
Morpheus Automates Gap Insurance Processing Using EGL

The Challenge: The insurance division of a leading banking and financial services
company in the UK was using a manual system to process automotive insurance
sales. This paper-based system was prone to fulfillment errors and made it difficult to
ensure compliance with government regulations. Faced with competitors who had
already deployed Web-based solutions, the bank needed to rapidly develop its own
automated solution and position itself for future Web-based development initiatives.

The Solution: The bank worked with IBM Business Partner Morpheus Limited to
develop a new, automated system for insurance sales and processing. Using
Enterprise Generation Language (EGL), IBM Rational Application Developer and
System i servers, Morpheus delivered a Web-based solution that integrates with the
bank’s legacy systems.

The Benefit: Morpheus completed development in 100 days, enabling the bank to
meet its roll-out deadline for the system. With this new market channel, the bank is
already serving several major automotive manufacturers, enabling the company to
maintain its competitive advantage. In addition to satisfying regulatory requirements,
the new system has provided the bank with a basis for responding to new challenges
with open solutions based on SOA and Web technologies. At the same time,
Morpheus has built in-house EGL expertise that it can leverage across its growing
client base.

Motor vehicle insurance is a key growth area for the bank, which is one of the UK's
largest mortgage and savings providers. Return to Finance (RTF) and Return to
Invoice (RTI) Gap Insurance are an important part of the company’s financial
services offerings. RTF and RTI policies protect a motorist when a vehicle becomes
an insurance write off by supplementing the motor insurance payout either to clear
any outstanding finance or returning to the customer the full invoice price that paid
for the vehicle.

Until recently, the bank relied on manual systems to process sales of Gap Insurance.
Many automotive dealerships offer such policies to customers when they buy a new
vehicle. However, because the process was paper-based, dealers tended to process
applications in batches – a practice that ran counter to regulations set forth by the
Financial Services Authority (FSA), the agency that regulates all financial services
providers in the UK. In addition to being labor-intensive, the manual process also led
to costly fulfillment errors.

The bank wanted to automate the process with a Web-based application that would
integrate directly with its existing systems. In addition, it needed to deploy the
system rapidly to keep pace with competitors who were beginning to roll-out their
own automated systems. Although the bank's development team had significant
experience in RPG development, they had relatively little expertise in Web- and Java-
based development. Seeking to deploy the new system as quickly as possible, it
turned to IBM Business Partner Morpheus Limited to develop, maintain, and host the
application, named Online Gap.

As an IBM Certified for e-Business Partner, Morpheus designs and delivers Internet
business solutions for B2B and B2C environments. The success of Online Gap
depended on the Morpheus team’s ability to not only meet the regulatory
requirements of FSA, but to deliver a secure, intuitive application. “It was important
to create a simple, easy-to-use site that would encourage dealerships to use the
solution rather than fall back on the manual processes. Security of the site was also
vital to ensure dealer pricing and commission rates were kept confidential,” explains
Bleddyn Williams, Director of Morpheus. “From a technical perspective, one of the
biggest challenges was that there was no existing site in place so Online Gap and the
branding had to be built from the ground up – and it all had to communicate with our
client’s existing RPG-based premium calculation system over the Web.”

Selecting EGL

The bank did not specify a particular technology for the production of Online Gap;
instead it left the decision to Morpheus. After considering several options, Morpheus
decided to build Online Gap using Enterprise Generation Language (EGL), IBM’s
strategic rapid development technology. Although Morpheus planned to maintain
Online Gap in the near term, they wanted to use a technology that would be easy for
RPG developers at the bank to extend or modify if needed. EGL was a perfect fit
because the EGL development paradigm can be easily understood by skilled RPG
developers. In addition to fulfilling that need, EGL enabled Morpheus developers
with wide ranging skill sets and backgrounds to apply Web and service oriented
architecture (SOA) technologies as they delivered an advanced solution.

The Morpheus development team has substantial experience in Java development, and
could have produced Online Gap with a strictly Java implementation. The company
recognized the project as an opportunity to build up its in-house expertise in a
technology that could be leveraged not only for the bank's projects but for many other
clients as well. “Many of our clients are System i customers. Because they are our
primary focus, we are always looking for ways to speed up Web development for
people that are RPG developers. And, because we had a free hand in selecting the
technology to be used on the project, we decided to use EGL so we could get a good
understanding of how it works, then take that knowledge and apply it to other
customers,” notes Williams. “EGL offers us a number of advantages including
integration with existing RPG applications, Web-enabling legacy applications,
enabling clients to accelerate the development of Java skills, and a way to support our
clients as they move further along JAVA roadmap.”

The Project Team

The Online Gap project team consisted of two seasoned Java developers and a third
developer with no real-world Java development experience. Despite the disparity in
this, the less experienced Java developer quickly became productive using EGL.
“One of our developers came into the project having only used Java at university. He
was able to make a rapid transition to working with EGL. When I can staff projects
with people that don’t necessarily have five years of Java experience, then that makes
a difference in project cost,” says Williams.

He adds, “EGL has worked quite well for us. We are now working with a number of
other customers who are RPG based, and because of all we’ve learned on this project,
we can answer the questions they have right away. When we can use EGL as a quick
way to get some of our customers going for small projects, then it is a good option.”

Starting on the Right Path
Before Morpheus developers began working on the project they received training
from IBM Rational to ensure the team all started off with a solid understanding of
EGL and its capabilities. “The first step for us was to bring in IBM EGL experts to sit
down with us and explain how things would work from an EGL point of view,” says
Williams. “That was important for us, because although we definitely had a way we
would have built Online Gap in Java, we wanted to make sure that when we built it
with EGL it was going to be done the right way. We wanted to start off on the right
path, and not try to work it all out ourselves.”

In addition to initial training, Williams notes that support from IBM enabled the team
to work with confidence throughout the project. “When we decided to use EGL, I
wanted to make sure we had a good level of support. Some of our questions had
immediate answers, and others took longer to resolve, but there was always a good
level of support during the project,” Williams adds.

An Entirely New User Interface

Because Online Gap was replacing a manual process, the Morpheus development
team needed to develop a completely new user interface. To accelerate this part of the
project, the team used EGL together with JavaServer™ Faces (JSF), a set of Java
classes and JSP tag libraries. “Building the presentation side of the application –
putting the pages and the flow together – is much easier with JSF,” says Williams.
“We started by putting together flat pages of the site with really just the screen and the
inputs and outputs that need to go on that screen. After that we began building the
logic behinds the screens. Some of the pages looked quite simple but were very
complex behind the scenes, and many of them were customized for specific
automotive manufacturers. The combination of EGL and JSF was a big help in
putting everything together.”

By rapidly developing functional screens, Morpheus was able to get feedback and
approval from the customer in the early stages of development. This reduced the risk
of developing a solution that was not aligned with customer needs, and ensured that
any differences were identified and resolved early when they are easiest to fix.
“Because we were on a fairly tight time schedule, our goal was to rapidly produce a
testable application. We wanted to quickly get to the point where the customer could
see the application and begin testing functionality. It was important for us to get the
customer involved in the process as early on as possible. EGL and IBM Rational
solutions helped us do that.”

Building the Application

The Morpheus development team used IBM Rational Application Developer for
WebSphere Software to automatically generate Java code from EGL and construct the
rest of Online Gap. “After we had set up the core flow through the application, we

started to build up the pieces that then sat around it. The Java code we generated using
Rational Application Developer was very useful and we tended not to touch it after it
was generated. We were not just developing components that are deployed into IBM
WebSphere Application Server, but also components that were run as Java programs
to interface with the back-end RPG system,” says Williams. “In addition, it was very
easy to write some parts of the application directly in Java and just plug them in with
the rest of the application. The interoperability of EGL and Java worked well; no
problems whatsoever.”

Rational Application Developer also helped the team in developing the presentation
tier. Williams adds, “We also used Rational Application Developer to build a site
map, which we in turn used to build navigation components in EGL. That was quite
helpful to us.”

Delivering a Compliant System in 100 days

Morpheus developed and deployed Online Gap in just 100 days. The company also
maintains the application which it deployed on IBM WebSphere Application Server.
The production environment also includes an IBM DB2 back-end and a System i
server with i5OS.

Before Online Gap was made available for production use, the bank conducted a
security audit of the application including penetration tests and certified the system as
a banking application in compliance with FSA regulations. Because FSA compliance
was a primary requirement of the Online Gap development effort from the beginning,
Morpheus incorporated compliance requirements in the software specification and
maintained a focus on them throughout development. For each insurance policy sold
through Online Gap, the system produces a complete set of records to document the
transaction.

A Win-Win

According to Williams, the use of EGL and IBM solutions in developing Online Gap
benefited both Morpheus and its client. Not only was the project successfully
delivered on time, but both organizations are better positioned for future development
initiatives.

“From Morpheus’ perspective, we see EGL as giving us another option in addition to
developing directly in Java. If we are working with a customer that has RPG
developers and wants to move into developing Web applications, we can introduce
EGL. We’ve noticed that open minded RPG developers can pick up the concepts of
EGL very quickly. For many of our customers, there is no need to become Java
programmers – it is too much of a leap for them. With EGL, they can produce
applications, and lack of Java expertise is not going to stop them from getting things
done,” says Williams. “As a business partner, we can show our clients that building
Web applications is not has hard as they think, because EGL provides an easy way to
start.”

Williams adds, “Our client got the Web-based system they wanted to replace a
manual process. A significant amount of labor is saved due to reduction in errors and
paper-based processes. In addition the bank is in better position to move towards
SOA. They are looking at ways to modernize some of their System i applications and
expose them as Web services in their internal infrastructure. We have been talking to
them about EGL from an SOA point of view – and showed them how they can take a
premium calculation routine, for example, and expose it as a service. Our use of EGL
for Online Gap has lead the bank to consider using EGL internally. After seeing the
speed at which RPG programmers and other developers can learn EGL and produce
solutions, we are quite optimistic about EGL going forward.”

