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Abstract 
 
This paper describes how Rational Purify and Rational Quantify can help developers on Windows AND 
UNIX (Java, C/C++ and Visual become more productive immediately. Together, Rational Purify and 
Rational Quantify help developers make their applications more reliable and perform better.   
 
Rational Purify is an automated debugging and software testing tool that detects memory leaks, access 
errors and system API errors. Rational Purify inserts additional checking instructions directly into the code 
produced by existing compilers. These instructions check every memory read and write performed by the 
program under test and detect several types of access errors, such as reading uninitialized memory or 
writing to freed memory.  
 
Rational Quantify is a performance profiling tool that identifies application performance bottlenecks. 
Rational Quantify collects repeatable, precise performance data, by inserting similar checking instructions 
directly into the compiled code, and then provides clear, concise views of the profile data. This enables 
developers to quickly get to the root of the bottleneck, and to accurately monitor performance 
improvements. 

An overview of Run-time Errors and Performance Issues 

 
Memory Leaks and Access Errors in C and C++ Code  
 
Even a single memory access error, such as reading from uninitialized memory or writing to freed memory, 
can cause a program to act unpredictably or even crash. Yet it can be nearly impossible to eliminate all 
such errors from a non-trivial program. These errors may produce observable effects only intermittently. As 
a result, programmers may spend a lot of time looking for these errors, but without effective tools, end 
users may in fact be the first ones to find them. 
 
When a memory access error does trigger an observable symptom, the error can take days to track down 
and eliminate. This is due to the frequently delayed and distant connection between the cause, typically a 
memory corruption, and the symptom, typically a crash upon the eventual reading of invalid data. 
 
In C and C++ the term ‘memory leak’ refers to a section of allocated memory that is no longer accessible to 
the program because all reference to it has been discarded.  Memory leaks slow program execution by 
increasing paging, and can ultimately cause programs to run out of memory. Memory leaks are more 
difficult to detect than illegal memory accesses because they are errors of omission rather than commission 
(that is, they are caused by something that was not done rather than by an actual erroneous line of code). In 
addition, memory leaks rarely produce directly observable errors, but instead cumulatively degrade overall 
performance over time. 
 
When memory is freed prematurely, other fatal memory access errors can result. Complicated memory 
ownership protocols are often required to administer dynamic memory to avoid memory access violations. 
Incorrectly coded boundary cases can lurk in otherwise stable code for years. 
 
Both memory leaks and access errors are easy to introduce into a program but hard to eliminate. Without 
facilities for detecting memory access errors, it is risky for programmers to attempt to reclaim leaked 
memory aggressively because that may introduce freed-memory access errors with unpredictable results.  
 
Conversely, without feedback on memory leaks, programmers may waste memory by minimizing free calls 
in order to avoid freed-memory access errors. Rational Purify helps developers improve the robustness and 
performance of their C and C++ programs by offering them information on both a program's memory 
access errors and its memory leaks. 
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Java Garbage Collection Issues 
 
The Java language attempts to address the issue of increased memory consumption over time through its 
automatic Garbage Collection (GC) feature. But, the deeper one looks into the claim that Java solves this 
problem, the more obvious it becomes that this is simply not true. While there are some problems that it 
does help to resolve, there are other memory consumption problems that seem more complicated to deal 
with than in C++.  
 
A memory leak in C++ code is easy to understand. It is memory that has been allocated, but never freed, 
and is no longer reachable by any code because there is no longer a reference to it. These kinds of memory 
leaks don’t exist in Java because of the Java Garbage Collector, a background task that the Java runtime 
periodically runs to recycle any unreferenced memory. But the Java Garbage Collector doesn’t address 
logical memory leaks. These are allocated objects that the program no longer needs (and likely hopes the 
GC will free) but that cannot be freed because other objects unexpectedly still reference them. 
 
Java developers can use Rational Purify to address these issues. Rational Purify reveals how much memory 
the program is consuming, which methods in the program are consuming the memory, how much new 
memory the program consumes for a specific set of actions and even where a forced garbage collection 
might lead to improved performance. 
 
Performance Bottlenecks in Java and C/C++ Code 
 
Whether programming in Java or C/C++, the last issue to be addressed is usually application performance. 
All too often developers find themselves approaching the end of the development process, with last minute 
bugs to find and fix, and very little time to put towards performance analysis and improvement. But, 
identifying performance bottlenecks can be a difficult and time-consuming task, and removing bottlenecks 
can have architectural implications on the application that would best be addressed earlier in the 
development cycle.  
 
Before performance improvements can begin to be made, developers must first identify the biggest problem 
areas. But which causes the bigger bottleneck, a relatively simple algorithm that is called many times or a 
very complex algorithm that is called only once or twice? And which offers the greater possibility of 
improvement? Without thorough performance data it is guesswork, because it is impossible to really know 
which areas of the code offer the biggest return on performance tuning investment. Accurate performance 
data on all parts of the application – even components for which source code may not be available – will 
focus efforts on the areas offering the most potential for improvement.  
 
After the areas to be targeted have been identified, it is critical to be able to monitor the performance 
improvement (or lack thereof) resulting from the changes made. Did a change make the problem a little 
better or a lot better? Or did it actually degrade the performance overall for some reason? To be able to 
answer that question precisely depends upon truly repeatable data collection. That is, detailed data must be 
collected identically each time, so that performance changes can be measured precisely. 
 
It can be very difficult to get accurate, repeatable performance data without a performance profiling tool 
such as Rational Quantify.  Traditional profiling tools have been sampling based, offering only, statistical 
data with limited detail, even after a special recompile of your code. Rational Quantify overcomes these 
limitations to take the guesswork out of application performance profiling. 
 
Rational Purify and Rational Quantify Solve These Problems Efficiently 
Rational Purify and Rational Quantify use patented Object Code Insertion (OCI) to augment a C/C++ 
program with checking logic (Rational Purify) and/or counters (Rational Quantify). OCI can be performed 
either during the link phase in the case of SunOS, Solaris, and HP/UX or after the link as on IRIX and 
Windows NT. Rational Purify reads object files generated by existing compilers and linkers, and adds error 
checking instructions without disturbing the ability to use conventional debuggers on the executable.   In 
the case of Rational Quantify, counters are inserted at the object code level to time every assembly code  
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sequence, providing performance analysis data down to the source line on every portion of an application’s 
code. 

For Java and Visual Basic code Rational Purify and Rational Quantify use industry standard virtual 
machine profiling APIs and augment them with Rational’s Byte Code Insertion (BCI) where necessary to 
gather the same detailed data as with OCI. Again, this is all done after the program is compiled and collects 
data from all components in an application. 

The source for a large program lives in many directories with many different developers.  Since Rational 
Purify and Rational Quantify are used after the program is compiledthey are easy to use and allow 
developers to concentrate on their code, secure in the knowledge that Rational Purify and Rational Quantify 
will detect errors and bottlenecks which may appear in interactions with other developers’ code.  
 
Using Rational’s OCI and BCI technology, all of the code, including third-party and vendor libraries, is 
checked. Even hand-optimized assembly code is checked. This completeness means bugs (such as calling 
strcpy with too short a destination array) or bottlenecks in application code that manifest themselves in 
vendor or third-party libraries are detected. Also, serious bottlenecks or bugs in third-party libraries (like 
writing into freed memory) can be detected. Moreover, the detection or absence of such potentially fatal 
errors in a particular third-party library during the library's evaluation phase can increase the developer's 
knowledge of the quality of the application overall.  

A Detail Look at Runtime Errors and Performance Issues  
 
Finding Memory Access Errors 
 
Some memory access errors are detectable statically (e.g. assigning a pointer into a short variable); 
others are detectable only at run-time (e.g. writing past the end of a dynamic array); and others are 
detectable only by a programmer (e.g. storing a person's age in the memory intended to hold their height). 
Compilers and tools such as lint find statically-detectable errors. Rational Purify finds run-time errors. 
 
Errors detectable only at run-time are challenging to eliminate from a program. Consider the following 
sample Rational Purify session on a simple hash table program. The program is called testHash, and has 
been instrumented with Rational Purify.  As the program runs, Rational Purify generates reports for every 
run-time error it detects.  The following output was generated on Solaris, but similar output is generated on 
all other platforms Rational Purify supports. 
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Initially all memory is unallocated.  Any reads or writes to unallocated memory will cause Rational Purify 
to generate a diagnostic message.  Once memory is allocated, using malloc/new for instance, it is not yet 
initialized.  Any reads from this memory will generate a Rational Purify diagnostic message. Writing 
uninitialized memory causes the memory's state to become initialized and it can then be read as well. 
Calling free/delete causes the affected memory to enter the unallocated state again. 
To catch array bounds violations, Rational Purify allocates a small "red-zone" at the beginning and end of 
each block returned by malloc and new. The bytes in the red-zone are recorded as unallocated (unwritable 
and unreadable). If a program accesses these bytes, Rational Purify generates an array bounds error report. 
 
To catch reads of uninitialized automatic variables, Rational Purify sets the state of the stack frame bytes to 
the allocated but uninitialized state upon every function entry. 
 
To minimize the chance that accesses to freed memory will go undetected because the affected memory is 
quickly reallocated, Rational Purify does not reallocate memory until it has "aged", and is thus less likely to 
remain incorrectly pointed into. The aging is user specifiable and measured in the number of calls to 
free.  
 
In order to identify otherwise anonymous heap blocks, the function call chain is recorded each time 
malloc/new is called. The depth of functions recorded is user specifiable.   
 

Finding Memory Leaks 
 
Memory leaks are even harder than memory access errors to detect. The difficulty in detecting access errors 
is that the direct symptoms of such a bug may appear only sporadically -- but a memory leak typically 
doesn't even have a direct symptom. The cumulative effects of memory leaks is that data locality is lost 
which increases the size of the working set and leads to more memory paging. In the worst case, the 
program can consume the entire virtual memory of the host system. 
 
The indirect symptom of a memory leak is that an application’s address space grows during an activity 
where one would have expected it to remain constant. Thus the typical test methodology for finding 
memory leaks is to repeat an action, such as opening and closing a document, many times and to conclude 
that there are no leaks if the address space growth levels out. 
 
However, there are two problems with this methodology. The first problem is that it does not rule out the 
possibility that there simply was enough unallocated heap memory in the existing address space to  
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accommodate the leaks. In other words the address space does not grow, but a leak does exist. The implied 
(but risky) assumption is that if the leak was significant enough to care about, it would have consumed all 
of the unallocated heap memory within the chosen number of repetitions and forced an expansion of the 
application’s address space. 
 
The second problem with this repetition methodology is that it is quite time consuming to build test suites 
that repetitively exercise every feature, and automatically watch for improper address space growth. In fact, 
it is generally so time consuming that it is not done at all. Suppose, however, that a developer is sufficiently 
motivated to build a leak-detecting test suite, and finds that the address space grows unacceptably due to 
one or more leaks. The developer still must spend a considerable amount of time to track down the 
problems. Typically, they would either (1) shrink the test suite bit by bit until the address space growth is 
no longer observed, or (2) modify malloc and free to record their arguments and perform an analysis of 
what was malloc'd but not freed. The first technique is fairly brute-force, and can take many iterations to 
track down a single leak. 
 
The second technique seems powerful but in practice has problems. In any given repetition loop, such as 
opening and closing a document, there may be malloc chunks that are malloc'd but legitimately not freed 
until the next iteration. Thus a chunk could be malloc'd but not freed during an iteration without actually 
causing a leak. It may represent a carry-over from a previous iteration. Another method is to record the 
malloc and free calls for an entire program run, and look for chunks malloc'd but not freed. The problem 
with this is the existence of permanently-allocated data, such as a symbol table, that is designed to be 
reclaimed only when the process terminates. Such permanently-allocated data incorrectly show up as leaks, 
i.e. malloc'd but not freed, with this technique (2) and its variants. 
 
Memory leaks are so hard to detect and track down that they are often simply tolerated. In short-lived 
programs such as compilers this is not serious, but in long running programs such as web services it is a 
major problem. As an example, memory leaks proved to be a problem with the X11R4 server program.  
Instrumenting it with Rational Purify, and running under it under the dbx debugger shows Rational Purify 
catching the X server leaking one half of a megabyte from a single place! 
 
...the X server runs, then we interrupt the server with control-C, and call the leak finding routine... 
  
(dbx) call Rational Purify_new_leaks ( ) 

Rational Purify: Searching for new memory leaks... 

Memory leaked: 516752 bytes (35.9%); potentially leaked: 0 bytes (0%) 

MLK: 516312 bytes leaked in 43026 blocks 

* This memory was allocated from: 

Xalloc [utils.o] 

miRegionCreate [miregion.o] 

miBSExposeCopy [mibstore.o] 

miHandleExposUres [miexpose.o] 

mfbCopyArea [mfbbitblt.o] 

miBSCopyArea [mibstore.o] 

miSpriteCopyArea [misprite.o] 

ProcCopyArea [dispatch.o] 

Dispatch [dispatch.o] 

main [main.o] 

start [crt0.o] 



Releasing Better Software Faster with Rational Purify and Rational Quantify 

6 

* Block of 12 bytes (43026 times); last block at 0x35a058 

       

MLK: 440 bytes leaked in 11 blocks

* This memory was allocated from:

Xalloc [utils.o]

miRectAlloc [miregion.o]

miRegionOp [miregion.o]

miIntersect [miregion.o]

miBSExposeCopy [mibstore.o]

miHandleExposures [miexpose.o]

mfbCopyArea [mfbbitblt.o]

ProcCopyArea [dispatch.o]

Dispatch [dispatch.o]

main [main.o]

start [crt0.o]

* Block of 40 bytes (11 times); last block at 0x36ee98

This example shows two leaks that have appeared so far in the current run of the X server. The first is the 
dominant leak, so let us walk through how to go from this information to finding the bug. This leak has 
occurred 43,026 times so far, and each time leaked 12 bytes. The first leak was probably not the 
responsibility of Xalloc, so we look at miRegionCreate. It creates a region structure and simply returns it. 
So we turn to the caller of miRegionCreate: miBSExposeCopy and find the following: 
 

   tempRgn = (*pGC->pScreen->RegionCreate)(NULL, 1);

 
A scan of the function confirms that tempRgn is never freed. A one-line fix suffices to eliminate this bug. 
 
Rational Purify employs advanced detection techniques to identify memory leaks in a program, using a 
mark and sweep technique. In the mark phase, Rational Purify recursively follows potential pointers from 
the data and stack segments into the heap and marks all blocks referenced. In the sweep phase, Rational 
Purify steps through the heap, and reports allocated blocks that are no longer referenced by the program. 
Identifying leaked blocks only by address would not help programmers track down the source of the leak; it 
would only confirm that leaks existed. Therefore, Rational Purify modifies malloc to label each allocated 
block with the return addresses of the functions then on the call stack. These addresses, when translated 
into function names and line numbers via the symbol table, identify the code path that allocated the leaked 
memory, and often make it fairly easy for the programmer to eliminate the error.  
 
Resolving Java Garbage Collection Issues 
 
As objects are created, Java stores them in the heap, creating a directed graph of these objects, where a 
node is an object and an edge is a reference. Java treats the directed graphs that start at the roots as a map of 
currently used memory. Then, any memory in the heap that isn’t in one of these graphs can be collected and 
thus is available for re-use. If the Garbage Collector supervises and recycles the memory, how do leaks 
occur in Java? Java memory leaks can be divided into two distinct categories: object references that are no 
longer needed or unknown, and system resources that are not freed or cleaned up. 
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Object References that are No Longer Needed 
An object reference that is no longer needed basically refers to memory that is being referenced, but is no 
longer logically needed by the program, so it will not be recycled by the garbage collector, when it really 
should/could be recycled. Since an object typically holds references to other objects, one object frequently 
holds an entire tree of objects in memory.  
 
 
Here's a code snippet that demonstrates how an object is made available for garbage collection:  

public void ShowBoxster()
{

CarObject myCar = new CarObject("Porsche Boxster");
double cost = myCar.GetCost();

// Make it available to be garbage collected
myCar = null;
.
. // Some code to display the cost to the user
.

}

// In the CarObject class
public double GetCost()
{

CostObject myCost = new CostObject();
double carCost = myCost.lookupCost();
return carCost;

}
In this example, myCost is created in GetCost, and no longer referenced when the routine leaves, thus 
becoming available to be garbage collected. myCar is also available to be garbage collected after it's set to 
null;  
 
If we were to now to add the following code:  

public void ShowBoxster()
{

CarObject myCar = new CarObject("Porsche Boxster");
double cost = myCar.GetCost();

InventoryList.GetInventoryList.AddToList(myCar);

// Make it available to be garbage collected
myCar = null;
.
. // Some code to display the cost to the user
.

}

// In the InventoryList class
public static InventoryList GetInventoryList()
{

if( inventoryList == NULL )
inventoryList = new InventoryList;

return inventoryList;
}

// Adds a car to the
public void AddTolist( CarObject car )
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{
GetInventoryList().carList.addElement(car);

}
myCar is no longer available to be garbage collected in ShowBoxster, because we have created a reference 
to it in the InventoryList object. In this case we may think that we've taken care of myCar, but we haven't,  
 
because InventoryList references it, and InventoryList itself is still in memory (being a static object). There 
are some distinct code patterns that can cause these unknown or unwanted object references. They are:  
 

• Adding objects to collections or arrays (as illustrated in our example), and forgetting about them.  
 

• A reference that is always reset on next use, for example menu associations. The object isn’t being 
used, but it can’t be garbage collected until the next time this routine is called. If the routine is 
never called again, the object's memory is effectively kept out of circulation.  

 
• An object that changes state, but some references still refer to the old state. An example would be 

a program that keeps a list of properties of a file, say size, type, and number of characters. It is 
presented a .txt file and sets all 3 properties. It then is presented a binary file and sets size and type 
but unintentionally keeps a reference to the .txt file for the number of characters.  

 
• A reference that is pinned by a long running thread. Even if you set the object reference to NULL, 

it won’t be garbage collected until the thread terminates, or goes idle.  

System resources that are not freed or cleaned up 
These memory leaks are caused because methods have the means to allocate heap memory from the JVM 
that exist outside of Java instances (resources for windows, bitmaps, etc). They can typically be allocated 
by calling C or C++ routines via JNI (Java Native Interface) calls. As an example, the Abstract Windowing 
Toolkit (AWT) for Sun Java requires a dispose() call to free the system resources used by the Frame, 
Dialog and Graphics classes, much like the malloc/free in C++.  
 

Other Memory issues in Java 
• Class Loader - Java loads classes and instances. The class is loaded by the JVM via a tool called 

the class loader. There can be one class loaded, and several instances of the class can be allocated. 
In our example, CarObject is the class, and myCar is an instance. There is only 1 CarObject in 
memory, but there can be mycar, yourCar, etc, instances.Unless you provide your own class 
loader, a class remains in memory for the duration of the program. This is not necessarily a leak, 
but is a source of memory usage that doesn't go away.  

 
• Other JVM data areas - These include things like the Method Area, the Runtime Constant Pool, 

and Java Virtual Runtime Stacks, which are possibly (but not required to be) in the heap.  
 

• It's important to keep in mind that the leaks may come from the JDK, or some 3rd party library.   
These leaks are not common but have been found in conjunction with calls to various JAVA and 
other  third party libraries. 

 
• In a multi-language environment, leaks could be introduced from C/C++ code called from JNI 

routines, and thus wouldn't show up in the JVM.  
 
In all of these cases except C/C++, where Rational Purify finds traditional C/C++ errors) Rational Purify 
tracks where every object is allocated and deallocated, then compares this data for two points in time, after 
some program activity has occurred. Methods that have more allocated objects attributed to them in the 
later snapshot are then identified as creating these logical leaks.  
 
Finding and Eliminating Performance Bottlenecks 
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What Causes Slow Software? 
It would seem that run-time bottlenecks--the cause of slow software--are as numerous as specific 
implementations. Indeed, the manner in which a particular program computes and requests services 
determines its performance characteristics. Digging deeper into what actually brings about slow executions, 
however, we find four major causes that cover the vast majority of performance problems:  
 

• Useless computation,  
• Needless re-computation,  
• Excessive requests for services 
• Waiting for service requests to complete.  
• Useless computation  

 
Useless Computation: As programs evolve and algorithms are refined, portions of code that were needed 
in earlier versions can end up falling by the wayside, without ever being removed. The end result is that 
many large programs might be performing computations whose results are never used. Bottlenecks are 
caused by time wasted on this "dead" code.  
 
Another common source of useless computations are those made automatically or "by default", even if they 
are not required. Applications that needlessly free data structures during the shutdown of a program or open 
connections to workstations even though there isn't a user for them are examples of this type of bottleneck.  
 
Needless re-computation: Programs sometimes re-compute values rather than storing (caching) them for 
later use. Bottlenecks are caused by wasting time re-computing the values. An example of a potentially 
needless re-computation is the determination of the length of a string. If this computation is embedded in a 
loop, the length of the string can be re-computed hundreds or thousands of times, each time resulting in the 
exact same value!  

There are times, of course, when you must continually re-compute values because the cost (in terms of 
memory) of caching a value exceeds the cost of re-computation.  

Excessive requests for services: Programs can make unnecessary requests for services, slowing down 
execution time and leading to bottlenecks. Excessive requests for operating system services are particularly 
expensive because, in addition to the time required to perform the service itself, the operating system must 
"context switch" simply to make the request and retrieve the result. This context switch operation incurs a 
larger overhead than a normal function call.  
 
Waiting for service requests to complete: When programs request services, they typically "block." 
Blocking prohibits your program from continuing until the request is completed. Waiting for service 
requests to complete is a common bottleneck source. One of the most widely recognized bottlenecks of this 
type is synchronous communication (round-trip requests) between window-based applications and the 
display server.  
 
Waiting for service requests to complete can occur in a number of other important areas. One such area is 
retrieving data from a file on disk. Your program can incur a relatively lengthy stall even when accessing a 
local disk. If the file is mounted on a remote file system, however, the retrieval time via the file server can 
dramatically increase and be magnified by network delays.  
 
Another area where delay can occur is when the program requests a page of main memory and that page is 
not present in the memory cache. The operating system must be called to retrieve the page from the swap 
device and load it into main memory. This, in turn might cause other pages to be written to the swap device 
to make room for the new page. Note that unlike the explicit file data retrieval requests mentioned above, 
these time consuming paging operations are triggered by an implicit request for data from memory. They 
are often caused by seemingly simple actions, such as de-referencing a pointer.  
 
Bottlenecks occur whenever a computation or request is performed needlessly or inefficiently. These four 
categories represent most performance problems found in software programs.  

 

Reducing and Eliminating Bottlenecks: Eliminating, or at least reducing, bottlenecks requires that you 
apply one or more of the following five approaches to the appropriate computations and service requests:  
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• Don't Do It  
• Do Fewer  
• Do It Later  
• Do It, But Don't Do It Again  
• Do It Cheaper  

 
To avoid useless or unnecessary computation, Don't Do It. Most unnecessary computation can be avoided 
by simply restructuring the program. If it isn't necessary--for example, freeing data structures during the 
shutdown of a program--don't waste the cycles doing it.  
 
Do Fewer calls for services. By making fewer calls you reduce the number of context switches that can 
dramatically slow down your program. Instead of requesting files that don't exist, double check the status of 
the requested file first, and then request only those.  
 
By delaying computations or requests until they are needed or solicited, you can Do It Later. If your 
program can wait and make the calls for service during what would otherwise be user idle time, then the 
performance penalty of the context switch and service delay can be effectively hidden from the user.  
Do It, But Don't Do It Again and cache a result, if possible, for later reuse. For example, X-Windows 
client's widgets often cache data available via a round-trip request to the X server. Changing your requests 
to use the cached data can save this expensive round trip request time.  
 
You can solve bottlenecks caused by needlessly re-computing a string's length this way as well. Computing 
the value once, outside of the loop, storing it as a variable, and then using the stored length when needed 
will dramatically improve the performance of your program.  
 
Finally, Do It Cheaper. Use an alternative algorithm that is less costly. For example, using a bubble sort 
when sorting a set of elements requires time proportional to the square of the number of elements in the set.  
 
On the other hand, using a quicksort requires time proportional to the number of elements multiplied by the 
log of the number of elements. Consequently, it is cheaper to use a quicksort routine for a large number of 
elements.  
 
These five approaches can serve as a guide as you attack the bottlenecks Rational Quantify finds in your 
code.  
 

Summary 
 
Rational Purify provides memory access checking and memory leak detection. It fits cleanly into the 
development environment by instrumenting the program under test without a recompilation. Most 
important, Rational Purify yields executables that are fast enough to use during the entire development and 
test process. Rational Purify's relatively low overhead, ease of setup, and thorough error detection 
everywhere in an application, permits more robust software to be developed faster, yet it entails no 
overhead in code delivered to customers. Rational Purify can help bridge the gap between a program 
plagued by intermittent errors and that same program working robustly and continuously over long periods 
of time.  
 
Rational Quantify collects repeatable performance data on an application, enabling software developers to 
quickly identify the source of bottlenecks in whichever component they occur, and to measure the 
improvement resulting from changes. It does this without forcing developers to change the way they do 
their work, create special profiling builds, or cause them to take a tremendous ‘hit’ in run-time 
performance. Rational Quantify provides clear, concise views and analysis of the performance data and 
supports solid performance engineering practices by actually verifying performance improvements made in 
applications Rational Purify and Rational Quantify help developers to develop faster, more reliable code.  
 
 
For additional information on Rational Purify and Rational Quantify, including a fully functional 15 day 
evaluation download, visit http://www.rational.com/products/pqc/index.jsp  Try them both today! 
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