
Software development
White paper
August 2007

Introducing collaborative
development environments.
Grady Booch, chief scientist, IBM Rational

Introducing collaborative development environments.
Page 2

Contents

2	 Introduction

2	 Collaboration	and	the	

emergence	of	CDEs

4	 The	changing	nature	of	teams

5	 The	difference	between	IDEs	

and	CDEs

7	 CDEs	as	Web	based,	artifact	

centric	and	multidimensional

8	 The	general	purpose	of	a	CDE

9	 The	software	development	

purpose	of	a	CDE

11	 CDEs	at	your	fingertips

12	 Conclusion

Introduction

In this closer look at collaborative development environments (CDEs) Grady
Booch, the IBM resident expert on CDEs, describes what they’re all about,
provides real-world examples and explains why this emerging technology is
important and relevant to the developer and technical communities.

Collaboration and the emergence of CDEs

A CDE is a virtual space where the stakeholders of a project can brainstorm,
discuss, deliberate, negotiate, record and generally labor over ideas and infor-
mation—even if they’re separated by time or space—to carry out some task,
most often to create a useful artifact and its supporting objects.

Collaboration is an element of every engineering domain. As described by
Coplien in “Organizational Patterns of Agile Software Development,”* there
are some well-defined and well-understood patterns of behavior in hyperpro-
ductive teams. Opportunities to encourage and amplify these patterns are
available through the use of a CDE. The rise of the Web as a natural extension
of an individual’s physical and daily world; the economic pull of outsourcing
and offshore development; the integration of third-party software; the emer-
gence of Web-centric service-oriented architectures; the use of home and
remote offices; and the growth of strategic partnerships among organizations
and companies have all contributed to the increasing distribution of teams,
but those teams still need to be able to effectively work together.

Introducing collaborative development environments.
Page �

Collaboration has always been an essential part of the fabric of the Internet:
e-mail, instant messaging, chat rooms, discussion groups and wikis are
common collaborative elements that have matured over time; so in one regard,
there is nothing new here. Collaboration among teams is already facilitated
through the use of features embedded in standard desktop products such
as office suites, where there is ample support for shared document reviews,
distribution of documents among teams and mechanisms for performing
common collaborative tasks. In a practical sense, these tools provide the
baseline of collaboration functionality for today’s software developers.

However, there are two elements that make CDEs for software development
materially different: First, software developers must manipulate semantically
deep artifacts with equally semantically deep associations among them. (This
is in contrast to the kinds of semantically weak textual documents commonly
manipulated by business organizations.) Second, the Web is essentially the
atmosphere in which all software developers virtually live, and it is only a
short distance from physically colocated teams to virtually colocated ones. So
teams can leverage the plumbing of the Web and populate this atmosphere
with creature comforts that facilitate distributed collaboration.

A CDE is not a unique or special thing. There are hundreds of small things
that already exist and that can be combined to form a virtual space. But a
CDE is a particularly fragile thing because it touches on the social elements
of development, and it’s sensitive to issues of presentation, simplicity, ease
of use, personalization and culture. A CDE must be lightweight, nimble and
snappy in appearance, yet it must be deep in its inner workings. It must never,

Introducing collaborative development environments.
Page �

ever get in the way of work; rather, it must disappear in the ether, providing
a sanctuary in which the individual developer works and in which the team
assembles. Thus, the purpose of a CDE is to create a frictionless surface for
development by eliminating or automating many of the daily, noncreative
activities of the individual and the team, and by providing mechanisms that
encourage creative, healthy and high-bandwidth modes of communication
among a project’s stakeholders.

The changing nature of teams

Every engineering activity involves producing a solution that balances the
tangible and intangible forces that weigh upon a system. In software, these
forces include the usual business pains (cost, schedule, mission), environ-
mental pains (resources, compatibility, complexity), developmental pains
(production, resilience) and operational pains (functionality, performance,
quality, dependability), as well issues of value (legality, ethicality, morality).

For systems of any reasonable complexity, no one person can efficiently coun-
teract these forces. For most software-intensive systems under construction,
operation or revision, software development is a team sport. In these circum-
stances, inter- and intrateam interaction, communication and dynamics play
as minor a role as individual heroics in successful software development. For
this reason, understanding more about optimizing software development team
performance is a critical task of software engineering.

There are few hard studies that tell us the median size of a contemporary
development team, but our experience across a broad range of domains tells us
that teams of four to eight people are most common, with teams of one or two
being the second most common. Beyond the range of four to eight members, the

Introducing collaborative development environments.
Page �

existence of larger teams tends to tail off; although, we also find a peak in the
curve of team size and occurrence somewhere around the 100 to 200 mark.
Some systems, such as telephony, financial, and command and control, are so
complex that they require large teams to complete the work on time.

Not only must an organization focus on the efficiency of each individual team,
it must also be concerned about the efficiency of its teams of teams. In even
a modest-size development organization, there might be 100 or so developers
organized in teams of 4 to 8, with most focused on point products and a few
focused on infrastructure technologies that support all the other teams. In prac-
tice, most of these individual teams will themselves be contiguous (that is, their
cubicles will be physically close to one another), which encourages the jelling of
the team through the myriad informal interactions that occur during the day.
However, relative to one another, these teams will typically be physically discon-
nected, thereby reducing the level of informal contact as well as the bandwidth
and quality of interteam communication. Indeed, one of the problems any such
organization faces is simply keeping these teams of teams on the same page.
That requires sharing project status, reducing duplication of work, engineering
the architectural seams among groups, and sharing knowledge and experience.

In short, delivering better software faster involves the rhythms of the indi-
vidual developer, the small team of developers and—for larger projects— teams
of teams, and even teams of teams of teams of developers.

The difference between IDEs and CDEs

Software developers spend a majority of their time on code-centric activities
supported by an integrated development environment (IDE) that offers a range
of code development and manipulation features. Other aspects of their work

Introducing collaborative development environments.
Page �

that involve interaction, communication and coordination within and across
teams are generally supported by a discrete combination of capabilities, such
as configuration management systems, issue tracking databases, instant mes-
saging (IM) systems and project Web sites. Assembled in a coherent fashion,
this latter set of capabilities can compose a CDE for software engineers.

Whereas traditional IDEs focus on improving the efficiencies of the individual
developer, CDEs focus on improving the efficiencies of the development team
as a whole. While it is the case that most modern IDEs have some degree of
collaborative support (for example, the ability to check in and check out an
artifact from a common repository or to call out to Microsoft® NetMeeting
software and whiteboards from a menu), an IDE will not transmogrify into a
CDE if you just incrementally add collaborative features. IDEs are essentially
developer centric, meaning that their primary user experience focuses on the
individual developer. CDEs are essentially team centric, meaning that their
primary user experience focuses on the needs of the team (but with points of
entry for different individuals). Psychologically, this is a subtle yet important
shift of perspective.

To apply the thinking of Abraham Lincoln, software development takes
place of the Web, by the Web and for the Web. There is considerable con-
tinuing development of the Web’s infrastructure; similarly, a great deal of
application software is being developed for Web-centric systems. Relative to
CDEs, however, development by the Web means using the Web to change the
nature of software development itself.

Introducing collaborative development environments.
Page 7

CDEs as Web based, artifact centric and multidimensional

The most common IDEs (Microsoft Visual Studio and the open source
Eclipse) are thick-client centric; they cater to the code warrior and provide
a single, complex window whereby the programmer peers into the system
under construction. But emerging CDEs are and should be Web based, arti-
fact centric and multidimensional. The Web is an ideal platform for doing
software engineering because it permits the creation of virtual spaces that
transcend the physical boundaries of its participants. CDEs should also be
artifact centric, meaning that they should offer a user experience that makes
work products primary and engages tools only as necessary. Finally, a CDE
should be multidimensional in the sense that different stakeholders should
be offered different views (some via browsers, some via thick clients), each
adapted to that stakeholder’s specific needs.

Collaborative sites both on and off the Web have existed for some time, but we
began to see collaborative sites focused solely on software development start-
ing about 10 years ago. Most of these sites were neither public nor reusable,
but rather one-off creations of specific projects. One of the earliest such sites
was for a large command and control system being built by Boeing. (As we will
discuss later, it should come as no surprise that Boeing has continued to inno-
vate mightily in this space.) As part of an architectural review, viewers were
placed in front of a homegrown intranet that contained every artifact created
by the project, from vision documents and models to code and executables.
Although this site offered little in terms of collaborative mechanisms, it did
offer a virtual presence, a veritable electronic meeting place for the project’s
team members, many of whom were geographically distributed.

Introducing collaborative development environments.
Page �

Soon after, we saw commercial sites emerge for the construction and com-
puted-aided design (CAD) industries, both using the Web to provide a virtual
project space. Similar sites grew up for the open source software development
industry. Indeed, since a great deal of open source code is written by individu-
als who never interact with one another in person but only via e-mail and the
Web, it is natural that the Internet be used to provide a sense of presence for
open source projects.

The general purpose of a CDE

The purpose of a CDE is to create a frictionless surface for development that
eliminates some of the pain points in the daily life of the developer that indi-
vidually and collectively impact the team’s efficiency, such as:

The cost of start-up and ongoing working space organization.

Inefficient work product collaboration.

Maintenance of effective group communication, including knowledge and

experience, project status and project memory.

Time starvation across multiple tasks.

Stakeholder negotiation.

Stuff that doesn’t work.

We call these “points of friction” because the energy lost in their execution
could be directed to more creative activities that contribute directly to the
completion of the project’s mission. Addressing these points of friction repre-
sents substantial return on investment for organizations.

•
•
•

•
•
•

Introducing collaborative development environments.
Page �

A CDE can address many of these points of friction. Making a virtual proj-
ect environment just a URL away can minimize start-up costs; being able
to self-administer such sites also means that the team can manage its own
artifacts rather than require the services of a dedicated support team. The
friction associated with work product collaboration can be minimized by offer-
ing artifact storage with integrated change management and the storage of
metaknowledge. Communication can be facilitated by the use of mechanisms
for discussions, virtual meetings and project dashboards. Time starvation can
be addressed not only by a hundred small creature comforts for the developer,
but by making possible virtual agents that act as nonhuman members of
the development team who are responsible for carrying out scripted, tedious
tasks. Stakeholder negotiation can be facilitated by mechanisms that automate
workflow. As for stuff that doesn’t work, well, a CDE won’t make much of
a difference: the best we can suggest is that you simply refuse to buy or use
products of inferior quality. That notwithstanding, if stuff doesn’t work for
you, then it is likely that there are others in the world who have experienced
the same problem and might have solved it or found a workaround. In the
presence of an extended community of developers, such as those you might
interact with in a CDE, mechanisms for sharing experiences can temper the
problems of hard failure (and perhaps offer a form of collective bargaining to
put pressure on the vendor who has delivered a shoddy product).

The software development purpose of a CDE

There exist only a few commercial CDEs focused primarily on the problem of
software development over the Web (most notably, SourceForge and Collab.
net), but there are many more that have been created for other domains or
that address one specific element of the software CDE domain. Studying these
different sites can help us understand what a CDE is, what it is not and what
it can be.

Introducing collaborative development environments.
Page 10

The construction, manufacturing and electronics industries have been fruitful
places for the evolution of collaboration products. In fact, these industries have
been the earliest adopters of collaborative technology, perhaps because many
of their points of friction are directly addressed by the features of a CDE. This
domain is so well suited to collaboration products that a trade organization
(Network for Construction Collaboration Technology Providers) was established
to form standards for this domain.

Imagine, for example, a building being erected in Kuala Lumpur. Onsite, the
construction supervisor might encounter a design problem whose resolution
would require the interaction of the building’s architect, structural engineer and
client (and, of course, lawyers). If the architect were in London, the structural
engineer in New York and the client in Hong Kong, getting these stakeholders
together in real time would be problematic. Instead, using the Web as a virtual
meeting place for the project, these three people (and the lawyers) can come to
a resolution in real time.

This kind of collaborative development is what lies behind products such
as Gehry Technologies’ Digital Project tools. Frank Gehry, the architect of
dramatic works such as the Guggenheim Museum in Spain, formed Gehry
Technologies to commercialize the tools that he used to design and construct
his architectural creations. The Digital Project tools include Designer, Foun-
dation, Structures and MEP for modeling; Viewer and Project Manager for
project management; and Knowledge Template and Knowledge Adviser for
model checking.

Introducing collaborative development environments.
Page 11

Moving to the domain of manufacturing, Boeing, together with IBM Business
Partner Dassault, created the Global Collaboration Environment to design and
build the Boeing 787 aircraft. This Web-centric system provides modeling,
asset management and product management tools, with an emphasis on trace-
ability and auditability. Dassault has its own collaboration tools, most notably
ENOVIA for collaboration across the manufacturing chain. The company’s
SmarTeam Web editor offers tools for the distributed manipulation of 3-D
models. Dassualt has even created a robust community of practice for its col-
laboration products.

CDEs at your fingertips

A CDE is not so much a single killer application as it is a coherent collection
of many small things. Although not really CDEs in their own right, some
technologies provide critical collaborative infrastructures for full-blown
CDEs. Of these, IM and e-mail are probably the most pervasive mechanisms
for collaboration. Products such as NetMeeting are also commonly used by
teams for ad hoc conferencing (with WebEx and its equivalents providing
more scalable facilities). Although subtly different in their user experience,
both services offer Web-centric conferencing with the ability to broadcast
documents and slides (for lectures) and share desktops (offering the moral
equivalent of an electronic whiteboard).

There really is a spectrum of infrastructure collaborative mechanisms that
may be applied to a Web community, each with its own value. Specifically:

Web logs (blogs) are useful as mostly one-way informational sites.

Mailing lists are good for small groups with a common purpose, conversations

that wax and wane over time, communities that are just getting started, and

newsletters and announcements.

Message boards are useful for asking and answering questions, encouraging

in-depth conversations, managing high-volume conversations and providing

context, history and a sense of place.

•
•

•

Chat rooms are good for holding scheduled events, preparing for and debrief-

ing life events, discussing offline events in real time and casually chatting.

Whiteboards are useful for brainstorming, communicating and discussing.

Net meetings are useful for one-on-one discussions, as well as for group

presentations and distributed discussions.

Portals (such as IBM developerWorks®) are useful meeting places for communi-

ties of practice. Not only can the primary owner of the domain provide relevant

knowledge to users, but users can share their experiences and solutions.

Wikis, which are rather like message boards on steroids, permit a trusted

community to figuratively meet at a water cooler and leave behind the bread

crumbs of its members’ conversations.

Most of these infrastructure services are quickly becoming commodities,
meaning that they are already available from a variety of sources— in
particular, open source.

Conclusion

Effective teamwork is an essential part of every nontrivial software engineer-
ing effort. Collaborative capabilities are essential to support these teams,
particularly as team sizes get smaller while team interaction becomes more
geographically dispersed. CDEs are an ideal way to get people working
together effectively, and you probably already use one—you just aren’t using
it to its capacity.

For more information

To learn more about IBM products and services that support CDEs, contact
your IBM representative, or visit:

ibm.com/developerworks/integrate/collaborate.html

•

•
•

•

•

©	 Copyright	IBM	Corporation	2007

IBM	Corporation	
Software	Group	
Route	100	
Somers,	NY	10589	
U.S.A.

Produced	in	the	United	States	of	America	
08-07	
All	Rights	Reserved

developerWorks,	IBM	and	the	IBM	logo	are	
trademarks	of	International	Business	Machines	
Corporation	in	the	United	States,	other	countries	
or	both.

Microsoft	is	a	trademark	of	Microsoft	Corporation	
in	the	United	States,	other	countries	or	both.

Other	company,	product	or	service	names	may	be	
trademarks	or	service	marks	of	others.

The	information	contained	in	this	documentation	
is	provided	for	informational	purposes	only.	While	
efforts	were	made	to	verify	the	completeness	
and	accuracy	of	the	information	contained	in	
this	documentation,	it	is	provided	“as	is”	without	
warranty	of	any	kind,	express	or	implied.	In	addi-
tion,	this	information	is	based	on	IBM’s	current	
product	plans	and	strategy,	which	are	subject	
to	change	by	IBM	without	notice.	IBM	shall	not	
be	responsible	for	any	damages	arising	out	of	
the	use	of,	or	otherwise	related	to,	this	docu-
mentation	or	any	other	documentation.	Nothing	
contained	in	this	documentation	is	intended	to,	
nor	shall	have	the	effect	of,	creating	any	warran-
ties	or	representations	from	IBM	(or	its	suppliers	
or	licensors),	or	altering	the	terms	and	conditions	
of	the	applicable	license	agreement	governing	
the	use	of	IBM	software.

	*		 Coplien,	James	O.	and	Harrison,	Neil	B.,	“Organi-
zational	Patterns	of	Agile	Software	Development,”	
Prentice	Hall	PTR,	July	16,	2004.

RAW11045-USEN-00

http://www.ibm.com/developerworks/integrate/collaborate.html

