
Raul Ortega
ortegar@us.ibm.com

IBM® Rational® Rapid Developer
Globalization and Creating
Multi-Locale Applications

A technical discussion of IBM® Rational® Rapid Developer
Globalization and Creating Multi-Locale Applications
June, 2003

Table of Contents

The Business Opportunity: Globalizing Web-based Systems...3

The Technical Problem: Technical Challenges to Globalization ...4

The Solution: IBM® Rational® Rapid Developer...5

Rational Rapid Developer Development Process...5

1. Application Functional Requirements...5

2. Import Existing Models and Databases.. 5

3. Rational Rapid Developer Modeling System...6

4. The Agile Application Model...7

5. Technical Requirements..7

6. Rational Rapid Developer Construction System ...7

7. Deployed Code ..7

8. Summary..8

Globalizing a Web Application..8

Before Globalizing an Application – Sizing up the Problem..8

What Languages Will Your Application Need to Support?..9

Will You Need to Consider Special Languages? ...10

Are You Migrating an Existing Application or Are You Creating a New Global-Ready Application?.........................10

What Libraries Should Your Application Use?...11

What Do You Need to Know About Your Host Development Environment?...11

Application Design Strategies ...11

Page Development Strategies ..11

Response Locale Strategies...12

Browser Encoding Strategies ...13

Database Strategies ...14

Currency Transaction Strategies..16

Time Zone Strategies...17

Internationalization...18

Externalizing Application Strings ...18

Encoding Issues ..21

User Interface Issues ..23

Formatting Issues...24

Managing Images ..26

Managing Error Messages.. 26

Other Internationalization Features... 27

Localization... 27

Design Time vs. Runtime Testing...28

Translation ...28

Translation Granularity..29

Construction...29

Conclusions...30

IBM® Rational® Rapid Developer Globalization and Creating Multi-Locale Applications
3

IBM's vision for a new era in business

computing is defined by highly adaptive

companies that can instantly sense and

respond to changing conditions and

make business operations easily

accessible to others.

Introduction

In order to meet the growing demand for globalized transactional Web

applications, we need to explore new, highly productive environments for creating

and globalizing Web products. The solution is Rational Rapid Developer®, that

offers a model-driven, architected rapid application development (ARAD)

approach to delivering optimized, n-tier, scalable, global applications.

The Business Opportunity: Globalizing
Web-based Systems
IBM's vision for a new era in business computing is defined by highly adaptive

companies that can instantly sense and respond to changing conditions and

make business operations easily accessible to others. In IBM, this vision is called

e-Business On Demand.

The conditions and operating environments for these companies have become

increasingly global in nature. The key to survival for many of these companies lies

in their ability to operate successfully in global markets. In order to exploit global

markets, these companies must take into account the diversity of languages and

cultures throughout the world.

Global products result in the efficient and effective deployment of applications

worldwide with their ability to reach a wide range of users regardless of language

or cultural preferences, local business practices or conventions. Integrating

multilingual information and global business processes, end-to-end, across the

company, and across borders with key partners, suppliers and customers is

becoming an imperative, as is responding with speed in any language to any

customer demand, market opportunity or external threat.

IBM® Rational® Rapid Developer Globalization and Creating Multi-Locale Applications
4

Globalization of Web applications has been

slowed or deterred to some extent by the

complexity of creating new global applications

or transforming existing applications to meet

the needs of global users.

Consider the following:

• By 2005, 70% of Web users will speak a primary language other than
English. (GlobalReach 2003)

• According to IDC, 2001, companies that do nothing to globalize their Web
sites project an average of 12% of their revenue will come from foreign
sources in 2002 while companies that do globalize project that 30% of
their revenue will come from foreign sources.

• Globalization markets are poised for growth once we are over the economic
slump. As more global organizations compete for international audiences,
customer expectations will be raised, looking for providers who “speak
their language.” (ABI Report, Oct 2002)

The time to embrace the global e-Business On Demand vision is now.

The Technical Problem: Technical Challenges to
Globalization
While the opportunity may be obvious, globalization of Web applications has

been slowed or deterred to some extent by the complexity of creating new

global applications or transforming existing applications to meet the needs of

global users.

The following challenges have slowed the globalization process within many

companies:

• Information about globalization is hard to get and can be confusing
• Training the entire team in the complexities of globalization is difficult

and costly
• Implementing globalization is costly and time-consuming
• Translating a Web application can be cumbersome, costly, and inefficient
• Determining the effect of translation on page design and layout is

awkward and time-consuming, because it can only be done at run-time in
the current development paradigm

• Creating and managing text strings across languages is complex
• When translating large Web sites into multiple languages, managing the

workflow can be overwhelming

IBM® Rational® Rapid Developer Globalization and Creating Multi-Locale Applications
5

Rational Rapid Developer enables a broad

class of developers to rapidly build complex

e-business applications that are portable to

all leading deployment technologies.

The Solution: IBM® Rational® Rapid Developer
IBM Rational software introduces Rational Rapid Developer—the solution to

creating Web applications and providing localized versions in a highly

productive environment.

By combining powerful visual modeling, RAD techniques and automated

construction, Rational Rapid Developer enables a broad class of developers to

rapidly build complex e-business applications that are portable to all leading

deployment technologies. Rational Rapid Developer-based applications are

reliable, scalable, secure and readily modifiable to accommodate changes in

technology and business objectives. Leveraging mainstream development

skills, you can deploy and maintain enterprise-class applications that integrate

with an extensive range of legacy systems. Time-to-market and cost of

ownership are greatly reduced.

After a brief introduction to the Rational Rapid Developer development process

and paradigm, this white paper focuses on the role of IBM’s Rational Rapid

Developer in facilitating the globalization of Web applications.

Rational Rapid Developer Development Process

The Rational Rapid Developer development process consists of two main steps:

1. Visually modeling your application using the Rational Rapid Developer
Modeling System

2. Automatically constructing the code using the Rational Rapid Developer
Construction System.

1. Application Functional Requirements

Functional requirements are the starting point of your application. They are

typically captured in the use case models and other document repositories.

2. Import Existing Models and Databases

Although Rational Rapid Developer excels in the development of "greenfield"

applications, in which there are no existing assets to incorporate into the new

system, the reality of today’s enterprise application development is that new

applications typically must integrate existing databases, UML models and

legacy applications and components of various types.

IBM® Rational® Rapid Developer Globalization and Creating Multi-Locale Applications
6

A frequent requirement in enterprise application development is to harness

business functionality that has been modeled in one of the popular UML

modeling tools such as IBM Rational Rose. Rational Rapid Developer enables

development shops that have adopted UML modeling as a standard to

accelerate the implementation phase of the development life cycle by importing

UML class diagrams into Rational Rapid Developer and rapidly moving to

executable applications. This is accomplished using the open, industry-

standard XML Metadata Interchange (XMI) interface, along with a native

synchronization feature with Rational Rose and IBM Rational XDE.

Rational Rapid Developer can also save tremendous amounts of time by

allowing you to import a database schema from one of the leading relational

databases into a class model. This is also known as database reverse

engineering. Rational Rapid Developer can also import IMS, VSAM, and CICS

files from a legacy environment.

Additionally, any existing Rational Rapid Developer application can be imported

into a new application to start the development process. This feature allows you

to create your own libraries of "components" that can be reused across the

organization. The benefit of these types of components is that they are not tied

to any single deployment technology or platform. Instead, they are component

models that can be generated at build time into actual code in the desired

deployment technology.

3. Rational Rapid Developer Modeling System

Application development begins with functional requirements. The Rational

Rapid Developer Modeling System is used to create a detailed model of your

application that meets these requirements. Modeling starts at the inception

phase of the application when requirements are being gathered. It carries over

into the elaboration (design) phase when a high-level model of the application

is created. Finally, during the implementation phase, detailed parts of the

application are modeled. The modeling involves all aspects of the application:

business objects, user interface, messaging and integration. The modeling

process does include some hand coding, but this coding is limited to the

essential business logic needed to implement business rules and processes,

and is typically less than 5% of the total application code.

IBM® Rational® Rapid Developer Globalization and Creating Multi-Locale Applications
7

4. Agile Application Model

The result of the modeling step in Rational Rapid Developer is an agile

application model. This model reflects the entire functional needs of your

application. At this point, it is a virtual application, about to be generated by the

Rational Rapid Developer Construction System.

5. Technical Requirements

It is important to note that the technical requirements of the application are

independent of the functional requirements. Technical requirements identify the

specific n-tier deployment technologies that are used to deploy your

application. Technical requirements drive the design of the deployment model

and include the capacity, performance, scalability and availability needs of the

application. Technical requirements are specified before you construct the

application.

6. Rational Rapid Developer Construction System

The Rational Rapid Developer Construction System constructs and deploys

your application model into high-quality, industry-standard n-tier code within

minutes. The complexity of n-tier applications is removed from application

development and is encapsulated as an engineering discipline in the

construction system. Construction is optimized to your specific deployment

technologies.

You invoke the Rational Rapid Developer Construction System in all phases of

application development, for incremental construction during implementation,

and for full construction during system testing and deployment.

7. Deployed Code

The code constructed by Rational Rapid Developer is a rendering of your

modeled application, optimized for your selected deployment platform. The

code is a constructed artifact of the application but not the actual application.

Therefore, modification and maintenance are performed within Rational Rapid

Developer and not directly on the constructed code. You can, however, override

constructed code components for the various tiers to achieve specific results.

For new versions of your applications, you change your application model and

re-construct it to generate new deployment code. After each iteration, the

previously deployed code is discarded. As your business needs evolve, you will

IBM® Rational® Rapid Developer Globalization and Creating Multi-Locale Applications
8

Rational Rapid Developer provides an

environment in which you can model and

construct the typical set of activities that

are associated with globalizing a Web

application.

have a new set of functional requirements to reflect these needs. You use the

Rational Rapid Developer Modeling System and modify the application model

to meet the new functional requirements. After making all the requisite changes,

you re-construct the code, test and debug, and re-deploy the application.

8. Summary

New technologies are rapidly emerging and new versions of existing

technologies will continue to be released. To keep pace, businesses need to

quickly adapt their existing applications to new technologies and business

requirements without losing their investments in current systems. Rational Rapid

Developer allows you to design and maintain applications as an application

model, rather than at the technology level. Your application model can be used

to rapidly redesign, reconstruct and redeploy applications for the latest

technologies.

Globalizing a Web Application
Now that you know a little about developing applications with Rational Rapid

Developer, let’s discuss the globalizing capabilities that have been added to

Rational Rapid Developer with the Globalization Model.

There are many issues to contend with when globalizing an existing Web

application or when creating a new one. The following sections:

1. Illustrate the degree to which globalization affects an application.
2. Highlight, whenever possible, the role of Rational Rapid Developer in

facilitating globalization activities.

Rational Rapid Developer provides an environment in which you can model and

construct the typical set of activities that are associated with globalizing a Web

application. You can do this with minimal knowledge of the underlying

complexities associated with the implementation platform.

Before Globalizing an Application – Sizing up the Problem

To set the stage for globalization, you must first define the problem. The nature

of the problem affects and influences the set of activities and the application

design that is required to accomplish your globalization goals. This section

discusses general, high-level topics that are just as important as the actual

implementation activities.

IBM® Rational® Rapid Developer Globalization and Creating Multi-Locale Applications
9

What Languages Will Your Application Need to Support?

The Internet provides worldwide accessibility for your application. You need to

consider the languages that must be supported for your application to

succeed.

In an enterprise intranet scenario, your company operates in specific countries,

so it’s easy to determine the languages that your application must support.

However, with products such as eBay or Amazon, the reach is more

unpredictable and widespread and your application needs to support many

languages.

Rational Rapid Developer’s Globalization Model provides you with a convenient

mechanism to define any number of locale descriptors. Locale descriptors are

used to identify cultural characteristics such as language, formatting, sorting,

images, and so on. Once defined, they are available throughout your

application.

In the following illustration, the Globalization Model shows that the application

supports five languages.

Figure 1. Globalization Model.

IBM® Rational® Rapid Developer Globalization and Creating Multi-Locale Applications
10

Figure 2. Setting the Right-to-left Attribute.

Will You Need to Consider Special Languages?

Some languages pose greater challenges than others. The right-to-left

characteristic of Hebrew and Arabic requires special attention to layout and

presentation fonts.

In Rational Rapid Developer, the right-to-left attribute can be easily specified in

the model without the need to get into the details and complexities of the code.

The attribute can be associated with any HTML tag on the page. For example,

in the following example, the “dir = rtl” attribute has been applied to the page

BODY tag. Rational Rapid Developer will integrate this tag with the HTML

produced for the page.

Are You Migrating an Existing Application or Are You Creating a New Global-Ready

Application?

The complexity of migrating an existing application depends on the degree of

thought and effort devoted to globalization when the application was first

created. Major effort is required to migrate already existing applications that

have not been designed with globalization in mind. From externalizing strings,

to providing appropriate calendars, to the creation of formatters and much

more, a large amount of code must change.

With Rational Rapid Developer applications, changes are made to the

application model and the application is generated, as required. The process of

migrating applications in which no thought was given to globalization is much

easier in applications developed in Rational Rapid Developer, compared to

manually coded applications. Rational Rapid Developer generates Unicode-

enabled code, externalizes strings, and generates property files (you won’t

have to create and manage property files manually). Rational Rapid Developer

also generates calendars, formatters, and the requisite code to handle time

IBM® Rational® Rapid Developer Globalization and Creating Multi-Locale Applications
11

zones. Virtually any feature that is required for globalization can be modeled in

Rational Rapid Developer and the appropriate code generated.

Localization Libraries

Although Java includes built-in internationalization services, your development

team will most likely require the use of a library such as IBM’s ICU (International

Components for Unicode). The library provides a full range of services for

supporting internationalization. It provides cross-platform C, C++ and Java

APIs. The Java version of ICU builds upon the internationalization features in

Sun’s Java.

With Rational Rapid Developer, you can leverage powerful libraries such as ICU

in custom code that is generated for an application.

Rational Rapid Developer also provides a set of internationalization methods

that are at a higher level of abstraction than libraries such as ICU. Using the

Rational Rapid Developer internationalization methods reduces complexity

while providing platform independence. These methods, and many more, are

provided in the Rational Rapid Developer Framework APIs.

What Do You Need to Know About Your Host Development Environment?

The globalization features of the host operating system for your development

environment are important to the development of the application. Features such

as the ability to set up input locales and the ability to set up browser language

preferences will prove to be valuable.

Application Design Strategies

This set of application design strategies will help you plan the implementation

of your Web application.

Page Development Strategies

It is often the case that a Web application is created for one culture or locale

and then ported to a set of other required cultures. The application is

duplicated and then localization changes are made to the copy of the

application. While initially appearing easier, consider the problems that are

introduced with this methodology. Propagation changes across the set of

localized applications will prove to be costly, time consuming and error prone.

IBM® Rational® Rapid Developer Globalization and Creating Multi-Locale Applications
12

Figure 3. Page Architect, Language Support in
Design Time.

Rational Rapid Developer provides an environment that enables you to easily

create a single page layout that serves up or produces pages in any language that

your application supports. Notice in the following screen capture of the Rational

Rapid Developer Page Architect that you can cycle through each language

supported by your application. This provides you with a view of the page in each

language, at design time. You can easily design the application so that the

language in which the page is displayed is selected dynamically at runtime.

This is a unique feature that differentiates Rational Rapid Developer from any other

development environment. However, it should be noted that you will not loose the

flexibility of creating a page for a specific language, if that is what is required.

Response Locale Strategies

With the ability to define a single, consistent layout for a set of languages, how will

you produce the page with the correct language for a given user?

Rational Rapid Developer provides for the ultimate flexibility in defining the

response locale for a page. This setting establishes the language for page

creation, and thus the language provided to the browser. You can either set the

page to a fixed locale or you can define a callback method to set the response

locale. While the fixed option provides a static language page, the callback

method enables you to define whatever strategy is needed to set up the response

locale, and thus the language.

IBM® Rational® Rapid Developer Globalization and Creating Multi-Locale Applications
13

Figure 4. Setting the Response Locale and
Encoding.

As an example of one strategy, suppose that your application supports English,

Spanish, and Japanese. If the request comes in from the UK, you will respond

with an English page. If the request comes from India, you may also want to

respond with the English page. You can define a lookup table in the callback

method that dynamically determines the response locale.

You could also establish the response locale based on the user preferences that

have been stored in a session variable at user login. Yet another strategy could

allow the user to change the application language or cultural settings at will.

Browser Encoding Strategies

As demonstrated above, Rational Rapid Developer enables you to establish the

language for the page that will be delivered to the browser. This solves only

part of the problem. When the page is delivered to the browser, the browser

must present the page with the encoding that matches the language delivered.

This enables the browser to correctly interpret and present the data. For

example, if you try to present Hebrew strings with a Western European

encoding, the browser will not be able to interpret the Hebrew strings correctly

and the page will not display Hebrew.

IBM® Rational® Rapid Developer Globalization and Creating Multi-Locale Applications
14

As information (e.g., strings, numbers, dates, times) is presented or entered

using a browser, the interpretation of the data is based on the encoding that

has been set in the browser. You can usually use two types of encodings:

• Code pages, which handle a limited set of characters (such as Western
European)

• Unicode, which handles all characters

Like the response locale, you can design a strategy that sets the correct

encoding in the page response. Setting the encoding in the page response in

turn sets it in the browser encoding before the page is interpreted and

presented.

As shown in the preceding illustration, Rational Rapid Developer provides

several ways to set the encoding. The UTF-8 setting represents a Unicode

encoding that is a safe way to represent most languages. You can also set the

encoding using a callback method (for full flexibility), or by the encoding that

has been associated with the page locale.

Database Strategies

Database design can be grouped into the following categories:

• Database structure
• Data encoding
• Data conversion

Database Structure

Database structure or schema determines how you organize multi-lingual data

within an individual database. Will you store data for a specific language in a

table devoted to that language, or will you have a column in a table that

identifies the language? You may decide to store data from different languages

in different databases that mirror each other in structure. The implications of the

database structure affect the code that stores, retrieves, and processes data.

Maintenance is also affected.

IBM® Rational® Rapid Developer Globalization and Creating Multi-Locale Applications
15

Figure 5. Unicode Data Type Specification.

While this is mostly an application database design issue, Rational Rapid

Developer provides for properties in the model to specify table attributes that

should contain multi-lingual data. By selecting the Unicode checkbox in the text

attribute specification, an attribute is created in the database with the Unicode

data type specification. For example, the Unicode version of the varchar data

type is the nvarchar data type.

Data Encoding

Like the encoding that was specified for the browser, the encoding for the

database establishes the languages that are correctly stored in the database.

Different database vendors handle encoding differently. Rational Rapid

Developer understands the encoding capabilities of the supported databases

and allows you to make the appropriate encoding selections from the model.

The following example of the IBM DB2 database property sheet shows the DB2

properties that are available to define the encoding.

IBM® Rational® Rapid Developer Globalization and Creating Multi-Locale Applications
16

Figure 6. Database Globalization Properties.

Data Conversion

If you are migrating from a single language application to an application that

supports multiple languages, you need to consider how to migrate the already

existing data without compromising data integrity.

Currency Transaction Strategies

Currency transactions add complexity. The requirements may affect the

database structure because of the need to store additional information (e.g.,

the date and time when a transaction was recorded, the base currency and

potentially other attributes of the transaction). Local laws that regulate financial

transactions need to be incorporated into any financial processing.

IBM® Rational® Rapid Developer Globalization and Creating Multi-Locale Applications
17

Figure 7. Application Time Zone Properties.

These are mostly application design issues. Rational Rapid Developer

facilitates the incorporation of a currency design by allowing you to focus on

the application and not the underlying complex technology.

The ability to easily accept Web services into your application also allows you

to leverage currency conversion services.

Time Zone Strategies

Presenting and storing date and time data can be difficult in the Web

application domain. The time that you display or enter on a Web page depends

on the problem that you are trying to solve in the application domain.

What time will you display? Do you display the local time? For example, when

you place an order in New York at 9AM Eastern Standard Time, what time will

you display for the order date / time on a page displaying that order in

California or Hong Kong?

How do you store the data when users in different time zones enter local date /

time data? Will you store the local time qualified by some time zone code?

Once you have determined the application design for time zone requirements,

you simply provide the Rational Rapid Developer-based application with the

time zone for data storage and the default application time zone used to

present or enter date / time data. The system does the rest.

IBM® Rational® Rapid Developer Globalization and Creating Multi-Locale Applications
18

Figure 8. Time Zone, Field Properties.

You can have a finer granularity of control for time zones by setting a specific

time zone for a specific field displayed on a page. This is shown in the following

example.

Internationalization

Once you have made your strategy decisions, the next step is to complete the

implementation. For new applications, this means following a set of rules that

dictate how you implement aspects of your application. For existing

applications, this involves making modifications to your application that enable

you to provide local support, or to localize the application without having to

modify code.

In the Rational Rapid Developer paradigm, the part of the definition about not

changing code takes on a different meaning since Rational Rapid Developer

will generate as much as 95 % of the total application code.

Externalizing Application Strings

When asked what it means to “globalize” an application, most developers will

utter the words “externalize your strings” as the first and sometimes only order

of business. While there is much more to globalization, externalizing strings is

an important part of getting it right.

IBM® Rational® Rapid Developer Globalization and Creating Multi-Locale Applications
19

Of course, if you took the time and effort to externalize your application strings

when creating the first version of the application, you would be in a better

position to localize. However, it is often the case that globalization is a lower

priority than “getting the thing done” and it is overlooked.

For hand-written applications that have not been designed for globalization, this

means going through the code and replacing references to strings with

functions that fetch the strings from some external string storage mechanism.

This can be done manually or through search and replace utilities. This means

that you must “touch” all of your code – a process that can introduce errors into

your application.

With Rational Rapid Developer, the process of externalizing strings falls into two

categories:

1. Model the strings that need to be translated.

Controls such as labels need to present the correct translated string based
on the language requested for a page. A collection of translated strings
(strings that represent the same meaning in different languages) are
assigned a key. The key is then assigned to the control. At runtime, when
the page is presented in a given language, the label makes a request for
the translated string that matches the requested language.

You can create keys by first designing a page in a language of choice and
specifying the controls that require keys. In the following example, the
context menu is on a label and the menu selected creates a key for this
control. Notice that other controls that have been associated with keys
have a small key indicator on the control.

Keys with their translations are stored as part of the model within the page
definition.

IBM® Rational® Rapid Developer Globalization and Creating Multi-Locale Applications
20

Figure 9. Specifying Individual Text Strings that need
Translation.

Figure 10. Using the Translation Editor to Create
Keyed Strings.

You can also create keys independently from controls, and then assign the keys

to controls.

IBM® Rational® Rapid Developer Globalization and Creating Multi-Locale Applications
21

Figure 11. Encoding Conversions within the
Application Architecture.

2. Construct the runtime mechanism that provides access to the externalized
strings once they have been translated.

Once keys have been created in the model, and you construct the
application, Rational Rapid Developer creates resource bundles. The use of
resource bundles is a standard mechanism to provide translated strings to
an application at runtime. Resource bundles are name/value pairs that
define the key and the translated value for a specific language. Resource
bundles are created for each language that you have defined in the
application Globalization Model.

The process of externalizing strings involves changes to the model, not to
the code. Since the code is generated, the chances for errors are greatly
reduced.

Encoding Issues

Setting the encoding involves making decisions about the how data is to be

interpreted at various conversion points within the application architecture. The

diagram below shows the different elements in an n-tier Web application

architecture. The conversion points are:

1. Between the browser and the JVM (application server) – this is for data
and for information passed as query string parameters,

2. Between the application server and the database (through JDBC)
3. Between the application server and other data sources such as messaging

transports.

IBM® Rational® Rapid Developer Globalization and Creating Multi-Locale Applications
22

Figure 12. Settings for Message Based XML
Documents.

You can see from the diagram that you can use Unicode or code page

encoding. Encoding can be set at different points in the application

architecture. If you don’t take care to match the encodings between conversion

points, your data will not be interpreted correctly.

Because there are different technologies involved in Web architectures, setting the

encoding may be dependent on other systems. For example, some databases

require that you set the encoding when the database is created. XML documents

that are sent through message transports require the encoding to be set in the

XML header. The following illustration shows the settings that are available for XML

documents from the Rational Rapid Developer Message Model.

The data that is passed between the browser and the application server is the

data that makes up the page, and optionally parameters that are passed on the

URL. Since this data can be in multiple locales, you need to be able to set an

encoding property for the data and for the parameters on the URL.

To set the data encoding, you need to set it on the browser. For example, you can

set the encoding for Microsoft Internet Explorer using an Encoding submenu on

the View menu. The trick, however, is that you want the page being delivered to

the browser to set the encoding for the browser, not the end user. Rational Rapid

Developer enables you to control this setting with the encoding property on the

page property tab, as shown in the following illustration.

IBM® Rational® Rapid Developer Globalization and Creating Multi-Locale Applications
23

Figure 13. Setting the Page Encoding Property.

Figure 14. Typical Approach: One Page Per
Language.

Rational Rapid Developer sets the encoding on the URL automatically.

User Interface Issues

A common approach to localization of Web pages is to create a new page for

each language. Unfortunately, this creates a large number of pages that need to

be maintained. When a modification is made to one page, it will most likely need

to be made to the corresponding pages in different languages. This is a

maintenance nightmare and an error-prone methodology.

English

French

IBM® Rational® Rapid Developer Globalization and Creating Multi-Locale Applications
24

Figure 15. Optimal Approach: Serve Up Multiple
Languages from a Single Page.

Your internationalization goals should be to be able deliver multiple languages

from a single page. This greatly reduces the number of pages and the amount of

maintenance required when modifying the application. Rather than making similar

modifications for each page that represents a given language, you make a set of

changes and the application delivers the page in the requested language.

Rational Rapid Developer facilitates this more efficient methodology by allowing

you to view the same page in different languages. During runtime, the page

appropriate for the request is delivered to the browser.

Formatting Issues

Formatting in a globalized application can be very complex. The goal is to provide

one set of code that reflects whatever locale or cultural settings required for an

instance of a page that is being delivered to a browser.

Java has a robust API to handle this situation; however, navigating through all of

the classes and learning how to use the API can be tedious. Rational Rapid

Developer provides you with a Formatting Model that allows you to create format

descriptors for each locale and each formatting type. Formatters are available for

numbers, currency, percent, date, time, and date-time.

The Rational Rapid Developer Formatting Model is shown in the following

illustration. You can see that every locale has a default format for each formatting

type. You can also create your own format descriptor for any format type.

IBM® Rational® Rapid Developer Globalization and Creating Multi-Locale Applications
25

Figure 16. Formatting Model.

Figure 17. Setting the Format for a Control.

The Formatting Model enables you to establish a set of format descriptors. You

need to use these descriptors to control the presentation or the data entry format

for specific data items on a page.

The following illustration shows how you can do this within the property sheet for a

control. By simply assigning a format descriptor to a control, Rational Rapid

Developer will know the formatters, calendars, and other items to create when

constructing the underlying code.

IBM® Rational® Rapid Developer Globalization and Creating Multi-Locale Applications
26

Figure 18. Specifying Images Dynamically Based on
Language.

Besides presentation, you should also be aware that formatting descriptors are

used to set the format for data that is being entered into the page and its

subsequent validation. Validation can be in the form of client validation through

Client Side JavaScript and Server side validation.

Managing Images

Images must also be handled correctly in a multi-lingual environment. Rational

Rapid Developer provides a flexible yet easy way to prepare for the localization

of images. You can specify the relative location of a set of images that need to

be presented on a page, based on the response locale for the page. Notice in

the following illustration that the relative path of the image is specified with a

macro - <%CurrentLocale%>. This macro is evaluated at design time or at

runtime. This gives you the ability to create locale-based folders that store sets

of localized images.

Managing Error Messages

You can’t complete the globalization of your application without preparing error

messages that can be presented in multiple languages.

Rational Rapid Developer facilitates the globalization of error messages in

several ways:

• By providing a model-based mechanism for internationalizing client-side
JavaScript messages for data entry forms.

IBM® Rational® Rapid Developer Globalization and Creating Multi-Locale Applications
27

Figure 19. Specifying Error Messages Dynamically
Based on Language.

The following illustration shows the properties that can be set for a required

data entry field. The string associated with the key “testpage_L1011” will be

delivered as a client side dialog box when you attempt to submit a form without

entering something for the required field. Rational Rapid Developer creates and

delivers the dialog box localized for the response locale for the page at the time

the error occurs.

• By providing a general interface that can be used in any place in your custom
methods.

ctx.getResourceString("G12")

The method returns a localized string based on the page response locale.

Other Internationalization Features

Rational Rapid Developer offers a robust set of features to deal with the challenges

presented by globalization. Other available features include:

Sorting
Selection
Section 508 Help
Help
Multiple Languages on a single page
Internationalized enumerations
Localized auto-constructed images.

Localization

Once you have prepared the application for different languages, you will need to

localize the application.

IBM® Rational® Rapid Developer Globalization and Creating Multi-Locale Applications
28

The process of localizing an application can be managed through Globalization

Management Systems (GMS). These systems manage the process of localization

through a pre-defined workflow. The translation is one step in the workflow.

Rational Rapid Developer provides several features that greatly facilitate the

translation process. They are:

• The ability to view translation and localization impact at design time
• The management of translation strings into your application
• The granularity offered for the integration of translations

Design Time vs. Runtime Testing

When developing a localized application, the designer / developer / tester /

translator (members of the development team) must be able to test the pages

in multiple languages. Not only are they testing the pages for proper translation,

but they are also focusing on layout consistency issues. Often, the developer

must wait until the page can be viewed at runtime to catch any layout conflicts.

With Rational Rapid Developer, you can detect layout conflicts at design time

by toggling between different languages in the Page Architect page-authoring

module. Design-time review saves time by catching layout defects earlier in the

process.

Translation

To translate your application strings to multiple languages, Rational Rapid

Developer offers a convenient method of exporting keyed strings from your

application to a variety of formats. The resulting file is sent to translators.

In the following illustration, four strings that need to be translated into Japanese

are selected in a specific page. The strings will be sent to the translators in

XLIFF format. You also can select TMX, Excel, or CSV export formats.

IBM® Rational® Rapid Developer Globalization and Creating Multi-Locale Applications
29

Figure 20. Exporting Strings to be Translated.

Once the translated files are returned from the translators, you simply place it in

a “Translated” directory in the application directory. Rational Rapid Developer

automatically imports the strings and integrates them back into the model. You

can inspect the translation and optionally select the translated strings that you

want to incorporate back into the model.

Translation Granularity

In most translation scenarios, you create an application in one language and

then send out all the application strings to several translators. Since it is so

easy to prepare strings to be translated and to incorporate the translations back

into the model, Rational Rapid Developer gives you the choice to translate on a

page-by-page basis at any time during your development process. Your

development process can include a check to see if a page is ready for

translation. As long as the translators are available, they can provide the

translations as different parts of the application are ready for translation. There

is no need to wait until the entire application is completed. There may be

reasons to wait for the complete application to be finished but at least with

Rational Rapid Developer, you are not trapped into this workflow due to the

complexity of localizing hand-coded applications. You now have a choice.

Construction

At any point in the process you can construct your entire application or

individual pages, messages, components, or Web services. Rational Rapid

Developer takes the model specifications and constructs optimized code for

the target platform.

IBM® Rational® Rapid Developer Globalization and Creating Multi-Locale Applications
30

Figure 21. Constructing the Translated Page.

Conclusions

There are many issues involved in application globalization. Rational Rapid

Developer addresses these issues and makes it far easier to create and

maintain applications that can be delivered in any number of languages. The

Rational Rapid Developer model-driven, architected RAD development

environment ensures productivity in design and implementation. It provides an

abstraction from the complexity involved not only in building an n-tier Web

application, but also in building an application that supports multiple

languages.

TP909

© IBM, the IBM logo, and WebSphere are
trademarks of International Business Machines
Corporation in the United States, other countries,
or both.

Rational, Rational Unified Process, RequisitePro,
and XDE are trademarks or registered
trademarks of Rational Software Corporation in
the United States, other countries, or both.

Java and all Java-based trademarks and logos
are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other
countries, or both.

Microsoft, WIndows, Windows NT, and the
Windows logo are trademarks of Microsoft
Corporation in the United States, other countries,
or both.

Other company, product or service names may
be trademarks or service marks of others.

Rational Software Corporation is a wholly owned
subsidiary of IBM Corp.

© Copyright Rational Software Corporation, 2003.
All rights reserved.

Made in the U.S.A.

