
Development solutions
White paper
May 2008

Automating static analysis to deliver
higher-quality software.
Rational software, IBM Software Group

Contents

Automating static analysis to deliver higher-quality software.
Page �

2	 Helping to improve the quality

of increasingly complex

software and systems

3	 What is static analysis?

5	 Why use static analysis?

7	 Rational Software Analyzer:

broadening the scope and

flexibility of static analysis

7	 Analyzing code while it is 	

being written

10	 Displaying results

11	 Exporting and reporting

14	 Customizing rules and

categories

18	 Extending static analysis into

existing build systems

19	 Making software analysis an

integrated part of ALM

Helping to improve the quality of increasingly complex software and systems

As software becomes more complex, the probability of exposing end users to
program defects increases exponentially. It was once possible to modify code
and then stage a review with fellow developers to identify any issues. However,
modern software projects typically involve hundreds of classes and millions
of lines of code, making peer review significantly less effective in helping to
ensure software quality. Even the most conscientious peer review can miss
defects because of inattention to the complexities of the code.

Additionally, the knowledge of overall code quality is often confined to devel-
opment silos. This specialization can deny other stakeholders the opportunity
to make informed decisions about overall product quality. Project and devel-
opment managers monitor defect trends in software projects, but they often
have little understanding of the challenges and details of the development
team’s work. Similarly, senior managers who need to make ship assessments
lack a holistic understanding of code quality. Under these circumstances, the
probability of offering customers substandard software products is unaccept-
ably high. There is a clear benefit to pushing code review information into
the application lifecycle management (ALM) and governance processes in the
enterprise, but manual code reviews offer only a tedious and largely inaccu-
rate route to this kind of information.

To help resolve some of the quality assurance weaknesses in the software develop-
ment process, a range of static analysis tools has evolved to automatically
detect and often correct common problems in the source code. Commercial static
analysis tools have traditionally been expensive, and most of the freely avail-
able open source tools suffer from limited capabilities and crippling scalability
issues. And while most commercial or open source tools can help the developer,
few of these products provide the capability to capture and assess static analysis
data and deliver it up the enterprise management chain to support effective gover-
nance of the software and systems lifecycle.

Automating static analysis to deliver higher-quality software.
Page �

Highlights
The IBM Rational® Software Analyzer application provides a new means for
assisting development organizations to produce better software by including static
analysis information in the ALM and governance processes of the enterprise.
Rational Software Analyzer is offered in two configurations: IBM Rational
Software Analyzer Developer Edition software, which is designed as an easy-
to-use developer tool to scan both Java™ and C/C++ code, and IBM Rational
Software Analyzer Enterprise Edition software, which is designed to work
seamlessly with IBM Rational Build Forge® software and can be integrated
into most other build environments.

This white paper explores the basic concepts of static analysis and provides an
overview of Rational Software Analyzer from three perspectives. First, it high-
lights out-of-the-box benefits from a user perspective. Then it examines the
solution advantages from the point of view of developers who want to create
their own analysis rules. Finally, it looks at how Rational Software Analyzer
can help developers and build managers who want to integrate static analysis
information into the software and systems build process.

What is static analysis?

Static analysis is many things to many people. If you look at the product
landscape, you discover dozens of companies claiming to offer static analysis
tools. Some companies focus only on C/C++ code review, while others offer
only software metrics for Java code. Some analyze code for security problems for
Web applications, and others scan code for dependency problems. Static analysis
is a diverse and confusing concept that needs clarification. So what is it?

Quite literally, static analysis means the study of things that are not chang-
ing. However, in software terms, this definition should be refined to include the
study of source and/or binary code that is not currently executing. To analyze
running code, you need a debugger or profiler, but you can learn a lot from
code without ever initiating a program.

Organizations may be able to pro-

duce better software at a lower

cost by integrating static analysis

information into the software

development process.

Automating static analysis to deliver higher-quality software.
Page �

Highlights
For example, if you simply parse all the source files for a program, you help
to ensure that the source adheres to a predefined coding standard. You can
also detect common performance problems, such as calling a method multiple
times even though the result it produces does not change. You can even exam-
ine the imports of each class to understand which classes the code depends on
or which classes depend on it. None of this requires the program to run—or
even to compile.

There are of course many other types of static code analysis available, but
table 1 captures the key types that relate to routine software development.
These types are classified into three common categories based on the value
they provide: code review, code dependency and code complexity. Rational
Software Analyzer supports all three of these value categories.

Type of static analysis Value

Code review This type of static analysis tool automates code parsing. Each

source file is loaded and passed through a parser, which looks

for particular code patterns that violate a set of established

rules. In some languages like C++, many of these rules

are built into the compiler or available in external programs

like Lint, a C program checker. In other languages, such as

Java, the compiler does little in the way of automated code

review. Code review software is a good tool to enforce coding

standards, locate basic performance problems and find

possible application programming interface (API) abuse.

Note that code review software can also include deeper forms

of analysis, such as data flow, control flow and type state.

Code dependency Rather than examining the format of individual source files,

code dependency tools examine the relationships between

source files (typically classes) to build a map of the overall

architecture of a program. Dependency tools are commonly

used to discover known design patterns (good) or common

antipatterns (bad) in code.

Code complexity Code complexity tools analyze the program code and

compare it to established software metrics to determine

whether it is unnecessarily complex. If a particular piece

of code exceeds a given threshold, it can be flagged as a

candidate for refactoring to help improve maintainability.

Table 1: Rational Software Analyzer supports three broad categories of static code analysis capabilities.

The IBM Rational Software Analyzer

application enables three types

of static code analysis to support

routine software development: code

review, code dependency and 	

code complexity.

Automating static analysis to deliver higher-quality software.
Page �

Highlights
Why use static analysis?

There are two basic reasons to embrace static analysis. The first is to reduce
the time and cost of developing high-quality code. The second is to increase
revenues and reduce business risk by providing reliable software to customers.

The first benefit of using static analysis tools is well documented. Many studies—
including some done within IBM—claim that even simple automated code
review will find 5 percent to 15 percent of all defects in code. These same stud-
ies claim that a defect reported by an organization’s customers can cost between
US$12,000 and US$18,000.* If you consider that a typical large and complex
piece of software can have a thousand defects during its life span, you quickly
realize why using automated code review tools can save between US$600,000
and US$2.7 million.

Certainly, avoiding customer-reported defects is the most obvious way to reduce
the cost of code failure. You can address this goal with a comprehensive testing
process; however, using static analysis tools such as code review offers a way to
reduce costs even further. Figure 1 shows the benefits of finding defects earlier
in the development process. Early detection can significantly reduce the costs
involved in resolving issues. Using a simple automated code review provides
an opportunity to start finding defects during the coding phase of a project—
perhaps even while the developer is typing the code.

The benefits of static analysis

extend well beyond reducing the

time and expense of creating

reliable software. Static analysis

also helps enable development

organizations to mitigate business

risk and the high cost of customer-

reported code defects.

Automating static analysis to deliver higher-quality software.
Page �

Highlights Cost to find and fix a defect during the integration
or system testing phase is 15 to 90 times higher
than at the code inspection or unit testing phase

Static analysis tools find
defects and design flaws
in the code inspection phase

Cost to find and fix a defect

Design Coding Quality assurance Production

Code inspection

Unit testing

Integration
testing

System
testing

Figure 1: Defect repair costs rise dramatically the longer it takes to find and correct coding issues.

The second benefit of static analysis contributes to the success of the business as
a whole by contributing to the success of those who use or purchase the software
you’ve developed. Higher-quality code means they lose no time waiting for you to
fix a defect they have reported. Furthermore, their business processes are
not affected while they wait. When you have a reputation for providing reliable
software, you can increase revenue from sales to existing and new customers. And
when your software delivers the expected value, you run less risk of being sued.
Customers today are more willing to pursue legal action against vendors when
software fails to provide the expected business results.

An organization that has a reputation

for delivering reliable software is

well positioned to increase sales to

existing and new customers.

Automating static analysis to deliver higher-quality software.
Page �

Highlights
Rational Software Analyzer: broadening the scope and flexibility of static analysis

Rational Software Analyzer is designed to help you address developer and enter-
prise needs in assessing code quality. First, it integrates tightly into an Eclipse,
IBM Rational Software Architect or IBM Rational Application Developer
workbench, allowing developers to analyze their code while it is being written.
Second, it is available in both a command-line task form to support integration
into existing build systems, as well as in a crawler program (such as Ant) task
form to support information searches on the Web. Finally, extracting analysis
results and generating reports both in the workbench and in exported forms,
such as HTML, allows developers, project managers and executives to assess
overall code quality.

Analyzing code while it is being written

Using Rational Software Analyzer, you can perform static analysis against your
lines of code to improve quality as you write code—without losing valuable
development time. Unlike the typical debug version of code, which can take
minutes to execute, the IBM Rational static analysis tool enables you to check
the quality of your code within seconds. It’s almost like hitting your Save key, so
you can run it as often as you like.

Of course, at the start of the coding activity, you must tell the static analysis tool
what you want analyzed. As shown in figure 2, analysis configurations can be
added or removed using the buttons in the top left part of the Rational Software
Analyzer dialog box. As the name implies, a configuration is used to determine
which forms of analysis and which rules should be executed, as well as the scope
of analysis (for example, a project, a working set or the whole workspace).

The Rational Software Analyzer

application allows developers to

check the quality of their code as

they write it. Because results are

available within seconds, static

analysis can be run as often as

desired without losing valuable

development time.

Automating static analysis to deliver higher-quality software.
Page �

Highlights
Assume you are in the early stages of developing a new feature for an existing
Web-based application. To get started, you select the Analysis element in the
Configurations list on the left side of the configuration dialog and then click
the New button. You will notice that the right side of the dialog changes to
show the basic configuration interface.

The first step in creating an analysis configuration is to determine the default
range of resources on which the analysis will be performed. This is accomplished
by selecting the desired range on the Scope tab. The available options currently
perform analysis of the entire workspace, a working set or a set of projects. In this
instance, the Analyze entire workspace option is selected.

Figure 2: The first step in creating an analysis configuration is to determine the default range of resources
on which the analysis will be performed—in this instance, the entire workspace.

At the beginning of coding activity,

developers must tell the Rational

Software Analyzer application what

it is they want analyzed.

Automating static analysis to deliver higher-quality software.
Page �

Highlights
The Rules tab determines the forms of analysis that will be performed. As
shown in figure 3, this tab displays a tree that allows you to select and deselect
analysis elements. It also provides some additional buttons for importing and
exporting rules. The top-most nodes of the domain tree are analysis provid-
ers, which represent the types of analysis tools that are known to the analysis
framework. These analysis providers contain categories— loose organizations
of rules and/or other categories. Rules perform all the heavy lifting by defin-
ing the conditions that generate results during the analysis process.

Note that each node in the tree is preceded by a checkbox that controls the
enabling state of the element. When an element is checked or unchecked, all
of its child nodes are set to the same state, which allows for quick selection of
entire categories or even the entire tree. In this example, the Java Code Review
branch is selected.

Figure 3: The Rules tab on the Rational Software Analyzer dialog box displays a tree that enables rapid
selection and deselection of analysis elements.

After the scope of the analysis is

selected, the developer can quickly

choose the analysis elements and

import or export rules as required.

Automating static analysis to deliver higher-quality software.
Page 10

Highlights
Displaying results

To start the analysis process, you click the Analyze button and the Analysis
Results view appears in the Eclipse workbench. The results views may differ
depending on the kind of analysis you are performing. In fact, some results
views, like the one provided by Java code review, allow you to see results of
the analysis in multiple formats (for example, a table or a tree).

If your analysis configuration contains selections for more than one type of
analysis (in this case, code review and architectural discovery), the results
view will include a tab for each analysis provider’s results (see figure 4).

Figure 4: The Analysis Results view includes a tab for each type of analysis selected in the analysis
configuration. In this case, two types were specified: code review and architectural discovery.

Right-clicking on a result provides a menu of available tasks you can perform,
including View Result and Ignore Result to view or ignore the source code where
the problem occurred. If the rule author has provided an automated defect cor-
rection routine for a rule, the Quick Fix menu option is enabled (see figure 5).
Selecting this option walks you through the process of correcting the problem.

Depending on the kind of analysis

you are performing, result views

can be seen in multiple formats,

including a table or a tree.

Automating static analysis to deliver higher-quality software.
Page 11

Highlights

Figure 5: Rational Software Analyzer allows rule authors to provide automated quick-fix routines for their
rules to help developers correct code errors quickly and accurately.

It is important to note that the viewer used to render a result is a function of
the type of data it contains. When viewing results, you might see a source file
opened in the editor with highlighted text, or a Unified Modeling Language
(UML) diagram or a table of statistical data. There is really no common way
to view a result— the view is determined by the rule author. For the Java code
review analysis provider, all results are viewed as editable Java source files.

Exporting and reporting

Depending on the type of analysis being performed, two other common func-
tions may be available in the results view—data exporting and data reporting.

As the name implies, the data exporting function allows you to export the raw
analysis results to a file and typically supports an XML file format. The type of
data exported has been determined by the analysis provider, which will supply a
list of known data exports so you can select the format you prefer (see figure 6).

There is no common way to view

a result. The Rational Software

Analyzer application viewer used 	

to render a result is determined by

the rule author based on the type

of data contained in the result.

Automating static analysis to deliver higher-quality software.
Page 12

Highlights

Figure 6: The Rational Software Analyzer supports multiple analysis reporting formats.

The data reporting function is in many ways similar to the data exporting
function. Both functions share exporters, but reporting generates nicely
formatted pages that can be stored locally or written directly to a remote
Web site. Developers or project managers can take an existing report file
and modify it to suit their needs (for example, to support a company logo).
Figures 7 and 8 show two of the many different kinds of reports that can be
generated with Rational Software Analyzer.

The Rational Software Analyzer

data reporting function generates

nicely formatted pages that can be

printed, stored or written directly 	

to a remote Web site.

Automating static analysis to deliver higher-quality software.
Page 13

Highlights

Figure 7: This report format enables developers to navigate quickly through a list of problematic areas
in the code they’ve created and right-click on each line to access the Quick Fix routine, make a recom-
mended design change or rewrite code to comply with best practices.

Using the report format that

lists lines of problematic code

and provides warnings and

recommendations, a developer 	

is able to address issues based 	

on degree of severity.

Automating static analysis to deliver higher-quality software.
Page 14

Highlights
The code analysis results provide warnings and recommendations. For example,
the report shown in figure 7 lists lines of code that can be improved by fol-
lowing design principles like Avoid methods with more than 3
parameters and Avoid using the negation operator “!” more
than 3 times. Warnings (preceded by an exclamation point and/or light
bulb icon) indicate severe problems that can result in code failure as well as
code with errors that could potentially affect application performance.

Severe (393)

Recommendation (246)

Warning (835)

Figure 8: This metrics report format provides project leads and managers with a point-in-time assess-
ment of the kinds and the scope of code quality issues.

Customizing rules and categories

In addition to the rules supplied by Rational Software Analyzer and the rules con-
tributed by third-party developers, custom categories and custom rules for static
analysis can be created from templates—without your having to write any code.
To do so, you go to the Preference pages by selecting the Window->Preferences
option. Then, in the Preference tree, you select the Analysis->Custom Rules and

Categories page (see figure 9).

Whatever the format, Rational

Software Analyzer reports enable

developers, project leads and man-

agers to review the kinds and scope

of code quality issues—from those

that are severe and could result in

code failure to those that will work

but could be improved by following

recommended design principles.

Automating static analysis to deliver higher-quality software.
Page 15

Highlights

Figure 9: Rational Software Analyzer enables you to create custom categories and custom rules for
static analysis using templates and wizards.

Clicking on the Add Category… button activates a simple wizard that takes
you through the process of choosing the parent category and naming your
new category. The tree control for custom categories shows the complete
path for any new categories you create. Note that only previously defined
custom categories can be deleted.

Similarly, to start the rule creation wizard, you click the Add Rule… button.
The first wizard screen allows you to select where in the analysis category tree
you want the rule to be located.

In addition to the categories and	

rules supplied by the Rational

Software Analyzer application and

those contributed by third-party

developers, custom categories and

custom rules for static analysis can

be created from templates—without

having to write any code.

Automating static analysis to deliver higher-quality software.
Page 16

Highlights
The second wizard page provides a list of all known rule templates (see figure
10). You can select the rule template you wish to use as the basis for your new
rule. Note that not all analysis providers support custom rules. However, Java
Code Review supplies several that are at your disposal.

Figure 10: The Rational Software Analyzer custom code wizard provides a list of all known rule tem-
plates, in this case the rule templates for Java Code Review.

When a developer selects a static

analysis category, such as Java

Code Review, on the Custom Rules

and Categories dialog box (shown

on the previous page), she can

add a rule by simply clicking on

the Add Rule… button. This action

takes her to a list of all known rule

templates where she can select the

rule template she wishes to use as 	

a basis for the new rule.

Automating static analysis to deliver higher-quality software.
Page 17

Highlights
On the final screen of the wizard for rule creation, you see entries for each
parameter defined in the rule template. For the example provided in figure 11,
the selected rule template defines only one parameter, so you can enter only
a qualified class name in the field provided. Note that a button is available to
browse to an existing class, or you can manually enter a valid class name in
the text box.

Figure 11: The selected rule template defines only one parameter.

After a new template-based rule is

created and placed into the rule tree

of the Rational Software Analyzer,

any developer can select it as part of

virtually any analysis configuration.

Automating static analysis to deliver higher-quality software.
Page 18

Highlights
When you select the Finish button, the template-based rule is created and
placed into the rule tree. Any developer is now free to select this rule as part
of any analysis configuration.

Extending static analysis into existing build systems

As more organizations adopt the Agile approach to development, the scope of
developer activities is expanding to include what has traditionally been con-
sidered production work. Developers are running their own builds and taking
on a greater role in testing.

The Rational Software Analyzer Enterprise Edition application is an extension
of the Rational Software Analyzer Developer Edition application that provides
the capability to plug into the enterprise build environment. It provides a full
Eclipse-based user interface for defining analysis configurations. To integrate
static analysis into the software and systems build process, the developer simply
exports the configuration in the developer edition so it can be consumed by the
command-line tool in the enterprise edition.

If Rational Build Forge is managing the build environment, this exported con-
figuration can be specified in the Rational Build Forge adapter definition. If
another build management tool is used, the configuration file can be specified
using the Rational Software Analyzer Enterprise Edition command-line tool.

Because many developers are

now running their own builds, IBM

enables organizations to integrate

static analysis into the software

and systems build process.

Automating static analysis to deliver higher-quality software.
Page 19

Highlights
Making software analysis an integrated part of ALM

The IBM Rational Software Analyzer application helps organizations make
software analysis an integrated part of the software and systems lifecycle. The tool
is easy to install and use on the desktop. Virtually all contributing code can be
reviewed, regardless of the source. With automated code analysis, developers
can create higher-quality code in a shorter period of time. And through cen-
tralization of static analysis, development and build teams can gain deeper insight
into whether overall IT governance and compliance standards are being met.
They’re able to identify and correct code defects earlier in the process —
accelerating project timelines and reducing defect-related costs.

For more information

To learn more about IBM Rational Software Analyzer software, please contact
your IBM representative or IBM Business Partner, or visit:

ibm.com/software/awdtools/swanalyzer

Through integration and centraliza-

tion of static analysis, development

and build teams can identify and

correct code defects earlier in

the software delivery process—

accelerating project timelines,

reducing defect-related costs and

enhancing the customer experience.

http://www.ibm.com/software/awdtools/swanalyzer

©	Copyright IBM Corporation 2008

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
05-08
All Rights Reserved

Build Forge, IBM, the IBM logo and Rational are
trademarks or registered trademarks of International
Business Machines Corporation in the United States,
other countries, or both.

Java and all Java-based trademarks are trade-
marks of Sun Microsystems, Inc. in the United
States, other countries, or both.

Other company, product and service names may
be the trademarks or service marks of others.

The information contained in this documentation
is provided for informational purposes only. While
efforts were made to verify the completeness and
accuracy of the information contained in this docu-
mentation, it is provided “as is” without warranty of
any kind, express or implied. In addition, this infor-
mation is based on IBM’s current product plans and
strategy, which are subject to change by IBM without
notice. IBM shall not be responsible for any dam-
ages arising out of the use of, or otherwise related
to, this documentation or any other documentation.
Nothing contained in this documentation is intended
to, nor shall have the effect of, creating any warran-
ties or representations from IBM (or its suppliers or
licensors), or altering the terms and conditions of the
applicable license agreement governing the use of
IBM software.

1	McKenney, Paul E. and Rumbaugh, Jim, “Static 	
	 Analysis in Software Processes, Projects, and 	
	 Products,” IBM Academy of Technology Study,
	 July 22, 2007.

RAW14024-USEN-00

	Helping to improve the quality of increasingly complex software and systems
	What is static analysis?
	Why use static analysis?
	Rational Software Analyzer: broadening the scope and flexibility of static analysis
	Analyzing code while it is being written
	Displaying results
	Exporting and reporting
	Customizing rules and categories
	Extending static analysis into existing build systems
	Making software analysis an integrated part of ALM

