goes with the certificate, which makes the
certificate useless.

7. Create a key ring.
RACDCERT ID(stcrse) ADDRING(rdzssl.racf)

8. Add the signed certificate to the key ring.
RACDCERT ID(stcrse) CONNECT(ID(stcrse) LABEL(’rdzrse’)
RING(rdzssl.racf))

9. Add the CA certificate to the key ring.
RACDCERT ID(stcrse) CONNECT(CERTAUTH LABEL(’CA cert’)
RING(rdzssl.racf))

Clone the existing RSE setup
In this step a new instance of the RSE configuration files is created, so that the SSL
setup can run parallel with the existing one(s). The following sample commands
expect the configuration files to be in /etc/rdz/, which is the default location used
in “Customization setup” on page 13.
$ cd /etc/rdz
$ mkdir ssl
$ cp rsed.envvars ssl
$ cp ssl.properties ssl
$ ls ssl
rsed.envvars ssl.properties

The z/OS UNIX commands listed above create a subdirectory called ssl and
populate it with the configuration files that require changes. We can share the
other configuration files, the installation directory, and the MVS components,
because they are not SSL-specific.

By reusing most of the existing configuration files, we can focus on the changes
that are actually required for setting up SSL and avoid doing the complete RSE
setup again. (For example, we can avoid defining a new location for ISPF.conf.)

272 IBM Rational Developer for System z: Host Configuration Guide

Update rsed.envvars to enable coexistence
So far, the definitions are an exact copy of the current setup, which implies that the
logs of the new RSE daemon will overlay the current server log files. RSE also
needs to know where to find the configuration files that were not copied to the ssl
directory. Both issues can be addressed by minor changes to rsed.envvars.
$ oedit /etc/rdz/ssl/rsed.envvars

-> uncomment and change: -Ddaemon.log=/var/rdz/logs/ssl
-> add at the END:

-- NEEDED TO FIND THE REMAINING CONFIGURATION FILES
CFG_BASE=/etc/rdz
CLASSPATH=.:$CFG_BASE:$CLASSPATH
--

The changes above define a new log location (which will be created by RSE
daemon if the log location does not exist). The changes also update the CLASSPATH
so that the SSL RSE processes will first search the current directory (/etc/rdz/ssl)
for configuration files and then search the original directory (/etc/rdz).

Update ssl.properties to enable SSL
By updating ssl.properties, RSE is instructed to start using SSL encrypted
communication.
$ oedit /etc/rdz/ssl/ssl.properties

-> change: enable_ssl=true
-> uncomment and change: daemon_keydb_file=rdzssl.racf
-> uncomment and change: daemon_key_label=rdzrse
-> uncomment and change: server_keystore_file=rdzssl.racf
-> uncomment and change: server_keystore_label=rdzrse
-> uncomment and change: server_keystore_type=JCERACFKS

The changes above enable SSL and tell the RSE daemon and RSE server that their
(shared) certificate is stored under label rdzrse in key ring rdzssl.racf. The
JCERACFKS keyword tells RSE server that a SAF-compliant key ring is used as key
store.

Activate SSL by creating a new RSE daemon
As stated before, we will create a second connection that will use SSL, which
implies creating a new RSE daemon. The RSE daemon can be a started task or user
job. We will use the user job method for initial (test) setup. The following
instructions expect the sample JCL to be in FEK.#CUST.PROCLIB(RSED), which is the
default location used in “Customization setup” on page 13:
1. Create a new member FEK.#CUST.PROCLIB(RSEDSSL) and copy in sample JCL

FEK.#CUST.PROCLIB(RSED).
2. Customize RSEDSSL by adding a job card on top and an exec statement at the

bottom. Also provide a new port number (4047) and the location of the
SSL-related configuration files (/etc/rdz/ssl), as shown in the following code
sample. Note that we enforce the usage of user ID STCRSE, as this user ID was
given the proper access authority to certificates and key rings in a previous
step.

Appendix A. Setting up SSL and X.509 authentication 273

Note: The user ID assigned to the RSEDSSL job must have the same authorizations
as the original RSE daemon. FACILITY profile BPX.SERVER and PTKTDATA
profile IRRPTAUTH.FEKAPPL.* are the key elements here.

Test the connection
The SSL host configuration is complete and the RSE daemon for SSL can be started
by submitting job FEK.#CUST.PROCLIB(RSEDSSL), which was created earlier.

The new setup can now be tested by connecting with the Developer for System z
client. Since we created a new configuration for use by SSL (by cloning the existing
one), a new connection must be defined on the client, using port 4047 for the RSE
daemon.

Upon connection, the host and client will start with some handshaking in order to
set up a secure path. Part of this handshaking is the exchange of certificates. If the
Developer for System z client does not recognize the host certificate or the CA that
signed it, Developer for System z client will prompt the user asking if this
certificate can be trusted.

//RSEDSSL JOB CLASS=A,MSGCLASS=A,MSGLEVEL=(1,1),USER=STCRSE
//*
//* RSE DAEMON - SSL
//*
//RSED PROC IVP=’’, * ’IVP’ to do an IVP test
// PORT=4047,
// HOME=’/usr/lpp/rdz’,
// CNFG=’/etc/rdz/ssl’
//*
//RSE EXEC PGM=BPXBATSL,REGION=0M,TIME=NOLIMIT,
// PARM=’PGM &HOME./bin/rsed.sh &IVP &PORT &CNFG’
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//PEND
//*
//RSED EXEC RSED
//*

Figure 61. RSEDSSL - RSE daemon user job for SSL

274 IBM Rational Developer for System z: Host Configuration Guide

By clicking the Finish button the user can accept this certificate as trusted, after
which the connection initialization continues.

Note: RSE daemon and RSE server might use two different certificate locations,
resulting in two different certificates and thus two confirmations.

Once a certificate is known to the client, this dialog is not shown again. The list of
trusted certificates can be managed by selecting Window > Preferences... >
Remote Systems > SSL, which shows the following dialog:

Figure 62. Import Host Certificate dialog

Appendix A. Setting up SSL and X.509 authentication 275

Figure 63. Preferences dialog - SSL

276 IBM Rational Developer for System z: Host Configuration Guide

If SSL communication fails, the client will return an error message. More
information is available in the different server and user log files, as described in
“RSE daemon and thread pool logging” on page 129 and “RSE user logging” on
page 130.

(Optional) Add X.509 client authentication support
RSE daemon supports users authenticating themselves with an X.509 certificate.
Using SSL encrypted communication is a prerequisite for this function, because it
is an extension to the host authentication with a certificate used in SSL.

There are multiple ways to do certificate authentication for a user, as described in
“Client authentication using X.509 certificates” on page 158. The next steps
document the setup needed to support the method where your security software
authenticates the certificate using the HostIdMappings certificate extension.
1. Change the certificate that identifies the Certificate Authority (CA) used to sign

the client certificate to a highly trusted CA certificate. Although the TRUST
status is sufficient for certificate validation, a change to HIGHTRUST is done,
because it is used for the certificate authentication part of the logon process.
RACDCERT CERTAUTH ALTER(LABEL(’HighTrust CA’)) HIGHTRUST

2. Add the CA certificate to the key ring, rdzssl.racf, so that it is available to
validate the client certificates.
RACDCERT ID(stcrse) CONNECT(CERTAUTH LABEL(’HighTrust CA’) +

RING(rdzssl.racf))

This concludes the security software setup for the CA certificate.
3. Define a resource (format IRR.HOST.hostname) in the SERVAUTH class for the host

name, CDFMVS08.RALEIGH.IBM.COM, defined in the HostIdMappings extension of
your client certificate.
RDEFINE SERVAUTH IRR.HOST.CDFMVS08.RALEIGH.IBM.COM UACC(NONE)

4. Grant the RSE started task user ID, STCRSE, access to this resource with READ
authority.
PERMIT IRR.HOST.CDFMVS08.RALEIGH.IBM.COM CLASS(SERVAUTH) +

ACCESS(READ) ID(stcrse)

5. Activate your changes to the SERVAUTH class. Use the first command if the
SERVAUTH class is not active yet. Use the second one to refresh an active setup.
SETROPTS CLASSACT(SERVAUTH) RACLIST(SERVAUTH)
or
SETROPTS RACLIST(SERVAUTH) REFRESH

This concludes the security software setup for the HostIdMappings extension.
6. Restart the RSE started task to start accepting client logons using X.509

certificates.

(Optional) Create a key database with gskkyman
Do not execute this step if you use an SAF-compliant key ring for the RSE daemon
key database.

gskkyman is a z/OS UNIX shell-based, menu-driven, program that creates,
populates, and manages a z/OS UNIX file that contains private keys, certificate
requests, and certificates. This z/OS UNIX file is called a key database.

Note: The following statements might be necessary to set up the environment for
gskkyman. Refer to System SSL Programming (SC24-5901) for more information
on this.

Appendix A. Setting up SSL and X.509 authentication 277

PATH=$PATH:/usr/lpp/gskssl/bin
export NLSPATH=/usr/lpp/gskssl/lib/nls/msg/En_US.IBM-1047/%N:$NLSPATH
export STEPLIB=$STEPLIB:SYS1.SIEALNKE

$ cd /etc/rdz/ssl
$ gskkyman Database Menu

1 - Create new database

Enter option number: 1
Enter key database name (press ENTER to return to menu): rdzssl.kdb
Enter database password (press ENTER to return to menu): rsessl
Re-enter database password: rsessl
Enter password expiration in days (press ENTER for no expiration):
Enter database record length (press ENTER to use 2500):

Key database /etc/rdz/ssl/rdzssl.kdb created.

Press ENTER to continue.

Key Management Menu

6 - Create a self-signed certificate

Enter option number (press ENTER to return to previous menu): 6

Certificate Type

5 - User or server certificate with 1024-bit RSA key

Select certificate type (press ENTER to return to menu): 5
Enter label (press ENTER to return to menu): rdzrse
Enter subject name for certificate

Common name (required): rdz rse ssl
Organizational unit (optional): rdz
Organization (required): IBM
City/Locality (optional): Raleigh
State/Province (optional): NC
Country/Region (2 characters - required): US

Enter number of days certificate will be valid (default 365): 3650

Enter 1 to specify subject alternate names or 0 to continue: 0

Please wait

Certificate created.

Press ENTER to continue.

Key Management Menu

0 - Exit program

Enter option number (press ENTER to return to previous menu): 0
$ ls -l rdzssl.*
total 152
-rw------- 1 IBMUSER SYS1 35080 May 24 14:24 rdzssl.kdb
-rw------- 1 IBMUSER SYS1 80 May 24 14:24 rdzssl.rdb
$ chmod 644 rdzssl.*
$ ls -l rdzssl.*
-rw-r--r-- 1 IBMUSER SYS1 35080 May 24 14:24 rdzssl.kdb
-rw-r--r-- 1 IBMUSER SYS1 80 May 24 14:24 rdzssl.rdb

The sample above starts by creating a key database called rdzssl.kdb with
password rsessl. Once the database exists, it is populated by creating a new,
self-signed, certificate, valid for about 10 years (not counting leap days). The

278 IBM Rational Developer for System z: Host Configuration Guide

certificate is stored under the label rdzrse and with the same password (rsessl) as
the one used for the key database (this is an RSE requisite).

gskkyman allocates the key database with a (very secure) 600 permission bit mask
(only owner has access). Unless the daemon uses the same user ID as the creator of
the key database, permissions have to be set less restrictive. 644 (owner has
read/write, everyone has read) is a usable mask for the chmod command.

The result can be verified by selecting the Show certificate information option in
the Manage keys and certificates submenu, as follows:
$ gskkyman

Database Menu

2 - Open database

Enter option number: 2
Enter key database name (press ENTER to return to menu): rdzssl.kdb
Enter database password (press ENTER to return to menu): rsessl

Key Management Menu

1 - Manage keys and certificates

Enter option number (press ENTER to return to previous menu): 1

Key and Certificate List

1 - rdzrse

Enter label number (ENTER to return to selection menu, p for previous list): 1

Key and Certificate Menu

1 - Show certificate information

Enter option number (press ENTER to return to previous menu): 1

Certificate Information

Label: rdzrse
Record ID: 14

Issuer Record ID: 14
Trusted: Yes
Version: 3

Serial number: 45356379000ac997
Issuer name: rdz rse ssl

rdz
IBM
Raleigh
NC
US

Subject name: rdz rse ssl
rdz
IBM
Raleigh
NC
US

Effective date: 2007/05/24
Expiration date: 2017/05/21

Public key algorithm: rsaEncryption
Public key size: 1024

Signature algorithm: sha1WithRsaEncryption
Issuer unique ID: None
Subject unique ID: None

Appendix A. Setting up SSL and X.509 authentication 279

Number of extensions: 3

Enter 1 to display extensions, 0 to return to menu: 0

Key and Certificate Menu

0 - Exit program

Enter option number (press ENTER to return to previous menu): 0

The following ssl.properties sample shows that the daemon_* directives differ
from the SAF key ring sample shown earlier.
$ oedit /etc/rdz/ssl/ssl.properties

-> change: enable_ssl=true
-> uncomment and change: daemon_keydb_file=rdzssl.kdb
-> uncomment and change: daemon_keydb_password=rsessl
-> uncomment and change: daemon_key_label=rdzrse
-> uncomment and change: server_keystore_file=rdzssl.racf
-> uncomment and change: server_keystore_label=rdzrse
-> uncomment and change: server_keystore_type=JCERACFKS

The changes above enable SSL and tell the RSE daemon that the certificate is
stored under label rdzrse in key database rdzssl.kdb with password rsessl. RSE
server is still using a SAF compliant key ring.

(Optional) Create a key store with keytool
Do not execute this step if you use a SAF-compliant key ring for the RSE server
key store.

"keytool -genkey" generates a private key pair and a matching self-signed
certificate, which is stored as an entry (identified by an alias) in a (new) key store
file.

Note: Java must be included in your command search directories. The following
statement might be necessary to be able to execute keytool, where
/usr/lpp/java/J5.0 is the directory where Java is installed:
PATH=$PATH:/usr/lpp/java/J5.0/bin

All information can be passed as a parameter, but due to command-line length
limitations some interactivity is required, as follows:
$ cd /etc/rdz/ssl
$ keytool -genkey -alias rdzrse -validity 3650 -keystore rdzssl.jks -storepass
rsessl -keypass rsessl
What is your first and last name?

[Unknown]: rdz rse ssl
What is the name of your organizational unit?

[Unknown]: rdz
What is the name of your organization?

[Unknown]: IBM
What is the name of your City or Locality?

[Unknown]: Raleigh
What is the name of your State or Province?

[Unknown]: NC
What is the two-letter country code for this unit?

[Unknown]: US
Is CN=rdz rse ssl, OU=rdz, O=IBM, L=Raleigh, ST=NC, C=US correct? (type "yes"
or "no")

[no]: yes
$ ls -l rdzssl.*
-rw-r--r-- 1 IBMUSER SYS1 1224 May 24 14:17 rdzssl.jks

280 IBM Rational Developer for System z: Host Configuration Guide

The self-signed certificate created above is valid for about 10 years (not counting
leap days). It is stored in /etc/rdz/ssl/rdzssl.jks using alias rdzrse. Its
password (rsessl) is identical to the key store password, which is a requisite for
RSE.

The result can be verified with the -list option, as follows:
$ keytool -list -alias rdzrse -keystore rdzssl.jks -storepass rsessl -v
Alias name: rdzrse
Creation date: May 24, 2007
Entry type: keyEntry
Certificate chain length: 1
Certificate 1}:
Owner: CN=rdz rse ssl, OU=rdz, O=IBM, L=Raleigh, ST=NC, C=US
Issuer: CN=rdz rse ssl, OU=rdz, O=IBM, L=Raleigh, ST=NC, C=US
Serial number: 46562b2b
Valid from: 5/24/07 2:17 PM until: 5/21/17 2:17 PM
Certificate fingerprints:

MD5: 9D:6D:F1:97:1E:AD:5D:B1:F7:14:16:4D:9B:1D:28:80
SHA1: B5:E2:31:F5:B0:E8:9D:01:AD:2D:E6:82:4A:E0:B1:5E:12:CB:10:1C

The following ssl.properties sample shows that the server_* directives differ
from the SAF key ring sample shown earlier.
$ oedit /etc/rdz/ssl/ssl.properties

-> change: enable_ssl=true
-> uncomment and change: daemon_keydb_file=rdzssl.racf
-> uncomment and change: daemon_key_label=rdzrse
-> uncomment and change: server_keystore_file=rdzssl.jks
-> uncomment and change: server_keystore_password=rsessl
-> uncomment and change: server_keystore_label=rdzrse
-> optionally uncomment and change: server_keystore_type=JKS

The changes above enable SSL and tell the RSE server that the certificate is stored
under label rdzrse in key store rdzssl.jks with password rsessl. RSE daemon is
still using a SAF-compliant key ring.

Appendix A. Setting up SSL and X.509 authentication 281

282 IBM Rational Developer for System z: Host Configuration Guide

Appendix B. Setting up TCP/IP

This appendix is provided to assist you with some common problems that you
may encounter when setting up TCP/IP, or during checking or modifying an
existing setup.

Refer to Communications Server: IP Configuration Guide (SC31-8775) and
Communications Server: IP Configuration Reference (SC31-8776) for additional
information on TCP/IP configuration.

Hostname dependency
When using APPC for the TSO Commands service, Developer for System z is
dependent upon TCP/IP having the correct hostname when it is initialized. This
implies that the different TCP/IP and Resolver configuration files must be set up
correctly.

You can test your TCP/IP configuration with the fekfivpt Installation Verification
Program (IVP). The command should return an output like that in this sample ($ is
the z/OS UNIX prompt):
$ fekfivpt

Wed Jul 2 13:11:54 EDT 2008
uid=1(USERID) gid=0(GROUP)
using /etc/rdz/rsed.envvars

TCP/IP resolver configuration (z/OS UNIX search order):

Resolver Trace Initialization Complete -> 2008/07/02 13:11:54.745964

res_init Resolver values:
Global Tcp/Ip Dataset = None
Default Tcp/Ip Dataset = None
Local Tcp/Ip Dataset = /etc/resolv.conf
Translation Table = Default
UserId/JobName = USERID
Caller API = LE C Sockets
Caller Mode = EBCDIC
(L) DataSetPrefix = TCPIP
(L) HostName = CDFMVS08
(L) TcpIpJobName = TCPIP
(L) DomainOrigin = RALEIGH.IBM.COM
(L) NameServer = 9.42.206.2

9.42.206.3
(L) NsPortAddr = 53 (L) ResolverTimeout = 10
(L) ResolveVia = UDP (L) ResolverUdpRetries = 1
(*) Options NDots = 1
(*) SockNoTestStor
(*) AlwaysWto = NO (L) MessageCase = MIXED
(*) LookUp = DNS LOCAL
res_init Succeeded
res_init Started: 2008/07/02 13:11:54.755363
res_init Ended: 2008/07/02 13:11:54.755371
**
MVS TCP/IP NETSTAT CS V1R9 TCPIP Name: TCPIP 13:11:54
Tcpip started at 01:28:36 on 06/23/2008 with IPv6 enabled

© Copyright IBM Corp. 2005, 2010 283

host IP address:

hostName=CDFMVS08
hostAddr=9.42.112.75
bindAddr=9.42.112.75
localAddr=9.42.112.75

Success, addresses match

Understanding resolvers
The resolver acts on behalf of programs as a client that accesses name servers for
name-to-address or address-to-name resolution. To resolve the query for the
requesting program, the resolver can access available name servers, use local
definitions (for example, /etc/resolv.conf, /etc/hosts, /etc/ipnodes,
HOSTS.SITEINFO, HOSTS.ADDRINFO or ETC.IPNODES), or use a combination of both.

When the resolver address space starts, it reads an optional resolver setup data set
pointed to by the SETUP DD card in the resolver JCL procedure. If the setup
information is not provided, the resolver uses the applicable native MVS or z/OS
UNIX search order without any GLOBALTCPIPDATA, DEFAULTTCPIPDATA,
GLOBALIPNODES, DEFAULTIPNODES or COMMONSEARCH information.

Understanding search orders of configuration information
It is important to understand the search order for configuration files used by
TCP/IP functions, and when you can override the default search order with
environment variables, JCL, or other variables you provide. This knowledge allows
you to accommodate your local data set and HFS file naming standards, and it is
helpful to know the configuration data set or HFS file in use when diagnosing
problems.

Another important point to note is that when a search order is applied for any
configuration file, the search ends with the first file found. Therefore, unexpected
results are possible if you place configuration information in a file that never gets
found, either because other files exist earlier in the search order, or because the file
is not included in the search order chosen by the application.

When searching for configuration files, you can explicitly tell TCP/IP where most
configuration files are by using DD statements in the JCL procedures or by setting
environment variables. Otherwise, you can let TCP/IP dynamically determine the
location of the configuration files, based on search orders documented in
Communications Server: IP Configuration Guide (SC31-8775).

The TCP/IP stack’s configuration component uses TCPIP.DATA during TCP/IP
stack initialization to determine the stack’s HOSTNAME. To get its value, the z/OS
UNIX environment search order is used.

Note: Use the trace resolver facility to determine what TCPIP.DATA values are
being used by the resolver and where they were read from. For information
on dynamically starting the trace, refer to Communications Server: IP
Diagnosis Guide (GC31-8782). Once the trace is active, issue a TSO NETSTAT
HOME command and a z/OS UNIX shell netstat –h command to display
the values. Issuing a PING of a host name from TSO and from the z/OS
UNIX shell also shows activity to any DNS servers that might be configured.

284 IBM Rational Developer for System z: Host Configuration Guide

Search orders used in the z/OS UNIX environment
The particular file or table that is searched for can be either an MVS data set or an
HFS file, depending on the resolver configuration settings and the presence of
given files on the system.

Base resolver configuration files
The base resolver configuration file contains TCPIP.DATA statements. In addition to
resolver directives, it is referenced to determine, among other things, the data set
prefix (DATASETPREFIX statement’s value) to be used when trying to access some of
the configuration files specified in this section.

The search order used to access the base resolver configuration file is the
following:
1. GLOBALTCPIPDATA

If defined, the resolver GLOBALTCPIPDATA setup statement value is used (see also
“Understanding resolvers” on page 284). The search continues for an additional
configuration file. The search ends with the next file found.

2. The value of the environment variable RESOLVER_CONFIG

The value of the environment variable is used. This search will fail if the file
does not exist or is allocated exclusively elsewhere.

3. /etc/resolv.conf

4. //SYSTCPD DD card
The data set allocated to the DD name SYSTCPD is used. In the z/OS UNIX
environment, a child process does not have access to the SYSTCPD DD. This is
because the SYSTCPD allocation is not inherited from the parent process over
the fork() or exec function calls.

5. userid.TCPIP.DATA

userid is the user ID that is associated with the current security environment
(address space, task, or thread).

6. jobname.TCPIP.DATA

jobname is the name specified on the JOB JCL statement for batch jobs or the
procedure name for a started procedure.

7. SYS1.TCPPARMS(TCPDATA)

8. DEFAULTTCPIPDATA

If defined, the resolver DEFAULTTCPIPDATA setup statement value is used (see
also “Understanding resolvers” on page 284).

9. TCPIP.TCPIP.DATA

Translate tables
The translate tables (EBCDIC-to-ASCII and ASCII-to-EBCDIC) are referenced to
determine the translate data sets to be used. The search order used to access this
configuration file is the following. The search order ends at the first file being
found:
1. The value of the environment variable X_XLATE The value of the environment

variable is the name of the translate table produced by the TSO CONVXLAT
command.

2. userid.STANDARD.TCPXLBIN

userid is the user ID that is associated with the current security environment
(address space or task/thread).

Appendix B. Setting up TCP/IP 285

3. jobname.STANDARD.TCPXLBIN

jobname is the name specified on the JOB JCL statement for batch jobs or the
procedure name for a started procedure.

4. hlq.STANDARD.TCPXLBIN

hlq represents the value of the DATASETPREFIX statement specified in the base
resolver configuration file (if found); otherwise, hlq is TCPIP by default.

5. If no table is found, the resolver uses a hard-coded default table, identical to
the table listed in data set member SEZATCPX(STANDARD).

Local host tables
By default, resolver first attempts to use any configured domain name servers for
resolution requests. If the resolution request cannot be satisfied, local host tables
are used. Resolver behavior is controlled by TCPIP.DATA statements.

The TCPIP.DATA resolver statements define if and how domain name servers are to
be used. The LOOKUP TCPIP.DATA statement can also be used to control how domain
name servers and local host tables are used. For more information on TCPIP.DATA
statements, refer to Communications Server: IP Configuration Reference (SC31-8776).

The resolver uses the Ipv4-unique search order for sitename information
unconditionally for getnetbyname API calls. The Ipv4-unique search order for
sitename information is the following. The search ends at the first file being found:
1. The value of the environment variable X_SITE

The value of the environment variable is the name of the HOSTS.SITEINFO
information file created by the TSO MAKESITE command.

2. The value of the environment variable X_ADDR

The value of the environment variable is the name of the HOSTS.ADDRINFO
information file created by the TSO MAKESITE command.

3. /etc/hosts

4. userid.HOSTS.SITEINFO

userid is the user ID that is associated with the current security environment
(address space or task/thread).

5. jobname.HOSTS.SITEINFO

jobname is the name specified on the JOB JCL statement for batch jobs or the
procedure name for a started procedure.

6. hlq.HOSTS.SITEINFO

hlq represents the value of the DATASETPREFIX statement specified in the base
resolver configuration file (if found); otherwise, hlq is TCPIP by default.

Applying this set up information to Developer for System z
As stated before, Developer for System z is dependent upon TCP/IP having the
correct hostname when it is initialized, when using APPC. This implies that the
different TCP/IP and Resolver configuration files must be set up correctly.

In the following example we will focus on some configuration tasks for TCP/IP
and Resolver. Note that this does not cover a complete setup of TCP/IP or
Resolver, it just highlights some key aspects that might be applicable to your site:
1. In the JCL below we see that TCP/IP will use SYS1.TCPPARMS(TCPDATA) to

determine the stack’s hostname.

286 IBM Rational Developer for System z: Host Configuration Guide

//TCPIP PROC PARMS=’CTRACE(CTIEZB00)’,PROF=TCPPROF,DATA=TCPDATA
//*
//* TCP/IP NETWORK
//*
//TCPIP EXEC PGM=EZBTCPIP,REGION=0M,TIME=1440,PARM=&PARMS
//PROFILE DD DISP=SHR,DSN=SYS1.TCPPARMS(&PROF)
//SYSTCPD DD DISP=SHR,DSN=SYS1.TCPPARMS(&DATA)
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=VB,LRECL=132,BLKSIZE=136)
//ALGPRINT DD SYSOUT=*,DCB=(RECFM=VB,LRECL=132,BLKSIZE=136)
//CFGPRINT DD SYSOUT=*,DCB=(RECFM=VB,LRECL=132,BLKSIZE=136)
//SYSOUT DD SYSOUT=*,DCB=(RECFM=VB,LRECL=132,BLKSIZE=136)
//CEEDUMP DD SYSOUT=*,DCB=(RECFM=VB,LRECL=132,BLKSIZE=136)
//SYSERROR DD SYSOUT=*

2. SYS1.TCPPARMS(TCPDATA) tells us that we want the system name to be the
hostname and that we do not use a domain name server (DNS); all names will
be resolved through site table lookup.
; HOSTNAME specifies the TCP host name of this system. If not
; specified, the default HOSTNAME will be the node name specified
; in the IEFSSNxx PARMLIB member.
;
; HOSTNAME
;
; DOMAINORIGIN specifies the domain origin that will be appended
; to host names passed to the resolver. If a host name contains
; any dots, then the DOMAINORIGIN will not be appended to the
; host name.
;
DOMAINORIGIN RALEIGH.IBM.COM
;
; NSINTERADDR specifies the IP address of the name server.
; LOOPBACK (14.0.0.0) specifies your local name server. If a name
; server will not be used, then do not code an NSINTERADDR statement.
; (Comment out the NSINTERADDR line below). This will cause all names
; to be resolved via site table lookup.
;
; NSINTERADDR 14.0.0.0
;
; TRACE RESOLVER will cause a complete trace of all queries to and
; responses from the name server or site tables to be written to
; the user’s console. This command is for debugging purposes only.
;
; TRACE RESOLVER

3. In the Resolver JCL we see that the SETUP DD statement is not used. As
mentioned in “Understanding resolvers” on page 284, this means that
GLOBALTCPIPDATA and other variables will not be used.
//RESOLVER PROC PARMS=’CTRACE(CTIRES00)’
//*
//* IP NAME RESOLVER – START WITH SUB=MSTR
//*
//RESOLVER EXEC PGM=EZBREINI,REGION=0M,TIME=1440,PARM=&PARMS
//*SETUP DD DISP=SHR,DSN=USER.PROCLIB(RESSETUP),FREE=CLOSE

4. If we assume that the RESOLVER_CONFIG environment variable is not set, we can
see in Table 51 on page 288 that Resolver will try to use /etc/resolv.conf as
base configuration file.
TCPIPJOBNAME TCPIP
DomainOrigin RALEIGH.IBM.COM
HostName CDFMVS08

As mentioned in “Search orders used in the z/OS UNIX environment” on page
285, the base configuration file contains TCPIP.DATA statements. If the system
name is CDFMVS08 (TCPDATA stated that the system name is used as hostname)
we can see that /etc/resolv.conf is in sync with SYS1.TCPPARMS(TCPDATA).
There are no DNS definitions so site table lookup will be used.

Appendix B. Setting up TCP/IP 287

5. Table 51 also tells us that if we do not have to do anything to use the default
ASCII-EBCDIC translation table.

6. Assuming that the TSO MAKESITE command is not used (can create the
X_SITE and X_ADDR variables), /etc/hosts will be the site table used for name
lookup.
Resolver /etc/hosts file cdfmvs08
9.42.112.75 cdfmvs08 # CDFMVS08 Host
9.42.112.75 cdfmvs08.raleigh.ibm.com # CDFMVS08 Host
127.0.0.1 localhost

The minimal content of this file is information about the current system. In the
sample above we define both cdfmvs08 and cdfmvs08.raleigh.ibm.com as a
valid name for the IP address of our z/OS system.
If we were using a domain name server (DNS), the DNS would hold the
/etc/hosts info, and /etc/resolv.conf and SYS1.TCPPARMS(TCPDATA) would
have statements that identify the DNS to our system.
To avoid confusion, you should keep the TCP/IP and Resolver configuration
files in sync with each other.

Table 51. Local definitions available to resolver

File type
description APIs affected Candidate files

Base resolver
configuration files

All APIs 1. GLOBALTCPIPDATA

2. RESOLVER_CONFIG environment variable

3. /etc/resolv.conf

4. SYSTCPD DD-name

5. userid.TCPIP.DATA

6. jobname.TCPIP.DATA

7. SYS1.TCPPARMS(TCPDATA)

8. DEFAULTTCPIPDATA

9. TCPIP.TCPIP.DATA

Translate tables All APIs 1. X_XLATE environment variable

2. userid.STANDARD.TCPXLBIN

3. jobname.STANDARD.TCPXLBIN

4. hlq.STANDARD.TCPXLBIN

5. Resolver-provided translate table, member
STANDARD in SEZATCPX

288 IBM Rational Developer for System z: Host Configuration Guide

Table 51. Local definitions available to resolver (continued)

File type
description APIs affected Candidate files

Local host tables endhostent
endnetent
getaddrinfo
gethostbyaddr
gethostbyname
gethostent
GetHostNumber
GetHostResol
GetHostString
getnameinfo
getnetbyaddr
getnetbyname
getnetent
IsLocalHost
Resolve
sethostent
setnetent

IPv4

1. X_SITE environment variable

2. X_ADDR environment variable

3. /etc/hosts

4. userid.HOSTS.xxxxINFO

5. jobname.HOSTS.xxxxINFO

6. hlq.HOSTS.xxxxINFO

IPv6

1. GLOBALIPNODES

2. RESOLVER_IPNODES environment variable

3. userid.ETC.IPNODES

4. jobname.ETC.IPNODES

5. hlq.ETC.IPNODES

6. DEFAULTIPNODES

7. /etc/ipnodes

Note: Table 51 on page 288 is a partial copy from a table in Communications Server:
IP Configuration Guide (SC31-8775). See that manual for the full table.

Host address is not resolved correctly
When you see problems where TCP/IP Resolver cannot resolve the host address
properly, it is most likely due to a missing or incomplete resolver configuration
file. A clear indication for this problem is the following message in lock.log:
clientip(0.0.0.0) <> callerip(<host IP address>)

To verify this, execute the fekfivpt TCP/IP IVP, as described in Chapter 7,
“Installation verification,” on page 99. The resolver configuration section of the
output will look like the following sample:
Resolver Trace Initialization Complete -> 2008/07/02 13:11:54.745964

res_init Resolver values:
Global Tcp/Ip Dataset = None
Default Tcp/Ip Dataset = None
Local Tcp/Ip Dataset = /etc/resolv.conf
Translation Table = Default
UserId/JobName = USERID
Caller API = LE C Sockets
Caller Mode = EBCDIC

Ensure that the definitions in the file (or data set) referenced by “Local Tcp/Ip
Dataset” are correct.

This field will be blank if you do not use a default name for the IP resolver file
(using the z/OS UNIX search order). If so, add the following statement to
rsed.envvars, where <resolver file> or <resolver data> represents the name of
your IP resolver file:
RESOLVER_CONFIG=<resolver file>

or

Appendix B. Setting up TCP/IP 289

RESOLVER_CONFIG=’<resolver data set>’

290 IBM Rational Developer for System z: Host Configuration Guide

Appendix C. Setting up INETD

This appendix is provided to assist you with some common problems that you
may encounter when setting up INETD, or during checking or modifying an
existing setup. INETD is used by Developer for System z for REXEC/SSH
functionality.

The INETD daemon provides service management for an IP network. It reduces
system load by invoking other daemons only when they are needed and by
providing several simple internet services (such as echo) internally. INETD reads
the inetd.conf configuration file to determine which extra services to provide.
ETC.SERVICES is used to link the services to ports.

inetd.conf
The services that rely on INETD are defined in inetd.conf, which is read by INETD
at startup time. The default location and name of inetd.conf is /etc/inetd.conf. A
sample inetd.conf file can be found at /samples/inetd.conf.

The following syntax rules apply to inetd.conf entries:
v Comments begin with a pound sign (#) or semi-colon (;) and continue until the

end of the line
v Entries are case sensitive
v Entries are field-sensitive, but not column sensitive
v Fields are separated with a space or tab character
v Entries can span multiple lines, following these additional syntax rules:

– The split must be in between two separate words (separated by a space or tab
character)

– The continuation line must start with a space or tab character
– No comments may be embedded in the continuation

Each entry consists of 7 positional fields, corresponding to the form:
service_name socket_type protocol wait_flag userid server_program

server_program_arguments

[ip_address:]service_name
ip_address is a local IP, followed by a colon (:). If specified, the address is
used instead of INADDR_ANY or the current default. To specifically
request INADDR_ANY, use "*:". If ip_address (or a colon) is specified
without any other entries on the line, it becomes the default for subsequent
lines until a new default is specified. service_name is a well-known or
user-defined service name. The name specified must match one of the
server names defined in ETC.SERVICES.

socket_type
stream or dgram, to indicate that a stream or datagram socket is used for
the service.

protocol[,sndbuf=n[,rcvbuf=n]]

© Copyright IBM Corp. 2005, 2010 291

protocol can be tcp[4|6] or udp[4|6], and is used to further qualify the
service name. Both the service name and the protocol must match an entry
in ETC.SERVICES, except that the “4” or “6” should not be included in the
ETC.SERVICES entry.

sndbuf and rcvbuf specify the size of the send and receive buffers. The
size, represented by n, may be in bytes, or a "k" or "m" may be added to
indicate kilobytes or megabytes respectively. sndbug and rcvbuf can be
used in either order.

wait_flag[.max]

wait or nowait.wait indicates the daemon is single-threaded and another
request will not be serviced until the first one completes. If nowait is
specified, INETD issues an accept when a connect request is received on a
stream socket. If wait is specified, it is the responsibility of the server to
issue the accept if this is a stream socket.

max is the maximum number of users allowed to request service in a 60
second interval. The default is 40. If exceeded, the service's port is shut
down.

userid[.group]

userid is the user ID that the forked daemon is to execute under. This user
ID can be different than the INETD user ID. The permissions assigned to
this user ID depend on the needs of the service. The INETD user ID needs
BPX.DAEMON permission to switch the forked process to this user ID.

The optional group value, which is separated from userid by a dot (.),
allows the server to run with a different group ID than the default for this
user ID.

server_program
server_program is the full pathname of the service. For example,
/usr/sbin/rlogind is the full pathname for the rlogind command.

server_program_arguments
Maximum of 20 arguments. The first argument is the server name.

ETC.SERVICES
INETD uses ETC.SERVICES to map port numbers and protocols to the services it
must support. It can be either an MVS data set or z/OS UNIX file. A sample is
shipped in SEZAINST(SERVICES), which is also available as /usr/lpp/tcpip/
samples/services. The search order for ETC.SERVICES depends on INETD’s
startup method; z/OS UNIX or native MVS.

The following syntax rules apply to the services information specification:
v An ETC.SERVICES MVS data set must be fixed or fixed block with an LRECL

between 56 and 256
v An ETC.SERVICES HFS file can have a maximum line length of 256
v Items on a line are separated by spaces or tab characters
v Each service is listed on a single line
v A service name must start in the first position on a line
v The maximum service name and alias name length is 32 characters
v A maximum of 35 aliases will be recognized
v Service and alias names are case sensitive

292 IBM Rational Developer for System z: Host Configuration Guide

v Comments begin with a pound sign (#) or semi-colon (;) and continue until the
end of the line

Each entry consists of four positional fields, corresponding to the form:
service_name port_number/protocol aliases

service_name
Specifies a well-known or user-defined service name

port_number
Specifies the socket port number used for the service

protocol
Specifies the transport protocol used for the service. Valid values are tcp
and udp

aliases
Specifies a list of unofficial service names

Search order used in the z/OS UNIX environment
The search order used to access ETC.SERVICES in z/OS UNIX is the following.
The search ends at the first file being found:
1. /etc/services

2. userid.ETC.SERVICES

userid is the user ID that is used to start INETD.
3. hlq.ETC.SERVICES

hlq represents the value of the DATASETPREFIX statement specified in the base
resolver configuration file (if found); otherwise, hlq is TCPIP by default.

Search order used in the native MVS environment
The search order used to access ETC.SERVICES in native MVS is the following.
The search ends at the first data set being found:
1. //SERVICES DD card

The data set allocated to DD statement SERVICES is used
2. userid.ETC.SERVICES

userid is the user ID that is used to start INETD.
3. jobname.ETC.SERVICES

jobname is the name specified on the JOB JCL statement for batch jobs or the
procedure name for a started procedure

4. hlq.ETC.SERVICES

hlq represents the value of the DATASETPREFIX statement specified in the base
resolver configuration file (if found); otherwise, hlq is TCPIP by default.

Note: Starting INETD through BPXPATCH does not result in using the native MVS
search order, since BPXBATCH executes the start command in the z/OS UNIX
environment. The native MVS search order is only used when starting an
MVS load module, such as SEZALOAD(FTP).

Appendix C. Setting up INETD 293

PROFILE.TCPIP port definitions
Do not confuse PORT (or PORTRANGE) definitions in PROFILE.TCPIP with ports
defined in ETC.SERVICES since these definitions serve different purposes. Ports
defined in PROFILE.TCPIP are used by TCPIP to see if the port is reserved for a
certain service. ETC.SERVICES is used by INETD to map a port to a service.

When INETD receives a request on a monitored port, it forks a child process (with
the requested service) called inetdx, where inetd is the job name for INETD
(depends on the startup method) and x is a single digit number.

This complicates port reservation, so if an INETD monitored port is reserved in
PROFILE.TCPIP, you should use the name of the started JCL procedure for the
z/OS UNIX Kernel Address Space to allow almost any process to bind to the port.
This name is typically OMVS, unless a different name is explicitly specified in the
STARTUP_PROC parameter of the BPXPRMxx parmlib member.

The following list explains how to determine the job name, given the environment
in which the application is run:
v Applications run from batch use the batch job name.
v Applications started from the MVS operator console use the started procedure

(STC) name as the job name.
v Applications run from a TSO user ID use the TSO user ID as the job name.
v Applications run from the z/OS shell normally have a job name that is the

logged on user ID plus a one-character suffix.
v Authorized users can run applications from the z/OS shell and use the

_BPX_JOBNAME environment variable to set the job name. In this case, the value
specified for the environment variable is the job name.

v The name of the started JCL procedure for the UNIX System Services Kernel
Address Space can be used to allow almost any caller of the bind() socket API
(except for users of the Pascal API) to bind to the port. This name is typically
OMVS, unless a different name is explicitly specified in the STARTUP_PROC
parameter of the BPXPRMxx parmlib member.

v z/OS UNIX applications started by INETD use the job name of the INETD
server.

Note: Although it is advised not to do so, ports defined in ETC.SERVICES may
differ from the reserved port number for the service in PROFILE.TCPIP.

/etc/inetd.pid
The INETD process creates a temporary file, /etc/inetd.pid, which contains the
PID (Process ID) of the currently executing INETD daemon. This PID value is used
to identify syslog records that originated from the INETD process, and to provide
the PID value for commands that require one, such as kill. It is also used as a lock
mechanism to prevent more than 1 INETD process being active.

Startup
The z/OS UNIX implementation of INETD is located by default in
/usr/sbin/inetd and supports two optional, non-positional, startup parameters:
/usr/sbin/inetd [-d] [inetd.conf]

-d Debug option. Debug output is written to stderr, which can be routed to a

294 IBM Rational Developer for System z: Host Configuration Guide

file by the syslogd daemon. Refer to Communications Server IP Configuration
Guide (SC31-8775) for more information on syslogd. Note that when started
this way, INETD will not fork a child process to start a service.

inetd.conf
Configuration file. Default value is /etc/inetd.conf

You should start INETD at IPL time. The most common way to do this is to start it
from /etc/rc or /etc/inittab (z/OS 1.8 and higher only). It can also be started
from a job or started task using BPXBATCH or from a shell session of a user with
appropriate authority.

/etc/rc
When started from the z/OS UNIX initialization shell script, /etc/rc, INETD uses
the z/OS UNIX search order to find ETC.SERVICES. A sample /etc/rc file is
shipped as /samples/rc. The following sample commands can be used to start
INETD:
Start INETD
_BPX_JOBNAME=’INETD’ /usr/sbin/inetd /etc/inetd.conf &
sleep 5

/etc/inittab
z/OS 1.8 and higher provide an alternative method, /etc/inittab, for issuing
commands during z/OS UNIX initialization. /etc/inittab allows the definition of
the respawn parameter, which restarts the process automatically when it ends (a
WTOR is sent to the operator for a second restart within 15 minutes). When started
from /etc/inittab, INETD uses the z/OS UNIX search order to find
ETC.SERVICES. A sample /etc/inittab is shipped as /samples/inittab. The
following sample command can be used to start INETD:
Start INETD
inetd::respfrk:/usr/sbin/inetd /etc/inetd.conf

Note: Be aware that the respfrk parameter used in the sample will transfer the
respawn attribute to all forked processes, including RSE. When the client
closes the connection, respawn will start it up again. The RSE server will
end again later, due to timeout. Refer to UNIX System Services Planning
(GA22-7800) to learn more about inittab.

BPXBATCH
The BPXBATCH startup method works both for started tasks and user jobs. Note that
INETD is a background process, so the BPXBATCH step starting INETD will end
within seconds after startup. When started by BPXBATCH, INETD uses the z/OS
UNIX search order to find ETC.SERVICES. The JCL listed in the following code
sample is a sample procedure to start INETD (the KILL step removes an active
INETD process, if any):

Appendix C. Setting up INETD 295

Note:

v STDIN, STDOUT and STDERR must be z/OS UNIX files when allocated.
STDENV can be either a MVS data set or a z/OS UNIX file. Since z/OS 1.7,
SYSOUT can be assigned to STDOUT and STDERR. Refer to UNIX System
Services Command Reference (SA22-7802) to learn more about BPXBATCH.

v inetd.conf can be a MVS data set or member when INETD is started by
BPXBATCH. To do so, code the PARM statement like the following sample
(use only single quotes (')):
// PARM=’PGM /usr/sbin/inetd //’’SYS1.TCPPARMS(INETCONF)’’ &PRM’

Shell session
When started from within a shell session, INETD uses the z/OS UNIX search in
order to find ETC.SERVICES. The following sample commands can be used (by a
person with sufficient authority) to stop and start INETD (# is the z/OS UNIX
prompt):
ps -e | grep inetd

7 ? 0:00 /usr/sbin/inetd
kill 7
_BPX_JOBNAME=’INETD’ /usr/sbin/inetd &

Note: This method is not advisable for the initial startup, /etc/rc or /etc/inittab
are more appropriate since they are executed when z/OS UNIX initializes.

Security
INETD is a z/OS UNIX process and therefore requires valid OMVS definitions in
the security software for the user ID associated with INETD. UID, HOME, and
PROGRAM must be set for the user ID, together with the GID for the user’s default
group. If INETD is started by /etc/rc or /etc/inittab, the user ID is inherited
from the z/OS UNIX kernel, default OMVSKERN.
ADDGROUP OMVSGRP OMVS(GID(1))
ADDUSER OMVSKERN DFLTGRP(OMVSGRP) NOPASSWORD +

OMVS(UID(0) HOME(’/’) PROGRAM(’/bin/sh’))

INETD is a daemon that requires access to functions such as setuid(). Therefore the
user ID used to start INETD requires READ access to the BPX.DAEMON profile in the
FACILITY class. If this profile is not defined, UID 0 is mandatory.
PERMIT BPX.DAEMON CLASS(FACILITY) ACCESS(READ) ID(OMVSKERN)

The INETD user ID also requires EXECUTE permission for the inetd program
(/usr/sbin/inetd), READ access to your inetd.conf and ETC.SERVICES file and
WRITE access to /etc/inetd.pid. If you want to run INETD without UID 0, you
can give CONTROL access to the SUPERUSER.FILESYS profile in the UNIXPRIV class
to provide the necessary permits for z/OS UNIX files.

//INETD PROC PRM=
//*
//KILL EXEC PGM=BPXBATCH,REGION=0M,
// PARM=’SH ps -e | grep inetd | cut -c 1-10 | xargs -n 1 kill’
//*
//INETD EXEC PGM=BPXBATCH,REGION=0M,
// PARM=’PGM /usr/sbin/inetd &PRM’
//STDERR DD SYSOUT=*
//* STDIN, STDOUT and STDENV are defaulted to /dev/null
//*

Figure 64. INETD startup JCL

296 IBM Rational Developer for System z: Host Configuration Guide

Programs requiring daemon authority must be program controlled if BPX.DAEMON is
defined in the FACILITY class. This is already done for the default INETD program
(/usr/sbin/inetd), but must be set manually if you use a copy or a custom
version. Use the extattr +p command to make a z/OS UNIX file program
controlled. Use the RACF PROGRAM class to make an MVS load module program
controlled.

System programmers who need to restart INETD from within their shell session
will start INETD using their permits. Therefore, they must have the same list of
permits as the regular INETD user ID. On top of that, they also need permits to
list and stop the INETD process. This can be accomplished in multiple ways.
v UID 0

This is not recommended for “human” user IDs since there are no z/OS UNIX
related restrictions.

v READ access to the BPX.SUPERUSER profile in the FACILITY class
Allows the user can become UID 0 through the su command. This is the
recommended setup.

v Access to individual profiles that cover the required permissions
– READ access to SUPERUSER.PROCESS.GETPSENT in the UNIXPRIV class (for the ps

command)
– READ access to SUPERUSER.PROCESS.KILL in the UNIXPRIV class (for the kill

command)
– READ access to BPX.JOBNAME in the FACILITY class (for the _BPX_JOBNAME

environment variable)

Refer to UNIX System Services Command Reference (SA22-7802) to learn more about
the extattr and su commands. Refer to UNIX System Services Planning (GA22-7800)
to learn more about the UNIXPRIV class and BPX.* profiles in the FACILITY class.
Refer to Security Server RACF Security Administrator’s Guide (SA22-7683) for more
information on the OMVS segment definitions and the PROGRAM class.

Developer for System z requirements
Developer for System z is dependent upon INETD for managing REXEC and/or
SSH. It might also impose extra requirements on top of the INETD setup described
above.

REXEC (or SSH) is used for the following two purposes, as described in
“(Optional) Using REXEC (or SSH)” on page 93.
v remote (host-based) actions in z/OS UNIX subprojects
v alternative RSE server startup method

The remote actions in z/OS UNIX subprojects do not require special settings. The
alternative RSE startup method however does require special settings.

INETD
INETD’s environmental settings, which are passed on when starting a process, and
the permissions for INETD’s user ID must be set properly in order for INETD to
start the RSE server.
v If INETD is started by JCL using BPXBATCH, the region size must be 0.
v If INETD is started from a TSO/OMVS shell session, the TSO region size must

be 2096128 or larger.

Appendix C. Setting up INETD 297

v If INETD is started by /etc/rc or /etc/inittab, the region size of
SYS1.PROCLIB(BPXOINIT) is used, which is 0 by default.

REXEC (or SSH)
The REXEC (or SSH) daemon that is started by INETD when a client connects to
port 512 (or 22, respectively) is used to perform authentication, start the RSE
server, and return the port number for further communication back to the client. In
order to do so, the user ID assigned to the REXEC (or SSH) daemon (in inetd.conf)
requires the following permissions:
v Valid OMVS definitions in the security software; UID, HOME and PROGRAM must be

set, together with the GID for the user’s default group
v READ access to the BPX.DAEMON profile in the FACILITY class
v READ and EXECUTE access to the Developer for System z installation

directories, default /usr/lpp/rdz/*
v READ and EXECUTE access to the Developer for System z configuration

directories, default /etc/rdz/*

298 IBM Rational Developer for System z: Host Configuration Guide

Appendix D. Setting up APPC

This appendix is provided to assist you with some common problems that you
may encounter when setting up APPC (Advanced Program-to-Program
Communication), or during checking or modifying an existing setup.

Refer to MVS Planning: APPC/MVS Management (SA22-7599) and MVS Initialization
and Tuning Reference (SA22-7592) for additional information on APPC management
and the parmlib members discussed below.

Note that this does not cover a complete set-up of APPC, it just highlights some
key aspects that might be applicable to your site.

Member SYS1.SAMPLIB(ATBALL) contains a list and descriptions of all APPC-related
(sample) members in SYS1.SAMPLIB.

VSAM
APPC/MVS stores its configuration data in the following SYS1.PARMLIB members
and two VSAM data sets:
v The Transaction Program (TP) VSAM data set (default name SYS1.APPCTP)

contains scheduling and security information for z/OS programs.
v The Side Information (SI) VSAM data set (default name SYS1.APPCSI) contains

the translation of symbolic destination names used by z/OS local TPs and
APPC/MVS servers.

A TP is an application program that uses APPC to communicate with a TP on the
same or another system to access resources. The APPC setup for Developer for
System z activates a new TP called FEKFRSRV, which is referred to as the TSO
Commands service.

The following job is a concatenation of sample members SYS1.SAMPLIB(ATBTPVSM)
and SYS1.SAMPLIB(ATBSIVSM), and can be used to define the APPC VSAMs.

© Copyright IBM Corp. 2005, 2010 299

VTAM
APPC is an implementation of the Systems Network Architecture (SNA) LU 6.2
protocol. SNA provides formats and protocols that define a variety of physical and
logical SNA components, such as the Logical Unit (LU). LU 6.2 is a type of logical
unit that is specifically designed to handle communications between application
programs.

In order to use SNA on MVS, you need to install and configure VTAM (Virtual
Telecommunications Access Method). VTAM must be active before the APPC
system tasks can be used.

The APPC-specific part of the VTAM setup consists of three steps:
1. Define the mode-name used (for example, APPCHOST) to VTAM by using

SYS1.SAMPLIB(ATBLJOB) to assemble and link edit SYS1.SAMPLIB(ATBLMODE) into
your SYS1.VTAMLIB. See member SYS1.SAMPLIB(ATBLMODE) for details.

2. Define APPC/MVS as a VTAM application by copying sample member
SYS1.SAMPLIB(ATBAPPL) to a dataset in the SYS1.VTAMLST concatenation. See
member SYS1.SAMPLIB(ATBAPPL) for details.

3. Use console command v net,act,id=atbappl to activate the newly defined
application (where net equals the name of your VTAM started task). Use

//APPCVSAM JOB <job parameters>
//*
//* CAUTION: This is neither a JCL procedure nor a complete job.
//* Before using this sample, you will have to make the following
//* modifications:
//* 1. Change the job parameters to meet your system requirements.
//* 2. Change ****** to the volume that will hold the APPC VSAMs.
//*
//TP EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DEFINE CLUSTER (NAME(SYS1.APPCTP) -
VOLUME(******) -
INDEXED REUSE -
SHAREOPTIONS(3 3) -
RECORDSIZE(3824 7024) -
KEYS(112 0) -
RECORDS(300 150)) -

DATA (NAME(SYS1.APPCTP.DATA)) -
INDEX (NAME(SYS1.APPCTP.INDEX))

//*
//SI EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DEFINE CLUSTER (NAME(SYS1.APPCSI) -
VOLUME(******) -
INDEXED REUSE -
SHAREOPTIONS(3 3) -
RECORDSIZE(248 248) -
KEYS(112 0) -
RECORDS(50 25)) -

DATA (NAME(SYS1.APPCSI.DATA)) -
INDEX (NAME(SYS1.APPCSI.INDEX))

//*

Figure 65. JCL to create APPC VSAMs

300 IBM Rational Developer for System z: Host Configuration Guide

console command d net,appls to verify that the application is active. Add the
member name to SYS1.VTAMLST(ATCCONxx) if you want it to be activated when
VTAM starts.

The ACBNAME of MVSLU01 used in sample member SYS1.SAMPLIB(ATBAPPL) can
be changed to match site standards, but must match the definitions in the
SYS1.PARMLIB(APPCPMxx) member.

Refer to Communications Server IP SNA Network Implementation Guide (SC31-8777)
for more information on configuring VTAM.

SYS1.PARMLIB(APPCPMxx)
To enable and support the flow of conversations between systems, sites must
define Logical Units (LUs) between which sessions can bind. A site needs to define
at least one LU before APPC/MVS processing can take place, even when APPC
processing remains on a single system. LUs are some of the definitions done in
SYS1.PARMLIB(APPCPMxx).

The TSO Commands service requires that APPC is set up to have a base LU that
can handle both inbound and outbound requests.

The LU definition must be added to the SYS1.PARMLIB(APPCPMxx) member and
needs to include the BASE and SCHED(ASCH) parameters. The APPCPMxx member also
specifies which transaction profile (TP) and side information (SI) VSAM data sets
will be used.

The following code sample is a SYS1.PARMLIB(APPCPMxx) member that can be used
for the TSO Commands service.

When a system has multiple LU names, you might have to make changes
depending on which LU the system selects as the BASE LU. The BASE LU for the
system is determined by the following:

MVSLU01 APPL ACBNAME=MVSLU01, C
APPC=YES, C
AUTOSES=0, C
DDRAINL=NALLOW, C
DLOGMOD=APPCHOST, C
DMINWNL=5, C
DMINWNR=5, C
DRESPL=NALLOW, C
DSESLIM=10, C
LMDENT=19, C
MODETAB=LOGMODES, C
PARSESS=YES, C
SECACPT=CONV, C
SRBEXIT=YES, C
VPACING=1

Figure 66. SYS1.SAMPLIB(ATBAPPL)

LUADD
ACBNAME(MVSLU01)
BASE
SCHED(ASCH)
TPDATA(SYS1.APPCTP)

SIDEINFO DATASET(SYS1.APPCSI)

Figure 67. SYS1.PARMLIB(APPCPMxx)

Appendix D. Setting up APPC 301

1. The system base LU is represented by the last LUADD statement that contains
both the NOSCHED and BASE parameters. This type of system base LU allows
outbound requests to be processed when no transaction schedulers are active.

2. If no LUADD statements contain both NOSCHED and BASE, the system base LU is
represented by the last LUADD statement that contains the BASE parameter and
specifies ASCH as APPC/MVS transaction scheduler. This can be done by either
coding SCHED(ASCH) or not coding the SCHED parameter at all (ASCH is the default
value for SCHED).

Note: Operator command D APPC,LU,ALL will show all active LU definitions
and mark the base LU.

If your system has a LU with BASE and NOSCHED parameters, this LU would be used
as the BASE LU but the TSO Command service will not work because this LU
does not have a transaction scheduler to handle requests to the FEKFRSRV
transaction. If this LU cannot be changed to remove the NOSCHED parameter, the
rsed.envvars environment variable _FEKFSCMD_PARTNER_LU can be set to the LU that
has BASE and SCHED(ASCH), such as:
_FEKFSCMD_PARTNER_LU=MVSLU01

See “rsed.envvars, RSE configuration file” on page 28 for more information on
rsed.envvars.

SYS1.PARMLIB(ASCHPMxx)
The APPC/MVS transaction scheduler (default name is ASCH) initiates and
schedules transaction programs in response to inbound requests for conversations.
Member SYS1.PARMLIB(ASCHPMxx) controls its functioning, for example, with
transaction class definitions.

The APPC transaction class used for the TSO Commands service must have
enough APPC initiators to allow one initiator for each user of Developer for
System z.

The TSO Commands service also needs the default specifications to be specified in
the OPTIONS and TPDEFAULT sections.

The following code sample is a SYS1.PARMLIB(ASCHPMxx) member that can be used
for the TSO Commands service.

Note:

CLASSADD
CLASSNAME(A)
MAX(20)
MIN(1)
MSGLIMIT(200)

OPTIONS
DEFAULT(A)

TPDEFAULT
REGION(2M)
TIME(5)
MSGLEVEL(1,1)
OUTCLASS(X)

Figure 68. SYS1.PARMLIB(ASCHPMxx)

302 IBM Rational Developer for System z: Host Configuration Guide

v For debugging purposes, the IBM support center might ask you to
increase the value of MSGLIMIT, so that more output is written to the log
file.

v Operator command D ASCH,ALL will show all active APPC transaction
scheduler classes.

Activating APPC changes
The configuration changes documented in the steps above can now be activated.
This can be done in various ways, depending on the circumstances:
v APPC is not active yet. Enter the following console commands to start

APPC/MVS (where xx equals the last two characters of the related SYS1.PARMLIB
members):
1. S APPC,SUB=MSTR,APPC=xx

2. S ASCH,SUB=MSTR,ASCH=xx

Add these commands to SYS1.PARMLIB(COMMNDxx) to start them at system
startup.

v APPC is already active. APPC can dynamically reload the SYS1.PARMLIB
members by using the following console SET command (where xx equals the
last two characters of the related SYS1.PARMLIB members):
1. SET APPC=xx

2. SET ASCH=xx

Console commands D APPC and D ASCH can be used to verify the APPC setup.
Refer to MVS System Commands (GC28-1781) for more information on the
mentioned console commands.

Defining the TSO Commands service transaction
Once APPC/MVS is active, the Developer for System z TSO Commands service
can be defined, as described in “(Optional) APPC transaction for the TSO
Commands service” on page 95.

The documented way to define the APPC transaction is by customizing and
submitting FEK.#CUST.JCL(FEKAPPCC).

The APPC transaction can also be defined interactively through the APPC ISPF
interface, which is documented in a whitepaper. This whitepaper also describes
how to set up the APPC transaction to collect user-specific accounting information.

The APPC and WebSphere Developer for System z (SC23-5885-00) whitepaper is
available at the Developer for System z internet library, http://www-306.ibm.com/
software/awdtools/rdz/library/.

Note: The Transaction Program (TP) JCL that is used by APPC to start the TSO
Commands service has changed in Developer for System z version 7.1. If
you follow the directions in the whitepaper to define the TP, you must add
the NESTMACS keyword to the PARM line, for example:
// PARM=’ISPSTART CMD(%FEKFRSRV TIMEOUT=60) NEWAPPL(ISR) NESTMACS’

(Optional) Alternative setup options
Developer for System z supports alternative APPC and VTAM setup options, some
of which are documented in this section.

Appendix D. Setting up APPC 303

Alternative transaction name
The default transaction name for the TSO Commands service is FEKFRSRV, as
described in “(Optional) APPC transaction for the TSO Commands service” on
page 95. As described in the same section, this name can be changed when you
define the transaction to APPC.

Note that changing the transaction name in APPC implies that the new name must
be assigned to _FEKFSCMD_TP_NAME_ in rsed.envvars, as described in “rsed.envvars,
RSE configuration file” on page 28.

Multiple LUs
APPC is a communication protocol that lets a program (the partner node) interact
with a program on the host (the local node). With Developer for System z, both the
partner node (TSO Commands server) and the local node (RSE server) are active
on the same z/OS system. And by default, they both use the same (BASE) LU
definition to communicate with each other.

You can specify an alternative partner LU name for the TSO Commands service in
the _FEKFSCMD_PARTNER_LU_ directive of rsed.envvars, as described in
“rsed.envvars, RSE configuration file” on page 28. Note that you cannot change the
local LU, which must always be a valid BASE LU (have the BASE and SCHED
keywords).

LU security
VTAM supports a secure APPC setup, where the communication between the
partner and local LU must be defined to the security software.

This is activated by adding VERIFY=REQUIRED to the VTAM definition of the local
(BASE) LU. The security definitions must be done in the APPCLU class, as described
in MVS Planning: APPC/MVS Management (SA22-7599).

Note that when this setup is active in VTAM, and the setup in your security
software is not completed, the communication with the TSO commands service
will fail to initialize without any message in the system log indicating that VTAM
refused to set up the connection. The APPC IVP test (fekfivpa) will fail with
message “Return code 1 - Allocate Failure no retry”.

304 IBM Rational Developer for System z: Host Configuration Guide

Appendix E. Requisites

This appendix lists the host prerequisites and corequisites for this version of
Developer for System z.

Refer to Rational Developer for System z Prerequisites (SC23-7659) in the Developer for
System z online library at http://www-01.ibm.com/software/awdtools/rdz/
library/ for an up-to-date list of required and optional requisites.

The products listed in this section are all available at the time of publication for
this manual. See the IBM Software Support Lifecycle Web site
http://www.ibm.com/software/support/lifecycle/, to see whether a selected
product is still available at the time that you want to use the related Developer for
System z function.

z/OS host prerequisites
Use of Developer for System z requires that you have the following environment
with the appropriate prerequisites:

z/OS
One of the following levels must be installed on the host:

Program
Number

Product
Name

PTFs or Service Levels Required

5694-A01 z/OS v 1.11 ISPF:

v APAR OA29489 (TSO/ISPF Client Gateway)
PTF UA51713

TCP/IP:

v No PTF or Service Level required

5694-A01 z/OS v 1.10 ISPF:

v APAR OA29489 (TSO/ISPF Client Gateway)
PTF UA51712

TCP/IP:

v APAR PK74282 (CSM fixed storage growth)
PTF UK41810

5694-A01 z/OS v 1.9 ISPF:

v APAR OA29489 (TSO/ISPF Client Gateway)
PTF UA51687

TCP/IP:

v APAR PK74282 (CSM fixed storage growth)
PTF UK41812

© Copyright IBM Corp. 2005, 2010 305

http://www.ibm.com/software/support/lifecycle/

Program
Number

Product
Name

PTFs or Service Levels Required

5694–A01 z/OS v 1.8 ISPF:

v APAR OA20345 (nested command output)
PTF UA33575

v APAR OA20449 (add NESTMACS support)
PTF UA34052

v APAR OA29489 (TSO/ISPF Client Gateway)
PTF UA51686

TCP/IP:

v APAR PK74282 (CSM fixed storage growth)
PTF UK41811

The related product Web site is:

http://www-03.ibm.com/systems/z/os/zos/

Notes:

1. Remote (host-based) actions for z/OS UNIX subprojects require that the z/OS
UNIX version of REXEC or SSH is active on the host.

2. z/OS includes the following components, which need to be installed,
configured, and operational:
v Interactive System Productivity Facility (ISPF)

– http://www-01.ibm.com/software/awdtools/ispf/
v Language Environment

– http://www-03.ibm.com/servers/eserver/zseries/zos/le/
v RACF or equivalent security product

– http://www-03.ibm.com/servers/eserver/zseries/zos/racf/
v VTAM component of IBM Communications Server

– http://www-01.ibm.com/software/network/commserver/zos/
v IP Services component of IBM Communications Server

– http://www-01.ibm.com/software/network/commserver/zos/
v Binder
v APPC (optional)

Note:

– APPC is a mandatory prerequisite if the service for ISPF APAR
OA29489 is not available on your host system.

– APPC can be replaced by the ISPF Client Gateway functionality
delivered in ISPF for z/OS 1.10, and available in ISPF for z/OS 1.8
and 1.9 with the appropriate PTFs applied.

SMP/E
In order to install Developer for System z, one of the following levels must be
installed:

306 IBM Rational Developer for System z: Host Configuration Guide

http://www-03.ibm.com/systems/z/os/zos/smpe/
http://www-01.ibm.com/software/awdtools/ispf/
http://www-03.ibm.com/servers/eserver/zseries/zos/le/
http://www-03.ibm.com/servers/eserver/zseries/zos/racf/
http://www-01.ibm.com/software/network/commserver/zos/
http://www-01.ibm.com/software/network/commserver/zos/

Program Number Product Name PTFs or Service Levels
Required

5655-G44 IBM System Modification
Program Extended (SMP/E)
for z/OS v 3.5

No PTF or Service Level
required

5655-G44 IBM System Modification
Program Extended (SMP/E)
for z/OS v 3.4

No PTF or Service Level
required

The related product Web site is:

http://www-03.ibm.com/systems/z/os/zos/smpe/

SDK for z/OS Java 2 Technology Edition
In order to support applications that use Remote Systems Explorer (RSE), one of
the following levels must be installed on the host:

Program Number Product Name PTFs or Service Levels
Required

5655-R32 IBM 64-bit SDK for z/OS,
Java 2 Technology Edition, v
6.0

service release 7

5655-R31 IBM 31-bit SDK for z/OS,
Java 2 Technology Edition, v
6.0

service release 7

5655-N99 IBM 64-bit SDK for z/OS,
Java 2 Technology Edition, v
5.0

service release 11

5655-N98 IBM 31-bit SDK for z/OS,
Java 2 Technology Edition, v
5.0

service release 11

The related product Web site is:

http://www.ibm.com/servers/eserver/zseries/software/java/

Note: The PTF for Developer for System z APAR PM07305 must be applied when
using a 64-bit version of Java. The PTF is available via the Developer for
System z recommend service page, http://www-01.ibm.com/support/
docview.wss?rs=2294&context=SS2QJ2&uid=swg27006335.

z/OS host corequisites
The products listed in this section and other stated software are required to
support specific features of Developer for System z. The Developer for System z
workstation client can be successfully installed without these requisites. However,
a stated host requisite must be installed and operational at runtime for the
corresponding feature to work as designed.

Appendix E. Requisites 307

http://www-03.ibm.com/systems/z/os/zos/
http://www.ibm.com/servers/eserver/zseries/software/java/
http://www-01.ibm.com/support/docview.wss?rs=2294&context=SS2QJ2&uid=swg27006335
http://www-01.ibm.com/support/docview.wss?rs=2294&context=SS2QJ2&uid=swg27006335

z/OS

Program
Number

Product
Name PTFs or Service Levels Required

5694-A01 z/OS v
1.11

HLASM
No PTF or Service Level required

XL C/C++
No PTF or Service Level required

SCLM
No PTF or Service Level required

LE (PL/I)
No PTF or Service Level required

TN3270
No PTF or Service Level required

5694-A01 z/OS v
1.10

HLASM
No PTF or Service Level required

XL C/C++
No PTF or Service Level required

SCLM
No PTF or Service Level required

LE (PL/I)
No PTF or Service Level required

TN3270
No PTF or Service Level required

5694-A01 z/OS v 1.9 HLASM
No PTF or Service Level required

XL C/C++
No PTF or Service Level required

SCLM

v APAR OA27379 (SCLM Search)
PTF UA46330 + UA46331, UA46332, UA46333, UA46334
(language-dependent)

LE (PL/I)
No PTF or Service Level required

TN3270
No PTF or Service Level required

308 IBM Rational Developer for System z: Host Configuration Guide

Program
Number

Product
Name PTFs or Service Levels Required

5694-A01 z/OS v 1.8 HLASM
No PTF or Service Level required

XL C/C++
No PTF or Service Level required

SCLM

v APAR OA21104 (informational build mode)
PTF UA35046 + UA35056, UA35057, UA35058, or
UA35059 (language-dependent)

v APAR OA16924 (enhance SCLMINFO)
PTF UA29772 + UA29922, UA29923, UA29924, or
UA29925 (language-dependent)

v APAR OA16804 (add surrogate userid support)
PTF UA33524 + UA33533, UA33534, UA33535, or
UA33536 (language-dependent)

LE (PL/I)

v APAR PK41552 (new PL/I messages for
Developer for System z)
PTF UK24482 (English) or UK24483 (Japanese)

TN3270
No PTF or Service Level required

The related product Web site is:

http://www-03.ibm.com/systems/z/os/zos/

Note:

1. JES3 v 1.10 or higher is a corequisite for JES3 users who want to use the
Job Monitor support for viewing the output of active jobs.

2. High Level Assembler (HLASM) must be installed on the host with the
listed service level, in order to compile assembler programs developed or
edited within Developer for System z.
The related product Web site is:

http://www.ibm.com/software/awdtools/hlasm/
3. The XL C/C++ compiler must be installed on the host with the listed

service level, in order to compile C/C++ programs developed or edited
within Developer for System z.
The related product Web site is:

http://www.ibm.com/software/awdtools/czos/
4. SCLM must be installed on the host with the listed service level, in order

to support SCLM Developer Toolkit.
The related product Web site is:

http://www.ibm.com/software/awdtools/sclmsuite/sclm/

Note:

Appendix E. Requisites 309

http://www-03.ibm.com/systems/z/os/zos/smpe/
http://www.ibm.com/software/awdtools/hlasm/
http://www.ibm.com/software/awdtools/czos/
http://www.ibm.com/software/awdtools/sclmsuite/sclm/

v APAR OA16804 is only required if you want to use secure
build, promote, and deploy.

v APAR OA26997 is only required for member security support.
v APAR OA27379 is only required for member security support or

SCLM search functionality.
5. Language Environment must be installed on the host with the listed

service level, in order to support Enterprise Service Tools for PL/I.
The related product Web site is:

http://www-03.ibm.com/servers/eserver/zseries/zos/le/
6. TN3270 must be installed on the host with the listed service level in

order to support the Host Connect emulator. TN3270 is a part of the IP
Services component of IBM Communications Server.
The related product Web site is:

http://www-01.ibm.com/software/network/commserver/zos/

COBOL compiler
To compile COBOL programs developed or edited within Developer for System z ,
one of the following levels must be installed on the host:

Program Number Product Name PTFs or Service Levels
Required

5655-S71 IBM Enterprise COBOL for
z/OS v 4.2

No PTF or Service Level
required

5655-S71 IBM Enterprise COBOL for
z/OS v 4.1

No PTF or Service Level
required

5535–G53 IBM Enterprise COBOL for
z/OS v 3.4

No PTF or Service Level
required

The related product Web site is:

http://www.ibm.com/software/awdtools/cobol/zos/

Note: IBM Enterprise COBOL for z/OS v 4.1 is required for Enterprise Service
Tools to generate Compiled XML Conversion that uses the XMLSS-based
XML PARSE capability in COBOL v 4.1.

PL/I compiler
To compile PL/I programs developed or edited within Developer for System z, one
of the following levels must be installed on the host:

Program Number Product Name PTFs or Service Levels
Required

5655-H31 IBM Enterprise PL/I for
z/OS v 3.9

No PTF or Service Level
required

5655–H31 IBM Enterprise PL/I for
z/OS v 3.8

No PTF or Service Level
required

5655–H31 IBM Enterprise PL/I for
z/OS v 3.7

No PTF or Service Level
required

310 IBM Rational Developer for System z: Host Configuration Guide

http://www-03.ibm.com/servers/eserver/zseries/zos/le/
http://www-01.ibm.com/software/network/commserver/zos/
http://www.ibm.com/software/awdtools/cobol/zos/

Program Number Product Name PTFs or Service Levels
Required

5655–H31 IBM Enterprise PL/I for
z/OS v 3.6

No PTF or Service Level
required

The related product Web site is:

http://www.ibm.com/software/awdtools/pli/plizos/

Debug Tool for z/OS
To support remote debugging from Developer for System z, one of the following
levels must be installed on the host:

Program
Number

Product Name Programming
Language

APARs, PTFs, or
Service Levels
Required

5655-V50 IBM Debug Tool for z/OS
V10.1

COBOL, PL/I, C/C++,
assembler, and
additional features

all available
maintenance

5655-U27 IBM Debug Tool for z/OS
V9.1

COBOL, PL/I, C/C++,
assembler, and
additional features

all available
maintenance

5655-S16 IBM Debug Tool Utilities
and Advanced Functions
for z/OS V8.1.0

COBOL, PL/I, C/C++,
assembler, and
additional features

all available
maintenance

5655-S17 IBM Debug Tool for z/OS
V8.1.0

COBOL, PL/I,
Assembler, C/C++

all available
maintenance

Note: Support for CICS debug configurations in IBM Rational Developer for
System z v7.6.1 or higher requires IBM Debug Tool v10.1 or v9.1 (PTF
number - UK52904).

The related product Web site is:

http://www.ibm.com/software/awdtools/debugtool/

Note: Debug Tool Utilities and Advanced Functions (DTU&AF) is a superset of
Debug Tool.

Starting with version 9, Debug Tool for z/OS and Debug Tool Utilities and
Advanced Functions have been merged into a single offering.

CICS Transaction Server
To support applications with embedded CICS statements, one of the following
levels must be installed:

Program
Number

Product Name PTFs or Service Levels Required

5655–S97 IBM CICS Transaction Server for
z/OS v 4.1

No PTF or Service Level required

5697–E93 IBM CICS Transaction Server for
z/OS v 3.2

UK34221

Appendix E. Requisites 311

http://www.ibm.com/software/awdtools/pli/plizos/
http://www.ibm.com/software/awdtools/debugtool/

Program
Number

Product Name PTFs or Service Levels Required

5697–E93 IBM CICS Transaction Server for
z/OS v 3.1

UK15767, UK15764, UK11782, UK11294,
UK12233, UK12521, UK15261, UK15271,
UK34221, UK34078

The related product Web site is:

http://www.ibm.com/software/htp/cics/tserver/

Note:

v The CICS Transaction Server requires additional configuration to work
with the debug tool.

v The RESTful interface available in CICS Transaction Server v 4.1 or higher
is required to support Application Deployment Manager, Service
Component Architecture, and Enterprise Service Tools features that are
new to IBM Rational Developer for System z v 7.6 or higher.

v CICS Transaction Server v 3.2 or higher is required to support many
features of Enterprise Service Tools.
For the complete list of specifics on runtime requirements refer to the
Enterprise Service Tools documentation the IBM Rational Developer for
System z Information Center at http://publib.boulder.ibm.com/
infocenter/ratdevz/v7r6/.

v CICS Transaction Server v 3.1 with service UK34221 is the minimum for
Application Deployment Manager.

IMS
To support applications using IMS database and data communications, one of the
following levels must be installed on the host:

Program Number Product Name PTFs or Service Levels Required

5635-A02 IBM IMS v 11.1 No PTF or Service Level required

5635-A01 IBM IMS v 10.1 No PTF or Service Level required

5655-J38 IBM IMS v 9.1 No PTF or Service Level required

The related product Web site is:

http://www.ibm.com/software/data/ims/ims/

Note:

v IMS requires additional configuration to work with the debug tool.
v Version 10.1 or higher of IMS, IMS Connect, and IMS SOAP Gateway are

required for Enterprise Service Tools.

DB2 for z/OS
To support DB2, one of the following levels must be installed on the host:

Program
Number

Product Name PTFs or Service Levels Required

5635-DB2 IBM DB2 for z/OS v 9.1 No PTF or Service Level required

312 IBM Rational Developer for System z: Host Configuration Guide

http://www.ibm.com/software/htp/cics/tserver/
http://www.ibm.com/software/data/ims/ims/

Program
Number

Product Name PTFs or Service Levels Required

5625-DB2 IBM DB2 Universal Database™ for
z/OS v 8.1

No PTF or Service Level required

The related product Web site is:

http://www.ibm.com/software/data/db2/zos/

Rational Team Concert for System z
For Jazz-based source control using Developer for System z remote projects, the
following level must be installed.

Program
Number

Product Name PTFs or Service Levels Required

5724-V82 Rational Team Concert for System
z Server v 2.0

FMID HAHA200 – Team Server

v UK54064

v UK54071

v UK54073

v UK54095

v UK54098

FMID HAHB200 – Toolkit

v UK54065

v UK54066

v UK54099

FMID HAHC200 – Job Monitor

v No PTF or Service Level required

FMID HAHD200 – BuildForge Agent

v UK54097

The related product Web site is:

http://www-01.ibm.com/software/awdtools/rtcz/

Note: Rational Team Concert Server v 1.0 or Rational Team Concert for System z
Server v 1.0.1 provides selective support for some Developer for System z
functions such as local projects. We recommend Rational Team Concert for
System z Server v 2.0.0.2 for a more integrated and full featured experience

File Manager
To support File Manager integration, one of the following levels must be installed
on the host:

Program
Number

Product Name PTFs or Service Levels Required

5655-U29 IBM File Manager for z/OS v 10.1 v UK54428

The related product Web site is:

Appendix E. Requisites 313

http://www.ibm.com/software/data/db2/zos/
http://www-01.ibm.com/software/awdtools/rtcz/

http://www.ibm.com/software/awdtools/filemanager/

Fault Analyzer
To support Fault Analyzer integration, the following levels must be installed on the
host:

Program
Number

Product Name PTFs or Service Levels Required

5655-V51 IBM Fault Analyzer v 10.1 No PTF or Service Level required

5655-U28 IBM Fault Analyzer v 9.1 No PTF or Service Level required

5655-S15 IBM Fault Analyzer v 8.1 No PTF or Service Level required

The related product Web site is as follows:

http://www.ibm.com/software/awdtools/faultanalyzer/

REXX
To use SCLM Developer Toolkit, one of the following levels must be installed on
the host:

Program Number Product Name PTFs or Service Levels
Required

5695-014 IBM Library for REXX on
zSeries v 1.4

No PTF or Service Level
required

5695-014 IBM Library for REXX on
zSeries Alternate Library v
1.4.0 (FMIDs HWJ9143,
JWJ9144)

No PTF or Service Level
required

A version of the REXX/370 Alternate Library is available from the product Web
site:

http://www.ibm.com/software/awdtools/rexx/rexxzseries/

Ported tools
IBM Ported Tools for z/OS must be installed (in z/OS UNIX) to use sftp or scp to
do secure deployment in SCLM Developer Toolkit.

A version of IBM Ported Tools for z/OS is available from the product Web site:

http://www-03.ibm.com/servers/eserver/zseries/zos/unix/port_tools.html

Ant
Apache Ant must be installed (in z/OS UNIX) to do JAVA/J2EE builds in SCLM
Developer Toolkit.

Apache Ant is an open-source, Java-based build tool that you can download from
the product Web site:

http://ant.apache.org/

314 IBM Rational Developer for System z: Host Configuration Guide

http://www-01.ibm.com/software/awdtools/rtcz/
http://www.ibm.com/software/awdtools/faultanalyzer/
http://www.ibm.com/software/awdtools/rexx/rexxzseries/
http://www.ibm.com/servers/eserver/zseries/zos/unix/port_tools.html
http://ant.apache.org/

Endevor®

CA Endevor® Software Change Manager Release 12 must be installed to use the
Developer for System z Interface for CA Endevor® SCM.

CA Endevor® SCM is a product from CA. The related product web site is:

http://www.ca.com/us/products/product.aspx?ID=259

Appendix E. Requisites 315

http://www.ca.com/us/products/product.aspx?ID=259

316 IBM Rational Developer for System z: Host Configuration Guide

Bibliography

Referenced publications
The following publications are referenced in this document:

Table 52. Referenced publications

Publication title
Order
number Reference Reference Web site

Java Diagnostic Guide SC34-6650 Java 5.0 http://www.ibm.com/developerworks/java/jdk/
diagnosis/

Java SDK and Runtime
Environment User Guide

/ Java 5.0 http://www-03.ibm.com/servers/eserver/zseries/
software/java/

Program Directory for IBM
Rational Developer for
System z

GI11-8298 Developer for
System z

http://www-306.ibm.com/software/awdtools/rdz/
library/

Rational Developer for
System z Common Access
Repository Manager
Developer's Guide

SC23-7660 Developer for
System z

http://www-306.ibm.com/software/awdtools/rdz/
library/

Rational Developer for
System z Prerequisites

SC23-7659 Developer for
System z

http://www-306.ibm.com/software/awdtools/rdz/
library/

Rational Developer for
System z Host Configuration
Quick Start

GI11-9201 Developer for
System z

http://www-306.ibm.com/software/awdtools/rdz/
library/

Rational Developer for
System z Host Planning
Guide

GI11-8296 Developer for
System z

http://www-306.ibm.com/software/awdtools/rdz/
library/

SCLM Developer Toolkit
Administrator's Guide

SC23-9801 Developer for
System z

http://www-306.ibm.com/software/awdtools/rdz/
library/

APPC and WebSphere
Developer for System z

SC23-5885 Whitepaper http://www-306.ibm.com/software/awdtools/rdz/
library/

Communications Server IP
Configuration Guide

SC31-8775 z/OS 1.9 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

Communications Server IP
Configuration Reference

SC31-8776 z/OS 1.9 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

Communications Server IP
Diagnosis Guide

GC31-8782 z/OS 1.9 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

Communications Server IP
System Administrator's
Commands

SC31-8781 z/OS 1.9 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

Communications Server
SNA Network
Implementation Guide

SC31-8777 z/OS 1.9 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

Communications Server
SNA Operations

SC31-8779 z/OS 1.9 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

Cryptographic Services
System SSL Programming

SC24-5901 z/OS 1.9 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

© Copyright IBM Corp. 2005, 2010 317

Table 52. Referenced publications (continued)

Publication title
Order
number Reference Reference Web site

DFSMS Macro Instructions
for Data Sets

SC26-7408 z/OS 1.9 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

DFSMS Using data sets SC26-7410 z/OS 1.9 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

Language Environment
Customization

SA22-7564 z/OS 1.9 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

Language Environment
Debugging Guide

GA22-7560 z/OS 1.9 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

MVS Initialization and
Tuning Guide

SA22-7591 z/OS 1.9 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

MVS Initialization and
Tuning Reference

SA22-7592 z/OS 1.9 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

MVS JCL Reference SA22-7597 z/OS 1.9 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

MVS Planning APPC/MVS
Management

SA22-7599 z/OS 1.9 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

MVS Planning Workload
Management

SA22-7602 z/OS 1.9 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

MVS System Commands SA22-7627 z/OS 1.9 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

Security Server RACF
Command Language
Reference

SA22-7687 z/OS 1.9 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

Security Server RACF
Security Administrator's
Guide

SA22-7683 z/OS 1.9 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

TSO/E Customization SA22-7783 z/OS 1.9 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

TSO/E REXX Reference SA22-7790 z/OS 1.9 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

UNIX System Services
Command Reference

SA22-7802 z/OS 1.9 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

UNIX System Services
Planning

GA22-7800 z/OS 1.9 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

UNIX System Services User's
Guide

SA22-7801 z/OS 1.9 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

Using REXX and z/OS
UNIX System Services

SA22-7806 z/OS 1.9 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

Resource Definition Guide SC34-6430 CICSTS 3.1 http://www-03.ibm.com/systems/z/os/zos/bkserv/
zapplsbooks.html

Resource Definition Guide SC34-6815 CICSTS 3.2 http://www-03.ibm.com/systems/z/os/zos/bkserv/
zapplsbooks.html

Resource Definition Guide SC34-7000 CICSTS 4.1 https://publib.boulder.ibm.com/infocenter/cicsts/
v4r1/index.jsp?topic=/com.ibm.cics.ts.home.doc/
library/library_html.html

RACF Security Guide SC34-6454 CICSTS 3.1 http://www-03.ibm.com/systems/z/os/zos/bkserv/
zapplsbooks.html

318 IBM Rational Developer for System z: Host Configuration Guide

Table 52. Referenced publications (continued)

Publication title
Order
number Reference Reference Web site

RACF Security Guide SC34-6835 CICSTS 3.2 http://www-03.ibm.com/systems/z/os/zos/bkserv/
zapplsbooks.html

RACF Security Guide SC34-7003 CICSTS 4.1 https://publib.boulder.ibm.com/infocenter/cicsts/
v4r1/index.jsp?topic=/com.ibm.cics.ts.home.doc/
library/library_html.html

Language Reference SC27-1408 Enterprise
COBOL for
z/OS

http://www-03.ibm.com/systems/z/os/zos/bkserv/
zapplsbooks.html

The following Web sites are referenced in this document:

Table 53. Referenced Web sites

Description Reference Web site

Developer for System z Information Center http://publib.boulder.ibm.com/infocenter/ratdevz/v7r6/index.jsp

Developer for System z Support http://www-306.ibm.com/software/awdtools/rdz/support/

Developer for System z Library http://www-306.ibm.com/software/awdtools/rdz/library/

Developer for System z home page http://www-306.ibm.com/software/awdtools/rdz/

Developer for System z Recommended service http://www-01.ibm.com/support/docview.wss?rs=2294
&context=SS2QJ2&uid=swg27006335

Developer for System z enhancement request https://www.ibm.com/developerworks/support/rational/rfe/

z/OS internet library http://www-03.ibm.com/servers/eserver/zseries/zos/bkserv/

CICSTS Information Center https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp

Download Apache Ant http://ant.apache.org/

Java keytool documentation http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/keytool.html

CA support home page https://support.ca.com/

Informational publications
The following publications can be helpful in understanding setup issues for
requisite host components:

Table 54. Informational publications

Publication title
Order
number Reference Reference Web site

ABCs of z/OS System
Programming Volume 9
(z/OS UNIX)

SG24-6989 Redbook http://www.redbooks.ibm.com/

System Programmer’s
Guide to: Workload
Manager

SG24-6472 Redbook http://www.redbooks.ibm.com/

TCPIP Implementation
Volume 1: Base Functions,
Connectivity, and Routing

SG24-7532 Redbook http://www.redbooks.ibm.com/

TCPIP Implementation
Volume 3: High Availability,
Scalability, and Performance

SG24-7534 Redbook http://www.redbooks.ibm.com/

Bibliography 319

Table 54. Informational publications (continued)

Publication title
Order
number Reference Reference Web site

TCP/IP Implementation
Volume 4: Security and
Policy-Based Networking

SG24-7535 Redbook http://www.redbooks.ibm.com/

320 IBM Rational Developer for System z: Host Configuration Guide

Glossary

A
Action ID. A numeric identifier for an action between
0 and 999

Application Server.

1. A program that handles all application operations
between browser-based computers and an
organization's back-end business applications or
databases. There is a special class of Java-based
appservers that conform to the J2EE standard. J2EE
code can be easily ported between these appservers.
They can support JSPs and servlets for dynamic
Web content and EJBs for transactions and database
access.

2. The target of a request from a remote application. In
the DB2 environment, the application server
function is provided by the distributed data facility
and is used to access DB2 data from remote
applications.

3. A server program in a distributed network that
provides the execution environment for an
application program.

4. The target of a request from an application
requester. The database management system
(DBMS) at the application server site provides the
requested data.

5. Software that handles communication with the
client requesting an asset and queries of the Content
Manager.

B
Bidirectional (bi-di). Pertaining to scripts such as
Arabic and Hebrew that generally run from right to
left, except for numbers, which run from left to right.
This definition is from the Localization Industry
Standards Association (LISA) Glossary.

Bidirectional Attribute. Text type, text orientation,
numeric swapping, and symmetric swapping.

Build Request. A request from the client to perform a
build transaction.

Build Transaction. A job started on MVS to perform
builds after a build request has been received from the
client.

C
Compile.

1. In Integrated Language Environment (ILE)
languages, to translate source statements into
modules that then can be bound into programs or
service programs.

2. To translate all or part of a program expressed in a
high-level language into a computer program
expressed in an intermediate language, an assembly
language, or a machine language.

Container.

1. In CoOperative Development Environment/400, a
system object that contains and organizes source
files. An i5/OS® library or an MVS-partitioned data
set are examples of a container.

2. In J2EE, an entity that provides life-cycle
management, security, deployment, and runtime
services to components. (Sun) Each type of
container (EJB, Web, JSP, servlet, applet, and
application client) also provides component-specific
services

3. In Backup Recovery and Media Services, the
physical object used to store and move media such
as a box, a case, or a rack.

4. In a virtual tape server (VTS), a receptacle in which
one or more exported logical volumes (LVOLs) can
be stored. A stacked volume containing one or more
LVOLs and residing outside a VTS library is
considered to be the container for those volumes.

5. A physical storage location of the data. For
example, a file, directory, or device.

6. A column or row that is used to arrange the layout
of a portlet or other container on a page.

7. An element of the user interface that holds objects.
In the folder manager, an object that can contain
other folders or documents.

D
Database. A collection of interrelated or independent
data items that are stored together to serve one or more
applications.

Data Definition View. Contains a local representation
of databases and their objects and provides features to
manipulate these objects and export them to a remote
database

Data Set. The major unit of data storage and retrieval,
consisting of a collection of data in one of several
prescribed arrangements and described by control
information to which the system has access.

Debug. To detect, diagnose, and eliminate errors in
programs.

© Copyright IBM Corp. 2005, 2010 321

Debugging Session. The debugging activities that
occur between the time that a developer starts a
debugger and the time that the developer exits from it.

E
Error Buffer. A portion of storage used to hold error
output information temporarily.

F
.

G
Gateway.

1. A middleware component that bridges Internet and
intranet environments during Web service
invocations.

2. Software that provides services between the
endpoints and the rest of the Tivoli® environment.

3. A component of a Voice over Internet Protocol that
provides a bridge between VoIP and
circuit-switched environments.

4. A device or program used to connect networks or
systems with different network architectures. The
systems may have different characteristics, such as
different communication protocols, different
network architecture, or different security policies,
in which case the gateway performs a translation
role as well as a connection role.

H
.

I
Interactive System Productivity Facility (ISPF). An
IBM licensed program that serves as a full-screen editor
and dialog manager. Used for writing application
programs, it provides a means of generating standard
screen panels and interactive dialogs between the
application programmer and terminal user. ISPF
consists of four major components: DM, PDF, SCLM,
and C/S. The DM component is the Dialog Manager,
which provides services to dialogs and end-users. The
PDF component is the Program Development Facility,
which provides services to assist the dialog or
application developer. The SCLM component is the
Software Configuration Library Manager, which
provides services to application developers to manage
their application development libraries. The C/S
component is the Client/Server, which allows you to
run ISPF on programmable workstation, to display the
panels using the display function of your workstation

operating system, and to integrate workstation tools
and data with host tools and data.

Interpreter. A program that translates and runs each
instruction of a high-level programming language
before it translates and runs the next instruction.

Isomorphic. Each composed element (in other words,
an element containing other elements) of the XML
instance document starting from the root has one and
only one corresponding COBOL group item whose
nesting depth is identical to the nesting depth of its
XML equivalent. Each non-composed element (in other
words, an element that does not contain other
elements) in the XML instance document starting from
the top has one and only one corresponding COBOL
elementary item whose nesting depth is identical to the
nesting level of its XML equivalent and whose memory
address at runtime can be uniquely identified.

J
.

K
.

L
Linkage Section. The section in the data division of
an activated unit (a called program or an invoked
method) that describes data items available from the
activating unit (a program or a method). These data
items can be referred to by both the activated unit and
the activating unit.

Load Library. A library containing load modules.

Lock Action. Locks a member.

M
.

N
Navigator View. Provides a hierarchical view of the
resources in the Workbench.

Non-Isomorphic. A simple mapping of COBOL items
and XML elements belonging to XML documents and
COBOL groups that are not identical in shape
(non-isomorphic). Non-isomorphic mapping can also be
created between non-isomorphic elements of
isomorphic structures.

322 IBM Rational Developer for System z: Host Configuration Guide

O
Output Console View. Displays the output of a
process and allows you to provide keyboard input to a
process.

Output View. Displays messages, parameters, and
results that are related to the objects that you work
with

P
Perspective. A group of views that show various
aspects of the resources in the workbench. The
workbench user can switch perspectives, depending on
the task at hand, and customize the layout of views
and editors within the perspective.

Q
.

R
RAM. Repository Access Manager

Remote File System. A file system residing on a
separate server or operating system.

Remote System. Any other system in the network
with which your system can communicate.

Remote Systems Perspective. Provides an interface for
managing remote systems using conventions that are
similar to ISPF.

Repository.

1. A storage area for data. Every repository has a
name and an associated business item type. By
default, the name will be the same as the name of
the business item. For example, a repository for
invoices will be called Invoices. There are two types
of information repositories: local (specific to the
process) and global (reusable).

2. A VSAM data set on which the states of BTS
processes are stored. When a process is not
executing under the control of BTS, its state (and
the states of its constituent activities) are preserved
by being written to a repository data set. The states
of all processes of a particular process-type (and of
their activity instances) are stored on the same
repository data set. Records for multiple
process-types can be written to the same repository.

3. A persistent storage area for source code and other
application resources. In a team programming
environment, a shared repository enables multiuser
access to application resources.

4. A collection of information about the queue
managers that are members of a cluster. This

information includes queue manager names, their
locations, their channels, what queues they host,
and so on.

Repository Instance. A project or component that
exists in an SCM.

Repositories View. Displays the CVS repository
locations that have been added to your Workbench.

Response File.

1. A file that contains a set of predefined answers to
questions asked by a program and that is used
instead of entering those values one at a time.

2. An ASCII file that can be customized with the setup
and configuration data that automates an
installation. The setup and configuration data
would have to be entered during an interactive
install, but with a response file, the installation can
proceed without any intervention.

S
Servers View. Displays a list of all your servers and
the configurations that are associated with them.

Shell. A software interface between users and the
operating system that interprets commands and user
interactions and communicates them to the operating
system. A computer may have several layers of shells
for various levels of user interaction.

Shell Name. The name of the shell interface.

Shell Script. A file containing commands that can be
interpreted by the shell. The user types the name of the
script file at the shell command prompt to make the
shell execute the script commands.

Sidedeck. A library that publishes the functions of a
DLL program. The entry names and module names are
stored in the library after the source code is compiled.

Silent Installation. An installation that does not send
messages to the console but instead stores messages
and errors in log files. Also, a silent installation can use
response files for data input.

Silent Uninstallation. An uninstallation process that
does not send messages to the console but instead
stores messages and errors in log files after the
uninstall command has been invoked.

T
Task List. A list of procedures that can be executed by
a single flow of control.

U
URL. Uniform Resource Locator

Glossary 323

V
.

W
.

X
.

Y
.

Z
.

324 IBM Rational Developer for System z: Host Configuration Guide

Documentation notices for IBM Rational Developer for System
z

© Copyright IBM Corporation - 2010

U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
3-2-12, Roppongi, Minato-ku, Tokyo 106-8711 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation

© Copyright IBM Corp. 2005, 2010 325

3039 Cornwallis Road, PO Box 12195
Research Triangle Park, NC 27709
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Copyright license
This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Trademark acknowledgments
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at www.ibm.com/legal/
copytrade.shtml.

326 IBM Rational Developer for System z: Host Configuration Guide

Rational are trademarks of International Business Machines Corporation and
Rational Software Corporation, in the United States, other countries, or both.

Intel® and Pentium® are trademarks of Intel Corporation in the United States, or
other countries, or both.

Microsoft®, Windows®, and the Windows logo are trademarks or registered
trademarks of Microsoft Corporation in the United States, or other countries, or
both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Documentation notices for IBM Rational Developer for System z 327

328 IBM Rational Developer for System z: Host Configuration Guide

Index

Special characters
_RSE_CMDSERV_OPTS, Defining extra

Java startup parameters with 41
_RSE_JAVAOPTS, Defining extra Java

startup parameters with 37
_RSE_PORTRANGE 149
/etc/inittab, z/OS UNIX initialization,

INETD 295
/etc/rc, z/OS UNIX INETD startup 295
.dstoreMemLogging 128
.dstoreTrace 128

A
access method, Using the TSO/ISPF

Client Gateway 243
Access methods, TSO 243
access requirements 8
access to spool files, Conditional 156
access to system libraries, Improve 225
Actions against jobs - execution

limitations 155
Activating Common Access Repository

Manager 45
Activating the CA Endevor® Software

Configuration Manager Repository
Access Manager 56

Activating the PDS Repository Access
Manager 55

Activating the sample Repository Access
Managers (RAMs) 55

Activating the SCLM Repository Access
Manager 55

Activating the skeleton Repository Access
Manager 56

Address space count 197
Address Space size 141
address space size limit 205
Adjust CRASERV.properties 53
Adjust ISPF,conf 53
ADM, customization 65
admin, SCLMDT 79
administrative utility for CICS

administrators
functions provided 235

administrative utility messages 240
Administrative utility, migration

notes 239
ADNCSDAR, RESTful non-primary and

web service non-primary 67
ADNCSDRS, RESTful primary 67
ADNCSDTX, RESTful change ID 68
ADNCSDWS, web service primary 69
ADNJSPAU, Administrative utility 235
ADNJSPAU, CICS administrative

utility 66
ADNMSGHC, pipeline message

handler 69
ADNMSGHS, pipeline message

handler 69

ADNTXNC, RESTful change ID 68
ADNVCRD, CRD repository 66
ADNVMFST, manifest repository 70
allocation exec (APPC transaction JCL),

Using 247
allocation exec, using 244
alternate RSE connection method 94
Alternative CARMA server startup 53
alternative partner LU name, TSO

Commands service 304
alternative setup options, APPC and

VTAM 303
Ant

corequisites 314
Ant, Install and customize 78
Apache Ant

corequisites 314
APF authorization

FEK.SFEKAUTH 166
APF, authorization 139
APPC access method, Using 246
APPC alternative setup options 303
APPC changes, Activating 303
APPC transaction

troubleshooting APPC 143
APPC transaction and TSO Commands

service 142
APPC transaction checklist 96
APPC transaction for the TSO Commands

service 95
APPC transaction JCL, Basic

customization 246
APPC transaction JCL, Use existing ISPF

profiles with 246
APPC transaction JCL, Using an

allocation exec 247
APPC transaction logging 132
APPC transaction, Implementation 97
APPC transaction, preparation 95
APPC transactions, setup with multiple

Developer for System z 247
APPC usage considerations 98
APPC, Setting up 299
APPCPMxx 301
Application Deployment Manager

(ADM) 177
Application Deployment Manager

security 233
Application Deployment Manager, CICS

Resource Definition editor 231
Application Deployment Manager, CICS

Resource Definition server 231
Application Deployment Manager,

customization 65
Application Deployment Manager,

customizing 231
Application development 226
application protection for RSE,

Define 172
applications supported 3
ASCHPMxx 302

ASCHPMxx (continued)
MAX 217

ASSIZEMAX 169
audit control

_RSE_HOST_CODEPAGE 153
audit.* options 153
daemon.log 153
enable.audit.log 153

audit data
actions logged 153

audit logging, managed by RSE
daemon 152

audit.log 128
authentication by RSE daemon 160
authentication by security software 159
Authentication methods 147
authentication, JES Job Monitor 148
authentication, Setting up SSL and

X.509 269
availability, Port 103

B
backing up configured files

Version 7.0 255
Version 7.1 255
Version 7.5 255

Base resolver configuration files 285
basic customization 13
batch submit, CA Endevor® SCM RAM

startup using 57
batch submit, CARMA server startup

using 49
Bidirectional language support 84
blank spaces, syntax diagram 124
BPXBATCH, INETD startup 295
BPXPRMxx 222

INADDRANYCOUNT 215
MAXASSIZE 141, 169, 214
MAXFILEPROC 214
MAXMMAPAREA 214
MAXPROCSYS 144, 213
MAXPROCUSER 144, 213
MAXSOCKETS 215
MAXTHREADS 213
MAXTHREADTASKS 213
MAXUIDS 144, 214

BPXPRMxx, set limits in
MAXASSIZE 14
MAXPROCUSER 14
MAXTHREADS 14
MAXTHREADTASKS 14

C
CA Endevor® SCM RAM 56
CA Endevor® SCM RAM startup, batch

submit 57
CA Endevor® SCM RAM startup,

CRASTART 60

© Copyright IBM Corp. 2005, 2010 329

CA Endevor® SCM RAM,
customizing 62

Cache management utilities, Java Virtual
Machines (JVMs) 229

cache security, Java Virtual Machines
(JVMs) 228

cache size limits, Java Virtual Machines
(JVMs) 228

CARMA and TCP/IP ports 151
CARMA logging

rsecomm.log 131
CARMA server startup, Alternative 46,

50, 53
CARMA startup, batch submit 49
CARMA tracing 136
CARMA, activating 45
CARMA, FMID HCMA710 266
CARMA, RSE interface to 47
CEE.SCEELPA

SYS1.PARMLIB(LPALSTxx) 226
Certificate Authority validation

gskkyman 158
SAF key ring 158
TRUST, HIGHTRUST 158

Certificate Revocation List (CRL),
querying

CRL environment variables 159
rsed.envvars 159

certificate, X.509 148
certificates, client authentication using

X.509 158
Changes between version 7.0 and version

7.1 266
changes, DB2 82
changes, PROCLIB 82
changes, Workload Manager 81
characters, Nonalphanumeric in syntax

diagram 124
checklist, APPC transaction 96
checklist, client 12
checklist, Client 11
checklist, requirements 13
checklist, SCLM administrator 79
CICS administrative utility 66
CICS Bidirectional language support 84
CICS non-primary connection region 70
CICS non-primary connection

regions 67
CICS primary connection region 67, 69
CICS Resource Definition (CRD) editor,

Application Deployment Manager 231
CICS Resource Definition (CRD) server,

Application Deployment Manager 231
CICS resource definitions,

administrator 231
CICS resource definitions, developer 231
CICS resource install logging 232
CICS Transaction Server

corequisites 311
CICS transactions 162
CICSPlex SM Business Application

Services (BAS) 232
CICSTS considerations 231
CICSTS security 161
class sharing between Java Virtual

Machines (JVMs) 228

class sharing, enabling in Java Virtual
Machines (JVMs) 228

classification rules, WLM 188
CLASSPATH 250
client authentication support, add

X.509 277
Client authentication using X.509

certificates 158
Client checklist 11, 12
Client Gateway access method, Using the

TSO/ISPF 243
Client Gateway configuration file,

TSO/ISPF 42
cloning existing RSE setup 272
COBOL

remote check 136
COBOL Compiler

corequisites 310
coexistence, update rsed.envvars to

enable coexistence 273
command security, Define JES 170
commands, JES Job Monitor Modify 117
commands, JES Job Monitor Start 115
commands, Lock daemon Modify 121
commands, Lock daemon Start 116
commands, Modify (F) 117
commands, Operator 115
commands, RSE daemon Modify 118
commands, RSE daemon Start 115
commands, Start (S) 115
commands, Stop (P) 121
COMMNDxx, add started tasks 15
Common Access Repository Manager

(CARMA), FMID HCMA710 266
Common Access Repository Manager

logging 131
Common Access Repository Manager,

Activating 45
Communication encryption using

SSL 149
communication, External 150
communication, Internal 151
communication, SSL encrypted 157, 234
component overview, Developer for

System z
graphical representation 177

components, Installing and
configuring 3

components, Optional 43
Conditional access to spool files 156
Conditional actions against jobs 153
configurable files 260, 267
configuration file changes, other

products 255
configuration files, Base resolver 285
configuration files, Developer for System

z 162
configuration files, Identical software

level, different 250
configuration information, search orders

of 284
configuration of requisite products and

software 8
configuration problems,

Troubleshooting 127
configuring host components 3
Connection flow 182

Connection flow (continued)
graphical representation 182

Connection refused 144
connection regions, CICS

non-primary 67
connection regions, primary versus

non-primary 232
Connection security 148
connection, JES Job Monitor 105
connection, lock daemon 105
connection, REXEC 109
connection, RSE daemon 104
considerations, Performance 225
considerations, pre-configuration 8
considerations, predeployment 11
considerations, Preinstallation 4
considerations, Security 147
considerations, server 9
considerations, User ID 8
console messages 121

JES Job Monitor 121
Console messages

lock daemon 122
RSE daemon 122
RSE thread pool server 122

controlled libraries for RSE, Define
MVS 172

corequisites
Ant 314
Apache Ant 314
CICS Transaction Server 311
COBOL Compiler 310
DB2 312
Debug Tool 311
Fault Analyzer 314
File Manager 313
host 307
IMS 312
Java 2 Technology Edition 307
PL/I Compiler 310
Ported tools 314
Rational Team Concert for System

z 313
REXX 314
SDK for z/OS 307
z/OS 308

corequisites, Developer for System z 305
CRA$VDEF, CARMA components 46
CRA$VMSG, CARMA components 46,

57
CRA$VSTR, CARMA components 46
CRA#ASLM, sample SCLM RAM 55
CRA#CIRX, IRXJCL versus

CRAXJCL 63, 64
CRA#CRAM, sample skeleton RAM 56
CRA#UADD, CARMA components 46,

57
CRA#UQRY, CARMA components 46,

57
CRA#VCAD, Endevor SCM RAM 57
CRA#VCAS, Endevor SCM RAM 57
CRA#VPDS, sample PDS RAM 55
CRA#VSLM, sample SCLM RAM 55
CRAISPRX, ISPF alternative CARMA

startup 53
CRAISPRX, ISPF configuration file 42
CRANDVRA, customizing 61

330 IBM Rational Developer for System z: Host Configuration Guide

CRASERV.properties, Adjust 53
CRASRV.properties

clist.dsname 47
crastart.configuration.file 47
crastart.steplib 47
crastart.stub 47
crastart.syslog 47
crastart.tasklib 47
crastart.timeout 47
port.range 47
port.start 47
startup.script.name 47

CRASRV.properties, adjust 49, 51
CRASRV.properties, adjusting 57, 60
CRASTART, alternative CARMA server

startup using 50
CRASTART, CA Endevor® SCM RAM

startup using 60
crastart.conf, adjust 51
crastart.conf, CARMA crastart

startup 51
crastart.endevor.conf, adjusting 60
CRASUBCA, adjusting 58
CRASUBMT, CARMA batch startup 49
CRAXJCL, IRXJCL versus CRAXJCL 63
CRD repository 66, 161
CRD repository security 233
CRD server transaction IDs,

customizing 68
CRD server using the RESTful

interface 67
creating LSTRANS.FILE 76
cron, WORKAREA directory cleanup 98
customization - ISPF.conf, 243
customization setup 13
customization tasks, optional 81
customization, basic 13
customization, SCLM Developer

Toolkit 73
customizing Application Deployment

Manager 231
customizing CRD server transaction

IDs 68
Customizing the TSO environment 243

D
daemon, Lock 20
daemon, RSE 19
data set profiles, Define 166
data sets fails, Opening MVS 144
DB2

corequisites 312
DB2 changes 82
DB2 stored procedure 81
Debug Tool

corequisites 311
Debug Tool, IBM, corequisite 18
Define MVS program controlled libraries

for RSE 172
Define PassTicket support for RSE 173
Define Port Of Entry checking for

RSE 161
Define RSE server as a secure z/OS

UNIX 171
Define z/OS UNIX program controlled

files for RSE 174

definitions available to resolver 288
definitions, prerequisite LINKLIST and

LPA 17
definitions, Security 23, 163
dependency, Hostname 283
Developer for System z started tasks,

Define 169
Developer for System z, component

overview
graphical representation 177

Developer for System z,
understanding 177

development, Application 226
Diagnostic IRZ error messages 84
different configuration files with identical

software levels 250
directory cleanup, WORKAREA

skulker 98
directory structure, z/OS UNIX

graphical representation 185
Disk space, Java Virtual Machines

(JVMs) 229
Dump files 133
dump locations, z/OS UNIX 134
dumps, Java 133
dumps, MVS 133

E
ELAXF* high level qualifier checklist 23
ELAXF* procedures, Sample

ELAXFADT 22
ELAXFASM 22
ELAXFBMS 22
ELAXFCOC 22
ELAXFCOP 22
ELAXFCOT 22
ELAXFCP1 22
ELAXFCPC 22
ELAXFCPP 22
ELAXFDCL 22
ELAXFGO 22
ELAXFLNK 22
ELAXFMFS 22
ELAXFPL1 22
ELAXFPLP 22
ELAXFPLT 22
ELAXFPP1 22
ELAXFTSO 22
ELAXFUOP 22

ELAXF* remote build procedures 22
ELAXMJCL, DB2 changes 82
ELAXMSAM 82
Emulator, Host Connect 145
enable class sharing, Java Virtual

Machines (JVMs) 228
encrypted communication, SSL 157, 162,

234
encryption using SSL,

Communication 149
encryption, ssl.properties 85
Enterprise Service Tools support 83
environmental settings, INETD 297
Error feedback tracing 136
error messages, IRZ Diagnostic 84
EST support 83

ETC.SERVICES
aliases 292
port_number 292
protocol 292
service_name 292

execution limitations, Actions against
jobs 155

existing ISPF profiles (APPC transaction
JCL), Use 246

External communication 150
external communication to specified

ports, limiting 149

F
fa.log 128
failure of MVS data sets to open 144
Fault Analyzer

corequisites 314
Fault Analyzer Integration logging

fa.log 131
rsecomm.log 131

feedback tracing, Error 136
FEJJCNFG 151, 222, 251

CONSOLE_NAME 155
MAX_THREADS 216

FEJJCNFG, JES Job Monitor 162
FEJJCNFG, JES Job Monitor configuration

file 24
FEJJJCL, PROCLIB changes, JES Job

monitor 19
FEJTSO 24
FEKAPPC, APPC implementation 97
FEKAPPCL, APPC implementation 97
FEKAPPCX, APPC implementation 97
FEKAPPL 148
fekfivpi IVP test logging

fekfivpi.log 132
fekfivpi.log 128
fekfivpi.log, IVP test logging 132
fekfivps.log, IVP test logging 132
FEKFRSRV 97
FEKLOCKD 20
FEKLOGS, log and setup analysis

using 127
FEKRACF, security definitions 23, 163
fekrivp 139
FEKRSED 20
FEKSETUP 13, 67, 74, 97
ffs.log 128
ffsget.log 128
ffsput.log 128
File Manager

corequisites 313
File Manager integration 91
File Manager Integration logging

rsecomm.log 131
file system attribute, SETUID 137
file system space usage, z/OS UNIX 210
file systems, zFS 225
Fixed Java heap size 227
FMID HCMA710 266
FMID HHOP710 266
FMID HHOP750 263
FMID HHOP760 258
FMIEXT.properties

enabled 92

Index 331

FMIEXT.properties (continued)
fmlistenport 92

fragments, Syntax 125
freeing a lock

RSE , modify cancel command 184

G
goals, setting in WLM 189
gskkyman, Create a key database

with 277

H
Handler, Pipeline message 69
HCMA710 266
heap size limit, Java 205
HHOP710 266
HHOP750 263
HHOP760 258
host

prerequisites 305
host address not resolved, TCP/IP

Resolver
lock.log 289

host based projects 90
host based property groups 89
host components, Installing and

configuring 3
Host Connect Emulator 145
host corequisites 307
host prerequisites 305
host tables, Local 286
Hostname dependency 283
hostnames, applying to Developer for

System z 286

I
IBM Debug Tool, corequisite 18
ID considerations, User 8
Identical setup across a sysplex 249
identical software levels with different

configuration files 250
IEASYSxx 222

MAXUSER 144, 216
Improve access to system libraries 225
Improving performance of security

checking 226
IMS

corequisites 312
INETD environmental settings 297
INETD security 296
INETD temporary file

/etc/inetd.pid 294
INETD, Developer for System z

requirements 297
INETD, setting up 291
inetd.conf 291

protocol 291
server_program 291
server_program_arguments 291
service_name 291
socket_type 291
userid 291
wait_flag 291

initialization, IVP 102
install logging, CICS resource 232
installation verification 99
installation verification programs 101
Installing and configuring host

components 3
integration, File Manager 91
interface, RESTful versus Web

Service 67
Internal communication 151
IRXJCL, IRXJCL versus CRAXJCL 63
ISP.SISPLOAD

ISPF TSO/ISPF Client Gateway 172
ISPF commands 42, 53
ISPF profiles (APPC transaction

JCL) 246
ISPF profiles, Use existing 244
ISPF TSO/ISPF Client Gateway

ISP.SISPLOAD 172
ISPF, Use multiple allocation execs 245
ISPF,conf, Adjust 53
ISPF.conf 42

allocjob 42
ISPF_timeout 42
ispllib 42
ispmlib 42
ispplib 42
ispslib 42
isptlib 42
sysproc 42

ISPF.conf files, use with multiple
setups 245

ISPF.conf, Basic customization 243
ISPF.conf, updates for SCLMDT 74
ISPF's TSO/ISPF Client Gateway

connection, verifying 106
IVP

fekfivpa 107
fekfivpd 104
fekfivpi 106
fekfivpj 105
fekfivpl 105
fekfivpr 109
fekfivps 108
fekfivpz 110

IVP initialization
ivpinit 102

IVP test logging
fekfivpi.log 132
fekfivps.log 132

IVP, basic and optional services
fekfivpa 101
fekfivpd 101
fekfivpi 101
fekfivpj 101
fekfivpl 101
fekfivpr 101
fekfivps 101
fekfivpt 101
fekfivpz 101
IVP scripts 101

ivpinit shell script, setting RSE
environment variables with 102

IVTPRMxx
ECSA MAX 216
FIXED MAX 216

J
J2EE 73, 78
Java 73, 78
Java 2 Technology Edition

corequisites 307
Java dumps 133
Java heap size limit 205
Java heap size, Fixed 227
Java startup parameters with

_RSE_CMDSERV_OPTS, Defining 41
Java startup parameters with

_RSE_JAVAOPTS, Defining 37
Java Virtual Machines (JVMs), class

sharing between 228
Java Xquickstart option 227
JAVA_DUMP_TDUMP_PATTERN 133
JCL requirements, startup 141
JES command security, Define 170
JES JMON

GEN_CONSOLE_NAME 156
JES JMON, FEJJCNFG

_BPXK_SETIBMOPT
_TRANSPORT 25

APPLID 25
AUTHMETHOD 25
CODEPAGE 25
CONCHAR 25
CONSOLE_NAME 25
GEN_CONSOLE_NAME 25
HOST_CODEPAGE 25
LIMIT_COMMANDS 25
LIMIT_VIEW 25
LISTEN_QUEUE_LENGTH 25
MAX_DATASETS 25
MAX_THREADS 25
SERV_PORT 25
SUBMITMETHOD 25
TIMEOUT 25
TIMEOUT_INTERVAL 25
TSO_TEMPLATE 25
TZ 25

JES Job Monitor (JMON) 177
JES Job Monitor authentication 148
JES Job Monitor configuration

GEN_CONSOLE_NAME 156
JES Job Monitor configuration file,

FEJJCNFG, 24
JES Job Monitor connection 105
JES Job Monitor logging 129
JES Job Monitor server 19
JES Job Monitor started task, JMON 19
JES Job Monitor tracing 135
JES Job Monitor, FEJJCNFG 162
JES Job Monitor, JMON 99
JES Job Monitor, Modify command 117
JES Job Monitor, Start command 115
JES security 153
JMON 19, 170, 251

fekfivpj 105
JMON, JES Job Monitor 99
Job Monitor server, JES 19
jobs, Conditional actions against 153
JVMs, class sharing between 228

332 IBM Rational Developer for System z: Host Configuration Guide

K
key database, Create with

gskkyman 277
key resource definitions 212

rsed.envvars 212
SYS1.PARMLIB(BPXPRMxx) 213

key ring, Create with RACF 271
key store with keytool, Create 280
keytool, Create a key store with 280

L
Language Environment runtime

libraries 225
libraries for RSE , Define MVS 172
libraries, Improve access to system 225
libraries, Language Environment

runtime 225
LIMIT_COMMANDS 154
LIMIT_VIEW 156
limiting external communication,

specified ports 149
limits, System 144
limits, z/OS UNIX set in BPXPRMxx 14
LINKLIST definitions, prerequisite 17
LINKLIST, definitions for other

products 18
Local definitions available to

resolver 288
Local host tables 286
lock daemon

console messages 122
Lock daemon 20, 183
Lock Daemon (LOCKD) 177
lock daemon connection 105
Lock daemon flow

graphical representation 183
Lock daemon logging 129
lock daemon tracing 136
lock daemon, LOCKD 99
Lock daemon, Modify command 121
Lock daemon, Start command 116
lock.log 128
LOCKD 9
LOCKD, lock daemon 99
Log and setup analysis using

FEKLOGS 127
log files

.dstoreMemLogging 128

.dstoreTrace 128
audit.log 128
fa.log 128
fekfivpi.log 128
fekfivps.log 128
ffs.log 128
ffsget.log 128
ffsput.log 128
lock.log 128
rmt_class_loader.cache.jar 128
rsecomm.log 128
rsedaemon.log 128
rseserver.log 128
serverlogs.count 128
stderr.log 128
stdout.log 128

Logging configuration file,
rsecomm.properties 88

logging, APPC transaction 132
logging, CARMA 131
logging, Fault Analyzer Integration 131
logging, fekfivpi IVP test 132
logging, File Manager Integration 131
logging, JES Job Monitor 129
logging, Lock daemon 129
logging, RSE daemon 129
logging, RSE user 130
logging, SCLM Developer Toolkit 131
logging, thread pool 129
long/short name translation, rsed.envvars

updates for 78
Long/short name translation, SCLM 75
LPA definitions, prerequisite 17
LPALSTxx 226
LPALSTxx, LPA definitions in 15
LSTRANS.FILE, creating 76
LU security, VTAM 304

M
management, Workload 227
manifest repository 70
Message handler, Pipeline 69
messages, administrative utility 240
messages, console 121
methods, Authentication 147
migration 255
migration considerations 255
Migration considerations 3
migration notes, administrative

utility 239
migration, version 7.5 to 7.6 258
Modify (F) command 117
monitoring RSE 217
monitoring z/OS UNIX 218
monitoring z/OS UNIX file systems 220
monitoring, network 220
multiple allocation execs, TSO/ISPF 245
Multiple APPC transactions 247
multiple Developer for System z setups,

use multiple APPC transactions
with 247

multiple Developer for System z setups,
use multiple ISPF.conf files with 245

multiple instances, Running 249
Multiple ISPF.conf files 245
multiple LUs 304
MVS data sets fails on opening 144
MVS dumps 133
MVS program controlled libraries for RSE

, Define 172

N
name translation, SCLM 75
netstat 140
netstat, TCP/IP setup 103
network, monitoring 220
non-primary connection regions,

CICS 67
non-system administrators, update

privileges 186

Nonalphanumeric characters, syntax
diagram 124

O
OMVS segment, Define 166
one-time password and User ID 148
operand, Selecting more than one in a

syntax diagram 124
Operands, syntax diagram 124
operating systems supported 3
Operator commands 115
Optional components 43
optional customization tasks 81

P
PARM variable, JCL limitations 21
PARMLIB, changes 14
PassTicket support for RSE , Define 173
PassTickets, using 152
password and User ID 148
PDS Repository Access Manager,

Activating 55
Performance considerations 225
performance of security checking,

Improving 226
permission bits, z/OS UNIX 137
Pipeline message handler 69
Pipeline security 233
PL/I Compiler

corequisites 310
platforms supported 3
POE checking 149, 161
Port availability 103
port definitions, PROFILE.TCPIP 294
Port of Entry checking 161
Port Of Entry checking 149
Ported tools

corequisites 314
PORTRANGE 37, 140
PORTRANGE available for RSE ,

Defining 36
ports, CARMA and TCP/IP 151
ports, limiting external communication to

specific 149
ports, Reserved TCP/IP 140
ports, REXEC 94
ports, TCP/IP 150
pre-configuration considerations 8
predeployment considerations 11
Preinstallation considerations 4
prerequisite products 5
prerequisites

host 305
SMP/E 306

prerequisites, Developer for System
z 305

previously configured files, backing up
Version 7.0 255
Version 7.1 255
Version 7.5 255

primary connection region, CICS 67
primary versus non-primary connection

regions 232

Index 333

private keys and certificates, decide
where to store 269

Process count 200
PROCLIB changes 82
PROCLIB, changes 19
products and software, configuration of

requisite 8
products, prerequisite 5
PROFILE.TCPIP port definitions 294
profiles, Define data set 166
Program Control authorization 137
PROGxx, APF authorizations 16
PROGxx, LINKLIST definitions 16
projectcfg.properties 90

PROJECT-HOME 91
WSED-VERSION 91

projects, host based 90
propertiescfg.properties 89

DEFAULT-VALUES 90
ENABLED 90
PROPERTY-GROUP 90
RDZ-VERSION 90

property groups, host based 89
publications, Referenced 317

Q
qualifier checklist, ELAXF* 23
querying a Certificate Revocation List

(CRL)
CRL environment variables 159
rsed.envvars 159

quickstart, Java option
(-Xquickstart) 227

R
RACF

permits 167
RACF, Create a key ring with 271
Rational Team Concert for System z

corequisites 313
read a syntax diagram, How to 123
Referenced publications 317
refused connection 144
remote build procedures, ELAXF* 22
Remote Execution, using 93
Remote host-based actions, z/OS UNIX

subprojects 94
Remote Systems Explorer 10
Remove old files from WORKAREA 80
Repository Access Manager 56
Repository Access Manager, Activating

PDS 55
Repository Access Manager, Activating

SCLM 55
Repository Access Manager, Activating

skeleton 56
Repository Access Manager, Activating

the CA Endevor® SCM 56
Repository Access Managers (RAMs),

Activating sample 55
repository security, CRD 233
repository, CRD 66
repository, manifest 70
required resources 5

requirements checklist 13
requirements, startup JCL 141
requisite issues, known 144
requisite products and software,

configuration of 8
Requisites, Developer for System z 305
Reserved TCP/IP ports 140
resolver, Local definitions available

to 288
resolvers, Understanding 284
resource definitions, various 216
resource install logging, CICS 232
resource security 234
resource usage, overview 196
resource usage, tuning 195
resources, required 5
RESTful interface 232

ADMI 68
ADMR 68
ADMS 68

RESTful interface versus Web Service
interface 67, 232

RESTful interface, CRD server using 67
REXEC connection, verifying 109
REXEC daemon, user ID permissions

when started by INETD 298
REXEC set up 94
REXEC, using 93
REXEC/SSH shell script 110
REXX

corequisites 314
rmt_class_loader_cache.jar 128
RSE 10
RSE , Define MVS program controlled

libraries for 172
RSE , Define PassTicket support for 173
RSE , Define Port Of Entry checking

for 161
RSE , Defining the PORTRANGE 36
RSE as a Java application

graphical representation 179
RSE configuration file, rsed.envvars, 28
RSE connection method, alternate 94
RSE daemon 9, 19, 150

console messages 122
RSE daemon (RSED) 177
RSE daemon and audit logging 152
RSE daemon connection 104
RSE daemon log files

audit.log 129
rsedaemon.log 129
rseserver.log 129
serverlogs.count 129
stderr.*.log 129
stdout.*.log 129

RSE daemon logging 129
RSE daemon, authentication by 160
RSE daemon, Modify command 118
RSE daemon, RSED 99
RSE daemon, Start command 115
RSE interface to CARMA 47
RSE server 150
RSE setup, Clone existing 272
RSE SSL encryption, ssl.properties,

daemon properties 85
server properties 85

RSE started task, RSED 20

RSE thread pool log files
audit.log 129
rsedaemon.log 129
rseserver.log 129
serverlogs.count 129
stderr.*.log 129
stdout.*.log 129

RSE thread pool server
console messages 122

RSE trace configuration,
rsecomm.properties, 88

RSE tracing 135
RSE user logging

.dstoreMemLogging 130

.dstoreTrace 130
ffs.log 130
ffsget.log 130
ffsput.log 130
lock.log 130
rmt_class_loader.cache.jar 130
rsecomm.log 130
stderr.log 130
stdout.log 130

RSE, define application protection
for 172

RSE, Define as a secure z/OS UNIX
server 171

RSE, Define z/OS UNIX program
controlled files for 174

RSE, monitoring 217
RSE, rsed.envvars

_RSE_JAVAOPTS 162
RSE, ssl.properties 163
rsecomm.log 128

File Manager Integration logging 131
SCLM Developer Toolkit logging 131

rsecomm.properties 135
debug_level 88
log_location 88
server.version 88

rsecomm.properties, 88
RSED 20
RSED, RSE daemon 99
rsed.envvars 118, 212, 250

_BPX_SHAREAS 35
_BPX_SPAWN_SCRIPT 35
_BPXK_SETIBMOPT

_TRANSPORT 34
_CEE_DMPTARG 32
_CEE_RUNOPTS 35
_CMDSERV_BASE_HOME 33
_CMDSERV_CONF_HOME 33, 246
_CMDSERV_WORK_HOME 33
_FEKFSCMD_PARTNER_LU_ 34
_FEKFSCMD_TP_NAME_ 34
_RSE_CMDSERV_OPTS 35
_RSE_DAEMON_CLASS 35
_RSE_HOST_CODEPAGE 32
_RSE_JAVAOPTS 35, 133, 243
_RSE_LOCKD_CLASS 35
_RSE_LOCKD_PORT 32
_RSE_POOL_SERVER_CLASS 35
_RSE_PORTRANGE 34, 149
_RSE_SERVER_CLASS 35
_RSE_SERVER_TIMEOUT 35
_SCLMDT_TRANTABLE 34
&ISPROF=&SYSUID..ISPPROF= 42

334 IBM Rational Developer for System z: Host Configuration Guide

rsed.envvars (continued)
ANT_HOME 34
CGI_DTWORK 35
CLASSPATH 35
DAPPLID 41
Daudit.cycle 39
Daudit.retention.period 39
Ddaemon.log 37
DDENY_PASSWORD 41
Ddeny.nonzero.port 40
DDSTORE_IDLE_SHUTDOWN

_TIMEOUT 41
DDSTORE_LOG_DIRECTORY 37
DDSTORE_MEMLOGGING_ON 41
DDSTORE_TRACING_ON 41
Denable.audit.log 39
Denable.automount 39
Denable.certificate.mapping 39
Denable.port.of.entry 39
Denable.standard.log 39
DHIDE_ZOS_UNIX 41
Dipv6 39
Dkeep.last.log 39
Dmaximum.clients 37, 212
Dmaximum.threadpool.process 39,

212
Dmaximum.threads 37, 212
Dminimum.threadpool.process 37,

212
Dprocess.cleanup.interval 40
Dsingle.logon 40
DSTORE_LOG_DIRECTORY 131, 135
DTSO_SERVER 41
Duser.log 37
GSK_CRL_SECURITY_LEVEL 34
GSK_LDAP_PASSWORD 34
GSK_LDAP_PORT 34
GSK_LDAP_SERVER 34
GSK_LDAP_USER 34
JAVA_HOME 32
JAVA_PROPAGATE 35
LANG 32
LIBPATH 35
PATH 32, 35
RSE_HOME 32
RSE_JAVAOPTS 33
RSE_LIB 35
RSE_SAF_CLASS 33
SCLMDT_BASE_HOME 35
SCLMDT_CONF_HOME 34
SCLMDT_WORK_HOME 35
STEPLIB 32, 33, 34, 157
TZ 32
Xms 37, 212
Xmx 37, 212

rsed.envvars, RSE configuration file 28
rsed.envvars, update to enable

coexistence 273
rsed.envvars, updates for long/short

name translation 78
rsed.envvars, updates for SCLMDT 75
rsedaemon.log 128
rseserver.log 128
Running multiple instances 249
runtime libraries, Language

Environment 225

S
sample setup 220

defining limits 221
determining minimum limits 221
thread pool count 221

sample storage, usage analysis 206
SCLM 78
SCLM administrator checklist 79
SCLM Developer Toolkit 172
SCLM Developer Toolkit (SCLMDT) 177
SCLM Developer Toolkit connection,

verifying
SCLMDT checks 108

SCLM Developer Toolkit logging
rsecomm.log 131

SCLM Developer Toolkit service 17
SCLM Developer Toolkit,

customization 73
SCLM Repository Access Manager,

Activating 55
SCLM security 162
SCLM updates for SCLMDT 79
SCLM, Long/short name translation 75
SCLMDT admin 79
SCLMDT connection, verifying 108
SCLMDT, ISPF.conf updates for 74
SCLMDT, rsed.envvars updates for 75
SDSF 74
search order, native MVS

environment 293
search order, z/OS UNIX

environment 293
search orders of configuration

information 284
Search orders, z/OS UNIX

environment 285
secure APPC setup, VTAM 304
Secure Shell, using 93
Secure socket layer host configuration

connection, Test 274
Secure Socket Layer, Communication

encryption using 149
Secure Socket Layer, Setting up 269
secure z/OS UNIX server, Define RSE as

a 171
security checking, Improving

performance of 226
Security considerations 147
Security definitions 23, 163
security definitions, Checklist 164
security profile, Limitations stored

in 142
security settings and classes,

Activate 165
security settings, verify 174
security software, authentication by 159
security, Application Deployment

Manager (ADM) 233
security, CICSTS 161
security, Connection 148
security, Define JES command 170
security, INETD 296
security, JES 153
security, pipeline 233
security, resource 234
security, SCLM 162
security, transaction 233

segment, Define OMVS 166
server considerations 9
serverlogs.count 128
service connection, TSO Commands

(APPC) 107
setting goals, WLM 189
settings and classes, Activate

security 165
SETUID file system attribute 137
setup, customization 13
setup, identical across a sysplex 249
shell script, REXEC/SSH 110
shell session, INETD startup 296
signed certificate, self-signed or signed by

Certificate Authority 271
size estimate, guidelines 206
size limit, address space 205
size limit, Java heap 205
size, Address Space 141
skeleton Repository Access Manager,

Activating 56
skulker, WORKAREA directory

cleanup 98
SMP/E

prerequisites 306
SMP/E install, sticky bit 139
Software Configuration Manager 56
software level, identical in different

configuration files 250
software, configuration of requisite

products and 8
space usage, z/OS UNIX file system 210
spaces, syntax diagram 124
spool files, Conditional access to 156
SSH daemon, user ID permissions when

started by INETD 298
SSH set up 94
SSH shell script 110
SSH, using 93
SSL encrypted communication 157, 162,

234
SSL host configuration connection,

Test 274
SSL, Communication encryption

using 149
SSL, Setting up 269
ssl.properties 85

daemon_key_label 86
daemon_keydb_file 86
daemon_keydb_password 86
enable_ssl 86
server_keystore_file 86
server_keystore_label 86
server_keystore_password 86
server_keystore_type 86

ssl.properties, activate SSL by creating
new RSE daemon 273

ssl.properties, Activate SSL by
updating 273

Start (S) command 115
started tasks, Define for Developer for

System z
JMON started tasks 169
LOCKD started tasks 169
RSED started tasks 169

started tasks, verifying 99
started tasks, verifying services 101

Index 335

startup JCL requirements 141
startup parameters with

_RSE_CMDSERV_OPTS, Defining extra
Java 41

startup parameters with
_RSE_JAVAOPTS, Defining extra
Java 37

startup, Alternative CARMA server 53
startup, z/OS UNIX INETD 294
stderr.*.log 128
stderr.log 128
stdout.*.log 128
stdout.log 128
STEPLIB use 18
STEPLIB, Avoid use of 225
sticky bit, MVS load module availability

to z/OS UNIX 139
Stop (P) command 121
storage usage 205
stored procedure, DB2 81
subsystem types

ASCH 188
CICS 188
JES 188
OMVS 188
STC 188

subsystems supported 3
support for RSE, Define PassTicket 173
support, Enterprise Service Tools 83
support, EST 83
Symbols, syntax diagram 123
syntax diagram, How to read 123
syntax diagram, Longer than one

line 124
syntax diagram, Nonalphanumeric

characters and blank spaces 124
syntax diagram, Operands 124
syntax diagram, Selecting more than one

operand 124
syntax diagram, symbols 123
Syntax fragments 125
Syntax, example 124
SYS1.PARMLIB(APPCPMxx) 301
SYS1.PARMLIB(ASCHPMxx) 302
SYS1.PARMLIB(BPXPRMxx) 222

MAXASSIZE 141, 169
MAXPROCSYS 144
MAXPROCUSER 144
MAXUIDS 144

SYS1.PARMLIB(BPXPRMxx), Java Virtual
Machines (JVMs) 229

SYS1.PARMLIB(BPXPRMxx), Limitations
set in 141

SYS1.PARMLIB(IEASYSxx) 222
MAXUSER 144

SYSEXEC 42
sysplex, identical setup across 249
SYSPROC 42
system exits, Limitations enforced

by 142
system libraries, Improve access to 225
System limits 144

T
tables, Local host 286
tables, Translate 285

task owners 180
tasks, optional customization 81
TCP/IP ports 150
TCP/IP ports, graphical

representation 150
TCP/IP ports, Reserved 140
TCP/IP Resolver, host address not

resolved
lock.log 289

TCP/IP setup, netstat 103
TCP/IP, applying to Developer for

System z 286
TCP/IP, Local definitions available to

resolver 288
TCP/IP, Setting up 283
test logging, fekfivpi IVP 132
Test the SSL host configuration

connection 274
third party and X.509 certificate 148
Thread count 202
thread pool logging 129
thread security in RSE server

PassTickets 152
TN3270 310
trace configuration,

rsecomm.properties 88
tracing 135
tracing, CARMA 136
tracing, Error feedback 136
tracing, JES Job Monitor 135
tracing, lock daemon 136
tracing, RSE 88, 135
transaction checklist, APPC 96
transaction dump pattern variables 133
transaction name, alternative to

FEKFRSRV for TSO Commands
service 304

transaction security 233
Translate tables 285
Troubleshooting configuration

problems 127
TSO Access methods 243
TSO Command Service 177
TSO commands 53
TSO Commands service 142, 243
TSO Commands service connection

(APPC) 107
TSO Commands service logging 132
TSO Commands service transaction,

Defining 303
TSO Commands service, APPC

transaction for 95
TSO environment, Customizing 243
TSO/ISPF Client Gateway access method,

Using 243
TSO/ISPF Client Gateway configuration

file 42
TSO/ISPF, customization -

ISPF.conf, 243
TSO/ISPF, Use existing ISPF

profiles 244
TSO/ISPF, Use multiple allocation

execs 245
TSO/ISPF, use with multiple setups 245
TSO/ISPF, Using an allocation exec 244
tuning considerations 195

U
uchars.settings, Uneditable characters 92
understanding Developer for System

z 177
Uneditable characters, customizing to

handle 92
Uneditable characters, uchars.settings 92
UNIX dump locations 134
UNIX environment, Search orders used

in 285
UNIX program controlled files for RSE,

Define 174
UNIX server, Define RSE as 171
update privileges, non-system

administrators 186
usage analysis, sample storage 206
usage considerations, APPC 98
use existing ISPF profiles 244
use of STEPLIB, Avoid 225
User ID and one-time password 148
User ID and password 148
User ID considerations 8
user logging, RSE 130
Using an allocation exec 244
using batch submit for CARMA server

startup 49
using PassTickets 152

V
Various resource definitions 216

EXEC card, server JCL 216
FEJJCNFG 216
SYS1.PARMLIB(ASCHPMxx) 217
SYS1.PARMLIB(IEASYSxx) 216
SYS1.PARMLIB(IVTPRMxx) 216

Verify security settings 174
verifying ISPF's TSO/ISPF Client

Gateway connection 106
verifying REXEC/SSH shell script 110
version 7.0 and version 7.1, Changes

between 266
Virtual Telecommunications Access

Method 300
VSAM 299
VTAM 300
VTAM alternative setup options 303

W
Web Owning Region 232
Web Service interface 232

ADMI 69
ADMR 69
ADMS 69

Web Service interface versus RESTful
interface 67

Web Service interface, CRD server
using 68

where to store private keys and
certificates 269

WLM classification rules 188
WLM considerations xvi, 187
WORKAREA directory cleanup

skulker 98
WORKAREA, Remove old files from 80

336 IBM Rational Developer for System z: Host Configuration Guide

workload classification, WLM 187
Workload management 227
workload manager 187
Workload Manager changes 81

X
x.509 authentication, setting up 269
X.509 certificate 148
X.509 certificates, client authentication

using 158
X.509, adding client authentication

support 277
Xquickstart, Java option 227

Z
z/OS

corequisites 308
z/OS corequisites

C/C++ 309
High Level Assembler 309
Language Environment 310
SCLM 309

z/OS host prerequisites 305
z/OS projects perspective 90
z/OS UNIX directory structure

graphical representation 185
z/OS UNIX dump locations 134
z/OS UNIX environment, Search orders

used in 285
z/OS UNIX file system space usage 210
z/OS UNIX file systems,

monitoring 220
z/OS UNIX limits set in BPXPRMxx 14
z/OS UNIX permission bits 137
z/OS UNIX program controlled files for

RSE, Define 174
z/OS UNIX server, Define RSE as 171
z/OS UNIX subprojects, Remote

host-based actions for 94
z/OS UNIX, monitoring 218
z/OShost

prerequisites 305
zFS file systems, Using 225

Index 337

338 IBM Rational Developer for System z: Host Configuration Guide

Readers’ Comments — We'd Like to Hear from You

IBM Rational Developer for System z
Host Configuration Guide
Version 7.6.1

Publication No. SC23-7658-04

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your
IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use
the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send a fax to the following number: 1-800-227-5088 (US and Canada)

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We'd Like to Hear from You
SC23-7658-04

SC23-7658-04

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Information Development
Department G7IA / Bldg. 503
P.O. Box 12195
Research Triangle Park, NC
27709-2195

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5724-T07

Printed in USA

SC23-7658-04

	Contents
	Figures
	Tables
	About this document
	Who should use this document
	Summary of changes
	Description of document content
	Planning
	Basic customization
	(Optional) Common Access Repository Manager (CARMA)
	(Optional) Application Deployment Manager
	(Optional) SCLM Developer Toolkit
	(Optional) Other customization tasks
	Installation verification
	Operator commands
	Troubleshooting configuration problems
	Security considerations
	Understanding Developer for System z
	WLM considerations
	Tuning considerations
	Performance considerations
	CICSTS considerations
	Customizing the TSO environment
	Running multiple instances
	Migration guide
	Setting up SSL and X.509 authentication
	Setting up TCP/IP
	Setting up INETD
	Setting up APPC
	Requisites

	Part 1. Developer for System z customization
	Chapter 1. Planning
	Migration considerations
	Planning considerations
	Product overview
	Skill requirements
	Time requirements

	Preinstallation considerations
	Setup choice
	Requisite products
	Required resources

	Pre-configuration considerations
	Workload management
	Resource usage and system limits
	Required configuration of requisite products
	User ID considerations
	Server considerations
	Configuration method

	Predeployment considerations
	Client checklist

	Chapter 2. Basic customization
	Requirements and checklist
	Customization setup
	PARMLIB changes
	Set z/OS UNIX limits in BPXPRMxx
	Add started tasks to COMMNDxx
	LPA definitions in LPALSTxx
	APF authorizations in PROGxx
	LINKLIST definitions in PROGxx
	Requisite LINKLIST and LPA definitions
	LINKLIST definitions for other products

	PROCLIB changes
	JES Job Monitor
	RSE daemon
	Lock daemon
	JCL limitations for the PARM variable
	ELAXF* remote build procedures

	Security definitions
	FEJJCNFG, JES Job Monitor configuration file
	rsed.envvars, RSE configuration file
	Defining the PORTRANGE available for RSE server
	Defining extra Java startup parameters with _RSE_JAVAOPTS
	Defining extra Java startup parameters with _RSE_CMDSERV_OPTS

	ISPF.conf, ISPF’s TSO/ISPF Client Gateway configuration file
	Optional components
	Installation verification

	Chapter 3. (Optional) Common Access Repository Manager (CARMA)
	Requirements and checklist
	CARMA components
	CARMA VSAM migration notes

	RSE interface to CARMA
	CARMA server startup using batch submit
	Adjust CRASRV.properties
	Adjust CRASUBMT

	(Optional) Alternative CARMA server startup using CRASTART
	Adjust CRASRV.properties
	Adjust crastart.conf

	(Optional) Alternative CARMA server startup using TSO/ISPF Client Gateway
	Adjust CRASRV.properties
	Adjust ISPF.conf

	(Optional) Activating the sample Repository Access Managers (RAMs)
	Activating the PDS RAM
	Activating the SCLM RAM
	Activating the skeleton RAM

	(Optional) Activating the CA Endevor® SCM RAM
	Requirements and checklist
	Define the CA Endevor® SCM RAM
	CA Endevor® SCM RAM startup using batch submit
	Adjust CRASRV.properties
	Adjust CRASUBCA

	CA Endevor® SCM RAM startup using CRASTART
	Adjust CRASRV.properties
	Adjust crastart.endevor.conf

	(Optional) Customize CRANDVRA
	(Optional) Customize the CA Endevor® SCM RAM

	(Optional) Supporting multiple RAMs
	Example

	(Optional) IRXJCL versus CRAXJCL
	Create CRAXJCL

	Chapter 4. (Optional) Application Deployment Manager
	Requirements and checklist
	CRD repository
	CICS administrative utility

	RESTful versus Web Service
	CRD server using the RESTful interface
	CICS primary connection region
	CICS non-primary connection regions
	(Optional) Customize CRD server transaction IDs

	CRD server using the Web Service interface
	Pipeline message handler
	CICS primary connection region
	CICS non-primary connection regions

	(Optional) Manifest repository

	Chapter 5. (Optional) SCLM Developer Toolkit
	Requirements and checklist
	Prerequisites
	ISPF.conf updates for SCLMDT
	rsed.envvars updates for SCLMDT
	(Optional) Long/short name translation
	Create LSTRANS.FILE, the long/short name translation VSAM
	rsed.envvars updates for long/short name translation

	(Optional) Install and customize Ant
	SCLM updates for SCLMDT
	Remove old files from WORKAREA

	Chapter 6. (Optional) Other customization tasks
	(Optional) DB2 stored procedure
	Workload Manager (WLM) changes
	PROCLIB changes
	DB2 changes

	(Optional) Enterprise Service Tools (EST) support
	(Optional) CICS bidirectional language support
	(Optional) Diagnostic IRZ error messages
	(Optional) RSE SSL encryption
	(Optional) RSE tracing
	(Optional) Host based property groups
	(Optional) Host based projects
	(Optional) File Manager integration
	(Optional) Uneditable characters
	(Optional) Using REXEC (or SSH)
	Remote (host-based) actions for z/OS UNIX subprojects
	Alternate RSE connection method
	REXEC (or SSH) set up

	(Optional) APPC transaction for the TSO Commands service
	Preparation
	Implementation
	APPC usage considerations

	(Optional) WORKAREA cleanup

	Chapter 7. Installation verification
	Verify started tasks
	JMON, JES Job Monitor
	LOCKD, Lock daemon
	RSED, RSE daemon

	Verify services
	IVP initialization
	Port availability
	TCP/IP setup
	RSE daemon connection
	JES Job Monitor connection
	Lock daemon connection
	ISPF's TSO/ISPF Client Gateway connection
	(Optional) TSO Commands service connection using APPC
	(Optional) SCLMDT connection
	(Optional) REXEC connection
	(Optional) REXEC/SSH shell script

	Part 2. Developer for System z information
	Chapter 8. Operator commands
	Start (S)
	JES Job Monitor
	RSE daemon
	Lock daemon

	Modify (F)
	JES Job Monitor
	RSE daemon
	Lock daemon

	Stop (P)
	Console messages
	JES Job Monitor
	RSE daemon, RSE thread pool server, and lock daemon

	How to read a syntax diagram
	Symbols
	Operands
	Syntax example
	Nonalphanumeric characters and blank spaces
	Selecting more than one operand
	Longer than one line
	Syntax fragments

	Chapter 9. Troubleshooting configuration problems
	Log and setup analysis using FEKLOGS
	Log files
	JES Job Monitor logging
	Lock daemon logging
	RSE daemon and thread pool logging
	RSE user logging
	Fault Analyzer Integration logging
	File Manager Integration logging
	SCLM Developer Toolkit logging
	CARMA logging
	APPC transaction (TSO Commands service) logging
	fekfivpi IVP test logging
	fekfivps IVP test logging

	Dump files
	MVS dumps
	Java dumps
	z/OS UNIX dump locations

	Tracing
	JES Job Monitor tracing
	RSE tracing
	Lock daemon tracing
	CARMA tracing
	Error feedback tracing

	z/OS UNIX permission bits
	SETUID file system attribute
	Program Control authorization
	APF authorization
	Sticky bit

	Reserved TCP/IP ports
	Address Space size
	startup JCL requirements
	Limitations set in SYS1.PARMLIB(BPXPRMxx)
	Limitations stored in the security profile
	Limitations enforced by system exits
	Limitations for 64-bit addressing

	APPC transaction and TSO Commands service
	Miscellaneous information
	System limits
	Connection refused

	Known requisite issues
	Opening MVS data sets fails

	Host Connect Emulator

	Chapter 10. Security considerations
	Authentication methods
	User ID and password
	User ID and one-time password
	X.509 certificate
	JES Job Monitor authentication

	Connection security
	Limit external communication to specified ports
	Communication encryption using SSL
	Port Of Entry checking

	TCP/IP ports
	External communication
	Internal communication
	CARMA and TCP/IP ports

	Using PassTickets
	Audit logging
	Audit control
	Audit data

	JES security
	Actions against jobs - target limitations
	Actions against jobs - execution limitations
	Access to spool files

	SSL encrypted communication
	Client authentication using X.509 certificates
	Certificate Authority (CA) validation
	(Optional) Query a Certificate Revocation List (CRL)
	Authentication by your security software
	Authentication by RSE daemon

	Port Of Entry (POE) checking
	CICSTS security
	CRD repository
	CICS transactions
	SSL encrypted communication

	SCLM security
	Developer for System z configuration files
	JES Job Monitor - FEJJCNFG
	RSE - rsed.envvars
	RSE - ssl.properties

	Security definitions
	Requirements and checklist
	Activate security settings and classes
	Define an OMVS segment for Developer for System z users
	Define data set profiles
	Define the Developer for System z started tasks
	Define JES command security
	Define RSE as a secure z/OS UNIX server
	Define MVS program controlled libraries for RSE
	Define application protection for RSE
	Define PassTicket support for RSE
	Define z/OS UNIX program controlled files for RSE
	Verify security settings

	Chapter 11. Understanding Developer for System z
	Component overview
	RSE as a Java application
	Task owners
	Connection flow
	Lock daemon
	Freeing a lock

	z/OS UNIX directory structure
	Update privileges for non-system administrators

	Chapter 12. WLM considerations
	Workload classification
	Classification rules

	Setting goals
	Considerations for goal selection
	STC
	OMVS
	JES
	ASCH
	CICS

	Chapter 13. Tuning considerations
	Resource usage
	Overview
	Address space count
	Process count
	Thread count

	Storage usage
	Java heap size limit
	Address space size limit
	Size estimate guidelines
	Sample storage usage analysis

	z/OS UNIX file system space usage
	Key resource definitions
	/etc/rdz/rsed.envvars
	SYS1.PARMLIB(BPXPRMxx)

	Various resource definitions
	EXEC card in the server JCL
	FEK.#CUST.PARMLIB(FEJJCNFG)
	SYS1.PARMLIB(IEASYSxx)
	SYS1.PARMLIB(IVTPRMxx)
	SYS1.PARMLIB(ASCHPMxx)

	Monitoring
	Monitoring RSE
	Monitoring z/OS UNIX
	Monitoring the network
	Monitoring z/OS UNIX file systems

	Sample setup
	Thread pool count
	Determine minimum limits
	Defining limits
	Monitor resource usage

	Chapter 14. Performance considerations
	Use zFS file systems
	Avoid use of STEPLIB
	Improve access to system libraries
	Language Environment (LE) runtime libraries
	Application development

	Improving performance of security checking
	Workload management
	Fixed Java heap size
	Java -Xquickstart option
	Class sharing between JVMs
	Enable class sharing
	Cache size limits
	Cache security
	SYS1.PARMLIB(BPXPRMxx)
	Disk space
	Cache management utilities

	Chapter 15. CICSTS considerations
	RESTful versus Web Service
	Primary versus non-primary connection regions
	CICS resource install logging
	Application Deployment Manager security
	CRD repository security
	Pipeline security
	Transaction security
	SSL encrypted communication
	Resource security

	Administrative utility
	Administrative utility migration notes
	Administrative utility messages

	Chapter 16. Customizing the TSO environment
	The TSO Commands service
	Access methods

	Using the TSO/ISPF Client Gateway access method
	Basic customization – ISPF.conf
	Advanced – Use existing ISPF profiles
	Advanced – Using an allocation exec
	Advanced – Use multiple allocation execs
	Advanced – Multiple ISPF.conf files with multiple Developer for System z setups

	Using the APPC access method
	Basic customization – APPC transaction JCL
	Advanced – Use existing ISPF profiles
	Advanced – Using an allocation exec
	Advanced – Multiple APPC transactions with multiple Developer for System z setups

	Chapter 17. Running multiple instances
	Identical setup across a sysplex
	Identical software level, different configuration files
	All other situations

	Chapter 18. Migration guide
	Migration considerations
	Backing up previously configured files

	Version 7.6.1 migration notes
	Migrate from version 7.5 to version 7.6
	IBM Rational Developer for System z, FMID HHOP760
	Configurable files

	Migrate from version 7.1 to version 7.5
	IBM Rational Developer for System z, FMID HHOP750
	Configurable files

	Migrate from version 7.0 to version 7.1
	IBM Rational Developer for System z, FMID HHOP710
	IBM Common Access Repository Manager (CARMA), FMID HCMA710
	Configurable files

	Appendix A. Setting up SSL and X.509 authentication
	Decide where to store private keys and certificates
	Create a key ring with RACF
	(Optional) Using a signed certificate

	Clone the existing RSE setup
	Update rsed.envvars to enable coexistence
	Update ssl.properties to enable SSL
	Activate SSL by creating a new RSE daemon
	Test the connection
	(Optional) Add X.509 client authentication support
	(Optional) Create a key database with gskkyman
	(Optional) Create a key store with keytool

	Appendix B. Setting up TCP/IP
	Hostname dependency
	Understanding resolvers
	Understanding search orders of configuration information
	Search orders used in the z/OS UNIX environment
	Base resolver configuration files
	Translate tables
	Local host tables

	Applying this set up information to Developer for System z
	Host address is not resolved correctly

	Appendix C. Setting up INETD
	inetd.conf
	ETC.SERVICES
	Search order used in the z/OS UNIX environment
	Search order used in the native MVS environment

	PROFILE.TCPIP port definitions
	/etc/inetd.pid
	Startup
	/etc/rc
	/etc/inittab
	BPXBATCH
	Shell session

	Security
	Developer for System z requirements
	INETD
	REXEC (or SSH)

	Appendix D. Setting up APPC
	VSAM
	VTAM
	SYS1.PARMLIB(APPCPMxx)
	SYS1.PARMLIB(ASCHPMxx)
	Activating APPC changes
	Defining the TSO Commands service transaction
	(Optional) Alternative setup options
	Alternative transaction name
	Multiple LUs
	LU security

	Appendix E. Requisites
	z/OS host prerequisites
	z/OS
	SMP/E
	SDK for z/OS Java 2 Technology Edition

	z/OS host corequisites
	z/OS
	COBOL compiler
	PL/I compiler
	Debug Tool for z/OS
	CICS Transaction Server
	IMS
	DB2 for z/OS
	Rational Team Concert for System z
	File Manager
	Fault Analyzer
	REXX
	Ported tools
	Ant
	Endevor®

	Bibliography
	Referenced publications
	Informational publications

	Glossary
	Documentation notices for IBM Rational Developer for System z
	Copyright license
	Trademark acknowledgments

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Readers’ Comments — We'd Like to Hear from You

