

W H I T E P AP E R

E s t a b l i s h i n g B u i l d M a n a g e m e n t f o r I T E f f i c i e n c y a n d
B u s i n e s s Ad a p t a b i l i t y
Sponsored by: BuildForge

Melinda-Carol Ballou
January 2006

E X E C U T I V E S U M M A R Y :
U N D E R S T AN D I N G B U I L D M AN A G E M E N T

Software build management impacts successful software deployments, as well as
business and IT productivity, and is becoming an increasing focus for IT
organizations. The need for more consistent, reliable, and high-performance build
management processes; organizational strategies; and automation has always been
important, but a number of factors are driving companies to target the build
management area of the application life cycle now. The pressures on Global 2000
corporations include:

! Distributed development using offshore, outsourced, and internal resources that
demand more effective build management because of the need for better
communication, collaboration, and coordination

! Regulatory compliance initiatives resulting from legislation such as Sarbanes-
Oxley that mandate auditability, consistency, and reproducibility from
development to production, necessitating effective build management

! The complexity of emerging new development paradigms, such as service oriented
architecture (SOA), that require close coordination across business and IT groups
and a higher level of quality, change, and build management to deliver services

However, build management has typically been viewed as a minor subcategory within
software change and configuration management (SCM), and both users and vendors
tend to have inadequate approaches. Build and release management should be
considered a distinct category and process within application life-cycle management
(ALM), with a similar level of focus to other ALM phases. Not doing so jeopardizes
successful software implementations.

The purpose of this white paper is to lay out the role that build management plays �
its impact on the overall software development life cycle and the business adaptability
enabled by more consistent approaches to build management.

In that context, we consider today's market drivers, the current practices of typical
Global 2000 companies, the challenges they face, and the benefits of moving to
consistent build management approaches and practices. In addition, we present user
case studies that exemplify strategies that incorporate effective build management by
leveraging automated technology combined with best practices and organizational
strategies.

G
lo

ba
l H

ea
dq

ua
rte

rs
: 5

 S
pe

en
 S

tre
et

 F
ra

m
in

gh
am

, M
A

01
70

1
U

S
A

P.

50
8.

87
2.

82
00

 F

.5
08

.9
35

.4
01

5

w
w

w.
id

c.
co

m

2 #200462 ©2006 IDC

M A R K E T T R E N D S AN D E V O L U T I O N :
S E T T I N G T H E C O N T E X T

Build management should be viewed as a distinct and key element of ALM within the
overall application and IT life-cycle management (ITLM) framework. Therefore, it is
important to consider the ITLM landscape and context for build management before
moving into this area specifically.

ITLM encompasses a range of phases that are increasingly integrated with
development environments. These phases include requirements, modeling, testing,
software change and configuration management, version control, and increasingly, IT
project portfolio management. These integrated suites seek to provide IT and
corporate executives with access to quantitative data that has typically been locked
up within disparate ALM systems. Access to this data can enable qualitative
assessments based on quantitative metrics, such as change management progress
and testing success (or lack thereof). The addition of portfolio management
capabilities to ITLM makes it possible to prioritize resources, establish effective
evaluations of internal and external sourcing, and make more adaptive business
choices with regard to software development projects and programs with dashboards.
This drive for effective and coordinated application life-cycle management in the
context of the business is a direct result of the critical nature of software for corporate
success. Without the ability to respond quickly to business change and competitive
pressures with appropriate decision making, applications become brittle and
unresponsive.

Challenges to the successful adoption of integrated ALM suites include usage of
products from multiple vendors (including proprietary tools) that are working
effectively and provide similar functionality, cultural and political barriers involving
poor process coordination across ALM phases, and the lack of effective ALM tools
integration from a single vendor/provider. In areas where functionality is missing, we
see users augmenting existing ALM tools with internal capabilities or third-party
solutions. A key functionality gap we have identified within ALM is build management,
including process management, communication, automation, control, and traceability
of builds and releases throughout the development life cycle.

D E F I N I N G C O M P R E H E N S I V E B U I L D
M A N AG E M E N T

Build management brings together versions of software continually during
development and also for production builds � the end process prior to preproduction
testing � to then deploy the software to the enterprise. Given the corporate value of
software and the core impact to the business of software failure, build management
inefficiencies and failures are visceral and extremely costly because they, in turn, can
lead to software delay and failure. Because this process delivers the executable �
the artifact that is delivered to the customer � it contains all of the essential data
regarding what was in the release, what defects were resolved, how the release can
be recreated, and what systems and processes were used. All of this information is
helpful for compliance or to address issues that occur following the release. If this
process is unmanaged, untracked, and uncontrolled, it can be the Achilles' heel of a
company's development strategy.

©2006 IDC #200462 3

Full build management is more than a mere "code compile." Other elements of a
more comprehensive approach to build management include build process
management (establishing effective and consistent methods for build management),
compliance/audit (to ensure management and traceability for regulatory compliance
initiatives such as Sarbanes-Oxley), execution of complex build and release tasks as
well as centralized control and management of the multiplatform configurations on
which the builds are run, and reproducibility of builds and system configurations. Such
coordination becomes business critical for distributed development across groups that
are typically run as separate fiefdoms (e.g., developers, testers, and change and
configuration management and release teams).

It is important to note that builds don't occur just close to release/production time �
they happen on a continual basis during the development life cycle. Integration builds
(where work from each of the developers is combined, packaged, and tested as a
cohesive product) typically occur on a nightly basis, if not more frequently. Processes
that are manual and error prone can slow down the entire development cycle. They
also can have a significant impact on product quality, which is why eXtreme
Programming and Agile process management proponents suggest building as often
as possible so that errors can be detected and resolved quickly. If the build process is
inefficient and lengthy, quick detection and resolution simply aren't possible, and
ineffective build management can be a huge productivity drain on the development
team. If developers are waiting for an error to be detected or resolved, they can't
move ahead with their work. If quality assurance workers are waiting for developers to
fix a build error, they may not have a version to test. This bottleneck can affect the
entire team and is particularly impactful from timing and business perspectives for
production builds.

Although there is increasing IT visibility into other life-cycle phases, build
management has escaped scrutiny and is typically addressed by homegrown
systems. Automated software change and configuration management tools and
vendors have focused on other areas of functionality but have not typically
incorporated either effective build management functionality or processes to support
better approaches to build management. Those vendors have looked to third-party
integrations to provide such capabilities. Companies have only recently begun to
realize the impact that build mismanagement can have on their release time frames
and team effectiveness.

C U R R E N T G L O B A L 2 0 0 0 B U I L D
A P P R O A C H E S A N D C H AL L E N G E S

For the majority of Global 2000 companies, approaches to build management usually
consist of cobbled-together scripts that are understood by merely one or two
individuals or "build managers" within an organization. Despite lack of automation,
some companies have better processes, but more often the processes are also
ad hoc and rarely documented. However, because the knowledge of these
specialized processes is dependent on a few individuals for integrated build
processes, time frames for testing and deployment are often gated by the availability
of an individual or team, which leaves the development and quality assurance teams
guessing about the status of the release. This situation leads to tremendous

4 #200462 ©2006 IDC

inefficiencies and lost team productivity, particularly in larger organizations. Basic
automated build management tools (such as the open source Ant and Make
alternatives) facilitate rudimentary build automation and are not comprehensive. Few
processes this important to software deployment and production success have
received so little focused industry attention.

In smaller, less sophisticated and less complex environments, companies could
almost get away with inefficient approaches to build management. However, in the
world of distributed development, where software development projects encompass
local resources in conjunction with outsourcers or offshore providers, lack of
management and visibility into build management is unsustainable because these
teams can't interoperate if they have no standardized way to share or hand off work at
the end of their workday. Similarly, the audit requirements demanded by regulatory
compliance such as Sarbanes-Oxley necessitate build management visibility because
end-to-end traceability is required and no single system (e.g., source control, test,
defect tracking) can provide a completely reliable record. More dynamic, iterative
approaches to software development such as agile and extreme programming that
could enable faster deployments are blocked by lengthy, manual build processes that
limit the number of code-build-test cycles that can be performed. With current ad hoc
approaches, IT, development, and project management teams have little or no visible
access to know how far along the projects are on the road toward deployment. This
situation results in organizational confusion and divisive finger-pointing when a
release is late.

The complexities of multiplatform deployments for pervasive computing and
multilingual deployments for global software implementations further compound the
demand for more effective and more comprehensive build management approaches
because the same processes must be repeated over and over again serially rather
than run concurrently. This complexity demands more sophistication than existing
homegrown systems provide. Additionally, the processing requirements of complex or
graphically intensive applications particularly require cogent management of systems
resources because if they are not optimized, build times can become extremely
lengthy, sometimes spanning multiple days. However, all organizations benefit from
efficient pooling and management of systems when creating production builds. In fact,
huge resource and time savings can result from effective systems utilization in
conjunction with the build process. Because teams have typically allocated one server
per project, homegrown build management systems have no means of distributing
work across multiple servers. Thus, teams are forced to overpurchase hardware to
meet their peak workloads, which can encompass 20�30% of the time, but those
systems then sit idly the other 70�80% of the time. Therefore, companies are hitting
technical and process barriers that prevent them from scaling development
operations on several fronts, including inconsistent approaches to build management
that cannot support distributed teams, the inability of configuration management
teams and hardware resources to support large numbers of projects and
configurations, and a lack of build management best practices that enable process
reuse to enable economies of scale across multiple projects.

What are the combined results of these issues for companies? Poor quality, low staff
productivity, long release cycles, noncompliance � ultimately, less profitability for the
business is the result of ineffective build management.

©2006 IDC #200462 5

E S T AB L I S H I N G E F F E C T I V E B U I L D
M A N AG E M E N T P R O C E S S E S ,
O R G AN I Z AT I O N A L S T R A T E G I E S , AN D
C AP A B I L I T I E S
Success with build management � as with other life-cycle phases � requires a focus
on consistent processes and organizational strategies as well as appropriate
functional capabilities to automate core build management functions. These functions
include rigorously managing build processes across multiple projects, auditing
release contents, coordinating parallel tasks and systems, applying consistent
configurations, reusing and replicating build processes, and integrating with other
ALM systems such as test, defect tracking, and SCM systems.

The most successful automation tools will allow companies to incorporate existing
processes into their systems rather than require a full rewrite of their build
capabilities. In general, human beings are configured more for consistency than they
are for change, and radical change is typically met with great resistance. Therefore, it
is quite helpful if the tools enable teams to leverage and incrementally improve upon
current practices when introducing practice change. The flexibility to incorporate
existing build management processes and evolve them gradually to enable fuller
adoption appears to be an important success criterion for a successful shift to more
consistent, effective build management practices. Process automation and
repeatability is key so that builds can be repeated or reproduced from scratch with a
high degree of accuracy for any build or customer release. When build management
users are able to add role-based security, they can take these repeatable processes
and more easily delegate them to others such as developers and quality assurance
teams to enable better scalability and team efficiency.

Also, appropriate organizational support and an effective corporate framework are
key to making the transition. When build-related delays and failures occur close to
production time, executive visibility into build challenges is heightened and even
galvanized. From a business perspective, the hobbling of business flexibility and
postponement of time to market caused by build breakage and inefficiencies spur
change. Management and executive buy-in is vital to establish consistent build
management practices domestically and globally and to provide the necessary
resources and corporate commitment for change.

Some resistance may be expected from lower-level staff members because they have
often written the homegrown system that would be replaced. However, if
management focuses on the overall goals of product quality, better team
communication, better project visibility, and getting the build team out of "firefighting"
mode, this resistance can be mitigated.

Understanding the role of build management within the overall application life cycle is
important as well. Effective build management can be an important linchpin to
automate the handoff between software change and configuration management
systems and testing processes, and it can also provide documentation across these
systems that can be used for audit and compliance purposes.

Assessing core capabilities for build management and evaluating current automated
options for build management make up the next phase for success in approaching
this shift.

6 #200462 ©2006 IDC

M A K I N G T H E S H I F T

As mentioned above, the move to effective build management is much easier if teams
can incorporate their existing people, tools, and processes and improve upon them
over time. Thus, better build management should be an evolution rather than a
revolution. To effectively make this transition, teams must prioritize the creation of
better build management practices and provide organizational support to these
teams. Automated tools can also assist with implementing consistent processes, and
companies can choose from a number of commercially available products.

The following section offers case studies of a large telco and a leading software
gaming company that implemented BuildForge to address their build management
challenges. Global and cross-platform development and deployment were common
problems for these two companies prior to implementing BuildForge's build and
release management solutions.

C AS E S T U D I E S : E V O L V I N G T O C O N S I S T E N T
B U I L D M AN AG E M E N T

L a r g e T e l e c o m m u n i c a t i o n s O r g a n i z a t i o n
I m p l e m e n t s B u i l d F o r g e f o r F l e x i b i l i t y a n d
C o n s i s t e n t C o n t r o l

For a major telco organization focusing on automating end-to-end processes and
dealing with multiplatform development and deployment, build management
processes were inconsistent and varied widely with little commonality across teams.
The confusion around builds and redundant work led to inefficient use of the staff.
Because the telco had so many divergent processes, it knew that a big bang
approach would not work � it needed to migrate gradually. BuildForge provides a
high-level process "wrapper" that could automate the telco's existing processes, so it
enabled each team to implement at its own pace, which contributed to the successful
adoption. Because several software products needed to be deployed across two or
more platforms, the telco needed a system that would enable it to conduct concurrent
builds across multiple platforms.

The company did not want to change its existing software change, configuration
management, and test automation products, including IBM Rational's ClearCase for
source control, IBM Rational's ClearQuest for defect tracking, Telelogic's DOORS for
requirement management, and Mercury Interactive's Test Director for test
management. The company had a number of capabilities for life-cycle management,
but build management remained the missing link. Without a consistent, repeatable
build process, releases were still being delayed.

The teams used a range of automated build tools � such as ClearMake, imake, and
Nmake � but they were not implemented in a consistent fashion. Therefore, build
managers used batch files and Perl scripts to manage the high-level build process, and
even though they had scripts in place, the ability to view and control build changes was
difficult and ad hoc. Only a few "build gurus" had enough domain knowledge to make
changes using command-line operations with no intuitive graphical user interface (GUI).

©2006 IDC #200462 7

The build process was something of a "black box" � unless an experienced staff
member could hack through the scripts, there was little visibility into the overall build
process flow, the build status, or the impact of build changes.

Because build management occurs close to the final deadline for software
deployments � e.g., release management � build failures became obvious to
management as a source of project slips. The time it took to detect, troubleshoot,
resolve, and report on these failures as critical production deadlines approached was
unacceptable for the business. Build management began to be seen as one of the
teams' biggest development problems, which united commitment to organizational
change and adoption of automated build technology. Although the telco considered
other build management tools, one of the key differentiators of BuildForge was the
flexibility to utilize the telco's own paradigm and leverage the positive aspects of its
existing build approaches. BuildForge provided a framework to deal with notifications
and parallel builds, but staff could still incorporate existing scripts into BuildForge and
adopt best practices gradually. The rich feature set available with BuildForge for
additional areas (including server pooling, process reuse, detailed reporting, process
audit trails, and tool integration) was also a differentiator. In addition, BuildForge was
flexible in its business and sales practices � enabling the telco to prototype
BuildForge prior to purchase to validate the product's value in its environment. Given
the level of frustration and challenge the telco had experienced with its existing build
management system, it knew it would not be able to transition quickly and needed
proof that the solution would meet all its needs. Development teams had long
struggled with making source changes for fear of breaking the build, and users had
felt burned by promises that the world "will be better." For that reason, the telco went
through a fairly elaborate evaluation process, including 40 criteria and a full qualitative
and quantitative analysis, prior to making the purchase decision. By implementing
BuildForge prior to purchase, the telco was also able to determine the expected ROI
after project rollout. Once the directors saw the initial results of the pilot, adoption
occurred quickly and BuildForge became the standard for build management across
the organization.

After adoption, the results in cost savings and increased release stability were
extremely positive. A product with completely manual build tasks that used to take
one person as many as two days to execute can now be completed within an hour.
With BuildForge, team members have better visibility into the release builds and can
get a real-time view of build progress. Rather than require a single "build guru," they
can have project managers and/or team leaders start a standardized build process,
get immediate status information, and request builds for future times and turnarounds.
BuildForge's single point of entry, with its centralized management console, enables a
common interface for all team members to gather and request build information,
regardless of the platform on which their project runs. It also provides the ability to
coordinate a complex build and release workflow in a visible fashion so users can
understand the overall process, modify specific tasks (if they have the proper
approval), and then execute the build in an optimized manner.

The impact of the BuildForge implementation was most apparent when delivering the
business-critical, highly complex customer relationship management (CRM) product.
The offering allows call centers to integrate global fax, text chat, and email
communications. Because the CRM product is one of the company's flagship

8 #200462 ©2006 IDC

products, new release dates receive significant corporate attention. The application,
which is more than eight years old, had become extremely unruly and difficult to
manage, encompassing hundreds of thousands of files and millions of lines of code,
as well as requiring the support of multiple versions across diverse platforms.
BuildForge is still in the process of being fully deployed and is about 40% installed to
date. However, to the extent that the product is in use, staff members report that they
are able to manage this business-critical application more effectively and are using
server pools efficiently to conduct parallel builds to speed up the release cycle. The
company is beginning to coordinate builds with existing IBM Rational source control
and defect tracking and to include testing for the Java work. Its longer-term goal is to
enable complete integration between unit test, defect tracking, test management,
source control, and builds to automate and track the release throughout the entire
application life cycle.

For this telco organization, BuildForge benefits include predictability and
reproducibility that are critical for operations, better visibility into status, and more
efficient use of available personnel and hardware resources. BuildForge also enabled
the company to turn out test builds faster and to better communicate with developers
bidirectionally with meaningful, timely information. Rather than have developers throw
code over the wall and wait for results based on the build team's availability,
developers are now notified directly about problems and are immediately directed to a
status page to find out the specifics of build problems and assign specific resources
to make the appropriate fixes. These capabilities have resulted in productivity
improvements across the development team � both for developers and for
configuration management professionals.

L e a d i n g I n t e r a c t i v e G a m e D e v e l o p e r A d o p t s
B u i l d F o r g e f o r S c a l a b i l i t y a n d S t a n d a r d i z e d
P r o c e s s

An interactive gaming software company has specific build management challenges
that typify the rigorous demands of the gaming industry, including high iteration speed
for engineering and the need for sufficient processing power to support builds for
graphic-intensive software. Game development epitomizes the "extreme development
environment" with highly complex applications, large distributed development teams,
multiple delivery platforms, and unforgiving release schedules that are timed precisely
to coincide with events such as movie premieres and holiday shopping seasons. As
such, these conditions provide a strong stress test for effective build management.

This gaming company has adopted many Agile Development practices that require
rapid build iterations. For example, its configuration management team has
committed to delivering a complete software package to each product team in under
an hour, an event that can occur multiple times each day. Using tools that modify
animation, developers need to make changes to the program, make corresponding
changes to the animation, and deliver a final image artifact (measured in gigabytes) to
the pipeline within 30 minutes. Both the sheer number of data records and the speed
required for entertainment engineering to meet deadlines are daunting with regard to
build management.

©2006 IDC #200462 9

Because gaming developers have traditionally been immature in their software
configuration management discipline, developers had kludged together batch files for
each project that didn't scale. Initially, the company's build management staff created
a master build utility that was threaded to allow compiles, rendering, and packaging to
occur relatively unattended. The company used these homegrown tools initially for
build management and distribution, but it was hard coded to use a specific machine
that would eventually die and cause operations to stall. The company determined that
its internal system would require significant rework to handle distributed machine
management, which would create an additional development and support burden for
the team. It also wanted tighter communication between its build system and its
Perforce source repository.

Rather than rework the homegrown applications, the company decided to evaluate
commercial build management solutions and adopted BuildForge for its scalability,
server management, and process control capabilities. The company has automated
the deployment of pipelines and empowered its product teams to execute approved
production processes on demand. Before bringing in BuildForge, the company could
concurrently manage only two or three projects. By automating build processes, the
team can support 10�20 projects simultaneously with the existing staff. Now the
company allocates two build engineers per project where it used to require four or five
people. BuildForge provided a nonthreatening context whereby engineers could adopt
industry-standard configuration practices without requiring substantial change to the
way in which they worked.

Prior to implementing BuildForge, the company ran out of processing power with
regard to build distribution and machine management. It reached capacity quickly, but
with BuildForge, the company can leverage pools of more than 40 machines.
Machine pools are available through a central portal and enable developers to
execute a distributed build project with the click of a button � even on servers that
may be located in another country. After successful compilation, BuildForge invokes
automated testing protocols so that the team can know within 10 minutes if the build
is functional.

BuildForge not only is a process execution engine, but it also has agent technology
that runs on the production machines to thread and parallelize the build workload.
Therefore, if there are four systems and one goes down, the work will be
automatically reallocated to the remaining three. The system can deploy a file to one
of the machines scheduled for testing and have the agent run the executable to
determine if the application crashed on start-up.

The company also uses BuildForge to manage build configurations to avoid
inconsistencies and errors. Environment variables automate the use of the
appropriate compiler (Microsoft C++ or C# compilers), version strings, and other
parameters, depending on the project. Previously, this information resided on each
build server and was rarely documented. Moreover, incorrect configurations were
often a source of build errors. With BuildForge, this information is retained in a central
knowledgebase and used consistently for each build iteration.

10 #200462 ©2006 IDC

Some game companies debate whether nightly builds are necessary � not so at this
company. Because this gaming company now employs 100�150 developers per
project, where each game can contain a million records, even single nightly builds are
insufficient. The company can't have all team members checking in changes to the
source tree without some barrier to entry. BuildForge, in combination with Perforce for
configuration management, has facilitated improved management and builds and
minimized the need for "heroics" to repair broken builds.

Adoption of BuildForge's automated build management capabilities enabled this
gaming and entertainment company to significantly cut build management time,
increase efficiency (by pooling multiple resources to do build management and run
projects concurrently), and provide metrics and much faster release times.

S U M M AR Y : B U I L D M AN AG E M E N T F O R
E F F I C I E N C Y , C O S T S AV I N G S , A N D
B U S I N E S S AD A P T AB I L I T Y

Establishing effective build management enables economies of scale for resource
management and the ability to structure successful software deployments. Global
2000 organizations should evaluate appropriate process, organizational, and
automated tools for build management to enable adaptive, stable software
implementations to drive business success. Build and release management
consistency is no longer optional for businesses and for effective development in the
complex, distributed world of contemporary software creation. In that context, build
repeatability, traceability, team efficiency, and life-cycle automation capabilities are
important for ISVs and IT organizations to support business adaptability.

C o p y r i g h t N o t i c e

External Publication of IDC Information and Data � Any IDC information that is to be
used in advertising, press releases, or promotional materials requires prior written
approval from the appropriate IDC Vice President or Country Manager. A draft of the
proposed document should accompany any such request. IDC reserves the right to
deny approval of external usage for any reason.

Copyright 2006 IDC. Reproduction without written permission is completely forbidden.

