Rational Software: Base ClearCase/ClearQuest Integration Architecture – V2 (GUI-Enabled) 2/8/02

Base ClearCase/ClearQuest Integration - CQCC Class Architecture

1. Introduction

This document describes the internal architecture of the Base ClearCase/ClearQuest integration as a series of Perl object classes, providing class summaries and UML class diagrams. For more detailed information on each class, see the POD html file for that class included with this distribution package.

1.1 Mechanics of Perl Object Classes

Perl 5.0 and above provides support for defining object classes as Perl packages defining constructors, destructors, inheritance mechanisms, etc. Class packages remain readable source code and are “used” by the trigger, then instantiated as needed. The packages need to be locatable in the end user’s Perl include path (the INC environment variable).

Using object classes helps isolate communications support code from the higher level operations of the trigger, reducing how much source code customers are exposed to if they want to customize the trigger operations. Customers should be able to override classes if needed by using the inheritance mechanism, defining a subclass of a Rational supported class, overriding the desired behavior and changing the script to reference the customer class. The primary classes provided in this integration are created by IOClassFactory() which creates an object instance based on a data parameter in the configuration file.

The Key Diagram provides an introduction to how Rational Rose has been used to document the classes, subclasses, class parameters and accessor functions.

[image: image1.emf]Note: Dotted line with no arrowhead

relates a note to a class

Solid arrow shows subclass "extends"

relationship pointing to super class

Dotted arrow shows

creates/dependency

relationship

- Instantiates/Creates

- friend

- instance of

Class1

Attribute1

Attribute2

Operation1()

Operation2()

opname()

SubClass1

<<extends>>

Trigger1

1

<<Instantiates>>

Key Diagram

Class Parameters

Parm objects created

and used by class1,

changeable thru env

vars or config script

Accessor Functions

List of functions used

to hide class/method

implementation saving

caller from knowing

object references

[image: image2.emf]CQCC::CCase

NAME

HLINKTYPE

PN/Pathname

XPN/ExtendedPathname

VOB_PN/VOB Pathname

LINK_KEYS

CLEARTOOL

USE_PIPELINE

ClassInit()

ClassTest()

EditLinks(addAssocs, delAssocs)()

ExistingAssocList()

GetVOList()

Initialize()

LinkKeys()

new()

PostCommand()

SelfTest()

SetXPN()

UnCheckout()

CQCC::CCperl

ClassTest()

new()

PostCommand()

<<extends>>

CQCC ClearCase Classes

Class Parameters:

 CLEARCASE_PN

 CLEARCASE_XPN

 CLEARCASE_VOB_PN

 ClearCaseInterface

Class Architecture

1.2 Class Overview

The trigger has been broken up into a series of classes and subclasses to address the design requirements and to provide an extensible architecture for customization. From an developer’s point of view, these classes fall into the following groups:

1. Local Configuration script(s) which specify parameters to select options and classes to be used in the main trigger. Administrators will modify this file from the default file provided with the integration.

2. Trigger class(es) which manage initialization, execute the desired operation, determine the sequence of user interaction, and wrap up at the end.

3. Support classes which manage generic user interaction, file and system interfaces, parameter management and performance measurement. A subset of Support classes provides the Graphical User Interface (GUI) support using Perl/TK.

4. ClearCase classes which manage communications with ClearCase VOBs

5. ClearQuest classes which manage communications with ClearQuest databases.

Administrators will modify the configuration script (1) to customize the integration. More extensive changes in how the integration behaves may be made by subclassing the Trigger class (2). Local changes to the other classes should be much less likely. See the overview diagram below. The CQCC Main Classes diagram below shows these two areas and how they relate to the rest of the design.

1.2.1 Class Source code

The integration source code resides under <CCHOME>/lib/perl5/CQCCTrigger/CQCC in a series of package (pm) files. Detailed documentation on the class and its methods is embedded in the source code using the POD (Plain Old Documentation) convention, akin to JavaDoc for Java. The embedded documentation has been extracted and formatted as a set of HTML files that are included in the source code documentation package.

Note: The source code was developed using the Emacs editor and takes advantage of a built-in outlining mode that can “fold” up the source code to just show or display select portions for easier navigation (the "#::name" notation provides outline heading tags). If you have access to the Emacs editor and want to use this feature, add the following line to your emacs initialization file:

(setq outline-regexp `"#:+\\|:+")

and enable outline mode (meta-x: outline-mode)

1.2.2 Debugging Notes

In order to use the debugger with the CQCC trigger source code, you need to set the CQCC_LAUNCH_DEBUG configuration parameter to 2 to tell the launch script to start Perl with the debugger turned on. This can be set as an environment variable as well.

Because the trigger only loads packages as it needs them you may have difficulty setting break points in code that has not yet been loaded. You can force loading the package you need using the “use” function, as in “use CQCC::CQPerlAPI” for convenience. All break points will need to reference the full package name of a method, as in CQCC::CQPerlAPI::Connect unless you are currently in that package.

[image: image3.emf]config.pl

Configure trigger parameters and

classes and then call TriggerMain()

CQCC::TriggerCQCC

NAME

OPERATION

POSTOP

ENTITYDEF

CC

CQ

DESIRED_ASSOCS

EXISTING_ASSOCS

MENU_ASSOCIATION

VO_LIST

(fun) TriggerMain()

ClassInit()

Action_Cancel()

Action_Cancel_ApplyToAll()

Action_Commit()

Action_Commit_ApplyToAll()

Action_Commit_ApplyToAll_UseCO()

Action_Help()

Action_Noop()

Dialog_Cancel()

Dialog_Commit()

Dialog_EditDesiredAssocs()

Dialog_SelectByTypein()

Dialog_SelectByQuery()

Dialog_SelectDatabase()

Dialog_SelectQueryName()

Dialog_SelectEntity()

Dialog_DisplayXPN()

GUIBuild()

GUI_Action_ApplyToAll()

GUI_Action_Associate()

GUI_Action_Disassociate()

GUI_Action_Refresh()

GUI_Action_Typein()

GUI_Action_UpdateAssocRecords()

GUI_Action_UpdateQueryResults()

MenuBuild()

new()

Op_checkin()

Op_checkout()

Op_edit()

Op_test()

Op_uncheckout()

QueryNameList()

QueryNameValidate()

SelectAssocs()

ClearCase

SupportClasses

ClearQuest

CQCC Main Classes

<<instantiates>>

<<instantiates>>

<<instantiates>>

<<invokes>>

Class Parameters

 CQCC_MULTIPLE_ASSOCS

 CQCC_CQWEB_ONLY

 CQCC_GUI_ENABLE

 CQCC_POSTCHECKIN_VERIFY

 CQCC_QUERY_ENABLE

 CQCC_QUERY_FILTER

cqcc_launch or cqcc_launch.bat

Determines perl availability and include

paths, invokes config.pl to start trigger

<<invokes>>

CQCC::TriggerBase

ClassInit()

Connect()

DispatchOperation()

GUIDisplay()

Initialize()

LoadCache()

MenuDisplay()

new()

Op_classtest()

PreprocessArguments()

PrintState()

ProcessArguments()

SaveCache()

<<extends>>

[image: image4.emf]CQCC::MsgCat

NAME

CATALOG

ARGUMENTS

ClassInit()

Initialize()

Message(tag,@args)()

new()

SelfTest()

CQCC::MsgCat_English

new()

Initialize()

ClassTest()

CQCC::IOBase

NAME

FAILED

MSGCAT

CLEARPROMPT : String

DUSTBIN : String

WINDOWS/OS

TEMP/Path

PARM/Path

ATRIA/Path

ClassInit()

ClassFactory()

ClassTest()

DebugPrint (type,msg)()

Dump()

ExitHandler()

FileRead(filename,delete)()

FileWrite(filename,items)()

Initialize()

ListSelect()

ListTreeSelect()

Message(type,abort,msg)()

new()

Pathname(type,filename)()

Print()

Prompt(keys)()

<<Instantiates>>

CQCC::IOClearPrompt

Message()

ClassTest()

ListSelect()

Print()

Prompt(keys)()

<<extends>>

<<extends>>

CQCC::Parm

NAME

DEFAULT

TYPE

PCLASS

EXIT_IF_FAIL

SRC_EV

SRC_CMD

SRC_CFG

SRC_INT

RANGE_MIN

RANGE_MAX

RANGE_LIST

new()

ClassInit()

ClassTest()

CQCC::Timer

LABEL

LEVEL

START_TIME

STOP_TIME

new()

TimerLog(filename)()

TimerStart(label)()

TimerStop()

CQCC Support Classes

Class Parameters

 CQCC_DEBUG

 CQCC_TRACE

 IOBaseInterface

Accessor Functions:

 IODebugPrint()

 IOErrorHandler()

 IOFileRead()

 IOFileWrite()

 IOInterruptHandler()

 IOListSelect()

 IOListTreeSelect()

 IOMessage()

 IOParseListString()

 IOPathname()

 IOPrint()

 IOPrompt()

IOSetCleanupHandler()

 IOTraceBack()

Accessor Functions:

 DefineParm()

 EvalParms()

 ForceParm()

 GetParm()

 GetParmHandle()

 GetParmNameList()

 ParmDefined()

 ParmParse()

 ParmString()

 SetConfigParm()

 SetCmdParm()

 SetIntPar...

<<instantiates>>

IOPerlTK

(from Logical View)

<<extend>>

1.3 Configuration files

This initial file (default is config.pl) is provided by Rational but intended for Administrator modification to reflect local configuration choices and interface selections. An abbreviated listing shows that it basically consists of two function calls – ConfigureTrigger(), a local subroutine describing configuration selections and TriggerMain(), a call to start up the Trigger class to initialize and carry out the requested operation.

use CQCC::TriggerCQCC; # Use the top level trigger object

use CQCC::Parm; # Enable access to configuration parameters

use CQCC::CQSchema; # Define schemas used for different entities

&ConfigureTrigger(); # Invoke local configuration subroutine below

&TriggerMain(); # Fire the trigger to start the integration

sub ConfigureTrigger {

 #------------------------------

 # Allow more than one defect to be associated per change

 &SetConfigParm("CQCC_MULTIPLE_ASSOCS", 'TRUE');

 #

}

Note that the SetConfigParm() calls can be conditional on local environment variables or other conditions, allowing which interface class is to be used to be decided at runtime.

Rather than executing the configuration script directly from ClearCase to invoke the trigger, a startup perl script called cqcc_launch (UNIX) or cqcc_launch.bat (Windows) is called which sets up the Perl INC path to find the CQCC class directory and then invokes the best available version of Perl (ccperl or cqperl depending on the circumstances) to begin the trigger. This also facilitates using the DProf profiling package or the debugger for development without the need to remove and redefine the trigger type in each ClearCase vob.

The trigger can also be invoked directly from the command line to allow it to handle testing and other administrative tasks, i.e. cqcc_launch CQCC/config.pl –op edit
1.4 Trigger Classes

This class defines the overall behavior of the trigger application drawing upon the capabilities of the lower level classes to handle user interaction and communications with ClearCase and ClearQuest. It relies upon its superclass, TriggerBase, for methods to handle command line argument processing, initialization, menu interaction, and cache management.

The trigger is activated by ClearCase operations, each of which has its own entry method; for example, when the user does a checkin, then the Op_checkin method is invoked.

Depending on the operation, the main menu is presented to the user for runtime interaction. The menu in turn calls either Dialog methods, which interact with the user, or Action methods, which carry out an action and possibly exit from the trigger. If the Perl/TK library is found in the version of perl that is running the trigger, the trigger may use the IOPerlTk classes to build and display a graphical user interface (GUI) instead, using the GUI_Build and GUI dialog classes to handle user interaction.

NOTE: Anyone interested in understanding how the overall trigger works or who is contemplating customizing the behavior of the trigger should start with a review of the TriggerCQCC class and how its methods work. Most changes in visible behavior of the trigger will involve changes in this class. For additional source code documentation, contact Rational Customer Support.

If local changes are needed, do NOT make them directly to the TriggerCQCC source code: make a copy of the MyTrigger.pm template class, rename it, and make your changes there by overriding or extending the TriggerCQCC methods (see MyTrigger.pm for more details). Doing this will facilitate upgrading to later releases of the CQCC trigger from Rational and provide a fallback to the released trigger for working with Rational Customer Support.

1.5 Support Classes

A number of support classes have been provided to isolate all user interaction, parameter management, and file interaction providing better extensibility, error checking, and portability. These are described in the CQCC Support Classes diagram.

[image: image5.emf]IOPerlTK

ClassTest()

ExitHandler()

GetMainWindow()

ListSelect()

ListTreeSelect()

Manipulator()

ManipManageValues()

Menu()

MenuManageButtons()

Message()

new()

Panel()

Prompt()

RunMainLoop()

SetMainWindow()

ShowMainWindow()

IOPtkWidget

DESTROY()

DoCallback()

new()

NewSubType()

PackArgs()

TKoptions()

TKSubWidget()

WidgetLookup()

IOPtkManip

IOButton()

IOLabel()

IOListbox()

IOListboxGrid()

IOListboxTree()

IOScrolledLabel()

ManageValues()

new()

<<extends>>

IOPtkMenu

IOCommandMenu()

ManageButtons()

new()

<<extends>>

<<Instantiates>>

<<Instantiates>>

IOPtkPanel

ClassTest()

DESTROY()

IODialogBox()

IODialogBoxShow()

IOFrame()

ManageChildren()

new()

<<Instantiates>>

<<extends>>

CQCC::IOPerlTK Classes

IOPtkResizeButton

<<Instantiates>>

[image: image6.emf]CQCC::CQWeb

NAME

URL

SESSIONFILE

COOKIE

ClassInit()

ClassTest()

ClearCookie()

ExecCommand()

LoadCookie()

Logon()

new()

PostCommand()

SaveCookie()

_EditAssocs()

_PerformQuery()

CQCC::CQuest

NAME

DATABASE

FILTERS

PARMFILE

USER

PASS

CheckRestrictions()

ClassInit()

ClassTest()

Connect()

EditAssocs()

GetLogonParms()

Logon()

new()

PerformQuery()

PrintChangeSets()

SelfTest()

SetDatabase()

CQCC::CQPerlAPI

NAME

CQSESSION

ClassIInit()

ClassTest()

CQErrorCheck()

GetDatabaseList()

Logon()

new()

PrintChangeSets()

SetEntityFields()

SetEntityFieldList()

_EditAssocs()

_PerformQuery()

SetDatabase()

GetQueryList()

State File: .cqsession

Kept session info

<<extends>>

<<extends>>

State File: .cqparams

Login name, password

CQCC::AssocList

NAME

ASSOCS

ClassInit()

ClassTest()

CreateEditLists()

GetAssocs()

GetBugList()

GetEntityDBList()

GetNumbers()

new()

Print()

ProcessBugString()

SetAssocs()

CQCC: ClearQuest Classes

Class Parameters

 ClearQuestInterface

 CQCC_DATABASE_ENTITY_LIST

 CQCC_MULTISITE

CQCC_REPLICA_NAME

Class Parameters

 CQCC_SERVER

 CQCC_SERVERROOT

 CQCC_URL

 CQCC_WEB_DATABASE_SET

 CQWEB_KEEPSESSION

 CQWEB_SESSION_TIMEOUT

CQCC::CQSchema

ChangeFieldMap()

ClassInit()

ClassTest()

DefineCQSchema()

EvalItem()

GetCQSchemaByEntity()

GetCQSchemaByName()

GetEntityList()

GetQuery()

GetQueryList()

GetResultSet()

GetRestrictionQuery()

new()

Print()

SetQuery()

SetResultSet()

SupportedDatabaseList()

SupportedEntityList()

TranslateQuery()

1.5.1 Parm class

This class manages all class parameters and facilitates setting them from configuration files, environment variables, command line options, and other sources.

The class methods are not invoked directly but through convenience functions which manage Parm objects through a set of hash lists (Perl-ese for a fast-lookup list of associated name=>value pairs). DefineParm() is called by the owning class to describe the parameter and its boundary limits and sources. SetConfigParm() , SetCmdParm() , and SetIntParm() are functions which will remember a "preference" for the parameter's value on their own separate lists; this allows parameter settings to be made before the parameter has been defined. GetParm() "evaluates" the parameter by seeing if there is a source for a non-default value that fits the boundary conditions (multiple available sources are evaluated in priority order); if not it will return the default value if one is defined. Once the parameter has been evaluated its value is stored so that later accesses to it will not require re-evaluation. ForceParm() can be used to force overrides by clearing the current setting, storing an Internal parameter value (highest priority) and reevaluating the parameter.

1.5.2 IOBase and IOClearPrompt classes

This class provides user interactors (dialog boxes, menus, etc) and system interactors to manage file input and output. It acts both as a functioning class that provides text interactors and as a base class that more advanced interactor classes are built upon.

This class’s methods are not accessed directly but rather through a set of interface functions which hide the object implementation, and handle initializing the IOBase object automatically if it hasn't already been created. Clients call IODebugPrint(), IOPathname(), IOPrompt(), IOMessage(), IOFileRead(), and IOFileWrite() rather than the corresponding methods. This allows many different classes to use IOBase without having to directly manage its creation.

The IOClearPrompt class is a subclass that provides an alternative set of user interaction methods (IOPrompt, IOMessage, and IOListSelect) that use the ClearPrompt GUI utility instead of a text menu.

The IOPerlTK classes (see section 2.4.5 below) include IOPerlTK which is a subclass of IOBase that provides the basic user interactors for dialogs as well as additional capabilities for managing Perl/TK GUI widgets.
1.5.3 Message Catalog Classes: MsgCat and MsgCat_English
The MsgCat class is an abstract base class providing management methods for all message catalog subclasses, making it easier for future translations and reviewing user messages for consistency. Each subclass implementing this class must provide an Initialize() method that loads the catalog.

The primary message catalog is the MsgCat_English subclass that provides the messages required for the supported integration. Subclasses providing translations of MsgCat_English may be used instead as long as they provide all the message tags needed by the application. Extension subclasses of MsgCat_English may be used to provide additional messages beyond those needed by the basic integration. Note: This class does NOT yet support unicode string handling, so only languages using the standard English/Latin character set are supported initially.

In order to use a different message catalog, the configuration file specifies its name as the MessageCatalogInterface parameter – the package will automatically be loaded when needed.

 &SetConfigParm("MessageCatalogInterface", "CQCC::MsgCat_English");

1.5.4 Timer class

This class provides a means of measuring elapsed times for important internal operations to help identify areas for performance tuning.

It is used through three accessor functions. TimerStart(label) creates a new timer and returns it; TimerStop(timer) stops the timer; and TimerLog() will write out the timing information.

1.5.5 IOPerlTK classes

This class is an IOBase subclass which provides an set of user interaction dialog methods (IOPrompt, IOMessage, IOListSelect, and IOListTreeSelect) using the PerkTK widget toolkit instead of a text menu.

It also provides access to a small set of wrapper objects based on the IOPtkWidget class that encapsulate Perl/TK code to provide building blocks for the CQCC Graphical User Interface. These building blocks provide data interactors (IOPtkManip), menu support (IOPtkMenu), and

panels (IOPtkPanel) such as IOFrames or dialogs to build the GUI.

Isolating the Perl/TK code within these wrappers isolates the Trigger class from Perl/TK dependencies, standardizes GUI components, hides implementation details, and provides basic services such as message catalog translations needed by the integration.

The IOPerlTK object provides methods to build and manage named instances of the IOPtkWidget classes without needing to save the pointers in the Trigger methods.

The IOPerlTK package was written to suit the immediate needs of the integration GUI and is not very general. Extensions can be made as needed by subclassing the IOPerlTK class to modify the existing Manipulator, Menu, or Panel methods to use subclasses of the original IOPtk* classes if needed and adding additional subtype initializer methods.

Direct access to the underlying Perl/Tk widgets can be obtained using the CQCC::IOPtkWidget::SubWidget method but this should be used very carefully. See the POD files on the individual classes for more information.

1.6 ClearCase Classes

The ClearCase classes isolate the mechanism for communicating with ClearCase to permit alternatives to direct use of ClearTool, etc. The Trigger requests that associations be made but does not know the mechanics of how this is done or maintained. The CQCC ClearCase Classes diagram shows the class definitions and relationships:

1.6.1 CCase Class

This class provides a base class for all ClearCase interfaces and also manages a standard interface to ClearCase using external cleartool processes. The CCase class is used by default; to select a different subclass the configuration file must ask for it as the ClearCaseInterface class as shown above in the TriggerConfig.pl file.

1.7 ClearQuest Classes

The ClearQuest classes consist of an abstract base class, CQuest, and two implementation subclasses, CQWeb and CQPerlAPI. Shared methods such as handling user name and password, unit testing, and status information are defined in CQuest, and the subclasses provide methods to connect to and interact with a ClearQuest database. The classes and their relationships are shown in the CQCC:ClearQuest Classes diagram below

1.7.1 CQuest base class

This class provides an abstract base class for all ClearQuest interfaces. It handles user logon information and storage, defining class parameters such as query definitions, and provides standard unit tests. A subclass such as CQCC::CQWeb must implement methods to logon, post commands, format queries and modify entity data.

1.7.2 CQWeb class

This class implements the necessary methods to logon to ClearQuest, perform queries, and modify records over the CQWeb interface. Command strings are built up and encoded by the ccint_cmd() method to identify the user, password and database; the operation to be performed; and the arguments needed such as the list of request numbers to have associations created. The commands are then sent using PostCommand() to establish a connection to the web server and handle communications.

1.7.3 CQPerlAPI class

Like CQWeb, this class implements the methods to communicate with ClearQuest via the CQPerl API.

1.7.4 AssocList class

This class manages a list of ClearQuest Change Requests that can be associated with a ClearCase version. The entity, database, and record id number are stored for each item, providing initial support for multiple entities and multiple databases within a list. Methods can provide the same information formatted different ways for different needs; handle parsing user input and output; compare two lists to identify the differences; and break an existing list into multiple lists, each uniformly focused on one entity/Database pair.

1.7.5 CQSchema class

This class manages “schema” descriptions to support different record types. As used here, a “schema” just defines a generic record type consisting of a field map (mapping between the default names Rational ClearQuest initially uses and the local names for the same fields), one or more query descriptions (defining the search filters) and one or more results descriptions (defining the fields being returned and the desired display format string).

Page 10 of 1 Copyright 2001 Rational Software Corporation. All rights reserved.

