Rational Process Workbench 2003
[image: image1.png]Sigurd Hopen

RUP Content Development

June 19, 2003

Version 1.0

Getting Started with RUP Modeler

This “getting started” guide aims at giving you an initial understanding of why you should use the RUP Modeler to customize the IBM Rational Unified Process (RUP) framework, and how to get started with the application. It does not serve as the complete guide to Process Modeling of a RUP plug-in. Detailed information can be found in the Process Modeling component of the Process Engineering Process (PEP), a sub-component of the IBM Rational Process Workbench (RPW). However, the recommended way of getting up-to-speed with RUP Plug-in development is to attend the RUP Plug-in Workshop given by the IBM Rational field.

RUP Modeler is positioned as an add-in to IBM Rational XDE and replaces the process modeling feature of RPW from the 2002 release of the RUP tool family.

The RUP is a generic process framework in the sense that it is extensive, technology neutral, and vendor neutral. For a given project or organization, you may want to incorporate process know-how not currently covered by the RUP framework. This can be descriptions for chosen technologies, or guidance on how to best work with the selected tool set. RUP Modeler provides support for this specific task of your process engineering effort through the creation of process extensions, or Plug-ins. The most common way of creating plug-in to the RUP is to add new process elements relevant for your project’s context.

The process model, which is the main resulting artifact of your RUP Modeler work, is a UML design model that complies with the RUP meta-model. The process model will eventually evolve into a consumable plug-in in the RUP Builder workspace. The RUP meta-model defines a set of rules and constraints that describe what model elements are allowed in a RUP process model, and how these are interrelated. The following figure illustrates the element types involved in defining a process model for your plug-in.

[image: image7.png]
Figure 1. The first-class process elements of the RUP meta-model

An example of a process model that complies with this meta-model is the RUP process model itself, which serves as the basis for all plug-ins that extend it. The following figure is an example from this process model.

[image: image2.png]
Figure 2. Example of the three core process elements of the RUP

The three core process elements of any RUP process are roles, activities, and artifacts. Artifacts are the work products of a software project. Roles perform activities to produce these artifacts.

The RUP meta-model defines a set of stereotypes to use for indicating process element type. For instance, the rup_system_analyst_uc role from the example above is modeled as a UML class, stereotyped as «rup_role», and the activity structure_use_case_model is modeled as an operation on the role class, stereotyped as «rup_activity». The meta-model also enforces some modeling rules on a plug-in developer, such as:

· An artifact has one — and only one — responsible role.

· An activity cannot update an artifact unless the performing role of this activity has responsible or modifies privileges in the artifact.

· A discipline’s workflow is described using a UML Activity diagram with UML ActivityStates stereotyped as «rup_workflow_detail».

Refer to the appendix titled Process elements in the RUP meta-model, found at the end of this document, for a more complete description.

The rest of this document focuses on defining a plug-in’s process model using the RUP Modeler. It also touches upon the various process elements and the difference between adding new elements versus extending existing elements.

This is not a complete tutorial, but merely an aid to give plug-in developers an overview of the RUP Modeler tool and the process behind plug-in development, in general. Refer to the RUP Plug-in Exchange on Rational Developer Network SM (RDN) for more information.

Setting up your plug-in environment

When you have been through some requirement elicitation cycles for a new plug-in, you’re ready to manifest these in a process model. Before you can start defining process elements, you’ll have to go through some steps to set up your modeling environment.

1. Verify that all the “bits” are installed. The applications needed for developing a plug-in is RUP itself (includes RUP Builder), Rational XDE visual modeling tool, and Rational Process Workbench, all products should be version 2003 or later. Verify that these are installed by inspecting the ‘Rational Software’ group under Start Menu > Programs.

2. Check that the RUP process model and content library are installed (this defaults to c:\program files\rational\rpw, later referred to as the rpw-folder). If not, install now by executing the installable located at

Start > Rational Software > Rational Process Workbench > Install RUP Model and Content Library
Defining a new modeling project in XDE

The RUP Modeler is positioned as an add-in to Rational XDE, which means that you will have to invoke the Rational XDE application and make sure that the RUP Modeler add-in is activated.

1. Launch XDE from the Start Menu > Programs > Rational Software > Rational XDE

2. Select Windows > Preferences menu option.

3. Find Rational XDE in the list, select Add-ins, and press the Add-in Manager button

4. Under Packages, highlight Rational XDE and enable the RUP Modeler and Extended Help add-ins.

5. OK your way out of the dialogs.

Define a new simple XDE project to host your plug-in model.

1. Launch the New Project Wizard by selecting File > New > Project…

2. For project type, select Modeling and Basic Modeling Project, and press Next

3. Name the project, for example “RUP 2003”, and specify the Project Contents directory to point to the rpw-folder.

4. Press Finish (if you’re asked to reference other XDE projects, simply skip this step).

5. XDE will create a default model: xde.mdx and present this empty model in the model explorer pane. Switch back to the Navigator pane and delete this model.

[image: image3.png]
Figure 3. Our new plug-in project presented in the XDE Navigator

The next step is to load the RUP model file, rup.mdx, into this workspace. The rup.mdx file is located in the rup folder, a sub-folder of the rpw-folder.

Verify that the rup.mdx file is present in the navigator, and that you can open it’s process model in the by double-clicking the rup.mdx file. The model will be loaded into XDE’s model explorer.
Now, you need to create a new model file for your plug-in. We recommend that the storage location is in a peer folder to the rup folder, which will later be referred to as the plug-in folder.

1. Right-click the project entry (RUP 2003) in the Navigator

2. Select New > Folder, name it to reflect your plug-in name, for example ‘MyPlugin’
.

3. Right-click the new folder, select New > Model.

4. From the Create New Model wizard, select the ‘Blank Model’ template and name it ‘MyPlugin’

5. Double-click the resulting entry in the navigator to bring up the skeletal model in the model explorer.

6. Select the new (and empty) model in model explorer, go to the Properties window and select the AppliedProfiles attribute. In the dialog presented, check for the RUPModeler profile and press OK.

Both your process model and the RUP process model are now listed in the tree browser of the model explorer pane. This lets you define dependencies between these two models, such as a generalization relationship from one classifier in your process model to a classifier in the RUP process model.

Now you’re ready to start defining your plug-in’s process model. A set of mandatory steps are listed here as a starting point for you to go through:

1. Inside your new project, create a top-level UML package named ‘MyPlugin’.

2. Define the RUP Modeler stereotype for process models, «rupProcessModel», by selecting the … (more) button of the Stereotype attribute in the Properties window when the new package is selected.

3. In the default diagram that gets created under the process model package, drag & drop your process model package and the equivalent package from the RUP model. Define a UML dependency from the plug-in to the RUP process model (see figure below).

4. Create an initial content library folder and associate it with your process model

a. Right-click the process model package, and select RUP Modeler > Associate Content Library

b. In the file dialog presented, browse to the plug-in folder and create a new sub-folder name content_library

c. Select this folder and press OK.

5. Save your plug-in project.

6. To verify the setup, invoke the RUP Organizer
 application

d. Right-click your plug-in process model package, select RUP Modeler > Organize Process Content.

e. Verify that the RUP Organizer loads the RUP content library and the RUP layout, in addition to your plug-ins (empty) layout and content library.

[image: image4.png]
Figure 4. MyPlugin process model extends the RUP process model.

This concludes the mandatory setup steps — now you’re ready to start modeling your plug-in.

Modeling your plug-in

This part of the Getting Started is a mini-tutorial to give you a brief overview of the activities involved in modeling a plug-in to extend the RUP framework. When you create a structural plug-in to RUP, you either create new elements not currently covered by the RUP process framework or you define extensions to elements that already exist in the RUP process model. This introductory guide is limited to describe creation of new elements only. For detailed guidance, refer to the process modeling part of the PEP, or attend the RUP Plug-in Workshop, to familiarize yourself with all the details of the RUP Plug-in Technology.

Creating new vs. extending existing process elements

The RUP meta-model supports an additive way of modeling process. This means that you can easily contribute process elements to existing RUP elements without blocking this RUP element from being contributed to by other process providers. For example, you can create a new role that contributes a set of new activities to an already existing RUP role.

The following diagram shows a typical artifact-centric approach to process modeling.

[image: image5.png]
Figure 5. The activities involved in modeling a RUP plug-in.

The first part of this paper described how to set up the plug-in environment. The details behind Organizing the Process are covered in the “Getting Started with RUP Organizer” document, as well as in the Content Management part of the PEP and the mentioned plug-in workshop. The basic modeling activities shown above are briefly discussed in the following section.

Process Modeling activities

Whether you extend an existing RUP element or create a new one, make sure all elements are “owned” by a process component (see Structure the process model activity) in your process model.

Create a new artifact

Create a UML class, MyDocument, and stereotype it as one of the valid RUP artifact types; for example, «rupArtifactDocument». Refer to the PEP for a list of valid artifact stereotypes. Place the artifact in a process component package (potentially create a new one) with related process elements.

Define a responsible role for the artifact

In the same process component, create a UML class named MyRole and stereotyped as «rupRole». Define a responsible relationship (a unidirectional association, stereotyped as «rupResponsible») from the role to the new artifact.

Define one or more activities to produce, or modify the new artifact

It’s likely (although not necessarily the case), that the role responsible for the artifact will be the one to perform the activity that creates the artifact. On the new role, define an operation, ProduceMyDocument and stereotype it as «rupActivity». Open the activity specification to define the artifacts needed as input to this activity and the outputs, which may be more than the artifacts mentioned. You need package visibility to the components containing the artifacts you want to define as inputs to this activity. This is modeled as a UML dependency from the package where the activity’s role is defined to the package containing the artifacts in question.

If there are other activities that should update the new artifact and these activities are defined on other roles than the one you just created, you need to define modifies privileges from these roles to the artifact. This is a unidirectional association from the role to the artifact, stereotyped as «rupModifies».

Add tool guidance

If you have a tool that automates the execution of the created activity, you can consider describing how to use that tool to perform the activity. This is the responsibility of a tool mentor.

Create a UML class, MyTool, stereotyped as «rupTool». On this class, define a UML operation, ProduceMyDocumentWithMyTool, stereotyped as «rupToolMentor». Invoke the specification dialog on the tool mentor to associate it with the newly created activity.

Define activity context

Open the specification dialog (RUP Modeler > Overview) on the activity. Go to the workflow details tab and browse to the workflow detail(s) you want the new activity to be performed in.

Structure the process model

The grouping mechanism for the process elements of a plug-in’s process model is the Process Component. This element is modeled as a UML package, stereotyped as «rupProcessComponent». Structuring the process model means grouping related elements by process components. Use the same principles of cohesion and coupling as you do for design model in a software project.

Under your plug-ins process model, create a UML package called MyProcessComponent stereotyped as «rupProcessComponent». Move all the previously created artifacts into this package using drag & drop in the model explorer. We recommend that you think through the component structure of your plug-in before creating all the process elements to save some time on restructuring the model.

Organize the Process

Managing the process content that describes the newly created process elements, is done in the RUP Organizer tool. As soon as your process model is stable enough that it makes sense to start describing its elements, you can invoke the RUP Organizer. This is done by right-clicking the process model and selecting RUP Modeler > Organize Process Content. The structure of your process model will be presented as the plug-in layout, super-imposed on RUP’s layout. Refer to the “Getting Started with RUP Organizer” document.’

� EMBED PBrush ���

� XDE won’t allow several projects in the same location, so if you’ve already created an XDE project in the rpw-folder, you can open this project and use that as your plug-in project, or delete the project from the XDE Navigator and re-create it.

� For illustrative purposes this paper uses ‘MyPlugin’ as the name of the new plug-in. You should of course substitute this with the real name of the plug-in to be created.

� RUP Organizer is the application that allows you to organize the process content of your RUP plug-in. This is also part of the Rational Process Workbench product. See the “Getting Started with RUP Organizer” document for details on how to use this part of RPW.

[image: image6.png]_1117448463

_1117449635

_1117446486

_1091858518

