Today’s test teams are faced with time-to market pressures, geographically distributed teams or projects collaborating with outsourced service providers, tighter internal and external regulatory requirements and communication gaps that can easily slow testing projects to a halt. In the face of these challenges, to help testing teams ensure the delivery of high-quality applications on-time, IBM Rational has integrated enterprise test management capabilities into IBM Rational ClearQuest. These capabilities provide test teams with a:
· Single Project View – providing the team a holistic view of the entire test & development project

· Global project coordination – providing improved team collaboration across co-located and geographically distributed teams

· Configurable, Enforceable processes - with extensive customization of the forms, fields and workflows, leveraging e-signature support for process sign-offs, and finally
· An extensible test ecosystem – providing a cost effective way to manage an entire test lab using Rational, open source and third party test automation tools
Linking test cases to requirements is the first step to ensuring lifecycle traceability.

We’ll begin our demonstration by running a custom query which will show us which of the test cases for our online auction application does not have associated system requirements

Here we see that the “Invalid Bid Amount” test case has not been associated to any requirement. Let’s open up that test case and associate it to a requirement now.

Test Cases can be associated to requirements stored as records in ClearQuest or more commonly in a requirements management tool such as IBM Rational Requisite Pro. For our online auction application, our requirements are stored in requisite pro, and we’ll associate our test to Use Case 1.3.3 – Entered bid is invalid. Making this association will enable us to trace test results to requirements and defects should any arise.

ClearQuest integrates with several execution engines for test playback. Integrations are available to open source tools such as Junit as well as IBM Rational Tools such as Manual, Functional and Performance Tester. An open API is the foundation of our test ecosystem, which enables third parties to integrate their playback engines as well. This particular test case is implemented by a Rational Functional Tester script, which we’ll select here to enable ClearQuest to run this test.
ClearQuest recognizes the reality that testing today must be performed on a variety of platforms and configurations. Switching over to the Test Manager view, we’ll select our test case and specify a configuration for our test which will enable us to report on test progress on a per-configuration basis.
At this stage we’re ready to run our tests. We can, of course, run our tests individually, but a more common practice is to assemble individual tests into test Suites for execution. We have already started assembling a suite of core functional tests, and we’ll complete it by adding in our latest test case to this suite. Test execution is sequential, and here we’ll alter the order of execution to match a logical flow. Once execution is complete we’ll receive a log of all test activity.
Test Suites, like test plans and test cases follow a user defined process model to ensure process control. Process enforcement is accomplished by requiring electronic signatures between state transitions. Now that our suite has been completed, we can transition its state to implement. As we do so, we’ll be prompted to sign off on this event with an electronic signature. Our signature confirms the suite is ready for execution, and this transition, as well as any other actions against this suite, are logged in the audit trail records for process confirmation.

With our test case associated to a requirement, attached to a test script and incorporated into a Suite for execution, we’re ready to launch. ClearQuest will prompt us to associate these test results to a build, so that we can later on report on a per build basis. We’ll specify our tests to run against Release Candidate 1. Our test suite is comprised entirely of Rational Functional Tester scripts. If you’ve never seen Functional Tester before, it is a tool for automated test capture and execution. Here it is replaying steps we previously recorded to test the bidding functionality of our auction application.
With playback complete, it’s time to analyze our results. Our suite contained five scripts, four of which have passed and one which has failed. We’ll drill down on our failed test by opening the activity log. The log is indicating that a verification point has failed. If we want to drill down even further, we can open the verification point comparator and examine the exact cause of the failure. The comparator is telling us that our application should have displayed the user’s full name, Jack Smith, on the home page, but instead displayed the user’s e-mail address. Clearly we have a legitimate problem here which we should log as a defect.

With our results in, and our defects submitted, it’s time to move on to the analysis phase. Analysis can be done from any of the ClearQuest clients – Windows, Linux, Unix or the Eclipse based interface we’ve been using thus far. Each client would be able to display information from my personally created queries as well as the Reports, Queries and Charts that ship with the tool. Results information however often needs to be disseminated to those who do not have a ClearQuest client on their desktop. For those users the ClearQuest Web interface is the perfect solution. Using the ClearQuest web interface, anyone with a browser can gain visibility into project progress. You can see here that the exact same reports are available via the web. Here we’re running a custom query showing us the pass/fail verdicts and defects associated to each requirement. We can also run some of the canned charts and reports. This chart shows us our overall pass and fail rate. For further detail, we can open this report which drills down to provide a verdict summary by application build. ClearQuest’s powerful query and reporting capabilities give us the single project view information we need to track and control our project progress.
IBM Rational ClearQuest enables you to govern test and development. By providing a single project view to lifecycle information, to users located anywhere from around the corner to around the world, unparalleled customization and an extensible test ecosystem you can count on IBM Rational ClearQuest as your hub for lifecycle development.
For further information on this or any IBM Rational tool, please visit us on the web at www.ibm.com/software/rational

