
SOA application testing
White paper
May 2007

Testing SOA applications with
IBM Rational quality management
solutions.

Testing SOA applications with IBM Rational quality

management solutions.
Page 2

Contents

2	 Introduction

3	 SOA	characteristics	and		

testing	challenges

5	 Approach	to	testing		

SOA	applications

8	 Rational	software	solutions	for	

testing	SOA	applications

11	 Summary

Introduction

Service-oriented architecture (SOA) makes IT applications into composite
applications, which are no longer monolithic. Instead, composite applications are
composed of many services often developed and deployed independently by sepa-
rate development teams on different schedules. Development of new composite
applications is made easier by the possibility of reusing existing services, thereby
avoiding costly application redevelopment or integration. However, this comes
with some unique challenges to ensuring a high level of quality throughout the
development cycle.

Indeed, SOA quality management is an important aspect of service lifecycle
management—one that reflects the need to address multiple aspects of service
quality across multiple SOA service implementations. IBM is focused on deliv-
ering end-to-end SOA quality management—from the model phase through
the assemble, deploy and manage phases. SOA quality management concerns far
more than just conventional software development and testing. It encompasses all
the ways in which business and IT organizations collaborate on services, as well as
the lifecycle from the conception of services and composite business applications
to the retirement of those assets.

The key capabilities that IBM SOA quality management solutions deliver include:

Enabling through tools and best practices a quality management focus

throughout the SOA lifecycle.

Ensuring business agility by enabling the functional and performance testing of

business services for compliance with business and regulatory requirements.

Optimizing and automating workflows across business processes by stream-

lining processes and eliminating process redundancies.

•

•

•

Testing SOA applications with IBM Rational quality

management solutions.
Page �

The SOA quality management processes within each service lifecycle manage-
ment phase include the following activities:

Model

Validate your business requirements.

Discover and assess those requirements against your current services.

Model your service requirements.

Assemble

Create your service update plan.

Create or modify the services to meet the business requirements.

Assess the services against your governance rules.

Deploy

Test the quality of the services.

Function testing

Performance testing

Compliance testing

Approve the deployment of the services.

Manage

Manage and monitor the services throughout their lifecycle.

Track the services in the registry.

Report on the services against service-level agreements.

SOA characteristics and testing challenges

Service-oriented architecture is a business-centric IT architectural approach
that supports integrating your business as linked, repeatable business tasks,
or services. SOA composite applications are built by assembling standardized
components (services) that are reused and combined to address changing
business goals and priorities. This is true business driven development where
business analysts document and optimize business requirements in the form
of business process models that spread across multiple applications. Therefore,
effective and comprehensive quality management calls for understanding the
business processes across several composite applications.

•
•
•

•
•
•

•
–
–
–

•

•
•
•

Testing SOA applications with IBM Rational quality

management solutions.
Page �

Moreover, SOA focuses on business flexibility—the capability to deploy innova-
tive business models quickly with reusable and optimized processes. Ensuring
a constant level of high quality in such an ever-changing environment requires
agile and continuous testing across the software delivery lifecycle, and those
activities need to be planned from the very beginning of a new SOA implemen-
tation project.

Another key element of the SOA approach is to build loosely coupled business
processes and services. This allows you to meet the objectives of business flex-
ibility and reuse—meaning that services can and will be reused in applications
and contexts that are not known at the time they are built and tested. The lack of
well-defined boundaries and control over the entire IT solution under test creates
new challenges in the definition of an appropriate and effective test strategy. The
SOA defines several layers of abstraction with the goal of decoupling software
components that were previously tightly integrated in order to enable agility and
reuse across the board. This is realized by the services layer that defines abstract
and GUI-less entities that map to the repeatable business tasks of an organization,
and that hide the underlying software components.

In that architecture, services do not usually provide human-friendly interfaces
that we traditionally use to perform functional validation either manually or in
an automated manner. Instead, testers have to deal with messages and protocols
based on technology such as the Web services standards. And, services expose
coarse-grained interfaces that hide all the details of the underlying business
logic. They appear as a “black box” to the service consumers. It becomes
challenging for quality engineers to find the right inputs in order to perform
exhaustive test coverage of those services.

Testing SOA applications with IBM Rational quality

management solutions.
Page �

Reuse is another benefit of adopting a service-oriented architecture. Because
an SOA allows you to avoid building point-to-point connections between every
application, you can reduce both your development and maintenance costs.
One single service can now be used by several applications, or maybe a few
at the beginning of the adoption of SOA, but soon, it could happen that some
services will be consumed by a dozen or more applications. If those services
have not been designed and tested to perform under such load, some of the
applications using them might suffer from unacceptable response times. And,
in the worst case—where services have not been thoroughly tested and fail in
production—the impact of that failure can be catastrophic for the whole orga-
nization, as several applications would be affected at the same time.

Approach to testing SOA applications

We have just seen that service-oriented architecture brings many benefits, but
it also brings unique testing challenges for the quality assurance (QA) team. So
testers should be well prepared and adopt best practices to build an approach
that will help them effectively address those challenges. Lessons learned from
several large-scale SOA implementation projects have been leveraged to define
key elements that can make a QA team successful with testing SOA applications.

First, from the very beginning of a new SOA project, it is very important to put
together a collaborative cross-functional test team that understands the business
tasks and processes to be tested; the different aspects of service-level agreements;
and the underlying technologies being used. In that team, business analysts
should be providing clear inputs with regard to test objectives, and they should
review and approve the proposed test strategy and test plans. Test architects are
the main stakeholders of the test plans being defined by the team. They should
take into account the service-level agreements that describe the expected level
of quality of service, performance, fault tolerance, etc. Testers, performance
engineers and developers should be trained on the SOA technologies and tools,
and they should be ready to effectively turn test plans into executable test cases.

Testing SOA applications with IBM Rational quality

management solutions.
Page �

This collaborative test team, once put in place, should rely on the well-known
mantra “test early, test often.” It is far more effective to find and fix defects
close to where they were introduced than it is to find them later on, when it
becomes harder to spot the cause of problems—and when fixing them has a
much greater impact on the application code and design. In a service-oriented
architecture, where there is less control over the entire solution being built, and
where services will be reused in different applications and in many different
ways, it is recommended to test each service individually first. For example, will
services that are reused still perform well with an additional load? Validat-
ing the functions and the performance of services being built, as well as
the ones being reused, would reduce the number of issues found during the
integration phase.

The composing of services is usually done by designing the workflow using
business process models, most of the time using the state machine paradigm.
Sometimes, these models are turned into executable code by using the Business
Process Execution Language (BPEL). In all cases, understanding those inter-
action models is helpful in creating integration test scenarios that involve the
right services together, with the correct combination.

Of course, the test team will test the complete solution. But it should also validate
that the new application meets all the business objectives for which it is being
implemented. Obviously, there is no benefit for an organization to adopt a brand-
new, bug-free, well-performing application that no one will actually use because it
does not meet one of the business objectives. With an SOA approach, testing, like
all the other development activities, should be business driven.

Testing SOA applications with IBM Rational quality

management solutions.
Page 7

Certainly, continuous testing along the entire software delivery cycle is resource
intensive—unless you automate the creation and execution of most of the tests.
Effective test automation for SOA applications is a challenge in itself that calls
for a rigorous approach. Test automation should be considered a task on its own,
and not just an activity that testers perform in their spare time or after the fact,
when everyone realizes the project is behind schedule. Instead, a test automa-
tion project needs to be run just like any software development project: with a
detailed plan that includes requirements, objectives and resource allocation.

One of the problems that often occurs with test automation is the application
user interface changes frequently during development—sometimes from one
build to another. This means that automated test cases are broken and need to
be updated frequently. In an SOA, if most of the tests have been created and
automated based on the service layer, and therefore are independent of the
user interface changes, this will offer better maintainability and will save cost
and time.

Another way to optimize the test automation activity is to reuse test assets as
much as possible. For example, a good practice is to create libraries of execut-
able test steps that can be put together to build more complex test cases. A
data-driven testing approach could also be applied where the same test sce-
nario is reused several times with different sets of data.

Moreover, effective test automation calls for tools that can ease the creation
and maintenance of both functional and nonfunctional tests in relation to the
development platform used on a project, specifically with the change and test
management tools. And, in the context of a service-oriented architecture, the
test tools should address the test of GUI-less services and support the underly-
ing open standards and technologies.

Testing SOA applications with IBM Rational quality

management solutions.
Page �

Rational software solutions for testing SOA applications

As part of its new SOA quality management solution, IBM has announced two
new solutions from Rational software to enable continuous testing of services
and SOA applications.

IBM Rational® Tester for SOA Quality software is for developer and

quality assurance professionals who need to create, comprehend, modify

and execute both functional and regression tests of GUI-less services.

IBM Rational Performance Tester Extension for SOA Quality software

is for performance engineers who need to conduct load and performance

testing of services. It extends IBM Rational Tester for SOA Quality and IBM

Rational Performance Tester software.

Rational Tester for SOA Quality simplifies the creation of tests for GUI-less ser-
vices by automating the generation of Web service test client or by recording the
interaction between a service consumer and a service provider. It comes with a
graphical test editor that enables both high-level and deeper detail views. No
programming knowledge is necessary to create, modify and execute functional
tests. Moreover, the software leverages the business modeling work developers
have already done, and it automatically generates test cases based on the behav-
ior of business processes defined in BPEL. Rational Tester for SOA Quality can
automatically detect variable data during test recording and prepare the test for
data-driven testing. And it allows users to easily create customized data sets to
be used by the tests during execution.

Rational Performance Tester Extension for SOA Quality provides a flexible
workload modeling capability, enabling automated generation of service perfor-
mance tests. This modeling helps ensure that the performance test accurately
mirrors the user base, including different groups of service consumers, as well
as the activities and usage patterns of each of the groups. Through the modeling
exercises, this tool can provide more effective real-world scenarios.

•

•

Testing SOA applications with IBM Rational quality

management solutions.
Page �

Now you can easily pinpoint the performance bottlenecks of your SOA appli-
cation. To help find the root cause of the bottlenecks, Rational Performance
Tester Extension for SOA Quality allows you to import IBM Tivoli® Monitoring
response time breakdown data.

Let’s get into more details of how these tools can be used. Rational Tester for
SOA Quality supports three different ways to create a new test. First, interac-
tively given the description of a service as input, the tool automatically creates
Web pages that allow the tester to easily interact with the services to be tested.
Second, the tool can record the traffic between an existing service consumer
and a server, either by an HTTP proxy or by instrumentation technique. Third,
the software allows the tester to describe a business process in BPEL, which will
be analyzed to automatically generate tests that will exercise the different pos-
sible paths through the business process.

During the creation of a test, interactively or by recording, the tool automati-
cally detects variable data, such as unique session or transaction ID, and if
necessary, automatically correlates field values between several service opera-
tion invocations. This allows testers to automatically execute the recorded test
without having to manually change to it.

Once tests have been recorded, users will be able to easily enhance or modify
them using a visual editor. Tests are represented in a tree view showing the list
of operation calls and responses. With the editor, users can modify or add new
operation invocations, and also interactively call any one of the listed operations
to update the recorded answer. Test data that is constituting the Simple Object
Access Protocol (SOAP) messages to be sent to call a service operation can be
displayed and edited through multiple views, which either focus only on the

Testing SOA applications with IBM Rational quality

management solutions.
Page 10

values or on the display of all the elements including name spaces, attributes or
attachments. Finally, the editor provides easy access to the configuration of the
transport protocol and Web Services Security that are used to execute the tests.

One way to enhance tests is to use a set of data instead of just single values
to execute the same tests several times in a test-data-driven approach. And, if
needed, users can easily add correlations between message fields on top of the
one automatically created by the tool during the recording.

Another important aspect of this step is to set the baseline that will be used to
automatically determine the verdict of a test execution. This is done by creating
verification points from the visual editor. Verification points will, for example,
automatically compare an answer from a service call with the expected answer.
Once the test has been recorded and enhanced, it is ready to be run. This can be
done directly through the tool user interface, but also from the command line, or
from the IBM Rational ClearQuest® test management solution. So, you can easily
create repeatable test suites that can be run as part of an automatic build process.

As the result of the test execution, the tool provides a functional test report with
the global verdict of the executed tests—pass or fail—and an execution history
view with all the messages exchanged. The test log also includes the verdicts for
each verification point, as well as a detailed view showing a side-by-side compar-
ison between the expected and received responses of the operation invocations.

In addition to validating the functional requirements of services, Rational
Performance Tester Extension for SOA Quality allows performance engi-
neers to easily create and execute load tests. A visual schedule editor is used
to define powerful and flexible scheduling of tests in order to accurately model
production-like workloads with hundreds or thousands of service consumers
executed in parallel.

Testing SOA applications with IBM Rational quality

management solutions.
Page 11

You can create specific tests to be scheduled, or reuse the function tests already
created for the validation of the services, thereby cutting down on the cost and
time needed to benchmark your SOA applications. The load generation can be
distributed on several machines, including IBM mainframes, to mimic closely the
production environment where the services and applications will be deployed.

Just like the functional tests, the performance tests can be executed from the
tool’s user interface, the command line or the Rational software test management
solution. During the test execution, detailed response time data is presented in
customizable charts and tables, which can be exported into HTML reports. At
the same time, information relative to the utilization of system resources can be
gathered on both the load generation machines and the systems under test, such
as CPU utilization or memory consumption.

On top of that, the tool allows you to collect more detailed server-side data
leveraging the Tivoli monitoring infrastructure, such as the breakdown of
response time for each tier of the system. This enables performance engineers
to quickly identify the root cause of performance problems.

Summary

Knowing which new challenges that key SOA characteristics bring to test-
ing activities is helpful for you and your team. Some of these challenges
will require adjustments to your current quality management and testing
processes, and they will demand that you implement new tools specifically
designed to deal with new assets under test. IBM Rational Tester for SOA
Quality and IBM Rational Performance Tester Extension for SOA Quality
address those needs and are effective solutions to tackle the challenging tasks
of testing service-oriented applications.

For more information

To learn more about IBM Rational Tester for SOA Quality system require-
ments, visit:

ibm.com/software/awdtools/tester/soa

To learn more about IBM Rational Performance Tester Extension for SOA
Quality, visit:

ibm.com/software/awdtools/tester/performance/ext/soa

©	 Copyright	IBM	Corporation	2007

IBM	Corporation	
Software	Group	
Route	100	
Somers,	NY	10589		
U.S.A.

Produced	in	the	United	States	of	America	
05-07	
All	Rights	Reserved.

ClearQuest,	IBM,	the	IBM	logo,	Rational	and		
Tivoli	are	trademarks	or	registered	trademarks		
of	International	Business	Machines	Corporation		
in	the	United	States,	other	countries	or	both.

Other	company,	product	and	service	names	may	
be	trademarks	or	registered	trademarks	or	service	
marks	of	others.

The	information	contained	in	this	documentation	
is	provided	for	informational	purposes	only.	While	
efforts	were	made	to	verify	the	completeness	
and	accuracy	of	the	information	contained	in	this	
documentation,	it	is	provided	“as	is”	without	war-
ranty	of	any	kind,	express	or	implied.	In	addition,	
this	information	is	based	on	IBM’s	current	product	
plans	and	strategy,	which	are	subject	to	change	by	
IBM	without	notice.	IBM	shall	not	be	responsible	
for	any	damages	arising	out	of	the	use	of,	or	oth-
erwise	related	to,	this	documentation	or	any	other	
documentation.	Nothing	contained	in	this	docu-
mentation	is	intended	to,	nor	shall	have	the	effect	
of,	creating	any	warranties	or	representations	from	
IBM	(or	its	suppliers	or	licensors),	or	altering	the	
terms	and	conditions	of	the	applicable	license	
agreement	governing	the	use	of	IBM	software.

RAD10993-USEN-00

http://www.ibm.com/software/awdtools/tester/soa
http://www.ibm.com/software/awdtools/tester/performance/ext/soa

	Introduction
	SOA characteristics and testing challenges
	Approach to testing SOA applications
	Rational software solutions for testing SOA applications
	Summary

