
Applying agile and lean principles to the governance of software and systems development
White paper
November 2007

Lean development governance.
Scott W. Ambler, practice leader agile development,
Rational methods group, IBM Software Group

Per Kroll, manager of methods, Rational software,
IBM Software Group

Contents

Lean development governance.
Page 2

3	 Applying lean thinking to the governance of

software development

4	 Defining governance

5	 Principles of effective IT governance

5	 Process

5	 Artifact lifecycle

5	 Risk

6	 Suitability

6	 Behavior

6	 Deployment

6	 Automation

6	 Principles of lean software development

7	 Eliminate waste

7	 Build in quality

7	 Create knowledge

8	 Defer commitment

8	 Deliver quickly

8	 Respect people

8	 Optimize the whole

9	 Categories of development governance

11	 Practices for mission and principles

11	 Pragmatic governance body

12	 Staged program delivery

14	 Business-driven project pipeline

14	 Scenario-driven development

15	 Practices for organization

15	 Align HR policies with IT values

15	 Align stakeholder policies with IT values

17	 Practices for development processes

17	 Iterative development

19	 Risk-based milestones

20	 Process adaptation

21	 Continuous improvement

22	 Embedded compliance

23	 Practices for measurement

23	 Simple and relevant metrics

24	 Continuous project monitoring

25	 Practices for roles and responsibilities

25	 Promote self-organizing teams

27	 Align team structure with architecture

28	 Practices for policies and standards

28	 Integrated lifecycle environment

29	 Valued corporate assets

30	 Flexible architectures

31	 Conclusion

Lean development governance.
Page 3

Effective governance focuses on

motivation and enablement.

Highlights
Applying lean thinking to the governance of software development

As more and more project teams adopt agile software development methods,
issues arise with traditional approaches to IT governance. Such approaches—
which include Control Objectives for Information and Related Technology
(COBIT) and the Project Management Institute (PMI) Organizational Project
Management Maturity Model (OPM-3)—are often too heavy in practice for
development shops seeking to be more agile or lean.

Effective governance for lean development isn’t about command and control.
Instead, the focus is on enabling the right behaviors and practices through
collaborative and supportive techniques. It is far more effective to motivate
people to do the right thing than it is to force them to do so.

A lean approach to development governance weaves the philosophies of
lean and agile software development into traditional IT governance to form
a lightweight, collaboration-based framework that reflects the realities of
modern IT organizations.

This paper begins with an overview of the principles of effective IT gover-
nance, discussing how they pertain to the more specific subset of development
governance. It follows with an overview of the principles of lean software devel-
opment. The heart of the paper is a description of 18 practices that define a lean
approach to governing software development projects within your IT organiza-
tion. These practices show how to embed governance into tools, processes and
development guidance to make it as easy as possible for people to keep their
software and systems delivery projects on track. They bring the lean think-
ing that has revolutionized supply chain management into the governance of
software and systems development.

Lean development governance.
Page 4

It’s possible to loosen the reins

on development teams without

losing control.

The good news is that you’re likely following some of these practices already.
The bad news is that it’ll likely take your organization several years to adopt
every practice, and there’s no set order in which to implement them. How-
ever, the practices are synergistic and can be adopted incrementally. Each
added practice helps strengthen your ability to effectively implement subse-
quent practices.

Defining governance

IT and systems engineering governance establishes chains of responsibil-
ity, authority and communication in support of the overall enterprise’s
goals and strategy. It also establishes measurements, policies, standards and
control mechanisms to enable people to carry out their roles and responsibilities
effectively.1 You do this by balancing risk versus return on investment (ROI),
setting in place effective processes and practices, defining the direction and
goals for the department, and defining the roles that people play with and
within the department.

Governance and management are two different things: Governance looks at
an organization from the outside, treating it as a system that needs to have
the appropriate structure and processes in place to provide a stream of value.
Management, on the other hand, is inside the organization and ensures that
the structure and processes are implemented effectively.

Development governance is an important subset of IT and system engineer-
ing governance, the scope of which covers the steering of software and system
development projects. Based on considerable experience with agile develop-
ment teams, IBM believes organizations that have adopted COBIT or OPM-3
(or similar traditional frameworks) can benefit by loosening the reins on their
approach to governing development projects—without sacrificing essential
controls and audit trails.

Highlights

Lean development governance.
Page 5

To help you improve your governance framework, IBM has developed a palette
of practices that support lean development. Although many of these practices
also apply to IT and systems engineering governance in general, the focus of
this paper is on governing agile and lean development projects.

Principles of effective IT governance

In the May 2007 edition of The IBM Rational Edge,2 Murray Cantor and John
D. Sanders describe seven principles to guide IT governance efforts. Because
development governance is a subset of IT governance, these principles are directly
applicable to a discussion of lean development governance. They address process,
artifact lifecycle, risk, suitability, behavior, deployment and automation.

Process

Governance is a process that is applied to the processes that need to be governed.
Policies and standards are applied to development processes; decision rights are
enforced within the processes; and the processes are measured and controlled.

Artifact lifecycle

The lifecycles of artifacts produced by the governed processes guide the gover-
nance solution. Part of governing software development is understanding the
artifacts (such as executable tests and working software) produced by project
teams, and then monitoring how these artifacts evolve throughout the develop-
ment effort.

Risk

Measures and controls must be adjusted according to the level of risk. When
risk is low you can focus on measuring the activities of the team. When risk
is high you need to focus on helping the team mitigate the risk(s) it faces.

The principles of IT governance

form the foundation for develop-

ment governance.

Highlights

Lean development governance.
Page 6

Suitability

The needs of the organization determine how the level and style of governance
are tailored. For example, development teams building life-critical software
need a tighter governance approach than teams building an informational
Web site.

Behavior

The governance solution drives the organizational behavior. From a develop-
ment governance point of view, the challenge is to create an environment that
results in the development organization performing in such a way that busi-
ness goals are met. In many ways the maxims “You ship the organization” and
“You get what you measure” are primary motivators for organizations to build
an effective development governance program.

Deployment

The governance solution must be implemented incrementally. You cannot imple-
ment all of the practices described in this paper at once. You must first pick and
choose the ones that address your immediate pains before adopting others.

Automation

Technology makes the governance solution empowering and unobtrusive.
The more you embed, or automate, your development governance practices
through automation and culture, the more likely they are to be followed.

Principles of lean software development

In Implementing Lean Software Development,3 Mary and Tom Poppendieck
show how the seven principles of lean manufacturing can be applied to opti-
mize the whole IT value stream. These principles offer practical, measurable
ways to transform software delivery processes.

Lessons learned from lean

manufacturing can enhance

IT governance.

Highlights

Lean development governance.
Page 7

Eliminate waste

Lean thinking advocates regard any activity that does not directly add value to
the finished product as waste. The three biggest sources of waste in software
development are the addition of extra features, churn and crossing organiza-
tional boundaries. Crossing organizational boundaries can increase costs by 25
percent or more by creating buffers that slow response time and interfere with
communication. It is critical that development teams be allowed to organize and
operate in a manner that reflects the work they’re trying to accomplish—rather
than the functional roles of team members.

Build in quality

The Poppendiecks make a simple observation: if you routinely find problems
with your verification process, then your process must be defective. When you
regularly find that your developers are doing things that you don’t want them
to do—or are not doing what they should be doing— then your approach to
governance must be at fault. It’s important not to make governance yet another
set of activities layered on top of your software process. Instead the strategy
should be to embed governance into your processes, making it as easy as pos-
sible for developers to do the right thing.

Create knowledge

Planning is useful, but learning is essential. You want to promote strategies,
such as iterative development, that help teams discover what stakeholders really
want and act on that knowledge. It’s also important to have a body of reusable
standards and guidelines that people can easily modify to meet specific project
needs. In addition, consistent and timely feedback is important, both within the
team and at the program level, through continuous monitoring of simple and
relevant metrics.

Embedding governance into

processes makes it as easy as

possible for developers to do the

right thing.

Highlights

Lean development governance.
Page 8

Defer commitment

It’s not necessary to start software development by defining a complete specifi-
cation. You can support the business effectively through flexible architectures
that are change tolerant and by scheduling irreversible decisions to the last pos-
sible moment. Frequently, deferring commitment requires the ability to closely
couple end-to-end business scenarios to capabilities developed in multiple
applications by multiple projects.

Deliver quickly

It is possible to deliver high-quality systems quickly. By limiting the work of a
team to its capacity, you can establish a reliable and repeatable flow of work.
An effective governance strategy doesn’t demand teams do more than they
are capable of, but instead asks them to self-organize and determine what they
can accomplish. At an organizational level, it’s important to enable programs to
deliver business value at a pace defined by the fastest-moving projects, rather
than at the speed of the slowest project.

Respect people

The Poppendiecks also observe that sustainable advantage is gained from
engaged, thinking people. The implication is that you need a human resources
strategy that focuses on enabling IT teams—not on controlling them.

Optimize the whole

If you want to govern your development efforts effectively, you must look at
the bigger picture. You need to understand the high-level business processes
that individual projects support—processes that often cross multiple systems.
You need to manage programs of interrelated systems so you can deliver a
complete product to your stakeholders. Measurements should address how
well you’re delivering business value, because that is the raison d’être of your
IT department.

To deliver high-quality systems

more quickly, develop iteratively

and limit the work of each team

to its capacity.

Highlights

Lean development governance.
Page 9

Categories of development governance

Traditional governance often uses command-and-control strategies. These
strategies focus on managing and directing development project teams explicitly,
using gateways and triggers that attempt to enforce rules and catch violations.
Although valid and effective in some situations, this approach can be like
herding cats for many organizations. Much work is put into establishing the
governance framework and managing the governance effort, but very little is
achieved in practice.

In contrast, lean governance focuses on collaborative strategies that strive to
enable and motivate team members implicitly. For example, the traditional
approach to coding guidelines would be to create them and then enforce their
usage through formal inspections and post hoc correction of errant code. The
lean approach would be to write the guidelines collaboratively with your pro-
grammers, explain why it’s important for everyone to adopt the guidelines, and
then provide tooling and support to make it as easy as possible for developers
to continuously code within those guidelines.

Unlike the explicit, command-

and-control focus of traditional

governance, lean governance uses

collaborative strategies to enable

and motivate teams implicitly.

Highlights

Lean development governance.
Page 10

Figure 1 categorizes and illustrates the relationships of the practices for lean
governance. It shows how they align to the six major categories of IT gov-
ernance: mission and principles, organization, processes, measures, roles and
responsibilities, and policies and standards.

 Align HR policies with
IT values
Align stakeholder policies

 with IT values

 Pragmatic governance body
 Staged program delivery
 Business-driven project

 pipeline
 Scenario-driven development

 Iterative development
 Risk-based milestones
 Process adaptation
 Continuous improvement
 Embedded compliance

 Integrated lifecycle
 environment
 Valued corporate assets
 Flexible architectures

 Promote self-organizing
 teams
 Align team structure with

 architecture

 Simple and relevant
 metrics
 Continuous project

 monitoring

Mission and
principles

Organization

Processes
Roles and

responsibilities

Policies and
standards

Measures

Figure 1: The 18 practices of lean software development governance are aligned to 6 categories
of governance.

The practices for lean gover-

nance align to the six categories

of IT governance.

Highlights

Lean development governance.
Page 11

Practices for mission and principles

IBM identifies four lean practices4 to guide the mission and principles category
of governance.

Pragmatic governance body

A governance program does not run itself; a group of people called a governance
body runs it. The manner in which the governance body organizes and conducts
itself is a key determinant of the overall effectiveness of the governance program.

To support lean development, a pragmatic governance body respects people
by focusing on enabling IT professionals first, and on controlling and manag-
ing them second. It does this by creating an environment where people can
be effective in practice and not just in management theory. Such an environ-
ment promotes situation-specific strategies, procedures and practices; provides
teams with access to the resources they need, including ready access to busi-
ness stakeholders; and provides guidance, support and mentoring to teams
that have deviated from expected norms.

Under the guidance of a pragmatic governance body, IT teams will be much
more likely to conform to the governance program because it’s easy for them to
do so. People will actually step up and make processes and polices come alive to
help the organization reach its goals. The alternative is an environment where
teams will do whatever is necessary to comply with the command-and-control
governance structure. After any review, they’ll simply return to managing the
project the way they see fit, resulting in two sets of books—the real one and the
one presented outside of the team.

• Pragmatic governance body
• Staged program delivery
• Business-driven project
 pipeline
• Scenario-driven development

Organization

Processes
Roles and

responsibilities

Policies and
standards

Measures

Mission and
principles

Mission and principles

Lean development governance.
Page 12

An effective approach for lean development is to create a small central team,
often referred to as a governance competency center, which is extended with
part-time members from the governed IT organizations and the appropriate
business units. Making key representatives of the governed organizations
part of the governance body avoids a “us versus them” mentality and helps
ensure that governance guidance is relevant and actionable. Picking the right
people for the governance body is absolutely crucial. Very often the people who
jump at the chance to volunteer for a governance body are the people you least
want governing.

Staged program delivery

Staged program delivery enables you to optimize the whole program while
still completing projects quickly. Programs, which are collections of related
projects, should be rolled out incrementally over time. Instead of holding back
a release to wait for a subproject, each subproject must sign up for a prede-
termined release date. If the subproject misses the date, it skips to the next
release, minimizing the impact to the customers of the program. Think of
a train schedule. If the project misses the release train, it has to wait for the
next one. Granted, because of dependencies between projects, sometimes one
project missing the release train causes several to do so.

As you see in figure 2, usage of a control project enables coordinated execution
of the program while providing flexibility in execution of individual projects
within the control project. Iterations play a fundamental role here, because they
provide stable anchoring points to allow projects to drive and validate meaning-
ful cross-project integration.

To avoid “us versus them” thinking,

it’s important to make governed

organizations a part of the gover-

nance body.

Highlights

Lean development governance.
Page 13

There are several benefits to staged program delivery. First, by grouping projects
according to business objectives, and managing them as a program, you can
more effectively deliver on major business objectives. Second, using a control
project provides well-defined governance milestones for the program that
focus on risk and variance reduction as well as value creation. Third, divid-
ing a potentially large program delivers value incrementally around business
subgoals. And finally, semi-independent execution of projects enables more
efficient development because each project has as much tactical flexibility as
possible to support higher productivity.

It is a good strategy to manage programs with loosely coupled individual proj-
ects by a control project run according to the four phases of the IBM Rational®
Unified Process® (IBM RUP®) methodology: inception, elaboration, construc-
tion and transition.5 Ideally the individual projects should take an evolutionary
approach, such as instantiations of RUP or other agile processes such as Scrum
or OpenUP.

Control project

Project A

Project B

Project C

Stage 1

Inception Elaboration Construction Transition

Inception Elaboration Construction Transition

Construction TransitionElaboration

Construction TransitionElaboration

Construction Transition

Figure 2. As illustrated by Bittner and Spence in Managing Iterative Software Development Projects,
risk reduction and value creation can be effectively addressed by managing a program stage through
a control project.6

The projects within a program

should be as autonomous

as possible.

Highlights

Lean development governance.
Page 14

Business-driven project pipeline

The demand for IT projects always exceeds available resources. A business-driven
project pipeline maximizes the business value of development investments by
enabling organizations to prioritize and optimize projects in alignment with
business goals and objectives. This alignment can be accomplished with score-
cards and other portfolio management strategies that help you assess each project
against a set of parameters you define to measure business value. Lean think-
ing encourages organizations to focus on no more than five parameters and
use scoring as an aid in a business discussion about prioritization rather than
as a strict measure.

Scenario-driven development

Scenario-driven development provides the business context in which to drive
effective software development projects. The whole cannot be defined without
understanding the parts, and the parts cannot be defined in detail without
understanding the whole. If you don’t know how the parts impact the overall
solution, you can get bogged down in building components that don’t fit together.
To understand the big picture of the business, you can identify usage scenar-
ios at both the enterprise and project levels using approaches such as use-case
flow down7 or green threads.8 These techniques help each project team see
how its part fits into the whole. They also improve collaboration among
and between teams and serve as consistent control mechanisms by focusing
developer attention on system integrations.

A system must reflect the overall

needs of business, not just its

own narrowly defined scope.

Highlights

Lean development governance.
Page 15

Practices for organization

Two lean practices guide definition of the appropriate organizational climate
to support agile development.9 Applying these practices can help you better
leverage people as a critical resource.

Align HR policies with IT values

Hiring, retaining and promoting technical staff require different strategies than
those for non-IT staff. To reward desired behaviors, you need to ensure that
incentives are appropriate for the mind-set of your technical staff. For example,
many IT professionals want to expand their technical skills so they can work on
more challenging projects. Yet most are not interested in managing large teams
of people. You will lose qualified people if the only senior roles in your IT orga-
nization are management positions. Effective human resources (HR) policies
can help you increase your pool of resources and retain skilled staff.

Align stakeholder policies with IT values

You can easily derail software development projects with ill-fitting business
practices. For example, many organizations will insist on an “accurate” cost
estimate at the beginning of a software development project. This proves unre-
alistic in practice because requirements evolve over the life of a project10 and
because there are so many uncertainties in a project, which leads to a variance
in your estimate.

Processes
Roles and

responsibilities

Policies and
standards

Measures

Mission and
principles

Organization

 Align HR policies with
IT values
Align stakeholder policies

 with IT values

Organization

Lean development governance.
Page 16

Besides being unrealistic, stakeholder demand for an accurate estimate up
front motivates development teams to adopt risky practices such as detailed
requirements definitions early in the project.11 Although it is expected that
the business will put cost and schedule constraints on software development
teams, the way in which it does so must reflect the realities of the develop-
ment lifecycle and must be flexible enough to allow development teams to
remain effective.12

In short, your business stakeholders must have realistic policies for engaging
IT, including how projects are funded, how requirements are documented,
and the level and kind of involvement stakeholders will have with software
development project teams.

Lean thinking encourages business stakeholders to be active participants
on development teams. IT professionals should be responsible for educating
stakeholders in the fundamentals of modern software development so they
understand the options available to them and the implications of their deci-
sions. Conversely, IT professionals should learn the fundamentals of business
value management so they can provide the earliest possible warning when proj-
ect costs are in danger of exceeding the expected business value. The benefits
of these practices include increased probability of project success and improved
software economics due to improved decision making.

Highlights

Accurate cost estimates early in

a project are unrealistic.

Business stakeholders must play

an active role on development

project teams.

Lean development governance.
Page 17

Practices for development processes

Five lean practices promote strategies for running a project efficiently
and effectively.13

Iterative development

Using an iterative development approach, a project is organized into a sequence
of short iterations (sometimes referred to as “sprints”14). Each iteration is time
boxed and has a well-defined set of objectives. The aim of each iteration is com-
plete, defect-free, working code.

During each iteration, you build on the work of previous iterations to evolve
the requirements, analysis, design, implementation and test assets until the
final product is complete (see figure 3). There are several key benefits to this
approach. First, the length of each iteration is fixed, not the scope. If the esti-
mation of effort is off due to unforeseen events or difficulties, it is the scope
that must give and be reassessed in the next iteration. Second, the definitions
of “final product” and “complete” may evolve significantly from their original
conceptions during project execution when the business stakeholders and imple-
menters agree that doing so better satisfies business objectives. Each iteration of
the project will increase the shared understanding of requirements. Third, time
boxing forces fast decision making and a crisp focus on what matters most— the
regular delivery of working software. Note that delivery isn’t always into pro-
duction. Sometimes it’s just into a test environment. The regular delivery of
working software increases the number of feedback opportunities because
stakeholders can easily see whether IT understands what they’ve asked for.
It also enables fact-based governance because working software is a concrete
representation of what a team has accomplished; whereas secondary artifacts
such as plans or specifications are merely promises that the team may deliver
at some point.

Processes
Roles and

responsibilities

Policies and
standards

Measures

Mission and
principles

Organization

 Iterative development
 Risk-based milestones
 Process adaptation
 Continuous improvement
 Embedded compliance

Processes

Lean development governance.
Page 18

Project schedule

De
ve

lo
pm

en
t p

ro
gr

es
s

(p
er

ce
nt

ag
e

co
de

d) Demonstrable
results feedback

Waterfall
project profile

Modern
project profile

100%

Figure 3: Based on frequent demonstrations and stakeholder feedback, the small course corrections
early in the lifecycle of an iterative (“modern”) project lead to more rapid success, compared to a
“waterfall” project.

Most important, an iterative approach increases your ability to build systems
that meet the changing needs of your stakeholders. IBM recommends four-
week-long iterations by default.15 As you recognize that some other length for
iterations is more appropriate for the context of a project, change the itera-
tion length to reflect that context. You should strive for the shortest iteration
length possible for your environment because the longer the iteration length
the greater the risk of allowing needless bureaucracy to creep into your software
delivery processes. There should be no time between iterations: all activities—
from evaluating progress through planning and executing the next iteration—are
an integral part of an iteration, not a superimposed external process.

Short, time-boxed iterations

reduce project risk and enable

fact-based governance.

Highlights

Lean development governance.
Page 19

Risk-based milestones

Iterative development is most effective when you combine it with a deliberate
balance of early risk reduction and early value creation through risk-based
milestones. This means that, as you prioritize the work for each iteration, you
choose to develop those features that represent the biggest business, organi-
zational, programmatic and technical risks while delivering the most value.
Because these two objectives—greatest risk and greatest value—are not usually
aligned, the risk-based milestones approach forces a deliberate choice between
maximizing early value creation and early risk reduction. Both are fundamental
for project success (see figure 4), so it is important to have the right control
points in place.

Pragmatic Governance Body

Project lifecycle

Inception Elaboration Construction Transition

Risk
Value

Figure 4: Risk reduction (teal curve) and value (dashed blue curve) during the project lifecycle

Implementing functionality in

priority order reduces delivery

risk by helping to prove

architecture with working code

early in the project lifecycle.

Highlights

Lean development governance.
Page 20

All four IBM RUP phases end with a management milestone requiring project
deliverables to be assessed for risk reduction and value creation. For example,
at the end of the RUP elaboration phase, you want to drive out as much technical
risk as possible and deliver a stable architecture. The team needs to demon-
strate that it has an executable architecture, with a few selected scenarios
that can be executed, and with a risk list that reflects the mitigation of many
key technical and other risks. This risk reduction needs to be balanced with
the value of the running code to show concrete evidence that the team has
made actual progress. IBM recommends using the RUP inception, elaboration,
construction and transition milestones.16 You can adopt similar strategies even
if you are following other agile processes such as Extreme Programming (XP),
OpenUP or Scrum.

Risk-based milestones provide greater stakeholder insight and control and pro-
mote early value creation. They also help reduce the chance of project failure
and can improve productivity by driving out technical risks early, helping to
thereby reduce overall project risk.

Process adaptation

Because all projects are not created equal, it is critical to adapt the development
process to the needs of the project. A team developing a Web site will work dif-
ferently than a team developing a data warehouse. A team of 5 people will
work differently than a team of 50. A team developing a life-critical system
will work differently than a team building a business application. It is not a
question of more process being better or less process being better. Rather,
the amount of ceremony, precision and control present in a project must be
tailored to a variety of factors, including the size and distribution of teams, the
amount of externally imposed constraints, the project phase, the need for audit-
ability and traceability, and especially the degree of associated risk.

Repeatable results are far more

desirable than repeatable processes.

Highlights

Lean development governance.
Page 21

A project should also adapt process ceremony to lifecycle phase. The begin-
ning of a project is typically accompanied by considerable uncertainty, and you
want to encourage a lot of creativity to develop an application that addresses
the business needs. More process typically reduces creativity, so you should
use less process at the beginning of a project when uncertainty is an everyday
factor. On the other hand, late in the project you often want to introduce more
control, such as feature freeze or change-control boards, to remove unpredict-
ability and risks associated with the late introduction of defects.

Continuous improvement

Lean-thinking organizations strive to continually improve processes. IBM
recommends performing an assessment, such as a retrospective,17 at the end of
each iteration and at project end to capture lessons learned, and leverage that
knowledge to improve the process. The RUP process framework with custom-
ized out-of-the-box delivery processes based on project needs offers a wealth
of process material to use.

The fundamental concept behind continuous improvement is simple:
improve the way you work whenever the opportunity presents itself. The old
recommendation “You should learn something new every day” is a good one.
Furthermore, this practice goes one step further and recommends that you act
on what you learn and increase your overall effectiveness.

There are several ways that you can identify potential improvements to your
software process during the execution of a software project. For example, you
could include informal improvement sessions or staff suggestion boxes or Web

Highlights

Lean governance encourages the

team to act on process improve-

ments throughout the project

lifecycle—not just identify them

at project completion.

Lean development governance.
Page 22

sites. Or you could encourage personal reflection and provide teams with an
editable process (perhaps via a wiki). An effective strategy is to schedule two
hours at the end of each iteration for an informal retrospective. The practice
of continuous improvement enables you to learn as you go and gives the team
clear control over its destiny.

Embedded compliance

The easier compliance is to achieve, the greater the chance IT professionals
will actually comply. Therefore, compliance to regulations, corporate policies
and guidance should be automated wherever possible. When automation isn’t
an option, compliance-related tasks should be part of your culture and daily
activities, rather than a set of tasks done as a separate and late-in-the-game
effort. Compliance becomes part of your culture when people understand why
it’s important and what the underlying principles are behind it. If compliance
requires significant amounts of extra work, particularly when that work is
perceived to be onerous or arbitrary by the people doing it, then chances are
greater that your compliance effort will be subverted by development teams.

The benefits of embedding compliance include reducing your overall compli-
ance costs, reducing pushback from development teams, and achieving higher
levels of compliance than with traditional approaches. IBM recommends that
you define a minimal solution that can be integrated into your process and
tools based on the intent of the appropriate regulations. A key consideration
is assigning the right people to interpret the regulations and create guidelines
for development teams to follow. If you assign bureaucrats to this effort, you
will end up with a bureaucratic solution.

Lean governance embeds compli-

ance into the culture and automates

compliance-based tasks and

activities to the extent possible.

Highlights

Lean development governance.
Page 23

Practices for measurement

Within the measures category of development governance, IBM recommends
two lean practices that foster informed decision making with supporting tar-
gets and incentives.18

Simple and relevant metrics

Simple and relevant metrics provide the information necessary to understand
how you are doing so you can take corrective actions as needed. Sadly, most
organizations either use no metrics at all—meaning they’re effectively flying
blind—or they overdo it. They collect so many measurements that they drown
in data.

Effective metrics are relevant because they are commonly used throughout
your organization, and they provide the information managers and executives
need to take timely, appropriate action. When done right, simple and relevant
metrics enable fact-based governance. When such metrics are automated, they
enable painless governance. And when they are used to explore critical trends,
they enable proactive governance.

It’s best to start with metrics that explore the value being delivered by teams,
the quality being delivered by the project and the cost being expended. Not only
are these metrics useful for determining the current status of your projects,
but they’re also useful for determining how far a team has deviated from initial
expectations. Expectations are set at the business-case level for time, spending
and use of resources, and may be updated periodically throughout the proj-
ect. Bear in mind that the fundamental rule of all business metrics—measure
the thing that you actually want to control—applies equally to development
project metrics. For example, if you want to improve code quality, don’t

Processes
Roles and

responsibilities

Policies and
standards

Measures

Mission and
principles

Organization

• Simple and relevant metrics
• Continuous project monitoring

Measures

Lean development governance.
Page 24

measure the number of bugs fixed. Measure the number of bugs remaining.
When the true goal is hard to measure, it is often tempting to substitute a more
easily quantified proxy that you believe tracks the true goal. For example, your
true goal might be to improve overall ROI, but you choose to measure costs
instead. Hard experience has shown that inevitably people will focus on the
thing that is actually measured. Over time the proxy will become increasingly
decoupled from and thus unreliable as a measure of the true goal. Worse yet,
the greater the rewards or punishments associated with the proxy measure,
the faster this divergence will happen. It is better to roughly measure the true
goal than to precisely measure a proxy.

Continuous project monitoring

You can regularly monitor the health of the IT projects within your organization
through automated metrics collection, project milestone reviews, postmortem
reviews and even word of mouth. Continuous project monitoring, combined with
iterative development, enables fact-based governance by providing up-to-date
and accurate metrics based on delivered code versus assessments of specifica-
tions. This monitoring enables earlier problem detection, allowing you to take
corrective actions sooner and enabling effective governance when you moni-
tor the right metrics. IBM suggests that you begin by automatically capturing
and displaying your metrics via project scorecard software. But, don’t try to
manage by the numbers alone. When a project seems to be deviating from its
expected course, you should talk with the project team to determine what is
actually happening and whether team members need help from you.

Measure the value delivered, quality

produced and cost expended to

identify areas requiring additional

attention and corrective action.

Highlights

Lean development governance.
Page 25

Practices for roles and responsibilities

The two lean practices in the roles and responsibilities governance category
focus on enabling development by making it clear who is responsible, who has
authority and to whom these people are accountable.19

Promote self-organizing teams

The first value of agile software development is to foster individuals and
interactions over processes and tools.20 When it comes to lean development
governance, the focus should be on enabling IT professionals to build high-
quality working software and promoting effective collaboration among team
members, instead of trying to control or directly manage them.

A self-organizing team has the authority to allocate the work that it will
perform within the scope of the governance structure in which it operates.
The team assumes the responsibility of doing the work the way it chooses.
Team members select their own activities, everyone commits to the work and
the team coordinates regularly. This is a participatory approach to decision
making in which everyone has the opportunity to provide input and listen to
the decision-making process.

Processes
Roles and

responsibilities

Policies and
standards

Measures

Mission and
principles

Organization

 Promote self-organizing
 teams
 Align team structure with

 architecture

Roles and responsibilities

Lean development governance.
Page 26

Self-organization works well when combined with iterative development because
the iterative approach allows the team and its stakeholders to agree on what
should be delivered in the next iteration. At the end of the iteration, the team
and all stakeholders assess what was done, and corrective actions are taken.
Although the team takes collective responsibility, the ultimate responsibility
and associated decision rights lie with the manager. Iterations provide a control
mechanism to keep self-organized teams from going off in undesirable direc-
tions. Benefits from self-organization include:

Higher motivation that can lead to increased productivity.•	
Decisions being made at the right place within the organizational structure •	
because teams are empowered with both the responsibility and the authority to

get the job done.

Fewer opportunities for errors because of better communication and fewer •	
transitions of work products between individuals.

Greater opportunities for people to increase their skills.•	

In short, project teams must have the authority to organize themselves, their
work environment and their overall approach as they see fit to effectively
achieve project results. Any constraints placed on the team, such as organiza-
tional guidance, must be described to and negotiated with the team throughout
the project.

The people best suited to plan the

work are the ones who do the work.

Highlights

Lean development governance.
Page 27

Align team structure with architecture

It is important to align team structure with the architecture of the system
the team is building. Conway’s law, defined by Melvin Conway in the late
1960s,21 tells us that any piece of software reflects the organizational struc-
ture of the group that produced it (or succinctly, “You ship your organization”).

People will work in a manner that reflects the way they are organized. In other
words, a decentralized group is likely to produce a system with a decentralized
architecture. Any strengths or weaknesses in a project team’s organizational
structure will inevitably be reflected in the resulting system that it produces.
Thus, by aligning your organizational structure with your desired architecture,
you streamline your development efforts. You provide opportunities for shorter
iterations and reduce project risk. You’re able to virtually eliminate the endless
cycles of handoffs, reviews and rework between groups. And you improve overall
team communication. A good starting point is to organize around your desired
architecture as the default, with cross-functional and colocated teams respon-
sible for each major component.

The software created by a project

team reflects the organizational

structure of that team.

Highlights

Lean development governance.
Page 28

Practices for policies and standards

The three lean practices underlying governance policies and standards describe
specific guidelines to support consistent operation among the various parties
involved with development.22

The first value of agile software development is to prefer individuals and inter-
actions over processes and tools. This doesn’t imply that you won’t have any
processes and tools at all, it simply states that they should be secondary to people,
and the tools and processes should reflect the way that people work, not the other
way around. With a lean approach to governance your organization will adopt
policies and standards that enable developers to collaborate effectively, that moti-
vate them to develop and reuse existing infrastructure and assets, and that enable
them to do high-quality work. If there is a conflict between effective individual
behaviors and tool behaviors, the tool should concede.

Integrated lifecycle environment

Software development relies on intense collaboration among team members at
separate sites who frequently work different hours or in different time zones.
The sheer size of many development efforts also makes collaboration difficult
because you need to support large-scale interactions. Added to the challenge is
the need for management oversight and the necessary bookkeeping to ensure
regulatory compliance. Integrated lifecycle environments are built to enable
collaboration at the lowest possible cost—enabling infrastructure for most if not
all the other governance practices.

Processes
Roles and

responsibilities

Policies and
standards

Measures

Mission and
principles

Organization

• Integrated lifecycle
 environment
• Valued corporate assets
• Flexible architectures

Policies and standards

Lean development governance.
Page 29

Key components of an integrated lifecycle environment include tools for soft-
ware configuration management, analysis, design, construction, test, quality
assurance, process management, project management and portfolio manage-
ment. Integrated lifecycle environments such as the IBM Rational Software
Delivery Platform facilitate implementation of all or almost all of the identified
governance practices. They help you lower your total cost of ownership (TCO)
for tool environments, and enable collaboration. And, the best tool environ-
ments will automatically capture as much audit and metric data as possible with
as little drag on developers’ work as possible.

Valued corporate assets

An IT asset is any software component, service, template, enterprise model,
reference architecture, example, pattern, guideline or standard that the
organization expects IT professionals to apply in their everyday work. A
valued IT asset is one that IT professionals actually want to apply, typically
because they are viewed as both relevant to the task at hand and of suf-
ficiently high quality. In other words, IT professionals take advantage of
the IT assets available to them because the assets actually enable them to
increase their productivity.

Developers follow the enterprise architecture and appropriate reference archi-
tectures because those assets save them time. Their systems invoke existing
services, so they can take advantage of existing technical infrastructure. The
key is to make it easier to reuse assets than to build them again.

There are significant organizational benefits to supporting valued IT assets,
including increased consistency and efficiency, improved time to market,
improved communication and decreased governance costs. IT departments

Effective development tools

integrate easily and collect audit

information and appropriate

measurements automatically.

Highlights

Developers willingly follow

sensible, easy-to-understand

standards and guidelines.

Lean development governance.
Page 30

should maintain coding standards for their primary development languages,
a library of common patterns that they wish to promote within their systems,
reference architectures for critical aspects of their technical infrastructure, and
a description of the vision for their enterprise architecture. There should also be
people in place to support, evolve, and purchase or harvest these valued IT assets.
And, it’s important to have metrics in place that can identify and reduce barriers
to reuse, as well as measure the value of different elements of the reuse effort.

Wherever possible you should buy rather than build an IT asset, particularly
if you can easily acquire something that meets your needs, and thereby put
the maintenance burden on someone else.

Flexible architectures

One of the aims of lean software development governance is to enable flexibil-
ity and responsiveness in your business, which in turn requires flexibility and
responsiveness in how you organize and evolve your IT systems. Lean governance
is enabled by flexible architectures because they enable development teams to
react effectively to the changing needs of the business. Currently the most flexible
approaches to architecture are through open computing and service orienta-
tion and through the adoption of lean development techniques such as Agile
Model Driven Development,23 Test Driven Development (TDD),24 and continu-
ous integration.25 Flexible architectures can support evolving business needs,
reduce time to market, increase ROI, lower TCO and reduce technical risk. By
default, IBM recommends service-oriented architectures (SOAs), open source
technologies such as Eclipse, and standards such as Java™ Platform, Enterprise
Edition (Java EE) and Unified Modeling Language (UML).

Developers willingly reuse high-

quality artifacts that provide value.

Highlights

Flexible architectures enable

flexible businesses.

Lean development governance.
Page 31

Lean governance practices support

modern approaches to development.

Conclusion

Every IT organization has a development governance program in place, but this
program may not be explicit and it may not be effective. Traditional development
governance frameworks have had limited success because developers are intellec-
tual workers who don’t work well under command-and-control approaches. To be
effective, a governance program must reflect the actual environment in which it is
being applied, and take into consideration the people involved.

Successful development governance focuses on enabling the right behaviors
and the best practices through collaborative and supportive techniques. It
proves to be far more effective to motivate people to do the right thing instead
of forcing them to do so. The 18 practices IBM has identified for lean develop-
ment governance reflect the realities of software development today. These
practices can enable you to embed governance in your tools, processes and
development guidance. They support such modern approaches to develop-
ment as Lean Software Development, RUP, XP, OpenUP, Dynamic Systems
Development Method (DSDM), Eclipse Way and Scrum.

Development governance is only part of the overall IT and systems engineering
governance picture, but it’s an important one. By streamlining the flow of work
performed by the team, a lean approach to governance can help you improve
the value provided by development projects.

For more information

To learn more about the Rational tools that can help you implement lean
development governance practices, contact your IBM representative or visit:

ibm.com/rational/agile

or:

ibm.com/rational/rmc

Highlights

http://www.ibm.com/rational/agile
http://www.ibm.com/rational/rmc

	 Endnotes

	 We’d like to thank Cheri Bergeron, Lynn Brennan, Murray Cantor, Clay M. Nelson, Bob Noble, Ted
Rivera and Carl Zetie for the feedback and insights they provided for this paper.

1	 Kroll, Per; “Making Agile Mainstream: Crossing the Chasm”; IBM Rational Edge; www.ibm.com/
developerworks/rational/library/mar07/kroll; 2007.

2	 Cantor, Murray and Sanders, John D.; “Operational IT Governance”; IBM Rational Edge; www-128.
ibm.com/developerworks/rational/library/may07/cantor_sanders/index.html; May 2007.

3	 Poppendieck, Mary and Poppendieck, Tom; Implementing Lean Software Development: From
Concept to Cash; Addison-Wesley Professional; Boston; 2006.

4 	 Ambler, S. W. and Kroll, Per; “Best practices for lean development governance—Part 1: Principles and
Organizations”; IBM Rational Edge; www.ibm.com/developerworks/rational/library/jun07/kroll/; 2007.

5 	 Kroll, P. and MacIsaac, B.; Agility and Discipline Made Easy—Practices from OpenUP and RUP;
Addison-Wesley Professional; Pearson Education, Inc.; Boston; 2006.

6	 Bittner, K. and Spence, I.; Managing Iterative Software Development Projects; Addison-Wesley
Professional; Boston; 2006.

7	 Cantor, M.; “Requirements Analysis and Design Part 3”; IBM Rational Edge; www.ibm.com/
developerworks/rational/library/content/RationalEdge/oct03/m_rupse_mc.pdf; 2003.

8	 Nightingale, J.; “Green Threads: Improving Cross-Product Integration”; Dr. Dobb’s Journal; www.ddj.com/
architect/196603524; 2006.

9	 Ambler, S. W. and Kroll, P.; “Best practices for lean development governance—Part 1: Principles and
Organizations”; IBM Rational Edge; www.ibm.com/developerworks/rational/library/jun07/kroll/; 2007.

10 	Kroll, P. and Royce, W.; “Key Principles for Business-Driven Development”; IBM Rational Edge;
www.ibm.com/developerworks/rational/library/oct05/kroll; 2005.

11	Ambler, Scott W.; Examining the “Big Requirements Up Front (BRUF)” Approach; www.agilemodeling.com/
essays/examiningBRUF.htm; 2005.

12 	Ambler, S. W.; “Agile on a Fixed Budget”; Dr. Dobb’s Journal; www.ddj.com/architect/201202925; 2007.

13	Ambler, S. W. and Kroll, Per; “Best practices for lean development governance—Part 2: Processes and
Measures”; IBM Rational Edge; www.ibm.com/developerworks/rational/library/jul07/kroll_ambler/; 2007.

14 	Agile Alliance; The Agile Manifesto; www.agilemanifesto.org; 2001.

15 	Kroll, P. and Kruchten. P.; Rational Unified Process Made Easy—A Practitioner’s Guide to the RUP;
Addison-Wesley Professional; Pearson Education, Inc.; Boston; 2003.

16 	Kroll, P. and MacIsaac, B.; Agility and Discipline Made Easy—Practices from OpenUP and RUP;
Addison-Wesley Professional; Pearson Education, Inc.; Boston; 2006.

17	Kerth, Norman L.; Project Retrospectives: A Handbook for Team Reviews; Dorset House; New York; 2001.

18	Ambler, S. W. and Kroll, P.; “Best practices for lean development governance—Part 2: Processes and
Measures”; IBM Rational Edge; www.ibm.com/developerworks/rational/library/jul07/kroll_ambler/; 2007.

19	Ambler, S. W. and Kroll, Per; “Best practices for lean development governance—Part 3: Roles and
Policies”; IBM Rational Edge; www.ibm.com/developerworks/rational/library/aug07/ambler_kroll/; 2007.

20 	Agile Alliance; The Agile Manifesto; www.agilemanifesto.org; 2001.

21 	Conway, M. E.; “How Do Committees Invent?”; Datamation Magazine; www.melconway.com/
research/committees.html; 1968.

22	Ambler, S. W. and Kroll, P.; “Best practices for lean development governance—Part 3: Roles and Policies”;
IBM Rational Edge; www.ibm.com/developerworks/rational/library/aug07/ambler_kroll/; 2007.

23 	Ambler, S. W.; The Object Primer 3rd Edition: Agile Model Driven Development with UML 2; Cambridge
University Press; New York; 2005

24 	Astels, D.; Test-Driven Development: A Practical Guide; Addison Wesley; Upper Saddle River, New
Jersey; 2003.

25 	IBM; Rational Build Forge; www-306.ibm.com/software/awdtools/buildforge; 2007.

©	 Copyright IBM Corporation 2007

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
11-07
All Rights Reserved

IBM, the IBM logo, Rational, Rational Unified
Process and RUP are trademarks or registered
trademarks of International Business Machines
Corporation in the United States, other countries,
or both.

Java and all Java-based trademarks are trade-
marks of Sun Microsystems, Inc. in the United
States, other countries, or both.

Other company, product and service names may
be the trademarks or service marks of others.

The information contained in this documentation
is provided for informational purposes only. While
efforts were made to verify the completeness
and accuracy of the information contained in this
documentation, it is provided “as is” without war-
ranty of any kind, express or implied. In addition,
this information is based on IBM’s current product
plans and strategy, which are subject to change by
IBM without notice. IBM shall not be responsible
for any damages arising out of the use of, or oth-
erwise related to, this documentation or any other
documentation. Nothing contained in this docu-
mentation is intended to, nor shall have the effect
of, creating any warranties or representations from
IBM (or its suppliers or licensors), or altering the
terms and conditions of the applicable license
agreement governing the use of IBM software.

RAW14000-USEN-00

	Applying lean thinking to the governance of software development
	Defining governance
	Principles of effective IT governance
	Process
	Artifact lifecycle
	Risk
	Suitability
	Behavior
	Deployment
	Automation

	Principles of lean software development
	Eliminate waste
	Build in quality
	Create knowledge
	Defer commitment
	Deliver quickly
	Respect people
	Optimize the whole

	Categories of development governance
	Practices for mission and principles
	The pragmatic governance body
	Staged program delivery
	The business-driven project pipeline
	Scenario-driven development

	Practices for organization
	Align HR policies with IT values
	Align stakeholder policies with IT values

	Practices for development processes
	Iterative development
	Risk-based milestones
	Process adaptation
	Continuous improvement
	Embedded compliance

	Practices for measurement
	Simple and relevant metrics
	Continuous project monitoring

	Practices for roles and responsibilities
	Promote self-organizing teams
	Align team structure with architecture

	Three lean practices to support consistent policies and standards
	An integrated lifecycle environment
	Valued corporate assets
	Flexible architectures

	Conclusion

