
Modern software development for business-oriented developers
White paper
March 2008

Accelerate delivery of business
solutions with IBM Rational
Business Developer software.
Michelle A. Cordes, System z ecosystem, Rational software,
IBM Software Group

Stefano Sergi, product line manager, Rational software,
IBM Software Group

Contents

Accelerate delivery of business solutions with
IBM Rational Business Developer software.
Page �

2	 Unlocking the full potential of

your development staff

4	 The conceptual foundation for

business-oriented development

6	 What is EGL?

7	 EGL and MDA

9	 The business value of EGL

and Rational Business

Developer software

11	 Who benefits from using

EGL and Rational Business

Developer software?

13	 Rational Business Developer

software and the IBM Rational

Software Delivery Platform

14	 Application development 	

with EGL

16	 EGL rich Web support

16	 Relational database

connectivity with EGL

17	 Hierarchical database access

with EGL

18	 File access with EGL

18	 Application architecture with

EGL

18	 JSF and EGL

19	 Using the MVC framework to

develop Web applications

20	 Walking through an EGL

application scenario

22	 Simplifying migrations and

enterprise modernization

23	 Unifying siloed development

teams

23	 Is EGL right for your

organization?

Unlocking the full potential of your development staff

New integrated information solutions that enable innovative interactions with
partners, customers and employees are at the top of CIOs’ agendas in 2008.1
Accomplishing this goal requires optimal use of existing IT know-how. IT man-
agers need to tap into the full range of skills available to speed improvements
to current enterprise applications and accelerate the move to service-oriented
architecture (SOA).

In many organizations, the developers who have the strongest business knowl-
edge—and a stake in the successful delivery of new services and applications—are
typically skilled in traditional systems but lack knowledge of and experience with
emerging technologies. Their understanding of business requirements and their
experience in how to implement new capabilities based on mainframe programs
make these developers extremely valuable. But it’s not always practical or cost-
effective to retrain them in Java™; Java Platform, Enterprise Edition (Java EE);
and related Web technologies (nor, by extension, is it always feasible to retrain
them in the technology of environments like SOA). So many key developers
are often relegated to maintaining legacy systems. In addition, IT managers
are also looking for ways to make it easier for those developers with new
skills to quickly learn and reuse existing application assets to create services
and deploy new workloads on existing infrastructures.

Essentially, the challenge is overcoming what is often referred to as “skill silos,”
where teams with very different development skills, tools, methodologies and
processes have to find ways to integrate one another’s work, often resulting
in less-than-optimal (and certainly not rapid) outcomes. And skill silos fur-
ther reduce responsiveness and flexibility because they do not allow dynamic
resource allocation for cross-platform projects.

Accelerate delivery of business solutions with
IBM Rational Business Developer software.
Page �

Highlights
IBM has evolved the capabilities of the IBM Rational® Software Delivery Platform
to address this need. The platform now provides an integrated set of tools, meth-
odologies and best practices to enable your current knowledgeable staff to use the
latest technologies with minimal costs and effort. It also allows new generations
of developers to create services that can be deployed to traditional mainframe
platforms without requiring that those developers learn the technical nuances
of the environment. That means they’re able to unify the development team and
provide the organization with faster response to new opportunities.

At the heart of the Rational Software Delivery Platform is a set of SOA design
and construction capabilities delivered on top of the Eclipse workbench. Recog-
nizing that programming in the Java language requires a long and continuous
learning process for programmers who may not have experience with object
orientation, and realizing that learning the minutiae of complex mainframe
applications can be daunting, IBM has developed an innovative, modern and
simplified development approach: the Enterprise Generation Language (EGL).

EGL enables developers of almost any background to quickly create applica-
tions and services for deployment to the Java platform as well as to traditional
mainframe transactional run times—without requiring that those developers
learn the technical intricacies of the targeted platforms.

This white paper provides background into the EGL conceptual foundation,
which is based on abstraction—the defining characteristic of business-oriented
development. It then defines EGL at a high level; describes the benefits of the
language; and introduces IBM Rational Business Developer software, the IBM
product that delivers EGL. It also discusses the details that pertain to build-
ing applications and services. And in conclusion, the paper walks you through
an EGL application scenario that offers insight into the architecture behind
EGL-based implementations. After reading this paper, you should have a good
understanding of what EGL is, who would use it and what value it can bring to
your company and IT organization.

Developed by IBM, the innovative

Enterprise Generation Language

equips developers of almost any

background with a simplified, high-

level development approach for

quickly delivering cross-platform,

transactional data–centric services

and applications.

Accelerate delivery of business solutions with
IBM Rational Business Developer software.
Page �

Highlights
The conceptual foundation for business-oriented development

IBM centers the vision for its application development tools on the themes of
developer productivity and robust platform support. Almost always, the vision
has been focused on providing an environment that enables developers to effi-
ciently apply their business knowledge to creating applications that can operate
across various execution platforms. As far back as 1981, when IBM introduced
its first rapid application development environment, its core mission has been:

To provide an integrated tools environment for the rapid development of

scalable, robust, mission-critical applications using traditional enterprise

application programming skills to create solutions capable of running under

a variety of environments and topologies.

Abstraction: the defining characteristic

Over the years, IBM products have evolved to improve IBM’s support of this
mission. Each improvement and advancement has allowed developers to work
on concerns further away from implementation details and closer to business
problems under consideration. This is the principle of abstraction at work.
Abstraction is the defining characteristic of business-oriented development, a
term IBM uses to describe the process of building business software without
low-level technical coding.

Working at increasingly higher levels of abstraction helps achieve higher levels
of developer productivity, but abstraction also allows developers to write code
that can run on different target run-time platforms. Therefore, to continue
delivering on its mission, IBM follows four guiding principles: language neutral-
ity, platform neutrality, automated code generation and debugging.

Abstraction—the defining charac-

teristic of business-oriented

development—is based on four

principles: language neutrality,

platform neutrality, automated 	

code generation and debugging.

Accelerate delivery of business solutions with
IBM Rational Business Developer software.
Page �

Highlights
Language neutrality

When it comes to creating business applications, the choice of development
language is typically tied to the deployment run time as well as to the knowl-
edge and skills of the development team. But what if there were a common
language designed to generate applications for various other, more conven-
tional, languages? Such neutrality could offer a means for expressing application
logic, which developers could later transform into the implementation lan-
guage best suited for the selected target platform (such as COBOL or Java).

Platform neutrality

As with language neutrality, platform neutrality allows developers to support the
run-time platform best suited to the application. To effectively provide platform
neutrality, users must be able to support virtually any platform in the market-
place—from the largest mainframe to the smallest workstation or desktop PC.
Abstraction provides a mechanism for developers to design and implement their
applications with a language that is not tied to a specific technology. In doing so,
they can generate the deployed applications from this neutral development envi-
ronment. And as technology changes, tooling vendors, such as IBM, can provide
drivers that transform the neutral application to the new target technology.

Code generation

Code generation is the bridge between a business-oriented application that’s
written in a neutral language and a concrete implementation that’s written in a
conventional language. Code generation technology addresses how the concrete
application gets deployed to a particular target run-time platform. Tooling vendors
can provide generation drivers that automatically and transparently perform

Through abstraction, developers

are able to design application

logic that is language neutral and

platform neutral; automated code

generation enables deployment to

the implementation language best

suited to the target platform.

Accelerate delivery of business solutions with
IBM Rational Business Developer software.
Page �

Highlights
these transformations. Such generators deliver a high percentage of code that is
associated with the application’s structural “plumbing.” Developers are able to
focus on business rules, which typically comprise a smaller percentage of the
entire application code set. By separating business logic from infrastructural
code, developers can later cast the entire application into a new implementation
technology by simply using a new set of code-generation drivers. The result is a
new realm of development productivity.

Debugging

For an abstract, business-oriented language to work effectively, the developer
who is writing code at the abstract level must also be able to debug at that level.
The tools environment should have a testing facility that includes a source-
level debugger that permits stepping through the abstract program code using
real data before the application is deployed into the target environment.

What is EGL?

At the most basic level, EGL is a procedural programming language that devel-
opers can use to implement applications quickly. It fulfills the three criteria for
an abstract programming language:

It must be familiar to business-oriented developers.

It must automatically manage lower-level programming details.

It must be transparently deployed to a set of potentially available execu-

tion platforms.

The current EGL is the result of the evolution of IBM research and development
in the area of rapid application development technology over the past 25 years.
EGL combines some of the most powerful tenets of legacy fourth-generation
language (4GL) technologies. It augments these 4GL capabilities with modern
modular programming constructs; integrates them with new technologies, such
as JavaServer Faces (JSF) and Web services; and extends their reach with new
code-generation drivers for the latest run-time platforms. EGL continues to pro-
vide developers with a nearly unparalleled abstraction layer that can enhance
productivity by providing a conduit to multiple run-time platforms.

•
•
•

By separating business logic from

infrastructural code, EGL helps

developers focus on solving

business issues rather than on

underlying software complexities.

Accelerate delivery of business solutions with
IBM Rational Business Developer software.
Page �

Highlights
The word “generation” in the EGL proper name implies two things:

Business logic written in EGL will be transformed into lower-level code.

Run-time artifacts will be created to help natively execute the generated

application on a desired target platform.

EGL programs are written, tested and debugged at the EGL-source level, not
on the generated-code level. This means that developers can defer actual code
generation until they have satisfactorily tested the EGL application or service
functionality. This aspect differentiates EGL from traditional code generators.
The EGL developer never changes the generated code—virtually all changes
are made at the EGL level.

EGL and MDA

Readers familiar with the Object Management Group (OMG) and its Model Driven
Architecture (MDA) initiative will notice parallels to EGL. MDA is a form of
model-driven development based on the Unified Modeling Language (UML) and
other OMG standards. MDA calls for modeling the software lifecycle at distinct
levels of abstraction, coupled with transformations that map and manage the
relationships among those models. In addition to defining the concept of a
platform-independent model (PIM) to which EGL can match nicely (albeit as a
textual “model”), MDA defines a platform-specific model (PSM), which corre-
sponds to EGL-generated code (such as Java/Java EE or COBOL). Essentially,
MDA model transformations are analogous to the EGL code generation.

These comparisons suggest that EGL can offer traditionally skilled develop-
ers an opportunity to practice what the MDA initiative is all about: separation
of concerns, modularized reuse across the lifecycle, managed complexity and
the ultimate in productivity. The Rational Business Developer tool takes this
notion even further by providing an automated bridge between UML models
and the downstream implementation with EGL specifications. The benefits
are compelling.

•
•

Because EGL programs can be

written, tested and debugged at the

EGL-source level, developers can

defer actual code generation until

they know the programs work.

IBM Rational Business Developer

software supports model-driven

development by providing an auto-	

mated bridge between UML models	

and the downstream implementa-

tion with EGL specifications.

Accelerate delivery of business solutions with
IBM Rational Business Developer software.
Page �

Highlights
Less code to write

Generating a large portion of the application code—particularly the infrstructural
plumbing required as part of any target architecture, such as Java EE platform—
shields developers from having to learn about or write special code for most of the
application. The developer can instead focus on writing only the business rules.

Reduced training requirements

The time and cost of retraining developers can be a significant barrier, prevent-
ing many legacy developers from moving into object-oriented programming and
other new technologies. Code generation helps reduce the cost and time needed
to become proficient in designing and implementing applications.

Faster adoption of iterative and agile development

The ability to specify application behavior in less technical constructs, and to
immediately animate and verify these specifications, encourages and promotes
iterative and agile development. Real-world results show that the adoption of
an iterative prototyping evolution approach and agile development style leads
to the faster and more accurate delivery of business services and applications.

Easier transition to new technology

As technology evolves, the training costs and disruptions caused by applying new
technologies to applications can be very high. The neutral language application,
combined with a code-generation driver for the new technology, can help make
this transition much easier. In this way, developers keep the application definition
constant while leveraging improvements in implementation technology.

Improved application quality and performance

Code generation offers the benefit of leveraging pretested and proven application
infrastructure frameworks, which constitute a great portion of the generated code.
The custom code that developers need to write for a given application is typically
limited to business rules and behavior. This can reduce bugs and improve quality
and performance.

There’s less code to write and less

need for extensive developer training

in order to take advantage of the

latest technologies and development

styles and technologies.

Accelerate delivery of business solutions with
IBM Rational Business Developer software.
Page �

Highlights
The business value of EGL and Rational Business Developer software

EGL development is enabled through Rational Business Developer, which
delivers an Eclipse-based comprehensive and highly productive integrated
development environment (IDE) that can support key technologies and tools
in the IBM Rational Software Delivery Platform. EGL provides a simpli-
fied approach to application development through a familiar programming
model, transparent code generation, run-time platform robustness, and EGL-
based debugging.

Familiar programming model

EGL offers an easy-to-learn programming paradigm embodied in a traditional
procedural programming syntax that is familiar to business-oriented develop-
ers. The developer’s view is abstracted to a level independent of the underlying
implementation technology. It shields developers from the complexities of
various supported run-time environments. This abstraction can result in signifi-
cantly reduced training costs, a great improvement in programming productivity
and a nearly seamless transition of traditionally skilled developers to modern
computing technologies.

IBM System z hardware

WebSphere

USS

Linux®

Batch

CICS

IMS

IBM Rational Business Developer software

WebSphere

Tomcat

IBM System i hardware

WebSphere

Native i5/OS

i5/OS Integrated
Application Server

Native i5/OS

COBOL

Java

Native Windows,
UNIX and Linux

Microsoft Windows®,
Linux, UNIX®

Figure 1: IBM Rational Business Developer software is designed to automatically generate COBOL or Java source code, depending on the deployment platform.

EGL provides an easy-to-learn

programming model with a syntax

that is familiar to business-oriented

developers, which can help reduce

training costs and boost productivity.

Accelerate delivery of business solutions with
IBM Rational Business Developer software.
Page 10

Highlights
Transparent code generation

Developers write their business logic in EGL source code while the tools included
in Rational Business Developer do the rest. These tools transform business logic
into Java or COBOL language, and optimize the infrastructure code for the target
run-time platform. Because there’s less code to write, developers can produce
applications more quickly and with fewer bugs. As an example, when generating
Java code to run in a Java EE application server that invokes a mainframe service,
Rational Business Developer is designed to automatically generate the Java classes
necessary to invoke the associated IBM CICS®/IBM IMS™, COBOL or RPG
program elements.

Run-time platform robustness

Whenever a change to the target run-time platform occurs, only a new code-
generation driver for the new platform is needed. The application source code
remains constant, enabling developers to easily leverage improvements in
implementation technology. For example, if a new Web services technology
becomes available, developers can reuse the same EGL source code— they
simply regenerate the application using the new driver.

EGL-based debugging

Source-level debugging is provided within Rational Business Developer at the
EGL level; therefore, developers don’t need to generate code and deploy the
final executable to the production platform before debugging it. This capabil-
ity provides developers with comprehensive isolation from the complexity of
the run times and middleware, which can mean huge productivity gains and
a significant reduction in time to market. Developers debug at the logical EGL
level even if the application or service makes calls to other, non-EGL compo-
nents. For example, if a developer has IBM Rational Business Developer and
IBM Rational Developer for System z software, and an EGL service calls a
COBOL-stored procedure in the IBM DB2® database to execute on the IBM
z/OS® platform, the debugger can step through both the EGL and COBOL-
stored procedure call.

Developers can produce higher-

quality code more quickly and

simply reuse the same EGL source

code whenever there’s a change in

the target run-time platform.

Accelerate delivery of business solutions with
IBM Rational Business Developer software.
Page 11

Highlights
Who benefits from using EGL and Rational Business Developer software?

Anyone who needs to focus more on solving business problems and less on
underlying implementation technologies can benefit from using EGL and
Rational Business Developer software. The most common types of business-
oriented developers who can simplify their jobs with EGL include those
working with IBM Informix® 4GL, RPG or COBOL IBM System i™, COBOL
or PL/I IBM System z™, IBM VisualAge® Generator and IBM VisualGen®
technologies, as well as legacy 4GL, Microsoft® Visual Basic and databases.

IBM Informix 4GL developers

Rational Business Developer comes with a special utility that largely automates
the conversion of existing Informix 4GL-based applications to EGL. Developers
can modernize and extend these applications using a state-of-the-art develop-
ment environment, and they can deliver Web and service-oriented solutions.

RPG or COBOL IBM System i developers

EGL offers a simple way to extend existing RPG or COBOL applications to the
Web and allows developers to create new services that can be deployed in System i
environments, including the IBM i5/OS® integrated application server. Thanks
to the familiar procedural nature of the language, there is minimal retraining.
System i developers can also use EGL to deliver traditional text user interface
(5250) applications, to access data queues and data areas, or to invoke integrated
language environment (ILE) procedures from those applications.

COBOL or PL/I IBM System z developers

Similar to System i developers, System z developers are typically devoted to
legacy system maintenance. With EGL and Rational Business Developer, System z
developers can now become key contributors by using valuable business-domain
expertise to deliver innovative modern solutions—without major retraining.
These developers can also use EGL to deliver traditional batch and text user
interface (3270) applications for the CICS and IBM IMS/TM and IBM
IMS/DB environments.

Most business-oriented developers

can simplify their jobs with EGL.

Accelerate delivery of business solutions with
IBM Rational Business Developer software.
Page 12

Highlights
IBM VisualAge Generator and IBM VisualGen developers

For VisualAge Generator and VisualGen developers, EGL represents the
next generation and a logical migration path. The environment provides
easy-to-use and highly automated migration capabilities that bring valued
VisualAge Generator and VisualGen applications into a modern develop-
ment environment—an environment in which the applications can leverage
a modern set of run-time technologies.

Legacy 4GL developers (including Computer Associates Cool:Gen, Computer Associates

Telon, Natural and Oracle Forms)

The broad platform coverage, the simplicity and the ease of learning EGL make it
particularly attractive as a replacement for obsolete or orphaned 4GL mainframe
or distributed tools. EGL offers legacy 4GL developers an enterprise moderniza-
tion alternative through a community of IBM Business Partner tools and services
that largely automate the transformation to EGL and to the Rational Software
Delivery Platform.

Microsoft Visual Basic and Sybase PowerBuilder developers

EGL offers powerful development efficiencies for Visual Basic or PowerBuilder
developers, particularly in the areas of enterprise scalability and multiplatform
run-time support.

Database developers

EGL virtually eliminates the need to learn the database manipulation language
and to code the create, read, update and delete (CRUD) functionality by simply
doing it for you. Rational Business Developer also provides database developers
with an open source reporting system that can help turn raw data into HTML or
Adobe® PDF reports.

The simplicity and ease of learning

EGL make it a particularly attrac-

tive replacement for obsolete

mainframe and distributed tools.

Accelerate delivery of business solutions with
IBM Rational Business Developer software.
Page 13

Highlights
Rational Business Developer software and the IBM Rational Software Delivery Platform

IBM offers a portfolio of software development solutions designed for those
organizations looking to contain development costs and accelerate delivery
of high-quality applications and services that support business objectives. For
those companies that deploy to the IBM WebSphere® Application Server platform,
IBM Rational Business Developer software can be used alone. If businesses want
to automate and improve the testing of new EGL solutions, they can use IBM
Rational Functional Tester software together with Rational Business Developer
software. The addition of IBM Rational ClearCase® and IBM Rational ClearQuest®
software can help organizations provide a well-managed EGL development envi-
ronment for software changes and releases.

The IBM Rational Software Architect product offers a comprehensive design
and construction tool that leverages model-driven development with UML. It
enables developers to create well-architected applications and services, and
it includes the capabilities of IBM Rational Application Developer software.
Further, it offers UML modeling for users who want a model-driven approach
to their EGL development. With Rational Business Developer, the architect or
designer can produce EGL services directly from UML models, and then lever-
age the richness of the EGL development facilities to complete the application
development for the platforms supported by EGL.

If organizations have System i or System z developers who work in EGL, as well
as other programming languages, they can benefit from a unified workbench.
IBM Rational Business Developer can be combined with IBM Rational
Developer for System z software to provide this capability. And Rational Business
Developer software is included in IBM Rational Developer for System i SOA
Construction software. In these kinds of development environments, EGL is
typically used for new development, especially Web application development,
and to create business services for SOA solutions. It can also be used for extend-
ing and modernizing existing COBOL or other legacy programs.

IBM offers a broad selection of	

development tools that organiza-

tions can adopt as needed to help

accelerate the delivery of high-

quality applications and services

that support business objectives.

Accelerate delivery of business solutions with
IBM Rational Business Developer software.
Page 14

Highlights
IBM Rational COBOL Runtime for System z is a product that provides the run-
time libraries for programs that are developed with Rational Business Developer
and generated into COBOL for deployment to supported System z environments.

Application development with EGL

It’s important to understand the EGL elements that are essential for develop-
ing applications.

Abstracted language

EGL is a full-featured, procedural language that abstracts out the details of
a target technology. It has verbs like get, which simplify the programming
model by providing a consistent specification to various target data sources.
For example, a get statement can refer to records in a relational database, to an
indexed file or to messages in a message queue. Developers are not required to
learn and code technology-dependent database managers or message-oriented
middleware programming.

Writing applications in EGL can also help protect development investments.
Organizations can cast or generate the abstracted language into other lan-
guages. Currently, EGL generates Java or COBOL code. As technology changes
and evolves, organizations can protect their investments by regenerating the
application into a new language or for a new target platform or to entirely new
platforms—without having to modify the application.

EGL libraries

An EGL library is simply a file that includes EGL code. EGL libraries allow
application developers to easily decouple the business logic from other applica-
tion code. And these libraries provide various entry points—one per function.
Developers can call functions from other functions in other libraries, or from
EGL code in EGL programs or EGL page handlers.

As technology changes, applica-

tions written in EGL can simply 	

be regenerated into the new

language or for a new target

platform—helping to protect

development investments.

Accelerate delivery of business solutions with
IBM Rational Business Developer software.
Page 15

Highlights
The use of EGL libraries is optional, but it is the best way to reuse components.
Developers can compare EGL libraries to COBOL copy books or Java packages.
Many EGL libraries are provided directly in the products with built-in functions.
This is similar to Java classes provided by Java toolkits or frameworks. EGL librar-
ies have the potential to greatly simplify and accelerate application development.

EGL programs and functions

Developers can also use EGL programs to code the business logic, but with a
single entry point. Similar to COBOL programs, EGL programs can be main
programs, or they can be called in the same way they’re called in COBOL.
EGL code within programs can invoke EGL functions. Developers can then
compare an EGL function to a paragraph in the COBOL procedure division or
to a Java method. EGL programs are units of EGL source that can be gener-
ated into COBOL or Java code.

EGL services

EGL is specifically designed to support service-oriented architecture. Developers
can define a construct called a service, which is a set of operations that can be
invoked by a client (any application component that can reside on the same or on
another platform) or application. Services can be deployed as either EGL services
or as Web services. The former can be accessed from EGL code directly or by way
of a TCP/IP connection, and the client in this case can be a program, handler,
library or another service. The latter can be accessed over an HTTP connection
from clients written in nearly any language.

EGL page handler

When coding EGL applications to be deployed for the Web, the preferred method
uses JavaServer Faces (JSF) technology. This framework uses JavaServer Pages
(JSP) screens. In an EGL-based application, virtually every page is associated with

Specifically designed to support the	

Web and service-oriented architec-

tures, EGL enables developers to

define a construct called a service.

Accelerate delivery of business solutions with
IBM Rational Business Developer software.
Page 16

Highlights
an EGL page handler. The EGL page handler controls a user’s run-time interac-
tion with a Web page. Specifically, the page handler provides data and services
to the page-displaying JSP screen. The page handler itself includes variables and
specialized logic such as:

An OnPageLoad function, which is invoked the first time the JSP screen

renders the Web page.

A set of event handlers, each of which is invoked in response to a user action

(specifically, clicking a button or opening a link).

The page handler implements the controller component of the model-view
controller (MVC) pattern (see the MVC description later in this paper). Therefore,
it is recommended that developers not include business logic directly in the page
handler. Although the handler might include lightweight data validations, such as
range checks, developers should invoke other programs or functions to perform
complex business logic in order to follow MVC guidelines.

EGL rich Web support

IBM has extended EGL to support the development of rich Web applications that
conform to the Representational State Transfer (REST) architecture. EGL rich
user interface handlers are designed to allow the definition of rich Web inter-
faces and the generation of JavaScript to conform to the Asynchronous JavaScript
and XML (Ajax) framework. Consistent with the principles of abstraction, this is
accomplished without requiring that the EGL developer learn or understand the
intricacies of JavaScript, XML or Ajax. This innovative development approach is
available as an IBM alphaWorks® project at www.alphaworks.ibm.com.2

Relational database connectivity with EGL

Accessing data from databases can sometimes be challenging for developers who
primarily want to provide users with the information to make the best business
decisions. To access data, a developer needs to connect to a database; know and
use the database schema; be proficient in structured query language (SQL)

•

•

EGL takes the complexity out of

accessing data for developers who

primarily want to provide relevant

information to business users in

the context of an application.

Accelerate delivery of business solutions with
IBM Rational Business Developer software.
Page 17

Highlights
or other data manipulation language in order to get the appropriate data;
develop the primitive functions to perform the basic CRUD database tasks;
and provide a test environment to efficiently test the application.

Connectivity. With EGL, wizards take developers through a step-by-step

process to define connectivity. This helps users locate the databases in remote

locations, such as System z hardware.

Database schema. When dealing with existing databases, Rational Business

Developer provides a near-seamless import facility that makes the schema struc-

tures available to the EGL application.

Database coding. Rational Business Developer generates SQL or other

data manipulation statements based on EGL code. Developers can then use

the generated code or alter it to suit their needs.

Primitive functions. The Rational Business Developer product comes with

generation facilities that are designed to automatically generate the typical

CRUD functions for database-driven applications either as EGL libraries or

as EGL services.

Test capabilities. Rational Business Developer includes a test environment

that helps eliminate the complexities associated with deploying and running

applications in complex target platforms.

Hierarchical database access with EGL

EGL can provide powerful notations to access business data stored in the IMS/DB
hierarchical database systems. Developers can interact with these databases
through EGL input/output (I/O) keywords such as add, get and replace,
which generate DL/I statements in the output COBOL code. The default DL/I
statements that Rational Business Developer generates from EGL keywords can
optionally be customized. EGL can also provide the ability to code explicit DL/I
statements in one of two ways: by customizing an EGL I/O keyword statement
through the use of a #dli syntax, or by using a set of library functions support-
ing DL/I calls.

•

•

•

•

•

EGL enables developers to access

hierarchical database systems

using I/O keywords, from which

Rational Business Developer

generates DL/I statements in the

output COBOL code.

Accelerate delivery of business solutions with
IBM Rational Business Developer software.
Page 18

Highlights
File access with EGL

Developers can also use EGL programs and libraries to access data storage other
than databases, such as serial files, indexed and relative record files (virtual
storage access method [VSAM]) and other system files. As a result, developers
have significant flexibility in the types of data sources that they can use within
an EGL application system.

Application architecture with EGL

To complete Web-based applications, organizations need to bring together the
elements discussed above in the context of an application architecture. When
this integration is complete, they’ll have a concrete, deployable application. The
architecture that EGL generates is a Java EE architecture conforming to the JSF
technology–based MVC pattern.

JSF and EGL

A set of Java classes and JSP tag libraries, JSF provides a framework for devel-
oping Web applications. Rational Business Developer lets developers drag and
drop JSF controls onto a page canvas instead of having to implement pages
using hand-coding techniques.

Rational Business Developer provides integration of EGL and JSF technology,
producing an event-driven model in which a page-specific handler manages each
request. The page handler can act on information submitted with the request,
or it can forward the information to another handler for processing. This event-
driven model greatly simplifies the building of Web applications. Control logic in
the page handler is written in EGL. Business logic in the libraries and programs
is also written in EGL. There is no need to master Java skills in order to write
the application user interface or business logic. Rational Business Developer is
designed to generate the necessary Java code. The JSF with EGL capability makes
for a potentially high-productivity page development environment.

IBM Rational Business Developer

integrates EGL and JSF technology

for an event-driven model that can

greatly simplify the construction of

Web applications.

Accelerate delivery of business solutions with
IBM Rational Business Developer software.
Page 19

Highlights

Model Controller View

Call EGL programs …
Invoke EGL library
functions …

Call EGL
page handlers …

Database

Render
HTML …

EGL libraries
EGL programs

EGL page handler
files

JSP
pages

Figure 2: Relationships between elements of MVC-compliant EGL application

Using the MVC framework to develop Web applications

The MVC framework (also referred to as “model 2”) has many benefits and is
often considered a best practice for developing Web applications.

At run time, the application server contains both the view and the controller
components of an MVC Web application, while a third tier (which can be inside
or outside the application server) contains the model.

As shown in figure 2 in the model component of the MVC framework, devel-
opers can find the business logic for the Web application—which in most
cases involves accessing data stores such as relational databases— in the EGL
libraries and programs.

In the MVC framework view component, the code responsible for the presen-
tation layer consists of JSP and Java Beans technology that stores data for the
JSPs to use. Page creation is greatly simplified by using JSF controls available
within the Rational Business Developer page editor.

The MVC, or model 2, framework, is

widely considered a best practice

for building Web applications.

Accelerate delivery of business solutions with
IBM Rational Business Developer software.
Page 20

Highlights
In the MVC framework controller component, the EGL page handlers contain
the code that determines the overall flow of events.

The beauty of the EGL development environment is that business-oriented
application developers are not confronted with implementing—and do not need
to understand how to implement— the MVC pattern. The Rational Business
Developer generation engine does that for them.

Walking through an EGL application scenario

Figure 3 illustrates a simple sales employee inquiry application scenario using
EGL. The following steps show the flow of information and the tasks associated
with simple EGL application development:

The user enters an employee number and clicks a button.

Clicking the button creates a request that the JSF servlet handles.

In turn, the controller servlet invokes the employee inquiry server program.

The employee number is then passed to the server program.

The server program validates the employee number by reading an IBM

DB2 database using the employee number as the key to find. The server

program can be a function within an EGL library or an EGL program.

If the server program finds the employee number, it collects information

(name, salary and commission) and returns the data.

The server sends the returned data to the result JSP page, which displays

it for the user. If the server program does not find the employee number, it

creates an error message and returns the sales employee number.

The server sends the error message to the error JSP page, which displays it.

1.

2.

3.

4.

5.

6.

7.

8.

The EGL development environment

frees business-oriented developers

from having to implement the MVC

pattern—the Rational Business

Developer generation engine does

it for them.

Accelerate delivery of business solutions with
IBM Rational Business Developer software.
Page 21

Highlights
To accomplish this simple application using Rational Business Developer,
developers create the three pages using the drag-and-drop page editor shown in
figure 3. The controller logic that calls the appropriate server function is written
as an EGL page handler, and the server function that performs the validation is
written as an EGL library function. Rational Business Developer can then gen-
erate Java code and pull these pieces together into a Java EE technology–based
application that can be deployed and run.

Browser

Inquiry

Query result

Application server

View

Controller

Server

Model

Request

Response

Invoke

JSF servlet

JSP

EGL

EGL

EGL

Figure 3: This graphical depiction of the Rational Business Developer page editor shows the detailed
components of the sales employee inquiry application example, as well as the flow of information.

From this simple walk-through example, it is easy to see that the complexity
behind the new and evolving Web technologies is hidden from the developer
by an easy-to-use page editor and EGL.

A simple example of a sales em-

ployee inquiry application shows

how EGL and the Rational Business

Developer page editor conceal

the underlying complexity of Web

technologies, simplifying the pro-

cess for developers.

Accelerate delivery of business solutions with
IBM Rational Business Developer software.
Page 22

Highlights
Simplifying migrations and enterprise modernization

It is not the intent of this white paper to address the various driving forces
behind enterprise IT migrations, the modernization of legacy applications or the
various planning steps involved. However, what is of importance is the role that
EGL and Rational Business Developer can play in simplifying such initiatives.

The new generation of IT systems requires software development capabilities that
support new middleware and emerging application architectures. Flexibility is
the name of the game. But because of the variety and complexity of activities and
artifacts necessary to implement these solutions, it is essential that development
organizations establish a systematic and comprehensive approach to developing
software with proven methodologies, processes and tools. At the same time, legacy
application developers are asking IBM to preserve the levels of productivity and
simplicity that they have become accustomed to, and which support business-
critical applications.

Through Rational Business Developer, EGL becomes a core component of a
broad, comprehensive application development, governance and lifecycle man-
agement solution from IBM that spans modeling and application development
through testing and software configuration management tools. Because EGL
offers a familiar development model for business-oriented developers, there is
no need to restaff. Developers who are already employed at an organiztion
can use EGL to call business-critical application components. Or, if and when
appropriate, organizations may choose to convert existing applications to EGL.

Through code conversion of legacy 4GL such as VisualAge Generator; VisualGen;
Informix 4GL; Natural; RPG; Computer Associates Cool:Gen, Telon, Ideal and
Synon, organizations can leverage existing investments and move rapidly onto
a modern software development platform. This is made possible through auto-
mated conversion utilities designed to migrate the specific legacy environment
to EGL—efficiently and cost-effectively.

Through Rational Business

Developer, EGL can simplify and

streamlines IT migrations and

application upgrades, helping 	

to make them more efficient 	

and cost-effective.

Accelerate delivery of business solutions with
IBM Rational Business Developer software.
Page 23

Highlights
Once organizations convert their code, they have the opportunity to step back
and analyze whether a redesign is required, particularly from a user interface
perspective. If a redesign is necessary, EGL can assist organizations in bringing
their applications to the Web.

Unifying siloed development teams

EGL helps break down skill silos among development teams, enabling orga-
nizations to make optimal use of programming resources. Legacy developers
often have difficulty working with Web and SOA technology, and new devel-
opers are not able to deal with earlier-generation technology, so managing
cross-technology teams can be challenging and inefficient. But virtually all
developers can easily learn EGL, creating a unified pool of specialists who
can work on comprehensive projects in a single technology. EGL can also help
motivate uninspired developers, retain existing talent and attract new talent,
because it offers a modern, powerful programming environment that targets
legacy environments.

Is EGL right for your organization?

EGL is not intended as a substitute for the Java or COBOL language. While
large percentages—and even 100 percent—of an application can be delivered
using only EGL, there will be cases where additional code may be required or
even appropriate for the requirements at hand. But EGL is ideal for business-
oriented development teams that:

Value ease of learning.

Need high levels of productivity.

Must deliver modern applications and services but cannot afford the cost,

time or risk of transforming each developer into an expert in mainframe or

Java development.

•
•
•

Because it is easy for both legacy

and new developers to learn, EGL

can break down skill silos and

unify development teams, helping

to optimize resource utilization.

For more information

To learn more about IBM Rational Business Developer software, contact your
IBM representative or IBM Business Partner, or visit:

ibm.com/software/awdtools/developer/business

To learn more about EGL and IBM Rational Business Developer software and how
they can help your organization speed the adoption of emerging technologies,
improve productivity, leverage legacy developers and increase the likelihood of
your success in building modern applications, visit:

ibm.com/developerworks/rational/products/rbde

And to experiment with IBM Rational Business Developer software, visit:

ibm.com/developerworks/downloads/emsandboxes/systemz.html

©	Copyright IBM Corporation 2008

IBM Corporation	
Software Group	
Route 100	
Somers, NY 10589	
U.S.A.

Produced in the United States of America	
03-08	
All Rights Reserved

alphaWorks, CICS, ClearCase, ClearQuest, DB2, 	
i5/OS, IBM, the IBM logo, IMS, Informix, Rational,
System i, System z, VisualAge, VisualGen, 	
WebSphere and z/OS are trademarks or reg-
istered trademarks of International Business
Machines Corporation in the United States, 	
other countries, or both.

Adobe is a registered trademark or trademark
of Adobe Systems Incorporated in the United
States, and/or other countries.

Microsoft and Windows are trademarks of Microsoft
Corporation in the United States, other countries,
or both.

Java and all Java-based trademarks are trade-
marks of Sun Microsystems, Inc. in the United
States, other countries, or both.

UNIX is a registered trademark of The Open
Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds
in the United States, other countries, or both.

Other company, product and service names may
be the trademarks or service marks of others.

The information contained in this documentation
is provided for informational purposes only. While
efforts were made to verify the completeness and
accuracy of the information contained in this docu-
mentation, it is provided “as is” without warranty of
any kind, express or implied. In addition, this infor-
mation is based on IBM’s current product plans and
strategy, which are subject to change by IBM without
notice. IBM shall not be responsible for any dam-
ages arising out of the use of, or otherwise related
to, this documentation or any other documentation.
Nothing contained in this documentation is intended
to, nor shall have the effect of, creating any warran-
ties or representations from IBM (or its suppliers or
licensors), or altering the terms and conditions of the
applicable license agreement governing the use of
IBM software.

1	CIO, “The State of the CIO 2008: The CIO’s Time 	
	 to Shine,” December 10, 2007, http://www.cio.com/	
	 article/163700.	
2	All statements regarding IBM’s plans, directions 	
	 and intent are subject to change or withdrawal 	
	 without notice.	

RAW11012-USEN-01

http://www.ibm.com/software/awdtools/developer/business
http://www.ibm.com/developerworks/rational/products/rbde
http://www.ibm.com/developerworks/downloads/emsandboxes/systemz.html

	Unlocking the full potential of your development staff
	The conceptual foundation for business-oriented development
	What is EGL?
	EGL and MDA
	The business value of EGL and Rational Business Developer software
	Who benefits from using EGL and Rational Business Developer software?
	Rational Business Developer software and the IBM Rational Software Delivery Platform
	Application development with EGL
	EGL rich Web support
	Relational database connectivity with EGL
	Hierarchical database access with EGL
	File access with EGL
	Application architecture with EGL
	JSF and EGL
	Using the MVC framework to develop Web applications
	Walking through an EGL application scenario
	Simplifying migrations and enterprise modernization
	Unifying siloed development teams
	Is EGL right for your organization?

