JUnit and Ant with PurifyPlus

PurifyPlus is an ideal addition to open source agile development tools Ant and JUnit.

The following instructions should help you prepare quick and effective demo of PurifyPlus with JUnit and/or Ant.

PurifyPlus and JUnit

The demo application is the JUnit demo application and the JUnit sample demo sweet. The demo consists of integration of PureCoverage in the test execution.

Here are the steps for the demo:

1. Create a custom set of pre-filters for JUnit in PurifyPlus v2003 and higher

2. Attach PurifyPlus to Java Virtual Machine and execute tests. Specify the PureCoverage option that will save the results in the data file silently

3. Open the saved data set and show that the sample demo test suite doesn’t cover all the lines of code!!

1. JUnit prefilters

In PurifyPlus tool (for example PureCoverage) -> Default Settings -> Java/Managed -> Classes to instrument for coverage -> Configure -> Create a new folder and call it JUnit

In the JUnit folder add the following patterns;
junit.extensions.*

junit.framework.*

junit.runner.*

junit.textui.*

junit.tests.framework.*

junit.tests.runner.*

junit.tests.*
The default PureCoverage prefilter settings file can be find here
2. Attach PureCoverage to the Java VM and run the tests:

@echo off

rem ---

rem junit demo

rem ---

set JAVA_VM=-classic

coverage -java -savemergedata=C:\Demos\test.cfy -activemerge C:\jdk1.3.1\jre\bin\java junit.textui.TestRunner junit.samples.AllTests
In order to understand all the PureCoverage command line options and to be able to execute the test as described make sure that you have set up the JUnit environment correctly. Here is an example of the environment setup for my machine: junit_setenv.bat
PurifyPlus and Ant
In order to demo PurifyPlus with Ant I have created a build configuration file with the special targets for building the “Hello world” demo application, executing the demo and collecting performance data with Quantify in a silent mode:
The full XML file can be found here: build.xml
Here is the example of the new Ant target that does the above described steps:

<target name="silent" depends="compile_debug">

 <property name="Launch.Quantify" value="-XrunPureJVMPI:quantify"/>

 <java

 classname="org.example.hello.hello"

 classpath="build/classes/debug"

 fork="true">

 <env key="quantifyoptions" value="-save-data=C:\Demos\Test.qfy"/>

 <jvmarg line="${Launch.Quantify}"/>

 </java>

 </target>
Explanation:

<property name="Launch.Quantify" value="-XrunPureJVMPI:quantify"/>
Specifies the property that will be used for the JVM run later in the configuration

<env key="quantifyoptions" value="-save-data=C:\Demos\Test.qfy"/>

Specifies the undocumented environmental variable that will be read by the appropriate PurifyPlus tools upon the launch.

The environmental variables are:
For Quantify:

QUANTIFYOPTIONS

For Purify:

PURIFYOPTIONS

For PureCoverage:
COVERAGEOPTIONS
<jvmarg line="${Launch.Quantify}"/>
Passes the value of the property “Launch.Quantify” to the JVM

-XrunPureJVMPI:quantify
Launches Quantify attached to the Java Virtual Machine

Upon the execution of the build point to the silently created Quantify data file and open it up to show performance results.
