
Late, cancelled, over-budget. More often than
not, one or more of these labels will ultimately
apply to a large software development project.
Anyone who has worked on such a project
knows how difficult it can be to complete it on
time. Numerous studies have found that the
percentage of projects that are delivered on
schedule is disappointingly low. The percent-
age of projects delivered ahead of schedule
and under budget is, of course, much lower
still. Yet, that is just what a small team of
developers, testers and analysts from Ceridian
did by using Rational® Rose® for modeling,
Rational® RequisitePro® for requirements man-
agement, Rational® ClearQuest® for defect
tracking, and Rational Suite® TestStudio® for
testing. The project, named ResponsePlus.net,
is one of the largest and most successful
development efforts that Ceridian has ever
undertaken. Requiring almost two full years to
complete, the project included replacing five
legacy systems, connecting several other
major systems, and consolidating numerous
legacy databases into a single, comprehen-
sive customer database.

Ceridian is a leader in managed business
solutions for human resources and employee
effectiveness services. The ResponsePlus.net
team was focused on Ceridian’s payroll and
human resources solutions. In addition to
building internal applications like
ResponsePlus.net, Ceridian provides a full
suite of solutions for all phases of employment,
from recruitment and applicant screening, to
payroll processing, tax filing and compliance
services, human resource management sys-
tems, employee self-service, time and labor
management, and employee effectiveness
solutions, to benefits administration and retire-
ment plan services.

The Challenge
Bob Hughes, program manager of the
ResponsePlus.net project for Ceridian,
explains what motivated the project and what
it entailed, “Ceridian is a distributed company
— we’re in more than two dozen different
major metropolitan areas around the country.
Each one of those offices has historically oper-
ated as an individual business. Our charter
was to consolidate several of the databases
together, replace several legacy systems, and
create a new application that combined multi-
ple systems together into one. It was really an
almost complete redesign.”

Because of the wide range of legacy systems
and databases involved, the development
team faced the additional challenge of master-
ing an equally wide range of technologies.
Hughes notes, “Our group had a tremendous
amount of learning to do. They had to deal
with mainframes, Web development, SQL
Server, XML, XSLT (Extensible Style Language
Transformation). They also had to know
COM+, Windows 2000, UNIX, message queu-
ing, and all of the mainframe protocols that we
needed for what we had to do.” When all of
the requirements and all of the required tech-
nologies were taken into consideration, it was
clear to Hughes that the project was going to
be a challenge. “We think anyone would call
this an enterprise project. It cost several mil-
lion dollars; it involved many distributed sys-
tems. If you look at the statistics, the track
records for completing large projects like this
on time are not very good.”

Getting Started
When the project began, the Response-
Plus.net team started with a blank slate.
Working from the broad project objectives, it
was up to the team to determine what tech-

Industry:

Hardware/Software

Organization:

Ceridian

Description:

Ceridian is one of the top
national human resources out-
sourcing companies in the
U.S., offering a suite of innova-
tively managed business solu-
tions for HRMS, payroll, tax
filing, application outsourcing,
time and attendance, benefits
administration and employee
effectiveness services.

Business Problem:

Ceridian was developing an
enterprise application that inte-
grated numerous new and
existing systems. They needed
effective tools for modeling,
requirements management,
defect tracking, and testing.

Rational Solution:

Rational ClearQuest, Rational
RequisitePro, Rational Purify,
Rational Rose, Rational Suite
TestStudio

Key Benefits:

Completed a large, enterprise-
wide development project –
that included replacing five
legacy systems, connecting
several other major systems,
and consolidating numerous
legacy databases into a single,
comprehensive customer data-
base — ahead of schedule
and under budget

Automatically generated nearly
750,000 lines of code – includ-
ing VB, C++, SQL and
XML/XSLT code – from visual
models, representing 90% of
all the code constructed for
one project

Improved communication and
minimized misunderstandings
across a distributed develop-
ment team through better
defect tracking and use of a
common modeling language

Rational and Ceridian

Ceridian Brings Enterprise Project in
Under Budget and Ahead of Schedule
with Rational Tools

nologies, tools and approach to use, and then
to define more detailed project requirements.
Hughes remembers, “The only thing that was
somewhat a given is that all of our desktops
are running Microsoft Windows. Other than
that, whether this was going to be a Java
application, a Microsoft application, whether
we were going to use any modeling tools and
do any sort of object-oriented or object-based
development was basically given to the project
teams.”

Development teams throughout Ceridian have
been using Rational tools for several years,
and their success was a big factor in the
team’s decision to use those same tools on the
ResponsePlus.net project. Ceridian developers
have used Rational RequisitePro, a powerful,
easy-to-use and integrated requirements man-
agement tool, for almost five years and
Rational Rose, the award-winning model-driven
development tool, for four years. Andrew
Prymak, Team Lead for the development group
and a principal designer of ResponsePlus.net
explains, "We had a lot of expectations
because of how big this project was. We knew
we had to have automated ways of helping us
manage different aspects of the project. We
had experience with Rational RequisitePro and
Rational Rose from projects past, so we rec-
ommended that we use those tools for this
project. We knew that using Rose would be a
good way to do our design. It would be one
place to house our documentation. That’s really
where we began — selecting Rose as a
design tool — but we got much more out of it
as we moved on."

Before any design could begin, the team
needed a much clearer picture of the project’s
requirements. For ResponsePlus.net, the team
decided that creating and evolving use cases
in Rational RequisitePro would be an optimal
way to track requirements. Prymak continues,
"We also wanted to manage our use cases.
Since we had experience with Rational
RequisitePro and there are so many require-
ments for this huge project we decided to use
this document repository for all of our use
cases. It worked out very well."

The Code Generation Revelation
Soon after the team began building the appli-
cation models for ResponsePlus.net in Rational

Rose, they came to a realization that they
would shave months of development time off
the project. The lead developers saw that they
could create not just their application models
in Rational Rose but also their data models;
and from these models they could automatical-
ly generate much of the source code and data
tables for the entire project.

Prymak explains, “When we started out, we
asked ourselves, ‘Well, how are we going to
do this? What kind of objects are we going to
have?’ We sat down and started to do object-
oriented design the way that we had on past
client-server projects. We created some
sequence diagrams, and what we really fell
upon was, ‘Hey, it would be great if we did
data modeling in Rational Rose too,’ because
our transfer method for passing data is XML-
based.

We had to figure out the complex parent-child
relationships of all this data that was going
back and forth and we really needed to model
it. For instance, a payroll deduction can have
other data elements that are its children. It was
a very hierarchical structure that could be
many layers deep, and we wanted to create
these layers as different reusable data objects.
The best way to do this was to model these as
different classes in Rational Rose and show
those relationships and hierarchies. We started
with what we logically wanted in the XML doc-
uments, put those in classes, and that helped
us determine what database structure we
wanted. Once we started doing this we said,
‘Wow, we can do our database designing in
Rose as well.’”

Tim Carroll, one of two System Architects for
ResponsePlus.net, soon saw the potential for
generating code from the extensive models
that were being developed. Prymak continues,
"That’s when Tim stepped in and said, ‘Well, if
we have it all here in the model, why don’t we
generate the code?’”

Although Rational Rose supports forward-
engineering code from visual models, Carroll
opted to create custom components that used
the Rational Rose Extensibility Interface to
access the ResponsePlus.net models. The
Rational Rose Extensibility Interface is com-
prised of the Rational Rose API (application
programming interface) and Rational Rose

“We had a lot of expectations

because of how big this project

was. We knew we had to have

automated ways of helping us

manage different aspects of the

project. We had experience

with Rational RequisitePro and

Rational Rose from projects

past, so we recommended that

we use those tools for this

project. That’s really where we

began — selecting Rose as a

design tool — but we got much

more out of it as we moved on.”

Andrew Prymak
Team Leader for
Development Group, Ceridian

Rational and Ceridian

Scripting, which allows developers to use
RoseApp object to automate manual functions
within Rational Rose, create versions of
Rational Rose that are specific to particular
problem domain, and integrate Rational Rose
with other software applications. Carroll decid-
ed to use the Rational Rose Extensibility
Interface because it offered more flexibility and
enabled him to create Visual Basic compo-
nents that generated very specific and tailored
code for each object. Carroll notes, “I chose to
go ahead and write our own components
using the Rational Rose Extensibility Interface.
The extensibility interface is, I think, very good.
It’s very well documented and it has everything
in there. With the RoseApp object, I was able
to go in and find out everything I needed to
know about what each XML document that we
were going to be generating needed to look
like. I could find out what tables it related to, if
I needed to be able to join tables together,
what fields we needed to use for key values to
update — all kinds of things like that.”

For some of the objects, 100% of the code
was automatically generated from the model –
requiring no hand coding at all. Once generat-
ed, all the team needed to do was compile it.
And when the model changed, code could be
re-generated immediately. Carroll notes, "We
had one object which had over 100 different
columns; keeping this object in sync would
have been a nightmare. Any time somebody
changed a column somewhere, we would have
had to make sure we made that change exact-
ly the same in the code and everywhere else. I
don’t think you can even estimate how much
time that saved."

Saving Time and Simplifying
Maintenance
The ability to generate code automatically from
the model yielded benefits immediately.
Hughes reports, “In the first three months we
generated code for 350 objects with four
stored procedures each, like add, delete,
update, and XML documents for the data
access — all of it. And it was all consistent, all
perfect names everywhere, all in sync. If you
had a whole team doing it, things might be
named incorrectly. Since we’re pulling it all
from schemas there is no problems like that.
And, it’s all generated in the same way.” There

were other benefits as well, “Our approach
forced standardization to the design, so every-
thing that we did was consistent. Because the
code was all being generated, we knew it was
consistent and it was going to behave the
same way, which would help with maintenance
down the road. Even our stored procedures to
retrieve the data were generated so the table
joins were orderly and efficient. This virtually
eliminated the possibility of getting database
deadlocks — something that could potentially
cripple an application or require extensive per-
formance tuning. This was something our
DBAs were very happy about. The benefits
were many, but in terms of the amount of work
and the time savings alone that we got from
generating all the code — there’s no way we
would have met our project dates at all if we
had to hand code it.”

Prymak adds, “We’d go back to the model,
make any changes necessary and regenerate.
We’d regenerate these things several times,
when any error was found. It forced us to
follow best practices in terms of going back
to design, making sure that everything was
properly documented and fit together from a
logical, business standpoint.”

In the end, almost 750,000 lines of code —
including VB, C++, SQL and XML/XSLT code
— were generated from the models in Rational
Rose, representing 90% of all the code con-
structed for ResponsePlus.net. According to
Carroll, it was Rational Rose’s well-document-
ed extensibility interface that was key to the
code generation, and in turn, to the success of
the entire project. “Rational Rose’s extensibility
was very good. I couldn’t ask for anything
more than what Rational Rose had. It was very
easy to use and I was able to get at everything
— nothing was hidden. That’s what all made it
possible. Without that we couldn’t have done
generation.”

Improving Communication with
Rational ClearQuest
Though the ResponsePlus.net development
team was relatively small — approximately 16
developers, four analysts and three testers —
they were not all in one location. With team
members in Colorado, New Jersey, Georgia
and Minnesota, effective communication was
crucial to the project’s success. The team

"We had one object which had

over 100 different columns;

keeping this object in sync

would have been a nightmare.

Any time somebody changed

a column somewhere, we

would have had to make sure

we made that change exactly

the same in the code and

everywhere else. I don’t think

you can even estimate how

much time that saved."

Tim Carrol
System Architect, Ceridian

relied on Rational Rose and Rational
ClearQuest to keep communication channels
open and to minimize misunderstandings.

Rational Rose unified the software develop-
ment efforts of Ceridian’s distributed team
through modeling based on the Unified
Modeling Language (UML), the standard nota-
tion for software architecture. And Rational
ClearQuest facilitated improved communica-
tion by providing a comprehensive solution for
managing all change requests, including
enhancements, defects and other changes.

Hughes adds that Rational ClearQuest also
simplified overall project management,
"Rational ClearQuest improved communication
as well as work flow — from developer back to
analyst to verify it, to QA to test it and so on,
until a change was concluded by putting into a
build. Any developer at any of our sites could
go in and see which ClearQuest items were
assigned to them without having someone tell
them what their workload was. Managing all
those change requests for a distributed devel-
opment team — knowing where each
ClearQuest item was, whether it was in the
hands of a developer, in QA, and when it was
included in a build — was a key benefit. This
project had over 125 builds in its last year and
ClearQuest provided a complete history of
each build’s contents."

Bringing It All Together
One of the most important advantages the
ResponsePlus.net team gained from using
Rational solutions was the ability to link the
project’s requirements, design, test cases,
and change requests together. The integration
between various tools helped the team visual-
ize the impact of changes, and also enabled
better task planning to ensure that all require-
ments were addressed by both the design
and by testing.

Carisa McCann, Team Lead for the Quality
Assurance Group recalls, "We were able to
establish traceability by setting up links
between our use cases in Rational
RequisitePro and the test cases. This was real-
ly great for us from a testing perspective. With
relatively few testers trying to keep up with the
pace of development, we didn’t have a lot of
time to spend trying to figure out what test

cases needed to be updated due to design
changes. These links were really helpful for us
because they made it easy to see what had
changed and automatically identified which
test cases needed to be updated." The testing
team used Rational TestManager to manage
test assets like automated scripts and data
files, to create data pools for automated
regression testing with Rational Robot, and to
link requirements with test cases. Along the
way, developers also used another testing tool,
Rational Purify, to quickly pinpoint memory
leaks in C++ code. All three testing tools —
Rational TestManager, Rational Robot and
Rational Purify — are integral components of
Rational Suite TestStudio, as are Rational
ClearQuest and Rational RequisitePro.

Hughes agrees that the ability to trace require-
ments through development and testing was a
substantial benefit, "Both Rational RequisitePro
and Rational ClearQuest help to enforce best
practices in managing design changes. In
RequisitePro the requirements changes were
documented, prioritized and linked to test
cases for traceability, which allowed us to
easily identify and analyze the impact those
changes would have downstream."

Small Team, Big Results
A small group delivered a huge project ahead
of schedule and well within budget. The chal-
lenges faced by the ResponsePlus.net team
were complex, but the recipe for the team’s
success was not. They followed best practices
of software engineering: effectively managing
requirements and change, using component
architectures, modeling extensively, testing
early and often, and communicating clearly.
And they used Rational tools designed and
built to help teams follow these best practices.

Hughes concludes, "I think the group is quite
proud of the fact that considering the size of
the project and the magnitude of its impact to
the business, it was a very small development
group. Rational enabled this small group to
complete a huge project ahead of schedule.
Plus, we’ve established a platform to repeat
this success as Ceridian moves forward."

18880 Homestead Road
Cupertino, CA 95014

20 Maguire Road
Lexington, MA 02421

Toll-free: (800) 728-1212
e-mail: info@rational.com
Web: www.rational.com

International Locations:
www.rational.com/worldwide

About Rational Software
Corporation:

Rational Software provides a soft-
ware development platform that
improves the speed, quality, and
predictability of software projects.
This integrated, full life-cycle solu-
tion combines software engineer-
ing best practices, market-leading
tools, and professional services.
Ninety-six of the Fortune 100 rely
on Rational tools and services to
build better software, faster. This
open platform is extended by part-
ners who provide more than 500
complementary products and serv-
ices. Founded in 1981, Rational is
one of the world’s largest software
companies, with revenues of
$796.7 million in its twelve months
ended September 30, 2001, and
over 3,800 employees worldwide.
Rational is a component of the
Nasdaq-100 Index®. Additional
information is available on the
Internet at www.rational.com.

Additional Rational success stories
and video clips are available at
www.rational.com/success.

Rational Software

Dual Headquarters

Rational, the Rational logo, ClearQuest, RequisitePro, Purify, Rose, and TestStudio are trademarks or registered trademarks of Rational Software Corporation in the United States and other countries.
Microsoft Windows NT and Visual C++ are registered trademarks of Microsoft Corporation. All other names are used for identification purposes only and are trademarks or registered trademarks of their
respective companies. ALL RIGHTS RESERVED. Made in the U.S.A.

© Copyright 2002 Rational Software Corporation.

CS-573; 6/02. Subject to change without notice.

Rational and Ceridian

