
IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

IBM Rational XDE
Developer v2003.06.12 —
.NET Edition

Evaluators Guide

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

2

Contents
INTRODUCTION ..4
WELCOME TO RATIONAL XDE DEVELOPER ..5

SUMMARY OF KEY BENEFITS ..5
INSTALLING RATIONAL XDE DEVELOPER PLUS..6
GETTING STARTED ..7

INTEGRATED DESIGN AND DEVELOPMENT..8
EXPERIENCE INTEGRATED DESIGN AND DEVELOPMENT ..9

Creating UML Models from Code..10
Visualizing the .NET Framework Classes ..11
Viewing Code and Model Simultaneously ...14
Synchronizing Code and Model Automatically..15

BENEFITS OF INTEGRATED DESIGN AND DEVELOPMENT ..16
UNDERSTANDING YOUR CODE..18

EXPERIENCE UNDERSTANDING YOUR CODE..18
Loading and Running the Scribble Application..18
Creating a UML Model from Code...19
Visually Tracing the Scribble Application..20
Manipulating Your Trace Diagram...22
Identifying Application Behavior with Visual Trace: Creating New Documents...22
Identifying Application Behavior with Visual Trace: Creating New Views ..24

BENEFITS OF UNDERSTANDING YOUR CODE ...25
DEVELOPING WEB SERVICES ..27

EXPERIENCE DEVELOPING WEB SERVICES ..27
Creating a Web Service ..28
Testing a Web Service ..31
Using a Web Service in Your Legacy Applications ...32

BENEFITS OF DEVELOPING WEB SERVICES..34
DEVELOPMENT WITH CUSTOM PATTERNS AND TEMPLATES ...35

EXPERIENCE DEVELOPMENT WITH CUSTOM PATTERNS AND TEMPLATES ..35
Creating a New Pattern ...37
Defining Pattern Parameters ...38
Testing Your Pattern...39
Applying Your Pattern..40
Binding Code Templates to Patterns...41
Generating Code from Code Templates..44

BENEFITS OF DEVELOPMENT WITH CUSTOM PATTERNS AND TEMPLATES ...45

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

3

FLEXIBLE TEAM DEVELOPMENT AND CONFIGURATION MANAGEMENT...47
RATIONAL REQUISITEPRO INTEGRATION..48
EXTENDING YOUR DEVELOPMENT EXPERIENCE ..49
CONCLUSION ...51
APPENDIX: RATIONAL XDE DEVELOPER INTERFACE OVERVIEW...52

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

4

Introduction
Welcome to the IBM Rational XDE Developer v2003.06.12 — .NET Edition Evaluators Guide. This guide has
been created to help you evaluate IBM® Rational® XDE™ Developer and the unique benefits it brings to
developers. Exercises in the guide will enable you to experience the product first-hand.

This guide is divided into the following sections:

• Welcome to Rational XDE Developer — An overview of Rational XDE Developer, including a
summary of its key benefits and instructions for installing an evaluation copy of the software and
getting started.

• Sections containing step-by-step exercises (each of which will take about 20 minutes to complete):

• Integrated Design and Development

• Understanding Your Code

• Developing Web Services

• Development with Custom Patterns and Code Templates

The exercises are largely independent of each other; however, for the best introduction to Rational
XDE Developer we recommend that you follow them sequentially.

• Flexible Team Development and Configuration Management — An overview of the integration
between IBM Rational ClearCase® products and Rational XDE Developer, enabling you to distribute
the development of models and code across your team based on your needs.

• Rational RequisitePro Integration — An overview of the integration between IBM Rational
RequisitePro® and Rational XDE Developer, enabling you to manage software requirements
documented in use cases.

• Extending Your Development Experience — An overview of the Rational Domain on IBM
developerWorks, a Web site that provides a wealth of information for software professionals,
including information about Rational XDE Developer and Microsoft® Visual Studio .NET technology.

We hope that you find this guide to be a convenient resource.

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

5

Welcome to Rational XDE Developer
Rational XDE Developer has been designed from the ground up as an extended development environment.
Fully integrated into the Microsoft Visual Studio .NET integrated development environment (IDE), Rational
XDE Developer enables developers to design and code within a single environment, avoiding the need to
switch between different, nonintegrated tools.

If you are already familiar with Visual Studio .NET, you will find the Rational XDE Developer user interface
very familiar. If this is your first exposure, you may want to visit the appendix of this guide to see an
overview of the common windows you will be manipulating during the exercises.

Summary of Key Benefits
Rational XDE Developer enables you as a software developer to:

• Do more in your IDE — Traditional lifecycle support tools are only loosely coupled to your
development environment; they have their own user interface, requiring you to use ALT+TAB to go
back and forth between the two environments. This makes for an awkward and unproductive user
experience. Rational XDE Developer offers a smoothly integrated environment that enables you to be
much more productive.

• Develop solid code faster — You care about writing code: you want to do it fast, and you want it
to be good, solid code. You know that visual modeling can help document and communicate your
code’s design, and that analyzing and debugging your code as you write it will make it more solid.
But you’re afraid that modeling and analysis tools will slow you down and get in the way of writing
solid code. Rational XDE Developer doesn’t get in your way; it helps you write better code faster. Its
unique code template and patterns features enable reuse at both the code and model levels, which
speeds up development, and its special “assisted modeling” capabilities let you create and edit
Unified Modeling Language (UML) models in terms you know well from your IDE and its languages.
Rational XDE Developer also offers runtime analysis tools that detect memory errors, highlight
application performance bottlenecks, and identify untested code. These features help you find
problems in your code and fix them before they surface in your customer’s environment.

• Develop more easily on a team — Software development is a team sport. As a member of a
software team, you have to deal with documentation, communication, requirements, version control,
defect tracking, reporting, and overall process management. But you don’t want these activities to
get in your way — and Rational XDE Developer liberates you from these challenges. It integrates with
Rational RequisitePro for viewing and managing ever-changing requirements. Additionally, Rational
XDE Developer integrates with Rational ClearCase to give you version control features right inside
your IDE, and with IBM Rational ClearQuest® to enable you to create defect reports instantly upon
finding bugs when you analyze your code.

In addition:

• The Rational XDE Developer Plus edition is a superset of Rational XDE Developer that includes the
Visual Trace capability and IBM Rational PurifyPlus. (The evaluation software is a copy of this
edition.)

• The IBM Rational Unified Process® (RUP®) methodology offers best practices and a configurable
process framework for guiding your development activities, and there is a special RUP configuration
for .NET developers (as well as one for Java developers).

• A plug-in is available for Extreme Programming (XP) that offers lightweight best practices designed
specifically for that development practice.

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

6

Installing Rational XDE Developer Plus
Before installing the evaluation software, first make sure your system complies with the following
requirements:

Operating
system

• Windows 2000 Professional, Service Pack 2 or Service Pack 3
(Service Pack 2 is recommended)

• Windows 2000 Server, Service Pack 2 or Service Pack 3
• Windows 2000 Advanced Server, Service Pack 2 or Service Pack 3
• Windows XP Professional, Service Pack 1

Supported
platform

Microsoft Visual Studio .NET 2003

(Microsoft Visual Studio .NET 2002 is also supported, but this guide
assumes 2003 throughout.)

Processor Minimum: Pentium III class, 500 MHz
Recommended: Pentium III class, 1 GHz or higher

RAM Minimum: 512 MB
Recommended: 1 GB

Disk space Minimum: 500 MB for installation directory, 100 MB for workspace
Recommended: 2–5 GB for workspace

Video (screen
resolution)

Minimum: 800 x 600 pixels, 256 colors
Recommended: 1024 x 768 pixels, 16-bit color

Follow these steps to install and start the evaluation copy of Rational Rose XDE Developer Plus:

1. If you are installing from the IBM Software Development Platform – Software Evaluation Kit (SEK)
Windows platform DVD:

a. In the Design and Construction section on the main user interface:

i. Click WebSphere to get to the Rational XDE Developer Plus Java evaluation

ii. Click Microsoft .NET to get to the Rational XDE Developer Plus .NET evaluation

iii. Click Other Leading IDEs to get to the Rose Enterprise evaluation

b. Within each of these child user interfaces, click the Evaluation installation link on the left
navigation bar to download the self-contained executable product evaluation package and
save the .exe to a temporary directory.

c. Within each of these child user interfaces, click the Evaluation registration link on the left
navigation bar to go to the ibm.com website to register for your product evaluation license
key. Fill out the online form and follow the steps that will lead to the product evaluation
page. This page provides you with the ability to download the product evaluation (which you
should ignore, if you downloaded the evaluation from the DVD), and access to the product
evaluation license key.

d. Copy the license key to the folder in which you installed the product evaluation.

2. If you are installing Rational Rose XDE Developer Plus from a Web download:

a. Download the self-contained executable product evaluation package and save the .exe to a
temporary directory.

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

7

b. Double-click the .exe package and begin the installation.

c. Don’t forget to copy the license key from the product evaluation download web page to the
folder in which you installed the product evaluation.

Getting Started
1. Click Start > Programs > Microsoft Visual Studio .NET 2003 > Microsoft Visual Studio

.NET 2003 to start Visual Studio .NET and Rational XDE Developer Plus.

2. Click File > New > Blank Solution. Keep the default selections: Visual Studio Solutions as the
project type and Blank Solution as the template.

This Visual Studio .NET blank solution will hold the projects created in the subsequent exercises.

3. Name the solution Test Drive and accept the default location. Click OK.

You are now ready to experience the power of Rational XDE Developer Plus, using the Test Drive solution as
your starting point for the exercises in this guide.

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

8

Integrated Design and Development
Rational XDE Developer lets you combine your design and your development into a seamless, tightly
integrated experience. This extended development environment provides essential developer capabilities that
are fully integrated into the Microsoft Visual Studio .NET technology, thereby providing a consistent look and
feel.

Modeling capabilities are now as much a part of your IDE as your code editor, compiler, and debugger. With
this combined environment, your primary development tools all follow the same menus, gestures, and usage
metaphors, accelerating your learning curve and promoting the use of design, code generation, and code
synchronization as a daily function. Ultimately, this leads to developing better software, faster.

With Rational XDE Developer, you model using the industry-standard Unified Modeling Language (UML). With
this common language, communication is better, development time is shorter, complex systems are easier to
understand, and designs are cleaner and easier to maintain. Rational XDE Developer automatically generates
the UML representation of your code directly from your source files. The generated models are beneficial for
documenting your work, understanding complex projects through visualization, and harvesting your work for
future reuse.

Figure 1. Design and Development Within One Environment — Developers can access the
code and the model simultaneously.

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

9

Experience Integrated Design and Development
In this section, you will gain experience with the following Rational XDE Developer features:

• Creating a model for a new Visual Studio .NET project

• Automatic or manual code synchronization

• Modeling references to the .NET Framework

• Visualizing code using the Unified Modeling Language

While creating a simple C# application, you will see Rational XDE Developer build the visual model for the
application, and you will use this model to understand how the application fits within the Microsoft Visual
Studio .NET Framework. Along the way, you will experience using Rational XDE Developer to quickly change
properties of multiple elements. Finally, you will see automatic synchronization in action by modifying your
model and watching your code update, and then by modifying your code and watching your model update.

1. If you have experimented with auto-synchronization before reaching this exercise, do the following to
check that it is turned off (as assumed by this exercise): click Tools > Options and, on the left in
the dialog box, expand the Rational XDE folder and then Round-Trip Engineering to see the
Auto Synchronization options; make sure Automatic Synchronization is not selected. Click OK.

2. With the Test Drive solution open, click File > New > Project.

3. Select Visual C# Projects as the project type and Windows Application as the template.

4. Rename the project as DateAndTime and keep the default location.

5. Verify that the Add to Solution button is selected. Click OK.

The DateAndTime project is added to the Test Drive solution.

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

10

6. Click the Toolbox button located on the left side of the Visual Studio .NET IDE. (If the Toolbox
button is not visible, click View > Toolbox.)

7. Click the Button tool and then click in Form1 where you want to place the control.
Repeat this step for a text box . Leave the default names (button1 and textBox1).

8. Double-click button1 to open the source code window for the button.

9. Complete the button1_Click method with the following call:

textBox1.Text = DateTime.Now.ToString();

The method should look like this:

10. In the Solution Explorer, right-click the DateAndTime project and click Debug > Start new
instance to build and execute the application.

11. Verify that the application displays the date and time in textBox1 when you click button1.

12. Quit the application by closing the Form1 window.

Creating UML Models from Code

13. In the Solution Explorer, select the DateAndTime project and click the Synchronize button .

A Rational XDE Developer model, DateAndTime.mdx, is added to the DateAndTime project.

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

11

14. Click the Model Explorer tab and notice the DateAndTime model.

15. Expand the namespace and the Form1 class to view the methods, attributes, and
UML associations for the Form1 class created during synchronization.

Key Benefit

Rational XDE Developer and Visual Studio .NET work together using shared technology and tight
integration to enable you to create a UML design model of your application with just one click from within
the Visual Studio .NET IDE. You can visually model your code without ever leaving your favorite
development environment, making designing your applications easier than ever.

Visualizing the .NET Framework Classes

16. From the Model Explorer, drag the Form1 class () onto the drawing surface, where the
Main diagram should already be opened.

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

12

17. Right-click Form1 in the diagram and click Add Related Shapes ().

This adds to the current diagram additional model elements that are related to the element selected
in the diagram.

18. In the Add Related Shapes dialog box, set Select in Model(s) to All Models. Keep the Expands to
N Levels setting at 1. Click OK.

Key Benefit

Through a visual model, Rational XDE Developer helps you learn about the .NET Framework and
understand how your application uses the .NET Framework components. By expanding your classes, you
can quickly view dependencies between your application and specific .NET Framework components. This
information gives you access to the system library details you need while building your application.

Rational XDE Developer lets you refine the search criteria when adding related shapes to your diagram.
You can add related shapes based on relationship type and the model in which they reside. This level of
flexibility enables you to easily visualize your code at just the right level of abstraction.

19. Click Edit > Select All Shapes to select all the shapes in the diagram.

20. In the Properties window (, located at the bottom right), scroll down to the View
section and enter 4000 for Height and 3000 for Width. Click elsewhere to make the diagram reflect the
change.

Note that only the properties common to all selected elements are displayed.

Key Benefit

Rational XDE Developer’s tight integration with Visual Studio .NET provides a seamless way to modify
properties of multiple model elements in one gesture, the same gesture that you use when you develop
your application.

21. Click the diagram tab to give the focus to the diagram.

22. On the toolbar, click the Arrange All Elements button and change the Zoom factor to 75%

 for better viewing.

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

13

Key Benefit

A number of mechanisms are available for arranging and viewing your diagrams, saving you time and
effort while maximizing the value of your model information.

23. Use the crosshairs in the bottom-right corner of the diagram to navigate the diagram with a
bird’s-eye view.

Key Benefit

Rational XDE Developer goes beyond the ability to store designs in multiple models; it maintains live
references across models. Cross-model references let you remain in your current model and make
updates to elements located in other models, eliminating duplicate work. This also gives you the freedom
to organize your application development efforts to best suit your team’s needs. References across
models are indicated visually with a black arrow icon in the upper-left corner of the model, for easy
identification. Full search and replace capabilities across models ensure that you can maintain model
integrity and consistency without added effort.

24. Using the CTRL key, select three of the classes displayed in the Main diagram.

25. Click the fill color button on the main toolbar and select a new color.

The background of the selected classes changes to that color.

 Crosshairs

Cross model
reference

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

14

Key Benefit

Rational XDE Developer provides formatting options, such as colors, that you can use to make your
diagrams easier to read and understand.

Viewing Code and Model Simultaneously

26. At the top of the drawing area, click the tab, which represents the code view for the
Form1 class.

27. Drag the tab to the bottom of the IDE (the mouse pointer will resemble a document as you do this);
then release the mouse button.

Key Benefit

You can customize your work area to see both the visual model and your code at the same time, enabling
you to work on either the code or the model and see how your changes affect each area.

28. With Form1 selected in the diagram, click Format > Auto Resize to better view the text of
attributes and operations.

29. Right-click Form1 in the Main diagram and click Browse Code to view the code for that form in the
Visual Studio IDE code editor window.

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

15

Key Benefit

Rational XDE Developer conveniently takes you to the location in the code that applies to your selection
context.

Synchronizing Code and Model Automatically

30. Click Tools > Options. On the left, scroll down, expand the Rational XDE folder, and then expand
Round-Trip Engineering to see the Auto Synchronization options.

31. Select the Automatic Synchronization check box. Keeping other settings at their defaults, click
OK.

Key Benefit

You can leave the burden of keeping your code and model in sync to Rational XDE Developer. Turning
auto-synchronization on will save you the hassle of manually synchronizing your code with your model.
Additionally, Rational XDE Developer lets you decide when synchronization should occur and how
conflicts between code and model will be handled. Because auto-synchronization upon each and every
change can be distracting, you can turn it off until you are ready to generate code from your model.

32. In the Main diagram, right-click the Form1 class and click Add UML > Operation.

33. Name the new operation GetFormNumber. Click away from the class and notice that the Model
Explorer displays the new operation.

Key Benefit

Rational XDE Developer provides multiple representations of model elements and keeps them in sync at
all times.

34. With Form1 selected in the diagram, click Format > Signature > Operation Signature to display
the operation signatures in the diagram.

35. On the toolbar, click the Arrange All Elements button .

36. Click the tab.

Because auto-synchronization is on, this action automatically updates the Form1 code with the new
GetFormNumber operation.

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

16

37. Modify the source code as follows:

38. Click in the Main diagram.

Because auto-synchronization is on, the synchronization between code and model is automatically

initiated, as indicated by the pulsing Synchronize icon on the Rational XDE Developer status bar.

39. Wait until the pulsing icon on the status bar disappears, indicating that the synchronization is
complete. Once the code and model are synchronized, you can see that the changes you made to the
Form1 class were automatically updated in the model file.

Key Benefit

With auto-synchronization turned on, changes to your source code are automatically updated in your
model. Because Rational XDE Developer keeps the visual representation of your application current, you
can work where you feel most comfortable, either in the model or in the code, without the hassle of
having to manually synchronize the two.

40. In the Solution Explorer, right-click the DateAndTime project and click Save DateAndTime.

41. Close the , , and windows.

Benefits of Integrated Design and Development
Having integrated design and development increases your productivity by providing an extended
development environment in which the code and the model can be kept synchronized at all times. By
handling code-model synchronization for you, Rational XDE Developer lets you work where you feel most
comfortable, either in the model or in the code. You simply specify synchronization rules to resolve any
conflicts between code and model, and Rational XDE Developer handles the rest.

Additionally, Rational XDE Developer maximizes your efficiency by letting you decide when to turn on auto-
synchronization. When you want to test a few designs or apply some patterns without committing the model
changes to code, you can turn off auto-synchronization. Other times, when you don’t want to have to think

Updated attribute

Updated operation

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

17

about whether your code and model are in sync, you can turn on auto-synchronization, and any change in
the model or code will automatically be synchronized.

The tight, seamless integration of Rational XDE Developer with Visual Studio .NET makes modeling
capabilities as much a part of the IDE as the code editor and debugger. You can quickly visualize your code in
UML models to gain a better understanding of the relationships and dependencies between the code and the
.NET components it uses. Rational XDE Developer provides flexible options for expanding, arranging, and
navigating model elements, so you can instantly visualize specific areas of interest. You can use this same
functionality to manipulate visual models of the .NET assemblies provided by Rational XDE Developer, further
accelerating your .NET Framework learning curve.

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

18

Understanding Your Code
A very real challenge for developers is maintaining, debugging, and enhancing code they may not have
written. Typical visual modeling tools use UML to visually describe the static aspect of code, classes, methods,
attributes, relationships, and so on. In most cases this static information is not sufficient; developers need to
understand how the application behaves. Typically, the best approach to understanding application behavior
has been a tedious one of strategically setting breakpoints and stepping through the code. This approach can
be time-consuming and difficult, especially for the event-driven code that is typical of user interface
development.

Rational XDE Developer Plus facilitates the process of diagnosing and understanding application behavior with
Visual Trace, a capability that visualizes program execution for run-time analysis. Object creation, deletion,
and interaction are all completely evident. Visual Trace records object information only for classes specified
by the user, making it easy to pinpoint specific program behavior. Since Visual Trace captures only the code
actually executed, the resulting trace diagram is not cluttered with every conditional path through the code.
Trace diagrams provide a way to automatically document and communicate program behavior with the rest
of the team.

Experience Understanding Your Code
In this section, you will gain experience with the following Rational XDE Developer Plus feature:

• Visual Trace

Multiple Document Interfaces (MDIs) are the standard user-interface approach to many window-based
applications, the most notable being word-processing applications that allow the user to open and modify
multiple documents at the same time. In this exercise, you will use the Visual Trace capability of Rational XDE
Developer Plus to understand how the Scribble application, a simple MDI, works. You will use the Visual
Trace capability to identify specific program behavior, such as how to create a new document and view, how
documents interact with multiple views, and how main menu settings, such as changes to the Scribble pen,
affect individual child windows.

Loading and Running the Scribble Application

Note that, because the Visual Studio .NET samples do not typically get installed when you install Visual Studio
.NET, you will likely be asked for your Visual Studio CD (or a network location from which you installed Visual
Studio .NET) at the start of the exercise.

1. On the Start page, click the Online Resources tab. If the Start page is not visible, click Help >
Show Start page.

2. Click Get Started in navigation bar on the left.

3. Click Visual C# Developer in the Samples Profile drop-down list.

4. Keep the Keyword default value selected for the Filter by field. In the Filter by text box, type
scribble and click Go.

5. Click the search result. You
may be asked to locate the sample solution file, in which case you can either load your Visual Studio
.NET CD or point to the network location from which you installed.

6. Click and accept the default location of My Documents.

Note: In this exercise, you copy the sample files, rather than load them, to remain within one
instance of Visual Studio .NET. Loading the files would invoke another instance of Visual Studio .NET,
and running multiple instances of Visual Studio .NET can become memory-intensive.

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

19

7. Click File > Open Solution and navigate to the MyDocuments\samples\Visual C# .NET 2003\
General\Scribble\ directory.

8. Select Scribble.sln and click Open. If asked to save changes to the Test Drive solution, click Yes.

9. Press F5 to build and run the Scribble application.

10. Drag the mouse within the ScribbleDoc1:0 window to draw.

11. On the main Scribble menu, click File > New to create a new document, ScribbleDoc2:0.

12. On the main menu, click Pen > Thick Line to enable a thicker drawing line.

13. Drag within the ScribbleDoc2:0 window to draw.

14. Click other menu options to familiarize yourself with the application.

15. On the main menu, click File > Exit to close the Scribble application. A dialog box will prompt you to
save your changes; click No.

Creating a UML Model from Code

16. In the Solution Explorer, select the Scribble project and click the Synchronize icon

.

Rational XDE Developer will synchronize the entire project and create a new UML model from the
code.

17. In the Model Explorer, locate and expand the Scribble namespace to view the classes recognized
during synchronization.

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

20

Visually Tracing the Scribble Application

18. On the main menu, click PurifyPlus > Visual Trace > Engage Visual Trace.

19. In the Visual Trace Settings dialog box, expand the Scribble folder and the Scribble namespace.

20. Add the four classes displayed in the Scribble namespace to the list of selected classes.

These are the same four classes you just viewed in step 17.

21. Expand the External package and add the System.Drawing.Pen class.

22. Click Finish.

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

21

Key Benefit

The Visual Trace capability of Rational XDE Developer Plus enables you to identify program behavior
quickly by capturing trace data for only the classes you specify. You can even specify .NET Framework
classes used by your application to understand how your application interacts with those components.

23. Select PurifyPlus > Visual Trace > Engage Visual Trace to start the trace.

24. Press Ctrl F5 to build and run the Scribble application again. Watch the Visual Trace diagram build as
the application runs.

25. Drag within the ScribbleDoc1:0 window to draw.

26. On the main menu, click File > New to create a new document, ScribbleDoc2:0.

27. Drag within the ScribbleDoc2:0 window to draw.

28. On the main menu, click Pen > Thick Line.

29. On the main menu, click Window > New Window to create a new view of ScribbleDoc2:0, labeled
ScribbleDoc2:1.

The naming convention, ScribbleDocdocument-number:view-number, distinguishes documents and
their views. In this case ScribbleDoc2 has two views, view 0 and view 1.

30. Position ScribbleDoc2:1 and ScribbleDoc2:0 so that you can see them simultaneously.

31. Drag within the ScribbleDoc2:1 window to draw. Note how both windows are updated, yet
ScribbleDoc1:0 is not.

Views pointing to the same document are all updated when the document changes, even if they are
not the active view.

32. On the main menu, click File > Exit. Do not save your changes.

Congratulations! You have just created your first trace diagram.

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

22

Key Benefit

Visual Trace diagrams provide a quick, visual way for you to perform run-time analysis and assess the
health of your application. Code coverage information is captured for the classes under trace, indicating
the percentage of code exercised during the trace. Method execution time is displayed adjacent to each
method, making it easy to identify potential application bottlenecks. For multithreaded applications, the
active thread is color-coded so that you can visually determine the functions executed per thread.

Manipulating Your Trace Diagram

33. Scroll to the top of the trace diagram and slowly scroll down until you locate the
MouseMoveHandler(Object,MouseEventArgs) message.

34. Right-click the message and click Filter Message on the context menu.

35. Repeat this for the PaintHandler(Object,EventArgs), GetCurrentPen(), Min(int32,int32), and
Max(int32,int32) messages.

Key Benefit

You can easily filter specific messages that are not relevant to the program behavior you are trying to
capture and diagnose. To facilitate iterative debugging, you can store several messages in a single filter
and just apply the filter to a later trace diagram.

Identifying Application Behavior with Visual Trace: Creating New Documents

During the trace, you created multiple documents (ScribbleDoc1:0 and Scribble2:0) and a single document
with multiple views (Scribble2:0 and Scribble2:1). Using the trace diagram, you will be able to identify and
understand how documents and views communicate.

Method execution times

Code coverage
and active thread
information

The amount of code exercised
increases as the application
continues to execute.

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

23

36. From the top of the trace diagram, scroll down until you can identify where obj0:MainWindow
handles a menu event. Here you can see how the MainWindow class creates a new ScribbleDoc
object.

Hint: Holding your mouse button down on a lifeline will display the object and elapsed time at that
point in the lifeline.

37. Scroll down slightly and follow the ScribbleDoc(MainWindow) message to the right. You can see
obj1:ScribbleDoc create a new pen object, obj1:Pen, associated with the document, and then create
a new view associated with the document.

Since a pen appears to be associated with a specific document, we can deduce that two documents
can have different pen styles and that switching between documents will maintain the appropriate
pen selection.

38. Scroll further down in your trace diagram to where the obj0:MainWindow is notified that a ThickPen
menu event has occurred. Here your deductions are confirmed.

39. Scroll slightly to the right. You can see obj0:MainWindow obtain the current document from the
active ScribbleView view, obj1:ScribbleView. Then obj0:MainWindow calls the ReplacePen function

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

24

for the current document. Using the call stack would be one way to determine the value of the
current document. Using the trace diagram, you can determine the current ScribbleDoc document
associated with the active ScribbleView view by following the ReplacePen message. Here you can
see it is obj1:ScribbleDoc.

Identifying Application Behavior with Visual Trace: Creating New Views

40. Scroll further down in your trace diagram to where obj0:Scribble.MainWindow is notified that a
NewWindow menu event has occurred.

41. Scroll to the right and you will see obj0.Scribble.MainWindow obtaining the current ScribbleDoc
document from the active view, obj1:ScribbleView. Next, obj0.MainWindow creates a new
ScribbleView object, ojb2.ScribbleView, associated with the current document.

42. Scroll to right and locate the obj2.System.DrawingPen lifeline. (Remember, you can identify the
correct lifeline by holding the mouse button down over the line until the name appears.)

43. Right-click on the lifeline and click Filter Lifeline to remove this lifeline from the view.

44. Right-click in the trace diagram and click Zoom Out to make the diagram more readable.

Key Benefit

Trace diagrams come with a number of formatting options so that you can visually identify key
application behavior quickly.

45. Scroll down and locate the MouseDownHandler(Object,MouseEventArgs) message. This message
occurred when you held the mouse button down to draw in the ScribbleDoc2:1 window. It’s
worthwhile to understand how both views are updated when you modified the ScribbleDoc document
with which they were associated. Below you can see that the active view handles the mouse input.
When the mouse button is released, this indicates that the drawing process is complete. The active
view then notifies the active document, which then updates every view associated with it. From this

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

25

you can deduce that a view must maintain the document with which it is associated, and a document
must maintain a list of all the views associated with it.

46. Right-click the UpdateAllViews(Scribbleview,Stroke) message and click Browse Code. Here you can
see that ScribbleDoc parses a list of views and determines whether they need to be updated with the
recent changes to the document.

Key Benefit

Using trace diagrams, you can easily toggle between a high-level view of your application and source-
level details, to gain the required level of understanding for specific application functionality.

47. Right-click in the trace diagram and click Generate Sequence Diagram.

48. In the New package to contain sequence diagram text box, rename Diagram to Scribble Trace.

49. Click Finish. You may need to filter additional messages or lifelines if the trace diagram is too large.

50. Close all diagrams.

Key Benefit

You can automatically document program behavior by creating standard UML sequence diagrams from
your trace diagrams. Standard sequence diagrams can be used to communicate specific program
behavior with all team members, to facilitate the debugging and testing process.

Benefits of Understanding Your Code
The Rational XDE Developer Plus Visual Trace capability saves countless hours by simplifying the process of
understanding application behavior. By capturing the execution of your application in a trace diagram, the
Visual Trace capability lets you visualize program behavior beyond a single stack frame. Trace diagrams also
include code coverage data and timing and thread information, which help facilitate run-time analysis. You
can even set breakpoints and step through your code while recording the execution of your application with
Visual Trace — a powerful way to understand object interaction and program behavior.

Stepping through source code is not always an effective or efficient method for understanding the behavior of
your application, because this approach forces you to wade through functionality that is not essential to the
basic flow of your application. Trace diagrams enable you to visualize program behavior at the appropriate
level of abstraction. To identify specific program behavior faster, you can streamline the trace view by
filtering out the application methods or objects that are not relevant to your current investigation. Once you
have identified critical functionality in the trace diagram, you can quickly move to the source code for the
details you need.

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

26

Visual Trace also provides ways to automatically document and communicate program behavior. Using trace
diagrams, you can generate standard UML sequence diagrams, which can then be shared with your teams
and other project stakeholders.

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

27

Developing Web Services
Rational XDE Developer’s support for Web services enables you to visualize your existing systems, your new
applications, and the interfaces each will require.

As a member of an IT organization, you are rarely faced with the ease of developing an isolated application.
A more typical scenario is that you are concerned not only with the system you are building but also with a
number of existing systems your organization has already developed, and with how the new system will fit
into the overall system architecture. Using Rational XDE Developer’s support for Web services, you can
visualize the overall architecture and see which interfaces already exist and which ones need to be created.
These can be interfaces with legacy COBOL code, Visual Basic code, or even a recently created C#
application. The interfaces can be written in native code or based on industry standards such as Web
services.

Figure 2. Creating Web Services — During development of Web services, Rational XDE Developer
creates stereotyped UML classes to represent the Web service elements.

Experience Developing Web Services
In this section, you will learn how to do the following with Rational XDE Developer:

• Model Web services with ASP.NET and Visual Basic .NET

• Model key client relationships with the Web services

• Conveniently view WSDL files as UML classes

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

28

• Assisted modeling

Today, Web services are used predominantly to interface with legacy systems developed with various
technologies, including Visual Basic and COBOL. Web services provide a standard protocol using SOAP,
WSDL, and UDDI to interface between the same or different technologies rather than create language-
specific interfaces. In this exercise, you will create a Web service that retrieves the current time. You will then
update a legacy application, the DateAndTime application, to take advantage of your new Web service.

You must have successfully completed the “Integrated Design and Development” exercise before beginning
this one. Also, if you are performing this exercise for the second time, be sure to remove the existing
TimeService Web service by deleting the TimeService folder in your /Inetpub/wwwroot/ directory.

1. Turn off auto-synchronization, as follows: click Tools > Options and, on the left, click the Rational
XDE folder and then the Round-Trip Engineering folder to see the Auto Synchronization
options; click the Automatic Synchronization check box to clear it. Click OK.

2. With the Test Drive solution open, click File > New > Project.

3. Select Visual Basic Projects as the project type and ASP.NET Web Service as the template.

4. Change the location to http://localhost/TimeService.

5. Verify that the Add to Solution button is selected. Click OK.

A Create New Web Service status message appears; once it disappears, the empty Web service has
been created.

Creating a Web Service

6. In the Solution Explorer, select the TimeService project and click the Synchronize button .

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

29

7. In the Model Explorer, right-click the TimeService model () and click Add
Diagram > Class. Keep the Diagram1 default name.

8. Expand the namespace to view the UML elements that were created during
synchronization.

9. Drag the Service1 class and the Service1 Web service onto the class diagram. Keep the
Service1 default name.

10. On the toolbar, click the Arrange All Elements button .

11. Select Service1 <<NETWebServiceProxy>> and click Format > Stereotype and Visibility Styles >
Shape Stereotype:Icon.

Key Benefit

Upon synchronization of your Visual Studio Web service project, Rational XDE Developer creates two UML
classes. The first class represents the XML Web service entry point, the .asmx file, and is easily
recognized by the <<NETWebServiceProxy>> stereotype. The second class represents the actual
implementation of the Web service, which Visual Studio .NET refers to as the code-behind file. Rational
XDE Developer conveniently maintains a <<NETWebServiceProxy>> stereotyped relationship between
the Web service class and the code-behind file. Using the UML class representations of these Web service
files, you can easily model Web service functionality and even begin to create customized Web service
patterns.

12. In the class diagram, right-click the Service1 class (the one with the + WebServiceClass role) and click
Add Visual Basic > Method. Name the operation getTime.

13. In the Add Visual Basic Method dialog box, locate the ReturnType property, click the button, and
click Attributes Types > System.DateTime. Click OK.

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

30

14. In the Method Attributes text box, type WebMethod. Click OK.

Key Benefit

Rational XDE Developer accelerates your UML learning curve by building on what you already know: C#,
Visual Basic .NET, or ASP.NET. You can drag language-specific elements from the C#, Visual Basic, or
Web tools in the Rational XDE Developer Toolbox to create UML models using a vocabulary you already
understand.

15. In the Model Explorer, expand the Service1 class and expand the getTime operation to see that it has
been updated to return the System.DateTime type.

16. Select the model in the Solution Explorer and click the Synchronize button

.

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

31

17. Right-click the Service1 class in the Model Explorer and click Browse Code to open the .asmx.vb
code-behind file.

18. Right-click the getTime operation in the Model Explorer and click Browse Code.

19. Add the following code to the getTime operation:

20. In the Solution Explorer, right-click the TimeService project and click Save TimeService.

Congratulations! You have just created a Web service. Next you will test this new Web service.

Testing a Web Service

22. In the Solution Explorer, right-click the TimeService project and click Debug > Start new instance.

Visual Studio .NET automatically creates a test harness to test your Web service.

23. In the browser window that appears, click .

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

32

24. Click the Invoke button. The following display (showing the current date and time) indicates that
your Web service has been successfully created.

25. Close both browser windows that were opened by this exercise.

Using a Web Service in Your Legacy Applications

Previously you created a C# application, DateAndTime, to get the current date and time. You will now update
this existing application to obtain the current date and time using your new Web service.

26. In the Solution Explorer, right-click the DateAndTime project and click Add Web Reference.

Key Benefit

Reviewing a WSDL XML document to determine Web service functionality can be a tedious task. Rational
XDE Developer conveniently displays the WSDL XML document as a UML class so that you can quickly
identify and understand the functionality available from the Web service. When you add a Web reference
in Visual Studio .NET, Rational XDE Developer creates two new UML classes: the first represents the
WSDL document and the second represents the proxy class generated by Visual Studio .NET. Using the
UML representation of the proxy class, you can model client interactions with the Web service as if it
were a locally available component.

27. In the URL text box, enter http://localhost/TimeService/Service1.asmx. Click Go to the right of this
box.

28. Enter TimeWebService for the Web reference name.

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

33

29. Click the Add Reference button. In the Solution Explorer, notice that the DateAndTime project now
includes a Web reference to the TimeService Web service.

30. Select the DateAndTime project in the Solution Explorer and click the Synchronize button .

In the Model Explorer, you can see that during synchronization Rational XDE Developer created the
 namespace in the DateAndTime model.

31. In the Model Explorer, right-click the DateAndTime model file () and
click Add Diagram > Class. Name the diagram TimeService.

32. Expand the namespace and drag the Form1 class () onto the diagram.

33. Expand the namespace and drag the Service1 class () onto the diagram.

34. Click the Directed Association tool in the Toolbox and drag from Form1 to Service1.

35. While the association is still highlighted, go to the Code Properties window and set the values
indicated in the table below. (If the Code Properties window is not currently open, you can open it by
clicking View > Other Windows > Code Properties.)

Name mTimeService Rational XDE Developer will generate a
new member variable in Form1,
mTimeService of type Service1.

Initial
Value

new DateAndTime.TimeWebService.Service1() You can set the initial value of the
variable. In this case you will use a fully
qualified name to assign mTimeService to
a new instance of the Service1 class,
which implements your TimeService Web
service.

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

34

36. In the Model Explorer, right-click on the DateAndTime model and select Synchronize.

37. Right-click Form1 and click Browse Code. Notice the new member, mTimeService (whose initial
value is exactly what you specified in step 35):

private TimeWebService.Service1 mTimeService = new DateAndTime.TimeWebService.Service1();

38. In the Model Explorer, right-click the Form1 button1_Click operation and click Browse Code.

39. Replace the function body to invoke the Web service call instead:

40. In the Solution Explorer, right-click the DateAndTime project and click Debug > Start new
instance. If you run into a namespace compilation error, verify that you entered the initial value
properly in step 35, as new DateAndTime.TimeWebService.Service1().

41. Click the DateAndTime application button to see your Web service in action; then quit the application.

42. Close the windows associated with the DateAndTime project.

Congratulations! You just integrated a Web service into your existing application using Rational XDE
Developer.

Benefits of Developing Web Services
Rational XDE Developer speeds up your learning and adoption of Web services by letting you reverse-
engineer a WSDL XML document into a UML class, helping you quickly identify and understand the Web
service functionality. When you create Web services in Visual Studio .NET, Rational XDE Developer creates
UML classes to represent the .asmx file and the “code-behind” implementation file and maintains a
stereotyped relationship between them. Using these UML classes, you can model Web services as you would
any other component of your application; you can even incorporate them into patterns, to implement
corporate standards.

Integrating with legacy applications, learning new technologies such as Visual Basic .NET, and adopting
industry standards such as UML and Web services are just some of the challenges you face daily that can be
facilitated by Rational XDE Developer. Language-specific assisted modeling (for both C# and Visual Basic
.NET) lets you use your knowledge of your favorite language to model. Additionally, the Code Properties
window, the Properties window, and code generation combine to help you learn UML as you code, without
any downtime. With Rational XDE Developer, you can model your system and all of its components, including
the creation and consumption of Web services, so that you can meet the biggest challenge IT organizations
face today: integrating disparate legacy systems.

private void button1_Click(object sender, System.EventArgs e)

{

 textBox1.Text = mTimeService.getTime().ToString();

}

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

35

Development with Custom Patterns and Templates
Reusing development assets is critical in jump-starting any software development effort. Within Rational XDE
Developer, template models, a complete pattern engine, and code templates accelerate early development,
help ensure efficiency and quality throughout the development lifecycle, and encourage code standardization,
for more consistent, reliable projects.

You can begin by using a template model to provide structure for your project. You can apply well-known
patterns, such as the Gang of Four (GoF) patterns, or for true power develop and reuse your own patterns.
Patterns can easily be developed using Rational XDE Developer’s built-in pattern engine and pattern wizard,
enabling you to take advantage of existing code or models. All of these patterns can be shared and reused by
your team members.

Code templates can be imported directly into your models and included as part of your patterns. This
eliminates the hassle of writing the same code over and over again, and improves the quality of your
software by enabling you to reuse proven code.

Figure 3. Patterns — Create and apply patterns to maximize
your efficiency and effectiveness and improve your software
quality.

Experience Development with Custom Patterns and Templates

In this section, you will design a computerized version of a board game and gain experience with the
following key Rational XDE Developer features:

• User-defined patterns

• Code templates

The board game has a single instance of a GameBoard class. When you need to make sure an application
has only one instance of a given class, that instance is called a singleton. The Gang of Four Singleton

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

36

pattern ensures that a class has only one instance, and provides a global point of access to it. The Singleton
participant defines an Instance operation that lets clients access its unique instance.

In this exercise, you will create your own version of the Gang of Four Singleton pattern. You will then create
a custom code template and bind it to your pattern to generate code each time your pattern is applied.

You will start by creating a new Rational XDE Developer model in which to store your pattern. We
recommend storing pattern specifications in models that are separate from your main development models so
that the patterns can be reused in different projects and solutions.

1. Turn on auto-synchronization, as follows: click Tools > Options and, on the left, expand the
Rational XDE folder and then the Round-Trip Engineering folder to see the Auto
Synchronization options; select the Automatic Synchronization check box. Click OK.

2. In the Solution Explorer, right-click the Test Drive solution and click Add > Add New Item.

3. Select Rational XDE as the category and Blank Model as the template.

4. Name the model MyFirstPattern.mdx. Click Open.

The Model Explorer displays the MyFirstPattern model with its Main diagram.

Key Benefit

Rational XDE Developer automatically adds a project to the solution when you create a new model file in
that solution. Rational XDE Developer models can be shared between Visual Studio .NET projects and
solutions. This capability, along with Rational XDE Developer’s multiple-model support, facilitates the
creation of enterprise solutions by providing an easy way for everyone to build on the same system
architecture, and a way to cleanly partition the architecture and manage system/development complexity.

5. In the Model Explorer, right-click the (Solution Items) MyFirstPattern model and click Properties
Window.

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

37

6. In the Properties window, select the AppliedProfiles property and type CodeTemplates in the value
column. Be sure to type it as one word and respect the capitalization. Click elsewhere to make the
property setting take effect.

This setting will allow you to extend the pattern with code generation capabilities to the model.

Creating a New Pattern

7. In the Model Explorer, right-click MyPatternModel and click Add UML > Pattern Asset.

A pattern asset is a pattern that is created and packaged to be reusable.

8. In the Add Pattern Asset dialog box, set the Pattern Name to MySingletonPattern.

9. Under Asset Name, replace RASPackage1 with MySingletonPatternAsset.

10. Leaving the other fields at their defaults, click OK.

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

38

Key Benefit

Rational XDE Developer assets consist of models written and packaged to be reusable. In general, a
software asset is a collection of relevant artifacts that provide a solution to a problem. In Rational XDE
Developer, you can export and import Rational XDE Developer assets stored in the Reusable Asset
Specification (RAS) standard format (see www.rational.com/rda), which facilitates the exchange,
application, and documentation of patterns.

11. In the Model Explorer, expand MySingletonPatternAsset (). Notice
that MySingletonPattern is displayed with a collaboration icon ; a pattern is represented in
Rational XDE Developer as a parameterized collaboration.

Key Benefit

Rational XDE Developer goes beyond providing the ability to reuse existing patterns; it lets you create
your own patterns.

Defining Pattern Parameters

Having created a new pattern, you will now define the pattern input parameters. Rational XDE Developer
records pattern parameters in template parameters.

12. In the Model Explorer, right-click MySingletonPattern () and click Add UML >
 Template Parameter. Click Yes to reload the xml file.

13. With TemplateParameter1 selected, type InputClass to rename the template parameter. Click
elsewhere to deselect the template parameter name.

14. In the Model Explorer, right-click InputClass () and click Add UML > Type > Class.

The template parameter type determines the type of input the pattern will expect, in this case a
class.

15. Replace the default name with PatternClass.

This class will define the results of applying MySingletonPattern to classes.

16. Right-click PatternClass and click Add UML > Attribute. Leave the default name as Attribute1.

17. With Attribute1 () selected in the Model Explorer, go to the Properties window and set
the following UML properties for this attribute:

Name mInstance Attribute name

DefaultValueExpression null Maps directly; be sure to use lowercase.

OwnerScope CLASSIFIER Attribute qualifier (maps to Java static
modifier; applied to field)

TypeExpression <%=InputClass%> Scriptlet (see explanation below)

Visibility PRIVATE

When the pattern is applied, Rational XDE Developer will evaluate the scriptlet specified in the
TypeExpression property, substituting the word InputClass with the name of the class specified as
input to the pattern. As a result, applying the pattern to a class of type X will create a new mInstance
attribute of type X.

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

39

18. In the Model Explorer, right-click PatternClass and click Add UML > Operation. Rename the
operation as <%=InputClass%>.

Using the same substitution mechanism, when the pattern is applied Rational XDE Developer will
create a new constructor for the class to which it is applied. Later in this exercise, you will apply
MySingletonPattern to a GameBoard class, which, as specified by the scriptlet, will result in a new
mInstance attribute and a new GameBoard constructor for that class.

Congratulations! You have just created a new pattern.

Testing Your Pattern

Now it is time to test your pattern. You typically create a pattern as a separate, reusable artifact to be shared
across projects, so you will create a separate test project to test the pattern. Since the template parameter
(InputClass) for MySingletonPattern was defined with type Class, the pattern requires a class as input, so you
will also create a new class.

19. In the Solution Explorer, right-click the Test Drive solution and click Add > New Project.

20. Select the Visual C++ Projects project type and the Empty Project template. Rename the project
as MyPatternTest. Click the Add to Solution button. Click OK.

The MyPatternTest project is added to the Test Drive solution.

21. In the Solution Explorer, right-click the MyPatternTest project and click Properties.

22. If not already selected, select Configuration Properties General on the left.

23. On the right, change the Configuration Type property in the Project Defaults section to Class
Library. Click OK.

24. With the MyPatternTest project selected in the Solution Explorer, click the Synchronize button

 to generate a UML model for the MyPatternTest project.

 Pattern asset

 Pattern
 Pattern parameter

 Pattern

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

40

The MyPatternTest model is displayed in the Model Explorer, and the model main diagram is
automatically opened.

25. With the MyPatternTest::Main diagram active, right-click on the drawing surface and click Add UML >
Class.

26. With Class1 selected, type GameBoard to rename the class. Click elsewhere to deselect the class.

27. Right-click the GameBoard class and click Add UML > Operation. Keep the defaults and click OK.

Applying Your Pattern

You can now apply your MySingletonPattern pattern on the GameBoard class you just created. When
applying a pattern, you need to specify the pattern input parameters as well as the expansion location (that
is, where you want the results of the pattern application to be stored).

28. In the Model Explorer, right-click the MySingletonPattern pattern (). Notice the
Add to Pattern Favorites option.

Using you can add any pattern to your list of favorites to make it easily
accessible.

Key Benefit

The Rational XDE Developer interface is customizable, giving you faster access to the features you use
most often.

29. On the drawing surface, right-click the GameBoard class and click Apply Favorite Pattern.

30. Click the MySingletonPattern pattern (at the bottom of the list).

Key Benefit

The GoF patterns are available by default in Rational XDE Developer. The pattern favorites in the list can
be customized via Tools > Patterns > Organize Favorites.

31. A dialog box is displayed, prompting you to select which style of pattern wizard you would like to
use; select Apply Pattern Wizard. Select Do Not Show this Dialog Again and click OK.

MyPatternTest model

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

41

The Apply Pattern Wizard is displayed with a short detailed description for your pattern. Since we did
not take the time to enter a description when we created the pattern, you see only the boilerplate
text provided by Rational XDE Developer.

32. Click Next.

Key Benefit

The Apply Pattern Wizard provides an easy way to reuse patterns, enabling you to enter pattern
parameters via a succession of wizard screens. As you become more advanced, using the single dialog
interface may prove to be a more convenient way of applying complex patterns.

MySingletonPattern requires a UML class type as input to the InputClass template parameter. Since
you are running the pattern from the GameBoard class context menu, Rational XDE Developer has
selected the GameBoard class for you.

33. Click Next.

Key Benefit

The Apply Pattern Wizard adapts to the various patterns by displaying different screens depending on the
specific input parameters for the pattern you selected to apply.

34. On the Expansion Location screen, click and click the Select
button to specify your MyPatternTest project as the project in which to expand the pattern.

35. Click Finish, and click OK to dismiss the “Pattern expansion succeeded” dialog box.

The results of applying the MySingletonPattern pattern to the GameBoard class are a new mInstance
static attribute (mInstance : GameBoard = null) and a new GameBoard operation. Notice that the
pattern also preserved the original GameBoard class operation, Operation1.

Key Benefit

The behavior when patterns are applied is configurable such that patterns can merge, replace, or
preserve existing elements. Pattern behaviors can be explored further in the Pattern Explorer and Pattern
Properties windows (available from View > Other Windows > Pattern Explorer).

Binding Code Templates to Patterns

Now that you have validated that your pattern works as expected, you will attach some reusable code to the
pattern by attaching a custom code template to the Instance operation of the MySingletonPattern pattern.
Code templates can be bound to UML elements to specify the code to be generated for that UML element —
in particular, method bodies.

Key Benefit

Used in conjunction with patterns, code templates provide a powerful way to get more code from your
models.

36. In the Model Explorer, right-click the PatternClass class and click Add UML > Operation. Rename
the operation as Instance.

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

42

37. Right-click the Instance operation and click Add UML > Parameter. Keep the default Parameter1
name.

You will use this parameter to specify the return value of the Instance method.

38. With Parameter1 selected in the Model Explorer, go to the Properties window and set the following
UML properties for Parameter1:

Name Delete Parameter1,
leaving the name
blank.

When the Kind property is set to RETURN, the name of
the parameter is not used for code generation.

Kind RETURN The Instance method does not take any input
parameters but needs to return one.

TypeExpression <%=InputClass%> The code template will substitute the word InputClass
with the name of the class to which the pattern is
applied.

Because the Instance method will need to return a type but that type will vary depending on the type
of class to which the MySingletonPattern pattern is applied, you use a scriptlet to define the type
dynamically. For example, if you apply the pattern to the GameBoard class, the GameBoard
Instance operation will return a value of type GameBoard.

Key Benefit

Every time the pattern is applied to a class, that class will automatically be assigned the information
stored in the pattern definition (in this exercise, an attribute and a constructor).

39. In the Model Explorer, right-click the Instance operation and click Code Templates > Bind.

This will bind a code template to the pattern’s Instance method.

40. In the Bind Code Template dialog box, click New.

The Create Code Template Wizard appears.

41. In the Name box on the first of the wizard’s screens, enter MyFirstCodeTemplate.

42. Optionally enter some descriptive text for the code template in the Description box. Click Next.

43. On the Step 2 of 2 screen, click Add.

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

43

44. Fill in the Template Parameter dialog box as follows:

Name InputClass The InputClass template parameter will be used by the code
template to get information.

Type String The value extracted from the InputClass template parameter will
be of type String.

Default <%=InputClass%> The default value will be the result of the <%=InputClass%>
scriptlet evaluation, which in this case is the name of the input
class when the pattern is applied.

45. Click OK.

46. In the Body text box, enter the following code:

47. Click Finish.

48. Click Bind to bind the code template to your MySingletonPattern pattern.

Congratulations! You just created a code template and bound it to a pattern. Now every time you apply the
MySingletonPattern pattern to a class and generate code, Rational XDE Developer will generate this code for
you.

if (mInstance == null)
{
 mInstance = new <%=InputClass%>();
}
return mInstance;

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

44

Key Benefit

Customizable patterns and code templates are a powerful option for code generation. You can save time
by using proven patterns and automating mundane coding through code templates. These assets make it
easier for you to share your expertise and custom solutions with other members of your team.
Additionally, pattern bindings make it simple to update classes when a pattern changes.

Generating Code from Code Templates

To see the result of binding a code template to your pattern, you will reapply MySingletonPattern to the
GameBoard class and generate code for that class.

49. In the Model Explorer, scroll down to MySingletonPattern_Binding ().

50. Right-click MySingletonPattern_Binding and click Apply This Pattern.

Key Benefit

When you use a pattern binding, the Apply Pattern Wizard dialog boxes are populated in advance with
the values from the original application of the pattern. You can walk through the dialog boxes to view
your previous input or just click Finish to apply the pattern.

51. Click Next; then click Next again.

52. Click Finish, and click OK to dismiss the “Pattern expansion succeeded” dialog box.

Notice the Instance operation added to the GameBoard class.

53. In the Model Explorer, right-click the GameBoard class and click the Synchronize button .

The synchronization process will add the Instance operation to the GameBoard class in the code and
keep the code and model consistent with each other.

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

45

54. Wait until the Rational XDE Developer status bar displays “Ready” before proceeding; then, in the
diagram or from the Model Explorer, right-click the GameBoard class and click Browse Definition.
The code appears as follows:

As a result of the <%=InputClass%> scriptlet substitution in the code template body, Rational XDE
Developer added the code defined in the code template to the GameBoard Instance method, using
GameBoard as the return type.

55. On the main menu, click File > Save All to save your solution with all projects and model files.

Benefits of Development with Custom Patterns and Templates
Besides shipping with a set of industry-proven design patterns, Rational XDE Developer provides
unprecedented support for developing and sharing your own patterns.

• Via a binding between the pattern and its expansions, Rational XDE Developer lets you quickly
update classes to which the pattern was applied when the pattern changes.

• You can expand a pattern in any model.

• Patterns can be applied via UML stereotypes, which are a powerful way to classify model elements
into categories. Once you have bound a pattern to a stereotype, applying the stereotype to the
model element will automatically expand the pattern.

• Rational XDE Developer provides binding between patterns and parameterized code templates so that
code is generated when you apply a pattern.

• You can easily share patterns with your team by exporting them in accordance with the Reusable
Asset Specification (RAS) standard. Rational XDE Developer lets you import and export your assets to
a repository that can exist locally or at an external location and be accessed via a Web service. Team
members can search multiple repositories using a single keyword search and view details about the
each located asset before importing it.

In short, Rational XDE Developer’s complete pattern engine and code templates help accelerate early
development, ensure efficiency and quality throughout the development lifecycle, and encourage code reuse,

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

46

for more consistent, reliable projects. You can use your creative capabilities to design your own patterns and
avoid tedious, repetitive tasks.

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

47

 Flexible Team Development and Configuration Management
Rational XDE Developer works in conjunction with Rational ClearCase versions 2002.05.00 (with the latest
patch) and 2003.06.00 and with Rational ClearCase LT version 2003.06.00, to provide source control,
versioning, and branch/merge capabilities. You can use Rational ClearCase directly within your development
environment for versioning your code or model artifacts. The result is easier, faster, more comprehensive
development. Large models can be divided into multiple files, making them easier to work with and
facilitating working with teams and configuration management systems. On-demand storage unit loading lets
you access model elements without worrying about whether they are currently loaded; the unit simply loads
automatically when you access an element that requires it.

Also, you can set your preferences to check out controlled units automatically when you edit them, or to add
newly created storage units automatically to your configuration management system. Using Rational XDE
Developer’s compare and merge capability, you can view the differences and conflicts among model or
storage unit files, manually or automatically resolve conflicts, and then merge the files to produce a single
output model. This is critical in a parallel development environment, where more than one person is allowed
to work on the same controlled units in parallel.

Note: Rational ClearCase and Rational ClearCase LT are separate products that are not included with
Rational XDE Developer v2003.

Figure 4. Rational XDE Developer and Rational ClearCase Integration —
Configuration management access directly through the development environment.

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

48

Rational RequisitePro Integration
Rational XDE Developer is integrated with the requirements management tool Rational RequisitePro. This
integration provides two key values to developers:

• It extends use cases in Rational XDE Developer with requirements information. This establishes a
real-time window for modifying use-case attributes and traceability and viewing revision history from
Rational XDE Developer. Developers can establish and maintain a bidirectional link between a use-
case diagram in Rational XDE Developer and the textual definition of the use case in a RequisitePro
document. The RequisitePro use-case documents contain the descriptions, flows of events, special
requirements, and preconditions and post-conditions of use cases, and these documents are
immediately accessible from the RequisitePro context menu that appears when you right-click a
model element in the Model Explorer. In addition, use-case attributes, such as priority and status,
can be set from Rational XDE Developer, enabling use cases to be sorted and filtered in RequisitePro.

• Integration with RequisitePro lets you trace requirements to design elements created in Rational XDE
Developer. From Rational XDE Developer’s context menus, you can add traceability links from the
design element to the requirement it is implementing. This traceability information is critical to
pinpointing the exact design impact of requirement changes. A change to a requirement in
RequisitePro will flag in RequisitePro the affected design elements in Rational XDE Developer, by
generating — automatically and in real time — suspect traceability links in RequisitePro between the
changing requirement and the design element representation in RequisitePro.

Managing use cases and design artifacts in conjunction with requirements means that the scope of software
development projects is better managed, change is controlled, and the project’s business needs can be
verified. The RequisitePro integration ensures that your team is implementing the functionality agreed upon
with your customers and that this functionality evolves appropriately as the business drivers change. It also
enables you to visualize the impact of requirements changes to your design, so that you know exactly which
part of the design to update when requirements change.

Figure 5. Rational XDE Developer and Rational RequisitePro Integration
— Trace design elements to requirements by integrating with RequisitePro.

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

49

Extending Your Development Experience
Beyond providing valuable development tools that are integrated right into your IDE, IBM provides powerful
resources for Rational XDE Developer practitioners through IBM developerWorks. The Rational deomain on
developerWorks Web site can be found at http://www.ibm.com/developerworks/rational aggregates all the
essential related content and provides access to the Rational XDE Developer community, with specific content
and skill-building resources to help you increase your development efficiency and master Rational tools and
software best practices.

Some of the items related to Rational XDE Developer that you will find on RDN are:

• XDE resources where you will find all content related to Rational XDE Developer

• Introductory technical articles written by .NET developers using Rational XDE Developer to build real-
world solutions

• Technical articles and software assets (including patterns) that provide quick access to tested
artifacts you can incorporate into your projects

• Developer-focused processes that provide role-specific guidance

• A public discussion forum that provides a central place for Rational XDE Developer customers to
exchange ideas and experiences

• Self-paced Web-based training

Figure 6. XDE Resources on IBM developerWorks — Additional resources to further your development
efforts.

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

50

In addition to the various services supporting Rational XDE Developer, software assets are available that
extend the capabilities of the core Rational software solution. A software asset is a collection of relevant
artifacts that provide a solution to a problem. The Patterns Exchange on developerWorks focuses on helping
you manage and apply reusable assets so that you can build on your previous organizational and technical
knowledge. It includes both sample and reference assets that make best practices tangible and provide a
path toward systematic reuse of software assets.

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

51

Conclusion
We hope this guide has given you a good overview of what Rational XDE Developer can provide to .NET
developers. Rational XDE Developer enables you to build better software faster by extending your
development environment with essential, fully integrated tools. This revolutionary product from the leader in
software development combines the expressiveness of visual modeling with the power of a Java development
environment.

Rational XDE Developer improves the way you work by enabling you to:

• Experience true developer convenience with a single design-to-code experience — No
longer do you need to constantly switch between applications to move back and forth between
design and code. Everything is encapsulated within one environment, eliminating the need for you to
be a master at arranging your application workspace on your computer.

• Express yourself graphically and communicate effectively — Within one tool you can draw
any type of diagram and depict system architectures, designs, and more, by selecting from a large
collection of shapes and figures. You also have the freedom to create your own shapes and figures,
and you have on-demand UML conformance validation.

• Organize models to meet your team’s demands in a parallel development environment —
With cross-model referencing and versioning down to the class level, development teams can
minimize redundant work, maintain the integrity of models, and partition solutions into manageable
units so that team members can work on various pieces in parallel.

• Model or code based on your preference and achieve both — No longer do you need to
always model first and then code, or always code and then reverse-engineer to generate a model.
You have the freedom to do either, according to your preference. Additionally, as you work with
either the model or the code, the integrity of both is maintained synchronously.

• Develop higher-quality software faster by reusing patterns and code templates — You can
define your own patterns and code templates, or modify existing patterns supplied in Rational XDE
Developer (as well as through the Rational Developer Network), to jump-start your development
process. Reusing these assets eliminates mundane, repetitive tasks and ensures higher quality
through the use of proven patterns.

If this guide has not quenched your thirst for information about Rational XDE Developer, here are additional
places where you can learn more:

• The Rational XDE Developer tutorial available from Help.

• The product page for the Rational XDE product family, at Rational Rose XDE Developer - Product
Overview - IBM Software.

• The Rational domain on IBM developerWorks at http://www.ibm.com/developerWorks/rational.

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

52

Appendix: Rational XDE Developer Interface Overview
This appendix provides a quick visual overview of the Rational XDE Developer interface in the Microsoft Visual
Studio .NET IDE and the various user interface elements referred to in this guide.

Figure 7. Rational XDE Developer Interface — Rational XDE Developer is tightly embedded in the
Microsoft Visual Studio .NET IDE.

A. The Toolbox is graphical representation of all the possible modeling elements the user can drag
onto a modeling diagram. It is grouped by modeling categories such as UML diagram types and
General objects used in free-form models. The up/down arrows provide navigation for lengthy lists
of modeling elements. Users can add their own Toolbox categories as well as move elements
between categories.

B. The Solution Explorer provides a view of the entire project or solution. Multiple projects can be
viewed at any time. A project stores a collection of files that can include references, models, source
code, storage units, text files, and other project-related artifacts.

C. The Model Explorer displays all elements that can be associated with a project, including pattern
assets, diagrams, other models, and external documentation. Users can drag model elements from
the Model Explorer onto a diagram. Similar to the Solution Explorer, the Model Explorer enables
you to view and modify multiple models at any given time.

D. The Properties window is context-sensitive and will display all the given properties for a selected
element. These properties can be modified from within the Properties window. When you create
patterns, a Properties window specific to pattern creation is opened.

A

B

C

G FE

D

IBM Rational XDE Developer v2003.06.12 — .NET Edition

Evaluators Guide

53

E. The Task window shows model validation, compilation, and build errors. Users can also enter
their own tasks. The tasks that appear in the window are context-sensitive: when you are viewing
source code, the Task window will display compilation and build errors and warnings; when you are
viewing model diagrams, model validation errors and warnings will be displayed.

F. The Output window is a log window that displays results of various program actions, such as the
creation or modification of a new project, model file, model element, and so on.

G. The Model Documentation window displays documentation at the model element level.

