
03/25/03

An Interview with Cem Kaner,
Software Testing Authority -

Part II of II:
How to Educate and
Train Testers

Sam Guckenheimer
Senior Director of Technology
for Automated Test

 



INTRODUCTION ..........................................................................................1

UNIVERSITY VS INDUSTRY TRAINING .....................................................1
Sam Guckenheimer: Now that you have been a professor at Florida Tech for
two years, what have you learned about educating software testers? Is there
anything different now about the way you train software testers in a university
setting compared to a commercial setting?...................................................1

What kind of background do your students have, and where are they headed?
...............................................................................................................................2

Are you implying that in the area of software testing, students who lack a
certain real-world awareness or experience are at a deficit?......................2

NSF GRANT.................................................................................................3
I think the National Science Foundation has recently awarded you a grant to
provide useable educational materials in software testing more broadly. Is that
targeted to working professionals in the field? What can you tell us about that
grant? ...................................................................................................................3

That's great news for the testers out there. How does your work touch other
players in the development life cycle: requirements analysts, developers, and
others. ..................................................................................................................3

RUP AND TESTING .....................................................................................3
One final thread. We've just been talking about the connections among
different participants in the development lifecycle. Through the course at
Florida Tech and your own research, you've had some exposure to the Rational
Unified Process.® I'm interested in your perspectives on RUP® and other
process movements, such as the Agile community, and how they address
testing...................................................................................................................3



An Interview with Cem Kaner, Software Testing Authority

Part II: How to Educate and Train Testers

Introduction
This paper continues Sam Guckenheimer’s interview of Cem Kaner, Ph.D. J.D., Professor of Computer Sciences at
Florida Institute of Technology. Kaner is perhaps the world's most prolific and widely read author, consultant,
educator, and attorney in the field of software testing.  Rational University recently engaged Dr. Kaner to develop
content for a new course, Principles of Software Testing for Testers, which is now available  from Rational
University. Please see www.rational.com/university for course details.

University vs Industry Training
Now that you have been a professor at Florida Tech for two years, what have you learned about
educating software testers? Is there anything different now about the way you train software
testers in a university setting compared to a commercial setting?

Cem Kaner: As a university professor, I have two luxuries now that I didn't have when teaching in an industrial
setting. First, I can actually give my students tests, and they are motivated to take and pass them. I can also give
them homework and evaluations. In an industrial course, you just can't do that. Even if you have a very light test at
the end, it's not the same thing as giving someone an assignment that will require a week of intensive work with a
colleague. Through giving and grading student assignments, I've learned that some of the concepts I thought were
very clear are very confusing to people with little testing experience. For example, looking at a situation and
assessing "What are the boundary conditions in this case?" takes a remarkable amount of practice – at least three to
four assignments before most students get really good at it. They need practice, via ungraded or lightly graded
assignments, dealing with similar problems time after time. You can talk about it over and over, but the main
concept has to spark in the student's head so they go, "Oh, I get it." That typically only happens with practice.
A lot of what we're doing now at Florida Tech is drafting self-paced, self-answering homework questions. For
example, I give you a data entry field; you analyze this field and come up with a boundary case, and then I'll give
you what our analysis of the same field was. Then we will give you a word problem that asks you to figure out what
the field is, or what the variable is, that you're studying, and then we will extend it.

Consider the way we teach boundary analysis. A student enters the highest number possible for a given field, then
enters the highest number plus one and tests both of those. What's the reason for these specific values? Historically,
we know that the program is a little more likely to fail under these conditions than with a valid number that is big
but not the biggest, or with an invalid number that is too big, but not right at the edge. So, as in this example, we
teach a theory of error. And what we're doing in boundary testing is identifying a class of test cases: all the valid
numbers, all the numbers that are too big. Then we find representatives for these classes: the biggest valid number,
the smallest invalid, too-large number. And we say this is a representative of the class that is slightly more likely to
show a failure than other members of the class, and since you can't test all members of the class because there's an
infinite number of tests you could run – nobody ever has enough time. Typically, you're restricted to using one or
two or some very small number of members of any class you could test. And so you're always looking for better
representatives, representatives more likely to produce a problem.

Once students practice with simple boundary analysis and with the question of combining boundaries across several
different variables, we start pushing them onto the next notion: What other ways are there of identifying risks? How
do you find classes that will expose the risk vs. classes and tasks that will not expose the risk, and how do you come
up with representatives that are worth testing?

In my experience, the more practice I can give students with this sort of exercise, which they can do at home, the
more likely they are to get the principles behind it. So I have graduate students who are spending a lot of time trying
to figure out how to create useful practice exercises. Ultimately, we'll probably come up with a set of materials like
you see in Schaum's Outlines, which everybody who has studied either math or physics has probably used. They're
just light summaries of technical material with worked examples, then lots of exercises that you practice until you
can finally solve a certain class of problem.



An Interview with Cem Kaner, Software Testing Authority

Part II: How to Educate and Train Testers

As a consultant, I had thought that people needed more practice with these concepts than they were getting. But
there was no way I could experiment with a different style of teaching in a corporate setting, and there was no way
that employees with real deadlines would come to a course that included a lot of drills. And it takes a remarkable
amount of time to envision the real tasks that require practice and then come up with good exercises to provide that
practice.

As a professor, I have the time and a series of involuntary subjects, as it were, to research a better curriculum. I get
to try things out that I hope will improve the course, and most of them actually do. I also have students who have
gone through the course and are quite enthusiastic about trying to develop practice materials, a squad of intellectuals
who will get some academic credit but whom I could never afford to pay if I were a stand-alone consultant.

What kind of background do your students have, and where are they headed?

Cem Kaner: Today, I deal only with students who can write code, and we teach them how to test their own code or
the code of a peer. Everybody who comes into my course is in a software engineering or computer science program
and has already taken several programming courses. The first testing course covers traditional black-box testing, and
the second course starts them off, first day, working with JUnit.

Many of our students at Florida Tech graduate and become professional testers in software development
organizations. So a lot of what we think we're trying to do is to train the next generation of testing architects.
Typically, these are people who have a lot of software development insight who either need to build tools
themselves or evaluate tools and train their own staff in how to use tools really well, and to write the kind of support
materials that make a specific tool useful. There is no test automation tool that solves all of an organization's
problems, or works perfectly on its own. There is always plenty of work that needs to be done inside a company,
either to change the vision of testing or to organize data or code in a way that makes it more compatible with their
tool of choice. We're trying to train a generation of folks who can go out and help do that.

Are you implying that in the area of software testing, students who lack a certain real-world
awareness or experience are at a deficit?
Cem Kaner: I actually do believe that people without practical experience have a lack of perspective in tests.
Earlier in my career, when I was a hiring manager, I was very disappointed when I would interview someone who
came out of a traditional computer science program, and find that their testing course was fundamentally theoretical.
They had no idea how to apply that theory. We have to work very hard when we teach the testing course to provide
a lot of real-life examples. We also go out and get a sample application – some software that is under development –
and structure the assignments and much of the course around beating this program into the ground. We used Star
Office last year, we used Microsoft PowerPoint once, and we used the Texas Interactive Calculator. I'm not sure
what application I'm going to use this fall, but it's absolutely essential for these students to get experience with
something real, or everything we teach will be academic and not necessarily very useful in the future.

I also teach the brand new metrics course here. I had a class of 15 students, mainly graduate students, and only five
of them had substantial, real-life experience in software development. As I talked about when something is used,
how it's used, how it can be misused, the risks to the organization of applying this measurement method, and so
forth, they would understand what I was saying, because they had lived it. The other ten had incredible trouble
understanding what I was getting at. Plus, unless you have the experience to understand which measures are useful
when, what risks are associated with a given measure, when a given measure will have some validity, and when you
can learn something from the numbers you collect, then you're like a loaded gun in the hands of an organization that
really hasn't had any training in how to use it.

The folks who teach software architecture courses experience the same gulf in assimilation of theory between
students who have attempted to design a moderately large program under real-world circumstances versus those who
have not. So I don't think this phenomenon is unique to testing instruction. I think that, in many fields, returning
students who have real-life experience are much more likely to grasp the subtleties than students who are going
straight through.



An Interview with Cem Kaner, Software Testing Authority

Part II: How to Educate and Train Testers

NSF Grant
I think the National Science Foundation has recently awarded you a grant to provide useable
educational materials in software testing more broadly. Is that targeted to working professionals
in the field? What can you tell us about that grant?

Cem Kaner: The grant, Improving the Education of Software Testers, focuses on academic instruction for software
testing. My application emphasized that there is very little in the way of academic resources – few courses, no good
textbooks, and no practice materials – in software testing. There is no well-understood method for testing instruction
as there is for teaching calculus, for example. So I wanted to put together materials that would help people build
testing courses more effectively: practice exercises, and sample course notes and test tools. For example, we're
writing a test program for "all pairs," a technique for dealing very efficiently with circumstances involving many
variables to test together, and it lets you find a very large percentage of configuration problems with a much smaller
series of tests. There's a very fine all pairs test tool on the market, but it's expensive for testing a small number of
variables, such as ten, in combination. So one of my students, Nadim Rabbani, in collaboration with another Florida
Tech student, Hugh Thompson, is almost finished writing an all pairs test tool that will handle up to ten variables in
combination that have maybe ten values each. These tools will be somewhat useful in industry, where some people
have problems on this scale that they can't work out by hand. But where it will be most useful is in a classroom
setting, where you can say to the student, "Here's the concept of combination testing, here are some thorny
combination problems. Try to work these out by hand first, then use the tool and compare your results." They'll learn
what this free software tool can buy them, and if they get into more complex circumstances, they'll understand why
they might want to have their company invest in something more expensive.

In addition, two of my master's students, Giridhar Vijayaraghavan and Ajay Jha, are studying how programs fail.
Quality Week will soon publish Giri's taxonomy of shopping cart software problems, which classifies a broad range
of risks. If you just went to Amazon.com and imagined how to test a shopping cart, you'd come up with a few
examples of what might go wrong. But with Giri's taxonomy you can start thinking by analogy about how particular
programs might fail and come up with hundreds of test cases that will uncover real problems.

Though the focus of the funded work is academic, testing is an applied area; it would be foolish to think about how
to teach it without considering how testing is conducted in the world. Any of the materials that we make available to
faculty we're also making available to corporate teachers and trainers through a new site called
"TestingEducation.org." Anyone can download materials, like my course notes, for free. People who teach, whether
in a commercial or university context, will be able to get a special password and access things like examination
materials, exercises, and teaching tips that students won't have access to, but eventually we'll have practice exercises
for students. The public pays for my National Science Foundation Grant, so they're entitled to this Web site.

That's great news for the testers out there. How does your work touch other players in the
development life cycle: requirements analysts, developers, and others.
Cem Kaner: Everyone who goes through the software engineering program at Florida Tech is required to take two
full courses on testing – whether they want to become architects, requirements analysts, programmers, or testers.
That's because we think testing is a core competency for anyone doing development. A programmer who tests his
own code – and most people do – is going to learn better testing strategies in this course. Another takeaway from a
testing course is wisdom on how to manage a project that involves many testers. And the Rational course I helped
develop offers a lot of wisdom regarding where testers fit in the lifecycle and how they will interact with the rest of
the company.

Our Web site will focus more on practiceable and trainable skills, which means the site is going to be very boring
for somebody who doesn't want to learn how to do the technical parts of testing really well.

RUP and Testing
One final thread. We've just been talking about the connections among different participants in
the development lifecycle. Through the course at Florida Tech and your own research, you've had



An Interview with Cem Kaner, Software Testing Authority

Part II: How to Educate and Train Testers

some exposure to the Rational Unified Process.® I'm interested in your perspectives on RUP® and
other process movements, such as the Agile community, and how they address testing.

Cem Kaner: I don't want to speak to Agile Development in general, but I will speak to Extreme Programming (XP)
and say that, like RUP, it has a very strong vision of lifecycle. It also has a very strong vision of some types of
testing. But most of the most skilled testing that my colleagues and I know how to do doesn't fit in the XP approach.
In place of strong, test-first programming (which is a wonderful practice), XP substitutes customer stories and either
testing by a customer or testing by a customer's advocate, against what really look like scenarios based on use cases.
This approach can expose a whole lot of problems, but it will also miss a whole lot of problems, and the framework
for having an open, intelligent discussion about what the other methods of testing are and how they might fit into
this scheme just isn't there. XP has a fairly narrowly patterned "right way" to go about doing things – it's pretty good
for many contexts, and not so good for others.

The Rational Unified Process is much more flexible. It's more tailorable to many circumstances; you can imagine
using its iterative lifecycle approach on very small projects like computer games. And it can scale up to large
telephony systems. The testing styles would have to be very different for those larger and smaller systems, and that
poses a challenge to the RUP authors in terms of describing different styles and when they're needed. For example, a
boundary-condition style tester will interact with folks and produce one kind of deliverables through a particular set
of questions, whereas a scenario tester who bases most of his work on use cases and models developed for the
system is going to come in with a whole different series of questions. And different styles of testing might be called
for on a large project at different points in the lifecycle.

I was motivated to work on Rational's Principles of Software Testing for Testers course because I would like to see
Rational extend the practical guidance available for testers in RUP. Two of my graduate students are also writing
RUP extensions to provide guidance on some of the testing techniques covered in the course.

In particular, I'd like to see RUP go deeper on this problem of how testers in an iterative development lifecycle will
do different kinds of testing at different times, and how they can adapt to a project team that is following a lifecycle
that has a traditional basis, but is really its own variation. Over time, RUP needs to extend the library of templates
and checklists, and cover skills that we drill in the course, such as bug advocacy, i.e., the effective communication of
change requests so that other team members will act on them appropriately.

Sam Guckenheimer: We're really glad to have worked with you on the course and we're looking forward to
incorporating those extensions. Thanks very much.



IBM software integrated solutions

IBM Rational supports a wealth of other offerings from IBM software. IBM
software solutions can give you the power to achieve your priority business
and IT goals.

• DB2® software helps you leverage information with solutions for data
enablement, data management, and data distribution.

• Lotus® software helps your staff be productive with solutions for
authoring, managing, communicating, and sharing knowledge.

• Tivoli® software helps you manage the technology that runs your e-
business infrastructure.

• WebSphere® software helps you extend your existing business-critical
processes to the Web.

• Rational® software helps you improve your software development
capability with tools, services, and best practices.

Rational software from IBM

Rational software from IBM helps organizations create business value by
improving their software development capability. The Rational software
development platform integrates software engineering best practices, tools,
and services. With it, organizations thrive in an on demand world by being
more responsive, resilient, and focused. Rational's standards-based, cross-
platform solution helps software development teams create and extend
business applications, embedded systems and software products. Ninety-
eight of the Fortune 100 rely on Rational tools to build better software,
faster. Additional information is available at www.rational.com and
www.therationaledge.com, the monthly e-zine for the Rational community.

(c) Copyright Rational Software Corporation, 2003. All rights reserved.

IBM Corporation
Software Group

Route 100
Somers, NY 10589
U.S.A.

Printed in the United States of America
01-03 All Rights Reserved. Made in the U.S.A.

IBM and the IBM logo are trademarks of
International Business Machines Corporation
in the United States, other countries, or both.

Rational,  are trademarks or registered
trademarks of Rational Software Corporation in
the United States, other countries or both.

Microsoft and Windows NT are registered
trademarks of Microsoft Corporation
in the United States, other countries, or both.

Java and all Java-based trademarks are
trademarks of Sun Microsystems, Inc.
in the United States, other countries, or both.

ActionMedia, LANDesk, MMX,
Pentium and ProShare are trademarks
of Intel Corporation in the United
States, other countries, or both.

UNIX is a trademark of The Open Group in the
United States, other countries or both.

Other company, product or service names may
be trademarks or service marks of others.

The IBM home page on the Internet can be
found at ibm.com

Part No. TP318A 03/03


