
Because Rational

Visual Test features

a comprehensive

test programming

language, it was

a natural choice

for ICS students

learning software

engineering principles.

A C A S E S T U D Y

ast spring, as undergraduate students at the University of California, Irvine (UCI)

pored over the course catalog to select their schedules, they came across a rare

and exciting opportunity.

A C A S E S T U D Y

The Department of Information and Computer

Science (ICS) was offering a course titled Automated

Software Testing Using Visual Test. The course is

believed to be the only undergraduate level class in

the nation that focuses on this important subject. While

computer science students everywhere have received

a healthy dose of Turing Machines, few have been

given a chance to gain practical experience in software

testing, a discipline critical to the success of their

potential employers.

The driving force behind the class is lecturer Seth

Ourfalian. After earning a Bachelor of Science degree in

computer science at UCI, Seth spent five years develop-

ing compilers and has managed software testing groups

at three high-tech companies. Seth first got the idea for

the class when he heard Department Chair Dr. Michael

Pazzani call for qualified people to teach practical class-

es at UCI. Rising to this challenge, Seth now teaches

automated software testing and promotes the idea of

exposing undergraduates to software testing while they

are still in school. “The majority of ICS students don’t

know much about formal testing methodologies —

and many of those who do, think it is boring or not chal-

lenging. They are unaware how important it is. Why not

start them out early? That’s the message. There is no

reason why students should wait until they graduate to

receive training.”

L

UC Irvine Teaches
Automated Testing Principles

with Rational Visual Test

UCI's Department of Information and Computer Sci-

ence has the most undergraduate ICS majors of any

campus in the University of California system, and has

the third-highest number of ICS majors of any school in

the West. PC Week recently ranked UCI's ICS department

as one of the nation's top 10 campuses in preparing stu-

dents for technology careers. The department has several

areas of national quality: software engineering, data min-

ing, human/computer interaction and embedded systems.

The PC Week report, “Making the Grade,” cited the

U.S. Department of Commerce’s alarm at the serious shor-

tage of skilled IT professionals, but showed hope for the

future: “Leading universities are beginning to listen to

CIOs and tailor curricula to produce graduates possessing

the knowledge needed for today’s demanding IT shops.”

Dr. Pazzani appreciates the recognition, and agrees with

the report, “This course complements our more theoreti-

cal classes very nicely. Students learn about software life

cycles, maintenance, and testability. These days, compa-

nies tend not to have formal training programs. If, in 10

weeks, a student can pick up a practical skill that illus-

trates a theory, I think it puts them ahead in the job mar-

ket. We have been looking to offer special topics

like these, and this is an excellent example.”

ATBU99099UCI_R2 3/25/99 2:41 PM Page 3

”

“

U C I A N D R A T I O N A L V I S U A L T E S T

Even if the

students end up in

development and

not in testing,

someone is going

to have to test

their code, and

the students are

now more aware

of the advantages

of designing

testable software.

An Extraordinary Tool for Testers

As Seth was preparing to teach the course, he con-

sidered several automated testing tools. The final deci-

sion to use Rational Visual Test was an easy one. Only

Visual Test combined affordability with exceptional pow-

er and flexibility. Because Visual Test features a compre-

hensive test programming language, it was a natural

choice for ICS students learning software engineering

principles. And, as the most powerful test programming

tool available, Visual Test was the only tool that fulfilled

Seth’s requirements for meeting the course objectives

and for future student projects he was planning.

The course objectives outlined in the syllabus read

like a mission statement for a corporate quality assur-

ance department:

• Apply effective automated testing principles during

the planning, development, and execution of auto-

mated test suites.

• Create application states to reduce test case devel-

opment time and use the recovery system to allow

unattended testing.

• Explore important testing issues such as error han-

dling, portability, and localization.

• Write automated tests for Windows applications

using the Visual Test language, Visual Test tools,

and utilities.

• Deploy reusable and maintainable test suites.

Although many of the 22 students that signed up for

the four credit course had programming experience, few

of them had spent much time on Windows program-

ming. The students learned quickly though, helped by

Rational Visual Test’s seamless integration with

Microsoft Visual Studio. One of Seth’s students, Max Ho,

was enthusiastic: “We found Visual Test easy to learn

because it is integrated with Microsoft Visual Studio —

and because the language is similar to Visual Basic

it was pretty easy to pick up by going through the

online help.”

Seth’s industry experience led him to focus his stu-

dents on writing effective test cases. Rational Visual

Test’s strength lies in its extensive and flexible test lan-

guage. This simple language enables testing profession-

als to create efficient, reusable, and powerful test scripts.

“If you’re going to write solid test cases, they have to

be well designed and programmatic.” Seth explained,

“I used Rational Visual Test’s Scenario Recorder as a

learning tool, to record a few keystrokes and mouse

clicks to see what the recorder generated.”

The course is an undeniable success. Many students

listed the course on their resume to grab the attention

of interviewers and recruiters. Seth understands that not

every student wants to go into testing as a career, but

he also believes there are substantial benefits to learning

testing principles early. “Even if the students end up in

development and not in testing, someone is going to

have to test their code, and the students are now more

aware of the advantages of designing testable software.”

Going the Extra Mile

After the spring quarter, Seth and teaching assistant

Cindy Lu decided to take another step forward. Seth had

attended various symposiums where speakers talked

about table-driven testing in vague terms. Seth was in-

trigued and determined to make table-driven testing a

reality with Rational Visual Test. “A live demonstration

of table-driven testing is worth a thousand projected

slides,” he explains. In table-driven testing, a parser pro-

gram reads simple instructions from a table, typically a

text file, and then executes the instructions to test an

application. The table-driven methodology allows total

test software reuse because all application-specific infor-

mation is encapsulated in external tables. Seth invited a

handful of his students to work on a 15-week indepen-

dent study project on table-driven testing using Rational

ATBU99099UCI_R2 3/25/99 2:41 PM Page 4

The course is an undeniable success.

Many students listed the course on their

resume to grab the attention of interviewers

and recruiters. Seth understands that not

every student wants to go into testing

as a career, but he also believes there are

substantial benefits to learning testing

principles early.

Visual Test. Three students (pictured left to right) accept-

ed the challenge: juniors William Cheng and Max Ho,

and senior Fred Chen. When the students agreed to

spend their summer working on a project for five credits,

they had no idea what they were getting into. Seth’s

design for implementing table-driven testing was rela-

tively simple to explain, but required a considerable

amount of effort to complete.

The students would use Rational Visual Test to create

a parser that reads records from a comma separated

value (CSV) file. The parser interprets the records as

instructions that drive the application under test and

verify its functionality. The parser also handles unex-

pected run-time errors, restores the application under

test to a default base state before and after executing

each test case, and logs the test results to a text file.

Table-driven testing and data-driven testing are similar

concepts that differ in one important way: the data in

table-driven testing incorporates decision-making logic

to simulate events or to verify control properties, while

the data in data-driven testing is just simple input data

to the application under test.

There are many advantages to the table-driven

approach. First, because the individual test cases are

written using a small set of simple instructions, not

everyone needs to be an expert on Rational Visual Test.

Test case developers can be trained quickly, and do not

need to be programmers. Second, since test cases are

read from text files, there is no need to recompile mod-

ified test cases. Third, the simple process of creating

tables greatly accelerates the test case creation rate.

And finally, the table-driven test application can be

freely redistributed under the Visual Test license, which

allows many testers to use it simultaneously, signifi-

cantly increasing the return on investment.

ATBU99099UCI_R2 3/25/99 2:41 PM Page 5

As with the original class, Rational Visual Test was ide-

ally suited to the project. Visual Test is the only testing

tool that includes a GUI builder to create stand-alone

GUI applications. Other more expensive tools require all

tests to be run from within the tools user interface. Seth

believes the simplicity of Visual Test’s language gives it

a big edge over tools that try to enforce object-oriented

principles in testing. “Visual Test’s advantage comes from

a simple scripting language that is powerful at the same

time. It is difficult to find experienced object-oriented pro-

grammers, let alone testers. So to use a test tool that

requires object-oriented knowledge adds unnecessary

complexity. Also, other tools fall short of their promise of

writing test scripts once and reusing them across multiple

platforms. The reality with multi-platform test environ-

ments is you write once and take your laptop.” He con-

tinues, “It is easier to find people with a Visual Basic

background that can jump right into it. Even if they do

not have a Visual Basic background the scripting lan-

guage is easy to learn, but powerful—it has pointers,

callback routines and a GUI builder to create a front-end

for test drivers. You can even write Windows applications

with Visual Test by calling Windows APIs.”

Hard Work Pays Off

The three students faced a considerable programming

task as they got started. Before signing up for Seth’s

class, they had no experience with Rational Visual Test.

What they accomplished by meeting once a week for 15

weeks is very impressive. They created “Terminix,” a

robust, fully functional, table-driven test driver with a GUI

front-end. By the time the students completed Terminix,

they had written over 13,000 lines of code and

exchanged volumes of e-mail with Seth and Cindy.

For third and fourth year undergraduates in the ICS

department a comment like “We’ve never coded so

much!” does not come lightly. The students also con-

ducted peer code reviews and spent many hours testing

Terminix. Fred would integrate everyone’s source code

and e-mail his classmates new versions of Terminix,

often during the wee hours of the morning. At the end

of the project, all three students de-

scribed their summertime experience

as a “15-week boot camp.”

One of the more complex components of Terminix

is the parser, which reads and interprets the records

in the CSV files. The format of a typical record is

fairly straightforward:

Parent Window ID, Control ID, <Action>, <Parameters>

The “Parent Window ID” and “Control ID” uniquely

The Configuration and Status Tabs
in Terminix

ATBU99099UCI_R2 3/25/99 2:41 PM Page 6

identify an individual Windows control, for example, a

button or edit control, in the application under test. A

separate mapping file is used to correlate symbolic

names with application objects such as menu items, dia-

log boxes, and controls. “You can think of the map file

as a repository of application GUI objects organized by

their class,” Seth explains. The “action” field specifies an

operation to perform on the control, for example, click-

ing the button, placing text in an edit control, or retriev-

ing text from an edit control for verification. The “para-

meters” field is a string either typed into the control, or

used to compare against retrieved text in order to verify

it. As the project evolved, the students added more

actions to the command set including a “Sleep” com-

mand to synchronize test cases with the application

under test and a “Pause” command to display a dialog

box for debugging purposes. The students eventually

implemented “Begin Loop” and “End Loop” logic, and

Max developed a mechanism by which one test case file

could reference, and include, another file. This feature

made it easy to write short CSV files that could drive the

application under test into a particular state. These files

were then called as subroutines from other test cases.

The user interface on Terminix also required a great

deal of attention. The students based their design loose-

ly on the Windows NT Task Manager program. The first

tab is used for configuration, and allows the user to

specify the CSV files to be executed during a test run.

”
The second tab is used to report the status of the test

run, and includes vital statistics such as memory usage,

percentage completion, elapsed time, and a view port

that details test progress and results. Terminix also

includes an Options dialog box in which the user can

specify the location of the log file and toggle the use of

entry and exit scripts to save and restore the state of the

Windows desktop.

In addition to the parser and the user interface,

the students wrote a set of event simulation wrapper

functions called by the parser to drive the application

under test. For the purposes of this project, the students

tested a Windows text editing application. In the future,

Terminix will be modified to be application independent.

Terminix will also be enhanced to provide GUI coverage

statistics, by reporting the total number of times each

menu item, application state, or control is referenced

in tables.

“For Windows-based testing, Rational Visual Test

does everything you need.

— Seth Ourfalian, University of California, Irvine

ATBU99099UCI_R2 3/25/99 2:41 PM Page 1

Corporate Headquarters
18880 Homestead Road
Cupertino, CA 95014
Toll-free: 800-728-1212
Tel: 408-863-9900
Fax: 408-863-4120
E-mail: info@rational.com
Web: www.rational.com
International Locations:
www.rational.com/corpinfo/
worldwide/locations.jtmpl

Rational, the Rational logo, and
Rational Visual Test are trademarks
or registered trademarks of Rational
Software Corporation in the United
States and in other countries. Microsoft,
Microsoft Visual Studio, and Microsoft
Windows 95, 98, and NT are trademarks
or registered trademarks of Microsoft
Corporation. All other names are used
for identification purposes only and are
trademarks or registered trademarks of
their respective companies. © Copyright
1999 Rational Software Corporation.
All Rights Reserved. Made in the U.S.A.

CS-XXX; rev 3/99.
Subject to change without notice.

Rational Software Corporation

The students were unanimous in their support for

Rational Visual Test. They found it easy to learn, and

powerful enough to do everything they needed.

Looking Ahead

Seth and Cindy are planning to make the course even

more challenging in the future. For the next fall quarter,

they plan to teach table-driven testing using Rational

Visual Test that will include group projects for Web-

based testing. They expect continued success, because

everyone involved in the first course and the summer

project was positive about the experience. William

echoed the feelings of his classmates, “I thought it was

really cool that UCI gave me the opportunity to look at

software testing, because I would not have even consid-

ered the field otherwise. It was a good experience to

learn Visual Test and to work as a team to produce

something we think is truly useful.”

In his 18 years in the industry, Seth has come across

many testing tools, but only Rational Visual Test provides

the programming power and simplicity to make him

want to teach a course with it.

Test
Configuration

(ASCII)

Map File
(ASCII)

Test
Results
(ASCII)

Windows
95/98/NT

Test
Cases
(ASCII)

Test Driver
(Visual Test)

General Purpose
Procedures
(Visual Test)

WProcedures
App States

(Visual Test)

Application
Under Test

Parser
(Visual Test)

Table-Driven Automated Software Testing Architecture

ATBU99099UCI_R2 3/25/99 2:41 PM Page 2

