Industry:
Hardware/Software

Organization:
Salion, Inc.

Description:

Salion is an enterprise software
company dedicated exclusively
to the critical business needs
of suppliers. Salion’s software
helps suppliers sell more, and
sell more profitably. By optimiz-
ing the Revenue Acquisition
process — everything from the
beginning of the sales cycle
through to the end, including
all the departments and all the
people involved in it — Salion
enables suppliers to target the
best business, win more of the
time, and deliver increased
customer satisfaction.

Business Problem:

Salion needed to develop their
innovative Revenue Acquisition
solutions rapidly while ensuring
that the solutions they built would
be scalable, extensible and
maintainable for the long run.

Rational Solution:

Rational RequisitePro,
Rational Rose, Rational SoDA,
Rational Unified Process

Key Benefits:

Increased software development
speed by up to 400% by
adopting a complete solution
including the Rational Unified
Process and Rational tools to
support it

Consistently met release
deadlines without sacrificing
features or quality

Streamlined due diligence
procedures for both customers
and investors by demonstrating
a solid, proven development
process

Designed and developed
highly scalable, extensible and
maintainable software systems
in less time

software

Salion™ Uses Rational Unified Process to
Succeed Today, Prepare for Tomorrow

Virtually every software developer is familiar
with Meskimen’s Law, “There’s never time to
do it right, but there’s always time to do it
over.” Even if they don'’t know it by name,
most developers recognize the sentiment
expressed by this tongue-in-cheek adage.
But the development team at Salion, Inc.
believes that Meskimen was a bit of an optimist.
As developers at a startup, the Salion team
knows there is little tolerance for “doing it
over” — investors want to see sustained
progress, and customers want high-quality
software on time. To surpass the expectations
of both, Salion needed to develop their
innovative Revenue Acquisition solutions
rapidly while ensuring that the solutions they
built would be scalable, extensible and main-
tainable for the long run. With no time to make
mistakes, Salion adopted the Rational Unified
Process® or RUP® and immediately started
using Rational tools to support it. Since then
they have not missed a single release dead-
line and each release has included every bit
of functionality planned for it. According to
Ross Buhrdorf, Salion’s Vice President of
Engineering, RUP and Rational® tools have
enabled Salion’s team to develop software
up to 400% faster. This remarkable record of
success has helped Salion quickly become
a leader in Revenue Acquisition process
optimization solutions.

With offices in Austin, Texas and Detroit,
Michigan, Salion is an enterprise software
company dedicated exclusively to the critical
business needs of suppliers. Salion’s software
helps suppliers sell more, and sell more prof-
itably. By optimizing the Revenue Acquisition
process — everything from the beginning of
the sales cycle through to the end, including
all the departments and all the people involved
in it — Salion enables suppliers to target the
best business, win more of the time, and
deliver increased customer satisfaction.

Salion’s leading process management, data
analysis and collaborative communications
technologies come with a commitment to both
rapid implementation and high return on
investment.

Buhrdorf and Senior Architect Dale Churchett
have been with Salion from its earliest days.
They came to Salion with an understanding

of the impact that rapid growth can have on
software systems and the need for a
comprehensive solution including both tools
and process. Buhrdorf explains, “At our last
company we delivered more than 30 products
during my four years there. There was mass
chaos in the beginning. We started out at 54
thousand page views a day on our Web
applications and ended up with 45 million
page views a day. It was massive growth.
When | came to Salion, Dale was the first
engineer | brought over. We both have a
strong software background; we've both been
through startups. After seeing all the confusion
at the place we came from, we started looking
at best practices and tools that were mature
and were continuing to evolve. Our philosophy
from day one is that we have to move fast, we
have to move quickly, we really don’t have
time to make easy mistakes — easy mistakes
are mistakes in process. Software development
process is something that smart people have
thought about and documented. From that
point of view, it was easy to see that we also
needed tools to support the process. We
evaluated the options and chose Rational

and the Rational Unified Process because the
Rational Unified Process is part of a suite —

it is integrated. It is a complete solution.”

Buhrdorf knows that Salion is not a typical
startup. Every startup is eager to show
progress as quickly as possible. But, while
many startups try to save time by skipping
over process altogether, Salion has saved

.||I

“We've hit all of our dates,
with all of the functionality.

It has been a real success.
We've been able to adapt to
changing requirements. Using

RUP paid off immediately.”

time and improved their products consistently
by adopting the Rational Unified Process early
on. Buhrdorf continues, “We are a startup.
This kind of thinking is not typical of a startup.
| think that is because startups have this belief
that they have to start writing code on day one.
The truth of the matter is that process is some-
thing that should be simple. If you're going to
scale, and you're really going to make changes
quickly and be agile, then your process has to
be solid to support that. We have been very
effective. We're on our twelfth development
iteration for our product; we've hit all of our
dates, with all of the functionality. It has been

a real success. We've been able to adapt to
changing requirements. Using RUP paid off
immediately. When investors perform due
diligence on us for funding we can return to our
process and demonstrate that we really have it
wired with respect to development. So in addi-
tion to the cost savings just in implementation
RUP also returns dollars that way.”

As a startup, Salion depends on funding from
investors during their early stages. Buhrdorf
believes that Rational has been a big help in
this crucial aspect of the business. “We were
able to show our investors that our process
was based on RUP and that all modifications
were documented. Dale would present the
UML models where they could see everything
mapped from the business model through to
the product models. And, when we'd go out
and perform technical due diligence for our
customers, we would lay out all the process
documentation and it absolutely became a
no-brainer that we had a mature development
model,” Buhrdorf explains.

A Quick Review and A Quick Start

The Rational Unified Process is a software
engineering process that enhances team
productivity and delivers software best
practices via guidelines, templates, and tool
guidance for all critical software development
activities. From a management perspective,
the software lifecycle of the Rational Unified
Process consists of four sequential phases,
each concluded by a major milestone. The
phases are Inception, Elaboration, Construction
and Transition, which correspond roughly to
requirements analysis, design, implementation
and release, respectively.

Churchett was surprised how quickly Salion
progressed through each phase iteration, and
by how easy it was to adopt the Rational
Unified Process. “The amount of time it took to
Transition to the first baseline — and get a ver-
sion of the product that everyone wanted —
was pretty amazing. We basically did staffing,
performed due diligence, co-location, investi-
gation, product infrastructure — all the things
you need to do up front. At the same time, we
developed the product and we did it all in an
amazingly short timeframe,” Churchett reports.

Buhrdorf adds, “In eight months we had our
first usable product out. If we would have had
to figure out how the product managers work
with engineers, how the architects work with
the component developers, how the Ul team
works together, and so on, that would have
held us up. We did not have to deal with that.
We just said this is the way we are doing it.
Here are the tools we're using. If you have any
questions, it is all documented.”

Buhrdorf explains that with the Rational
Unified Process in place, the project began
moving rapidly right from the start. “We went
through Inception and Elaboration in the first
few months and we did a baseline in the third
month. We did our second baseline the next
month along with a Transition to deliver prod-
uct. Our iterations have been typically about
30 days. We had this philosophy based on our
experience that you have to Transition as soon
as possible so you can work out the kinks. We
transitioned an internal customer first and
deployed at our hosting facility. Then every
month since, when we do another iteration on
Construction we automatically do a Transition.
We configured the Rational Unified Process to
combine our Construction and Transition
phases into a single iteration.”

Scaling Simply Means
Getting Bigger Hardware

Spending time up front to address architectural
risk and scalability is a key concept in the
Rational Unified Process. For Salion this step
was critical to their success. At their previous
company, Buhrdorf and Churchett saw first-hand
how hard it was to try and scale systems that
were not well-architected. Buhrdorf notes,
“The big thing — which | think is a failure in

most startups — is that when we deployed at
Transition, our software was fully distributed.
The entire scaling strategy was done, and
everything was deployed on its target plat-
form. There were no short cuts taken in that
Transition. We knew we had to build a solution
that we could scale through hardware and not
through refactoring software.” Churchett adds,
"Our decisions were driven by our experience
with scaling to large systems. We saw what
happened if you didn’t consider scalability
from day one. We had already seen how diffi-
cult it could be to port from SQL Server to
Oracle, and we didn’'t want to go down that
route. That meant we had to have the smallest
Sun servers you could get originally. But now
scaling is really just a case of getting a bigger
piece of hardware — we're not going to have to
do a port.”

A Small Tweak for a Useful Technique

The Rational Unified Process is designed to
be flexible. Users are free to adapt and con-
figure in any way that works best for them.
For example, in the Rational Unified Process,
inspection is typically performed before the
Construction phase is complete. Inspection is
a formal evaluation technique in which arti-
facts — for example, models, documents, and
software — are examined by a person or
group other than the originator, to detect
faults, violations of development standards,
and other problems. The team at Salion has
found that, for them, inspection is more useful
after Construction, and they have modified the
Rational Unified Process to reflect that.
Buhrdorf explains, “We don’t do code reviews
before the Construction release. Instead we
do inspection after the release, and then we
apply refactoring to the next construction
release. We found that this is far more useful
for us because the person that did the devel-
opment can go back and say ‘I wish | could
do this differently now that we've done it." ”

Refactoring is a technique that is used to
reorganize and simplify code by eliminating
redundancy. Some processes recommend
refactoring continuously throughout develop-
ment. Salion decided it was better to build the
system, get it in use, take time to think about
it, and then inspect it. Churchett found that
one of the best ways to inspect code is to
reverse-engineer it using Rational Rose® and

look at the dependencies in the visual models.
Churchett notes that the visual models make it
easier to recognize the opportunities for refac-
toring, “When | reverse-engineer the code, |

know where sub-optimal implementations exist
because obvious errors jump right out at you.”

Salion uses Rational Rose — the world’s leading
model-driven development tool — to architect all
components of their applications using a com-
mon notation, the Unified Modeling Language
(UML). Buhrdorf explains, “When Dale goes
back and inspects the code, he uses Rational
Rose to create a list of package dependencies
and inspects the interfaces. Then he makes a
list of recommendations, which is far simpler
and far more effective than the time-consuming
process of doing pre-inspection.” Churchett
agrees, “With Rational Rose, | get visibility
across the entire system. | basically live out of
Rose these days.”

Linking Requirements in Rational
RequisitePro with Use Cases in
Rational Rose

Rational Rose is just one of the tools that
Salion uses along with the Rational Unified
Process. They also use Rational RequisitePro®
to capture and manage project requirements
throughout the development lifecycle. “We use
Rational RequisitePro heavily for getting input
and requirements from our product marketing
and following them through to implementation.
The other tools we considered had no support
for that because they were not well integrated
with other development tools,” Buhrdorf says.

The requirements actually are derived from
use case diagrams that Churchett models
using Rational Rose. With the industry’s most
comprehensive support for use cases,
Rational Rose and Rational RequisitePro help
Salion design and deploy software with the
focus squarely on end user needs. Churchett
is impressed with the integration between
Rational Rose and Rational RequisitePro, “We
do all our requirements capture in Rational
RequisitePro. Typically, I'll create the use case
models first in Rational Rose and then immedi-
ately create them in our Rational RequisitePro
project. | literally just right-click and RequisitePro
pops up. That is beautiful because Product
Management can do a query in RequisitePro
and see immediately how many use cases there

“With Rational Rose, | get
visibility across the entire
system. | basically live out

of Rose these days.”

“It's been great — we haven't
had any issues with capacity
planning. RequisitePro helps
us develop solutions on time
so we meet customer and

business expectations.”

“The QA staff is building
system tests based on the use
cases. They perform a query
in Rational RequisitePro to
obtain the use cases for

a particular release, and then
develop test cases from those
use cases. The quality is
awesome from that. We have
zero quality issues. We just

don’t have them.”

are in any release. Or we can use RequisitePro
to go through and see the use cases that we
either missed or that were deprecated.”

At a higher level, Buhrdorf relies on Rational
RequisitePro for scope management — track-
ing historical trends in use cases to improve
planning and scheduling. He explains, “We
also keep track of productivity via use cases.
We can do forward scheduling by looking
backwards. For example, we know from our
past 12 iterations how many use cases were
done per staff member. We use that to schedule
future projects. If product management asks
us to do 200 use cases in the next release
and we’ve been doing 100, then we immedi-
ately know there is a problem. It's been great
— we haven't had any issues with capacity
planning. RequisitePro helps us develop
solutions on time so we meet customer and
business expectations.”

Managing Complexity

For Churchett, Rational Rose has simply
become indispensable. “I don’t see how |
could manage the complexity without Rational
Rose. It has been a huge win. The thing that
blew me away about Rose and UML originally,
was just how simple it was. How easy it was to
group packages of use cases together. If you
do them right, they generally match the sub-
systems and components. If something isn’t
right, it just looks wrong and jumps out at you
as wrong. As our software has gotten more
complex, being able to share those models is
saving a lot of time. The analysis and the
domain modeling helped a great deal too.
When | look at the API, | expect it to mirror the
domain model, and if it doesn’t | know sooner
or later it is going to come back and bite us.
So | show the developers the domain model,
and ask them ‘Does your code look like this?’
and that saves us pain moving forward.”

Churchett continues, “Managing the complexity
is a big deal. Being able to just put a UML
diagram in front of someone and just have
them understand it is great. Right now, we've
got 400 or 500 use case diagrams in the
system. When we introduce new functionality,
| need to know what the impact of that is and
if we're duplicating existing functionality. | am
also able to quickly identify use-case packages

that can be reused in other subsystems or
products. | couldn’t do that trolling through
code, and | don't know how you’d do it without
Rose. | guess you'd end up making poor or
uninformed decisions because you wouldn’t
see the system clearly. Without Rational Rose,
incremental additions would’'ve been a night-
mare.” Buhrdorf concludes, “This comes back
to scalability. By design you want everything
to go through your Senior Architect. He's got
to be able to understand it all. There’s no way
he could understand it all without Rational
Rose and Rational RequisitePro.”

Having current and comprehensive documen-
tation is exceptionally helpful in managing
complexity. Churchett uses Rational SODA® to
automate the generation and maintenance of
thorough, up-to-date project documentation,
reports, and vital project information. He
notes, “I use Rational SoDA primarily for
formal documents. For instance we recently
completed our Build Process Customization
Strategy — which allows us to support multiple
customers from a single source code base —
and we modeled it to business use cases. |
just programmed a SoDA template to produce
that. | also scripted a version to do a 4+1
views of the entire system which includes
everything that | think should be in there — the
business model, the logical domain. It's very
concise. It is really the blueprint of the system
and its all done in SoDA.” The 4+1 model
describes software architecture using
concurrent views, including a logical view,

a process view, a physical view and a
development view. Buhrdorf interjects, “The
4+1 views are awesome. We can go to that
any time and see exactly where we're at.”

Building Scalable Teams, Improving
Quality, Filtering New Hires

The Rational Unified Process and its supporting
tools have provided Salion with a number of
more subtle benefits, in addition to helping
them rapidly deliver a superior application.

First, as Salion grows, the Rational Unified
Process is helping everyone stay on the same
page. With a development team of fewer than
20 people, Buhrdorf and Churchett have
found that RUP can benefit relatively small
teams, especially those with plans for

continued growth. Churchett notes that RUP is
helping Salion build not just scalable systems,
but also a scalable development team. “At
one point, we modified our collaboration
process to try to make it easier to work with
Product Management because | was spending
a lot of my time asking them questions on the
functional specs. We changed RUP and
combined some documents and deleted oth-
ers. It worked with the initial team, but as the
staff grew we had to relearn how to work with
each other. It became very difficult to focus on
what the deliverables were, what it meant to
be in Inception,” Churchett remembers.

Buhrdorf agrees that some RUP modifications
were not worth the effort because RUP was
better documented, “We've had the
experience that there are side effects to RUP
modifications that just don’t scale as your
team grows. Although we write down changes
to our process, when we bring on new people
not everyone reads it or understands it.
Sometimes we find its better to just stick with
RUP, as it is delivered from Rational, on the
simple things because it is so well documented
and there is a tool to support it. We get better
scalability out of it. We're becoming very
critical about side effects that can occur, and
we are sticking to standard RUP for more
things. We are eliminating risks as a result.”

Quality Assurance has proven to be just as big
a success. As part of the Rational Unified
Process, quality assurance tests are started as
early as possible in the development lifecycle.
Buhrdorf continues, “While the construction
phase is going on, the QA staff is building
system tests based on the use cases. They
perform a query in Rational RequisitePro to
obtain the use cases for a particular release,
and then develop test cases from those use
cases. The quality is awesome from that.

We have zero quality issues. We just don'’t
have them.”

Lastly, Churchett believes that the Rational
Unified Process has improved Salion’s ability
to employ the best and the brightest. “RUP
has also allowed us to hire some good
people. We can filter out people very quickly

when we show them what we'’re doing. It is
easy to spot the developers that can’t handle
process and those that are interested in it at
the initial interview. As soon as we start talking
about unit tests and use cases, the candidates
we ended up hiring showed an immediate and
real interest in working that way.”

The Big Benefits

Happy investors. Satisfied customers.
Delivering fully functional products, with zero
quality issues, on time, every time. What else
is there? For Buhrdorf the most important
benefit is predictability. “I think predictability
is the compelling argument for any software
process. The bottom-line is really predictable
results, and the Rational tools and the Rational
Unified Process deliver that. In addition to
that, the secondary benefits for us are
scalability, agility, and quality. We have the
tools in place to support our process and our
architecture. We take this for granted now. |
don’t know how other companies can do it
without Rational. | believe that the Rational
Unified Process made us four times as fast —
a fourfold increase. There are so many other
things that can go wrong we decided the
process should be right. There is so much
other risk in software development why
would you want to assume another one?”

When Meskimen’s Law stops working, and
there really is no more time to do it over, there
is an alternative. Buhrdorf concludes, “If it's
going to be harder in the long run, then we'll
take the time to do it right the first time.” Call
it the Salion Principle.

About Rational

Rational provides a software
development platform that
improves the speed, quality, and
predictability of software projects.
This integrated, full life-cycle
solution combines software
engineering best practices,
market-leading tools, and pro-
fessional services. Ninety-six of
the Fortune 100 rely on Rational
tools and services to build better
software, faster. This open plat-
form is extended by partners who
provide more than 500 comple-
mentary products and services.

IBM Rational software
Dual Headquarters
18880 Homestead Road
Cupertino, CA 95014

20 Maguire Road
Lexington, MA 02421

IBM, the IBM logo, and WebSphere are trademarks of International Business Machines Corporation in the United States, other countries, or both. Rational and Rational Unified Process are trademarks or registered
trademarks of Rational Software Corporation in the United States, other countries or both. Java and all Java-based trade and logos are trademarks or registered trader of Sun Microsystems, Inc. in the
United States, other countries, or both. Other company, product or service names may be trademarks or service marks of others. © Copyright Rational Software Corporation, 2003. All rights reserved. Rational
Software Corporation is a wholly owned subsidiary of IBM Corp.

Made in the USA

CS569A 5/03. Subject to change without notice.

Toll-free: (800) 728-1212
Web: www.ibm.com/rational

