
IBM Customer Success

IBM Rational Test RealTime Simplifies
Compliance with DO-178B Regulations
for Embedded Avionics Software

 The Challenge

To achieve FAA approval,

embedded software for avionics

systems must comply with

DO-178B guidelines for

requirements-based testing and

code coverage analysis. Because

manual code coverage analysis is

tedious, time-consuming, costly

and error-prone, automating this

process represents a significant

opportunity for improved efficiency.

 The Solution

IBM ® Rational Test RealTime™

automates code coverage analysis

of embedded software by

highlighting portions of code that

have not been tested. IBM

Rational® RequisitePro® for

requirements management and

IBM Rational ClearCase® and IBM

Rational ClearQuest® software

configuration management tools

provide complementary

capabilities to meet D0-178B

requirements for

requirements-based testing.

Overview
coverage analysis and structural

coverage analysis. Requirements

coverage analysis is used to assess

the ability of requirements-based

testing to verify that software

requirements have been implemented,

and links test cases to requirements.

Structural coverage analysis is used to

identify what source code was

executed during the

requirements-based tests, and links

test cases to the source code.

Many avionics development teams

building DO-178B compliant software

spend a significant amount — in some

cases more that 50 percent — of their

budget and time on testing, because

they rely primarily on manual testing

methods. The ability to automate many

of these activities not only helps these

teams deliver certifiable software

more quickly, it enables their

organization to reallocate valuable

testing resources when and where

they are needed.

Tom Sawyer, Supervisor of Software

Development for Moog Inc., notes,

“Manual structural coverage is very

time-consuming, expensive, and

laborious. It is almost an impossible

task for large complex systems. Many

of the projects we work on are

DO-178B contracts for safety-critical

airborne systems. We test levels A, B,

 The Benefit

Using an integrated solution

including Rational Test RealTime

and other IBM Rational tools,

software development

organizations have streamlined

the FAA certification process, while

improving efficiency,

time-to-market, and

cost-effectiveness. One such

organization completed its

certification four months ahead of

schedule, and enabled one

engineer to complete tests in one

month, something that typically

required three months by a team

of four.

Early in 1993, the Federal Aviation

Administration (FAA) recognized

DO-178B “Software Considerations in

Airborne Systems and Equipment

Certification” as its preferred guideline

document for the development of

airborne computer software. This

document, published by the Radio

Technology Commission for

Aeronautics, Inc. (RTCA), has become

the standard used by development

organizations to achieve FAA approval

for the embedded avionics software

they build.

Section 6.4.4 of DO-178B requires two

specific forms of test coverage

analysis: requirements-based test

and C code, including the highest

safety critical software up to Modified

Condition/Decision Coverage

(MC/DC). These projects include

traditional requirements-based

testing, but they also have a structural

coverage requirement, which greatly

increases the scope of what you need

to do for testing.”

Applying IBM Rational Test RealTime

To address the challenges inherent in

DO-178B development for FAA

compliance, Sawyer began using IBM

Rational Test RealTime, a

cross-platform solution for component

testing and runtime analysis designed

specifically for those who write code

for embedded, real-time, and other

types of cross-platform software

products. Rational Test RealTime

provides automated code coverage

analysis capabilities that enable easy

and effective structural coverage

analysis by identifying which portions

of a program have been tested.

Sawyer developed a system for

converting existing test inputs and

expected results into Rational Test

RealTime scripts. This system enables

testers to receive structural coverage,

testing credit without having to rewrite

existing unit test scripts. “One of the

first benefits of Rational Test RealTime

was that it allowed us to get credit for

what we had already done. The other

major benefit was that it allowed us to

perform tests that could not be

accomplished in our lab environment.

For example, in the lab it is very

difficult to test analog signals at a

specified boundary. We wrote unit

tests in Rational Test RealTime to

simulate and test values exactly at

each boundary and for other

conditions that cannot be tested in the

lab,” says Sawyer.

Sawyer and his colleagues are using

Rational Test RealTime with IBM

Rational RequisitePro for requirements

management, IBM Rational

ClearQuest for defect tracking and

change management, and IBM

Rational ClearCase for software

asset management. Together these

tools provide not only the means to

satisfy code coverage requirements,

but also establish clear traceability

from testing to requirements, code

and

defects — enabling the team to

effectively manage the FAA audit

process and rapidly achieve FAA

certification for their software. “By

using the tools we were able to

keep costs in check and complete

certification in record time, about

four months ahead of schedule,”

Sawyer reports.

Conversion of Test Assets
The process Sawyer used to

automatically create Rational Test

RealTime test scripts from existing test

assets is embodied in a tool he

developed called the AST or

Auto-Script Tool ®. The tool takes test

inputs and expected results already

developed for the lab using National

Instruments LabVIEW and generates

Rational Test RealTime scripts, which

are then executed to gain structural

coverage credit. Sawyer explains, “In

the lab, the test inputs are stored in

Excel spreadsheets, which interface

well with LabVIEW. There can be two

to three hundred test inputs along with

their initial values to start the test.

These tests also require you to supply

the number of cycles that you want to

run during the test, and a set of

expected results, which can also

number in the hundreds. After the test

run, each result is compared with the

expected result to see if it is within

tolerance, and is assigned a pass or a

fail.”

The Auto-Script Tool uses those same

lab spreadsheets containing test

inputs, number of frames and

expected results, and converts them

into Rational Test RealTime scripts.

Each test input and expected output

becomes a variable. The tool also

transfers header information, as well

as, the number of frame cycles the test

will run. The script is then run in the

Rational Test RealTime environment

using stubbed code. Because the

script is running on a PC, it does not

have access to embedded hardware

interfaces. Sawyer explains, “If the

code needs RAM, I build my own

RAM in Rational Test RealTime. So,

instead of being hardware RAM, it is

Rational Test RealTime RAM in my

stubbed software.”

Depending on the Rational Test

RealTime Target Deployment Port

(TDP), the tool compiles software with

different target compilers, loads the

specific debugger and generates an

output stream that is captured into

Rational Test RealTime to produce the

pass/fail report. Sawyer notes, “We

can compare the pass/fail results from

Rational Test RealTime with those

achieved in the lab. But the key benefit

is that at the end of each run we have

code coverage results unattainable in

our lab. We now have a way to gain

coverage credit for tests run in the lab.

Whatever testing cannot be done with

a spreadsheet conversion I

accomplish by writing my own script in

Rational Test RealTime. By merging

those common assets we can get 98

to 99 percent coverage and very

quickly get credit for structural

coverage testing. The remaining one

percent of code is usually something

like a default in a case statement

which will never be reached, because

the inputs are pre-checked. That last

one percent can be checked manually

fairly easily.”

Immediate Feedback

Enables an Iterative Approach

Sawyer has implemented an iterative

process in which he leverages code

coverage results from Rational Test

RealTime to identify and eliminate any

gaps in the test portfolio. “In structural

coverage testing you go down every

path, and any code that has not been

executed is dead code, deactivated,

or reflects a missing requirement.

Compliance with FAA requirements

does not permit any of those

situations,” Sawyer notes.

He continues, “Today, as the software

is under development, someone can

be writing Rational Test RealTime test

cases to unit test that software. So I

immediately have coverage

information. The unit tests are totally

repeatable and the certification

authority can see that we are doing a

good job in our unit testing because

we can show all of the test artifacts

early in the software development

cycle. In addition, once you have your

first coverage information, you hold a

structural coverage analysis review. At

the review you look at every line of

code — color coded in Rational Test

RealTime — and see what code has

not been touched during the testing.

You decide right then, if you are

missing requirements, need additional

robustness testing, or if you have a

dead code issue. This is a major step

in improving what we do as testers.

When you look at the actual code in

Rational Test RealTime, if it is green

that is great, because you know you

have been down that path. If it is

orange it means some of the path has

been gone down, but not all of it. And

when the code is red, that means it

has not been touched. As soon as we

get our software in place and we have

some of the tests we run them through

Rational Test RealTime and we are

able to get a color coded

representation of what the coverage is

to date.”

Obtaining valuable test results earlier

in the development cycle helps teams

find and address problems when they

are less costly to repair. “As you start

putting the modules together to build a

Computer Software Component

(CSC), and then build those CSCs into

a Computer Software Configuration

Item (CSCI), you are also building a

collection of unit tests into a software

integration test suite. All the unit test

assets up to a CSCI level are then

passed to the verification and

validation test group. The goal is to

use Rational Test RealTime upfront in

the software development process

rather than waiting until all the software

is developed. When you wait until the

end of the development cycle to test,

any problems you find are much more

expensive to go back and fix,”

Sawyer adds.

Qualification Kit

an Essential Part of Certification

The FAA requires software being used

on certified critical airborne systems to

follow the DO-178B standard for all

software verification tools, including

IBM Rational Test RealTime. Tools

used in the verification process have

to be qualified for use. While the

qualification process of tool

verification is the responsibility of the

organization developing the DO-178B

application, IBM Rational assists in

this process by providing qualification

assets in the form of a Qualification Kit.

“We used the Qualification Kit to

qualify the tool. Without the kit we

would have had to develop one on

our own and risk schedule

challenges getting to certification,”

confirms Sawyer.

Rational RequisitePro Simplifies

Audit Process

There are typically six to eight hundred

requirements in the CSCIs that Sawyer

tests. Each of these requirements is

managed and tracked in IBM Rational

RequisitePro to enable traceability of

requirements throughout the project.

Sawyer explains, “We build the

requirements documents in Rational

RequisitePro and we use that to trace

from our system level requirements to

our software requirements. When we

put our requirement documents in

Rational RequisitePro, each

requirement is tagged. The next level

design document and subsequent

code references these tags. If you go

to the code you will see a header or a

comment that tells you what

requirement that specific code is

satisfying. Finally, we test and

reference those same tags. Rational

RequisitePro is an effective way to

keep track of all that tracing.”

This traceability plays a key role in

meeting the demands of the FAA’s

audit process. Sawyer explains,

“When I sit down with the Designated

Engineering Representative (DER),

representing the FAA, the first thing

they want to do is trace requirements.

They will say ‘For these three

requirements, I want to see where they

are in your design and in your code. I

want to see when they were tested,

and I want to see the results of those

tests.’ It is very impressive when you

can sit down with the FAA

representative and show them all the

processes are in place. With Rational

ClearQuest, Rational RequisitePro and

Rational Test RealTime we can show

how we ensure that when a problem

report is written that it was fixed and

where it was retested. We can show

the regression testing that we do. In

many cases, because it is critical

software, every time we make a new

release of the software, it’s entirely

recompiled. And so we have to test the

whole suite of code again.”

On Sawyer’s projects, requirements

do not change frequently but when

they do, Sawyer performs suspicion

analysis in Rational RequisitePro to

determine which requirements were

affected. He notes, “After a

safety-of-flight test, there can be

requirements changes. And suspicion

analysis is especially useful in a

validation and verification review. Any

requirement that is marked as

suspicious by Rational RequisitePro

has to be resolved before the software

is released.”

Streamlining Development with

Activity-based Change Management

Seamless integration between IBM

Rational tools helps eliminate

communication problems by

automating workflow and knowledge

transfer. Sawyer notes, “I have found

that problems are introduced

wherever you have hand-offs in

development. If you minimize the

number of hand-offs, you minimize

the problems. We keep our process as

seamless as possible — not throwing

anything over the wall — by utilizing

the tools.”

An example of this tool integration and

automation is activity-based change

management, which provides

out-of-the-box process support for

managing change with IBM Rational

ClearCase and IBM Rational

ClearQuest. “Rational ClearCase is

used for version control of all assets,

including test assets. To enable better

communication between groups,

Rational ClearQuest is used for

problem reporting and tracking,”

says Sawyer.

With Rational ClearCase and Rational

ClearQuest, an activity is

automatically associated with its

change set, which encapsulates all

the correct versions of the project

assets used to implement the activity.

“Often if you leave an option open for a

software developer to not follow

check-in and check-out processes —

if it is not built in as part of the

process — they won’t do it. Rational

ClearCase and Rational ClearQuest

help integrate the development

process. You can only check-out code

by referring to a problem report that

gives you authorization to make a

change. You are given a problem

report, you log on, check-out the

code, fix it, and check it back in. You

follow the course of action using

Rational ClearQuest to track each step

of the activity request review process

and sign off on the activity

electronically,” Sawyer explains.

Achieving Goals

Months Ahead of Schedule

The ease of use, increased efficiency

and productivity provided by IBM

Rational Test RealTime and other

Rational tools have enabled Sawyer to

rapidly realize significant benefits in

both requirements-based testing and

structural coverage analysis. Sawyer

concludes, “The use of these tools has

given us a way of accomplishing what

we needed to do. Rational tools, along

with the process and Auto-script Tool I

developed, enable us to get credit for

work we had already done and for

having a more seamless process. In

one month with one person, I can do

the work that required four people

working three months. And the assets

are reusable — for future regression

testing, all I need to do is an overnight

test run. It would also be much more

expensive if we had manual structural

coverage analysis. Manual coverage

methods I have witnessed

at other developer sites have taken

them man-years for what I basically

did by myself in a couple of

months. As a result, we were able to

receive certification from Transport

Canada and the FAA in record time,

months ahead of schedule on our

latest contract.”

© Copyright IBM Corporation 2005

IBM Corporation
Route 100
Somers, NY 10589
U.S.A

Produced in the United States of America
02-05
All Rights Reserved.

 ClearCase, ClearQuest, IBM, the IBM
logo, Rational, Rational Test RealTime, and
RequisitePro are trademarks of International
Business Machines Corporation in the United
States, other countries or both.

Microsoft and Windows are trademarks of
Microsoft Corporation in the United States,
other countries, or both.

Other company, product and service names
may be trademarks or service marks of others.

G225-4357-00

