
The IDE as a
Development Platform

Contents
Empowering the A in SOA . 2
Rikki Kirzner

Quality Management Is a Strategic Delivery Advantage 5
Rikki Kirzner

Key Principles for Business-Driven Development . 9
Per Kroll & Walker Royce

Myths and Realities of Iterative Testing . 18
Laura Rose

Roadtrip! A Vacationer's Guide to Iterative Development 27
Laura Rose

1 The IDE as a Development Platform. © 2006 Jupitermedia and Individual Authors.

Empowering the A in SOA
IBM Rational Software Delivery Platform v7 products bring an
unprecedented level of governance to the SOA development process with
built-in process guidance and architectural management and quality
management designed into the tools you use for delivering service-
oriented applications

By Rikki Kirzner

By now there should be no doubt in your mind that service-oriented architecture (SOA) is the type of disruptive tech-
nology that will influence dramatic changes in how software is created, reused, recombined, managed, deployed,
and sold. Accordingly, experts have been talking about the advantages of services in terms of reusing existing soft-
ware assets by encapsulating them into business services that are used over and over again to create new virtual
applications. There is a growing desire among software industry professionals to learn how to make SOA a reality
and obtain these benefits. Perhaps that is why there has been very little actual discussion of the key component that
enables SOA-the A of SOA-architecture and its management.

Architecture management plays an essential role in keeping software aligned with the changing requirements of
business and the reality of imperfect implementations. The full benefits of reuse and other advantages of SOA can't
be realized until you have a real services-oriented architecture in place in your organization. Wrappers using SOAP
and other Web services technology are a useful-albeit somewhat less than ideal-approach to creating services.
Unfortunately, they don't replace the necessary steps you have to take toward building the architecture and obtain-
ing the tools, processes, and best practices that ensure your architecture remains intact and unassailable as require-
ments change and business conditions and evolve.

Furthermore, most organizations development efforts are adversely impacted by geographically distributed develop-
ment teams often arising from one or more of the following conditions:

• Increasing practice of outsourcing portions of the development effort to achieve the economic benefits of a
skilled labor force with lower salary and benefit requirements

• Large globally distributed organizations with multiple development sites in different cities or countries
• Mergers and acquisitions where development teams from the original companies are not relocated to one central

location thereby allowing each group to work on different aspects of development projects at different locations

Monitoring the progress of development becomes difficult and compromised when you are working with geographi-
cally dispersed development sites. Multiple groups of developers working on the same project in various locations
require coordinated processes and tools so they can work together efficiently and synchronize their development
efforts. Without these-chaos ensues.

Architectural Management is Critical for Success
Architecture management delivers the stable architecture, tools, methodologies, and processes that let you accom-
plish the following:

• Manage the relationship between design models, actual coding, and implementation done at different locations
• Synchronize the code to the models and architecture design to reduce bugs and software defects before the

code is tested and deployed
• Analyze the completed code to make sure it accurately implements the original design and requirements
• Facilitate the reconciliation of those changes that are still required for successful deployment
• Implement better quality management throughout the lifecycle

2 The IDE as a Development Platform. © 2006 Jupitermedia and Individual Authors.

The IDE as a Development Platform

IBM Resources
Rational Software Delivery Platform -
desktop products v7

SWG TV
Webcast: Architecture Management
IBM Downloads
Webcast: Quality Management
Competitive Trade-up

http://www.ibm.com/software/rational/announce/dt/
http://ibm.com/software/info/ibmtv/rational
http://www-306.ibm.com/software/sw-events/webcast/O732881H44429L82.html?S_TACT=105AGX30&S_CMP=DEVXRS
www.ibm.com/developerworks/downloads
http://www-306.ibm.com/software/sw-events/webcast/H782042A84278S48.html?S_TACT=105AGX30&S_CMP=DEVXRS
http://www-306.ibm.com/software/rational/support/migrations/index.html

To function at peak optimization, SOA services must be independent of the context or state of any other services.
They must be self contained and able to function seamlessly across geographically distributed development environ-
ments. When SOA is implemented properly it both simplifies the functional complexity of software systems and
increases the agility and flexibility of the enterprise. In this way, SOA enables companies to combine their own compo-
nents or components created by their partners, suppliers, customers, etc., to create business services that respond
readily to changing business conditions, government or business regulations, and competitive requirements.

Consequently, SOA initiatives require strong architectural management and coordination of development efforts for
optimal implementation and maximum operational efficiency. SOA development environments and the supporting
architecture must enable engineers, designers, business architects and analysts, testers, and QA teams to commu-
nicate and coordinate their development efforts seamlessly around the clock and around the globe.

Good architecture management, therefore, becomes a logical extension of conventional design and construction
shifting your focus to managing architectural changes and requirements that are aligned with geographically dis-
parate development activities. It enables organizational-wide adherence to standards and business and government
governance, best practices, and policies for creating and reusing services that are crucial to the success of any SOA
project. It also promotes risk management procedures while controlling and coordinating the management of Web
services and other software assets.

New IBM Rational Products Enhance SOA Delivery
The SOA siren call for better tools, best practices, and architecture management has been answered with the latest
release of IBM Rational Software Delivery Platform v7 products. New capabilities and improved lifecycle quality put
you on the fast track to implementing your SOA initiatives while managing your architecture. New functionality
empowers you to implement, coordinate, and manage the delivery of SOA projects-even across different geographic
locations. These products' technologies and frameworks (listed at the end of this article) eliminate the silos between
design, development, testing, quality assurance, and deployment. Improved lifecycle automation and traceability,
easily configurable workflows, and extended globalization support give you a more flexible way to manage value and
change while reducing the control and risk exposures inherent in globally distributed development and deployment.

RSA turns SOA into a Holistic Development Effort
One of the IBM Rational Software Delivery Platform v7 products is Rational Software Architect (RSA). RSA unifies all
aspects of software design and devel¬opment, architectural modeling and specifications, and J2EE development
into one easy to use tool. Architecture management is achieved by pulling together and integrating essential proto-
typical and disconnected tools and best practices-effectively turning SOA into a holistic development effort.

Rational Software Architect leverages model-driven development for creating well-architected applications and serv-
ices and facilitates your ability to comprehend, design, manage, and create SOA services. Built on top of the open
and extensible Eclipse platform, RSA's integrated design and development capabilities manages change between
models and code and related artifacts throughout the lifecycle, making it key for implementing architecture manage-
ment functions discussed here.

Rational Software Architect's integration with the other products in the IBM Rational Software Delivery Platform delivers
requirements management, traceability, source code control, and other team management functions throughout the
lifecycle to reduce the risk associated with software develop¬ment. For instance, requirements stored and managed in
Rational RequisitePro can be accessed, associated to corresponding modeling elements, and synchronized with user-
selectable rules. Modeling files can be managed by Rational ClearCase, which ships with Rational Software Architect.

Additionally, there are some new, compelling features in version 7 to enhance your SOA projects. First, there is a set
of new extensions to RSA including a UML profile that turns the general purpose modeling language into a domain

3 The IDE as a Development Platform. © 2006 Jupitermedia and Individual Authors.

The IDE as a Development Platform

specific language that lets you use RSA in a SOA context.

Next, you will find new, common online and integrated process guidance capabilities in a SOA context for distrib-
uted development teams. This capability was the result of merging SOMA (Service-Oriented Modeling &
Architecture), the specification and realization of business-aligned services that form the SOA foundation with IBM
Rational Unified Process (RUP) for creating best practices.

RSA features a new transformation engine, making it easier to write transformations to better control how architec-
ture flows into code and how to keep your code and models in synch. Improvements include model to model trans-
forms, model to code transforms and code to model "reverse transforms, giving you the ability to analyze existing
code and extract its design into a model you can compare against the original model.

RSA (and all of the v7 desktop tools) now employ a new installation technology that supports more granularity in the
features presented, thus allowing for more options and flexibility to install only those components needed. They also
offer an option to install into an existing installation of Eclipse v3.2 or to have the product install Eclipse v3.2 for the
user. This means that you don't need to install a redundant copy of Eclipse if you already have Eclipse installed on
your system. RSA will install the current version of Eclipse for you if you don't already have Eclipse. It also means
you now get to pick and choose what tools you want to install from the many available options.

Finally, if you want to use just the Eclipse framework itself, but are concerned about doing mission-critical production
work, relying solely on open community support, then IBM provides a service-only support for Eclipse option that is
consistent with that which comes with its commercial products.

Additional IBM Rational Software Delivery Platform v7 products include:

• IBM Rational Software Modeler
• IBM Rational Application Developer
• IBM Rational Systems Developer
• IBM Rational Performance Tester
• IBM Rational Functional Tester
• IBM Rational Manual Tester

IBM Simplifies Creation and Management of SOA Architecture
Your SOA projects will benefit significantly from the efficiency of version 7's new, combined integrated architecture,
modeling, geographic collaborative features, and lifecycle quality management. IBM Rational addresses the funda-
mental requirements of SOA architecture management by simplifying your ability to link business and IT architectures
to service models.

Modular and seamlessly integrated tools give you a faster and more structured approach for SOA development
using robust architectural design and automated service delivery. Improved hardware and software modeling along
with support for standards, open systems, and packaged applications make it easier than ever to create and man-
age large numbers of high quality services while still maintaining your SOA architectural integrity.

Rikki Kirzner is a freelance writer and veteran computer industry professional with experience as an analyst and
former Research Director for IDC, Gartner Group, and Meta Group and as a Senior Editor with Open Computing
Magazine. Rikki covers software, development, open source, SOA, and mobile computing.

4 The IDE as a Development Platform. © 2006 Jupitermedia and Individual Authors.

The IDE as a Development Platform

1001 AVENUE OF THE AMERICAS, 5TH FLOOR
NEW YORK • NY 10018

TEL: 212-679-3173 • FAX: 212-679-5777

_INFRASTRUCTURE LOG

_DAY 15: This project is out of control. The development
team’s trying to write apps supporting a service
oriented architecture...but it’s taking FOREVER!

_DAY 16: Gil has resorted to giving the team coffee IVs.
Now they’re on java while using JAVA. Oh, the irony.

_DAY 18: I’ve found a better way: IBM Rational. It’s a
modular software development platform based on Eclipse
that helps the team model, assemble, deploy and manage
SOA projects. The whole process is simpler, faster
and all our apps are flexible and reusable. :)

_The team says it’s nice to taste coffee again, but
drinking it is sooo inefficient!

Download the IBM Software Architect Kit at:
IBM.COM/TAKEBACKCONTROL/FLEXIBLE

Ad No.: SGP-06-10 Job No.: K604161
Client: IMN Product: SGP

Ad Title: TBC Coffee IV
This advertisement prepared by: Ogilvy & Mather

To appear in: Standard
Size/Color: Page 4/C

Bleed: 8.75" x 11.25" Trim: 7.5" x 10.5" Live: 7.0" x 9.75"
Art Director: A. Gray Copywriter: J. Park

Print Producer: M. Piscatelli Traffi c: M. Scarpelli
Engraver: MCT

GSI No.: K604161 Di3 1C5
MCT No.: 831150

DOC PATH: Digital:Clients:IBM:K604161:K604161 Di3 1C5 GALLEY: 1 TIMESTAMP: 03/31/2006 – 11:57:04 AM
TERMINAL: OPERATOR: cl PROOF: 5 CLIENT: IBM OUTPUT: 1 Fiery from CD
FONTS: IBMHelvetica2004 Regular, IBMHelveticaCond2004 Bold, IBMHelveticaCond2004 Light, IBM Osaka Mono, Osaka Regular-Mono,
Univers 55 Roman, Univers 65 Bold
IMAGES: approval box.eps, IBM_logo®_K.eps, CoffeeIV2_11Mar.jpg, Rational_.375".eps

IBM, the IBM logo and Rational are registered trademarks of International Business Machines Corporation in the United States and/or other countries. ©2006 IBM Corporation. Eclipse is a
trademark of Eclipse Foundation, Inc. Java is a trademark of Sun Microsystems, Inc. All rights reserved.

SGP-06-10 1 4/7/06 2:34:55 PM

Quality Management Is a Strategic Delivery Advantage
Managing quality throughout the development life cycle ensures your
applications satisfy all business specifications, customer needs, and
governance requirements, producing fewer software defects, shorter
release cycles, and lower development and support costs.

By Rikki Kirzner

Why Testing Needs to Morph Into
Quality Management
For too long, testing and quality management has been more of an afterthought-a task usually handled by QA and
test engineers toward the end of a software project. Using this approach is no longer feasible if you expect to deliver
high quality software. The National Institute of Standards and Technology estimates developers spend about 80 per-
cent of development costs on identifying and correcting defects. The Cutter Consortium reports that 32 percent of
organizations release software with too many defects and 38 percent of organizations believe they lack an adequate
software quality assurance program

In all probability, your job requires on-time delivery of high quality applications while juggling the pressures of shorter
release cycles, increased technology complexities, the logistics and communications challenges of working with
geographically dispersed and outsourced development teams and service providers-all while needing to comply with
internal and external business and regulatory requirements. Trying to meet these criteria exacerbates the pressures
to deliver quality applications demanded by your end users.

It is no wonder the scope and value of testing has expanded and evolved. It has become a requirement for auto-
mated processes throughout the release stages to validate quality, identify regression, and assess the state and
value of software against the changing requirements of evolving business conditions. Only this level of quality man-
agement can ensure delivery of high-quality software on time and under budget. It also enables better risk manage-
ment and governance compliance.

Quality management must be a strategic initiative embraced by everyone throughout your organization, across the
entire lifecycle-from requirements and design, to development and deployment-to be most effective. However, that
doesn't necessarily imply that you have to implement quality management all at once or across the entire company
in one fell swoop. A quality management plan and solution can be applied in stages. Once that is accomplished, dif-
ferent components of the quality management solution can be implemented in increments that are comfortable to
everyone involved. Although quality management produces the greatest ROI-and is most successful when it is
embraced by the entire design, development and deployment teams-genuine benefits will be realized by each group
that adopts some type of quality management solution.

Quality management begins with linking requirements to test cases, thereby creating a system of software defect
checks and balances throughout the delivery phases. This includes defect tracking, test management capabilities,
and automated builds to make sure you create a defect-free deliverable that is ready for deployment into production
and capable of meeting all exit criteria.

Automated builds are an important feature because automated processes help reduce the time the QA team has to
spend on finding or duplicating, and fixing problems in bad builds. Good builds enable the test labs to work more
efficiently. When they receive a good build, they can focus their efforts on finding genuine defects rather than wast-
ing their time testing for problems that result from a bad build, or having to redo all their efforts when a good build is
finally delivered to them. Depending upon your organization and the stage within the project, automated builds
speed up the process of deploying your software into production and meeting exit criteria.

5 The IDE as a Development Platform. © 2006 Jupitermedia and Individual Authors.

The IDE as a Development Platform

IBM Resources
Rational Software Delivery Platform -
desktop products v7

SWG TV
Webcast: Architecture Management
IBM Downloads
Webcast: Quality Management
Competitive Trade-up

http://www.ibm.com/software/rational/announce/dt/
http://ibm.com/software/info/ibmtv/rational
http://www-306.ibm.com/software/sw-events/webcast/O732881H44429L82.html?S_TACT=105AGX30&S_CMP=DEVXRS
www.ibm.com/developerworks/downloads
http://www-306.ibm.com/software/sw-events/webcast/H782042A84278S48.html?S_TACT=105AGX30&S_CMP=DEVXRS
http://www-306.ibm.com/software/rational/support/migrations/index.html

Successful implementation of quality management entails the acquisition and implementation of a comprehensive
and repeatable automated framework to accelerate software delivery and improve development and deployment
team efficiency across the organization. Continuous and integrated automation across and between the software
delivery (or pre-production) processes allows each process to leverage the artifacts of the previous process for
improved efficiencies, targeted workflows, auditable trails, and process validation.

The Right Combination of Quality Management Solutions
IBM Rational ClearQuest-alone or in conjunction with IBM Rational Performance Tester and the rest of the IBM
Rational family of software quality solutions-minimizes your IT and development costs. They automate, analyze, and
ensure the quality, reliability, scalability, and performance of your business-critical enterprise applications. They also
deliver the right combination of comprehensive tools and best practices to help you be successful in managing qual-
ity across every phase of the lifecycle, around the clock and around the globe.

These quality management solutions create a common framework to facilitate team-based quality management
practices to identify and resolve software defects and bottlenecks. They ensure applications perform and respond as
required, track people and resources, and reduce overall risk. They facilitate the measurement and prediction of
quality and performance against business requirements and objectives. The overall quality of software applications is
tested before they are deployed to make certain enterprise applications perform and scale as required.
Administration and communication processes are enhanced, giving you better visibility across software projects and
that ensuring the right people are working on the right code at the right time.

IBM Rational ClearQuest Eliminates Barriers to Quality Management
IBM Rational ClearQuest is a complete out-of-the-box solution with "design once and deploy anywhere" capabilities
on all major platforms that should be the cornerstone of any quality management strategy. Its powerful workflow
management system effectively manages quality across the full software lifecycle, from requirements definition
through application deployment. It automates much of the software development and delivery process to virtually
eliminate the geographic and organizational communication and informational gaps that wreak havoc on develop-
ment projects and delivery schedules.

You get a consolidated, real-time view of your development and testing processes, even if you are working in a het-
erogeneous environment using disparate processes and procedures. Development and QA teams can work togeth-
er more efficiently, sharing common and complete views of all testing and development activities-especially traceabil-
ity between development, testing, and other project assets. You can customize and enforce testing processes and
workflows, as well as seamlessly coordinate work across distributed locations.

IBM Rational ClearQuest advances the overall quality of the delivery process using a common software platform for
managing software development changes. Its fully customizable interface and workflow engine easily adapts to any
development process and supports project of any size. Robust and error-free replicating and synchronizing mecha-
nisms ensure centralized or geographically distributed development teams get instant access to defect and change
data. A secure, centralized repository provides a traceable, auditable relationship between development, testing and
project information, effectively linking requirements, code, build records, test cases, test results, deployment records,
and other pre-production assets.

IBM Rational ClearQuest lets you easily discern what requirements were implemented, what code was updated,
which test cases were run, what the test results were, who performed specific changes or tests, and when the
application was deployed. More specifically, it provides information about the number of defects you have per
requirement, and how many tests are passing and failing. It can tell you if the quality of your current iteration is better
or worse than the last build you created, as well as what tests need to be re-run for all requirement changes that
occurred in a specified time frame.

6 The IDE as a Development Platform. © 2006 Jupitermedia and Individual Authors.

The IDE as a Development Platform

http://www-128.ibm.com/developerworks/downloads/r/rcq/?S_TACT=105AGX30&S_CMP=DEVXRS
http://www-128.ibm.com/developerworks/downloads/r/rpt/?S_TACT=105AGY28&S_CMP=DEVXTC

You can implement and maintain reliable, repeatable, and enforceable processes anywhere, anytime and for any
type of environment you may have. You can recover work lost in the event of an authorized user's mistake, such as
the accidental deletion or overwriting of source code files, etc. In addition, secure access guarantees only those
people who are authorized to view or change project assets can do so.

IBM Rational ClearQuest easily scales to support the size of your team and projects. It adapts to the way your com-
pany works, letting you customize management of projects, engineering change orders, defect tracking, and more.
You get tools to effectively communicate, collaborate, define, adhere to, and enforce consistent processes for devel-
opment, testing, and approval, across the software lifecycle-no matter what the environment (e.g. open systems,
legacy systems, offshore, in-house, co-sourced, or outsourced). Tight integration with leading IDEs, including
WebSphere Studio, Eclipse, and .NET, delivers instant access to change information from within your preferred
development environment.

Since IBM Rational ClearQuest manages the full range of testing activities, including test planning, test execution,
capture and analysis of test results, you can more accurately define, create, and associate test cases with specific
test plans. Thus, ClearQuest removes many of the manual steps you worry about today and helps automate and
manage them, so you and your team can spend your time on other tasks and thereby improve efficiency. More
importantly, it bridges the quality gap between development and testing activities, shortening delivery time and
reducing the cost and time required for developing and deploying high-quality software applications.

Rounding Out the IBM Family of Quality Management Solutions
IBM Rational ClearQuest is also tightly integrated with complementary tools, including IBM Rational Performance
Tester, IBM Rational Functional Tester, IBM Rational Build Forge, IBM Tivoli Provisioning Manager, and IBM Rational
Manual Tester, for more efficient execution and management of tests and quality. Together, they enable delivery
teams to manage quality-beginning with tracking requirements throughout the process of building and releasing soft-
ware to managing testing processes and final product deployment. With the Rational portfolio, you are able to man-
age your requirements, changes, processes and quality from conception to operations, all within a single and inte-
grated solution. Furthermore Rational test automation tools leverage popular industry technologies including Java
and Microsoft VB.NET. Thus, your development teams can leverage skills they already have without having to learn
new or proprietary languages when they begin using Rational tools.

A discussion on quality management solutions would be incomplete without discussing IBM Rational Performance
Tester (RPT). The next release of RPT will ship with the IBM Performance Optimization Toolkit (IPOT). RPT allows you
to validate Web application scalability and reliability, capture and correct performance problems, and avoid perform-
ance problems before deployment. You can measure an application's ability to support multiple concurrent users
and detect performance deficiencies, scalability failures, and performance degradations in large, complex, or distrib-
uted applications, and retroactively discover and correct the source of the problem. IPOT is also available today as a
standalone toolkit.

With this capability, RPT lets you pinpoint system bottlenecks before application deployment by simplifying the cre-
ation, execution, and results analysis of multi-user performance tests. It is a visual tool with a flexible, easy to use
point-and-click interface that accurately simulates real world system loads. You can emulate any number of concur-
rent users and generate reports that identify performance bottlenecks and other problems to correct software
defects before software is deployed. This works in the test lab or in production environments, resulting in faster res-
olution times; thus, creating less impact on your operational organization's service level agreements (SLAs).

Real time performance and throughput reports identify performance problems at any time during a test run. These
reports provide multiple filtering and configuration options set before, during, and after a test run. RPT ensures accu-
rate simulation of the system load of a real world user population. It also provides an automated data pooling capa-
bility that varies the test data set used by each simulated user.

7 The IDE as a Development Platform. © 2006 Jupitermedia and Individual Authors.

The IDE as a Development Platform

http://www-128.ibm.com/developerworks/downloads/r/rft/?S_TACT=105AGX30&S_CMP=DEVXRS
http://www-306.ibm.com/software/awdtools/buildforge/enterprise/?option=com_demo&Itemid=123&S_TACT=105AGX30&S_TACT=DEVXRS
https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=dw-c-wcsdp&S_PKG=103106&S_TACT=105AGX30&S_CMP=DEVRHU
http://www-128.ibm.com/developerworks/downloads/r/rmt/?S_TACT=105AGX30&S_CMP=DEVXRS
http://www-128.ibm.com/developerworks/downloads/r/rmt/?S_TACT=105AGX30&S_CMP=DEVXRS
http://www-128.ibm.com/developerworks/downloads/r/rpt/?S_TACT=105AGY28&S_CMP=DEVXTC
http://www-128.ibm.com/developerworks/downloads/r/rpt/?S_TACT=105AGY28&S_CMP=DEVXTC

The following Quality and Change Management figure illustrates how the products in the IBM Rational family interop-
erate to help you achieve your quality management goals.

Quality management is not an "all or nothing" initiative. You can implement it in stages or phases, but its greatest
value is realized when organizational silos are relaxed and everyone on the project from design to development to
operations can share information and artifacts (e.g. the RPT and the IPOT/ITCAM integrations for root cause analy-
sis, etc.).

Quality management is ultimately about customer satisfaction-whether your customers are the operations team or
your end users. The full benefits of your quality management efforts can be achieved by taking the steps of the qual-
ity management process throughout the design, development, and delivery stages of your project.

In a time when business agility, compliance, governance, and bolstering customer loyalty are so critical, quality man-
agement gives you a strategic development and career advantage. So take an active role in encouraging your com-
pany to acquire and implement IBM's quality management solutions. Anything you can do to improve your produc-
tivity, and help your company increase operational efficiency, lower total development costs, and decrease time to
market is good for your career-and makes your job significantly easier.

Rikki Kirzner is a freelance writer and veteran computer industry professional with experience as an analyst and
former Research Director for IDC, Gartner Group, and Meta Group and as a Senior Editor with Open Computing
Magazine. Rikki covers software, development, open source, SOA, and mobile computing.

8 The IDE as a Development Platform. © 2006 Jupitermedia and Individual Authors.

The IDE as a Development Platform

(Source: IBM Rational)

Key Principles for Business-driven Development

Level: Introductory

Per Kroll, Manager of Methods, IBM Rational, IBM
Walker Royce, Vice President, IBM Rational Worldwide Brand Services

First published by IBM at
www-128.ibm.com/developerworks/rational/library/oct05/kroll/index.html
All rights retained by IBM and the author.

15 Oct 2005

from The Rational Edge: As a major update of IBM Rational's six best practices for software development, this
paper articulates a new set of principles that characterize a mature approach to the creation, deployment, and evo-
lution of software-intensive systems.

Discuss this topic online! After you've read this article, click here to access the RUP forum where you can post
questions and comments.

Since 1983, when the organization formerly known as Rational Software, now IBM Rational, was founded, our
knowledge of the various processes and techniques for software development has increased through collaboration
with a broad community of customers and partners. Over the years, many of them have joined our organization, and
have continued to shape our understanding of software development practices as we learn what works, what does-
n't, and why software development remains such a challenging endeavor.

As our customers, partners, and employees have heard us say many times, software development is a team sport. Ideally,
the activity involves well-coordinated teams working within a variety of disciplines that span the software lifecycle. But it's
not science, and it isn't exactly engineering, either -- at least not from the standpoint of quantifiable principles based on
hard facts. Software development efforts that assume you can plan and create separate pieces and later assemble them,
like you can in building bridges or spacecraft, constantly fail against deadlines, budgets, and user satisfaction.

So, in the absence of hard facts, the Rational organization has relied on software development techniques we call
best practices, the value of which we have demonstrated repeatedly in our customer engagements. Rather than
prescribing a plan-build-assemble sequence of activities for a software project, they describe an iterative, incremen-
tal process that steers development teams toward results.

Our six tried-and-true best practices have been the basis for the evolution of our tools and process offerings for
more than a decade. Today, as we witness more companies pursuing software development as an essential busi-
ness capability, we see these best practices maturing within the larger context of business-driven development. We
think it's time to re-articulate our best practices for the broader lifecycle of continuously evolving systems, in which
the primary evolving element is software.

This paper articulates a set of principles that we believe characterize the industry's best practices in the creation,
deployment, and evolution of software-intensive systems:

• Adapt the process.
• Balance competing stakeholder priorities.
• Collaborate across teams.
• Demonstrate value iteratively.
• Elevate the level of abstraction.
• Focus continuously on quality.

We will explain each of these in order, describing the patterns of behavior that best embody each principle, as well
as the most recognizable "anti-patterns" that can harm software development projects.

9 The IDE as a Development Platform. © 2006 Jupitermedia and Individual Authors.

The IDE as a Development Platform

IBM Resources
Rational Software Delivery Platform -
desktop products v7

SWG TV
Webcast: Architecture Management
IBM Downloads
Webcast: Quality Management
Competitive Trade-up

http://www.ibm.com/software/rational/announce/dt/
http://ibm.com/software/info/ibmtv/rational
http://www-306.ibm.com/software/sw-events/webcast/O732881H44429L82.html?S_TACT=105AGX30&S_CMP=DEVXRS
www.ibm.com/developerworks/downloads
http://www-306.ibm.com/software/sw-events/webcast/H782042A84278S48.html?S_TACT=105AGX30&S_CMP=DEVXRS
http://www-306.ibm.com/software/rational/support/migrations/index.html

Adapt the process
Benefits: Lifecycle efficiency, open/honest communication of risks

Pattern: Precision and formality evolve from light to heavy over the project lifecycle as uncertainties are resolved.
Adapt the process to the size and distribution of the project team, to the complexity of the application, and to the
need for compliance. Continuously improve your process.

Anti-patterns: Precise plans/estimates, track against static plan management style. More process is better. Always
use the same degree of process throughout the lifecycle.

More process, such as usage of more artifacts, production of more detailed documentation, development and main-
tenance of more models that need to be synchronized, and more formal reviews, is not necessarily better. Rather,
you need to right-size the process to project needs. As a project grows in size, becomes more distributed, uses
more complex technology, has a larger number of stakeholders, and needs to adhere to more stringent compliance
standards, the process needs to become more disciplined. But, for smaller projects with co-located teams and
known technology, the process should be more lightweight. These dependencies are illustrated in Figure 1.

Second, a project should adapt process ceremony to lifecycle phase. In the beginning of the project, you typically
have a lot of uncertainty, and you want to encourage a lot of creativity to develop an application that addresses the
business needs. More process typically leads to less creativity, not more, so you should use less process in the
beginning of a project where uncertainty is an everyday factor. On the other side, late in the project, you often want
to introduce more control, such as change control boards, to remove undesired creativity and associated risk for late
introduction of defects. This translates to more process late in the project.

Third, an organization should strive to continuously improve the process. Do an assessment at the end of each iter-
ation and each project to capture lessons learned, and leverage that knowledge to improve the process. Encourage
all team members to continuously look for opportunities to improve.

Fourth, balance project plans and associated estimates with the uncertainty of a project. This means that early in
projects when uncertainty typically is large, plans and associated estimates need to focus on big-picture planning
and estimates, rather than aiming at providing 5-digit levels of precision when there are none. Early development
activities should aim at driving out uncertainty to gradually enable increased precision in planning.

Figure 1: Factors driving the
amount of process discipline.
Many factors, including project size,
team distributions, complexity of tech-
nology, number of stakeholders, com-
pliance requirements, and where in the
project lifecycle you are, steer how dis-
ciplined a process you need.

The anti-pattern to following this princi-
ple would be to always see more
process and more detailed upfront
planning as better. Force early esti-
mates, and stick to those estimates.

10 The IDE as a Development Platform. © 2006 Jupitermedia and Individual Authors.

The IDE as a Development Platform

Figure 1

Balance competing stakeholder priorities
Benefit: Align applications with business and user needs, reduce custom development, and optimize business value

Pattern: Define and understand business processes and user needs; prioritize projects and requirements and cou-
ple needs with software capabilities; understand what assets you can leverage; and balance user needs and reuse
of assets.

Anti-pattern: Achieve precise and thorough requirements before any project work begins. Requirements focus the
drive toward a custom solution.

This principle articulates the importance of balancing often conflicting business and stakeholder needs. As an exam-
ple, most stakeholders would like to have an application that does exactly what they want it to do, while minimizing
the application's development cost and schedule time. Yet these priorities are often in conflict. If you leverage a
packaged application, for example, you may be able to deliver a solution faster and at a lower price, but you may
have to trade off many of your requirements. On the other hand, if a business elects to build an application from
scratch, it may be able to address every requirement on its wish list, but the budget and project completion date
can both be pushed beyond their feasible limits.

Rather than sending our programming teams out to attack each element in a requirements list, the first thing we
need to do is to understand and prioritize business and stakeholder needs. This means capturing business process-
es and linking them to projects and software capabilities, which enables us to effectively prioritize the right projects
and the right requirements, and to modify our prioritization as our understanding of the application and stakeholder
needs evolve. It also means we need to involve the customer or customer representative in the project to ensure we
understand what their needs are.

Second, we need to center development activities around stakeholder needs. For example, by leveraging use-case
driven development and user-centered design, we can accept the fact that the stakeholder needs will evolve over the
duration of the project, as the business is changing, and as we better understand which capabilities are the ones truly
important to the business and end users. Our development process needs to accommodate these changes.

Third, we need to understand what assets are available,
then balance asset reuse with stakeholder needs.
Examples of assets include legacy applications, services,
reusable components, and patterns. Reuse of assets can in
many cases lead to reduced project cost; and for proven
assets, their reuse often means higher quality in new appli-
cations. The drawback is that, in many cases, you need to
trade off reuse of assets and perfectly addressing end-user
needs. Reusing a component may lower development
costs for a specific capability by 80 percent, but this may
only address 75 percent of the requirements. So, effective
reuse requires you to constantly balance the reuse of
assets with evolving stakeholder needs.

Figure 2: Balance the use of components with
addressing requirements. Using a component can
radically reduce the cost and time to deliver a certain set
of functionality. It may in many cases also require you to
compromise on some functional or technical require-
ments, such as platform support, performance, or foot-
print (size of the application).

11 The IDE as a Development Platform. © 2006 Jupitermedia and Individual Authors.

The IDE as a Development Platform

Figure 2

The anti-pattern to following this principle would be to thoroughly document precise requirements at the outset of the
project, force stakeholder acceptance of requirements, and then negotiate any changes to the requirements, where
each change may increase the cost or duration of the project. Since you lock down requirements up-front, you
reduce the ability to leverage existing assets, which in turn drives you toward primarily doing custom development.
Another anti-pattern would be to architect a system only to meet the needs of the most vocal stakeholders.

Collaborate across teams
Benefits: Team productivity, better coupling between business needs, and the development and operations of soft-
ware systems.

Pattern: Motivate people to perform at their best. Collaborate cross-functionally across analysts, developers, and
testers. Manage evolving artifacts and tasks to enhance collaboration and progress/quality insight with integrated
environments. Ensure that business, development, and operations teams work effectively as an integrated whole.

Anti-pattern: Nurture heroic individuals and arm them with power tools.

Software is produced by talented and motivated people collaborating closely. Many complex systems require the
activities of a number of stakeholders with varying skills, and the largest projects often span geographical and tem-
poral boundaries, further adding complexity to the development process. This is why people issues and collabora-
tion -- what some have referred to as the "soft" element of software development -- have been a primary focus in
the agile development community.1 This principle addresses many questions, including: How do you motivate peo-
ple to perform at their best? And how do you collaborate within a co-located software team, within a distributed
team, and across teams responsible for the business, software development, and IT operations?

The first step in effective collaboration is to motivate individuals on the team to perform at their best. The notion of
self-managed teams2 has gained popularity in the agile community; it is based on making a team commit to what
they should deliver and then providing them with the authority to decide on all the issues directly influencing the
result. When people feel that they are truly responsible for the end result, they are much more motivated to do a
good job. As the agile manifesto states: "Build projects around motivated individuals. Give them the environment
and support they need, and trust them to get the job done."

The second step is to encourage cross-functional collaboration. As we've mentioned for years, "software develop-
ment is a team sport." An iterative approach increases the need for working closely as a team. We need to break
down the walls that are often built up between analysts, developers, and testers, and broaden the responsibilities of
these roles to ensure effective collaboration in an environment with fast churn. Each member needs to understand
the mission and vision of the project.

As our teams grow, we need to provide effective collaborative environments. These environments facilitate and auto-
mate metrics collection and status reporting and automate build management and bookkeeping around configura-
tion management. This efficiency allows fewer meetings, which frees team members to spend more time on more
productive and creative activities. These environments should also enable more effective collaboration by simplifying
communication, and bridging gaps in place and time between various team members. Examples of such an environ-
ment range from shared project rooms to networked or Web-based solutions, such as Wikis or integrated develop-
ment environments and configuration and change management environments.

Our ultimate goal under this principle is integrated collaboration across business, software, and operation teams. As
software becomes increasingly critical to how we run our business, we need close collaboration between 1) the
teams deciding how to run our current and future business, 2) the teams developing the supporting software sys-
tems, and 3) the teams running our IT operations.

12 The IDE as a Development Platform. © 2006 Jupitermedia and Individual Authors.

The IDE as a Development Platform

Figure 3: Collaborate across business,
development, and operations teams. As
software becomes more critical to how we
run our business, we need to collaborate
more closely around teams responsible for
how to run the business, how to develop
applications, and how to run the applications.
In most companies, these three groups have
poor communication.

The anti-pattern to following this principle
would be to nurture heroic developers willing
to work extremely long hours, including week-
ends. A related anti-pattern is to have highly
specialized people equipped with powerful
tools for doing their jobs, with limited collabo-
ration between different team members, and
limited integration between different tools. The
assumption is that if just everybody does his
or her job, the end result will be good.

Demonstrate value iteratively
Benefits: Early risk reduction, higher predictability, trust among stakeholders

Pattern: Adaptive management using an iterative process. Attack major technical, business, and programmatic
risks first. Enable feedback by delivering incremental user value in each iteration.

Anti-pattern: Plan the whole lifecycle in detail, track variances against plan. Detailed plans are better plans. Assess
status by reviewing specifications.

There are several imperatives underlying this principle. The first one is that you want to deliver incremental value to
enable early and continuous feedback. This is done by dividing our project into a set of iterations. In each iteration,
you do some requirements, design, implementation, and testing of your application, thus producing a deliverable
that is one step closer to the final solution. This allows you to demonstrate the application to end users and other
stakeholders, or have them use the application directly, enabling them to provide rapid feedback on how you are
doing. Are you moving in the right direction? Are stakeholders satisfied with what you have done so far? Do you
need to change the features implemented so far, and what additional features need to be implemented to add busi-
ness value? By being able to satisfactorily answer these questions, you are more likely to build trust among stake-
holders by delivering a system that will address their needs. You are also less likely to over-engineer your approach,
adding capabilities not useful to the end user3.

The second imperative is to leverage demonstrations and feedback to adapt your plans. Rather than relying on
assessing specifications, such as requirements specifications, design models, or plans, you instead need to assess
how well the code that's been developed thus far actually works. This means you focus on test results and demon-
strate working code to various stakeholders to assess how well you are doing. This provides you with a good under-
standing of where you are, how fast the team can make progress within your development environment, and
whether you need to make course corrections to successfully complete the project. You use this information to
update the overall plan for the project and to develop detailed plans for the next iteration.

13 The IDE as a Development Platform. © 2006 Jupitermedia and Individual Authors.

The IDE as a Development Platform

Figure 3

The third underlying imperative is to embrace and manage change. Today's applications are too complex to allow
you to perfectly align the requirements, design, implementation, and test the first time through. Instead, the most
effective application development methods embrace the inevitability of change. Through early and continuous feed-
back, we learn how to improve the application, and the iterative approach provides us with the opportunity to imple-
ment those changes incrementally. All this change needs to be managed by having the processes and tools in place
so we can effectively manage change without hindering creativity.

The fourth imperative underlying this principle is the need to drive out key risks early in the lifecycle4, as illustrated in
Figure 1. You must address the major technical, business, and programmatic risks as early as possible, rather than
postponing risk resolution toward the end of the project. This is done by continuously assessing what risks you are
facing, and addressing the top remaining risks in the next iteration. In successful projects, early iterations involve
stakeholder buy-in on a vision and high-level requirements, including architectural design, implementation, and test-
ing to mitigate technical risks. It is also important to retain information required to force decisions around what major
reusable assets or commercial-off-the-shelf (COTS) software to use.

Figure 4: Risk reduction
profiles for waterfall and
iterative development proj-
ects. A major goal with iterative
development is to reduce risk
early on. This is done by analyz-
ing, prioritizing, and attacking top
risks in each iteration.

A typical anti-pattern (i.e., former
software development practices
that actually contribute to project
failure) is to plan the whole lifecy-
cle in detail upfront, and then
track variances against plan.
Another anti-pattern is to assess
status in the first two thirds of
the project by relying on reviews
of specifications, rather than
assessing status of test results and demonstrations of working software.

Elevate the level of abstraction
Benefits: Productivity, reduced complexity

Pattern: Reuse existing assets, reduce the amount of human-generated stuff through higher-level tools and lan-
guages, and architect for resilience, quality, understandability, and complexity control.

Anti-pattern: Go directly from vague high-level requirements to custom-crafted code.

One of the main problems we face in software development is complexity. We know that reducing complexity has a
major impact on productivity.5 Working at a higher level of abstraction reduces complexity and facilitates communi-
cation.

One effective approach to reducing complexity is reusing existing assets, such as reusable components, legacy sys-
tems, existing business processes, patterns, or open source software. Two great examples of reuse that have had a

14 The IDE as a Development Platform. © 2006 Jupitermedia and Individual Authors.

The IDE as a Development Platform

Figure 4

major impact on the software industry over the last decade is the reuse of middleware, such as databases, Web
servers and portals, and, more recently, open source software that provides many smaller and larger components
that can be leveraged. Moving forward, Web services will likely have a major impact on reuse, since they provide
simple ways of reusing major chunks of functionality across disparate platforms and with loose coupling between
the consumer and provider of a service, as illustrated in Figure 6. This means that you can more easily leverage dif-
ferent combinations of services to address business needs. Reuse is also facilitated by open standards, such as
RAS, UDDI, SOAP, WSDL, XML, and UML.

Figure 5: Reuse existing assets through
service-oriented architectures. One of the
problems with reuse is that two components need
to know about each other's existence at develop-
ment time. Service-oriented architectures alleviate
that problem by providing what is called "loose
coupling," shown here via the double-headed
black arrows. A consumer of a service can
dynamically find a provider of a service. You can
hence wrap existing components or legacy sys-
tems, allowing other components or applications
to dynamically access their capabilities through a
standards-based interface, independent of plat-
form and implementation technology.

Another approach to reducing complexity and
improving communication is to leverage higher-
level tools, frameworks, and languages. Standard
languages, such as Unified Modeling Language
(UML), and rapid application languages such as
EGL6 provide the ability to express high-level con-
structs, such as business processes and service
components, to facilitate collaboration around high-level constructs while hiding unnecessary details. Design and
construction tools can automate moving from high-level constructs to working code by providing wizards to auto-
mate design, construction, and test tasks by generating code and enabling usage of code snippets, and by convert-
ing integration and testing into seamless development tasks through integrated development, build, and test envi-
ronments. Another example is project and portfolio management tools, which allow you to manage financial and
other aspects of multiple projects as one entity versus as a set of separate entities.

A third approach to managing complexity is to focus on architecture, no matter whether you are trying to define a busi-
ness or develop a system or an application. In software development, we aim at getting the architecture designed,
implemented, and tested early in the project. This means that early in the project we define the high-level building
blocks and the most important components, their responsibilities, and their interfaces. We define and implement the
architectural mechanisms, that is, ready-made solutions to common problems, such as how to deal with persistency or
garbage collection. By getting the architecture right early on, we define a skeleton structure for our system, making it
easier to manage complexity as we add more people, components, capabilities, and code to the project. We also
understand what reusable assets we can leverage, and what aspects of the system need to be custom built.

The anti-pattern to following this principle would be to go directly from vague, high-level requirements to custom-
crafted code. Since few abstractions are used, a lot of the discussions are made at the code level versus a more
conceptual level, which misses many opportunities for reuse, among other things. Informally captured requirements
and other information require many decisions and specifications to be revisited over and over, and limited emphasis
on architecture causes major rework late in the project.

15 The IDE as a Development Platform. © 2006 Jupitermedia and Individual Authors.

The IDE as a Development Platform

Figure 5

Focus continuously on quality
Benefits: Higher quality and earlier progress/quality insight

Pattern: Team responsibility for end product. Testing becomes a high priority given continuous integration of
demonstrable capabilities. Incrementally build test automation.

Anti-pattern: Postpone integration testing until all code has been completed and unit-tested. Peer-review all arti-
facts, rather than also driving partial implementation and testing, to discover issues.

Improving quality is not simply "meeting requirements," or producing a product that meets user needs and expecta-
tions. Rather, quality also includes identifying the measures and criteria to demonstrate its achievement, as well as
the implementation of a process to ensure that the product created by the team has achieved the desired degree of
quality, which can be repeated and managed.

Ensuring high quality requires more than the participation of the testing team; it requires that the entire team owns
quality. It involves all team members and all parts of the lifecycle. Analysts are responsible for making sure that
requirements are testable, and that we specify clear requirements for the tests to be performed. Developers need to
design applications with testing in mind, and must be responsible for testing their code. Management needs to
ensure that the right test plans are in place, and that the right resources are in place for building the testware and
performing required tests. Testers are the quality experts. They guide the rest of the team in understanding software
quality issues, and they are responsible for functional-, system-, and performance-level testing, among other things.
When we experience a quality issue, every team member should be willing to chip in to address the issue.

One of the major benefits of iterative development is that it enables a test early and continuously approach, as illus-
trated in Figure 2. Since the most important capabilities are implemented early in the project, by the time you get to
the end, the most essential software may have been up and running for months, and it is likely to have been tested
for months. It is not a surprise that most projects adopting iterative development claim that an increase in quality is a
primary tangible result of the improved process.

As we incrementally build our application, we should also incrementally build test automation to detect defects early,
while minimizing up-front investments. As you design your system, consider how it should be tested. Making the
right design decisions can greatly improve your ability to automate testing. You may also be able to generate test
code directly from the design models. This
saves time, provides incentives for early test-
ing, and increases the quality of testing by
minimizing the number of bugs in the test
software. Automated testing has been a key
area of focus for, among others, the agile
community, where the aim is to automate
testing of all code, and where tests are written
before the code is written (so called test-first
design.)

Figure 6: Testing Is initiated early and
expanded upon in each iteration.
Iterative development enables early testing.
Software is built in every iteration and tested
as it is built. Regression testing ensures that
new defects are not introduced as new itera-
tions add functionality.

16 The IDE as a Development Platform. © 2006 Jupitermedia and Individual Authors.

The IDE as a Development Platform

Figure 6

The anti-pattern for this principle involves conducting in-depth peer-review of all intermediate artifacts, which is
counter productive since it delays application testing, and hence, identification of major issues. Another anti-pattern
is to complete all unit testing before doing integration testing, again delaying identification of major issues.

Summary
As we noted at the beginning, these principles have evolved from their origins over a decade ago, when software
developers generally worked in a somewhat more limited context. Our knowledge about software development,
along with the overall conditions for project success, has matured and expanded. Today's business-driven software
development organizations need guideposts that map a broader landscape, which includes geographically distrib-
uted development, IT governance and regulatory compliance needs, service oriented-architecture, and more.

Just as software development is not hard science, we believe that these principles should not be taken as state-
ments of absolute, everlasting truth, but rather as guides to improved software project results. These principles will
continue to evolve -- not at a breathtaking pace, but gradually, as we acquire more experience about what works,
what doesn't, etc. The one thing that won't change is the long-standing Rational commitment to helping the suc-
cess of customers whose businesses depend on developing and deploying software.

Notes
1 See http://www.agilemanifesto.org/principles.html
2 See Ken Schwaber and Mike Beedle, Agile Software Development with SCRUM, Prentice Hall: 2001.
3 According to the Standish Group's Chaos Report, 2002, 45 percent of features implemented on the average

project are never used.
4 As illustrated in Walker Royce's book, Software Project Management: A Unified Framework,

Addison-Wesley, 1998
5 See "Four Factors for Software Economics," in Royce, op. cit.
6 Enterprise Generation Language, see http://en.wikipedia.org/wiki/Enterprise_Generation_Language

About the authors
Per Kroll is the director of the Rational Unified Process development and product management teams at IBM
Rational Software. He's been working with customers as a trainer, mentor, and consultant on the RUP and its pred-
ecessors since 1992 and was the original product manager for the RUP when the product team was launched in
1996. He's also been heavily involved in certifying partners and training Rational personnel to deliver services around
the RUP.

Walker Royce is the vice president of IBM's Worldwide Rational Brand Services. He has managed large software
engineering projects and consulted with a broad spectrum of software development organizations. He is the author
of Software Project Management, A Unified Framework (Addison-Wesley Longman, 1998) and a principal contribu-
tor to the management philosophy inherent in the Rational Unified Process. Before joining Rational and IBM, he
spent sixteen years in software project development, software technology development, and software management
roles at TRW Electronics & Defense. He was a recipient of TRW's Chairman's Award for Innovation for distributed
architecture middleware and iterative software processes and was a TRW Technical Fellow. He received his BA in
physics from the University of California, and his MS in computer information and control engineering from the
University of Michigan.

17 The IDE as a Development Platform. © 2006 Jupitermedia and Individual Authors.

The IDE as a Development Platform

http://www.agilemanifesto.org/principles.html
http://en.wikipedia.org/wiki/Enterprise_Generation_Language

Myths and Realities of Iterative Testing

Level: Introductory

Laura Rose, Quality Engineering Manager, IBM

First published by IBM at
www-128.ibm.com/developerworks/rational/library/apr06/rose/
All rights retained by IBM and the author.

15 Apr 2006

from The Rational Edge: Software testing expert Laura Rose questions and debunks some widely held myths per-
taining to iterative development in general and iterative testing in particular. She explains how iterative development
principles can address these common misunderstandings and lead to a pragmatic testing methodology.

Myths arise from a lack of direct experience. In the absence of information, we form beliefs based on what we think we
know, often with a skeptical feeling towards what we don't know. In the realm of software development, myths can
make it difficult to approach real-world problems objectively, thus putting budgets and schedules at increased risk.

In my career as a quality assurance manager, I have gained experience with a number of software development
practices, including iterative development and the so-called "waterfall" approach. The former is generally presumed
to be a more modern method than the latter. But this is, in fact, a myth: both approaches have been around since
the 1960s. Another myth led to the popularity of the waterfall method in the 1970s. The thinking of Winston Royce,
often cited as the father of the waterfall method, was actually misinterpreted. He recommended the single-pass
waterfall method only for legacy maintenance projects. Royce actually suggested an iterative "do it twice" approach
for software applications being developed for the first time.

From these inauspicious beginnings, the world of software development has given rise to numerous other myths.
This article will question and debunk some of the most widely held myths pertaining to iterative development in gen-
eral and iterative testing in particular. I'll explain how iterative development principles can address these common
misunderstandings and lead us to a pragmatic testing methodology that mitigates or avoids altogether many com-
mon software development pitfalls, some of which our "mythology" holds as inevitable.

Myth: In a majority of software development projects, we quickly code a prototype application to reduce risk and
prove a concept, with the intention of throwing this code away.

Reality: There is nothing wrong with this approach. But, because of schedule pressure or because the results are
encouraging, we do not discard that code. The reality is that our prototyping is actually early coding. That code
becomes the foundation and framework for our new application. However, because it was created under the pre-
sumption that it would be thrown away, it bypassed requirements reviews, design reviews, code reviews, and unit
testing. Our next-generation application is now built on an indeterminate foundation.

In an iterative development lifecycle, continuous experimentation is viewed as a good thing, and early prototyping is
encouraged in each development iteration. But any code that is submitted into the product needs to follow best
practices to assure its stability, reliability, and maintainability. One way to encourage proper software development
practices from the very start of a project is to use the initial coding effort to plan, prove, and present the processes
you intend to use throughout the various iterative development phases. As part of the iterative testing method, you
can use your early coding cycles to test your product's concept and flush out glitches in your development process-
es at the same time.

18 The IDE as a Development Platform. © 2006 Jupitermedia and Individual Authors.

The IDE as a Development Platform

IBM Resources
Rational Software Delivery Platform -
desktop products v7

SWG TV
Webcast: Architecture Management
IBM Downloads
Webcast: Quality Management
Competitive Trade-up

http://www.ibm.com/software/rational/announce/dt/
http://ibm.com/software/info/ibmtv/rational
http://www-306.ibm.com/software/sw-events/webcast/O732881H44429L82.html?S_TACT=105AGX30&S_CMP=DEVXRS
www.ibm.com/developerworks/downloads
http://www-306.ibm.com/software/sw-events/webcast/H782042A84278S48.html?S_TACT=105AGX30&S_CMP=DEVXRS
http://www-306.ibm.com/software/rational/support/migrations/index.html

Myth: Initiating testing activities earlier in the development cycle increases delivery time while reducing the number
of features in the product.

Reality: Testing is not the time-consuming activity in a development lifecycle. Diagnosing and fixing defects are the
time-consuming, bottleneck activities.

Testing is not the obstacle that shipwrecks our projects -- testing is the lighthouse that keeps our projects off the
rocks. Defects are in the product whether we look for them or not. Iterative testing moves the detection of problems
closer to where and when they were created. This minimizes the cost of correcting the bug as well as its impact on
schedules.

Myth: You can't test if you don't have a product to test.

Reality: Iterative testing isn't limited to testing code.

Every artifact your team produces can be verified against your success criteria for acceptance. Likewise, each
process or procedure you use to produce your deliverables can be validated against your success criteria for quality.
This includes the product concepts, the architecture, the development framework, the design, the customer usage
flows, the requirements, the test plans, the deployment structure, the support and service techniques, the diagnostic
and troubleshooting methods, and even the procedures you follow to produce the product.

As you can see from this partial list, the majority of these items don't involve code. Therefore, you miss opportunities
to support quality and reduce risk by waiting until you actually have deliverable code. I disagree with the widely
accepted notion that "you can't test quality into a product." You can test quality into a product. You just need to
start early enough.

Myth: You are more efficient if you have one developer (or a single source) specialized in each development area. In
the simplest argument, if you have thirty developers and employ pair programming, you can code fifteen features. If
you assign one developer per feature, you can code thirty features in the same amount of time. With thirty features,
you have a fuller and more complete product.

Reality: The risk associated with having one developer per feature or component is that no one else can maintain
and understand that feature. This strategy creates bottlenecks and delays. Defects, enhancement requests, or mod-
ifications are now queued to that single resource. To stay on schedule, your developers must work weekends and
extra hours for extended periods, because they are the only ones who can continue new feature development and
fix defects in this area. Your entire project schedule is now dependent on heroic efforts by a number of "single
resources."1 When that resource leaves the team, goes on vacation, or becomes overwhelmed, it causes delays in
your schedule. Because of the way you've chosen to implement and manage your development strategy, you are
now unable to provide your team with relief.

Pair programming, pair testing, code reviews, and design reviews are sound practices that not only increase the
quality of the product, but also educate others on each feature or component, such that they increase your pool of
resources to fix and maintain project code. The two members of a pair don't have to be equally sophisticated or
knowledgeable in their area. They can be just knowledgeable enough to eliminate the inevitable bottlenecks created
by specialization as discussed above.

Moreover, dividing development activities into logical, smaller, independent chunks (a.k.a. sprints) allows developers
of different skill levels to work efficiently on the various pieces. With multiple capable resources, you can avoid actu-
ally assigning the different tasks to a specific developer. When we have more than one resource capable of accom-
plishing the task, assigning specific tasks to specific individuals creates a false dependency. Similar to multiple bank
tellers servicing a single line of waiting customers, efficiency improves when developers instead sign up for the next

19 The IDE as a Development Platform. © 2006 Jupitermedia and Individual Authors.

The IDE as a Development Platform

task when they've completed the last task.

Myth: Producing code is the developer's primary task.

Reality: The primary task of everyone on the development team is to produce a product that customers will value.
This means that during the requirements review activities, for example, the developer's primary task is "requirement
review." During the design activities, the developer's primary task is creating and reviewing the design documents.
During the coding activities, the developer's primary task is generating bug-free and customer-relevant code. During
the documentation review activities, the developer's primary task is making sure the user assistance materials and
error messages serve to flatten the customer's learning curve. During installation and setup, the developer's primary
task is to make sure customers can set up and configure your product easily, so that they can get their "real" job
done as efficiently as possible. The greater the effort required to use software to accomplish a task, the lower the
customer's return on investment and the greater the abandonment rate for the application.

Myth: Requirements need to be stable and well defined early for software development and testing to take place
efficiently.

Reality: If our ultimate goal was "efficient software development and testing," then having stable and well-defined
requirements up-front might be a must. But our actual goal is to produce a product that customers will value. Most
of us can readily admit that we don't always know what we want. Since there are constant changes in the market-
place, such as new products and options, we often change our minds after being introduced to new concepts and
information. Acknowledging the above illustrates one key reason why it is rarely effective to keep requirements static.
Frequent interaction with the product during development continually exposes the customer to our efforts and allows
us to modify our course to better meet customers' changing needs and values.

Myth: When the coding takes longer than originally scheduled, reducing test time can help get the project back on
schedule.

Reality: Typically, coding delays occur because of unexpected difficulties or because the original design just didn't
work. When it's apparent that we've underestimated project complexity, slashing test time is a very poor decision.
Instead, we need to acknowledge that, since the test effort was probably based on the underestimated coding
effort, the test effort was probably underestimated as well. We may therefore need to schedule more test time to
correct the original estimation, not less.

Iterative testing increases test time without affecting the overall schedule by starting the testing earlier in each itera-
tion. Also, the quality of the product determines the amount of testing that is required -- not the clock. For instance,
if the product is solid and no new defects are being found in various areas, then the testing will go very smoothly
and you can reduce testing time without reducing the number of tests or the test coverage. If the product is unsta-
ble, and many defects are being discovered and investigated, you'll need to add test cycles until the quality criteria
are met. And don't forget that testing is not the project's time-consuming activity in the first place.

Myth: Finding and fixing all the defects will create a quality product.

Reality: Recent studies illustrate that only 10 percent of software development activities, such as creating cus-
tomer-requested features, actually add value for the customer. A percentage of features, for example, are developed
in order to stay competitive in the market, but are not necessarily used or desired by the customers. Finding and fix-
ing defects related to these features also does not add customer value, because the customers might never have
encountered these bugs.

Iterative testing, on the other hand, actually reduces defect inventory and customer wait time based upon what is of
value to the customer. By involving customers in each iteration, iterative testing compresses the delivery cycle to the

20 The IDE as a Development Platform. © 2006 Jupitermedia and Individual Authors.

The IDE as a Development Platform

design partner customers, while maximizing the value of the application to this customer.

Myth: Continually regression-testing everything every time we change code is tedious and time consuming…but, in
an ideal world, it should be done.

Reality: Regression testing doesn't mean "testing everything, every time."
Iterative regression testing means testing what makes sense in each phase and iteration. It also means modifying
our coverage based on the impact of the change, the history of the product, and the previous test results.

If your regression tests are automated, then go ahead and run all of them all the time. If not, then be selective about
what tests you run based on what you want the testing to accomplish. For instance, you might run a "sanity regres-
sion suite" or "set of acceptance tests" prior to "accepting" the product to the next phase of testing. Since the focus
of each iteration is not necessarily the same, the tests don't need to be the same each time. Focus on features and
tests that make sense for the upcoming deliverables and phase. For instance, if you're adopting components from a
third party, like a contractor or an open source product, the sanity regression suites would focus on the integration
points between the external and internal components. If, during your initial sanity regression testing of this third party
module, you find defects or regressions, you may choose to alter your regression suites by adding additional tests
based on the early results.

If, on the other hand, you're adopting a set of defect fixes that span the entire product that is within your control, the
sanity regression suite would be focused and structured entirely on your end-to-end, high profile customer use
cases. If the change is confined to just one area and the product has a stable quality track record, you could focus
the regression suite on just that area. Likewise, in the end-game, you may want a very small sanity regression suite
that covers media install, but not in-depth or end-to-end tests. Once again, the focus of the sanity or acceptance
regression suite depends upon what was tested in the previous cycle, the general stability of the product, and the
focus of the next iteration.

Myth: It's not a bug -- the feature is working as designed.

Reality: The over-explanation of why the product is doing what it's doing is a common trap. Sometimes we just
know too much. When defects are triaged and reviewed, we often explain away the reasons for the defect.
Sometimes we tag defects as "works as designed" or "no plans to fix" because the application is actually working
as it was designed, and it would be too costly or risky to make the design change. Similarly, we explain many
usability concerns as "it's an external component" or "it's a bell and whistle." Our widgets or UI controls may have
known limitations. Or we may even tell ourselves that "once the user learns to do it this way, they'll be fine."

In short: We know the ins and outs of the code, and why it's working as it is. And at that component level, we're
making very logical and sensible decisions. But we're lacking the top-down view of the entire customer experience.
We aren't appreciating the end effect of our coding trade-offs and workarounds. Our primary focus is getting the
feature code completed on time. By focusing on just the individual feature or component, we are unintentionally
making code decisions that negatively impact the overall flow and usability of the product. It's usability, after all, that
most affects the customer's efficiency. It's also usability (or lack thereof) that drives user abandonment numbers.

Elevating our view of the project above those layers of detail allows us to see the product as the customer would --
in its entirety, rather than as individual components. This elevated view helps us to ignore all the reasons why the
product works the way it does. Customers don't really care if a given design was quicker to code. It's of little con-
cern to them if the UI controls are conflicting with the API of component X, which is outside your particular develop-
ment task. They are only concerned about whether the application is assisting or obstructing them in the pursuit of
their goals.

21 The IDE as a Development Platform. © 2006 Jupitermedia and Individual Authors.

The IDE as a Development Platform

Myth: A tester's only task is to find bugs.

Reality: This view of the tester's role is very limited and adds no value for the customer. Testers are experts with
the system, application, or product under test. Unlike the developers, who are responsible for a specific function or
component, the tester understands how the system works as a whole to accomplish customer goals. Testers
understand the value added by the product, the impact of the environment on the product's efficiency, and the best
ways to get the most out of the product.

Taking advantage of this product knowledge expands the value and role of our testers. Expanding the role of the
tester to include customer-valued collateral (like tips, techniques, guidelines, and best practices for use) ultimately
reduces the customer's cost of ownership and increases the tester's value to the business.

Myth: We don't have enough resources or time to fully test the product.

Reality: You don't need to fully test the product -- you need to test the product sufficiently to reduce the risk that a
customer will be negatively affected.

The reality of changing market demands generally means that, indeed, it's actually not possible to exhaustively test a
product in the specified timeframe. This is why we need a pragmatic approach to testing. Focus on your customers'
business processes to identify your testing priorities. Incorporate internal customers to system test your product.
These steps increase your testing resources, while providing real-world usability feedback. You can also do your

22 The IDE as a Development Platform. © 2006 Jupitermedia and Individual Authors.

The IDE as a Development Platform

Table 1 illustrates some ways we can act as advocates for the customer's perspective as we test an application.

When we encounter this response…

We already know this isn't right.

It's on our list for future consideration
(with no scheduled date).

It's in someone else's code outside
our department.

Customer or pilot error.

It's working as designed.

It's working this way because XXX.

we should…

Identify explicit things that need to be fixed by the release date and
what needs to be fixed in a subsequent release. Identify owners and
deadlines.

Realize that if it has a "future consideration" tag (or similar), it's not
real. Work with tech support, field consultants, and customers to
illustrate the importance of the bug or feature. Once the team is
assured of the customer value, schedule a release date and owner.

Create a SWAT team that includes "outside department" staff in addi-
tion to development staff. Schedule a release date and owner of the
change.

Study the documentation or usage flow. Customer errors are often
the result of some unclear and unintuitive step. Explicitly identify the
change that needs to occur, schedule it, and set an owner.

Request a full review of the design in the workflow perspective. Walk
through how the customer or role will play out from beginning to end.

Realize that if XXX isn't "because the customer wants it this way,"
then XXX is irrelevant. Eliminate that reason from the discussion and
move on to the next point.

Table 1: Ways to advocate for the customer’s perspective

system testing at an external customer lab to boost your real-world environment experience without increasing your
maintenance or system administration activities.

Myth: Testing should take place in a controlled environment.

Reality: The more the test environment resembles the final production environment, the more reliable the testing. If
the customer's environment is very controlled, then you can do all your testing in a controlled environment. But if the
final production environment is not controlled, then conducting 100 percent of your testing in a controlled environ-
ment will cause you to miss some important test cases.

While unpredictable events and heterogeneous environments are difficult to emulate, they are extremely common
and therefore expected. In our current global market, it is very likely that your application will be used in flexible, dis-
tributed, and diverse situations. In iterative testing, we therefore schedule both business usage model reviews and
system testing activities with customers whose environments differ. The early business usage reviews identify the
diversity of the target customer market, prior to coding. System testing at customer sites exercises our product in
the real world. Although these "pre-released" versions of the product are still in the hands of our developers and run-
ning on our workstations, they are tested against customer real-world office (or lab) environments and applications.
While this strategy doesn't cover every contingency, it acknowledges the existence of the unexpected.

Myth: All customers are equally important.

Reality: Some customers are more equal than others, depending upon the goal of a particular release. For exam-
ple, if the release-defining feature for the January release is the feature that converts legacy MyWidget data to
MyPalmPilot data, then the reactions of my customers that use MyWidget and MyPalmPilot are more important for
this particular release than the input of other customers.

All our customers are important, of course. But the goal of iterative testing is to focus on testing the most important
features for this particular iteration. If we're delivering feature XYZ in this iteration, we want expert customer evalua-
tion of XYZ from users familiar with prior XYZ functionality. While we welcome other feedback, such as the impres-
sions of new users, the XYZ feature takes precedence. At this stage of development, users new to the market can-
not help us design the "right XYZ feature."

Myth: If we're finding a lot of bugs, we are doing important testing.

Reality: The only thing that finding a lot of bugs tells us is that the product has a lot of bugs. It doesn't tell us about
the quality of the test coverage, the severity of the bugs, or the frequency with which customers will actually hit
them. It also doesn't tell us how many bugs are left.

The only certain way to stop finding bugs is to stop testing. It seems ridiculous, but the thought has merit. The crux
of this dilemma is to figure out what features in the product actually need to work. I've already mentioned that there
are many workflows in a product that aren't actually used -- and if they aren't used, they don't need to work.
Incorporating customer usage knowledge directly into your test planning and defect triage mechanism improves
your ability to predict the customer impact and risk probability associated with a defect. Incorporating both risk- and
customer-based analysis into your test plan solution will yield a more practical and pragmatic test plan. Once you're
confident in your test plan, you can stop testing after you've executed the plan.

How do you build that kind of confidence? Start, in your test planning, by identifying all the areas that you need to
test. Get customer review and evaluation on business processes and use cases so that you understand the fre-
quency and importance of each proposed test case. Take special care to review for test holes. Continually update
and review your test plans and test cases for each iteration. Your goal is to find what's not covered. One way to do
this is to map bug counts by software areas and categories of tests. If a software area doesn't have defects logged

23 The IDE as a Development Platform. © 2006 Jupitermedia and Individual Authors.

The IDE as a Development Platform

against it, it could mean that this area is extremely solid or that it hasn't been tested. Look at the timestamps of the
defect files. If the last defect was reported last year, maybe it hasn't been tested in awhile. Finding patterns of miss-
ing bugs is an important technique to verifying test coverage.

Myth: Thorough testing means testing 100 percent of the requirements.

Reality: Testing the requirements is important, but not sufficient. You also need to test for what's missing. What
important requirements aren't listed?

Finding what's not there is an interesting challenge. How does one see "nothing?" Iterative testing gets customers
involved early. Customers understand how their businesses work and how they do their jobs. They can tell you
what's missing in your application and what obstacles it presents that stops them from completing their tasks.

Myth: It's an intermittent bug.

Reality: There are no intermittent bugs. The problem is consistent -- you just haven't figured out the right condi-
tions to reproduce it. Providing serviceability tools that continually monitor performance, auto-calibrate at the appli-
cation's degradation thresholds, and automatically send the proper data at the time of the degradation (prior to the
application actually crashing) reduces both in-house troubleshooting time and customer downtime. Both iterative
testing and iterative serviceability activities reduce the business impact of undiscovered bugs.

Better diagnostic and serviceability routines increase the customer value of your product. By proactively monitoring
the environment when your product starts to degrade, you can reduce analysis time and even avoid shutdown by
initiating various auto-correcting calibration and workaround routines. These types of autonomic service routines
increase your product's reliability, endurance, and run-time duration, even if the conditions for reproduction of a bug
are unknown.

In a sense, autonomic recovery routines provide a level of continuous technical support. Environment logs and trans-
action trace information are automatically collected and sent back to development for further defect causal analysis,
while at the same time providing important data on how your product is actually being used.

If we acknowledge that bugs are inevitable, we also need to realize the importance of appropriate serviceability rou-
tines. These self-diagnostic and self-monitoring functions are effective in increasing customer value and satisfaction
because they reduce the risk that the customer is negatively affected by bugs. Yet even though these routines
increase customer value, few development cycles are devoted to putting these processes in place.

Myth: Products should be tested under stress for performance, scalability, and endurance.

Reality: The above is true. But so is its opposite. Leaving an application dormant, idle, or in suspend mode for a
long period emulates customers going to lunch or leaving the application suspended over the weekend, and often
uncovers some issues.

I recommend including sleep, pause, suspension, interrupt, and hibernating mode recovery in your functional testing
methods. Emulate a geographically-distributed work environment in which shared artifacts and databases are
changing (such as when colleagues at a remote site work during others' off-hours) while your application is in sus-
pend or pause mode. Test what occurs when the user "wakes it up," and the environment is different from when
they suspended it. Better yet, put your product in a real customer environment and perform system testing that
emulates some of the above scenarios.

Myth: The customer is always right.

24 The IDE as a Development Platform. © 2006 Jupitermedia and Individual Authors.

The IDE as a Development Platform

Reality: Maybe it's not the right customer. You can't make everyone happy with one release. Therefore, be selec-
tive in your release-defining feature set. Target one type of customer with a specific, high-profile testing scenario.
Then, for the next release or iteration, select a different demographic. You'll test more effectively; and, as your prod-
uct matures, you'll increase your customer base by adding satisfied customers in phases.

Myth: Automate! Automate! Automate!

Reality: Automate judicially and with ROI in mind. The more the test environment resembles the final production
environment, the more reliable the testing. If the customer's product is 100 percent automated, then Automate!
Automate! Automate! If your product isn't meant to be automated in the customer's environment, then you want a
combination of automation, ad hoc, exploratory, and customer scenario testing.

It's also helpful to expand your definition of automation. Automated test cases can retest areas that you have
already tested manually. But that doesn't increase your test coverage or your understanding of how users interact
with the application. Instead, create automation that actually allows you to invest more effort in creative manual test-
ing. Automate the things you need to do frequently and that take you a long time to accomplish, like:

• The breakdown and setup of clean environments for testing each build.
• Sanity acceptance testing for every build, integration point, or iteration.
• Testing the same suite across various platforms, operating systems, and languages.
• Unit and command line testing of low-level components.

For more ideas on increasing your return on investment in automation, visit http://www-128.ibm.com/developer-
works/rational/library/may05/rose/.

Myth: Iterative development doesn't work.

Reality: It's human nature to be skeptical of the unknown and the untried. In the iterative development experience,
benefits accrue gradually with each successive phase. Therefore, the full benefit of the iterative approach is appreci-
ated only towards the end of the development cycle. For first-timers, that delayed gratification can truly be an act of
faith. We have no experience that the approach will work, and so we don't quite trust that it will. When we perceive
that time is running out, we lose faith and abandon the iterative process. In panic mode, we fall back into our old
habits. More often than not, iterative development didn't actually fail. We just didn't give it a chance to succeed.

Iterative testing provides visible signs at each iteration of the cumulative benefits of iterative development. When
teams share incremental success criteria (e.g., entrance and exit criteria for each iteration), it's easier to stay on
track.

Because we are continually monitoring our results against our exit criteria, we can more easily adjust our testing dur-
ing the iterations to help us meet our end targets. For instance, in mid-iteration, we might observe that our critical
and high defect counts are on the rise and that we're finding bugs faster than we can fix them. Because we've rec-
ognized this trend early, we can redistribute our resources to sharpen our focus on critical-path activities. We might
reassign developers working on "nice-to-have" features to fix defects in "release-defining" features or remove nice-
to-have features associated with high defect counts.

Conclusion
I've touched on just a few of the software development myths and assumptions that we encounter every day. The
more assumptions we make, the less we're open to discovering the unexpected -- which is what software testing is
all about.

25 The IDE as a Development Platform. © 2006 Jupitermedia and Individual Authors.

The IDE as a Development Platform

http://www-128.ibm.com/developer-works/rational/library/may05/rose
http://www-128.ibm.com/developer-works/rational/library/may05/rose
http://www-128.ibm.com/developer-works/rational/library/may05/rose

Unfortunately, our myths are very seductive. They are disguised as answers, and they conveniently end the dialogue.
When we're understaffed and under pressure, it's very tempting to accept assumptions as facts.

Because it's often difficult for us to distinguish myth from reality, we need to test our answers. This simple and effec-
tive mantra, which sums up everything I've talked about in this article, will help keep you on that path:
Iterative testing is never being satisfied with the right answer.

Notes
1 In the Capability Maturity Model (CMM, or CMMI), the maturity level described by depending upon heroic efforts by
several individuals is symptomatic of the Level 1, better known as the Chaos Level.

About the author
Laura Rose is the quality engineering manager responsible for automated performance test tools at IBM Rational.
In addition to leading projects in both software programming and testing environments, she has thirteen years of
programming experience and ten in test management. She has been a member of the American Society for Quality,
the Triangle Quality Council, and the Triangle Information Systems Quality Association, and has published and pre-
sented at various test and quality conferences. You can reach her at llrose@us.ibm.com.

26 The IDE as a Development Platform. © 2006 Jupitermedia and Individual Authors.

The IDE as a Development Platform

mailto:llrose@us.ibm.com

Roadtrip! A Vacationer’s Guide to Iterative Development

Level: Introductory

Laura Rose, Quality Engineering Manager, IBM

First published by IBM at
www.ibm.com/developerworks/rational/library/jul06/rose/index.html
All rights retained by IBM and the author.

14 Jul 2006

from The Rational Edge: If you or someone you know is skeptical about the viability and value of iterative and incre-
mental software development methods, perhaps what's needed is a familiar framework for understanding the basic
concepts. Here, Laura Rose steps outside the realm of software to describe one form of iterative project: a cross-
country roadtrip.

The iterative and incremental development process is built on the work of Barry Boehm's spiral model,1 and it has
been enhanced by many individuals and organizations, including the IBM Rational team, over the past two decades.
The process is characterized by continuous discovery, invention, and implementation. With each iteration, the devel-
opment team drives the project's artifacts to closure in a predictable and repeatable way.2 The iterative approach
accounts for changing requirements, it mitigates risks earlier, and it allows for tactical changes as developers learn
along the way.

Even though iterative and incremental development methods have proved highly successful for both large and small
development organizations, many still believe that iterative development does not work. While it is human nature to
be skeptical of the unknown and untried, many, if not most, of us have implemented something very similar to the
iterative development lifecycle in our life outside the software development arena. That is, we've taken a lengthy car
trip across country -- many of us more than once.

This paper illustrates how iterative development techniques are used in everyday activities such as taking a family
vacation.

Few would disagree that life involves continuous discovery, invention, and implementation. No one has their careers,
goals, and accomplishments all plotted and well-defined at birth. We readily acknowledge that we learn as we grow,
changing our strategies and even our goals with every experience and observation. Yet, when it comes to software
development, we have difficulty applying those concepts. We tend to believe that a carefully laid-out plan and tight
schedule is the only way to develop a new piece of software. In fact, iterative and incremental techniques offer a
better approach to creating software; small steps in the process are accomplished, demonstrated, and evaluated,
and discoveries often suggest new ways to go about achieving the next steps.

To illustrate this iterative process, let's compare it to something many of us are familiar with: managing a family vaca-
tion. Even if you've never taken a family vacation (or it's been a long time), I think you'll see the value of this cross-
country trip metaphor.

The project
Let's pretend that our sister Jane is getting married on June 3 in Orlando, Florida, USA, and we live in San Diego.
We have also agreed to pick up other family members along the way.

27 The IDE as a Development Platform. © 2006 Jupitermedia and Individual Authors.

The IDE as a Development Platform

IBM Resources
Rational Software Delivery Platform -
desktop products v7

SWG TV
Webcast: Architecture Management
IBM Downloads
Webcast: Quality Management
Competitive Trade-up

http://www.ibm.com/software/rational/announce/dt/
http://ibm.com/software/info/ibmtv/rational
http://www-306.ibm.com/software/sw-events/webcast/O732881H44429L82.html?S_TACT=105AGX30&S_CMP=DEVXRS
www.ibm.com/developerworks/downloads
http://www-306.ibm.com/software/sw-events/webcast/H782042A84278S48.html?S_TACT=105AGX30&S_CMP=DEVXRS
http://www-306.ibm.com/software/rational/support/migrations/index.html
http://www.ibm.com/developerworks/rational/library/jul06/rose/index.html

Already, as in an iterative development project, we have our mandatory requirements (get to Orlando!), release-defin-
ing features (pick up other relatives), and a fixed release date (our sister is getting married on June 3, whether we're
there or not). Note that, in real life, we have no trouble accepting hard deadlines -- like wedding dates. How often
have you heard someone complain that a selected wedding date is too aggressive? We simply accept the invitation,
or we send our regrets.

Just as at the start of a software development project, we have multiple methods to accomplish our goals. We can
fly, take a train, rent a car, or combine any of these options. We can take three days or three weeks to get there.
And, as in a software project, we have other people (stakeholders) involved. Imagine that our stakeholders are Aunt
Marian in Santa Fe, New Mexico; Uncle Cid in Baton Rouge, Louisiana; and cousin Tanya in Jackson, Mississippi.

Project features
At the start, everyone agrees that it would be fun to make this a three-week family vacation, with our primary stops
at the three cities where our relatives live. To increase value and enjoyment, we plan some additional excursions en
route. These additional excursions will be optional, depending on our progress, but they surely will be "nice to do."

So far, this trip partly resembles the Inception phase of an iterative development project: It's common to have a few
release-defining (primary) features and several secondary or nice-to-do features. The release-defining feature set
includes the mandatory and highly publicized components. As this title suggests, these features determine the criti-
cal path. By definition, our release date will be postponed if those selected features are not of the agreed quality or
completeness. The development team continues to work on the secondary features within the same schedule. But
we do not intend for the nice-to-do features to affect the release date. Because the secondary features are not pub-
licized, we have the flexibility to reposition our resources away from those secondary features in order to assure that
the primary feature set is completed on time.

The side-excursions (secondary vacation stops) are initially selected based upon the routes to the various family
member pickup points. If time gets tight, these nice-to-see landmarks can be omitted to get us back on schedule.
So, even though we don't know all the stops along the way, we do have a skeleton of the route (project plan), when
we need to be at our various pickup points (our requirements, milestone dates, and iteration phases) and the wed-
ding date (project end date).

We secure a friend's RV as our travel method. We think that this would be relaxing and comfortable. The RV adds
flexibility, because we are not required to stay at hotels every night. But the RV does have limited space. So for this
to be successful, we need everyone to conform to certain traveling criteria, such as luggage limits, a commitment to
the team's expenses, what they need to supply for the trip, and our various timetables. If at any point along the jour-
ney, we don't meet our agreed-upon travel criteria, we need to stop, evaluate our situation, and adjust.

Legs of the journey
In the iterative development method, there are initial entry and exit criteria that govern whether each leg of our devel-
opment journey can begin. These targets are used to guide and validate the stability, reliability, and accuracy of the
product under development. These agreed-upon criteria are created at the beginning of the project, with the under-
standing that they can be appropriately altered along the way.3 An example of an iteration exit or entrance criteria
would be:

1. All planned features delivered for this iteration
2. All stakeholders reviewed and approved planned test coverage for this iteration
3. All planned tests executed, with 95 percent passing
4. No known blocking or high priority issues

28 The IDE as a Development Platform. © 2006 Jupitermedia and Individual Authors.

The IDE as a Development Platform

We continually monitor the project according to these criteria along the way. If at any point along the development
lifecycle, we recognize that we're off course, we stop, evaluate our situation, and adjust. It's also important to realize
that "adjust" can mean modifying the entrance/exit criteria.
Because we will be at different points of our vacation at each iteration milestone (see Figure 1), the entrance and exit
criteria for each leg of the journey will be different for each participant. As an example, you and I will be traveling for
three weeks. Therefore, our luggage allocation would be larger than someone who is picked up on the last few days
of the vacation.

At the start, we identify a general plan and important criteria for the trip. After a few modifications to the plan, every-
one agrees to the terms, conditions, and timetable.

We're on our way.

Figure 1: Three milestones before the end of our iterative trip: Santa Fe, Baton Rouge, and
Jackson.

Although we know we need to make three stops on this trip, we're not too concerned with our third stop in Jackson
just yet. As we begin the journey, we focus on getting to Aunt Marian in Santa Fe. We refine a more detailed route
for that leg of the journey (the first iteration). Since we have friends in Phoenix, we pop in there for a brief visit. We
aren't exactly sure what they have in store for us, but we know that they plan to take us sightseeing in their home-
town. We had already called ahead with our timetable and constraints. Our friends in Phoenix schedule their activi-
ties to coincide with our requirements. We also make sure to periodically touch base with them on route.

Note that leaving the planning of the time in Phoenix to our friends is similar to contracting or outsourcing a feature
or component in a development project. We establish certain timetables, constraints, checkpoints, and communica-
tion procedures; but we leave the details to the third party.

We have a great time in Phoenix and we successfully get to Santa Fe on time.

29 The IDE as a Development Platform. © 2006 Jupitermedia and Individual Authors.

The IDE as a Development Platform

Figure 1

The first hiccup
When we arrive in Santa Fe, Marian is ready and we review our status. Marian meets the agreed-upon luggage crite-
ria, she has budgeted the proper spending cash, and she's packed the items that were on her list of things to bring
to the wedding. The only hiccup is that she is insisting on bringing her puppy, Dogma. We didn't originally plan for
this, so we need to evaluate what type of adjustment is needed. Although you or I don't have a specific problem
with that, we need to check with all the stakeholders (similar to conducting a change management review). We
regrettably find out that Cousin Sid (the object of the next leg of our journey) is allergic to dogs. Dogma can't travel
with us.

In many styles of software development, adding a feature after the project plan has been approved is termed as
"feature creep." But in the iterative development lifecycle, we expect changes in requirements and requests. We
intend to constantly learn from the previous iteration. Since progressive requirements refinement is one of the essen-
tial concepts in iterative development, conducting requirement reviews at the start or end of each iteration is critical.

In our case, Marian is disappointed, but she understands. Because she previously did a risk-assessment and real-
ized that Dogma may not be allowed to come with us, her contingency plan was already in place. Her friend (several
towns away) had already agreed to take the dog. Dropping off the dog will take us several hours off the planned
route, so we review our day's schedule with this adjustment in mind. We decide that we can easily include the route
change without any negative consequences. Marian's dog-sitting friend also offered to give us an expert sightseeing
tour of that area. The consequence of the change was trivial and even beneficial: i.e., because we adjusted to this
change, we had a more exciting interactive tour (than the landmark previously planned).

In iterative development, this is much like substituting one optional feature for another as we continually learn about
our project and our customer needs. Even though the gathered knowledge from the previous iteration might change
the contents or course of the next iteration, our primary goals and end date stays stable.

We successfully deliver Dogma. We have a great time meeting and visiting with Darla. We also learned that Darla's
son and daughter will be attending the same high school as our son Josh. We made some future plans to travel
together for different school events and even investigate the possibility that the children might room together. To sum
up, we are able to make some tentative plans about the future, all because the flexibility built into the iterative
process allows us some deviation from the original plan.

An actual setback
Our next major iteration milestone is Cousin Sid in Baton Rouge. On the way, we want to stop at three cities in
Texas: Austin, San Antonio, and Houston. We spend several enjoyable days at Austin and San Antonio. Everything is
going to plan until the RV breaks down outside of San Antonio. It's unknown exactly what it will cost or how long it
will take to fix the RV. The optimistic estimate is a few days, but the mechanic can't tell us for sure until he spends
more time with the RV (much like investigating a defect in our code). Unfortunately, we didn't foresee something like
this occurring. It has the potential for setting us back several days.

In any software development project, the team tries to identify risks, the probability of occurrence, impact to the
overall project, and contingency plans. In iterative development cycles, risk management and identification are con-
tinuously reviewed in each iteration.

So, just as in a software project, we have a conference call with all the stakeholders. Since we don't know exactly
when the RV will be fixed, we need a new plan. We can't change the end date: Jane is getting married whether
we're there or not. If we stick to the current project plan, there's a high probability we will miss the wedding. Since
Marian is the maid-of-honor, she is not pleased. She feels very strongly about taking immediate action to assure we
get there on time.

30 The IDE as a Development Platform. © 2006 Jupitermedia and Individual Authors.

The IDE as a Development Platform

We discuss several options. The plan we agree on is to have Tanya (in Jackson) fly to Baton Rouge to meet Sid.
When the RV is fixed, we will go directly to Baton Rouge and pick up both of them at that iteration milestone.
Eliminating the side excursion to Jackson gives us a seven-day buffer.

Tanya agrees to the new expense of her airfare. Of course, she isn't the only one bearing unforeseen expenses: We
have the RV to repair, and everyone has a different opinion about how the new expenses should be handled. After
some discussions, we eventually arrive at a solution that is acceptable to the team (this is similar to acquiring addi-
tional equipment and resources needs in a software project to recover from an unexpected setback).

Refining the contingency plan
Because the RV repair time is still unknown, Marian is nervous about making our final destination on time. So she sug-
gests a refinement to better offset the risk: Limit the time we wait for the RV repair. For instance, if the repairs take
longer than five days, she suggests we abandon the RV and use a different method of travel. In software development,
this is called timeboxing the "wait" or "delay" cycle. This method allows us to control the unknown items, which elimi-
nates the day-to-day float that takes most projects off schedule. Marian looks into various travel methods like plane,
train, and bus. Considering everyone's budgets, travel schedules, comfort, and other concerns, she recommends that
if the RV isn't drivable within five days, we take a train to Orlando. Tanya and Sid would leave from Baton Rouge, and
we would go directly from San Antonio. I volunteer to stay with the RV, understanding that I might miss the wedding.
So now we had an iterative and refined contingency plan for the risk that the RV may not be fixed in time.

Marian wonders if we should call and tell Jane about our current situation. Jane is much like our customer in a software
development project, who is interested in the final delivery of our software application. After discussing it, we decided
that Jane has too many other things to worry about. If we have to put our contingency plan into effect, we may want to
give her a heads-up. But right now, we think we can contain these events. Any one of us can take the train (or even fly)
directly to Orlando, at any time, decoupling the dependency to the rest of the family. Even though traveling together
was an important "requirement" at the start of the project, we understand that sometimes priorities change.

In times of crisis, the requirements can be altered to fit the current situation or need. In this example, the require-
ment for all of us to get to the wedding remains intact. But because of current circumstances, we've changed it a
bit -- i.e., it's no longer mandatory that we get there all together or at the same time. The final goal is still met, but
it's accomplished in a slightly different manner. In an iterative development lifecycle, modification to requirements
based on the current situation or need is not only acceptable, it's actually expected.

Marian agreed that if she felt anxious about the time, she could always go directly to Orlando on her own. In iterative
development, this is similar to deciding how much change you can completely contain within your group before rais-
ing a red flag that affects external teams.

Now that we have a plan in place for our current situation and a contingency plan for our risk, we can relax a little.
We won't have the RV for a few days, so we elect to find a nice bed and breakfast. The hosts are gracious, fun-lov-
ing, and knowledgeable about the area. They are sympathetic to our story and promise to make our few days of
captivity as enjoyable as possible. We use this creatively, in ways that expand our knowledge.

Adjustments and opportunities
In iterative development, we often encounter delays in a project, which can give us time to reduce the defect inventory
and stabilize the iteration's deliverables, and thus help keep the overall mission on track. Often delays occur while wait-
ing for other parts of the design project to synchronize with the main branch. But these delays can present opportuni-
ties for other team members, who are given unexpected time to stabilize and reduce defects in the baseline code.

And wouldn't you know it? The RV is actually fixed in three days; we are on the road again, but because we're

31 The IDE as a Development Platform. © 2006 Jupitermedia and Individual Authors.

The IDE as a Development Platform

a little wary of the stability of the RV, we go directly to Baton Rouge. In fact, we arrive ahead of schedule, and
Tanya's flight from Jackson doesn't arrive until the next day. So we visit with Sid until Tanya catches up with us.

At this point, we are pretty much at end-game. Let's take a closer look at the iteratively developed vacation events.
As we look back over the progress of the trip, we can chart the iterations (both planned and actual) as shown in
Figures 2 and 3. Figure 2 portrays the vacation plans at the start of our vacation project. Through constant strategy
reviews, adaptability, and iterative task planning, our actual travel plans successfully resulted in Figure 3.

Figure 2: Original iteration plan at start of vacation

Figure 3: Actual iteration activities during vacation, adjusted from those shown in Figure 2

Continuous testing
Just like the previous pickup points (iteration milestones), we "test" to ensure that we've met the proper luggage limits
and budget, and have all the items we need to bring to the wedding. And... ah ha! We find that, in the rush to secure
alternative travel plans, Tanya forgot the items she was supposed to bring for the wedding. But thanks to our iterative
testing at each iteration point, we caught this oversight before the final deadline (the wedding itself). Not a big prob-
lem. We do some manageable shopping to get Tanya back on track. (This illustrates the importance of continuous
testing at each iteration and verifying our iteration entrance and exit criteria as our software project progresses.)

Now there is only the ten-hour trip to Orlando left. We take a leisurely drive, sightseeing at Mobile, Alabama, and

32 The IDE as a Development Platform. © 2006 Jupitermedia and Individual Authors.

The IDE as a Development Platform

Figure 2 Figure 3

Tallahassee, Florida. We eliminate the other side trips and arrive in Orlando ahead of schedule. Some of us spend a
day at Disney World, while Marian uses her time for her bridesmaid duties.

The iterative adventure
As you can see in this simple example of iterative traveling, we've encountered similar events to software risks, fea-
ture creep, unexpected breakdowns beyond our control, and recovery plans. Just like our travel plans, iterative
development and testing can be used effectively to increase the probability of meeting your software schedules.

Notes
1 Barry W Boehm, "A Spiral Model of Software Development and Enhancement," IEEE Computer, May 1988, pp. 61-72.
2 Philippe Kruchten, The Rational Unified Process An Introduction, pp. 7-8.
3 Acceptance criteria, such as entrance and exit standards, should continually be reviewed and evaluated based on

continuous knowledge and project refinement. It's even acceptable to alter them, if appropriate, based upon new
learnings or course changes.

About the author
Laura Rose is the quality engineering manager responsible for automated performance test tools at IBM Rational.
In addition to leading projects in both software programming and testing environments, she has thirteen years of
programming experience and ten in test management. She has been a member of the American Society for Quality,
the Triangle Quality Council, and the Triangle Information Systems Quality Association, and has published and pre-
sented at various test and quality conferences. You can reach her at llrose@us.ibm.com.

33 The IDE as a Development Platform. © 2006 Jupitermedia and Individual Authors.

The IDE as a Development Platform

mailto:llrose@us.ibm.com

