Implementation Spec for the TestManager/TestRT Integration

Author: Joe Toomey
Last Revision: 21 August 2002
3Overview

3Components

3The Console Adapter

3What is a console adapter? (From the Test Manager Extensibility API)

3What does the TestRT Console Adapter do?

3The Test Script Execution Adapter

3What is a TSEA? (From the Test Manager Extensibility API)

4What does the TestRT TSEA do?

4The Perl Script

4What does the TestManager / TestRT perl script do?

4The “Enabler”

4Custom TestRT Behavior / Code

5Manual Installation Steps

5Known limitations / open issues

5Why doesn’t it work on agents?

6What about Unix Agents?

Overview

This document describes the TestManager TestRT integration, what it is composed of, and how it works.

Components

The TestManager/TestRT integration is composed of four components, each described in the following sections.

· The Console Adapter
· The Test Script Execution Adapter
· The Perl Script
· The Enabler
The Console Adapter

What is a console adapter? (From the Test Manager Extensibility API)

[image: image1.wmf]Tscaapi2.htm

What does the TestRT Console Adapter do?

1. First and foremost, the TestRT Console Adapter allows the end user to select a TestRT project, workspace and test to associate with a TestManager test.

2. It also implements the Edit capability in TestManager (so if the user chooses Edit from the TestManager test, TestRT is launched with the appropriate project opened.)

The Test Script Execution Adapter

What is a TSEA? (From the Test Manager Extensibility API)

The Rational Test Script Execution Adapter (TSEA) API defines the C language calls that the TestManager Test Script Execution Engine (TSEE) uses to communicate with a Test Script Execution Adapter (TSEA). Your TSEA must respond to these calls as described in the API doc.

Attached here is one important section of the API doc for TSEAs, but the reader is strongly encouraged to install TestManager and read through all of the API doc (a shortcut from Start Menu is located in “Rational Test – API – TestManager Extensibility)

[image: image2.wmf]Tseaapi3.htm

What does the TestRT TSEA do?

1. The TestRT TSEA allows TestManager to execute a TestRT test. It does this by invoking the test using the TestRT command line “studio –r [<workspace name>.<group>.<node>] <project filename>”.

2. It captures the output of the test execution (TestRT generates stdout output when run using the –r switch, and emits one line per executed test, indicating whether it passed or failed.) and write log entries in the TestManager log for the test indicating whether the tests passed or failed.

3. It invokes the perl script when test execution has completed.

The Perl Script

What does the TestManager / TestRT perl script do?

The TestManager / TestRT perl script is run by the TSEA after the test run has completed. The perl script copies all necessary files from the TestRT project directory into the TestManager log directory. It also parses any of the files that have embedded filenames in them and replaces the embedded filenames with the correct new filenames (i.e. when complete, the reference is to the file we copied into the log directory.)

The usage for the perl script when it is invoked by the TSEA is:

perl –I<TestRTPerlLibDir> TestRT_Log2TestManager.pl <TestRTProjectPath> <WorkspaceName> <testmanager.log>
 <LogPath>

The “Enabler”

What is the Enabler?

The Enabler is a small executable that makes TestManager API calls to establish the TestRT Test Script type. There would be no need for the Enabler if development on TestManager was continuing, and I have recently heard that development is indeed ramping back up, so perhaps it can be eliminated in the future. Until then, the Enabler does the following:

1. Creates a Test Manager test script type called “Rational Test RealTime Script”

2. Associates the “Rational Test RealTime Script” type with the TestRT TSEA and the TestRT Console Adapter.

3. Creates a Test Manager test script source (all tests must have a test script source) called “Rational Test RealTime”.

4. Creates a custom Test Manager log event property type called “View Test RealTime Logs”

5. Associates that log event property type with TestRT (studio.exe).

Custom TestRT Behavior / Code

Several TestRT capabilities were added by Eric Miravette to allow the components of the TestManager / TestRT integration to work. Those capabilities include:

1. The “studio –r” flag.

a. This flag causes TestRT to run without the UI displayed.

b. It executes the specified project, workspace, group/node.

c. It outputs test results to stdout indicating the success / failure of each executed test.

d. It writes a file called “testmanager.log” (although you must use 8.3 filenames with TestRT’s old version of perl, so use “testma~1.LOG”) that contains each report file, dynamic and static file generated by TestRT from this test run. This file is used by the perl script to determine what files to copy into the log directory (it also copies any files that are referenced from these files.)

2. RtpProjectParser

a. This is a library (also written by Eric) that provides an API for parsing TestRT project files. This library is statically linked in the Console Adapter, and is used to populate the Console Adapter’s main dialog (i.e. given a TestRT project file, it lets us see what workspaces, groups and nodes are inside it.)

Manual Installation Steps

Install the TestRTConfig.exe file in the "...\Rational\Rational Test" directory. The shortcut should be called "Enable Rational Project for TestManager Integration".

TestRTConsoleAdapter.dll should also be installed in the "...\Rational\Rational Test" directory. It does not need to be registered.

TestRTTsea.dll should be installed in the "...\Rational\Rational Test\tsea" directory. It does not need to be registered.

TestRT_Log2TestManager.pl should be installed in the "...\Rational\TestRealTime\lib\perl" directory.

Known limitations / open issues

Why doesn’t it work on agents?

Well, first it was not a design goal. The integration was supposed to take one week to write (actually took many more night and weekends), and agent execution was more complicated than that time would allow.

However, there are actually TestManager limitations that will prevent us from easily getting test execution running on a agent in the future.

1. TestManager is designed to executed tests on a machine which already has access to the Application Under Test. TestRT rebuilds (and instruments) the AUT each time it runs. The source code for the AUT must somehow get copied to the agent machine, and TestManager is very weak on deployment capabilities.

2. After the TestRT run is complete, the perl script copies all of the generated log and report files, along with the source code and the static and dynamic TestRT files into the Administrator project’s Log directory. We then log a Fully Qualified reference to *.* in the Administrator Project’s Log directory. It is that reference that allows us to launch TestRT to view the test results from TestManager. If we execute on an agent, the files in the attachedlogfiles directory would get copied for us (that’s good), but we wouldn’t know the directory to log the Fully Qualified reference to, because that directory is on the Master, not the agent. Ideally we could log a relative path to *.* in the log directory and TM would be smart enough to launch the external viewer (TestRT in this case) in the appropriate log directory. See the following e-mail for a long discussion of this request.

[image: image3.emf]Test Manager

extensibility and the attachedlogfiles directory.msg

What about Unix Agents?

This would be incrementally more difficult that getting windows agents to work. Assuming you solved the above problems, you’d just have to port the Execution Adapter to work on both windows and Unix. Raleigh has written some execution adapters that are cross platform, but they need the MKSToolkit and NuTcracker to compile, and I don’t have either. If you’re serious, try to get both, and start with the commandline tsea from Raleigh (which is what I started with, but needed to rip out Unix compatibility after I couldn’t get it built.)

� This logfile is generated by TestRT when run using the –r flag. See the � HYPERLINK \l "testrt" ��Custom TestRT Behavior / Code� section for more information.

PAGE
2

_1091450943/Tscaapi2.htm

 		

 Test Script Console Adapter API

 [image: prev][image: next]

 [bookmark: 1162606] About the Test Script Console Adapter

 [bookmark: 1162607] A Test Script Console Adapter (TSCA) is a C or C++ dynamic-link library (DLL) that integrates with TestManager. By so doing, it enables additional test script types to be available for operations.

 [bookmark: 1162608] Each test script type is associated with a particular TSCA. A TSCA is required to allow the user to access a test script through the user interface. (Note that the TSCA does not support test script execution; this function is carried out by the TSEA and TSEE, as described in Chapter 2.)

 [bookmark: 1166837] TSCA Functionality

 [bookmark: 1166838] A TSCA must, at a minimum do the following:

		[bookmark: 1166839] Connect to and disconnect from the test script source.

		[bookmark: 1166840] Provide a way for the user to select a test script from the source.

 [bookmark: 1166841] In addition to these basic functions, many TSCAs are designed to support more sophisticated functions. A more robust TSCA might support such operations as the following:

		[bookmark: 1166842] Displaying a directory hierarchy of test scripts.

		[bookmark: 1166843] Filtering test scripts within the Test Script view.

		[bookmark: 1166845] Displaying the properties of a test script.

		[bookmark: 1166846] Configuring a test script source.

		[bookmark: 1166847] Performing source control operations against the contents of a test script source.

		[bookmark: 1166848] Executing a custom action against the test script source or the test script, for example, providing multiple editors for the same test script type.

 [bookmark: 1162610] Built-In and Custom Test Script Types

 [bookmark: 1162611] As described in Chapter 1, you can implement a test case with a test script that is either a built-in test script type or a custom test script type.

 [bookmark: 1162612] If you create a custom test script type, you must extend TestManager to support this new type. To extend TestManager, you either:

		[bookmark: 1162613] Use the built-in Command Line TSCA or other console adapters provided by Rational.

 [bookmark: 1162614] The Command Line TSCA works for any file-based test script, for example, PERL scripts. File-based means that the individual test scripts can be accessed by their names or paths using the standard Microsoft File Open dialog box.

 [bookmark: 1162615] Because Rational provides this console adapter, you do not need to do any programming; you only need to specify the executable commands for creating and editing a test script.

 [bookmark: 1162616] Although this TSCA requires no custom programming, it is not fully integrated into TestManager. (For more information about using TestManager's built-in console adapter, see the TestManager online Help.)

		[bookmark: 1162617] Create a custom test script console adapter.

 [bookmark: 1162618] A custom TSCA is required to integrate the custom test type with TestManager. Once you write the TSCA, TestManager will be able to recognize these new test script types.

 [bookmark: 1162619] A custom TSCA is required for test scripts that are:

 		[bookmark: 1162620] Created with a test tool that does not provide a command-line interface for creating and editing test scripts.

		[bookmark: 1162621] Not file based, that is, cannot be opened with the standard File Open dialog box-- for example, Rational ManualTest test scripts.

 [bookmark: 1162622] A custom TSCA can also be used with file-based test scripts.

 [bookmark: 1162623] Unlike the command-line TSCA, you can fully integrate a custom TSCA into TestManager.

 [bookmark: 1162636] The TSCA Function Calls

 [bookmark: 1162637] The TSCA applications programming interface (API) consists of 31 functions that are organized into nine functional groupings.

 [bookmark: 1162638] Functional Groupings of TSCA Functions

 [bookmark: 1162639] The Test Script Console Adapter (TSCA) functions are summarized in the following table, which shows

		[bookmark: 1162640] The functional groupings and their purposes.

		[bookmark: 1162641] The functions within each group.

 [bookmark: 1162771]

 		[bookmark: 1193315] Function Group and Purpose		[bookmark: 1193317] Functions in group

		[bookmark: 1193319] Connection[bookmark: 1193320] Supports connection and disconnection from the test script source.[bookmark: 1193321]
		[bookmark: 1193326] TTConnect()

		[bookmark: 1193333] TTDisconnect()

		[bookmark: 1193335] Data Access[bookmark: 1193336] Provides access to the test scripts within the source:		[bookmark: 1193337] Hierarchical data

		[bookmark: 1193338] Non-hierarchical data

		[bookmark: 1193339] Sources with different test script types

		[bookmark: 1193340] Functions providing icons for source and test scripts

		[bookmark: 1193345] TTGetRoots()

		[bookmark: 1193352] TTGetChildren()

		[bookmark: 1193359] TTGetNode()

		[bookmark: 1193366] TTGetName()

		[bookmark: 1193373] TTGetTypeIcon()

		[bookmark: 1193380] TTGetSourceIcon()

		[bookmark: 1193387] TTGetIcon()

		[bookmark: 1193389] Editor Integration[bookmark: 1193390] Provides integration between TestManager and the editor or IDE used to create and edit test scripts.		[bookmark: 1193395] TTNew()

		[bookmark: 1193402] TTEdit()

		[bookmark: 1193404] Filtering[bookmark: 1193405] Provides support to filter out test scripts that do not meet user-defined criteria.		[bookmark: 1193410] TTSetFilterEx()

		[bookmark: 1212783] TTGetFilterEx()

		[bookmark: 1193417] TTClearFilter()

		[bookmark: 1193419] UI Support[bookmark: 1193420] Provides the ability to expose components that display test script properties. This facilitates the use of preexisting user interfaces.		[bookmark: 1193425] TTShowProperties()

		[bookmark: 1193432] TTSelect()

		[bookmark: 1193434] Source Configuration Support[bookmark: 1193435] Supports the ability to provide custom user interfaces to aid in the configuration of the test script source.		[bookmark: 1193440] TTGetConfiguration()

		[bookmark: 1193447] TTSetConfiguration()

		[bookmark: 1193449] Custom Action Execution[bookmark: 1193450] Provides the ability to perform custom operations on the test script source.		[bookmark: 1193587] TTGetSourceActions()

		[bookmark: 1212799] TTGetNodeActions()

		[bookmark: 1212811] TTExecuteSourceAction()

		[bookmark: 1201009] TTExecuteNodeAction()

		[bookmark: 1193486] Source Control[bookmark: 1193487] Provides the ability to support source control operations in the test script view on the test scripts within a source.		[bookmark: 1193492] TTAddToSourceControl()

		[bookmark: 1193499] TTCheckIn()

		[bookmark: 1193506] TTCheckOut()

		[bookmark: 1193513] TTUndoCheckout()

		[bookmark: 1193520] TTGetSourceControlStatus()

		[bookmark: 1212931] Execution[bookmark: 1212934] Supports execution of the test script.		[bookmark: 1212933] TTGetTestToolOptions()

		[bookmark: 1193522] Miscellaneous Infrastructure[bookmark: 1193523] Provides infrastructure support		[bookmark: 1193528] TTGetIsFunctionSupported()

 [bookmark: 1162772] Required and Optional Functionality

 [bookmark: 1162773] A TSCA must, at a minimum, provide the ability to:

		[bookmark: 1162774] Connect to a test script source.

		[bookmark: 1162775] Select a test script.

 [bookmark: 1212957] To enable these actions, you must implement the following functions when building a basic TSCA:

		[bookmark: 1212958] TTConnect()

		[bookmark: 1212959] TTDisconnect()

		[bookmark: 1162779] TTSelect()

 [bookmark: 1162780] In addition, to enable users to view test scripts in Test Script View, you must include the following functions:

		[bookmark: 1162781] TTGetRoots()

		[bookmark: 1162782] TTGetChildren()

 [bookmark: 1162783] Other functions are optional; they enable the user to work with the user interface to perform additional operations on the test script. The advantages of using these additional functions are described in Building a TSCA: Workflow and Implementation Issues.

 [bookmark: 1162787] Some functions work in pairs. For example, because TestManager calls TTConnect() to make the connection to the test script source, it must subsequently call TTDisconnect() to disconnect from the test script source.

 [bookmark: 1162790] For information about specific declarations, see the following required header file:

 [bookmark: 1162791] ...\Rational Test\rtsdk\c\include\testypeapi.h

 [bookmark: 1162792] Mapping of User Actions to TSCA Function Calls

 [bookmark: 1206370] A TestManager end user may want to carry out various actions on the test script source. Following is a list of common test script operations that the user might perform. The order in which these operations are listed represents a plausible sequence in which the user might execute them.

		[bookmark: 1206371] Defining or modifying the configuration of a test script source.

		[bookmark: 1214504] Opening the Test Script view.

		[bookmark: 1206372] Setting a filter for test scripts.

		[bookmark: 1206374] Creating a new test script.

		[bookmark: 1207948] Selecting a test script for operations.

		[bookmark: 1207949] Editing test script properties.

		[bookmark: 1207950] Editing test script text.

		[bookmark: 1206376] Performing custom actions on the test script or test script source.

		[bookmark: 1209096] Integrating with source control.

 [bookmark: 1206377] To aid the user in carrying out these actions, you should build the TSCA to support the test script view that enables the user to perform these operations.

 [bookmark: 1214518] When the user makes a selection in the GUI to carry out an operation on the test script source, TestManager typically calls the TSCA function or functions that support the user's action.

 [bookmark: 1214521] To help you understand which functions you need to implement in order to provide support for specific actions, the following sections explain the mapping between the user's actions and the TSCA functions called by TestManager to implement those actions.

 [bookmark: 1162793] Note: Based on the current state of TestManager (including which test-script-related operations it has already performed), TestManager may not call some of the functions listed in the following sequences.

 [bookmark: 1218961] Defining or Modifying the Configuration of a Test Script Source

 [bookmark: 1219125] When the user defines or modifies a configuration for a test script source (for example, specifying the operating system), TestManager calls the following functions from the Source Configuration group in the order listed.

 [bookmark: 1219145]

 		[bookmark: 1219128] Typical Sequence of Function Calls		[bookmark: 1219130] Operation

				[bookmark: 1219135] TTGetConfiguration()

		[bookmark: 1219137] Exposes user interface elements that collect data access and data format information from the user when registering the test script source. The TSCA passes that information back to TestManager to be persisted as a property of the test script source.

				[bookmark: 1219142] TTSetConfiguration()

		[bookmark: 1219144] When a connection is made to the test script source, TestManager passes the configuration information obtained from the TTGetConfiguration() function into this function.

 [bookmark: 1219147] Opening the Test Script View

 [bookmark: 1206479] When the user opens up the Test Script view, TestManager calls the following functions from the Connection group in the order listed below.

 [bookmark: 1206495] ,

 		[bookmark: 1206483] Typical Sequence of Function Calls		[bookmark: 1206485] Operation

				[bookmark: 1206487] TTConnect()

		[bookmark: 1206489] Establishes a connection to the test script source.

				[bookmark: 1206491] TTGetSourceIcon()

		[bookmark: 1206493] Returns the path to the bitmap containing the icon that represents the test script source.[bookmark: 1206494] Note that implementation of this function is optional.

 [bookmark: 1207733] Setting a Filter for Test Scripts

 [bookmark: 1207734] When the user sets a filter on the test script source, TestManager calls the following functions, in the order shown below.

 [bookmark: 1207758]

 		[bookmark: 1207737] Typical Sequence of Function Calls		[bookmark: 1207739] Operation

				[bookmark: 1207744] TTGetFilterEx()

		[bookmark: 1207746] Exposes user interface elements that collect filtering specifications from the user registering the test script source.

				[bookmark: 1207751] TTSetFilterEx()

		[bookmark: 1207753] When a connection is made to the test script source, TestManager passes the filtering specifications obtained from TTGetFilterEx() into the TSCA.

				[bookmark: 1207755] TTGetRoots()

		[bookmark: 1207757] Returns the array of nodes comprising the root elements of the test script source.

Creating a New Test Script

 [bookmark: 1167337] When the user creates a new test script, TestManager calls the following function from the Editor Integration group.

 [bookmark: 1167347]

 		[bookmark: 1167340] Function Call		[bookmark: 1167342] Operation

		[bookmark: 1167344] TTNew()		[bookmark: 1167346] Enables the tester to create a new test script for this type of test using the hosted tool.

 [bookmark: 1211463] Selecting a Test Script for Operations

 [bookmark: 1211464] Before carrying out any operations on a test script, the user selects the test script from a list of available test scripts in the Test Script view. To display these test scripts, TestManager calls the following functions from the Data Access group, typically in the sequence that follows.

 [bookmark: 1167373]

 		[bookmark: 1204717] Typical Sequence of Function Calls		[bookmark: 1204719] Operation

				[bookmark: 1204724] TTGetSourceIcon()

		[bookmark: 1204726] Returns the path of the bitmap that represents the test script source.

				[bookmark: 1204731] TTGetRoots()

		[bookmark: 1204733] Returns the array of nodes comprising the roots of the test script source.

				[bookmark: 1204738] TTGetChildren()

		[bookmark: 1204740] Returns an array of nodes that are the children of the specified node. TestManager calls this function for each node returned by TTGetRoots().

				[bookmark: 1204745] TTGetTypeIcon()

		[bookmark: 1204747] Returns the path of the bitmap that represents the test script node.

 [bookmark: 1167374] Editing Test Script Properties

 [bookmark: 1167375] When users want to edit the properties of a test script, they must:

		[bookmark: 1162888] Select the test script from the Test Script view.

		[bookmark: 1162889] Bring up the Test Script Properties dialog box to view and modify the test script properties.

 [bookmark: 1162890] To enable these actions, TestManager calls the following function, which comes from the UI Support group.

 [bookmark: 1162904]

 		[bookmark: 1162893] Function Call		[bookmark: 1162895] Operation

		[bookmark: 1162901] TTShowProperties()		[bookmark: 1162903] Displays the properties of a selected test script.

 [bookmark: 1162905] Editing Test Script Text

 [bookmark: 1162906] When the user selects operations to edit a test script, TestManager calls TTEdit(), which comes from the Editor Integration group.

 [bookmark: 1162916]

 		[bookmark: 1162909] Function Call		[bookmark: 1162911] Operation

		[bookmark: 1162913] TTEdit()		[bookmark: 1162915] Displays a test script in the appropriate editor for modification by the user.

 [bookmark: 1162917] Performing Custom Actions on the Test Script or the Test Script Source

 [bookmark: 1162918] You can implement the TSCA to support custom actions on the test script or on the test script source. If the TSCA supports these custom actions, TestManager displays them in a custom menu so that the user can select these actions.

 [bookmark: 1204805] To enable display and execution of custom actions on the test script source, TestManager calls these functions from the Custom Action Execution group, typically in the following sequence.

 [bookmark: 1204825]

 		[bookmark: 1204808] Typical Sequence of Function Calls		[bookmark: 1204810] Operation

				[bookmark: 1204815] TTGetSourceActions()

		[bookmark: 1204817] Returns a pointer to an array of actions that can be applied to the test script source.

				[bookmark: 1204822] TTExecuteSourceAction()

		[bookmark: 1204824] Executes the specified action against the test script source.

 [bookmark: 1204706] To enable display and execution of custom actions on a test script, TestManager calls these functions from the Custom Action Execution group, typically in the following sequence.

 [bookmark: 1162932]

 		[bookmark: 1162921] Typical Sequence of Function Calls		[bookmark: 1162923] Operation

				[bookmark: 1162925] TTGetNodeActions()

		[bookmark: 1162927] Returns a pointer to an array of actions that can be applied to the test script.

				[bookmark: 1162929] TTExecuteNodeAction()

		[bookmark: 1162931] Executes the specified action against the test script.

 [bookmark: 1162949] Integrating with Source Control

 [bookmark: 1162950] When the user makes selections in the UI to integrate a test script with source control, TestManager calls the following functions from the TSCA. These functions come from the Source Control group. TestManager typically calls TTGetSourceControlStatus() first and then calls the other functions in an order that corresponds to the order of the user's selections in the UI.

 [bookmark: 1162976]

 		[bookmark: 1162953] Typical Sequence of Function Calls		[bookmark: 1162955] Operation

				[bookmark: 1162957] TTGetSourceControlStatus()

		[bookmark: 1162959] Returns the current source-control status of the test script.

				[bookmark: 1162961] One of the following:

		[bookmark: 1219150] TTAddToSourceControl()

		[bookmark: 1219188]
[bookmark: 1219496] Adds the appropriate files for the specified test script to source control.

				[bookmark: 1162965] TTCheckOut()

		[bookmark: 1162967] Checks out the appropriate files for the specified test script from source control.

				[bookmark: 1162969] TTCheckIn()

		[bookmark: 1162971] Checks in the appropriate files for the specified test script to source control.

				[bookmark: 1162973] TTUndoCheckout()

		[bookmark: 1162975] Undoes the checkout of the appropriate files for the specified test script.

 [image: prev][image: next]

		Rational TestManager Extensibility Reference		Rational Software Corporation

		Copyright (c) 2001, Rational Software Corporation		 http://www.rational.com

 support@rational.com

 info@rational.com

_1091451622/Tseaapi3.htm

 		

 Test Script Execution Adapter API

 [image: prev][image: next]

 [bookmark: 1113679] Communication Overview

 [bookmark: 1113732] Communication between the TSEE and the TSEA occurs in three phases as described in the following steps.

		[bookmark: 1113746] Initialization phase. The TSEE:

 		[bookmark: 1113764] Dynamically links in the DLL for your TSEA (located under the installation folder in Rational Test\tsea).

		[bookmark: 1113776] Calls SessionOpen() to start a session; the TSEA returns a session handle.

		[bookmark: 1113789] Optionally, calls SessionSetOption() to set one or more session options. Session options apply to all tasks (scripts) in a session. An option may be anything (such as a working directory or timer) needed during execution.

		[bookmark: 1113750] Execution phase. The TSEE:

 		[bookmark: 1113809] Calls TaskCreate(), which creates a test script of a type that the TSEA knows how to execute; the TSEA returns a task handle.

		[bookmark: 1113817] Optionally, calls TaskSetOption() to set one or more task options.

		[bookmark: 1113818] Calls TaskExecute(); the TSEA executes the task and upon completion returns the status.

		[bookmark: 1113827] Closes the task handle.

		[bookmark: 1113873] Repeats a-d until all tasks for this TSEA have been completed.

		[bookmark: 1113751] Cleanup phase. The TSEE calls SessionClose() to close the session.

 [bookmark: 1115492] At any time during task execution, the TSEE might call TaskAbort(). For example, if the TestManager user choses to stop an executing test script or suite run, the TSEE calls TaskAbort(). If this happens, TaskExecute() should return as soon as possible with a termination status. The TSEE will then terminate the session as cleanly as possible.

 [bookmark: 1118237] The following diagram (generated using Rose) is a static diagram illustrating the interactions among the components of the Java TSEA provided with TestManager.

 [bookmark: 1118254] [image:]

 [image: prev][image: next]

		Rational TestManager Extensibility Reference		Rational Software Corporation

		Copyright (c) 2001, Rational Software Corporation		 http://www.rational.com

 support@rational.com

 info@rational.com

_1091448964/Test Manager extensibility and the attachedlogfiles directory.msg
Test Manager extensibility and the attachedlogfiles directory

		From

		Toomey, Joe

		To

		Siefkes, Kent; Liberman, Adam; Hodges, David; Clark, William; Aroyan, Kourken

		Cc

		Goddin, Will; Humphrey, Ed; Bessin, Geoffrey

		Recipients

		/o=RATIONAL/ou=USEAST/cn=Recipients/cn=KSiefkes; ALiberman@rational.com; DHodges@rational.com; /o=RATIONAL/ou=USEAST/cn=Recipients/cn=wclark; /o=RATIONAL/ou=USEAST/cn=Recipients/cn=KAroyan; /o=RATIONAL/ou=USEAST/cn=Recipients/cn=WGoddin; /o=RATIONAL/ou=USEAST/cn=Recipients/cn=EHumphrey; /o=RATIONAL/ou=EMEA/cn=Recipients/cn=gbessin

Hi gang!

I've spent some time over the past 2 weeks getting reacquainted with TestManager extensibility by implementing a console adapter and a TSEA for executing TestRT tests from TestManager. Somewhat scoped back due to time constraints, Unix playback is not a requirement. Playback on Windows agents is currently not a requirement either, but there's only one small reason for that, and that is the reason for my e-mail. It's probably too late to get a fix in for this, but I'd like to see it fixed going forward so we have a better extensibility solution in the end.

RQA (and I believe Ivory as well) put VP files into the attachedlogfiles\<ComputerNumber> directory, and if a test is executing on an agent, all the files in the attachedlogfiles\<ComputerNumber> directory are copied back to the master. There is logic built into the LogViewer so that VP log event types can have event properties containing relative paths to files in the attachedlogfiles directory, and the LogViewer fixes up those relative paths to point to the FQ paths before invoking the comparator for that VP.

In the TestRT case, I want to use an external viewer for viewing the TestRT log files, and the external viewer mechanism works differently than the VP mechanism. I can't just right click on an event in the log viewer and ask to view the results. If I display the properties of the event in question, however the LogViewer adds another tab to the dialog to represent my property that is associated with an external viewer. If you click on that tab, it shows the name of the executable for the external viewer, and the name of the file that will be viewed. (As an aside, you can butcher the "file" metaphor and put a whole bunch of command line parameters into the "file" field when you write the log entry -- however, the field is limited to _MAX_PATH :-(, so it's probably not a sound strategy to try to put several file names in there... This would be a kind change to make as well, although I'm not sure who's doing the truncating.)

In any case, I am going to log a reference to *.* in the attachedlogfiles\computernumber directory, and TestRT will open and display all of the log data that is contained there (report files, coverage files, Trace diagrams, etc.) However, there is no logic in the LogViewer to allow me to log a relative path to the attachedlogfiles directory for an external viewer associated property. I have to put in an absolute path, which means that it can't work on an agent, because the absolute path is sure to be different on the agent machine. So, this basically means that the external viewer machanism doesn't work on agents at all (I believe).

If I had my wish (or, if I had access to CQ here ;-), I'd ask that when the external viewer mechanism launches an external viewer, it should set the current directory of the forked process to the log directory of the log being viewed (i.e. C:\NewTestRTRepo\TestDatastore\TMS_Builds\Build 1.Build\Default.LogFolder\TestRTTest.Log, for example :-) This way, you could log relative references to files by just starting with attachedlogfiles\... or perfdata\... or vp\... or whatever. (Plus you could butcher the file field to pass in a bunch of parameters w/o fear of overrunning the _MAX_PATH buffer, but I digress.)

Today, the external viewer appears to be launched with the current directory set to the DataStore\TMS_Scripts directory, although I say this from observation only -- it's possible it doesn't specify a current directory and this is just the one I happen to get.

Anyway, who's working on this stuff these days? Can this feature be added (defect be fixed)?

Please let me know. Thanks,

--Joe

PS: 20% of recipients now work in ClearTeam -- grrr. We'll miss you guys, although I'm missing you all, anyway.

