
James S. Heumann
Requirements Evangelist
Rational Software
IBM Software Group

Requirements Discovery
for Legacy Systems

A technical discussion on defining requirements for legacy system re-engineering
July, 2003

Defining requirements for legacy system re-engineering
2

Executive Summary
Just as with “green field” development, legacy transformation projects must

identify and manage functional requirements in order to succeed. On the surface

this might seem unnecessary: is the legacy system itself not an adequate

specification for the new solution? But “requirements on the hoof” in the form of

an existing system are much less useful to designers, developers, testers, project

management, users and business partners than an agreed-upon set of managed

requirements, especially on what is likely to be a multi-year effort.

Particularly for large systems, it is essential to have an intermediate

representation of the functionality in the form of managed requirements, which

serves to describe and verify the behavior of the new system. Requirements

derived from the current system are also essential to ensure that all important

features are implemented.

Often, legacy transformation projects evolve from one approach to another. For

example, a business may wish to rapidly port an existing system to a new

hardware and operating system platform, then web-enable it, and then re-

architect and gradually replace the original code base piece by piece with new

software, new object-oriented modules, and new middleware.

Managed requirements greatly reduce risk on legacy transformation projects by

providing a means to cope with this continuous change in the project scope,

features, and priorities. By providing a common reference point for

communication, requirements further support effective scheduling and parallel

development.

Even on comparatively straightforward projects like web-enabling a legacy

application, requirements will help a development team or systems integrator

understand much more quickly what the application should do. Requirements

also mitigate the risk of scope creep: after all, if you don’t know what you’re

building, how do you know when you’re done?

This paper discusses a proven and efficient strategy for deriving requirements for

legacy transformation projects by “discovering” them in the existing system and

Defining requirements for legacy system re-engineering
3

describing them in the form of use cases.

About IBM Rational Software

IBM Rational, formerly an independent company and now one of the IBM®

software brands, offers a comprehensive software development solution based

on the three imperatives above. The IBM Rational platform combines software

engineering best practices, market-leading tools, and expert professional

services, all of which drive rapid and continuous improvement in software

development capability for on demand businesses.

In addition, IBM Rational offers more than 20 years experience in promoting

and delivering integrated and open software systems, both of which are key

characteristics of the on demand operating environment:

Integrated — IBM Rational has contributed considerable thought leadership and

expertise in the areas of Service-Oriented Architecture (SOA), enterprise and

software architecture, and heterogeneous platform support.

Open — IBM Rational has a long history in developing and supporting the goals

of open computing. This includes development of the Unified Modeling

Language (UML), now a standard for modeling applications, database design,

and business processes. IBM Rational has promoted and participated in the

development of a wide variety of open computing standards. It offers support

for major programming languages and operating platforms, and it provides an

extensive set of application programming interfaces for third-party tool

interoperation.

Thousands of companies around the world have realized the benefits of the

approach advocated by IBM Rational. Their processes are results-oriented, the

Defining requirements for legacy system re-engineering
4

Contents

Introduction...4

Assessing Current Value.....................4

Establishing a Vision...........................4

Discovering What You Have................4

Use Case Basics...................................4

Deriving Use Cases from the

Current System................................4

Identifying New Requirements............4

Summary..4

artifacts they produce are well-designed and reusable, and they are working at

higher levels of capability now required by the on demand era.

Introduction
Today’s state-of-the-art business solutions are tomorrow’s legacy systems. Any

production application—whatever its age, complexity, platform, language or

database management system—can be considered a legacy system,

depending on an organization’s current needs and future plans.

While it has no standard definition, the term legacy is most commonly applied

to systems that:

• Are difficult or risky to integrate, modify or extend in the face of changing
business conditions;

• Entail high costs to maintain the software and/or the production
environment;

• Cause dissatisfaction among end users due to poor performance, lack of
integration, outdated interfaces, etc.

Legacy systems embody significant assets that are worth reusing in whole or in

part. Many legacy systems represent years of accumulated business

experience and continue to support critical, day-to-day business processes.

Nevertheless, time spent maintaining outmoded applications drains scarce

resources that could be applied towards new, strategic initiatives.

Whatever modifications, integrations and/or extensions are planned, changes to

legacy systems entail significant risk. Legacy transformation projects

experience cost and schedule overruns with daunting frequency. Scope creep

is endemic on in-house efforts, while COTS-based replacements regularly fail to

meet business needs and user expectations. Not even automated re-

engineering of a legacy code base ensures project success.

Assessing Current Value
A preliminary step in any legacy system project is to assess what parts of the

legacy asset are worth reusing. Is some of the code still usable, such as the

business rules? Does the design of the system mesh with the current enterprise

architecture? Should the database management system remain intact? Should

Defining requirements for legacy system re-engineering
5

the business processes executed by the system be re-engineered and/or

extended with new features and functions? And how will any proposed changes

affect integration points with other enterprise systems?

The older the system, the more difficult it often is to sort out what parts can be

cost-effectively reused. Outdated specifications, undocumented changes and

numerous patches and bug fixes can create a tangled web. But even in worst-

case scenarios, any legacy system can be effectively leveraged in at least one

manner—as a point of comparison and a source of information from which to

derive user and business requirements for transforming the existing environment.

Approaches to legacy transformation

Organizations have a wide range of short- and longer-term options for

leveraging legacy assets as they move toward more strategic solutions.

Outmoded applications can be extended, for example, or wrapped in more

user-friendly interfaces. A common interim approach is to add client/server

middleware and web GUIs to legacy environments, keeping the business logic

and data intact while modernizing access for end users. Or the legacy system

may be replaced, often gradually, with a new custom or COTS solution that

offers equivalent functionality.

There are also many ways to define and categorize approaches to legacy

transformation. For example, IBM differentiates between legacy extension,

where a new GUI is developed to access legacy data and business rules;

versus legacy transformation, which is the process of modifying the form,

design, and/or function of the legacy application. Other sources refer to

“migration,” where the legacy system is adapted to new hardware, operating

system, and/or middleware platforms.

Any or all of these approaches, or a combination of them, may be an

appropriate strategy at a given point in time. In general, one or more of the

following system elements are likely to be affected when legacy systems are

altered:

Hardware:

• Production platform (mainframe to client/server)
• Network topology (token ring to a more modern configuration such as

hub-and-spoke)
• Storage devices (outmoded disk drives to RAID devices)
• Physical/user interface (character-based “green screen” to web-based GUI)

Any legacy system can be leveraged

as a source of information from which

to derive requirements.

Organizations have a wide range of

options for leveraging legacy assets

including extension, transformation,

integration and migration.

Defining requirements for legacy system re-engineering
6

A vision document includes a

description of the approach for

transforming the legacy asset, along

with goals for the next stage of the

project and the delineation of project

level requirements.

Software:

• Programming language (COBOL to Java™)
• Database management system (IMS to DB2®)
• Middleware (COM to Enterprise JavaBeans)
• Software architecture (move from remote procedure calls to Web Services,

add new classes, rebuild modules, extend utilities, etc.)
• Business logic (time-driven to customer-driven)
• User interface (character-based to GUI)

Establishing a Vision
Having assessed the value of a legacy asset, and determined many

organizations find it beneficial to create a “vision document.” Vision documents

outline a plan for moving the project forward. They typically describe:

• A big-picture description of the approach for transforming the legacy asset;
for example, making key components web-accessible, followed by
middleware updates, followed by moving the application to a strategic
hardware and operating system platform, etc.

• The goal for the next stage in its transformation; e.g., porting the system
from VMS/VAX to Linux on an IBM iSeries™ server.

A vision document is a good place to define requirements at the project level to

guide the overall effort. These requirements are mostly non-functional and goal-

directed. For example:

• “The project shall re-engineer the data to reduce redundancy wherever
possible.”

• “The character-based screens of the current system shall be reproduced as
exactly as possible within the constraints of the new graphical interface.”

• “The system shall use DB2 for database management.”
• “The new system shall operate 20% faster than the existing system.”

Defining requirements for legacy system re-engineering
7

The starting point for defining

functional requirements is to describe

what currently exists.

There are a number of shortcuts that

can help you “reverse engineer”

project requirements based on the

current system.

If the functional capabilities of the legacy environment will change over time,

descriptions of these new “feature” requirements should also be added to the

vision document.

Discovering What You Have
The basic premise of re-engineering a legacy application is to reproduce in some

manner the useful capabilities of the existing system. Therefore, the starting point

for defining functional requirements is to describe what currently exists.

But understanding what an existing system actually does can be a real

challenge. Supporting artifacts like requirements and design documents,

program specifications, or comments in the code, may be nonexistent or so old

that they are no longer relevant to the current system.

There are a number of shortcuts that can help development teams “reverse

engineer” the functional requirements for a legacy system. Which options are

most viable may depend in large part on how familiar team members are with

the system or others like it.

Here are some proven ways to “discover” the functional requirements of an

existing system:

• The current system behavior—along with related manual processes—can be
“reverse-engineered” to derive functional requirements. Use cases (see
below) provide an excellent format for describing and managing these
requirements.

• It is almost always valuable to examine any available documentation on
the legacy application; screen shots, user manuals, release notes, test cases,
and existing defect reports and enhancement requests. User documentation
in particular can be very helpful in constructing use cases.

• User priorities, complaints and needs relative to the legacy system can help

Defining requirements for legacy system re-engineering
8

identify the business uses of the system, as well as ways to improve it.
• If reverse engineering of the legacy source code is planned, this can also

offer an “internal” perspective on the system’s functionality, in the form of
classes or error flows for instance, which can aid requirements definition.

A focus on “discovering” functional requirements based on the current system

is a key prerequisite for determining where the project needs to go and how to

get it there. It is similarly important to derive the high-level architecture of the

legacy application. What are its significant subsystems and how do they relate

to each other and other systems? What are its critical interfaces? What data

does the system store and manage?

One thing that is not likely to be required is a complete re-documentation of the

entire legacy environment. The goal is to understand how the system works and

how the business uses it currently. A functional description of the components

that will be leveraged in the transformation effort is generally adequate.

Use Case Basics
Use cases express the behavior of a system—i.e., the functional

requirements—in a way that enables all project stakeholders to understand and

verify that behavior. Many teams find use cases to be the ideal framework in

which to combine new requirements with discovered requirements and related

useful information. This is because use cases naturally extend the requirements

format beyond the limited efficacy of “shall-based” functional descriptions like

“the system shall prompt users to perform operation xyz.”

A well-written use case clearly expresses a functional requirement by outlining, in

text and in a diagram, the sequence of steps that users and the system will perform

to accomplish the stated business goal. Use cases have become a de facto format

for documenting requirements because of their widely recognized value to a project:

• Use cases are understandable and usable by both technical and non-
technical stakeholders.

• Because they are easy to understand, use cases promote the quick
resolution of disagreements among stakeholders, thus saving costly re-work
later.

• Use cases work very well to support modern, object-oriented design and
development practices.

Understanding how the legacy

system works and how it is used is

essential for determining project

direction.

Use cases express functional

requirements in a way that is

understandable to all project

stakeholders.

Defining requirements for legacy system re-engineering
9

Figure 1. A use case diagram.

Figure 2. Textual specification of a

use case.

• Use cases simplify the creation of test cases, because they include a clear

description of the order and content of user actions.

Defining requirements for legacy system re-engineering
10

Use cases typically include:

• The use case name

• A text description

• The actors

• The flow of events

• Implementation notes

Applying proven, step-by-step

techniques make the derivation of use

cases based on an existing system

more straightforward.

• Use cases provide ideal input for business modeling efforts, change
management, defect tracking, and so forth.

Figure 1 illustrates a use case diagram.

Figure 2 illustrates a textual specification of a use case.

In general, the contents of a use case include the following elements:

• The use case name; an action- or goal-orientation is useful here.
• A brief description of the use case.
• The actors; i.e., the people or systems performing the activity described.

For a legacy system the actors will be the users of the system and/or other
systems.

• The flow of events, including the main flow and any possible alternate
flows, such as exceptions and error conditions.

• Any relevant special requirements, such as business rules, data definitions,
or user needs.

• Pre- and/or post-conditions for implementing the use case.

With legacy systems, the flow of events is especially relevant because it

describes how the actor accomplishes the key goal. Alternative flows describe

regular variants or error flows. One critical decision to be made when

describing flows on legacy projects concerns the level of detail to use. The best

course of action usually follows from how familiar the development team is with

the legacy environment.

Deriving Use Cases from the Current System
A pragmatic specification of the legacy environment, in the form of use cases,

provides an invaluable foundation for ongoing design and development efforts.

Equally important, it serves as the basis for gaining agreement with the project

sponsor and other stakeholders as to what exactly is to be done. The technique

for creating this foundation quickly and cost-effectively is to approach it step-

by-step, as described below:

• Identify the users (actors) of the system’s most important processes, and
then categorize them according to their roles.

• Apply interviews and observation to determine the business value of these

Defining requirements for legacy system re-engineering
11

It is often easier to identify users than

to categorize them according to roles,

but both steps are essential to ensure

that all desired functions are

implemented.

You can start building use cases on a

whiteboard or flip chart. As the

diagrams are fleshed out, most teams

switch to a software tool that helps

automate use creation and

management.

Identifying the actors

In the use case model, actors—that is, the users of the system—have roles

associated with them. Identifying actors and categorizing them according to

their roles is critical, because this enables you to clearly identify essential

functional capabilities, as well as the business value the functionality provides.

Often it is easier to identify the users of a legacy application than to categorize

them according to their roles; this is especially true with large, distributed systems.

However, it is important to identify all classes of users. The consequences of

missing a role could be missing functionality in the re-engineered system.

Begin pinpointing actors and roles by interviewing the users of the system. Ask

them about their job titles and job descriptions, and find out who else they

know who uses the system. Also examine the system’s menus, as these can

point you to the classes of users it is designed to support. A user’s manual can

be very helpful here. Any security policies regarding access to various system

functions can provide an excellent way to identify classes of users. For

example, there may be a group of users who have access to a subset of

personal information like address; plus a “manager” class with additional

permission to access salary information.

As you gather information, begin sketching use case diagrams illustrating the

actors you identify. Initially a whiteboard or flip charts work well for this purpose.

As the diagrams become more complex you will probably wish to model your

use cases with a visual tool like IBM Rational Rose® or IBM Rational XDE™. Be

sure to review the diagrams with users, their managers, domain experts, and

the project sponsors. This will further ensure that you have identified all the key

roles, and have done so correctly.

Determining business value

Each use case you create embodies a number of discrete system functions,

which in combination deliver business value to the actor/user. Having identified

the actors and their roles, the next step is to identify the functions involved in

delivering the value. While it might seem feasible to bypass users and simply

interrogate the system, this rarely works in practice. Large systems have

hundreds, perhaps thousands, of screens. Sorting through them by trial-and-

error to identify the value they provide to users is not only frustratingly

inefficient, but can easily lead to erroneous scenarios and thus to useless

functionality in the new system.

Defining requirements for legacy system re-engineering
12

Identifying how a legacy system is

used is best accomplished by

interviews and/or by observation.

Always ask “why do you use the

system?”

Interviews can be done individually or

in a workshop format. Users are an

excellent source of details on how the

system works.

Every legacy project will benefit

simply by identifying actors and use

cases. The next most beneficial step

is to add important functional details

to support designers, developers and

testers.

Another good reason to talk to users about how they use the system is that they

will frequently call your attention to functions that are no longer used or are faulty.

There are two complementary methods for identifying functions and their value:

interacting in person with the actors, and observing them using the system.

Personal action can be in the form of interviews or workshops; the latter being

increasingly popular for reasons of efficiency. (For more information on

conducting use case workshops, see www.rational.com.)

A good starting point for identifying the uses of the system is to ask the actors, “Why

do you use the system?” This usually elicits an answer at the right level. Users are an

excellent source of more detailed information, but this can be confusing in the earlier

stages of building use cases. Observations are important, too. Many times a user

knows his or her job so well that it becomes difficult to describe it to someone else.

As you gather information, begin adding it to the diagrams you’ve created that

illustrate the appropriate actors, and begin drawing associations between the actors

and these candidate use cases. In a workshop setting, you can review this process

with users on the spot. Look not only for missing use cases, but also for overlap

among them. Add any new actors you identify to the diagrams at this time also.

Capturing the details

Every legacy re-engineering project will benefit simply by identifying actors and use

cases for the current system. The next step beyond that, which is even more useful

as a basis for requirements, is to add relevant details to each candidate use case.

Use cases work best when they encapsulate a level of detail that enables

designers, developers and testers to apply them directly to their respective

jobs. On a “green field” project it is appropriate to provide a comparatively low

level of detail, because the application doesn’t yet exist and team members are

still unfamiliar with its details. But when re-engineering a legacy application the

knowledge base and level of familiarity of team members may be much greater.

The customers for the application likewise are well-understood.

Thus, the optimal level of detail for use cases should be determined based on

how familiar the development team is with the system. For example, if the team

undertaking the legacy transformation has many of the same people who

maintain the legacy system, than there is less need to add a plethora of details

to every use case.

Defining requirements for legacy system re-engineering
13

The level of detail to be gathered is

related to the team’s level of expertise

with the legacy system. Outsourcing

development, for example, often

means that more details on the must

be gathered. With a highly

experienced team it may be possible

to simply outline some use cases,

while adding details where necessary.

If the re-engineering project is being outsourced, however, then the need for

details is greater. In fact, the level of detail to be provided in use case

specifications is increasingly part of contract agreements with third party

developers.

Whatever the team’s level of expertise, detailed use cases will help ensure they

build the correct system. The risk the organization can tolerate if the new

system does not work as expected is thus a worthwhile factor to consider when

deciding how much effort should go into detailing use cases. If the system is

for internal use only, and bugs will not impact mission critical processes, it may

make sense to balance the resources required to glean use case details

against the cost of fixing or adding functionality down the road. Where

functional problems will significantly impact the bottom line, such as by

damaging customer relationships or threatening user safety, then the work of

creating detailed use cases will be more than worth it.

On some projects, it may be possible to simply outline some use cases, while

adding significant details to others: some may be simple and low-risk, while

others are more complex. Another time-saving technique is to refer to screens

in the existing system rather than detailing the flow of events.

A good source of further information about use cases can be found at:

http://www.rational.com/centers/usecases/index.jsp.

Analyzing “black box” systems

Some systems require little or no user interaction; they may be started simply

by a user clicking a button on a screen, for instance. Use cases are helpful in

reverse-engineering these systems, too. The actors in such systems will be the

people or other systems that use the output of the system under consideration.

Use cases will show the significant workflow(s) the black box system provides.

In such cases, it is likely that non-functional requirements (tables, algorithms,

business rules, etc.) will play a larger part in the new system. Reverse-

engineering requirements may involve reverse-engineering code, and/or

database internals. The details uncovered can be placed in a “special

requirements” section of a use case, or in a separate document, which the IBM

Rational Unified Process® or RUP® calls the Supplementary Specification.

Defining requirements for legacy system re-engineering
14

Business modeling helps teams

understand how the legacy system

relates to the wider enterprise

architecture, and how it delivers

business value.

System design models are a good

way to describe new system

functions, and new interfaces to other

systems.

Defining requirements at the

component level is crucial for those

parts of the legacy application that

will undergo substantial modification.

The role of business modeling

Business modeling can be an effective means of understanding not only legacy

system behavior, but also the legacy system’s relationship to the wider

enterprise architecture. Particularly in situations where a legacy system or a

major component of it cannot be efficiently reverse-engineered, a business

model can provide a solid understanding of how the system’s functionality

relates to business value, and can serve as a basis for deriving requirements

and communicating changes.

System design models, ideally created in UML, are another excellent way to

describe new system functions and new interfaces to other systems. In

particular, system models can help define Web Services interfaces, specify

data access privileges among multiple systems, or describe communication

flows among subsystems or between applications. Tools like IBM Rational XDE

are available to help reverse-engineer application code as well as RDBMS

functionality; IBM Rational XDE in particular can also generate UML models

automatically.

Identifying New Requirements
In addition to establishing a goal-directed vision for a legacy transformation

project, and understanding the behavior of the legacy system, it is also crucial

to delineate requirements at the component level for those areas of the legacy

system that will be significantly modified. If the goal is to port the application to

a new operating system, what are the key requirements for accomplishing this?

If the goal is to re-write the user interface and make the business logic web-

accessible, what changes to the software architecture are required? If the goal

is to integrate the legacy system with other applications, what changes must be

made to its architecture?

As new requirements develop, proposed changes to one requirement invariably

impact other requirements. For example, a requirement to change the

programming language of a legacy system from COBOL to Java may require

changes to the hardware and/or software infrastructure, or the DBMS. This is

another area where requirements management provides the traceability

essential to understanding the impact of changes on cost and schedule.

Defining requirements for legacy system re-engineering
15

Changes to one requirement

invariably impact other requirements.

Whatever the scope of the project, a

key question to ask is: “What

processes access this legacy data?”

Consider a hypothetical scenario in which a global organization has decided to

re-engineer a legacy application that manages parts inventory. This is likely to be

a complex, multi-year effort that entails changes to many other data repositories

and business processes across the enterprise. Whatever the scope of the project,

the first question to ask is: what applications, business processes and people

access this legacy data? The second question follows from the first: is this legacy

data copied to other repositories and transformed in some way? And thirdly, is it

appropriate to unify these variants as part of the current project?

This line of inquiry leads to more specific questions, like how many different

data definitions exist for “part number” and what will it take to rationalize them?

Security information in the legacy database can be a good starting point for

tracking down these answers. Another technique for reverse-engineering

legacy data is to obtain a list of all recent transactions against the database.

Reverse-engineering the application code can sometimes be helpful, but may

be of little value where dynamic SQL is used, for instance.

A related concern with re-engineering legacy databases is its business rules.

Business rules are considered a type of requirement on some projects. They

may be in the database, in the application code, or both. It is usually worthwhile

to identify as many business rules as possible, as a starting point for deciding

how to implement legacy business rules in the new database architecture.

In addition to the above, key non-functional database requirements that will

need to be defined include availability, backup/recovery, performance, and

data distribution. These types of requirements can be described in a separate

document, such as the Supplementary Specification in RUP.

Defining requirements for legacy system re-engineering
16

Summary
The identification and management of requirements is just as important for risk

mitigation on legacy transformation projects as for “green field” development.

These are often complex, long-term efforts whose scope and focus continually

shift and evolve. Requirements provide an intermediate representation of the

legacy functionality that is essential for describing application behavior and

ensuring that all desired capabilities are implemented in the new system.

The goal of requirements definition for a legacy system is not to describe the

existing system in its entirety, but rather to gain an understanding of how it

works, how it is currently used, and what components of it can be cost-

effectively reused.

Key elements for requirements definition on legacy re-engineering projects

include:

• A vision document, which defines non-functional requirements at the
project level to guide the overall effort.

• A functional requirements specification, based on the behavior and
business rules of the current system

• A supplementary specification, which describes component level
requirements for those parts of the legacy environment that will be
significantly modified.

Whether you plan to integrate a legacy system with other applications, extend it

with new code, or re-engineer it entirely, understanding the requirements for

where you need to go is a critical part of ensuring your success.

TPXXX

© Copyright Rational Software Corporation, 2003.
All rights reserved.

IBM Corporation Software Group
Route 100 Somers, NY 10589 U.S.A.

Printed in the United States of America
01-03 All Rights Reserved. Made in the U.S.A.

IBM, the IBM logo, DB2, and iSeries are
trademarks of International Business Machines
Corporation in the United States, other countries,
or both.

Rational, Rational Unified Process, RUP, Rational
Rose and Rational XDE are trademarks or
registered trademarks of Rational Software
Corporation in the United States, other countries,
or both.

Java and all Java-based trademarks are
trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Other company, product or service names may
be trademarks or service marks of others.

The IBM home page on the Internet can be
found at ibm.com

IBM software integrated solutions

IBM Rational supports a wealth of other offerings from IBM software. IBM

software solutions can give you the power to achieve your priority business

and IT goals.

• DB2® software helps you leverage information with solutions for data
enablement, data management, and data distribution.

• Lotus® software helps your staff be productive with solutions for
authoring, managing, communicating, and sharing knowledge.

• Tivoli® software helps you manage the technology that runs your e-
business infrastructure.

• WebSphere® software helps you extend your existing business-critical
processes to the Web.

• Rational® software helps you improve your software development
capability with tools, services, and best practices.

Rational software from IBM

Rational software from IBM helps organizations create business value by

improving their software development capability. The Rational software

development platform integrates software engineering best practices, tools,

and services. With it, organizations thrive in an on demand world by being

more responsive, resilient, and focused. Rational's standards-based, cross-

platform solution helps software development teams create and extend

business applications, embedded systems and software products. Ninety-

eight of the Fortune 100 rely on Rational tools to build better software, faster.

Additional information is available at www.rational.com and

www.therationaledge.com, the monthly e-zine for the Rational community.

