Competitive, Alternative and Cooperative Product Comparisons

Unit Testing Tools

Competitive Overview

If you have questions or feedback on this, please respond to Tom Mignosa.

	Company
	Product
	Rational Product
	Web Site
	Price
	Overview
	Analysis

	Class IQ
	ClassIQ for Java
	QualityArchitect
	www.classiq.com
	$1200 and up (from flashline).
	Java unit testing based on ?source?.

Can test any Java Class w/no argument constructor (?assumptions on get and set?)

Integrated into Forte.

Data driven.

Can ‘capture’ actual results and use as baseline.
	2001/10

Good basic capabilities. Look very small. A bit too much overhead introduced. Appears complex objects are supported, but not clear how interesting nested cases are managed.

Not clear how large volumes of data tested (input would be awkward).

Claim partnership w/Mercury.

This does not do the hard work of:

1. EJB testing initialization of Appserver connection, finding remote interface

2. Stubbing components which are not available for the test

3. Providing a rich data driven test

4. Integrating with a test suite so that QA can do platform testing based on unit tests (sharing of the testing responsibility between development and QA).

	Empirex (RSW)
	Bean-test 3.1
	QualityArchitect (Session Recorder only)
	www.empirix.com/
http://www.empirix.com/Empirix/Web+Test+Monitoring/Products/_BeanTest+Download.asp
	$29,995 and up
	-EJB functional and Load Testing

-Targeted at WebSphere 3.5.1 (supports other web servers including BEA, Bluestone, “any J2EE 1.1 server”,)

· Data driven testing

· “Visual Script” generation and editing

· Extensions developed w/VBA (does that make any sense in a Java Shop?)

-Download Available

-Platforms: Solaris, Linux, Aix, Windows 2000, Windows NT

2001/02 (web pages and datasheet)

good performance graphs

no apparent input data or results management

Free 7 day, 20 VU eval

Free “1 hour ‘ Quick start phone walk-through
	2001/07

Primarily pointed at load testing

Provides some functional testing

No stubbing capability implied

Appears to work like session recorder.

Not clear that this would scale to generate large numbers of tests at once.

How are tests and test results managed?

2001/09

BeanTest 4.0 implies support for building scenarios and for doing data driven testing.

Also implies ability to interact concurrently with different beans.

See email in c:\…my documents\competitors and partners\emprix\EmpirixBeanTest.txt

	Silvermark
	TestMentor Java 5.1
	QualityArchitect (Session Recorder only)
	www.silvermark.com
	
	· Component Testing

· Claimed integration w/TogetherJ

· Java, C others.

· Junit templates
	2001/02 – Web Pages and Ed H

- Focuses on ‘reusable test assets’

	Togethersoft
	TogetherJ
	QualityArchitect (Session Recorder only)
	www.togethersoft.com
	
	- Component modeling and testing
	2001/02 – Simple ‘Session interaction’ with EJB. No record replay nor data management, but HIGH ease of use.

No Stubbing.

No sharing with QA team.

	Mercury Interactive
	LoadRunner
	QualityArchitect
	www.mercuryinteractive.com
	
	Press Release on 7.0

“In addition, LoadRunner users can now quickly and easily create scripts to test Enterprise Java Bean (EJB) components early in the development cycle”
	2001/03/15, Bryson comments

“I couldn't get anything out of them at WebSphere regarding this; however I did speak to the guys at Empirix, formerly RSW.

They thought that potentially LoadRunner was plugging into the WebSphere monitoring API to provide performance data on EJBs while the server is underload. They presummed the load would be HTTP driven, hitting servlets and .jsp's which would interact with the beans. LoadRunner would then use their monitoring API to incorporate information from the WebSphere monitoring API into their reports.

Again, this is just a guess - but it's all technically possible; and seems likely what they're doing.

This monitoring technology is very similar to what Wily's introscope does (http://www.wilytech.com/products_introscope.html). Jeff Schuster is a good contact for Introscope information.

“

	Wiley
	Intrascope
	QualityArchitect
	http://www.wilytech.com/products_introscope.html).
	
	Surface level tracing (method level, but not argument level detail)
	Not suitable for unit testing. However, potentially important and valuable in application understanding.

	Precise
	I3 (Inspect, Indepth, Inform)
	Rational QualityArchitect, TestManager load testing
	Www.precise.com
	
	“Wide angle lens” for performance monitoring and evaluation from “end user perspective”. Application captures average performance characteristics on many tiers from JSP, to EJB to JDBC all the way to SQL (“URL to SQL correlation”). Captures ‘time slices” of 15 seconds to 1 minutes and reports the average elapsed time/method, memory load per component type (ie. How much memory eaten by EJBs vs JSPs?). Not possible to drill to specific time for specific method or specific memory for specific method. Not possible to correlate directly to load on system at time of measurement.

Emphasis: low overhead, dynamic instrumentation (but must stop/restart app to apply instrumentation)

Can also drill do database/SQL
	Good complement to Rational. Site still needs to apply load to evaluate performance early. Site still needs to get to line of code level w/Quantify/Purify type analysis.

Much positioning around “end user experience”, but in the end the data was accessible only by time slice, not by end user experience.

Archiving, tracing model which holds old data in different levels of detail for up to a week in rotating flat file storage seemed well thought out.

Public company, claims 1400 customers.

(Data from seminar 010731 by tjm)

	Parasoft
	Jtest, Jcontract
	Rational QualityArchitect, Rational Purify for Java
	www.Parasoft.com
	$3495 and $1500 respectively. Combined from: $4495
	Jtest –

· “White Box testing” – Test for robustness with extensive Jtest generated combinations of input values’ to methods. Watches for crashes. Automatically generates Unit test scaffolding (harness) from Java Source Code. Creates required stubs. Jtest then generates a (large) set of ‘test cases’ which test boundary conditions of input parameters by generating combinations of input parameters and looking for coverage changes when code runs.

· “Black Box testing” – Ensures that code behaves as expected by testing a user specified set of inputs and expected outputs which are documented in Javadoc format in the code using a “Design by Contract” specification language.

· Static Source Code analysis (review java source for poor coding practices). Capability to add rules, customize reports, capture some metrics.

· Regression testing – assure that code behaves as it did before when changes have been introduced. (I.e. remembers output from prior run and compares new run against old run)

· Stubbing – claims capability to generate stub for class under test.

Jcontract:

“System level testing w/Design By Contract (DBC). Used in conjunction w/Jtest to test for ‘contract violations’ at runtime. Looking for ‘? system misuse of classes or components’ ? Developer adds special javadoc ‘contract statements’ such (Input a always greater than 0, output always greated than input…) and Jcontract reports any violations of these ‘contracts’ at runtime (code must be instrumented with parasoft compiler)

Common:

Run on Windows NT, 2000, Linux and Solaris
	Comments:

Quick Compare:

Noise to signal ration high: Jtest takes a shotgun approach to test automation. While ‘errors’ may be found with automatically generated input values, most of the ‘errors’ will be noise as the actual application would not pass the generated test values.

No Business level testing: Jtest validates primarily at the individual operation level. QualityArchitect adds scenario/use case testing, which covers subsystem testing and which also validates the database backend and can include performance testing.

Test Management – TestManager allows a team to reuse the unit test assests

Instrumentation: Jtest requires the application be instrumented. This requires multiple build streams and makes testing real deployed components challenging.

In more detail:
Cons of Jtest/Jcontract:

This is essentially ‘dumb monkey testing’ at the unit level. Primary capability of the tool is to generate large sets of test input data combinations and watch for crashes. While this has some value, I presume this generally will have a large amount of noise (trivial error cases such as sending negative account numbers to a banking application which validates input at a UI level) and the noise will wash out the interesting test cases.

QualityArchitect tests the user specified sets of inputs and expected outputs. I.e. with QualityArchitect you specify the desired behavior and that behavior is validated for you. The specification of test cases is done external to the code in a clean and intuitive format – a table of values.

EJB testing does not appear to be supported by the tool. More ‘scaffolding’ is required to test EJBs than native Java. In addition, the value of the testing an EJB is typically greater than native java as it represents component code highly likely to be reused.

Jtest Tool does not provide scenario/use case testing, hence you will need to build you own tests to validate behavior of any subsystem of components. QualityArchitect generates these kinds of tests from scenario diagrams.

Status of application back end (the database) is not validated by Jtest. Typical behavior in an ntier application is that a method invocation on the business logic tier modifies data in the database. QualityArchitect includes database verification points which query the application database to validate correct and complete method operation.

QualityArchitect tests behavior against the application design (UML model of both structure and behavior) where Jtest tries to infer desired behavior from implemented source code.

Test Assets are not well managed with Jtest. Organizations which are performing unit tests will quickly accumulate scores and even hundreds tests and will likely want a tool to organize, execute and track test results over time. Jtest provides a very basic ‘suite of tests which apply to a class’ concept, but no other ways to organize tests and include them in the formal, cross platform testing environment.

Load testing case is not covered by Jtest. QualityArchitect scripts can be invoked under TestManager as load tests.

Jtest modifies the code under test by instrumenting it. This means that you need to manage special builds to execute tests and that you will not be testing against the true deployed code. You will also be accepting the overhead of instrumentation. QualityArchitect tests are external and tests against the actual unmodified application code.

Behavior is coded into application in form of contracts. This mandates that:

1) Developer must learn formal specification language

2) Only instrumented code can be tested, not deployed production code.

Pros for Jtest:

Static source code analysis is included. While static source code analysis may be interesting for junior developers, its value diminishes rapidly with experience.

Test case generation – the ability to generate a large amount of test cases automatically may be interesting to some users. The value of this may be diminished by the “noise” of trivial failure cases.

Contract- ability to specify ‘contracts’ within the code which are ‘continuously’ validated (with Jcontract) may be well received in some developer groups.

Supports generic Java (where QualityArchitect tests EJBs only)

	
	
	
	
	
	
	

	
	
	
	
	
	
	

Last Saved: July 31, 2001

Page 7 of 7

