
Quality Software and the Unified Modeling Language

by Grady Booch

Worldwide, there is an insatiable demand for software. On the one hand, that's great news. These are
exciting times for the professional software developer, for this is still largely an era of innocence and
unbounded opportunity. On the other hand, that's the worst possible news. No amount of heroic
programming will ever suffice to meet this demand. Furthermore, as software continues to weave itself
deeply into the fabric of society, the stakes have gotten higher. Unfortunately, software bugs are still
considered just a normal part of the territory, but now, they may manifest themselves in the fall of a business
or even worse, in the loss of a human life.

In addition to this insatiable demand is the almost rabid rate of change in software development technology.
Eighteen months on the calendar is an eon in software years. Blink and you will miss the next great shift.
Just a year ago, C++ was hot. These days, it's Java and Visual Basic. Middleware such as OLE and
CORBA, visual programming, and component-based programming have changed the rules. The great
operating system wars still rage on. Frankly, I've given up predicting what might come next.

Although I refuse to predict technological change, I can safely predict the future of software: it's going to be
more complex and it's going to be far more distributed. It's going to be far more complex mainly because of
demand-pull and supply-push, to use an economic analogy. User expectations for what software can do are
exceedingly high. Furthermore, what is possible is far greater now than just a few years ago. The cost of
computing has plummeted, yet the cost and complexity of software development have continued to
increase. Future systems will be far more distributed for similar reasons. The economics of networking are
such that, in the future, the network will be the computer. Additionally, the partly technical, partly social
phenomenon of the Web has fueled the drive toward pervasive distribution.

Despite all of the excitement and the rhetoric, one thing does remain constant: Building complex software of
quality and of scale is still fundamentally a hard problem. Simply put, this means that, all the latest
technology trends notwithstanding, deploying quality software is still an engineering problem. As for any
engineering problem, this implies striking a balance between artistry, for the best software is often a thing of
beauty, and science.

On the science side, my experience suggests that there are a number of best practices found in common
among projects that are successful. Two of those practices that stand out are a focus on architecture, and a
focus on an iterative and incremental development process.

A focus on architecture means not just writing great classes and algorithms, but also crafting simple and
expressive collaborations of those classes and algorithms. All quality systems seem to be full of these kinds
of collaborations, and ongoing work in the area of software patterns is beginning to name and classify them
so that they can more easily be reused (Gamma et al. 1995). The best architectures I find have, as Fred
Books calls it, "conceptual integrity," and that derives from the project's focus on exploiting these patterns
and making them simple, which turns out to be very hard to do.

An iterative and incremental development process reflects the rhythm of the project. Projects in crisis have
no rhythm, for they tend to be opportunistic and reactive in their work. Successful projects have a rhythm,
reflected in a regular release process that tends to focus on the successive refinement of the system's
architecture. This is what Microsoft calls "synch and stabilize," and it's a practice which brings results, for
systems of just about any complexity.

A focus on architecture and a focus on process may appear to be simple enough things for a project to
institute. In the heat of battle, however, when an unstoppable deadline comes rushing at you, the easy thing
to do is abandon these practices. I got into a discussion with a programmer recently, who told me of her
company's shift to the use of C++. I asked if they were using any object-oriented analysis and design
techniques, and she replied that they didn't have time for that. I then asked her if they were meeting their
schedules and target metrics. She said, with some embarrassment, no. Suddenly, I had a Dilbert moment:

The cause and effect were just so evident to me, and yet, head down, worrying about the daily blocking and
tackling of her project, she just didn't see the connection.

This is not an isolated incident. Some of you may have heard me talk about a couple of horror stories:

This particular project in crisis had written several hundred thousands of lines of C++. A quick review
revealed that the team had written lots of code, but not one single class.

Another project was similarly in crisis. A quick review here revealed that the team had written hundreds of
thousands of lines of C++, and that they had about the expected number of classes for that size system.
However, further investigation revealed that, on the average, each class had about one member function,
usually named with some variation of the phrase "do it."

I'm not saying that these projects were clueless, but they both did ignore a pretty fundamental principle:
quality software doesn't happen; rather, it's engineered that way.

This is where object-oriented methods come in. I've been living with this technology since the early 1980s. In
the years following, characteristic of almost every emerging discipline, there was an explosion of object-
oriented methods as various methodologists experimented with different approaches to object-oriented
analysis and design. Experience with a number of these methods grew, accompanied by a growing
maturation of the field as a whole as more and more projects applied these ideas to the development of
production quality, mission-critical systems. Initially, a few methods began to take root, having added value
to a number of projects. These methods included ones such as Booch, OMT, Shlaer/Mellor, Odell/Martin,
RDD, OBA, and Objectory. By the mid-1990s, a few second-generation methods began to appear, most
notably Booch'94, the continued evolution of OMT, and Fusion. By this time, object orientation was
decidedly in the mainstream. The important thing about all of these methods is that they attempted to bring
about a balance of artistry and science to complex software development.

Given that the Booch and OMT methods were already independently growing together and were collectively
recognized as the dominant object-oriented methods worldwide, Jim Rumbaugh and I joined forces in
October 1994 to forge a complete unification of our work. Both Booch and OMT had begun to adopt Ivar
Jacobson's use cases, and thus it was natural that in the Fall of 1995, Ivar formally joined this unification
effort.

Currently, we are focused on what we call the Unified Modeling Language™. UML™ is a third-generation
method for specifying, visualizing, and documenting the artifacts of an object-oriented system under
development. UML represents the unification of the Booch, Objectory, and OMT methods, and additionally
incorporates ideas from a number of other methodologists, most notably Wirfs-Brock, Ward, Cunningham,
Rubin, Harel, Gamma, Vlissides, Helm, Johnson, Meyer, Odell, Embley, Coleman, Coad, Yourdon, Shlaer,
and Mellor. UML is the direct and upwardly compatible successor to the Booch, Objectory, and OMT
methods. By unifying these three leading object-oriented methods, UML provides the basis for a common,
stable, and expressive object-oriented development method.

Although the UML itself is intentionally quiet on process, one process that UML must enable is one that is
use-case driven, architecture-centric, and both incremental and iterative. In many ways, UML tries to codify
the best practices that we and others have encountered in successful object-oriented projects worldwide.
Thus, also in many ways, we are not really the "inventors" of anything radically new. Rather, the value that
UML brings is that we've observed what works and what doesn't in the world of object-oriented software
development, and tried to package that up in the form of a modeling language that scales to systems of
complexity.

I have no expectations that the fundamental problems of software development will go away in my lifetime.
However, what I do know is that a continued engineering focus will help mitigate those problems, and
development such as the UML are one stake in the ground helping to define that engineering focus.

For a comprehensive summary of articles written by Grady Booch over the past few years, check out
the Best of Booch book offered by SIGS books.

