
Improving software development capability
05/20/03

IBM® Rational® Rapid Developer
Automated Construction

Joseph G. Noonan
jgnoonan@us.ibm.com

Improving software development capability

ii

Page ii

Table of Contents

Introduction .. 1
A Brief History of Automated Construction................................. 2

Early Approaches ... 2
The Rapid Developer Approach ... 2

Rapid Developer Construction System 3
Overview... 3

Technology Neutrality and Optimization.......................... 3
Architectural Neutrality .. 3
Template-based Construction ... 3
Transaction-centric Construction..................................... 4

ObjectSpace .. 4
Application Developer Productivity and Flexibility 5
Deployment flexibility .. 5

Construction ... 6
Presentation Artifacts .. 6

Cascading Style Sheets (CSS) 6
Database Artifacts... 6

Database Objects .. 6
Stored Procedures... 6
Dynamic SQL (Java).. 6

Security Artifacts ... 7
Role-based Security... 7
Data Encryption ... 7
Visibility Expressions ... 7

Internationalization/Localization Artifacts 7
Resource Bundles ... 7

J2EE Artifacts.. 7
Java Server Pages (JSP)... 7
Servlets.. 8
Session Beans... 8
Java Classes ... 8
Entity Beans... 8

Microsoft DNA Artifacts ... 8
Active Server Pages (ASP).. 8
MS-COM DLLs .. 8

Page Construction .. 9
J2EE Patterns ... 9

JSP Only.. 10
JSP with Entity Beans.. 11
JSP Model II (MVC) ... 11
JSP Model II (MVC) with Entity Beans..................... 12
Servlet-Only ... 12
Servlet with Entity Beans ... 13
Servlet with Session Bean 13

Improving software development capability

iii

Page iii

Servlet with Session Beans and Entity Beans 13
MS-DNA Patterns.. 14

ASP with COM DLL on MTS.................................... 14
Message Construction.. 14

J2EE Message Patterns.. 16
Message as a Session Bean 16
Message as a Java Package................................... 17
Message-driven Bean.. 18

MS-DNA Message Patterns .. 18
Message as a COM DLL on MTS 18

Queue Monitoring and Message Routing...................... 19
Rapid Developer Switchboard (J2EE and MS-DNA)19
Message-driven Beans (J2EE only)......................... 19

Component Construction.. 20
J2EE Patterns ... 20

Session Bean Components 20
Java Package Components 20

MS-DNA Patterns.. 21
COM DLL Component ... 21
Java Package Component....................................... 21

Web Services Construction .. 22
J2EE Patterns ... 22

Conclusion ... 23

Page 1

Introduction
This document describes the IBM® Rational® Rapid Developer Automated Construction
System, its origins and its unique capabilities. The document does not presume any prior
knowledge of Rapid Developer and is intended to provide the reader with a sound
understanding of the code generation artifacts and patterns.

Page 2

A Brief History of Automated Construction

Early Approaches

Automated code construction has been around for a while. Early efforts accelerated
development by generating basic code structures (e.g., procedure and function stubs,
class definitions, and other simple code artifacts). Additionally, database generation was
usually found in tools used by DBAs, and application developers were left to their own
devices regarding test database and data generation.

Over time, these tools became more sophisticated, but in the area of code generation, the
market did not move much beyond their humble beginnings. Tools like Rational Rose
incorporated frameworks such as Microsoft MFC and the Sun Java JDK into the
modeling environment. Application developers could leverage these frameworks during
modeling, and then generate class and method stubs with the appropriate references.
Typically, only one technology could be targeted at a time due to the level of integration
between the framework and the model.

The Rational Rapid Developer Approach

Rapid Developer has changed the course of code generation dramatically. In 1995, Arun
Gupta, the founder of DataEase, and a core group of software developers, began to build
a more complete approach to code generation. The basic premise was to generate fully
functional applications from a set of models. The technology selections would be isolated
from the models so that application developers could rapidly move from one technology
to another, at the same time leveraging the power of the target technology. Rapid
Developer was the result of this effort. Rapid Developer, like Rational Rose, provides a
model-based approach to development. Application developers create class, user
interface, process, site, message, code and transaction models that are technology neutral.
Custom business logic, which only comprises 5-8% of a typical Rapid Developer-
generated application, is written using the Java programming language. The Rapid
Developer Runtime API allows application developers to create this business logic using
a standardized interface that works under all supported technologies. As new
technologies are added, the interface stays the same. Additionally, as new patterns of
construction emerge, the template-based construction system is augmented to support
them. The remaining sections of this paper describe the construction system and the
generated patterns in greater detail.

Page 3

Rapid Developer Automated Construction System

Overview
The Rapid Developer Automated Construction System is a state-of-the-art mechanism
that converts model elements such as classes, pages, messages and components into fully
functional application artifacts. The key elements to this unique product are:
• Technology neutrality
• Template-based construction
• Technology optimization
• Transaction-centric construction and the ObjectSpace (defined below)
• Application developer productivity and flexibility
• Deployment flexibility

Technology Neutrality and Optimization
From the beginning, a guiding premise of Rapid Developer was to provide a development
tool that would allow developers to create applications and not worry about constantly
changing technology. Since software technologies are always evolving, application
developers need tools that keep pace with change. The Rapid Developer modeling system
insulates application developers from the target technologies. Application developers
focus on the business problem and use the Rapid Developer modeling environment to
describe the application. Business rules and methods are written using the Java
programming language, which can be run in any environment that supports a Java virtual
machine. The Rapid Developer Runtime API is used to write the business rules and is
abstracted to shield application developers from the specific implementation for a given
technology. Application developers can choose to write directly for a given technology,
but lose the ability to automatically migrate as new technologies are supported in Rapid
Developer.

While the API provides a common interface, it does not provide a common
implementation. Each target technology is constructed in an optimized manner, using the
unique capabilities of the selected technology. For instance, the deletion of a parent
record and its related children uses a trigger to perform a cascading delete, if the
technology supports this capability.

Architectural Neutrality
Design patterns provide application developers with architectural neutrality. This means
that application developers are free to pick and choose from different construction
patterns for a given scenario. They can then test and perhaps select a new pattern if the
selected one does not fit for the business transaction. Rapid Developer currently supports
many industry-recognized patterns and more are added with each new release.

Template-based Construction
The Rapid Developer construction system employs a template-based approach to
generation. For each function of a given technology, there is a template that controls

Page 4

generation. This template is tuned for the given target technology. As new technologies
are supported or their capabilities extended, templates are added or modified to provide
construction support. The constructed code is performance and load tested to ensure that
it is fully optimized.

Transaction-centric Construction
Another governing principle behind Rapid Developer is modeling of pages, messages,
components, and Web services focuses on the specific business transaction being
performed. As application developers define a page, message, or component they create
an ObjectSpace.

ObjectSpace
The ObjectSpace is a Rapid Developer construct that defines the elements of the business
transaction. The application developer creates an ObjectSpace automatically by placing
controls on the page and tying them to classes, attributes or methods. The developer can
view the ObjectSpace by selecting Page Properties and clicking on the ObjectSpace tab
(see Figure 1). In this case, the application developer uses the OrderHeader class as the
root for the ObjectSpace. The OrderItems class is also projected and has a “many”
relationship to OrderHeader. Additionally, each OrderItem class has a related
SellerProduct class. The applications developer has also projected a number of attributes
and methods into the ObjectSpace as well.

Figure 1 - ObjectSpace Design

A class may be defined to have any number of attributes (e.g., 20 attributes). For a given
business transaction, however, the application developer may only need three of the
attributes. When designing the ObjectSpace for the page, the application developer
selects the class and projects the three attributes needed. During construction, a class is
constructed that contains only the projected attributes. This means that only the data
needed for the business transaction is brought in from the database, reducing network
traffic and improving scalability. Custom database access functions are generated based

Page 5

on the ObjectSpace class and page type definitions. For example, if a page type is read-
only, no insert, update, or delete data access methods will be generated, but the load
functions are generated. Rapid Developer supports the following page types: read-only,
enter-only, full, search, and no data access. Rapid Developer will generate the following
system methods when needed by the type:

ObjectSpace Methods
o Construct() – This method builds the ObjectSpace and loads the data for it using

the various class methods
Class Methods

o getID() – returns the ID (primary key value) of the current record
o insert() – inserts the current record into the appropriate database table
o update() – updates the database record with the current values for the record
o delete() – deletes the current record
o validate() – executes all validation rules that are associated with projected

attributes
o loadByID() – loads the record from the database that matches the ID (primary key

value)
o loadBy Selection() – loads the record that matches the SQL selection criteria

passed to the function
o loadObjectBySelection() – loads a set of objects that match the SQL selection

criteria passed to the function
o load<related object>() – loads the selected related object using the foreign key for

the related object or objects. From the example in Figure 1, a loadOrderItems()
function would be automatically generated for the ObjectSpace.

Rapid Developer uses a declarative transaction model that defines deployed session beans
(J2EE), entity beans (J2EE), or COM objects (MS-DNA) to require transactions. When
any method is called, the container automatically starts a transaction if one does not exist
already. Any nested method calls would participate in the original transaction.

Application Developer Productivity and Flexibility
Rapid Developer is revolutionary in its approach to development. With its rich modeling
environments, application developers create a set of models that are transformed into a
working application. Developers focus on the application design, while Rapid Developer
handles the application construction and deployment. An application developer with
basic Java programming skills can create complex n-tier transactional applications with
very little knowledge of the target deployment environment. In addition, if application
developers need to access the technology directly, Rapid Developer does not prevent
them from doing so. Also, application developers can override the code that Rapid
Developer generates.

Deployment Flexibility
Rapid Developer Partition Architect provides unmatched flexibility in deploying the
artifacts that Rapid Developer generates. With Partition Architect, application developers

Page 6

can divide the application artifacts into archives along functional boundaries (e.g., order
entry, purchasing, inventory) or along application tiers (presentation, middle tier,
database) or any other way that makes sense for the application. For instance, session
beans that represent high-use business transactions can be packaged as a deployment
archive and deployed on a high volume server.

Construction
Rapid Developer supports the design and construction of pages, messages, components
and Web services using either J2EE- or MS-DNA-based technologies. Page development
is supported using the full-featured Page Architect. Messages are used to integrate
disparate applications and are developed using the Message Architect. Components and
Web services allow application developers to encapsulate reusable code and expose
interfaces to them. The following sections describe the kinds of artifacts Rapid Developer
generates for each of the major technologies supported.

Presentation Artifacts

Cascading Style Sheets (CSS)
Rapid Developer provides extensive theme and style support for the graphic artist. At
construction time, application developers have the option to generate the styles as part of
the generated code or separately as cascading style sheets. CSS are basically text files
that are read each time a page is rendered. By using the CSS option, the site style can be
changed in seconds with an editor.

Database Artifacts

Database Objects
Rapid Developer generates database objects such as tables, indices, primary and foreign
keys, and triggers (where supported) based on the DBMS select. This is done based on
the definition of classes, attributes, and the relationships between classes as defined in the
Class Architect. Application developers can even define classes to be in different
databases (i.e., Customers may be in an Oracle DB where Orders are in DB2 on the
System 390).

Stored Procedures
Based on the design of the page, message or component, application developers can
choose to generate stored procedures to provide the data access CRUD function set (refer
to ObjectSpace section above). These stored procedures are optimized for the target
DBMS.

Dynamic SQL (Java)
The other method supported by Rapid Developer for accessing the database is the use of
Java-based dynamic SQL. All database access methods (CRUD function set) are
generated as Java calls that are optimized for the target DBMS.

Page 7

Security Artifacts

Role-based Security
Based on selections in the page, Rapid Developer supports and generates role-based
security code. Application developers can control access to pages and controls on a role-
by-role basis. If LDAP is used, Rapid Developer Version 2003 will synchronize with the
roles established in the LDAP server.

Data Encryption
Rapid Developer provides the capability to encrypt a variety of data for pages and
messages. Application developers can encrypt URLs, parameters, data elements and
message elements. Rapid Developer supports a variety of encryption algorithms and also
allows the applications developer to create their own custom encryption methods.

Visibility Expressions
Rapid Developer application developers can use visibility expressions to determine if
data is seen on a page or included in a message. The application developer writes these
visibility expressions as business rules in Java.

Internationalization/Localization Artifacts

Resource Bundles
An exciting new capability in Rapid Developer Version 2003 is the ability to develop an
application for multiple target languages. Rapid Developer provides extensive features to
application developers to localize controls and locale elements within the application for
any number of languages. Rapid Developer will generate the localized prompts and text
elements as resource bundles. The applications developer can also configure the
application to dynamically select the language based on the browser settings. The
developer can also export the localized items into a variety of formats so they can be sent
for translation or loaded into third-party translation tools.

J2EE Artifacts

Java Server Pages (JSP)
Java Server Pages, or JSPs, provide application developers with a technology for serving
pages that contain dynamic content. JSPs provide a means to separate static content
(HTML) from dynamic elements, which can be scripted using the Java programming
language. Within the script sections of JSP pages, the application developer can draw on
the full power of Java to access resources such as databases, message queuing systems,
and Web services. By providing a separation between content and logic, application
developers can make content changes without having to change Java code—as they must
with Java servlet technology. Rapid Developer supports JSP-based applications by
providing a variety of generation patterns for this technology. JSPs, by default, are
deployed as part of the Web container.

Page 8

Servlets
Java servlets are compiled Java classes that provide a platform-independent replacement
for CGI scripts. Unlike JSPs, the content is not separated between static and dynamic,
making them less flexible to JSP. Since all the content is managed in Rapid Developer,
application developers are not as impacted as they would be if the servlets were hand-
coded. They need only go into Page Architect and change the page and reconstruct to
change page content. Servlets, by default, are deployed as part of the web container.

Session Beans
Session beans are used for business logic associated with pages, messages, and
components. By default, these session beans are stateless. Rapid Developer allows
application developers to generate stateful session beans for components, but not for
pages or messages. Session beans are set to require a transaction. This means that if a
transaction does not exist, the session bean container will start one. If one already exists,
it will leverage the existing transaction. The home, remote and localHome interfaces are
also generated.

Java Classes
In cases where application developers are not using application servers that support EJBs
(such as Apache Tomcat), session beans will be generated as Java classes instead
(servlet-only and JSP-only patterns). Since there is no container to manage transactions,
they are not supported when Java classes are used.

Entity Beans
Entity beans are supported in Rapid Developer Version 2003. Application developers can
select to use entity beans for data access on a class-by-class basis. Rapid Developer
generates all the finder and getter/setter methods and deploys the entity beans to require a
transaction, the same as the session bean. A value object is created and is passed to the
ejbCreate() method on the home interface of the entity bean. The ejbCreate() method uses
the setters to populate the value object which is returned to the caller with the requested
record data. The home, remote, and localHome interfaces are also generated.

Microsoft DNA Artifacts

Active Server Pages (ASP)
Active Server Pages, or ASP, are generated when the user selects to use the Microsoft
DNA technology. An ASP is generated for each page in an application and is used to
invoke the main interface of the associated COM DLL deployed on Microsoft’s
Transaction Server.

MS-COM DLLs
MS COM DLLs are somewhat synonymous to the session bean insofar as their roles in a
deployed application. MS COM DLLs are used to implement the business logic for a
page, message or component. Rapid Developer automatically deploys and registers these
COM DLLs to Microsoft Transaction Server (MTS). They are marked to require a
transaction, the same as the session bean.

Page 9

Page Construction
Rapid Developer supports the design and construction of complex Web pages through the
use of the Page Architect. The Page Architect is a GUI tool similar to products such as
Microsoft Front Page or Macromedia DreamWeaver. Application developers can drag
and drop a variety of controls onto the Page Architect canvas to design the application
pages. Howerver, Rapid Developer supplies a variety of data-connected controls such as
grid, object table and object grid that can be rapidly added to a page and mapped to
database tables or views. Additionally, these controls can be nested within one another to
provide a master-detail view at any number of levels. The application developer can then
construct and deploy the page using the Rapid Developer built-in construction and
deployment system. The artifacts (i.e., servlets, JSP, session beans, java classes, entity
beans, stored procedures) are constructed based on the technology patterns that the
developer selects.

All pages constructed by Rapid Developer utilize the ObjectSpace mechanism (see
“Transaction-centric Construction”, above). This mechanism ensures that objects created
by page construction contain only the attributes and methods needed by the page—
greatly reducing the size of the objects and also limiting the amount of data the page
retrieves from the database. This reduces network traffic between the database and the
middle tier. In addition, the Rapid Developer framework provides technology-neutral
implementations of HttpSession, HttpRequest, HttpResponse, and HttpContext that
application developers can access using Rapid Developer custom methods that provide
complete session functionality to the Rapid Developer application developer.

Rapid Developer supports J2EE and Microsoft DNA construction patterns. J2EE offers
the most flexibility in pattern selection within Rapid Developer. There are two subsets of
patterns under J2EE: servlet-based patterns and JSP-based patterns. These patterns can be
matched with different database access methods to fine-tune an application transaction
for optimal performance. JSP patterns and servlet patterns cannot be mixed within the
same application at this time.

J2EE Patterns
J2EE or Java 2 Platform, Enterprise Edition, has brought sweeping changes in the
computing industry. Using the Java programming language as the base, with its platform
neutrality, J2EE-compliant application servers provide an infrastructure for running
applications on a wide variety of platforms. These application servers run on everything
from Intel-based servers to IBM zSeries mainframes. These application servers provide a
built-in set of operation and management services for applications. Memory management,
security, thread management, transaction management are but a few of the services these
platforms provide. Rapid Developer creates Java components called Enterprise Java
Beans (EJBs) that are deployed on application servers. Application developers write the
basic business logic, and the container (EJB) provides the service interfaces to the
application server facilities. This saves application developers a significant amount of
effort because they don’t need to write all theses services, which is difficult to write and
maintain.

Page 10

Even with the advent of these sophisticated application servers, the development of Java
applications require a level of developer sophistication not easily found in the industry.
Application developers are challenged to know the techniques for developing for J2EE,
let alone the particulars for creating EJBs or other artifacts on all the different application
servers that are J2EE-compliant. This is where Rapid Developer shines in and takes J2EE
development to the next level. Through its sophisticated construction and deployment
capabilities, Rapid Developer completely automates the construction and deployment of
the J2EE artifacts for an application. Developers can select patterns for the application
and Rapid Developer also provides a means to construct a different pattern for each page.
These patterns fall into two mutually exclusive groups: JSP (Java Server Pages) and
Servlets. Within these groups, application developers can select different construction
and deployment patterns based on the specific needs of the transaction (page). The
following sections describe these two groups and their patterns supported in Rapid
Developer.

JSP Only
The JSP-only pattern is ideal for non-transactional, read-only dynamic pages as well as
static pages (no data access). With the JSP-only pattern, each page is generated as a fully
functional JSP. The ObjectSpace associated with the page is generated as a series of
classes that match the classes and attributes projected during page design. Users access
the JSP page through their browser. The JSP page does the work of rendering the static
and dynamic elements of the page. Since the focus of this pattern is displaying data or
static content, there are no transactions supported through generation. Application
developers can add user transactions in custom business methods, but they need to
manage all the elements of the transaction, including rollback functions. Access to the
database is done through the ObjectSpace classes and their associated CRUD (Create,
Retrieve, Update, Delete) function sets.

Page elements such as style and control definition are generated as static JSP. Elements
such as projections, role-based security and custom business logic are generated as the
dynamic (Java) content of the page. Figure 2 shows the basic flow of a request:

Figure 2 – JSP-Only Construction Pattern

Page 11

The controller, deployed as a servlet in the Web container, determines which page
controller to create. There is one controller per JSP application deployed using Rapid
Developer. If the page is used to display data from the database, the page controller
creates the data set for the page. The JSP page dynamic elements (scriplets) format the
data for display. The data is retrieved from the database either using dynamic SQL (Java)
or stored procedures.

JSP with Entity Beans
In systems that support entity beans, the data access methods can be generated to interact
with the entity beans. Entity beans are deployed to the application server and perform all
the data load/manipulation operations. Entity beans are generated to require transactions.
Since JSP-only pages do not create transactions, the entity beans start transactions for
every call that is made to them from the ObjectSpace classes. If an error occurs in these
transactions, the ObjectSpace initiated method fails, and the JSP presents the appropriate
error message to the user.

JSP Model II (MVC)
The JSP Model II pattern uses a Model-View-Controller paradigm in which the static and
content elements are separated from the dynamic aspects of the page. HTML designers
can code the layout and content using JSP, and Java programmers can create Java
elements for data retrieval and formatting. Content (view) can change independently of
the code (controller) used to retrieve and format the content from the data (model). Rapid
Developer supports this pattern when JSP is selected as the construction pattern and the
target platform is an application server that supports Enterprise Java Beans (e.g., IBM
WebSphere, BEA WebLogic). Application developers can mix and match pages to use
this pattern or the JSP-only pattern based on the needs of the page. This pattern is useful
when the page has transactional requirements such as insert, update, or delete functions.

Figure 3 - JSP Model II Construction Pattern

In this pattern (see Figure 3), application developers can separate custom business logic
between the presentation and business tiers. Presentation methods can be used to control
display elements, while business tier methods can perform a variety of business-rule
operations on the data being sent to or retrieved from the database. As with the JSP-only
pattern, a controller creates a page controller specific for the page. The page controller
instantiates the session bean associated with the page. The session bean exposes two

Page 12

methods called requestData(), to retrieve data from the database, and submitData(), if the
request is a post. These methods populate the ObjectSpace with the data and execute any
custom business logic the applications developer may have created. Once the session
bean has completed its work, the data is forwarded to the JSP page by the page controller.
The JSP page then formats and displays the data.

JSP Model II (MVC) with Entity Beans
This pattern is a slight variation of the previous pattern. In this pattern, the classes from
Rapid Developer are represented as entity beans and are deployed on the application
server. The session beans and entity beans are deployed to require a transaction. In this
case, the session bean container starts the transaction and any calls to an entity bean
participate in the main transaction. The applications developer gets all the distributed
features of entity beans without having to know specifically how to code and deploy
them.

Servlet-Only
The servlet-only pattern is analogous to the JSP-only pattern. The servlet-only pattern is
used when the page is a read-only or static page (no data access). The page is compiled
and deployed as a servlet in the web container. The ObjectSpace is created as a set of
classes that are called by the page servlet. The ObjectSpace classes contain methods to
interact with the database to provide data for the servlet to display. As with JSP-only, the
servlet-only pattern does not support automatically generated transactions. However,
application developers can write custom business methods that contain user transaction
code. Additionally, application developers can call third-party components or other
session beans from within these methods (see Figure 4).

Figure 4 – Servlet-Only Construction Patterns

When a page is constructed as a servlet, the primary method is the generate() method,
which is auto-generated based on the design of the page. The generate() method
orchestrates all elements of page display, retrieving the data from the database, executing
custom business methods on the data and then displaying the page by outputting the
HTML to the response object.

Page 13

Servlet with Entity Beans
If the applications developer elects to use entity beans for data classes, the data access
methods are generated to interact with the entity beans. Entity beans perform all data
load/manipulation operations and are deployed to the application server. As stated
previously, entity beans are generated to require a transaction. Since servlet-only pages
do not create transactions, the entity beans start transactions for every call that is made to
them from the ObjectSpace classes.

Servlet with Session Bean
In this pattern (see Figure 5), a servlet and a session EJB are generated for each page. The
servlet is a lightweight controller that is used to instantiate the home interface of the
session bean and invoke the generate() method in the session bean. All the presentation
logic, business logic and data-access logic are located in the session bean.

This is a great pattern for pages that need maximum performance. All the tiers are
contained within the session bean; no data needs to be serialized between tiers. This
marshalling and demarshalling of data is very time consuming, particularly when larger
datasets are involved. Transactions are supported for this pattern and are automatically
initiated by the session bean container.

Figure 5 - Servlet With Session Bean Construction Pattern

Servlet with Session Beans and Entity Beans
This pattern (see Figure 6) is a slight variation of the previous pattern. In this pattern, the
classes from Rapid Developer are represented as entity beans deployed on the application
server. Entity beans are deployed to require transactions. In this case, the session bean
starts the transaction and any calls to an entity bean participate in the main transaction. If
anything should fail at the entity bean level, the calling method is notified using an
appropriate error message. Any custom methods written for the business tier
automatically participate in the transaction for the page.

Page 14

Figure 6 - Servlet With Session Bean and Entity Bean Construction Pattern

MS-DNA Patterns
Rapid Developer provides support to the Microsoft COM applications developer through
the generation of pages as COM DLLs that are deployed onto Microsoft Transaction
Server (MTS). Pages are compiled using the Microsoft SDK for Java version 4.0 (jvc).

ASP with COM DLL on MTS
This pattern (see Figure 7) is almost identical to the servlet/session bean pattern
supported for J2EE in which the ASP is analogous to the servlet and the COM DLL is the
session bean. Using MTS mechanisms, transactions are supported in the generated page.
Java is used as the programming language and for the most part; application developers
can switch between MS and J2EE technologies as long as they have written to the
common Rapid Developer Runtime API.

Figure 7 - ASP with COM DLL on MTS Construction Pattern

Message Construction
In addition to pages, Rapid Developer also supports the design and construction of
messages. Messages are generally used as a means of integrating disparate applications.
This is commonly referred to as enterprise application integration or EAI. In the past EAI
projects could easily turn into quagmires because of the different needs of each system
and the time it took to hand code messages and their respective handlers. Rapid

Page 15

Developer eliminates that headache by providing a rich message-modeling environment
at design time, and automated construction of the tedious elements of EAI applications
(e.g., message parsing, transport interfacing).

At the heart of Rapid Developer’s messaging support is the Rapid Developer Messaging
Runtime API. This API provides a technology-neutral interface to queues, messages,
message envelopes, and transports. Application developers can change the underlying
transport (e.g., JMS to WebSphereMQ) without a lot of expensive re-coding. Rapid
Developer currently supports WebSphereMQ, Java Messaging Service or JMS, Microsoft
Message Queue (MSMQ), and TIBCO transports. It is important to note that several
application server vendors bundle JMS transports as part of the application server, and
these are supported through the JMS interface.

As with pages, the ObjectSpace plays a central role in the design and runtime execution
of a message. During message design, the applications developer selects the objects and
attributes that are needed to perform the tasks associated with the message. The Message
Modeler then allows application developers to load an XML DTD and match the
elements of the DTD to the ObjectSpace classes and attributes. This creates a map that
Rapid Developer uses during code generation to create the parse code for the message.
Additionally, the Message Modeler allows the applications developer to generate a DTD
from an ObjectSpace definition to give to partners who may be receiving messages
generated by the application. The Message Modeler also provides a means of performing
transforms on the data either as it is received or when it is transmitted, or both.

At runtime, based on the design and needs of the messaging application, an inbound
message can go through the following process:

• Retrieve message from queue
• Route message to appropriate session bean handler
• Decrypt message (optional)
• Determine role-based security requirements for the message (optional)
• Map message elements to ObjectSpace using design-time map
• Perform any necessary transforms (optional)
• Execute custom business methods
• Signal success or failure (Exception handling can be done via system or custom error

handlers)

It is important to note that Rapid Developer automatically generates the code for all of
the above steps for the specified transport with the exception of applications developer-
written custom business logic. An outbound message goes through the following process:

• Create outbound message session bean from client call (page or other mechanism)
• Build ObjectSpace and load appropriate data
• Perform any preprocessing of data (optional)

Page 16

• Perform any transforms or localization (optional)
• Execute custom business methods
• Create message (XML or plain text) from ObjectSpace map definition
• Encrypt message (optional)
• Send message to appropriate queue or retrieve XML representation of message

As with the inbound message, the only code application developers need to write are the
custom business methods. This progress is supported by a large number of pre-populated
code templates. The rest is generated from settings chosen in Rapid Developer during
design time.

J2EE Message Patterns
As previously stated, Rapid Developer supports J2EE application development on a
variety of compliant application servers. Currently, Rapid Developer supports IBM
WebSphere Application Server Versions 3.5, 4.0 and 5.0, BEA WebLogic 5.x to 7.x,
Oracle 9iAS Releases 1 and 2, and Apache Tomcat (servlet- and JSP-only) Version 4.0.x.
Through the JMS interface, Rapid Developer supports message transports for
WebSphereMQ, WebLogic, and Oracle 9iAS in addition to other third-party JMS
providers such as SonicMQ.

Message as a Session Bean
In this pattern, the message and its associated elements (e.g., parser, transforms,
encryption) are created as a single EJB session bean. The interface to this bean varies
based on decisions made by the application developer during design time. The two basic
interface methods are processIn() or Out(). These represent handling of inbound and
outbound messages, respectively. Inbound message session beans receive the message
through the processIn() method. This method extracts the message body, performs
decryption on it if necessary, parses it and maps the data elements to their associated
ObjectSpace elements. Transforms supplied by the application developer at design time
are also performed. Once the data from the message is mapped to the associated
ObjectSpace elements, the custom business rules that application developers create are
called to process the message.

Page 17

Figure 8 – Message as a Session Bean

For outbound messages, the reverse occurs. The Out() method is called to create a
message from the ObjectSpace based on a DTD definition. Transforms are performed and
an XML message is created and encrypted if need be. It is then sent to the designated
queue. All of these operations are done within the confines of a Rapid Developer-
generated transaction. It is important to note that these transactions only cover the
processing of the message and do not cover the removal of the message from the queue or
the sending to the queue. This is a limitation only for inbound messages when using the
Rapid Developer Switchboard runtime component. This limitation does not exist when
using Message-driven beans. The custom methods in the session bean created by
application developers can also invoke other session bean messages or components as
part of the transaction associated with the message.

Message as a Java Package
In order to support lightweight environments such as Tomcat, Rapid Developer can
generate messages as a set of Java packages rather than as a session bean. In this pattern,
transactions can only be supported through custom business methods written by the
applications developer. The ObjectSpace is also represented as a series of classes with
which the message classes interact. All other messaging operations such as security,
encryption and transformations are performed in the same manner as the session bean
pattern.

Page 18

Figure 9 - Message as a Java Package

Message-driven Bean
Message-driven beans or MDBs are supported by a variety of application servers that
support the J2EE 2.0 specification. MDBs provide a variety of services that are time
consuming to develop. MDBs are only supported using transports that support JMS. The
MDB is associated with a specific queue and the container provides a listener service that
monitors the queue and detects when a message arrives. The MDB opens a transaction
and then takes the message out of the queue. The MDB then invokes the single interface
method onMessage() from which all further processing of the message is done. In the
case of Rapid Developer-generated MDBs, the onMessage() function constructs the
ObjectSpace and performs all other processing in the same manner as with a session bean
message. The advantage provided by MDBs is that the transaction can be started before
the message is taken from the queue, so that message retrieval is included in the
transaction. If the transaction should fail for some reason, the message is placed back in
the queue for retry.

MS-DNA Message Patterns
Rapid Developer supports generation of messages in the MS-DNA environment in a
similar manner to the J2EE session bean pattern. In addition, Rapid Developer supports
construction for the Microsoft Message Queue (MSMQ) transport as well as the COM
interfaces to IBM WebSphereMQ (formerly IBM MQSeries), TIBCO and TCP/IP.

Message as a COM DLL on MTS
In this pattern, the message and its associated elements (parser, transforms, encryption,
etc) are created as a single MS COM object that is deployed to Microsoft Transaction
Server (MTS). The interface to this COM object is basically the same as with the J2EE
session bean pattern. The two basic interface methods are processIn() and Out(). These
methods handle inbound and outbound messages respectively. Both XML and plain text
messages are currently supported. All of the standard operations (e.g., parsing,
encryption/decryption, security, and transformation functions) are performed within the
boundaries of a Rapid Developer-generated transaction. These transactions only cover the
processing of the message, and do not cover the removal of the message from the queue,

Page 19

or sending to the queue, which are covered as part of the transaction provided by the
transport. The custom methods in the COM DLL created by the applications developer
can also invoke other messages or components as part of the transaction associated with
the message.

Queue Monitoring and Message Routing
The previous sections described the patterns for message processing. Using the Rapid
Developer Switchboard runtime component, Rapid Developer also provides a means for
retrieving messages from their queues and routing them to the appropriate message
handling code. The following sections describe what Rapid Developer supports.

Rapid Developer Switchboard (J2EE and MS-DNA)
Rapid Developer Switchboard is a runtime component that provides queue-monitoring
services and asynchronous message processing capabilities (e.g., listening, message
retrieval and routing). Switchboard is a multithreaded mechanism that launches listeners
for all of the queues that it is assigned to monitor. As messages come in, the listener
removes the message from the queue and signals Switchboard that it has work to do.
Switchboard then launches a new listener. This listener starts a transaction and uses the
Rapid Developer RouterFactory runtime component to create a router for the message.
The router matches the message with the appropriate message handle (a session bean,
Java package, or COM DLL). The message handler opens a separate transaction and then
finishes processing the message. If the either transaction fails, the message is placed in an
error queue, and is not placed back into the original queue for retry.

Message-driven Beans (J2EE only)
The Message-driven Bean, which is only available on certain J2EE platforms, provides
the same basic services as Switchboard, with the added advantage that the transaction
includes message retrieval, whereas with Switchboard it is handled as two separate
transactions.

Page 20

Component Construction
Component-based software development has increased in importance as the cost of
software development has risen. Creating well-defined, reusable software “parts” allows
application developers to reuse and leverage existing code for common functions. Rapid
Developer supports this development paradigm by providing component modeling
coupled with support for web services (although Web services are not required).

J2EE Patterns
As with pages and messages, Rapid Developer supports the design, compilation and
deployment of components. Components can be created as a stateful or stateless session
bean, or as a Java package. These components can be invoked by any other Java code,
specifically in presentation or business-tier methods developed in Rapid Developer.

Session Bean Components
Consistent with the other artifacts that Rapid Developer generates, the design of a
component is centered on the definition of an ObjectSpace. The applications developer
can create an ObjectSpace, projecting the needed classes, attributes, and methods.
Additionally, the applications developer can create ObjectSpace-level methods that can
access all of the classes in the ObjectSpace. The applications developer can also access
global methods and attributes that can span components. The applications developer can
then identify the methods to expose as an interface for the component. The interface can
be a standard interface or it can be generated as a Web services interface. The called
interface method does not start a new transaction, but participates in the transaction of the
calling method.

Stateful vs. Stateless Session Bean Components
Rapid Developer permits the designation of a session bean component as either stateful
or stateless. A stateful session bean maintains the instance variable states throughout the
conversation between the client (caller) and the session bean component. In a stateless
component this does not occur.

Why would an application developer use one over the other? Generally, stateless
components are used for calculating a value when retaining the state through multiple
calls is not needed or desired. However, in a case where an aggregate is being calculated,
the state must be maintained. Stateless session beans provide performance advantages so
care should be used when determining at design time which type to use for a given
component.

Java Package Components
As with pages and messages, components can also be generated as Java packages. This
pattern is obviously always stateful. This pattern is useful for systems that do not support
EJBs such as Tomcat. In this case, transactions must be initiated by the calling method.

Page 21

MS-DNA Patterns
Rapid Developer also supports the generation of components as COM DLLs deployed
onto Microsoft Transaction Server or as a Java package.

COM DLL Component
As with components under J2EE, MS–DNA-based components can be marked as either
stateful or stateless. This decision is made by the applications developer at design time
and needs to be made based on the needs of the component. As described previously,
stateless components do not maintain the state of instance variables between calls where
stateful components do. The COM objects are deployed to either participate in a
transaction or start one if one does not exist.

Java Package Component
As with pages and messages, components can also be generated as Java packages. This
pattern is obviously always stateful. In this case, transactions must be initiated by the
calling method.

Page 22

Web Services Construction
Web services allow applications to access methods over the Internet through an infra-
structure in which the Web service definitions (WSDL) are published to directory servers
(UDDI) where application developers can then discover them. Rapid Developer supports
the design, publication, and discovery of Web services. When the applications developer
uses a Web service method in Rapid Developer, the method is marked as such. When
constructed, Rapid Developer replaces the marker with code to generate the appropriate
SOAP messages to communicate with the web service.

J2EE Patterns
Rapid Developer supports the design of Web services through the component designer.
When application developers add methods to the component’s ObjectSpace, they can
make the method part of the component interface. They also can choose to make the
method interface a web service. Once the component is defined, it can be compiled and
deployed. During this operation, the application server generates the WSDL specification
file, if this is supported (otherwise, Rapid Developer generates the WSDL). Web service
components are always generated and deployed as stateless session beans that require
transactions.

Application developers can also publish the constructed Web services to a UDDI server,
which is a registry of Web services that application developers can access to discover and
use existing Web services. The applications developer provides the URL and credentials
to the target UDDI server. Based on the credentials, Rapid Developer publishes the Web
service to the first business name it finds associated with the credentials.

Rapid Developer also provides a means for application developers to discover Web
services by providing the location and name of the associated WSDL for the Web
service. Once they have been discovered, Web services appear in the selector list in the
Rapid Developer logic editor. The applications developer can select the web service and
it will be added to the code currently displayed in the logic editor with a “[Web
Services]” marker tag. During construction, this marker tag is replaced with Java code
that will generate the appropriate SOAP messages to invoke the web services. As stated
previously, all session beans deployed by Rapid Developer are marked to require a
transaction.

Page 23

Conclusion
Rapid Developer provides an innovative approach to automated code construction of
enterprise-class, n-tier business applications. By separating application-specific models
from technology-specific code patterns, Rapid Developer enables developers to
substantially reduce the amount of time-consuming, handcrafted code required to
implement applications. Over the lifetime of an application, less code written results in
less code to maintain, further enhancing the project team’s responsiveness to
enhancement and maintenance needs and maximizing the organization’s ROI for its
application development tooling. Additionally, by having a development tool that
provides the generation capabilities of Rapid Developer, developers are assured that
applications are consistently produced with the highest quality, and readily targeted to
modern deployment technologies.

IBM software integrated solutions

IBM Rational supports a wealth of other offerings from IBM software. IBM software solutions
can give you the power to achieve your priority business and IT goals.

• DB2® software helps you leverage information with solutions for data enablement, data
management, and data distribution.

• Lotus® software helps your staff be productive with solutions for authoring, managing,
communicating, and sharing knowledge.

• Tivoli® software helps you manage the technology that runs your e-business infrastructure.

• WebSphere® software helps you extend your existing business-critical processes to the Web.

• Rational® software helps you improve your software development capability with tools,
services, and best practices.

Rational software from IBM

Rational software from IBM helps organizations create business value by improving their
software development capability. The Rational software development platform integrates
software engineering best practices, tools, and services. With it, organizations thrive in an on
demand world by being more responsive, resilient, and focused. Rational's standards-based,
cross-platform solution helps software development teams create and extend business
applications, embedded systems and software products. Ninety-eight of the Fortune 100 rely
on Rational tools to build better software, faster. Additional information is available at
www.rational.com and www.therationaledge.com, the monthly e-zine for the Rational
community.

Rational Software Corporation is a wholly
owned subsidiary of IBM Corp.
(c) Copyright Rational Software Corporation,
2003. All rights reserved.

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Printed in the United States of America
01-03 All Rights Reserved. Made in the U.S.A.

IBM, DB2, Lotus, Tivoli, WebSphere and the
IBM logo are trademarks of International
Business Machines Corporation in the United
States, other countries, or both.

Rational, is a trademarks or registered
trademark of Rational Software Corporation in
the United States, other countries or both.

Other company, product or service names may
be trademarks or service marks of others.

The IBM home page on the Internet can be
found at ibm.com

Part No. TP800

