
Using Automation in
ERP Validations



Using Automation in ERP Validations 

Overview  

Introduction  

Will it work in my environment?  

Validation: Manual versus Automated  

Manual Validation  

Automated Validation  

o Regression Testing  
o Performance Testing  

Will it continue to work?  

Automation in ERP Validations - Summary  

 

 

O V E R V I E W 

   Implementing packaged enterprise resource planning (ERP) applications, such as those offered by SAP, 
Oracle, and BAAN requires significant resources to install, model business processes, connect to legacy 
systems, and upgrade. While the suppliers of these applications extensively test them before customers use 
them, implementing organizations must still validate that these applications conform to business rules and 
operate correctly and efficiently. Implementation teams traditionally perform this validation process manually, 
which has inherent disadvantages in coverage, scaleability, and repeatability. This paper discusses the use 
of automated software tools for validating ERP implementations and the benefits that accrue to 
organizations that elect to use automation in their validation process.  

I N T R O D U C T I O N 

   Organizations spend months deciding how to upgrade their information systems. They sort through the 
many potential implementation partners and select one with the people and methodology to match their 
implementation. Now for the tough part implementing and testing the results. Implementation teams face two 
fundamental questions:  

• Will it work in my environment?  
• Does it support my business processes?  

Packaged ERP vendors extensively test and validate the operation of their software. However, with tailoring 
options available in these applications, there are millions of different ways an organization can operate them. 
These drive the need for validation of any packaged ERP implementation from a new installation to a routine 
software upgrade. Add to these the different ways that an organization can populate these applications with 
information. Now add the differences they can introduce when integrating with legacy applications, and you 
have the formula for a complex and time consuming implementation process one that demands results 
validation.  



The software development industry has proven methodologies and software products for validation of 
complex systems called automated software quality (ASQ) products. These products, with extensions 
specifically designed for ERP applications, help raise the quality of ERP implementations. They help assure 
implementation success by reducing surprises and discovering defects earlier in the implementation 
process, leading to on-budget and on-time completion.  

W I L L   I T   W O R K   I N   M Y   E N V I R O N M E N T ?    

Packaged ERP implementations can be complex. Besides the business modeling requirements, potential 
organizational process changes, conversion of information from legacy systems and user training, there are 
risks that the system will not perform as expected when tested in "real-life" situations. Every organization is 
different, and will stress the system in different ways. The real question is whether the system is set up 
correctly to ensure efficient and effective processing. There are four dimensions to the "will it work" question:  

 
Figure 1: The four dimensions of the  
"will it work" question.  

• Validation : Can I run my business from this system? 
Will it operate as expected?  

• Performance : Will the system response be adequate for 
typical users? Can users get their jobs done interacting 
with the system?  

• Load : Will the system continue to give adequate and 
accurate performance when supporting a full 
complement of users?  

• Volume : Will the system continue to operate correctly 
when it contains all of my information, rather than just 
test data?  

 

 

V A L I D A T I O N :    M A N U A L    V E R S U S    A U T O M A T E D    

Manual Validation 

Organizations can use two different methods to confirm that packaged ERP implementations operate as 
expected in their environment manual and automated. The traditional method is manual bring users in for an 
extended period of "hands-on" use, where they are trained on the new system and validate that it performs 
as expected. Automated validation offers a new approach to confirming proper operation. Manual validation 
has four disadvantages:  

• Feature and function confusion : Manual validation can confuse users. Since the user test is the 
first time the system encounters a real-life workload, it sometimes operates unexpectedly. 
Implementation teams expect this that is why they perform user testing. However, organizations 
often want to simultaneously validate and train users on the system. Novice users often can't 
discern errors from valid operation, particularly where the system exhibits subtle defects. This can 
result in users leaving with a misunderstanding of how the system operates and missed defect 
detection.  

• Cost : Manual validation is expensive. It usually happens during the most schedule-critical stage of 
the project, it takes valuable people off-line, and its time requirements are unpredictable.  



• Thoroughness : Most significantly, manual validation often fails to thoroughly test all phases of the 
implementation not because of poor design in validation coverage, but because of the interrelated 
nature of ERP applications and the potentially large number of separate steps that need validation. 
Testing these applications takes time: initial setup, generating test cases, and validating results for 
hundreds or thousands of cases. Manual methods are hard to track because it is difficult to 
determine whether users remembered to try every option and whether they repeated the required 
tests accurately. In the best case, they re-test all the previous milestones as they reach each new 
one. However, most organizations rarely do because of schedule and cost constraints.  

• Accuracy : Finally, manual validation cannot predict how the system will operate when all the users 
access it at once. Without extensive testing user populations that accurately reflect the "live" user 
population (which are rarely possible prior to going live), there is little way for implementation teams 
to assess how the system will operate with the full load of users accessing it.  

Automated Validation 

The software applications development industry 
has two well-defined methodologies for 
determining both whether the system operates and 
continues to operate correctly, and how well it will 
operate with all the users accessing it. The first, 
which detects change-introduced defects is called 
regression testing. This is the process of recording 
all the previously performed business logic 
validation steps, and automatically performing 
them again as developers change the system.  

The second methodology for validating ERP 
operation is called performance testing. This is the 
process of creating a realistic load on the system 
by simulating many users. Since these users are 
simulated in software, implementation teams that 
use performance testing software don't require 
hundreds or thousands of "live" users to know, in 
advance, the performance of the system when it 
goes live.   

Figure 2: Best practices dictate the use 
of 

automated methods in validation 
wherever 

possible. For larger implementations, 
automated validation becomes 

mandatory. 
 
 
Regression Testing  

Regression testing addresses the "Does it support my business processes" question. Implementation teams 
often devote much of the validation effort to re-running previous validation tests i.e. performing regression 
tests to assure that none of the changes cause defects in another part of the system. These sorts of 
operations, repeated under different conditions, lend themselves well to automation.  

Automated validation of ERP implementations employs the same methodology. The implementation team 
designs validation steps and records them for use in regression tests. They can design these tests to cover 
the complete range of application functionality. Recording enables them to play them back in regression 
tests and assure that system changes do not adversely affect other system components.  

The record/playback process is usually performed with third-party ASQ tools. These tools perform non-
intrusive recording of normal user actions the same steps a manual tester would perform. Users navigate 



through the system and insert "test cases" selected places where the recording software should compare 
the ERP operation with baseline operation. This might be examination of a field for a specific value, 
examination of a table for a specific collection of values, or review of a report for specific information.  

During playback, the ASQ tool automatically supplies the appropriate keystrokes and mouse clicks to the 
ERP application, which performs the exact same steps as the manual test performed. The ASQ tool 
automatically verifies test cases for correct value(s) and systematically steps through the ERP application 
like the manual tester. The difference is that implementation teams can run these tests repeatedly without 
manual intervention, while making changes to other parts of the system, and insure that changes don't have 
ripple-through affects.  

Part of the playback process is verification of test cases, and ASQ tools usually include a comprehensive 
defect tracking and reporting system for acting on system events that cause differences in operation.  

A key to successful use of automation in 
business logic validation is correctly detecting 
and reporting bona-fide defects while 
ignoring, or at least suppressing, application 
changes that don't affect operation. The 
operation of ERP applications can change for 
a host of different reasons new data, changed 
operation, different user privileges, etc, and 
the challenge in using automation is detecting 
and acting upon the changes that represent 
true defects. ASQ tools use various strategies 
to mitigate reporting "false positive" defects. 
The most successful are ones that are the 
result of a technical integration of the ASQ 
tool with the ERP application. Those that use 
object-level integration have a better 
understanding of the ERP application, and 

therefor can mitigate the "false positive" defect reports, while maximizing the true defect detection.  

Automated validation has four advantages over manual processes:  

• Repeatability : When used in a comprehensive regression testing methodology, automated 
validation can guarantee validation of the whole system, even when making changes at the last 
moment. Recording validation tests for automated playback and organizing them into a structured 
hierarchy lets an implementation team validate the whole system at any time.  

• Cost : Automating validation is less expensive and time consuming than manual methods. The 
implementation team simply re-runs the validation test suite at any appropriate time, even overnight 
while off-duty. User testing is still appropriate, but these tests are considerably less likely to 
uncover errors since the implementation team has developed more comprehensive coverage tests. 
When user testing does uncover errors, the implementation team can quickly validate whether 
changes they make to correct the error adversely affect other parts of the system.  

• Phased implementation : Automated testing facilitates phased-implementations which are 
inherently less risky. You can divide the project into a series of sub-components, each with a low 
risk of completion. The team designs validation scenarios for each sub-component and re-uses 
them as new components go live to ensure that new changes don't affect previous successful 
operation.  

• Benchmarks : Finally, automated testing provides a documented benchmark suite. These systems 
operate in dynamic environments software gets upgraded, hardware changes, networks require 
reconfiguration, and business models change. Any of these changes can affect ERP applications 
operation. Without a demonstrated benchmark in place, organizations cannot assure that any of 
these changes haven't adversely affected the system operation. Organizations that use automated 
testing have a documented suite of tests they can run after system changes to determine 
readiness.  

 
Figure 3: Some "false-positive" defects occur with any 
automation. ASQ tools that achieve object-level integration 
with the ERP system can minimize these false-positive 
reports.  



Performance Testing  

The second methodology for validating system operation addresses the "Will it work in my environment" 
question. Performance testing is vital because virtually every organization's environment is different. While 
the ERP vendors guarantee functional operation of their systems, they cannot guarantee the performance 
characteristics of these systems when they operate in different hardware, software and network 
infrastructure environments.  

Performance testing generates a realistic system load through a variety of approaches, then measuring the 
system response to this load and comparing it to required performance parameters. Implementation teams 
may select several different methods for validating system performance:  

• Published benchmarks : These go by the names of Whetstones, Dhrystones, Webstones, 
MFLOPS, and etc. They all have the disadvantage of not accurately representing your system. 
Manufacturers derive these benchmarks from optimal lab conditions where the system is 
specifically tuned to operate the benchmark well. They can be excellent for measuring one system 
against another, but rarely yield useful information when it comes to measuring a specific system's 
response to live user loads.  

• Hardware load generation : Some organizations use computer hardware to generate system load. 
This approach can be very accurate, since if done properly, it exactly represents the actual 
dynamics of the user population. However, this approach is generally not practical for medium to 
large organizations. They simply cannot organize the necessary hardware and operators to perform 
a realistic test of the system response.  

• Software load generation : This is the preferred method for generating system load and measuring 
performance for medium and large organizations. In this approach, a software system simulates 
users from hundreds to tens of thousands to gauge the system response to a live user population. 
Since this is a simulation of a live user population, it is most important that the simulation be 
accurate and that it scale to the required numbers of users.  

 

 

W I L L    I T    C O N T I N U E    T O    
W O R K ?    

In the rush to implement, organizations sometimes 
fail to plan for the continued upgrade and 
maintenance of these systems. Packaged ERP 
applications operate in multi-vendor environments, 
where the combined total of software and hardware 
upgrades can mean frequent changes as often as 
every calendar quarter. ERP applications need 
validation with any change to the components not 
just packaged ERP software upgrades, but upgrades 
to the underlying database, network infrastructure 
and operating hardware.  

Implementations that employ automation for 
validation have built-in methods for validation at any 
point in the future. You can use the same suites of 
tests that certify the system before live use to 
validate the correct operation of the system after any 
system maintenance upgrades, new configurations, 
and changes. In a matter of hours, you can verify that the change that was "invisible to the end user" really 
has no effect.  

 
Figure 4: Automation reduces initial implementation 
time and cost, as well as reducing costs on an on-
going basis. Software and system upgrades usually 
occur at regular intervals, each necessitating a re-
validation of the system.  



A U T O M A T I O N    I N    E R P    V A L I D A T I O N S    --  
S U M M A R Y    

Experienced implementers use repeatable processes for ERP implementations. Automated validation can 
be a vital part of a successful implementation when employed early in the process. Organizations elect to 
use automated validation tools during initial ERP implementations and as part of upgrade processes. 
Through the use of these tools, organizations can finish implementations sooner and reduce the risk 
inherent in these large-scale projects.  

Automation tools help implementation teams finish sooner by uncovering defects earlier in the process, and 
assuring that changes don't introduce unintended results. These same tools reduce the risk of any 
implementation by thoroughly testing the applications in real-life scenarios that range from tests that insure 
the applications support the business logic to tests that assure the applications perform with adequate 
performance.  

 

 



IBM software integrated solutions
IBM Rational supports a wealth of other offerings from IBM software. IBM
software solutions can give you the power to achieve your priority business
and IT goals.

• DB2® software helps you leverage information with solutions for data
enablement, data management, and data distribution.

• Lotus® software helps your staff be productive with solutions for
authoring, managing, communicating, and sharing knowledge.

• Tivoli® software helps you manage the technology that runs your e-
business infrastructure.

• WebSphere® software helps you extend your existing business-critical
processes to the Web.

• Rational® software helps you improve your software development
capability with tools, services, and best practices.

Rational software from IBM
Rational software from IBM helps organizations create business value by
improving their software development capability. The Rational software
development platform integrates software engineering best practices, tools,
and services. With it, organizations thrive in an on demand world by being
more responsive, resilient, and focused. Rational's standards-based, cross-
platform solution helps software development teams create and extend
business applications, embedded systems and software products. Ninety-
eight of the Fortune 100 rely on Rational tools to build better software,
faster. Additional information is available at www.rational.com and
www.therationaledge.com, the monthly e-zine for the Rational community.

Rational is a wholly owned subsidiary of
IBM Corp. (c) Copyright Rational
Software Corporation, 2003. All rights
reserved.

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Printed in the United States of America
01-03 All Rights Reserved.
Made in the U.S.A.

IBM the IBM logo, DB2, Lotus, Tivoli
and WebSphere are trademarks of
International Business Machines
Corporation in the United States, other
countries, or both.

Rational, and the Rational Logo are
trademarks or registered trademarks of
Rational Software Corporation in the
United States, other countries or both.

Microsoft and Windows NT are
registered trademarks of Microsoft
Corporationin the United States, other
countries, or both.

Java and all Java-based trademarks are
trademarks of Sun Microsystems, Inc. in
the United States, other countries, or
both.

ActionMedia, LANDesk, MMX, Pentium
and ProShare are trademarks of Intel
Corporation in the United States, other
countries, or both.

UNIX is a trademark of The Open Group
in the United States, other countries or
both.

Other company, product or service
names may be trademarks or service
marks of others.

The IBM home page on the Internet can
be found at ibm.com




