
Modern software development for business-oriented developers
White paper
April 2007

Accelerate delivery of business
solutions with IBM Rational Business
Developer Extension software.

Accelerate delivery of business solutions with IBM Rational
Business Developer Extension software
Page �

2	 Introduction

3	 Conceptual foundation

7	 What is EGL?

9	 The business value of EGL and

Rational Business Developer

Extension software

11	 Who benefits from using

EGL and Rational Business

Developer Extension software?

12	 Rational Business Developer

Extension software and the

IBM Rational Software 	

Delivery Platform

14	 Application development 	

with EGL

17	 Database connectivity 	

with EGL

18	 File access with EGL

18	 Application architecture 	

with EGL

18	 JSF and EGL

19	 MVC framework

20	 Walking through an EGL

application scenario

21	 Migrations and enterprise

modernization

23	 Conclusion

Contents
Introduction

The explosion of computer networks and the global reach of the Internet are
transforming the way businesses operate and use information, and the era of
traditional application islands is rapidly coming to an end. New integrated
information solutions enabling innovative interactions with partners, customers
and employees are at the top of many CIOs’ agendas. But to avoid the pitfalls of
application silos that hinder responsiveness and flexibility, the enlightened CIO
is embracing service orientation as the architectural underpinning of all new
business software.

This new generation of IT systems requires software development capabilities
that support new middleware and emerging application architectures. At the
same time, however, development teams have grown accustomed to levels of
productivity and simplicity that had accompanied the emergence of client/server
computing. The IBM® Rational® organization has evolved the capabilities of
the IBM Rational Software Delivery Platform to address this need with an
integrated set of tools, methodologies and best practices that enable effective
governance of the software development process and accelerate the transition to
service-oriented architecture (SOA).

At the heart of the software delivery platform is a set of SOA design and con-
struction capabilities delivered on top of the Eclipse workbench, primarily
targeting the Java™ platform. Recognizing that programming in the Java lan-
guage requires a long and continuous learning process for programmers who
have no experience with object orientation, IBM has developed an innovative,
modern and simplified development approach, the Enterprise Generation
Language (EGL).

Accelerate delivery of business solutions with IBM Rational
Business Developer Extension software
Page �

Highlights
EGL enables developers of any background to quickly create applications and
services for deployment to the Java platform as well as traditional mainframe
transactional run times, without requiring that developers learn the techni-
cal intricacies of these platforms. This enablement is critical because in many
organizations the developers with the strongest business knowledge—and
with a stake in the successful delivery of new systems—are typically skilled in
traditional technologies but lack the Java, Java Platform, Enterprise Edition
(Java EE) and SOA technical expertise required for most new development
platforms. Thus, these key resources are often relegated to maintaining legacy
systems.

This paper first provides some background into EGL’s conceptual foundation and
introduces the notion of business-oriented development. It then describes EGL at a
high level, along with the motivations for employing such a language and the IBM
product that delivers the EGL integrated development environment (IDE): IBM
Rational Business Developer Extension software. The paper goes on to present
more details of EGL and Rational Business Developer Extension as they pertain
to building applications and services. Finally, it provides some insight into the
architecture behind EGL-based implementations. After reading this article, you
should have a good understanding of what EGL is, who would use it and what
value it brings to companies and their IT organizations.

Conceptual foundation

Before delving into the details of IBM Rational Business Developer Extension
and EGL, let’s review the conceptual foundation upon which EGL was built.
IBM centers the vision for its application development tools on the themes of
developer productivity and robust platform support. The vision has always been

Accelerate delivery of business solutions with IBM Rational
Business Developer Extension software
Page �

Highlights
to provide an environment that enables developers to efficiently apply their
business knowledge to creating applications that can operate across various
execution platforms. As far back as 1981, when IBM introduced its first rapid
application development environment, its core mission has been:

To provide an integrated tools environment for the rapid development of

scalable, robust, mission-critical applications using traditional enterprise

application programming skills to create solutions capable of running under

a variety of environments and topologies.

Over the years, IBM products have evolved to continuously improve IBM’s
support of this mission. Many enhancements have been added to the language,
the development paradigm and the tools to improve development productivity
while embracing new technologies and supporting emerging run-time plat-
forms. Each improvement and advancement has allowed developers to work on
concerns further away from implementation details and closer to the problem
under consideration. This is the principle of abstraction at work, and it is the
defining characteristic of business-oriented development: the endeavor of
building business software without the need for low-level technical coding.

Working at increasingly higher levels of abstraction helps achieve higher levels of
productivity, but abstraction is also necessary to allow developers to write code
that can run on different target run-time platforms. The following list outlines the
basic guiding principles IBM follows to continue to deliver on our mission:

Language neutrality. When it comes to creating business applications,

the choice of development language is typically tied to the deployment run

time as well as the know-how of the development team. But what if we had

a common language that was designed to generate applications into various

other, more conventional languages? Such neutrality provides the developer

with a common means of expressing application logic, which developers can

later transform into the implementation language best suited for the selected

target platform (e.g., COBOL, Java).

•

Accelerate delivery of business solutions with IBM Rational
Business Developer Extension software
Page �

Highlights
Platform neutrality. As with language neutrality, platform neutrality lets

you support the run-time platform best suited for the application. To effec-

tively provide platform neutrality, you must support virtually any platform

in the marketplace— from the largest mainframe to the smallest workstation

or desktop PC. Abstraction provides a mechanism for developers to design

and implement their applications with a language that is not tied to a

specific technology. In doing so, you can generate the actual deployed appli-

cation from this neutral development environment. As technology changes,

the tooling vendor can provide drivers that transform the neutral applica-

tion to the new target technology.

Code generation. Code generation is the bridge between the business-oriented

application written in a neutral language and a concrete implementation writ-

ten in a conventional language. The generation technology also worries about

how the concrete application gets deployed to a particular target run-time plat-

form. Tooling vendors can provide generation drivers that automatically and

transparently perform these transformations. These generators provide a high

percentage of code that is associated with the application’s structural “plumb-

ing.” Developers focus on business rules, which typically comprise a smaller

percentage of the entire application code set. By separating business logic from

infrastructural code, you can later cast the entire application into a new imple-

mentation technology by simply using a new set of code generation drivers. The

result is a new realm of development productivity.

Debugging. For a business-oriented language like EGL to work, the devel-

oper writing code at the abstract level must also be able to debug at that level.

The tools environment should have a testing facility that includes a source-

level debugger that permits stepping through the abstract program code using

real data before the application is deployed into the target environment.

•

•

•

Accelerate delivery of business solutions with IBM Rational
Business Developer Extension software
Page �

Highlights EGL and Model Driven Architecture

Readers familiar with the Object Management Group (OMG) and its Model Driven

Architecture (MDA) initiative will notice parallels to EGL. MDA is a form of model-driven

development based on the Unified Modeling Language (UML) and other OMG standards.

MDA calls for modeling the software lifecycle at distinct levels of abstraction, coupled with

transformations that map and manage the relationships among those models.

MDA defines the notion of a platform-independent model (PIM) to which EGL matches

nicely (albeit as a textual “model”). MDA also defines a platform-specific model (PSM), which

corresponds to EGL-generated code (e.g., Java/Java EE or COBOL). The notion of MDA’s

model transformations is analogous to EGL’s code generation.

These comparisons suggest that EGL can offer traditionally skilled developers an opportunity

to practice what the MDA initiative is all about: separation of concerns, modularized reuse

across the lifecycle, managed complexity and the ultimate in productivity. Rational Business

Developer Extension tools take this notion even further by providing an automated bridge

between UML models and the downstream implementation with EGL specifications as

described later in this paper.

These guiding principles result in real, tangible benefits that can help increase
the likelihood of a project’s success. The benefits include:

Less code to write. Generating a large portion of the application code—

particularly the infrastructural plumbing required as part of any target

architecture, such as Java EE—shields developers from having to learn about

or write special code for most of the application. The developer can instead

focus on writing only the business rules.

Reduced training requirements. Due to the time and cost required to train

legacy developers, training proves to be a barrier for legacy developers moving

into object-oriented programming and other new technologies. Code generation

helps to reduce the cost and time needed to become proficient in designing and

implementing applications.

•

•

Accelerate delivery of business solutions with IBM Rational
Business Developer Extension software
Page �

Highlights
Iterative and agile development. The ability to specify application

behavior in less technical constructs and to immediately animate and verify

these specifications encourages and promotes the adoption of an iterative

prototyping evolution approach and agile development style that lead to

faster and more accurate delivery of business services and applications.

Proxy to new technology. As technology evolves (a change that we know

is a constant), the training cost, as well as the disruption, caused by apply-

ing new technologies to applications can be very high. The neutral language

application, combined with a code generation driver for the new technology

can help to make this transition much easier. In this way, you are keeping

the application definition constant while leveraging improvements in imple-

mentation technology.

Improved quality and performance. Code generation offers the benefit

of leveraging pretested and proven application infrastructure frameworks,

which constitute a great portion of the generated code, with resulting higher

quality and performance. The custom code that developers need to write for

a given application is typically limited to business rules and behavior. This

can reduce bugs and improve quality and performance.

What is EGL?

An abstract programming language, as described in the previous section, must
meet the following goals:

It must be familiar to business-oriented developers.

It must automatically manage lower-level programming details.

It must transparently deploy to a set of potentially available execution platforms.

•

•

•

•
•
•

Accelerate delivery of business solutions with IBM Rational
Business Developer Extension software
Page �

Highlights
Today’s EGL is the result of the evolution of IBM research and development in
the area of rapid application development technology over the past 25 years. EGL
combines some of the most powerful tenets of legacy fourth-generation language
(4GL) technologies; extends them with modern modular programming constructs;
integrates them with new technologies, such as JavaServer Faces (JSF) and Web
services; and extends their reach with new code generation drivers for the latest
run-time platforms. EGL continues to provide developers with an unparalleled
abstraction layer that enhances productivity by providing a conduit to multiple
run-time platforms.

At the most basic level, EGL is a procedural programming language that
enterprise-level or business-oriented developers can use to implement applica-
tions quickly. The word “generation” in the name implies two things:

Business logic written in EGL will be transformed into lower-level code.

Run-time artifacts will be created to help natively execute the generated

application on a desired target platform.

EGL programs are written, tested and debugged at the EGL source level,
not on the generated code level. This means that you can defer actual code
generation until you have satisfactorily tested the EGL application/service
functionality. This aspect differentiates EGL from many other types of code
generators. The EGL developer never changes the generated code—all changes
are made at the EGL level.

EGL development is enabled through the Rational Business Developer Extension,
which delivers an Eclipse-based comprehensive and highly productive devel-
opment environment as an extension of any IBM Rational Software Delivery
Platform programming workbench, such as the IBM Rational Application
Developer for WebSphere® Software product, further enhancing the intrinsic
productivity of the EGL programming abstraction model with world-class modern
IDE capabilities and integration with other key technologies and tools such as JSF
visual construction and Web service visual editing.

•
•

Accelerate delivery of business solutions with IBM Rational
Business Developer Extension software
Page �

Highlights
The business value of EGL and Rational Business Developer Extension software

EGL provides a simplified approach to application development based on
these principles:

Familiar programming model. EGL provides an easy-to-learn program-

ming paradigm embodied in a traditional procedural programming syntax

that is familiar to business-oriented developers. The developer’s view is

abstracted to a level independent of the underlying implementation tech-

nology. It shields developers from the complexities of various supported

run-time environments. This results in significantly reduced training costs,

great improvement in programming productivity and nearly seamless transi-

tion of traditionally skilled developers to modern computing technologies.

Transparent code generation. Developers write their business logic in

EGL source code while the tools included in Rational Business Developer

Extension do the rest. These tools transform business logic into Java or COBOL

language, and optimize the infrastructure code for the target run-time platform.

This results in less user-written code, which means faster turnaround time and

fewer bugs in the deployed application. As an example, when generating Java

code to run in a Java EE application server that invokes a mainframe service,

Rational Business Developer Extension automatically generates the Java

classes necessary to invoke the associated IBM CICS®/COBOL or RPG

program elements.

Run-time platform robustness. Whenever a change to the target run-time

platform occurs, only a new code-generation driver for the new platform is

needed. This allows the application source code to remain constant while

improvements in implementation technology are leveraged. For example, if a

new Web services technology becomes available, you can reuse the same EGL

source code—you only need to regenerate the application using the new driver.

•

•

•

Accelerate delivery of business solutions with IBM Rational
Business Developer Extension software
Page 10

Highlights
End-to-end EGL-based debugging. Source-level debugging is provided

within Rational Business Developer Extension at the EGL level; therefore, you

don’t need to generate code and deploy the final executable to the production

platform before debugging it! This provides developers complete, end-to-end

isolation from the complexity of the run times and middleware with huge

productivity gains and reduction of time to market. Developers debug at the

logical EGL level even if the application or service makes calls to other, non-

EGL components. For example, if a new EGL service needs to call a COBOL

IBM DB2® database-stored procedure that will execute on the IBM z/OS®

platform, the EGL debugger works even when stepping into such components.

Many companies are under pressure to quickly roll out new systems based
on existing mainframe programs and emerging Java EE and Web services
standards; this is due to the obvious benefits of these technologies. While
many available developers lack the technical skills needed in these areas, they
are extremely valuable because of their expertise in the business domain,
their understanding of business requirements and their general experience
in how to implement such systems. However, simply retraining this workforce
in Java, Java EE and related Web technologies is not practical or cost-effective.
The result of this situation is what is often referred to as the “skill silos” effect,
where teams with very different development skills, tools, methodologies and
processes have to find ways to integrate one another’s work, often resulting in
less than optimal and certainly not rapid outcomes. These skill silos are also an
impediment to responsiveness and flexibility because they do not allow dynamic
resource allocation across cross-platform projects.

•

Accelerate delivery of business solutions with IBM Rational
Business Developer Extension software
Page 11

Highlights
Through EGL, Rational Business Developer Extension can address many of
these challenges. It allows you to leverage your current business-domain knowl-
edgeable staff to use the latest technologies with minimal costs and effort. It
allows new generations of developers to create services that can be deployed to
traditional mainframe platforms without having to learn the technical nuances
of the environment, enabling the creation of a unified development team by
breaking through the skill silos. The result may allow your company to be more
flexible and responsive to new business opportunities.

Who benefits from using EGL and Rational Business Developer Extension software?

Simply put, anyone who needs to focus more on solving business problems and
less on underlying implementation technologies. To be more specific, the list
below features the most common types of business-oriented developers who
can benefit from using EGL:

IBM Informix® 4GL developers. Rational Business Developer Extension

comes with a special utility that largely automates the conversion of exist-

ing Informix 4GL-based applications to EGL, enabling you to maintain and

extend these applications using a state-of-the-art development environment,

and begin delivering Web and service-oriented solutions.

RPG or COBOL IBM System i™ developers. EGL offers a simple way to

extend existing RPG or COBOL applications to the Web and allows you to

create new services that can be deployed in your System i servers with mini-

mal retraining, thanks to the familiar procedural nature of the language.

COBOL or PL/I IBM System z™ developers. Similar to System i devel-

opers, System z developers who are typically devoted to legacy system

maintenance can now become key contributors, thanks to their valuable

business-domain expertise, to delivering innovative modern solutions with

minimal retraining.

•

•

•

Accelerate delivery of business solutions with IBM Rational
Business Developer Extension software
Page 12

Highlights
IBM VisualAge® and IBM VisualGen® developers. EGL represents the

next generation and logical migration path for these developers. The envi-

ronment provides easy-to-use and highly automated migration capabilities

that bring your valued VisualAge and VisualGen applications into a modern

development environment—an environment in which the applications can

leverage a modern set of run-time technologies.

Legacy 4GL developers (e.g., Computer Associates Cool: Gen, Com-
puter Associates Telon, Natural, Oracle Forms). The broad platform

coverage, the simplicity and the ease of learning EGL make it particularly

attractive as a replacement for obsolete or orphaned 4GL mainframe or dis-

tributed tools. EGL offers an enterprise modernization alternative through a

community of IBM Business Partner tools and services that largely automate

the transformation to EGL and to the Rational Software Delivery Platform.

Microsoft® Visual Basic developers. EGL offers similar but more power-

ful development efficiencies than the Visual Basic platform, particularly in

the areas of enterprise scalability and multiplatform run-time support.

Database developers. EGL simplifies having to learn the database manip-

ulation language and having to code the create, read, update and delete

(CRUD) functionality by simply doing it for you.

Rational Business Developer Extension software and the IBM Rational Software

Delivery Platform

Rational Business Developer Extension integrates with and extends all the
IBM products that deliver the design and constructions facilities of the IBM
Rational Software Delivery Platform. Once installed on top of any of the fol-
lowing products, Rational Business Developer Extension delivers to the users
of these programming environments the full range of EGL core capabilities.

•

•

•

•

Accelerate delivery of business solutions with IBM Rational
Business Developer Extension software
Page 13

Highlights
The notes below help position which hosting product is the most appropriate
for your use of the Rational Business Developer Extension.

The IBM Rational Application Developer for WebSphere Software
product. A comprehensive IDE for rapidly designing, developing, analyzing,

testing, profiling and deploying applications using Java, Java EE, Web, Web

services, SOA and portal technologies, Rational Application Developer for

WebSphere Software combines with Rational Business Developer Extension

to allow you to freely and seamlessly switch between Java and EGL devel-

opment, with full interoperability between the two languages and tight

integration between the typical Java technology-based tools, such as JSF

technology-based visual composition of Web pages with EGL data and logic,

the ability to exploit native WebSphere tools for testing and deployment

support, or the ability to develop portal solutions with EGL services and

application back ends.

The IBM WebSphere Developer Studio Client for System i product.
An IDE for developing Java, Web, Web services and client/server applica-

tions specifically to run on the System i server, WebSphere Developer Studio

Client for System i combined with Rational Business Developer Extension

enriches the environment with rapid development EGL tools that either

seamlessly integrate with existing System i legacy programs and data, or

generate new services that deploy natively to the System i server.

The IBM WebSphere Developer for System z product. This is an IDE

optimized for developing COBOL or PL/I native applications running on

System z platforms. You can optionally create Java EE and Web applica-

tions integrated with legacy transactional environments (CICS and IBM

IMS™) and their associated languages (COBOL and PL/I). The product

includes wizards that help you write Web services against existing legacy

COBOL CICS programs using either Java connectors or SOAP for CICS

technology. Once installed over WebSphere Developer for System z, Rational

Business Developer Extension enriches the environment with rapid devel-

opment EGL tools that either seamlessly integrate with existing System z

legacy programs and data, or generate new services that deploy natively to

the System z server.

•

•

•

Accelerate delivery of business solutions with IBM Rational
Business Developer Extension software
Page 14

Highlights
The IBM Rational Software Architect product. A compressive design

and construction tool that leverages model-driven development with UML,

Rational Software Architect enables you to create well-architected applica-

tions and services. This product also includes all the capabilities of Rational

Application Developer and offers UML modeling for users who want a

model-driven approach to their EGL development. Once Rational Business

Developer Extension is installed over Rational Software Architect, the archi-

tect or designer can produce EGL services directly from UML models, and

then leverage the richness of the EGL development facilities to complete the

application development for any of the platforms supported by EGL.

The IBM Rational COBOL Runtime for zSeries® product. This prod-

uct provides the run-time libraries for programs that were developed with

Rational Business Developer Extension and generated into COBOL for

deployment to any of the supported System z environments.

Application development with EGL

The following sections describe EGL elements that are important to develop-
ing applications.

EGL language

EGL is a full-featured, procedural language that abstracts out the details of a
target technology. EGL has verbs like “get,” which simplify the programming
model by providing a consistent specification to various target data sources.
For example, a get statement can refer to records in a relational database, an
indexed file or to messages in a message queue. Developers are not required to
learn and code technology-dependent database managers or message-oriented
middleware programming.

•

•

Accelerate delivery of business solutions with IBM Rational
Business Developer Extension software
Page 15

Highlights
Writing your applications in EGL can also protect your development investment.
You can cast or generate the abstracted language into any other language.
Currently, EGL can generate Java or COBOL code. As technology changes and
evolves, you protect your investment by having the ability to regenerate into a
new, improved target platform or to entirely new platforms—without the need to
modify your application.

EGL libraries

An EGL library is simply a file that includes EGL code. EGL libraries allow
application developers to easily decouple the business logic from other appli-
cation code, and they provide various entry points—one per function. You can
call these functions from other functions in other libraries, or from EGL code
in EGL programs or EGL page handlers.

The use of EGL libraries is optional, but it is the best way to reuse compo-
nents. You can compare EGL libraries to COBOL copy books or Java packages.
Many EGL libraries are provided directly in the products with built-in func-
tions. This is similar to Java classes provided by Java toolkits or frameworks.
These libraries have the potential to greatly simplify and accelerate applica-
tion development.

EGL programs and functions

Developers can also use EGL programs to code the business logic, but with a
single entry point. EGL programs are similar to COBOL programs in that an
EGL program can be a main program, or it can be called in the same way it is
called in COBOL. EGL code within programs can invoke EGL functions. You
can compare an EGL function to a paragraph in the COBOL procedure divi-
sion or to a Java method. EGL programs are units of EGL source that can be
generated into COBOL or Java code.

Accelerate delivery of business solutions with IBM Rational
Business Developer Extension software
Page 16

Highlights
EGL services

EGL is specifically designed to support service-oriented architecture. Devel-
opers can define a construct called a service, which is a set of operations that
can be invoked by a client (any application component that can reside in the
same or another platform) or application. Services can be deployed as either
EGL services or as Web services. The former can be accessed from EGL code
directly or by way of a TCP/IP connection, and the client in this case can be a
program, handler, library or another service. The latter can be accessed over
an HTTP connection from clients written in any other language.

EGL page handler

When coding EGL applications to be deployed for the Web, the preferred
method utilizes JSF technology. This framework has one or more JavaServer
Pages (JSP) screens. In an EGL-based application, every page is associated
with an EGL page handler. The EGL page handler controls a user’s run-time
interaction with a Web page. Specifically, the page handler provides data and
services to the page-displaying JSP screen. The page handler itself includes
variables and specialized logic such as:

An OnPageLoad function, which is invoked the first time the JSP screen

renders the Web page.

A set of event handlers, each of which is invoked in response to a specific

user action (specifically, by the user clicking a button or link).

The page handler implements the controller component of the Model View
Controller (MVC) pattern. (The MVC will be discussed later in this paper.)
Therefore, it is recommended not to include any business logic directly in it.
Although the handler might include lightweight data validations, such as range
checks, you should invoke other programs or functions to perform complex
business logic in order to follow MVC principles.

•

•

Accelerate delivery of business solutions with IBM Rational
Business Developer Extension software
Page 17

Highlights
Database connectivity with EGL

Accessing data from databases can sometimes be challenging for developers
who primarily want to provide users with the information to make the best
business decisions. To access data, a developer needs to:

Connect to a database.

Know and use the database schema.

Be proficient in SQL data manipulation language in order to get the

appropriate data.

Develop the primitive functions to perform the basic CRUD database tasks.

Provide a test environment to efficiently test your application.

EGL provides capabilities that make this task extremely easy for the business-
oriented developer:

Connectivity. Wizards will take you through a step-by-step process of defin-

ing connectivity. You could locate the databases in remote locations, such as

System z hardware.

Database schema. When dealing with existing databases, Rational Business

Developer Extension provides a seamless import facility that makes the schema

structures available to the EGL application.

SQL coding. Rational Business Developer Extension generates SQL state-

ments based on your EGL code. You can then use the generated SQL or alter

it to suit your needs.

Primitive functions. The Rational Business Developer Extension product

comes with generation facilities that automatically generate the typical

CRUD functions for database-driven applications either as EGL libraries or

as EGL services.

Test capabilities. Rational Business Developer Extension includes a test

environment that helps eliminate the complexities associated with deploying

and running your application in complex target platforms.

•
•
•

•
•

•

•

•

•

•

Accelerate delivery of business solutions with IBM Rational
Business Developer Extension software
Page 18

Highlights
File access with EGL

You can also use EGL programs and libraries to access data storage other
than relational databases, such as serial files, indexed and relative record files
(Virtual Storage Access Method [VSAM]), IBM MQSeries® queues and other
system files. This provides a large amount of flexibility in the types of data
sources that you can use within an EGL application system.

Application architecture with EGL

To complete end-to-end Web-based applications, you need to bring together
all the elements discussed above in the context of an application architec-
ture. When you complete this integration, you’ll have a concrete, deployable
application. The architecture that EGL generates is a Java EE architecture
conforming to the JSF technology-based MVC pattern.

JSF and EGL

JSF is a set of Java classes and JSP tag libraries that provides a framework
for developing Web applications. Its implementation in Rational Application
Developer lets you drag and drop JSF controls onto a page canvas instead of
having to implement pages using hand-coding techniques.

Rational Business Developer Extension plugs into Rational Application Developer
and provides integration of EGL and JSF technology, producing an event-driven
model in which a page-specific handler manages each request. The page handler
can act on information submitted with the request, or it can forward the informa-
tion to another handler for processing. This event-driven model greatly simplifies
the building of Web applications. Control logic in the page handler is written in
EGL. Business logic in the libraries and programs is also written in EGL. This
totally eliminates the need to master Java skills to write your application’s user
interface or business logic. Rational Business Developer Extension will gener-
ate all the necessary Java code. The JSF with EGL duo makes for an extremely
high-productivity page development environment.

Accelerate delivery of business solutions with IBM Rational
Business Developer Extension software
Page 19

Highlights
MVC framework

The MVC framework (also referred to as “model 2”) has many benefits and is
often considered a best practice for developing Web applications.

At run time, the application server contains both the view and controller com-
ponents of an MVC Web application, while a third tier (which can be inside or
outside the application server) contains the model.

Model. You can find the business logic, which in most cases involves accessing

data stores, such as relational databases, in the EGL libraries and programs.

View. The code responsible for the presentation layer consists of JSP and Java

Beans technology that stores data for the JSPs to use. Page creation is greatly

simplified by using JSF controls available within the Rational Application

Developer page editor.

Controller. The EGL page handlers contain the code that determines the

overall flow of events.

Model Controller View

Call EGL programs …
Invoke EGL library
functions …

Call EGL
page handlers …

Database

Render
HTML …

EGL libraries
EGL programs

EGL page handler
files

JSP
pages

Figure 1: Relationships between elements of an MVC-compliant EGL application

•

•

•

Accelerate delivery of business solutions with IBM Rational
Business Developer Extension software
Page 20

Highlights
The beauty of the EGL development environment is that business-oriented
application developers are not confronted with implementing—and do not
need to understand how to implement—the MVC pattern. The Rational Business
Developer Extension generation engine does that for them.

Walking through an EGL application scenario

Figure 2 illustrates an application scenario using EGL. The following steps
will show the flow of information and the tasks associated with simple EGL
application development.

In this application:

1.	The user types an ID and clicks a button.
2.	Clicking the button creates a request that the JSF servlet handles. In turn,

the controller servlet invokes the appropriate server program. The ID then
passes to the server program.

3.	The server program validates the ID by reading an IBM DB2 database
using the ID as the key to find. The server program can be a function
within an EGL library or an EGL program.

4.	If the server program finds the ID, it collects information (name, salary and
commission) and returns the ID.

5.	The server sends the returned data to the result JSP page, which displays it.
6.	If the server program does not find the ID, it creates an error message and

returns the ID.
7.	The server sends the error message to the error JSP page, which displays it.

Accelerate delivery of business solutions with IBM Rational
Business Developer Extension software
Page 21

Highlights
To accomplish this simple application using Rational Business Developer
Extension, you will create the three pages using the drag-and-drop page editor
shown in figure 2. The controller logic that calls the appropriate server function
is written as an EGL page handler, and the server function that performs the
validation is written as an EGL library function. Rational Business Developer
Extension will generate Java code and pull all these pieces together into a Java
EE technology-based application that you can deploy and run.

Browser

Inquiry

Query result

Application server

View

Contoller

Server

Model

Request

Response

Invoke

JSF servlet

JSP

EGL

EGL

EGL

Figure 2: Typical EGL application scenario

You can see with this simple walk-through example that the complexity behind
the new and evolving Web technologies is hidden from the developer by an easy-
to-use page editor and an easy-to-use programming language called EGL.

Migrations and enterprise modernization

This white paper does not intend to address the various driving forces behind
enterprise IT modernization of legacy applications or the various planning
steps involved. However, what is of importance to note in the context of this
paper is the role that EGL and Rational Business Developer Extension can
play in such modernizations.

Accelerate delivery of business solutions with IBM Rational
Business Developer Extension software
Page 22

Highlights
The new generation of IT systems requires software development capabilities
that support new middleware and emerging application architectures. Flexibil-
ity is the name of the game. However, because of the variety and complexity of
activities and artifacts necessary to implement these solutions, it is essential that
development organizations establish a systematic and comprehensive approach
to developing software with proven methodologies, processes and tools. At the
same time, legacy application developers are asking IBM to preserve the levels
of productivity and simplicity that they have become accustomed to, and which
support business-critical applications.

Through Rational Business Developer Extension, EGL becomes a core com-
ponent of a broad, comprehensive application development, governance and
lifecycle management solution from IBM Rational that spans modeling and
application development through testing and software configuration manage-
ment tools. This highly productive language provides a familiar development
model that business-oriented developers are accustomed to. There is no need
to restaff; instead, you can rewire and leverage your existing staff with EGL.
And knowing how crucial your investment in existing legacy systems is, EGL
can simply call your business-critical applications, leveraging what is best
about your existing legacy environment. Or, if and when appropriate, you may
choose to convert your existing applications to EGL.

Through code conversion of legacy 4GL such as VisualAge; VisualGen; Informix
4GL; Natural; RPG; Computer Associates Cool:Gen, Telon, Ideal and Synon; and
more, IT organizations can leverage their existing investments and move rapidly
onto a modern software development platform. This is made possible through
automated conversion utilities designed to migrate the specific legacy environ-
ment to EGL in a cost-effective, efficient manner.

Accelerate delivery of business solutions with IBM Rational
Business Developer Extension software
Page 23

Highlights
Once you convert your code, you have the opportunity to step back and analyze
whether a redesign is required, particularly from a user interface perspective. If
a redesign is required, EGL can assist you in bringing your applications to the
Web or with leveraging a rich client platform (RCP).

To summarize, EGL can play a critical role in enterprise application mod-
ernization, helping to future proof IT application organizations from the
ever-changing world of middleware, databases, languages, platforms and
computing environments.

Conclusion

Our purpose in this paper was to introduce EGL and the Rational Business
Developer Extension product: what they are, why IBM has invested in their
development and how so many traditional software developers benefit from
them. Java, Java EE, SOA and all the modern Web technologies are powerful, yet
their complexities can make them challenging to learn. IBM is making advance-
ments in all its product lines to make development of such modern solutions
easier. IBM also understands the importance of leveraging existing legacy code,
as needed, for business-critical applications. EGL is one important technology
enabling us to address these critical application development issues.

We hope that this paper has piqued your interest in EGL and how it can help
you speed up the adoption of emerging technologies, improve productivity,
leverage legacy developers and increase the likelihood of your success in build-
ing modern applications.

©	 Copyright IBM Corporation 2007

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
05-07
All Rights Reserved.

CICS, DB2, IBM, the IBM logo, IMS, Informix,
MQSeries, Rational, System i, System z,
VisualAge, VisualGen, WebSphere, z/OS and
zSeries are trademarks or registered trademarks
of International Business Machines Corporation
in the United States, other countries or both.

Java and all Java-based trademarks are trade-
marks of Sun Microsystems, Inc. in the United
States, other countries, or both.

Microsoft is a trademark of Microsoft Corporation
in the United States, other countries, or both.

Other company, product and service names may
be trademarks or registered trademarks or service
marks of others.

The information contained in this documentation
is provided for informational purposes only. While
efforts were made to verify the completeness
and accuracy of the information contained in this
documentation, it is provided “as is” without war-
ranty of any kind, express or implied. In addition,
this information is based on IBM’s current product
plans and strategy, which are subject to change by
IBM without notice. IBM shall not be responsible
for any damages arising out of the use of, or oth-
erwise related to, this documentation or any other
documentation. Nothing contained in this docu-
mentation is intended to, nor shall have the effect
of, creating any warranties or representations from
IBM (or its suppliers or licensors), or altering the
terms and conditions of the applicable license
agreement governing the use of IBM software.

RAWxxxxx-USEN-00

For more information

To learn more about how IBM Rational Business Developer Extension soft-
ware and EGL can benefit you or your organization, contact your local IBM
sales team or visit:

ibm.com/developerworks/rational/products/rbde

